
 
  

Open Archive TOULOUSE Archive Ouverte (OATAO) 

This  is  an author-deposited  version published in  :  http://oatao.univ-toulouse.fr/
Eprints ID : 20029

To link to this article : DOI:10.1016/j.ijmultiphaseflow.2018.05.002 
URL : https://doi.org/10.1016/j.ijmultiphaseflow.2018.05.002 

To cite this version : Mer, Samuel  and Praud, Olivier  and Neau,

Hervé  and Merigoux, Nicolas and Magnaudet, Jacques  and Roig,

Véronique  The emptying of a bottle as a test  case for assessing
interfacial momentum exchange models for Euler–Euler simulations
of  multi-scale  gas-liquid  flows. (2018)  International  Journal  of
Multiphase Flow, vol. 106. pp. 109-124. ISSN 0301-9322 

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible. 

http://oatao.univ-toulouse.fr/
https://doi.org/10.1016/j.ijmultiphaseflow.2018.05.002
mailto:staff-oatao@listes-diff.inp-toulouse.fr
http://www.idref.fr/204109981
http://www.idref.fr/071456058
http://www.idref.fr/223963593
http://www.idref.fr/058589252
http://www.idref.fr/061577421


The emptying of a bottle as a test case for assessing interfacial

momentum exchange models for Euler–Euler simulations of

multi-scale gas-liquid flows

Samuel Mer a, Olivier Praud 

a,  Herve Neau 

a,  Nicolas Merigoux 

b,  Jacques Magnaudet a, 

Veronique Roig 

a 

a Institut de Mécanique des Fluides de Toulouse, IMFT, Université de Toulouse - CNRS, Toulouse, France
b Electricité de France R&D, 6 quai Wattier, Chatou 78401, France

Keywords:

Euler–Euler formulation

Bubbly flow

Multi-scale flow

a b s t r a c t 

Simulating gas-liquid flows involving a wide range of spatial and temporal scales and multiple topological

changes remains a major challenge nowadays, as the computational cost associated with direct numeri- 

cal simulation still makes this approach unaffordable. A common alternative is the two-fluid Euler–Euler

formulation that avoids solving all scales at the price of semi-empirical closures of mass, momentum and

energy exchanges between the two fluids. Many of such closures are available but their performances in

complex flows are still in debate. Closures considering separately large gas structures and smaller bub- 

bles and making these two populations evolve and possibly exchange mass according to their interac- 

tions with the surrounding liquid have recently been proposed. In order to assess the validity of some

of these closures, we carry out an original experiment in a simple configuration exhibiting a rich succes- 

sion of hydrodynamic events, namely the emptying of a water bottle. We simulate this experiment with

the NEPTUNE_CFD code, using three different closure approaches aimed at modelling interfacial momen- 

tum exchanges with various degrees of complexity. Based on experimental results, we perform a detailed

analysis of global and local flow characteristics predicted by each approach to unveil its potentialities

and shortcomings. Although all of them are found to predict correctly the overall features of the emp- 

tying process, striking differences are observed regarding the distribution of the dispersed phase and its

consequences in terms of liquid entrainment.
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. Introduction

Gas-liquid flows involving a broad range of bubble sizes are

biquitous in geophysical and engineering configurations and ap-

lications, such as magmatic chimneys, submarine explosions, bub-

le columns or nuclear safety, to mention just a few. In such situa-

ions, the gas phase frequently involves a wide range of spatial and

emporal scales, from large gas pockets to small dispersed bubbles.

oreover, dramatically different flow regimes may be encountered,

haracterized by distinct interaction mechanisms between the gas

hase and the carrying liquid. Simulating such flows remains a ma-

or challenge nowadays, although massive effort s have been de-

oted during the last two decades to develop modelling strate-

ies aimed at computing multiphase flows ( Prosperetti and Tryg-

vason, 2007 ). 
R  

fl  

n

These strategies differ according to the level of accuracy they

arget and the computational resources they require. A first class

f numerical techniques based on Direct Numerical Simulation

DNS) of the Navier–Stokes equations shares the same main chal-

enge consisting in precisely localizing interfaces in the flow do-

ain and imposing the proper jump conditions across them.

hree main approaches have been proposed to track interfaces,

amely the Volume Of Fluid ( Hirt and Nichols, 1981 ), Level Set

 Osher and Sethian, 1988 ) and Front Tracking ( Unverdi and Tryg-

vason, 1992 ) methods (see also Scardovelli and Zaleski, 1999;

ethian and Smereka, 2003; Tryggvason et al., 2001 for reviews).

ince then, these techniques have become mature and are now

idely used to get insight into detailed mechanisms governing

ow configurations with increasing complexity. For bubbly flows,

his may range from those involving a single bubble rising at large

eynolds number ( Cano-Lozano et al., 2016 ) to dispersed bubbly

ows with up to O(10 3 ) bubbles moving at moderate Reynolds

umber ( Bunner and Tryggvason, 2002 ). 

https://doi.org/10.1016/j.ijmultiphaseflow.2018.05.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijmulflow
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijmultiphaseflow.2018.05.002&domain=pdf
mailto:samuel.mer@imft.fr
mailto:magnau@imft.fr
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Despite the potentialities offered by these DNS approaches and

their improvements associated with local grid refinement tech-

niques ( Popinet, 2009 ), their computational cost still makes them

unable to simulate complex configurations, especially those in-

volving multiple coalescence and break-up sequences. Such com-

plex two-phase flows are usually computed using the much cruder

Euler–Euler approach based on the so-called two-fluid model ( Ishii,

1975; Ishii and Hibiki, 2006 ). In this framework, the governing

equations are obtained after volume-averaging (or more formally

ensemble-averaging) the local budgets, so that unknown terms oc-

cur at interfaces. As in any averaging scheme, closures are required

to express these terms with respect to the primitive variables

and their gradients. The accuracy of the simulations then depends

tremendously on the validity of these closures. Many of them have

been proposed for each flow configuration, e.g. separated flows,

dispersed bubbly or particulate flows, etc. (see Drew and Pass-

man, 1999 and Balachandar and Eaton, 2010 for reviews). In bubbly

flows for instance, assuming non-deformable and mono-disperse

bubbles, momentum interfacial exchange is usually modelled by

considering drag, added-mass and shear-induced lift forces act-

ing on individual bubbles, supplemented with turbulent diffusio-

phoresis and lubrification effects when the carrying flow is turbu-

lent and walls are present, respectively. Applications of the two-

fluid approach to such flows, possibly with phase change, may be

found for instance in Mimouni et al. (2010, 2011a, 2011b) . Simi-

larly, specific closures with various degrees of sophistication have

been developed to simulate ‘slug’ flow configurations ( Issa and

Kempf, 2003; Issa et al., 2006 ) and separated nearly-horizontal

flows ( Vallée et al., 2008 ). 

The key limitation of the above closures is that they are spe-

cific to the configuration for which they were calibrated and are

unable to properly model the interfacial exchange mechanisms at

work in another type of flow. This limitation can only be overcome

if the modelling approach is made able to recognize which config-

uration is present at a given position in space and time. Two main

streams of approaches were developed during the last two decades

to reach this goal. The first of them consists in switching locally

from DNS (based on either the Volume Of Fluid or the Level Set

approach) to the two-fluid formulation wherever interfaces exhibit

a characteristic size of the order of the grid cell ( ̌Cerne et al., 2001;

Tomiyama et al., 2006; Yan and Che, 2010 ). This technique was

successfully employed to compute several gas-liquid flows domi-

nated by fragmentation, e.g. a two-phase vortex or the unstable

Rayleigh-Taylor configuration. The second approach consists in ex-

tending the two-fluid model to an arbitrary number of ‘fields’ or

‘phases’, each of them corresponding to a specific flow configura-

tion or class of two-phase entities (e.g. small bubbles, large bub-

bles, slugs, etc). Occurrence of each of these configurations at a

given time and position has to be identified in order to evaluate

the corresponding volume fraction. As each ‘phase’ has its own ve-

locity field, momentum closures have to be formulated to properly

account for the interaction between two of them. This approach

has for instance been applied to the upward bubbly pipe flow with

several widely distinct bubble sizes and possible mass exchange

between them, due to phase change ( Krepper et al., 2008 ). 

Although the above methodology was initially designed to deal

with dispersed flows, it may be applied to separated flows as well,

provided one is able to ( i ) properly define a criterion allowing

the occurrence of the ‘separated’ configuration to be detected, and

( ii ) derive realistic closure laws for the various separated flow

regimes according to the interface roughness. This is the essence of

the Large Interface Model (LIM) designed by Henriques (2006) and

Coste (2013) , as well as that of the Algebraic Interfacial Area Den-

sity (AIAD) model promoted by Höhne and Vallée (2010) and

Deendarlianto et al. (2011) . Mixed configurations in which sepa-

rated and dispersed regions coexist within the flow may also be
ackled within the framework of the n -field approach, provided the

bove criterion allows ‘Large Interfaces’ (hereinafter abbreviated as

I) corresponding to the separated configuration to be disentangled

rom small-scale interfaces, and distinct closure laws are employed

or the dispersed and separated regions. This idea yielded several

ifferent modelling approaches, such as the Generalized Two-Phase

low model (GENTOP, Hansch et al., 2012 ) or the Generalized Large

nterface Model (GLIM, Merigoux et al., 2016 ). Examples of applica-

ion of this type of approach to a gas jet impinging a free surface

nd a bubble column with bubbles bursting at the free surface may

e found in the first reference. 

Still in the context of the two-fluid and n -field formulations,

everal attempts were recently carried out to achieve a more re-

listic and accurate treatment of LI by taking explicitly into ac-

ount surface tension effects ( Bartosiewicz et al., 2008; Štrubelj

t al., 2009; Gada et al., 2017 ). A technical difficulty arises in this

ype of approach, due to the natural tendency for numerical dif-

usion to spread stiff volume fraction gradients. Sharpening tech-

iques have been proposed to counteract this effect and maintain

ell-defined separated ‘phases’, so that the LI may remain prop-

rly defined over time. A cutoff length must also be defined, so

hat interfaces with a characteristic size smaller than this criti-

al length are no longer resolved and interactions between the

orresponding dispersed phase and the continuous one are en-

irely modelled with the help of empirical closure laws. Last, an

xchange procedure combining numerical requirements and basic

hysical principles has to be designed to allow a LI to break up

nto smaller bubbles, and such bubbles to coalesce and generate a

I. Such an approach has been implemented both in the aforemen-

ioned GENTOP formulation ( Montoya et al., 2015 ), and in the NEP-

UNE_CFD code where it is termed the Large Bubble Model (LBM,

enèfle et al., 2015; Mimouni et al., 2017 ). Preliminary assessment

f this approach in canonical configurations, such as the Kelvin–

elmholtz and Rayleigh–Taylor instabilities, was reported by Fleau

t al. (2015, 2016) . 

The aim of the present paper is to assess the validity of the

bove LIM, GLIM and LBM approaches implemented in the NEP-

UNE_CFD software, by considering an academic but already sig-

ificantly complex flow configuration and performing a one-to-

ne comparison between original experiments carried out in that

ow and computations making use of the above three models. The

elected two-phase configuration, namely the emptying of a wa-

er bottle, is especially relevant for checking such modelling ap-

roaches, as it exhibits a wide range of temporal and spatial scales.

arge air bubbles with diameters of the order of the bottle neck are

eriodically generated and rise within the bottle until they burst at

he free surface below the top of the bottle. While ascending, these

arge bubbles undergo successive break-up events, yielding swarms

f smaller bubbles, part of which may coalesce again and partici-

ate into the regeneration and reconfiguration of the large bubble

opulation. 

Few computational studies have been performed so far

n this flow configuration. The most noticeable is that of

eiger et al. (2012) who simulated it with the help of the Open-

oam software in the framework of a Volume Of Fluid approach.

hey mainly focused on the influence of geometrical parameters

nd bottle inclination on the emptying time. However they as-

umed the liquid and air phases to be both isothermal and in-

ompressible. As we shall see later, the latter assumption is highly

uestionable. 

The present paper is organized as follows. Section 2 introduces

he multi-field formulation and details the various approaches em-

loyed to model interfacial momentum exchanges in the NEP-

UNE_CFD code. The experimental and computational configura-

ions are described in Section 3 . Section 4 discusses typical results

btained through both approaches on some quantities characteriz-
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ng the overall dynamics of the system. Section 5 focuses on local

haracteristics of the two-phase flow and examines the influence

f the aforementioned models on the evolution and statistical dis-

ribution of these characteristics. Finally Section 6 summarizes the

ain findings of the study and draws some prospects for future

ork. 

. n-field Approach and interfacial exchange models in

EPTUNE_CFD 

All simulations presented in this paper were performed with

he release 4.0 of the NEPTUNE_CFD code jointly developed by EDF,

EA, IRSN and Framatome for more than a decade. The govern-

ng equations considered in this code are based on an extension

o n fields of the two-fluid model ( Ishii and Hibiki, 2006 ). This

echnique is particularly well-suited for dispersed flows involving

 single size of particles, drops or bubbles. In this context, the de-

cription reduces to two fields, namely a continuous carrying liquid

hase and a dispersed one. In general, mass, momentum and en-

rgy conservation equations are solved for each field, with the as-

umption that they share the same pressure field. From a numeri-

al viewpoint, all governing equations considered in NEPTUNE_CFD

re discretized using a finite volume technique with collocated

ariables. The grid is unstructured and involves arbitrary shaped

ells. A second order linear upwind scheme is used to update

he volume fraction of each field. The velocity field is advanced

hanks to a fractional step technique while the pressure field is

omputed with the help of the SIMPLE algorithm ( Patankar and

palding, 1972 ). An iterative coupling between energy and mass

alances is used to enforce the simultaneous conservation of both

uantities ( Mimouni et al., 2008 ). 

.1. Primary equations of the n -field model 

We assume an isothermal flow, so that only the mass and mo-

entum conservation equations need to be considered. Velocities

nd volume fractions, together with fluid properties (density and

iscosity) are defined for each field k at every point of the domain.

he volume fractions, αk , satisfy 
 

k 

αk = 1 , (1) 

For each field k , the mass balance is written as 

∂ 

∂t 
(αk ρk ) + ∇ · (αk ρk u k ) =

∑ 

p� = k
�p→ k , (2)

here ρk and u k are the density and velocity of field k , and �p → k 

enotes the mass exchange rate between fields p and k . For any p

nd k , this mass exchange rate must satisfy 

p→ k + �k → p = 0 . (3) 

n two-fluid gas-liquid configurations, Eq. (3) merely expresses the

nterfacial mass balance, so that �p → k is the interfacial mass ex-

hange rate possibly due to phase change. No such phase change is

onsidered in the simulations to be discussed later. However, when

everal distinct fields are employed to represent entities of differ-

nt sizes within the same physical phase (e.g. large and small bub-

les within the gas phase), coalescence and break-up events make

he mass of each of these fields vary, so that �p → k is generally

onzero. 

The momentum balance for phase k is written as 

∂ 

∂t 
(αk ρk u k ) + ∇ · (αk ρk u k � u k ) = −αk ∇P + αk ρk g

+ ∇ ·
(
αk μk (∇ u k + 

T ∇ u k )
)

+ 

∑ 

p� = k
I p→ k , (4) 
here μk is the viscosity of field k and I p → k represents the mo-

entum exchange rate between fields p and k . The latter may be

plit in the form 

 p→ k = I H p→ k + �p→ k u 

I 
pk , (5)

here u 

I 
pk 

is the velocity at the interface between phases p and

 , and the first term in the right-hand side, I H 
p→ k 

, represents the

omentum exchange due to hydrodynamic forces, while the sec-

nd is merely the momentum exchange associated with the mass

xchange rate between the two phases. The interfacial momentum

xchange term has to be modelled to close the set of equations. 

If an interfacial tension, σ pk , may be defined between phases p

nd k , the corresponding interfacial momentum balance implies 

 p→ k + I k → p = lim 

V �→ 0 

1 

V �

∫ 
�

σpk κpk n pk dA 

I , (6)

here n pk is the unit normal to the p − k interface, κpk = −∇ · n pk

s the corresponding mean curvature, dA 

I is the elementary inter-

acial area and � denotes the control volume (which in computa-

ional practice corresponds to the grid cell), the volume of which

s V �. In what follows, capillary effects are neglected in the LIM

nd GLIM approaches. We shall specify in due course how and un-

er which conditions they are taken into account in the LBM. Note

hat, provided the interfacial velocity u 

I 
pk 

is continuous across the

nterface, the left-hand side of Eq. (6) reduces to I H 
p→ k

+ I H 
k → p 

, ow-

ng to Eq. (3) . 

In the next four subsections, we detail the various closures and

etection criteria used to express the interfacial momentum ex-

hange in the three aforementioned models implemented in NEP-

UNE_CFD. A summary of the characteristics and closure laws in-

olved in each of these models is provided in Table 1 . 

.2. The dispersed bubbly flow model 

In a bubbly flow with mono-dispersed bubbles, the above set

f equations reduces to the usual two-fluid formulation. The cor-

esponding two fields are referred to as the continuous liquid ( cl )

nd the dispersed gas ( dg ) phases, respectively. In such a flow, pro-

ided wall effects and turbulent dispersion are absent or have neg-

igible effects, the interfacial momentum exchange is assumed to

esult from the sum of three independent contributions, namely

 viscous drag force, F D , an added mass force, F AM , and a shear-

nduced lift force, F L ( Mimouni et al., 2011b ). 

The momentum transfer resulting from viscous drag is written

s 

 

D 
cl→ dg = 

1 

8 

A 

I ρl C D || u dg − u cl || (u cl − u dg ) , (7)

here A 

I = lim V �→ 0 
1 

V �

∫ 
� dS I denotes the rate of interfacial area

er unit volume which, for a mono-dispersed bubble distribution,

ay be expressed as a function of the volume fraction of the dis-

ersed phase through the well-known relation A 

I = 6 αdg /d dg , d dg 

enoting the bubble diameter. The drag coefficient C D depends on

he bubble Reynolds number, Re dg = ρl || u dg − u cl || d dg /μl , on the

ond number, Bo dg = (ρl − ρg ) gd 2 
dg 

/σ ( σ being the surface ten-

ion of the liquid), and on the volume fraction, αdg . NEPTUNE_CFD

akes use of the empirical correlations established by Ishii and

uber (1979) to express C D as a function of Re dg , Bo dg and αdg in

he various regimes encountered with rising bubbles, possibly in

ense configurations. 

The contribution of added mass effects to I H 
p→ k

is written in the

orm ( Zuber, 1964 ) 

 

AM 

cl→ dg = C AM 

1 + 2 αdg 

1 − αdg 

αdg ρl 

(
D u cl 

Dt 
− du dg 

dt 
, (8) 



Table 1

Summary of the three closure models for the momentum interfacial exchange rate, I H .

Model

Number

of gas fields

Cutoff

length cg / dg

Diameter of

dispersed bubbles

Forces acting on

LI

Forces acting on

dispersed bubbles

LIM 1 — — I H 
cl→ cg 

= F F 
cl→ cg 

( Eq. (10) ) I H 
cl→ dg 

= F P 
cl→ cg 

( Eq. (11) )

+ F P 
cl→ cg 

( Eq. (11) )

I H 
cl→ cg 

= F F 
cl→ cg 

( Eq. (10) ) I H 
cl→ dg 

= F D 
cl→ dg 

( Eq. (7) )

GLIM 1 l c ≈	 d g + F P 
cl→ cg 

( Eq. (11) ) + F AM 
cl→ dg 

( Eq. (8) )

+ F L 
cl→ dg 

( Eq. (9) ) 

I H 
cl→ cg 

= F σ
cl→ cg 

( Eq. (10) ) I H 
cl→ dg 

= F D 
cl→ dg 

( Eq. (7) )

LBM 2 l c = 8	 d g + F D 
cl→ cg 

( Eqs. (15) –(17) ) + F AM 
cl→ dg 

( Eq. (8) )

+ F L 
cl→ dg 

( Eq. (9) ) 
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where C AM 

= 0 . 5 is the added mass coefficient of an isolated

sphere, 
D u cl 
Dt = 

∂u cl 
∂t

+ u cl . ∇u cl and
du dg 

dt
= 

∂u dg 

∂t
+ u dg . ∇u dg are the

local accelerations of the liquid and dispersed phases, respectively.

These two distinct expressions of the accelerations are consistent

with the theoretical expressions known to hold in an inviscid fluid

( Auton et al., 1988 ). In the limit of small-but-finite volume frac-

tions, the weighting by αdg reduces to αdg (1 + 3 αdg ) which is also

consistent with theoretical results ( Biesheuvel and Spoelstra, 1989 ).

Last, the momentum transfer resulting from shear-induced lift

effects is assumed to take the form 

F L cl→ dg = C L αdg ρl (u cl − u dg ) × ω cl , (9)

where ω cl = ∇ × u cl is the local vorticity in the liquid phase. When

the Bond number is small, the lift coefficient C L is set to 0.5 which

is the theoretical value corresponding to a sphere translating in

a uniform inviscid shear flow ( Auton, 1987 ), a result also known

to hold for spherical bubbles moving in a viscous fluid provided

Re dg � 10 2 ( Legendre and Magnaudet, 1998 ). When the Bond num-

ber is of O(1) , deformation alters the magnitude of the shear-

induced lift force and may even reverse it ( Adoua et al., 2009 ).

In this regime, the empirical correlation C L = F(Bo dg , Re dg ) estab-

lished by Tomiyama et al. (2002) in a simple shear flow is applied.

2.3. The Large Interface Model 

The n -field formulation may be adapted to the description of

separated (or ‘stratified’) two-phase flows, for instance to deal with

situations in which a high-speed gas shears a liquid layer. Two of

the main attempts in that direction are the Algebraic Interfacial

Area Density (AIAD) model implemented in the ANSYS CFX code

( Höhne and Vallée, 2010; Deendarlianto et al., 2011 ) and the Large

Interface Model (LIM) developed by Coste (2013) within the NEP-

TUNE_CFD code. The LIM comprises two main ingredients, namely

a recognition algorithm aimed at detecting ‘large’ interfaces (LI)

and a specific closure for the interfacial momentum exchange rate.

2.3.1. Detection of a large interface 

In this model, a LI is captured thanks to a three-cell stencil

(so-called LI3C algorithm): one cell contains the interface, with a

mixture of the two phases (characterized by a non-zero value of

the product αcl αcg ), whereas one cell on each side of the interface

is only filled with one phase. The former cell is identified based

on the magnitude of the liquid volume fraction gradient, || ∇αcl ||,

which for a separated configuration is identical to the rate of inter-

facial area per unit volume, A 

I . The detection is achieved by com-

paring each component of ∇αcl to a prescribed threshold value. A

cell is said to contain a LI if at least one of these components ex-

ceeds the threshold. Then, the neighbouring liquid and gas cells are

identified by moving away from that cell in the direction normal to

the interface, characterized by the unit vector n cl = ∇ αcl ||∇ αcl || −1 .

Knowing the components of n and the distribution of α allows
cl cl 
he position and orientation of the interface within the interface-

ontaining cell to be determined. With this information at hand,

istances between the interface and the neighbouring collocation

oints for the gas and liquid velocities may be evaluated. The tan-

ential components of these neighbouring velocities are also ob-

ained by projecting them onto the interface plane, making it pos-

ible to evaluate the gradient of these tangential components in

he direction normal to the interface. Then the shear stress on both

ides of the interface is estimated by applying a near-wall treat-

ent qualitatively similar to that routinely employed to determine

he so-called friction velocity in a turbulent boundary layer over a

igid wall. Here, continuity of shear stresses across the LI implies

hat the friction velocities in the two phases, u ∗cg and u ∗
cl
, satisfy

g u 
∗2 
cg = ρl u 

∗2 
cl 

. Coste (2013) devised a complex procedure aimed

t taking into account the influence of the possible subgrid-scale

oughness of the LI on u ∗cg and u ∗
cl 

. For this, he referred to the state

iagram established by Brocchini and Peregrine (2001a,b) to distin-

uish between smooth, wavy and ‘knobbly’ interfaces. More detail

n the detection algorithm and determination of the friction veloc-

ty may be found in the original reference ( Coste, 2013 ). 

.3.2. Momentum exchange across a large interface 

Once a cell is recognized to contain a LI and the friction veloc-

ties are determined, the tangential component of the interfacial

omentum exchange rate within it is assumed to result from the

rictional force density 

 

F 
cl→ cg = ρg u 

∗2 
cg A 

I (u cl − u cg ) 

|| u cl − u cg || . (10)

n additional contribution to I H 
cl→ cg 

is added in the normal direc-

ion for a purely numerical purpose. The role of this term is to en-

orce the equality of the normal components of u cl and u cg on a LI.

ndeed, these two velocity fields being treated as independent vari-

bles and no interfacial tension acting at cl − cg interfaces, there is

n general no chance that this equality is achieved ‘naturally’. Con-

equently it is enforced by introducing a penalization force density,

 

P 
cl→ cg

, in the form 

 

P 
cl→ cg = αcl αcg (αcg ρg + αcl ρl ) 

C τ

	t 
[ (u cl − u cg ) · n cl ] n cl , (11)

here 	t is the numerical time step, C τ is an empirical coefficient,

nd the weighting factor αcl αcg ensures that F P 
cl→ cg

is nonzero only

n cells containing a LI. Thanks to the above definition of F P 
cl→ cg

,

any difference between the normal components of u cl and u cg on a

I results in a large magnitude of this artificial force if 	t is small.

ence, selecting a large value of C τ / 	t guarantees that the differ-

nce between the two normal velocity components remains negli-

ibly small in cells containing a LI. 

The LIM approach summarized above was specifically devel-

ped to simulate separated two-phase flows. This model does

ot apply to a dispersed configuration. Indeed, although no LI is



Fig. 1. Schematic representation of the role of f c and β in the weighting procedure

of the momentum closure defining the GLIM approach. The square represents the

unit grid cell �.
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Fig. 2. Schematic of the inter-phase couplings involved in the Large Bubble Model

(adapted from Denèfle et al., 2015 ).
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resent in that case (as rightly identified by the detection algo-

ithm), most cells exhibit non-zero values of the product αcl αcg .

hus, if the LIM approach is selected, the penalization force density

efined in Eq. (11) is applied to these cells, providing a misrepre-

entation of the momentum exchange between the two phases. 

.4. The Generalized Large Interface Model 

The idea underlying this model is to combine the capabilities

f those described in Sections 2.2 and 2.3 , so as to simulate multi-

cale flow configurations in which LI and dispersed bubbles coexist

ithin the flow domain. 

To this end, the interfacial momentum transfer closure has

o be adapted to the local flow configuration. The first step is

o detect LI throughout the domain by using the algorithm de-

cribed in Section 2.3.1 . Similar to the LIM approach, the mo-

entum exchange closure I H 
cl→ cg 

= F F 
cl→ cg 

+ F P 
cl→ cg 

is applied to

ells containing a LI. Then, in cells that do not contain a LI but

ave a non-zero gas volume fraction, the dispersed bubbly flow

odel of Section 2.2 with an interfacial momentum exchange rate

 

H 
cl→ dg 

= F D 
cl→ dg 

+ F AM 

cl→ dg 
+ F L 

cl→ dg 
is applied. To avoid superimpos-

ng both models in cells where αcl αcg � = 0, the total momentum ex-

hange rate within such cells is defined in a composite manner as

I H 
cl→ dg 

+ (1 − γ ) I H 
cl→ cg 

. The weighting pre-factor, γ , is selected in

he form ( Merigoux et al., 2016 ) 

= β( 1 − Min ( f c , 1) ) with f c = 6 

V �

S �
n � · ∇αcl , (12)

here S � denotes the area of the outer surface that bounds the

ontrol volume �, and n � is the outer unit normal to that surface.

n Eq. (12) , β is a pre-factor that smoothly varies from 0 to 1 ac-

ording to the local value of the liquid volume fraction, αcl . More

pecifically, β is set to 0 if αcl < 0.5, which is considered to cor-

espond to locations involving a LI. Conversely, β = 1 if αcl > 0.7,

here the flow structure is considered to be dominated by the

resence of dispersed bubbles. Last, β follows the linear variation

= (αcl − 0 . 5) / 0 . 2 if 0.5 ≤αcl ≤ 0.7. However, a fraction of a LI may

till be present in cells with αcl > 0.5. In such cells, it is obviously

esirable to lower the influence of the dispersed phase and in-

rease that of the LI. The correction function f c helps satisfying this

equest by lowering γ if the rate of interfacial area associated with

he LI present in the cell (which is approximately || ∇αcl ||) is of the

ame order as the surface-to-volume ratio of the grid cell, S �/ V �

see Fig. 1 ). 

It is important to realize that in this model, the ‘dispersed’ ( dg )

nd ‘continuous’ ( cg ) gas phases actually refer to the same field.

t is only the weighting factor, γ , that selects whether the local

ow structure is close to a separated or a dispersed configura-

ion. This selection criterion allows the ‘generation’ of a dispersed

r continuous gas phase only in a limited number of configura-

ions, mostly driven by grid resolution and numerical limitations.

ore specifically, starting from a configuration in which all inter-

aces are properly resolved, the GLIM approach may later detect
 dispersed phase either if two LI get very close to one another

which also happens if the curvature of an interface becomes lo-

ally very large), or if the interfacial region containing a LI grad-

ally thickens, owing to numerical diffusion. Conversely, starting

rom a purely dispersed gas-liquid configuration, a LI may only be

reated if the flow conditions or boundary conditions force the gra-

ient of the gas volume fraction to reach locally a large value (e.g.

 plume of rising bubbles hitting a horizontal wall). Last, it must

e kept in mind that the dispersed phase is assumed to be mono-

ispersed and that the ingredients brought to the GLIM approach

y the models described in Sections 2.2 and 2.3 do not allow the

ubble diameter, d dg , to be predicted. Instead this diameter must

e prescribed as a function of the average cell size, 	a . In the sim-

lations to be described below, this ratio is set to d dg / 	a ≈ 0.4 (see

ection 3.2 ). 

.5. The Large Bubble Model 

The LBM ( Denèfle, 2013; Denèfle et al., 2015; Mimouni et al.,

017 ) is the most sophisticated of the models considered in the

resent study. Here, distinct dispersed ( dg ) and continuous ( cg ) gas

hases are considered, making the LBM a 3 −field model involv-

ng separate cl → cg and cl → dg momentum exchange closures. The

l → dg closure is achieved thanks to the force density expressions

etailed in Section 2.2 , whereas the large gas structures are con-

idered as a continuous phase separated from the carrying liquid

y LI that are fully resolved and experience a capillary force. 

Compared to LIM and GLIM, the extra modelling effort in the

BM rests essentially in the treatment of the LI which, in addi-

ion to the computation of the capillary force, involves an inter-

ace sharpening procedure and a specific closure for the interfa-

ial drag force coupling the cl and cg fields. Furthermore, mass ex-

hange terms associated with possible coalescence and fragmenta-

ion need to be implemented in the dg and cg fields. Fig. 2 , adapted

rom Denèfle et al. (2015) , summarizes the phase coupling proce-

ures involved in the LBM approach. 

.5.1. Computation of the capillary force and interface sharpening 

rocedure 

The capillary force that takes place at these LI is evaluated

hanks to the Continuum Surface Force (CSF) approach devised by

rackbill et al. (1992) , in which the interfacial surface force den-

ity, i.e. the right-hand side of Eq. (6) , is transformed into a volume

orce density, F σ
k

. For phase k = cl or cg , the latter is written as 

 

σ
k = αk σκkp ∇αk with p = cg, cl , (13)

here the interface mean curvature, κkp = −∇ · n kp , is com-

uted using the unit normal pointing toward phase k , i.e. n kp =
 α ||∇ α || −1 .
k k 
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Defining and computing the mean curvature, say κ lg , at a

liquid-gas interface makes sense only if this interface may be

properly identified and described on the computational grid. A

well-known issue encountered when attempting to track sharp

interfaces using a purely hyperbolic transport equation for the

volume fraction is the smearing of the discontinuity ( Rudman,

1997; 1998; Sato and Ni ̌ceno, 2012 ). A common approach to limit

this effect consists in introducing an additional viscous Hamilton-

Jacobi equation ensuring an artificial compression of the interface

( Sethian, 1999 ). NEPTUNE_CFD follows this path by solving the ad-

ditional equation ( Olsson and Kreiss, 2005; Olsson et al., 2007 ) 

∂αk 

∂τ
+ ∇ · αk (1 − αk ) n kp = ε∇ 

2 αk , k, p = cl, cg . (14)

The pseudo-time, τ , and the pseudo-viscosity, ε, are directly con-

nected with the local cell size, 	. Following Štrubelj et al. (2009) ,

values τ = 

	
32 and ε = 

	
2 are respectively selected. With this

choice, the final thickness of the interfacial layer within which αk 

varies from 0 to 1 is δα = 5	 whatever the initial spreading of the

αk distribution. Eq. (14) is solved in conservative form in order to

improve mass conservation ( Fleau, 2017 ). 

2.5.2. Drag force on large interfaces 

Since the capillary force is taken into account and a sharpen-

ing procedure is applied, an artificial penalization force like that

of Eq. (11) is no longer needed in the LBM approach to guarantee

negligibly small relative normal velocities on a LI. Moreover, ex-

tensive tests of the LBM carried out by Fleau (2017) using a fric-

tional drag force model only taking into account the fluid den-

sities yielded quite poor results in the case of large bubbles ris-

ing in low-viscosity liquids, suggesting that fluid viscosities must

enter the interfacial drag law. Similar findings were noticed with

the AIAD model in applications involving free surfaces, and led

Höhne and Vallée (2010) and Porombka and Höhne (2015) to de-

velop alternative closure laws for the interfacial drag law to be ap-

plied on such interfaces. That frictional drag laws independent of

the fluid viscosities fail to properly mimic the momentum trans-

fer at gas-liquid interfaces is no surprise since the flow in the

liquid close to such an interface almost obeys a shear-free con-

dition rather than a no-slip one (provided contamination by sur-

factants is negligible). An important consequence of this difference

is that the drag force on uncontaminated bubbles grows linearly

rather than quadratically with the rise velocity ( Batchelor, 1967 ).

In NEPTUNE_CFD, this state of affairs led Fleau (2017) (see also

Mimouni et al., 2017 ) to assume that the interfacial momentum

transfer toward a cg entity involves a characteristic length scale l g 
and is proportional to μl l g (u cl − u cg ) , so that the momentum ex-

change rate per unit volume may be written in the form 

F Db 
cl→ cg = αcg μl l 

−2 
g (u cl − u cg ) . (15)

This closure is used as long as αcg ≤ 0.3, which is usually consid-

ered as the upper limit of the dispersed bubbly flow regime under

homogeneous conditions ( Taitel et al., 1980 ). Application of a simi-

lar reasoning to the ‘opposite’ case of large drops moving within a

gas in regions where αcg ≥ 0.7 yields 

F Dd 
cl→ cg = αcl μg l 

−2 
l 

(u cl − u cg ) , (16)

where l l is the length scale characterizing the interfacial momen-

tum exchange in that configuration. In the intermediate range

0.3 < αcg < 0.7, the momentum exchange rate is assumed to vary

linearly in between the above two laws, namely 

F D cl→ cg = f bd F 
Db 
cl→ cg + (1 − f bd ) F 

Dd 
cl→ cg , (17)

with f bd (αcg ) = 2 . 5 × (0 . 7 − αcg ) . It is worth pointing out that the

closure provided by Eq. (16) is much more questionable than that

of Eq. (15) since the gas flow almost obeys a no-slip condition at
 liquid-gas interface if μg / μl 	 1, suggesting that a quadratic drag

aw would physically be more appropriate in that case. 

The length scales l i ( i = g, l) involved in Eqs. (15) –(17) are con-

idered to depend on the product αcl αcg (which may range from

 to 0.25) in such a way that they both tend toward d dg / 3 
√ 

2

hen αcl αcg → 0 (the factor 3 
√ 

2 ensures that Stokes’ drag law

s recovered in that limit), whereas they become proportional to

ci ||∇αci || −1 for αcl αcg � 0.1 and a linear variation is assumed for

ntermediate values of αcl αcg . Since ||∇αci || −1 is proportional to 	

hanks to the interface sharpening procedure, this definition makes

he characteristic length scales of the momentum exchange at LI

epend on the cell size. 

.5.3. Cutoff length scale and mass exchanges between the 

ontinuous and dispersed gas phases 

Numerical requirements associated with the computation of the

ean curvature κ lg of cl − cg interfaces determine the characteris-

ic size of the smallest gas structures that can be fully resolved.

his critical size, l c , is taken as the cutoff length scale correspond-

ng to the separation between the dg and cg gas phases. In NEP-

UNE_CFD, the computation of κ lg involves a 5-cell stencil in each

rid direction. It is then a simple matter to show that the sten-

ils required to compute the curvature at the two opposite points

f the diameter of a circular interface overlap if this diameter is

ess than 5 
√ 

2 ≈ 7 . 2 grid cells ( Denèfle et al., 2015 ). For this reason,

he value l c / 	 = 8 is selected. Noting that the corresponding criti-

al mean curvature is κc = 2 /l c = (4	) −1 , one has κc V �(δα	) −1 =
 / 20 . Hence the cutoff criterion may be generalized by requiring

hat the capillary force is applied only if κlg V �||∇αk || 	−1 is less

than 1/20 ( k = cl, cg). Interfaces satisfying this criterion are con-

idered as LI and the corresponding gas structures belong to the cg

hase. Conversely, neither the interface sharpening procedure nor

he capillary force density F σ
k

is applied to interfaces exhibiting a

ean curvature larger than κc . 

The corresponding small gas entities are transferred to the dg

hase as described below (see Eq. (19) ). Mass exchanges between

he cg and dg fields arise due to coalescence and break-up events.

n the present context, the definition of these events relies on nu-

erical rather than physical criteria, since the distinction between

he cg and dg fields depends entirely on the grid resolution. Nu-

erical coalescence of dg bubbles giving rise to a cg gas struc-

ure is assumed to occur when ( i ) the local gas fraction exceeds

he critical value αdg c 
= 0 . 3 ( Taitel et al., 1980 ), and ( ii ) the norm

f the local gradient of the gas volume fraction, || ∇αdg ||, exceeds

a threshold value. As the interface sharpening procedure yields a

ypical volume fraction gradient ||∇αcl || = ||∇αcg || = δ−1 
α within

interfacial regions, this threshold is set to (2 δα) −1 . Based on these

equirements, the rate at which the dispersed phase coalesces is

xpressed in the form 

cg+ = αcg αdg ρg 
C +
	t 

H (αdg − αdg c 
) H (2 δα||∇αdg || − 1) , (18)

here H denotes the Heaviside function and C + is an O(1) con-

tant. Similarly, the rate at which cg gas entities turn into dis-

ersed bubbles is assumed to be 

cg− = αcg αdg ρg 
C −
	t 

H(δα||∇αk || κlg 

κc 
− 1) , (19)

here C − is another O(1) constant. The net mass exchange rate

rom the dispersed gas field toward the cg field is then 

dg→ cg = �cg+ − �cg− . (20)

ote that the presence of the αcg αdg pre-factor in �cg+ and �cg−
nsures that mass exchanges may only take place at locations

here both gas fields are present. The interaction of the dispersed

as phase with the carrying continuous liquid takes place through



Fig. 3. Schematic of the experimental set-up.
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Fig. 4. Cross-sectional view of the computational domain; g = −g e z denotes the 

gravity vector.
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he interfacial forces defined in Eqs. (7) –(9) , assuming the dg phase

o be monodispersed and made of bubbles with diameter d dg 	 l c .

imilar to the GLIM approach, d dg has to be specified as a fraction

f 	a (see Section 3.2 ). 

. Experimental and computational configurations

.1. Experimental set-up 

The experimental set-up is sketched in Fig. 3 . It consists of a

lexiglas TM cylindrical vessel with diameter D = 114 mm and height

 = 800 mm. The top end of the cylinder is closed with a blank

ange. Conversely, its bottom section is opened thanks to a central

ircular thin-walled hole with a diameter d = 35 mm . This hole has

 bevelled edge making a sharp 20 ° angle with the cylinder base.

he bottle neck is closed by a gate mounted on two hinges and

quipped with five electromagnets ensuring a fast opening. Before

 test, the gate is closed, the valves v in and v out are opened and

he bottle is filled up to an altitude z = z 0 with tap water, using

he circulation pump. Once filling is completed, the pump is turned

ff and the two valves are closed. As v out remains opened during

he filling process, the initial pressure at the top of the bottle is

he atmospheric pressure, p atm 

. The gate is quickly opened at time

 = 0 . Water starts to flow out of the bottle in a succession of jets

eparated by the generation of large air bubbles at the neck. Then

hese bubbles rise within the water column and reach the free sur-

ace after a sequence of complex reconfigurations. 

The air pressure at the centre of the top end of the bottle, p top ,

s monitored with a pressure sensor (Keller, PR-23). Images of the

mptying process are recorded with a CMOS camera (Photon Lines,

CO 1200 HS) at a speed of 400 fps. These images make it possible

o follow the displacement of the upper free surface and give in-

ight into the bubble dynamics. The camera and the pressure sen-

or are synchronized through a TTL signal that triggers the electro-

agnet, thus the gate opening. 

.2. Computational set-up and conditions 

The computational geometry is sketched in Fig. 4 . Similar to the

xperimental device, the ‘numerical bottle’ consists of a cylinder

ith diameter D = 114 mm and height L = 800 mm. To relax grid
onstraints, the bottle neck with diameter d = 35 mm is assumed

o be a thin cylinder with height δ = 5 mm, thus slightly differing

rom the bevelled geometry used in the experiment. No-slip con-

itions are imposed on all walls and intersections between walls

nd iso- αl surfaces take place at right angle, corresponding to a

0 ° contact angle. 

The outlet boundary condition plays a crucial role in the

resent configuration. To prevent the liquid outflow and bubble

eneration at the bottle neck from being disturbed by the outlet,

he latter is moved away from the neck by adding a buffer region

ith length L r = 0 . 1 m and diameter D below the bottle neck, as

epicted in Fig. 4 . 

The initial conditions refer to the experimental case with an ini-

ial water height z 0 /L = 0 . 75 . Water and air are initially at rest and

he initial pressure in both air regions is the atmospheric pressure.

ater properties at 20 ° C are extracted from the CATHARE rou-



Fig. 5. Evolution of the pressure at the top of the bottle for an initial water

height z 0 /L = 0 . 75 . The inset shows a closer view at the oscillations in the range 

10 s ≤ t ≤ 13 s. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Evolution of the pressure difference p top − p atm obtained in experiments 

(blue line), incompressible (black line) and compressible (yellow line) simulations

with the LIM approach, respectively. (For interpretation of the references to colour

in this figure legend, the reader is referred to the web version of this article.)
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tines encapsulated in NEPTUNE_CFD, namely ρl = 997 . 24 kg.m 

−3 ,

μl = 1 × 10 −3 Pa.s and σ = 7 . 28 × 10 −2 N.m. Air viscosity is set to

μg = 1 . 8 × 10 −5 Pa.s. To assess the possible role of air compress-

ibility, incompressible simulations as well as compressible ones

(in which the propagation of density/pressure waves is fully re-

solved) are carried out. In incompressible cases, air density is set to

ρa = 1 . 20 kg.m 

−3 . In contrast, when compressibility is taken into

account, air is assumed to behave as an isothermal ideal gas, the

density of which obeys ρa = p( R air T ) 
−1 , where p denotes the local

pressure, R air = 287 . 06 J.kg −1 .K 

−1 is the perfect gas constant, and

the temperature T is set to 293.15 K. Under such isothermal con-

ditions, the density derivative with respect to pressure is merely

(∂ ρa /∂ p) T = (R air T ) 
−1 .

With the above physical properties, the capillary length of

the fluid set-up is l σ = (σ /ρl g) 
1 / 2 ≈ 2 . 7 mm ( g denoting gravity).

Hence d / l σ ≈ 13, which guarantees that capillary effects in the neck

region have a negligible influence on the emptying dynamics. 

The simulations are run over 5 s, with a constant time step

of 0.05 ms. All simulations discussed below are carried out on a

three-dimensional computational domain with approximately 2.1

millions cells, which yields an average grid size 	a ≈ 1.6 mm cor-

responding to a dimensionless length ratio 	a / D ≈ 0.014. With this

grid, the diameter d dg prescribed for the dispersed bubbles in both

the GLIM and LBM approaches is set to 1 mm. It yields a bub-

ble volume about 15% of the averaged cell volume, 	3 
a , which

is consistent with the assumption of the presence of a dispersed

phase and allows us to properly resolve a significant part of the gas

content. The main characteristics of the three closure models em-

ployed in the computations are summarized in Table 1 . We stress

that no turbulence model is used in any of these computations.

The calculations are run in parallel mode on 100 processors of the

EOS supercomputer from the CALMIP supercomputing mesocentre.

Computations making use of the LIM, GLIM and LBM approaches

consume approximately 750 0, 520 0 and 11,500 h in total CPU time,

respectively. 

4. Global results

4.1. Preliminary experimental observations 

The evolution of the pressure p top throughout the emptying

process is shown in Fig. 5 in the case of an initial water height

z /L = 0 . 75 . 
0 
Just after the opening, the pressure immediately drops from

 atm 

to a lower value, p atm 

− 	p init . This initial drop is merely due

o the hydrostatic pressure corresponding to the initial height of

he water column, so that 	p init ≈ρ l gz 0 . The pressure then rises al-

ost linearly over time until it goes back to the atmospheric pres-

ure, p atm 

, at the end of the emptying process. 

A closer look at the pressure signal (see the inset in Fig. 5 )

eveals almost sinusoidal oscillations around a slowly increasing

alue, p 
eq 
top (t) , corresponding to the instantaneous hydrostatic equi-

ibrium. These oscillations have a typical period T os ≈ 0.20 s, much

horter than the emptying time. They find their root in the alterna-

ion of bubble generation and liquid ejection events, as described

y Clanet and Searby (2004) . The evolution of the equilibrium

ressure, p 
eq 
top , obeys the relation p 

eq 
top (t) = p atm 

− 4 gM w 

(t) / (πD 

2 ) ,

here M w 

( t ) is the mass of water in the bottle at time t (hence

 M w 

( t )/( ρ l πD 

2 ) is the instantaneous water height). In the present

ase, the linear evolution of p 
eq 
top yields a constant mass flow rate

 M w 

/d t ≈ −0 . 19 kg.s −1 , corresponding to a cross-sectional aver-

ged velocity U av ≈ 0.2 m.s −1 at the bottle neck, which yields a

eynolds number based on the neck diameter of approximately

0 0 0. 

.2. Influence of air compressibility 

A typical pressure signal recorded by the pressure sensor is dis-

layed in Fig. 6 , still with the initial condition z 0 /L = 0 . 75 . Pressure

scillations start right after the gate opening and are present un-

il the end of the emptying process. Based on their experiments,

lanet and Searby (2004) attributed these oscillations to the com-

ressibility of the air buffer at the top of the bottle. However, an

scillatory behaviour was also observed in the incompressible sim-

lations carried out by Geiger et al. (2012) . To assess whether or

ot compressibility has to be taken into account to properly re-

roduce the emptying process, we carried out both compressible

nd incompressible simulations. The pressure signal corresponding

o both sets of conditions is compared with the experimental sig-

al in Fig. 6 . Only computational results obtained with the LIM ap-

roach are displayed in this figure but the other two models reveal

imilar trends. 

Large differences are observed with the two modelling as-

umptions. When air is considered incompressible, the computed

ressure signal does not display the sinusoidal oscillations ob-

erved in experiments. It rather follows a noisy evolution charac-

erized by small-amplitude high-frequency fluctuations. The mag-

itude of the initial drop and the subsequent linear increase of



Fig. 7. Correlation between the pressure signal at the top of the bottle and the formation cycle of large bubbles at the neck. Top: pressure signal, p top ( t ). Bottom: a large

bubble rises in the water column after having been released from the neck (left panel in ( a ) and ( b )); somewhat later, a new bubble forms at the neck (right panel in ( a ) and

( b )); the corresponding two instants of time are identified with stars on the pressure signal. ( a ) numerical simulation with z 0 /L = 0 . 75 using the LIM approach (interfaces 

are identified using the iso-contour αcl = 0 . 5 ); ( b ) experiment with z 0 /L = 1 . 
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he equilibrium pressure are in qualitative agreement with the

haracteristics of the p 
eq 
top (t) component of the experimental sig-

al. However we shall see in Section 4.4 that there are significant

uantitative differences with a direct consequence regarding the

redicted time-averaged flow rate. In contrast, when air com-

ressibility is taken into account, the pressure signal displays the

xpected oscillations, with an amplitude and a frequency in rea-

onable agreement with the experimental findings, except dur-

ng the initial transient when the magnitude of the oscillations

s clearly underestimated. From this comparison, it may be con-

luded that air compressibility is essential to correctly repro-

uce pressure oscillations. Consequently all numerical results dis-

ussed below were obtained through compressible simulations.

he underestimate of the oscillation amplitude during the initial

ransient may have several origins. One of them could be that

he evolution is not strictly isothermal, given the magnitude of

he sudden pressure drop. There may also be some influence of

he bevelled shape of the neck which is not considered in the

omputations. 

To reveal the importance of air compressibility on the flow dy-

amics, the connection between the pressure signal at the top of

he bottle and the life cycle of large bubbles generated at its neck

s displayed in Fig. 7 . This figure shows that the observed pressure

scillations are the direct signature of the water jets and large air

ubbles successively generated at the bottle neck. When the liquid

ows out (left panels in ( a ) and ( b )), the free surface moves down-

ard, inducing an expansion of the air buffer at the top of the bot-

le, hence a drop in the local pressure. As p top ( t ) decreases below

he hydrostatic equilibrium value p 
eq 
top (t) , an upward force starts

cting on the water column, making the generation of a new bub-

le at the neck and its release at the bottom of the water column

ossible. The free surface then moves upward, making the pres-

ure increase, which corresponds to the start of a new cycle (right

anels in ( a ) and ( b )). 
p  

S  
.3. Influence of the interfacial momentum exchange model on the 

ressure in the top air buffer 

Fig. 8 reveals the influence of the interfacial momentum ex-

hange model (LIM, GLIM or LBM) on the evolution of the pressure

ecorded at the top of the bottle. As already noticed, a transient

akes place during the first 1 s following the gate opening. This

rst stage is characterized by pressure oscillations, the amplitude

f which decreases exponentially until it reaches an almost time-

ndependent value close to 1 KPa. All three models are found to

everely underestimate the oscillation amplitude during that stage.

hile the initial pressure drop recorded in the experiment is ap-

roximately 8 kPa, its predicted amplitude barely exceeds 6 kPa. It

s noteworthy that all three computational curves perfectly super-

mpose during the first three oscillations. This suggests that the

nitial transient is mainly governed by compressibility effects, with

ittle influence of the detailed flow dynamics. Beyond this tran-

ient, say for t > 1.5 s, the pressure oscillates around an equilib-

ium value. All models predict fairly well the oscillation amplitude

s well as the equilibrium pressure during that second stage. 

Experimental and computational determinations of the time pe-

iod, T os , of these oscillations are compared in Fig. 9 . The the-

retical prediction derived by Clanet and Searby (2004) is also

hown as reference. According to this prediction, the oscillation pe-

iod depends on the gas thermodynamic characteristics and water

eight in the form T os = L (γpv p top /ρg ) −1 / 2 �(z(t) /L ) with �(z) ≈
 

z 
L (1 − z 

L ) } 1 / 2 , where γ pv is the adiabatic index, i.e. the ratio of the

wo specific heats of the gas, and z ( t ) is the current height of the

ater in the bottle. 

The experimental and computational periods are obtained

hrough a sliding Fourier transform of the corresponding pressure

ignals, using a succession of 1 s time windows with a 50% overlap

etween two consecutive windows. In order to limit the influence

f the finite-size window effect on the results, time windows are

rojected on a half cosine. The theoretical prediction of Clanet and

earby (2004) is found to be in general agreement with observa-



Fig. 8. Evolution of the pressure at the top of the bottle. The experimental sig- 

nal (blue line) is compared with computational predictions obtained with the three

different interfacial momentum exchange models (yellow: LIM, green: GLIM, pur- 

ple: LBM). (For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.)

Fig. 9. Evolution of the pressure oscillation period throughout the emptying pro- 

cess. Predictions of the various interfacial momentum exchange models are com- 

pared with experimental data and theoretical predictions provided by the model of

Clanet and Searby (2004) (black solid line). Symbols obey the colour code defined

in the caption of Fig. 8 .
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tions. It slightly under-predicts the actual period but correctly cap-

tures its slow increase. All three interfacial momentum exchange

models give similar predictions, although LBM is seen to be gener-

ally marginally more accurate. All models slightly overestimate the

actual oscillation period, especially during the first half of the pro-

cess. The discrepancy may be up to 10% and reduces as time goes

on. 

The above observations indicate that the pressure signal is

barely sensitive to the details of the interfacial momentum ex-

change. All three models are found to provide reasonable predic-

tions of the amplitude and time period of pressure oscillations, ex-

cept during the initial transient. 

4.4. Influence of the closure model on the liquid flow rate 

The computed and experimentally determined average liquid

flow rates are reported in Table 2 . When air compressibility is

not considered, the emptying process is significantly slowed down,

with a mass flow rate underestimated by more than 35% . This con-

firms that air compressibility plays an essential role in the over-

all flow dynamics and cannot be ignored in computations. Once

compressibility is taken into account, the mean flow rate obtained

with the LIM approach is seen to be in very good agreement

with the experimental value, whereas the GLIM and LBM com-
utations in which the dispersed bubble diameter is set to 1 mm

nder-predict it by 13% . This difference may be anticipated from

ig. 8 , where a slight downshift of the equilibrium pressure pre-

icted by the GLIM and LBM formulations is noticed. Neverthe-

ess, we regard the much closer agreement obtained with the LIM

pproach as mostly fortuitous, since the precise value of the pre-

icted flow rate depends on the closures used in the interfacial

omentum exchange model. This is easily understood by consid-

ring the budget of the total (i.e. kinetic plus potential) mechani-

al energy, e M 

= αcl ρl ( 
1 
2 u 

2 
cl 

+ gz) , of the liquid enclosed within the

ylinder. From Eq. (4) it is straightforward to show that 

d 

dt 

∫ 
V c 

e M 

dV + 

∫ 
S n

e M 

u cl · n n dS 

= 

∫ 
S n

αcl (−P n n + 2 μl S cl · n n ) dS

−2 μl 

∫ 
V c

αcl S cl : S cl dV + 

∫ 
V c

∑ 

p� = cl

I p→ cl · u cl dV , (21)

here S cl = 

1 
2 (∇ u cl + 

T ∇ u cl ) , n n is the outer unit normal to the

eck surface, S n , and V c is the volume of the cylinder. The last

erm in the right-hand side of Eq. (21) is the rate of work result-

ng from the momentum exchange between the liquid and the gas

hase p ( p = cl, cg) within the cylinder. Due to the presence of this

erm, it is clear that the rate at which the initial potential energy

f the liquid is converted into kinetic energy depends directly on

 p → cl , hence on the closures discussed in Section 2 . For instance,

ny change in the evaluation of the interfacial friction velocity, u ∗cg ,

nvolved on large interfaces in the LIM and GLIM approaches (see

q. (10) ), or in that of the length scales l g and l l involved in the

BM formulation (see Eqs. (15) and (16) , respectively) modifies this

alance, which directly impacts the liquid flow rate. A similar ef-

ect is expected to take place when the closure laws used to model

he momentum exchange with the dispersed phase are modified.

o illustrate this influence, we carried out two additional simu-

ations based on the GLIM and LBM approaches, with d dg set to

 mm. The corresponding results are provided in the last two rows

f Table 2 . Compared to those obtained with d dg = 1 mm, the flow

ate is found to be increased by 1% and 1.2%, respectively. 

This influence of the closure models on the flow rate makes

s consider that the two most robust indications conveyed by the

esults displayed in Table 2 are that ( i ) the LIM, GLIM and LBM

ormulations in which air compressibility is taken into account all

rovide a reasonable estimate of the mean flow rate, and that ( ii )

nder present conditions, this prediction is lower by typically 10%

ith the latter two approaches, compared to that obtained with

he LIM formulation. This lowering originates in the much more

ignificant presence of a dispersed phase in the simulations per-

ormed with the former two models, as shown in Figs. 10 and

1 below. In both cases, the rise of dispersed bubbles induces an

verage upward motion in the liquid through the interfacial mo-

entum exchange model. Thus, these small bubbles somewhat

amper the liquid outflow, which yields a slightly slower empty-

ng dynamics. In other terms, a larger part of the initial potential

nergy of the liquid is transferred to interfaces when the GLIM or

BM formulation is used, reducing the part that can be converted

nto kinetic energy, hence the liquid flow rate. In Table 2 , the ef-

ect of an increase of d dg to 2 mm is seen to be slightly stronger

n the LBM simulation, which is no surprise since a larger part of

he gas content is treated as dispersed in this formulation, owing

o the larger cutoff length involved (see Table 1 ). 

Having doubled d dg divides the number of bubbles in the dis-

ersed phase by a factor of eight, as changing d dg leaves the vol-

me fraction αdg unchanged and only modifies the momentum

ransferred from the liquid to the dispersed bubbles. This is why

he corresponding effect is small with both models. More signifi-



Table 2

Influence of the selected model on the prediction of the time-averaged water flow rate. In the experiment, this quantity

is determined by dividing the initial mass of liquid by the total emptying time, while in computations it is obtained by

time-averaging the instantaneous liquid flow rate throughout the simulation.

Nature of the simulation Momentum exchange model

Emptying mass flow rate

dM liq / dt [g.s −1 ] 

Q num Q exp (Q exp − Q num ) /Q exp [%] 

incomp. LIM −123 . 0 −191 . 2 −35 . 5 

comp. LIM −189 . 4 −191 . 2 −1 . 0 

comp. GLIM - d dg = 1 mm −166 . 4 −191 . 2 −13 . 0 

comp. LBM - d dg = 1 mm −166 . 3 −191 . 2 −13 . 1 

comp. GLIM - d dg = 2 mm −168 . 0 −191 . 2 −12 . 2 

comp. LBM - d dg = 2 mm −168 . 3 −191 . 2 −12 . 0 

Fig. 10. Visualization of the large bubbles in the water column at t = 4 . 2 s . Inter- 

faces are identified with the iso-contour αcl = 0 . 5 . 
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ant variations of the flow rate related to the presence of the dis-

ersed gas phase would presumably be observed if the cutoff crite-

ion were tuned, either by modifying the way β and f c are defined

n Eq. (12) in the GLIM approach, or by changing the ratio l c / 	 in

he LBM representation. We did not attempt such tests up to now

ut plan to perform them in the future. 

. Influence of the interfacial momentum exchange model on

he local flow characteristics 

.1. Qualitative observations 

The three models mostly differ in the way large gas structures

nvolving LI coexist with smaller bubbles and interact with the sur-

ounding water flow. To obtain more insight into the potential dif-

erences between these models, examination of suitable local char-

cteristics of the gas and liquid dynamics is required. 

A snapshot of the distribution of the large gas bubbles within

he bottle, as predicted by each model, is displayed in Fig. 10 . With

he LIM approach, the large bubbles formed at the neck rise toward

he free surface with little size variation. This is no surprise since
o momentum transfer mechanism toward the dispersed phase ex-

sts in that model. Actually, in the present configuration in which

he initial interface reduces to a single LI, small bubbles can only

e created due to the numerical smearing of the successive inter-

aces, which, as time proceeds, prevents some of them from being

onsidered as LI by the detection algorithm (see Section 2.3.1 ). The

bserved behaviour is significantly different with the other two

odels. In both cases, the large bubbles generated at the bottle

eck undergo substantial successive reconfigurations and their av-

rage size decreases as they rise, owing to fragmentation. With the

BM, the fragmentation rate is such that the continuous gas phase

s virtually absent in the upper part of the water column, having

een transferred earlier to the dispersed phase. 

Fig. 11 is similar to Fig. 10 but the computational snapshots

ave been coloured according to the local volume fraction of the

ispersed phase, so as to better reveal the complete structure of

he multi-scale bubble swarm (a video based on the GLIM simula-

ion is linked to the paper). The corresponding experimental snap-

hot (with z 0 /L = 1 as initial condition) is also shown, to serve as

 reference. This experimental snapshot highlights the broad dis-

ribution of air bubble sizes within the bottle. Close to the bot-

om, air is mostly contained within a few large bubbles which

re subject to fragmentation and gradually evolve in a swarm of

uch smaller bubbles as they rise, although some of them suc-

eed in maintaining their integrity and are still present in the up-

er part of the water column. Fig. 11 confirms that the LIM ap-

roach severely underestimates the amount of topological recon-

gurations experienced by large bubbles, as almost no dispersed

as phase is created. The results provided by the other two models

ppear qualitatively more realistic, with a gradual increase of the

olume fraction of the dispersed phase as one gets closer to the

pper free surface. This volume fraction seems to be larger with

he GLIM approach, especially in the upper half of the water col-

mn. However, it must be kept in mind that the criteria by which

arge gas structures turn into dispersed bubbles differ between the

LIM and LBM approaches; this may be the reason why more en-

ities belong to the dispersed phase in the former at the instant of

ime selected in Fig. 11 . 

.2. Gas volume fraction 

To obtain a more quantitative insight into the ability of the var-

ous models to reproduce the formation of a dispersed gas phase,

ig. 12 displays the horizontal cross-sectional average of the gas

olume fraction, 〈 αg 〉 , at two different positions within the water

olumn. 

At the lower position (10 cm above the neck), the three models

ield similar evolutions of the average gas fraction ( Fig. 12 ( a )). This

volution is characterized by a periodic succession of large sharp

eaks, each of which corresponds to the crossing of the control

olume by a large bubble. This dynamics just reflects the periodic

etachment of large bubbles from the neck. The peak amplitude



Fig. 11. Visualization of the bubble swarm in the water column at time t = 4 . 2 s . In the three computational panels, interfaces are identified with the isocontour αcl = 0 . 5 , 

while the colour scale refers to the fraction of the dispersed gas phase. The right panel displays the experimental snapshot obtained with the same instantaneous position

of the upper free surface and an initial condition z 0 /L = 1 . 

Fig. 12. Evolution of the cross-sectional average gas fraction, 〈 αg 〉 , at two different vertical positions. The measurement volume is 1 cm thick and its centre is located at 

position ( a ) h cv = 10 cm ; ( b ) h cv = 30 cm . The yellow and green lines refer to the LIM and GLIM results, respectively. LBM results include the dg and cg gas fractions (dotted 

and dashed lines, respectively), while the solid purple line corresponds to the sum of these two contributions. (For interpretation of the refereneces to colour in this figure

legend, the reader is referred to the web version of this article.)

 

 

 

 

 

 

 

 

 

 

 

 

 

t  

L  

b

z  

w

 

(  

c  

T

t  

o  

t  

t  
does not only depend on the size of the large bubbles, but also

on their shape and orientation. Indeed, for a given gas volume, a

prolate bubble contributes less to the cross-sectional average gas

fraction than an oblate one. Similarly, a spherical cap bubble yields

a larger contribution than a spherical bubble having the same vol-

ume. In between two consecutive peaks, 〈 αg 〉 returns to small val-

ues, indicating that the large bubbles are separated by a contin-

uous liquid phase. This is consistent with observations performed

at early time after the gate opening. A closer look at Fig. 12 ( a ) re-

veals that peaks predicted by the GLIM approach are always larger

(frequently by a significant percentage) than those obtained with

the LBM. The LIM approach also predicts larger peaks during the

initial transient (up to t ≈ 1 s), before these peaks become smaller
han those observed with the LBM. In line with the inability of the

IM approach to ‘feed’ the dispersed gas phase with initially large

ubbles, values of 〈 αg 〉 in between consecutive peaks are virtually

ero in the LIM results, whereas they stay in between 2 and 3 %

ith the other two models. 

The evolution of the average gas volume at the higher position

30 cm above the neck) is displayed in Fig. 12 ( b ); for the sake of

larity, the short- and long-time evolutions are shown separately.

he evolution of 〈 αg 〉 obtained with the LIM approach is similar

o that observed at the lower position, with a periodic alternation

f large peaks separated by near-zero values, and a magnitude of

hese peaks that does not vary significantly over time. In line with

he previous comments regarding Fig. 11 , these observations in-



Fig. 13. Pdf of the gas fraction throughout the bottle at time t = 2 s . In the LBM 

approach, the cg and dg fields have been added to make the comparison with the

predictions of the other two models possible. Yellow, green and purple lines refer

to the LIM, GLIM and LBM approaches, respectively. (For interpretation of the ref- 

erences to colour in this figure legend, the reader is referred to the web version of

this article.)
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icate that the large bubbles generated at the neck roughly keep

heir size, and presumably their overall shape, unchanged through-

ut their rise and are not subject to significant fragmentation. The

ther two models reveal striking differences with respect to LIM

redictions. With the GLIM approach, the first large bubble that

rosses the test section is detected 0.9 s after the gate opening,

hile it is detected 0.15 s earlier in the LIM simulation. Somewhat

ater, the average gas fraction increases to reach a value close to

% that stays almost constant until the end of the simulation. This

ncrease followed by a ‘plateau’ value is associated with the gen-

ration of a large number of small bubbles in the water column

ue to the fragmentation of large bubbles, a process that is not

onsidered in the LIM simulation. Results obtained with the LBM

pproach show that, beyond t ≈ 1.5 s, air is essentially contained in

he discrete gas phase (dotted line in Fig. 12 ), suggesting that the

ragmentation process is strong enough to almost turn all large

tructures that initially belong to the cg phase into small unre-

olved structures that fill the dg phase. Focusing on the long-term

volution, one can observe that large bubbles are still detected by

he GLIM approach whereas they no longer occur in the evolu-

ion predicted by the LBM. As experiments also reveal the pres-

nce of such large bubbles at this stage, this is an indication that

he LBM overestimates the generation of dispersed bubbles com-

ared to the GLIM approach. Quantitative experimental measure-

ents of the local and average gas volume fractions are required

o better discriminate the predictions provided by the three mod-

ls. Nevertheless, the available visualizations already suggest that

ragmentation is severely under-predicted in LIM simulations and

resumably over-predicted by the LBM approach. 

.3. Pdf of the gas volume fraction 

The probability density function (pdf) of the gas fraction

hroughout the entire bottle is plotted in Fig. 13 at time t = 2 s . The

as fraction distribution may be decomposed into three main re-

ions of interest. Regions with gas fractions up to ≈ 0.3 correspond

o those where a dispersed gas phase is present ( Taitel et al., 1980 ).

egions containing gas structures bounded by LI contribute to the

entral zone of the pdf, around the median iso-value αg = 0 . 5 . Last,

egions with gas fractions αg � 0.6 correspond to those containing

arge bubbles and to the top air buffer. Once the flow is estab-

ished and the first bubbles have reached the top air buffer, the
df remains almost constant as time proceeds. As the left part

f the figure confirms, much less dispersed gas phase is gener-

ted with the LIM approach than with the other two models. The

df obtained with the GLIM and LBM approaches are very simi-

ar up to αg ≈ 0.45. The three models provide significantly differ-

nt distributions for larger gas fractions. It is no surprise that re-

ults obtained with the LIM approach exhibit the highest proba-

ility to produce and maintain large bubbles throughout the water

olumn. The large difference observed between the LIM and GLIM

redictions for αg � 0.45 is of special interest, as both models make

se of the same technique to detect LI. However, in the LIM ap-

roach, gas entities not bounded by a LI still experience the pe-

alization force defined in Eq. (11) . In contrast they do not experi-

nce added-mass and shear-induced lift forces, the effect of which

s known to move bubbles toward the centre of vortical structures

 Magnaudet and Eames, 20 0 0; Climent et al., 20 07 ). Conversely,

hanks to the switching factor γ implemented in the GLIM ap-

roach (see Eq. (12) ), these forces are properly taken into account

n the form given by Eqs. (8) and (9) in that model, provided that

he local gas fraction is small enough. What the difference ob-

erved in the right half of the two pdf suggests is that the disper-

ion of small gas bubbles which is made possible by these inertial

orces tends to move these bubbles apart from LI, thus lowering

he number of flow regions in which the gas fraction maintains

arge values. The GLIM and LBM approaches are found to yield

uite similar pdf, although, compared to LIM results, the deple-

ion of flow regions with large gas fractions is even larger with

he LBM. Finally, it may be noticed that a small peak emerges

or αg = 0 . 5 in the pdf obtained with the LBM approach. This is

 direct consequence of the interface sharpening technique (see

ection 2.5.1 ) which tends to concentrate the gas and liquid vol-

me fractions toward the dividing value αg = αl = 0 . 5 in LI regions.

.4. Pdf of the vertical liquid velocity 

To obtain additional insight into the flow dynamics, we now ex-

mine the pdf of the vertical liquid velocity component, say U 

z 
l
,

btained with the three modelling options. Only cells with αl ≥ 0.5

re considered to compute the pdf. Moreover, to obtain more con-

erged statistics, three velocity fields, each one corresponding to a

lightly different instant of time, are used to build the histograms.

or instance, the histogram said to correspond to t = 1 . 3 s actu-

lly involves velocity fields recorded at times t = 1 . 25 , 1.30 and

.35 s. Fig. 14 displays the evolution of the corresponding pdf at

ix successive instants of time, up to t = 3 . 1 s after the gate open-

ng. Only results obtained with the GLIM approach are reported

ut the other two models yield similar comments. The correspond-

ng snapshots revealing the instantaneous structure of the bubble

warm are displayed in Fig. 15 . 

Water being initially at rest, it first flows out of the bottle, until

he pressure drop within the top air buffer makes the generation

f a first bubble possible. This is why only negative values are in-

olved in the pdf corresponding to t = 0 . 1 s in Fig. 14 (purple line);

hree peaks associated with strong negative flow accelerations may

e identified in this pdf, one at each instant of time used to build

t. In the second pdf ( t = 0 . 7 s, dark blue line), the first bubble is

ising in the water column, whereas a large part of the liquid is

till at rest. This is the origin of the large peak noticed for U 

z 
l

= 0

n that pdf. However, the water dragged in the bubble wake has al-

eady started rising, resulting in significant probabilities to observe

ositive velocities up to ≈ 0.7 m.s −1 in some parts of the bottle.

ll subsequent pdf (starting with the blue-green line correspond-

ng to t = 1 . 3 s after the gate opening) exhibit virtually the same

egative branch. This is an indication that the glug-glug dynamics

s established after 1.3 s. In contrast, the positive branch goes on

volving significantly from one pdf to the other. This is due to the



Fig. 14. Successive pdf of the vertical liquid velocity, U z 
l 
, throughout the water col- 

umn, from t = 0 . 1 s to t = 3 . 1 s after the gate opening, as predicted by the GLIM 

approach. Positive (resp. negative) vertical velocities correspond to liquid inflows

(resp. outflows). (For interpretation of the references to colour in this figure legend,

the reader is referred to the web version of this article.)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 16. Pdf of the vertical liquid velocity, U z 
l 
, obtained with the three different in- 

terfacial momentum exchange models at t = 3 . 1 s. Yellow, green and purple lines 

refer to the LIM, GLIM and LBM approaches, respectively. (For interpretation of the

references to colour in this figure legend, the reader is referred to the web version

of this article.)
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frequent topological changes experienced by the large rising bub-

bles, which in turn modify in a quite random manner the distri-

bution of upward velocities in the surrounding liquid, especially in

wake regions. Note that positive velocities up to 0.5 m.s −1 are fre-

quently encountered during the whole sequence, which highlights

how strong the agitation level throughout the glug-glug process is.

Note also that the pdf discussed throughout this section were

built without weighting each sample of the vertical velocity by the

radial position at which it is recorded. Hence the flow rate cannot

be directly inferred from these pdf. This is why in Fig. 14 , pdf cor-

responding to t ≥ 0.7 s are positive on average, although the overall

flow rate is negative. 

Fig. 16 shows the pdf of U 

z 
l

obtained with all three interfa-

cial momentum exchange models at time t = 3 . 1 s. The first strik-

ing difference observed among the three pdf is the much higher

probability to find strong upward velocities, as large as 1 m.s −1 ,

with the LIM approach. This is again a clear signature of the sig-

nificantly higher number of large bubbles that coexist within the

water column when this approach is employed, as already dis-

cussed in Section 5.2 . As such bubbles have significantly higher

rising speeds than small bubbles, the water they displace forward

also rises faster, especially in the wake regions. Examination of the
Fig. 15. Successive visualizations of the bubble swarm from t = 0 . 1 s to t = 3 . 1 s after th

he isocontour αcl = 0 . 5 , while the colour scale refers to the fraction of the dispersed gas
egative tails of the three pdf, especially in the range −0 . 35 m.s −1 

U 

z 
l

≤ −0 . 1 m.s −1 , indicates that events with such large down-

ard velocities also occur significantly more frequently with the

IM approach. This is in agreement with the results of Table 2 in

hich we already noticed that this approach predicts a somewhat

aster emptying process (see the discussion in Section 4.4 ). 

. Summary and concluding remarks

The present paper aims at contributing to the assessment of the

apabilities and possible deficiencies of three recently developed

nterfacial momentum exchange closures available in the Euler–

uler NEPTUNE_CFD code, based on detailed comparisons with ex-

erimental results obtained in a reference configuration. We se-

ected the test case corresponding to the emptying of a water bot-

le because, despite its simple geometry, it involves a wide and

ontinuous range of bubble sizes, from large air pockets to tiny

ubbles, all of which strongly interact during the emptying pro-

ess. Thus we expected this two-phase configuration to be relevant

or assessing the performances of closure models aimed at provid-
e gate opening, as predicted by the GLIM approach. Interfaces are identified with 

 phase. 



i  

r  

m  

t  

o

 

c  

a  

s  

c  

c  

t  

r  

T  

i  

n

 

w  

o  

s  

t  

d  

a  

s  

L  

t  

j  

e  

p  

l  

t  

t  

p  

m  

i  

o  

m  

d  

e

l  

s  

o  

r  

o  

o  

a  

s  

e

 

q  

v  

fl  

i  

c  

i  

p  

t  

t  

o  

w  

f  

d  

i  

T  

t  

t  

s  

p  

t

A

 

w  

t  

s  

P

S

 

f  

0

R

A

A

A  

B

B  

B

B

B  

B  

B  

B

C

C  

 

C

C

C

D  

D

D  

D

F

 

F

F  

G  

G  

H

ng realistic predictions in complex multi-scale two-phase configu-

ations of industrial relevance. We first detailed these three mo-

entum exchange closures to clarify the assumptions on which

hey are grounded, especially the nature (physical vs. numerical)

f these assumptions. 

The comparison of experimental and computational results first

onfirms that in the selected configuration air compressibility plays

n essential role in the emptying dynamics, as it drives the pres-

ure oscillations within the air buffer located on top of the water

olumn, and these oscillations control the bubble formation pro-

ess at the neck. We found that, provided this compressibility is

aken into account, the three models under consideration correctly

eproduce the period and magnitude of these pressure oscillations.

hey also correctly capture the length of the initial transient dur-

ng which the oscillation amplitude decays exponentially, but sig-

ificantly overestimate the corresponding damping rate. 

Not surprisingly, the distribution of the gas volume fraction

ithin the water column was observed to vary dramatically from

ne model to the other. A qualitative comparison of the local flow

tructure predicted by each of them with experimental visualiza-

ions allowed us to conclude that the LIM approach grossly un-

erestimates the fragmentation rate of the large bubbles created

t the neck. Consequently, this model is unable to reproduce the

warm of small bubbles observed experimentally. The GLIM and

BM approaches, both of which involve criteria by which the ‘con-

inuous’ gas phase may turn into a ‘dispersed’ phase, do a better

ob in that respect and are in better qualitative agreement with

xperiments. We confirmed these trends by examining several as-

ects of the pdf of the gas volume fraction, showing in particu-

ar that this pdf is strongly biased toward large gas fractions when

he LIM approach is used. We finally examined the pdf of the ver-

ical velocity in the liquid, the behaviour of which is tightly cou-

led with that of the gas volume fraction, owing to the entrain-

ent process in wake regions. Tails of these pdf behave similarly

n the GLIM and LBM approaches but differ significantly from those

btained in LIM simulations. In particular, as less upward entrain-

ent takes place in the latter, the probability to observe intense

ownward jetting events is larger, resulting in a slightly larger av-

rage flow rate. 

In the configuration investigated here and with the cutoff

engths involved in the GLIM and LBM approaches kept unchanged,

mall air bubbles were found to only slightly affect most of the

verall flow characteristics. Nevertheless, compared to the LIM rep-

esentation, a noticeable reduction of the liquid flow rate was

bserved with the above two approaches. Influence of the cut-

ff length selected in these models has still to be examined,

s does that of the isothermal condition which must be as-

essed by running the same computations assuming an isentropic

volution. 

The present configuration may be further used to achieve more

uantitative comparisons regarding the predictions provided by the

arious models. To this end, we shall first examine the possible in-

uence of the precise shape of the neck on the emptying dynam-

cs, keeping in mind that for the time being computations were

arried out with a cylindrical neck whereas a bevelled geometry

s employed in experiments. This will allow us to get rid of the

otential influence of this geometrical detail, so as to make sure

hat any difference left with the experimental results may be at-

ributed to some aspect of the closure models. The next step of

ur investigation will then focus on experiments. More precisely,

e now plan to perform local determinations of the gas volume

raction and bubble size distribution within the water column. In-

eed this is a key step to quantitatively discriminate the capabil-

ties and shortcomings of the closure laws discussed in Section 2 .

his information is also needed to enrich some of them, especially

he mass exchange closures (see Eqs. (18) and (19) ) aimed at cap-
uring the consequences of break-up and coalescence events. This

imple configuration, in which multiple topological changes take

lace, may provide interesting data to improve this complemen-

ary and less explored aspect of the closure procedure. 
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