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Apartado Postal 70-360, México Distrito Federal 04510, Mexico
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In this study we analyze the interaction of a single rising bubble with an inclined wall.

We conduct experiments considering different liquids and bubble sizes, to cover a wide

range of Reynolds and Weber numbers, with wall angles from nearly horizontal to nearly

vertical. For all cases, the bubble initially collides with the wall; after the initial interaction,

in accord with previous studies, the bubble either steadily slides on the wall or ascends,

colliding repeatedly with it. Considering a force balance for the bubble motion on the wall,

we propose a set of conditions for the transition from sliding to bouncing that is validated

with the present and previous data.

DOI: 10.1103/PhysRevFluids.1.032201

I. INTRODUCTION

The study of two-phase bubbly flows is largely justified by the numerous engineering applications

and natural phenomena in which such flows occur. Significant advances have been reached in recent

years due to the mature understanding of the hydrodynamic forces that affect the motion of single

bubbles ascending in Newtonian liquids [1]. There is a clear understanding of the effects of viscous

and inertial forces around interacting bubbles [2]. Conversely, despite their omnipresence, the

understanding of wall effects is still modest.

The interaction of ascending bubbles with vertical walls has been studied by several authors [3–6].

Similar to the case of bubble pair interactions [7], the force between the bubble and thewall transitions

from repulsive to attractive as the Reynolds number increases [3]. When the wall attracts the bubble,

it is possible to observe repeated bouncing [4,5]. According to De Vries et al. [4], the bounce and

rebound are affected by the wake behind the bubble. The process of bubble bouncing against a

horizontal wall was analyzed in detail by Zenit and Legendre [8]; they identified the conditions for

rebound, as opposed to arrest, considering the dependence of the coefficient of restitution with the

Stokes and capillary numbers. For the interaction of a bubble with an inclined wall, an interesting

phenomenon occurs: The motion of the bubble can be either repeated bouncing (as for a vertical

wall) or steady sliding. The same bubble-fluid combination can exhibit the two behaviors; the type of

motion observed is determined by the inclination of the wall. Tsao and Koch [9] originally reported

this phenomenon. They proposed that the transition occurred for a single value of theWeber number,

but did not fully explain the physical process for the transition.

The sliding motion of bubbles on inclined walls has been studied to some extent. Aussillous

and Quéré [10] proposed scalings for the wall velocity, considering different regimes of bubble

deformation; however, they restricted their analysis for nearly horizontal walls. The bouncingmotion

of bubbles on a wall has been addressed mainly for the case when the wall is vertical. De Vries

et al. [4] conducted flow visualization of the process and concluded that the bubble wake significantly

influences the rebound off the wall.
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FIG. 1. A bubble rises in a viscous liquid at terminal conditions Vterm and χterm; it then collides with a

wall, inclined at an angle θ . After a transient phase, the bubble reaches a new time-average steady velocity

Vw .

In the present study we investigate experimentally the motion of high Reynolds number and

moderate Weber number bubbles interacting with an inclined wall, closely following the original

investigation by Tsao and Koch [9]. Unlike them, we substantially extend the range of parameters

by considering different fluids (with different viscosities, densities, and surface tensions) and bubble

sizes. Based on this wider perspective, we are able better characterize the phenomenon and explain

the physical mechanism that leads to the transition from sliding to bouncing.

II. EXPERIMENTAL SETUP

The experimental arrangement used in this investigation is shown in Fig. 1. Single air bubbles

were generated from the bottom of a tank, filled with a viscous fluid, using a capillary tube and a

syringe pump. Before reaching the wall, the bubble attains its terminal state, reaching a terminal

velocity Vterm and shape χterm = dma/dmi, where dma and dmi are the major and minor bubble axes,

respectively.

The height, width, and length of the rectangular glass tank were, respectively, 50, 10, and 40 cm.

Within the tank, a glass plate upon which the rising bubble will bounce was used as the test wall.

The inclination angle of the wall was varied from 5◦ to 80◦, with an accuracy of ±0.1◦. To obtain

a wide range of experimental conditions, six different liquids and three capillary sizes were used.

The properties and values of the dimensionless numbers for each liquid are shown in Table I. The

viscosity and the surface tension were measured with a stress controlled (MCR101) Rheometer and

a Wilhelmy balance with a DuNouy ring, respectively.

The bubble-wall interaction was recorded with a high-speed camera (Phantom v9.1, 1632× 1200

pixels) at a rate of at least 1000 frames/s with a 120-mm Nikkon lens. Considering the optical

arrangement (lens, camera and working distance) a spatial resolution of 11.5µm/pixel was obtained.

The array was illuminated with a light-emitting diode panel from the back. Each experiment was

repeated at least 5 times to ensure statistical significance.

The bubble location and the wall position were determined for each frame using MATLAB. From

the bubble image, the equivalent diameter was calculated as Deq = (d2madmi)
1/3. The instantaneous

bubble velocity was calculated using the evolution of position in time, considering a central

difference scheme. We characterize each experiment (a combination of a bubble size in a liquid)
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TABLE I. Physical properties for all the experiments conducted in this investigation. In all cases, the liquids

were mixtures of water (W), glycerol (G), and tri-ethanol amine (T); percentages in the second column are by

weight. Three experiments were performed using silicon oil (SO). The type of trajectory for bubbles before

reaching the wall is shown on the first column: rectilinear (R) or oscillatory (O).

Composition ρ µ σ Deq

Experiment (%) (kg/m3) (mPa s) (mN/m) (mm) Reterm Weterm χterm θtrans

E1, (R) SO 100 855 1.280 18.0 1.1 138± 3 1.8± 0.05 1.31± 0.02 80◦

E2, (R) SO 100 855 1.280 18.0 1.2 172± 8 2.6± 0.17 1.32± 0.05 80◦

E3, • (O)
SO 100 855 1.280 18.0 2.2 313± 7 4.7± 0.23 2.06± 0.04 45◦

E4, (R) W-G 80-20 1045 1.555 70.2 1.7 305± 7 1.9± 0.09 1.26± 0.04 70◦

E5, (O) W-T 99.88-0.12 1001 1.529 61.3 2.8 250± 9 2.0± 0.11 1.16± 0.02 70◦

E6, (O) W-G 85-15 1033 1.363 70.0 1.6 367± 16 2.1± 0.16 1.44± 0.05 65◦

E7, (O) W-G 90-10 1021 1.165 70.6 1.6 469± 14 2.5± 0.15 1.63± 0.08 60◦

E8, (O) W-G 95-5 1009 1.038 70.8 1.7 536± 21 2.6± 0.20 1.58± 0.07 60◦

E9, (O) W-G 90-10 1021 1.165 70.6 2.9 640± 77 2.6± 0.5 1.69± 0.28 50◦

E10, • (O)
W 100 998 0.955 72.6 1.6 601± 40 2.7± 0.3 1.78± 0.10 50◦

E11, (O) W 100 998 0.955 72.6 3.1 955± 46 3.6± 0.3 1.93± 0.13 45◦

with the terminal Reynolds and Weber numbers Reterm = ρVtermDeq/µ and Weterm = µV 2
termDeq/σ ,

respectively, where Vterm is the terminal bubble velocity.

After the bubble reaches the wall and collides with it, the motion reaches a new time-average

steady state. In short, it could slide at constant speed or repeatedly bounce with a constant mean

velocity. We characterize this final state considering also the Reynolds and Weber numbers but

using the wall velocity Vw such that Rew = RetermVw/Vterm and Wew = Weterm(Vw/Vterm)
2. The

ratio Vw/Vterm is determined experimentally. Its value depends on the inclination angle θ , but

is also influenced by the fluid properties and possibly the contamination level of the bubble

surface.

Figure 2(a) shows a Reterm-Weterm map for all the experiments conducted in this investigation. For

each experiment, there is a certain variability of Reterm andWeterm (see Table I), which indicates small

variations of the bubble size and terminal velocity for the same nominal conditions. The terminal

Reynolds extends approximately from 100 to 1000, while the terminal Weber spans roughly from

1.5 to 5. The bubble aspect ratio varies from 1.2 to 2.1. For this range of values, the bubble are

spheroidal and ascend in an either rectilinear or zigzag manner. In Fig. 2(b) the Reynolds number

is shown as a function of the wall angle, which extends from nearly horizontal to nearly vertical. In

the figure, the experiments that exhibit sliding (bouncing) are shown with closed (open) symbols.

A few visualization experiments were conducted using the particle image velocimetry technique.

The details of this setup can be found in Ref. [11]. The flow was illuminated with a laser

sheet (Nd:YLF Litron laser, 527 nm, 10 mJ, 500 Hz) and neutrally buoyant silver-coated glass

spheres (10 µm in diameter) were added as particle tracers. The images were processed with

the DYNAMICSTUDIO software (Dantec Dynamics), using an adaptive-correlation technique with

interrogation areas of 16× 16 pixels with a 75% overlap.
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FIG. 2. (a) Map of terminal Reynolds Reterm and Weber Weterm numbers showing all the experiments

conducted in this investigation and (b) terminal Reynolds number Reterm as a function of wall inclination angle

θ . The symbols are according to Table I. In all cases, the closed and open symbols show the experiments in

which sliding or bouncing was observed, respectively.

III. RESULTS

Two types of bubble-wall interaction

In agreement with what was previously reported in Ref. [9], after the initial interaction, the motion

of the bubble transitions from steady sliding to repeated bouncing when the wall inclination angle

surpasses a certain critical value. The two types of bubble-wall interaction are shown in Figs. 3(a)

(a)

(b)

(c)

FIG. 3. Bubble motion for two typical behaviors: (a) impact and sliding for θ = 50◦ and (b) impact

and bouncing for θ = 60◦. In both cases Deq = 1.6 mm, Reterm = 500, and Weterm = 2.3, corresponding to

experiment E7 from Table I. The image is composed by superposing bubble positions at different instants,

1t = 5 ms. Note that the image was rotated to make the wall appear horizontal, in both cases. (c) Repeated

bouncing behavior for θ = 60◦; the experimental conditions are the same as in (b) but further along the plate.

032201-4



RAPID COMMUNICATIONS

CONDITIONS FOR THE SLIDING-BOUNCING . . .

0 5 10 15 20

0.4

0.6

0.8

1

t V
term

/D
eq

V
II
/V

te
rm

0 5 10 15 20

−0.5

0

0.5

V
⊥
/V

te
rm

t V
term

/D
eq

0 5 10 15 20

0.4

0.6

0.8

1

|V
|/
V

te
rm

t V
term

/D
eq

FIG. 4. Evolution of the normalized bubble velocity as a function of normalized time tDeq/Vterm for the

experiments shown as closed and open symbols. The top, middle, and bottom plots show the velocity magnitude

|V |/Vterm, the perpendicular velocity V⊥/Vterm, and the parallel velocity V‖/Vterm, respectively.

and 3(b) for an ellipsoidal bubble (corresponding to experiment E3 from Table I) for two inclination

angles of 50◦ and 60◦, respectively.

For the cases shown in the figure, for both angles, after a transient phase during which the bubble

touches and bounces off the wall, a wall-terminal state is reached. For small inclination angles, the

bubble steadily slides against the wall with a constant velocity; for inclination angles higher than the

critical value, the bubble bounces repeatedly in time with a constant amplitude and period. This same

behavior was observed for all the experiments conducted in this investigation. For each case, the

transition angle was determined. Note that, in their experiments, Tsao and Koch [9] only considered

water and two bubble diameters; hence, the extent of experimental parameters was narrow. The

distinction between the two regimes can also be observed by plotting the evolution of the bubble

velocity in time, as shown in Fig. 4. In the plot three measures of the bubble velocity are shown as a

function of time: the magnitude of the bubble velocity |V |, the component of velocity perpendicular

to the wall V⊥, and the tangential bubble velocity V‖. The time t = 0 is defined as the moment at

which the bubble normal velocity vanishes. Clearly, the collision process is complex; the kinetic

energy associated with the bubble motion is transformed into deformation energy or is dissipated

by viscous effects, as discussed in Ref. [8]. For this case, since the wall is inclined, the motion

and rebound also are important components in the direction parallel to the wall. Once this transient

process is completed, for about tDeq/Vterm > 10, the bubble motion reaches a new time-average

steady state.

An additional set of tests was conducted for experiment E10 (see Table I), in which the bubbles

were released just beneath the wall. In this case, the bubbles did not attain their terminal state before

the initial interaction with the wall. We observed the same two regimes: sliding and bouncing. More

importantly, we found that the value of the critical transition angle was not affected. Therefore,

we can argue that the initial condition of the interaction does not affect the final state of motion of

the bubble.
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FIG. 5. Map of wall Reynolds Rew and Weber Wew numbers showing all the experiments conducted in

this investigation. The symbols are according to Table I. In all cases, the closed and open symbols show the

experiments in which sliding or bouncing was observed, respectively. The black squares show the data from

Tsao and Koch [9]; the asterisks and crosses are results from Takemura and Magnaudet [3] and De Vries

et al. [4], respectively.

IV. PHYSICAL CONDITIONS FOR THE TRANSITION FROM SLIDING TO

COLLISIONAL MODES

Clearly, from the data shown in Table I and in Fig. 2, the critical angle for the transition varies for

each liquid-bubble combination. The angles do not seem to correlate with either Reterm or Weterm.

Tsao and Koch [9] reported that the transition occurred for Wew = 0.4, which implies that the

transition is a result of the deformability of the bubble. Figure 5 shows a map of Rew as a function of

Wew for all the experiments conducted in this investigation. Clearly, a single value of either Rew or

Wew that characterizes the transition for all cases cannot be identified. Also from Table I and Fig. 2,

the transition does not occur for a single value of θtrans.

Note that it is possible to also include the data corresponding to the transition to the bouncing

regime for vertical walls. Takemura andMagnaudet [3] argued that the transition fromwall repulsion

to wall attraction was associated with the prevalence of inertial over viscous effects; hence, for such

a case the transition would be characterized by a critical value of Re rather than We. The critical

conditions from [3,4] are also shown in the figure.

Analysis

To understand the conditions for transition we consider a simple force balance for the bubble

motion in both the parallel and perpendicular directions. From above, we recognize that both Rew
and Wew are important parameters to characterize the transition. In particular, the value of Wew will

determine the shape of the bubbles during their interaction with the wall [12].

To evaluate the influence of Wew on the bubble shape, we shown typical bubble shapes for the

sliding regime, at angles slightly below θtrans. Figure 6 shows snapshots of four experiments. In

Figs. 6(a) and 6(b) the bubbles have Wew < 1.1, for which the shape is close to spherical and the

elongation is parallel to the wall, resulting from gravity effects. The images in Figs. 6(c) and 6(d),

for which Wew > 1.5, show bubbles that are largely deformed. It is curious to observe that, for this

case, the bubbles are elongated in the direction perpendicular to the wall, arguably resulting from

inertial effects.
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(a)E1, (b)E10, • (c)E9, (d)E11,

FIG. 6. Images for all bubbles in the sliding motion, at an angle just below the transition. The symbols are

according to Table I. (a) E1, Rew = 106, Wew = 1.07, and θ = 75◦; (b) E10, Rew = 311, Wew = 0.71, and

θ = 50◦; (c) E9, Rew = 522, Wew = 1.57, and θ = 40◦; and (d) E11, Rew = 627, Wew = 1.63, and θ = 40◦.

Images are shown on the same scale.

Let us now consider a force balance for a bubble in both the parallel and perpendicular directions.

We first recognize that there is a gravitational force pushing the bubble to remain in contact with

the wall. Second, we consider that there are viscous and/or inertial drag forces in the parallel wall

direction. More importantly, we also argue that there is an inertial wall-repulsive force acting in the

normal direction that results from the interaction of the bubble wake with the wall similar to what

was previously discussed by De Vries et al. [4]. By conducting a Schlieren-type visualization, these

authors were able to observe the interaction between the bubble and vortex blobs from the wake.

They argued that the interaction gave rise to a lift-type force that depended on the strength of the

circulation of the vortex filament. They proposed that such force was proportional to ρV 2
wD2

eq. In our

case, the force pushing the bubble away from the wall also results from both the vorticity in the wake

(proportional to Vw/Deq) and the proximity of the wall. The wall provides the symmetry-breaking

mechanism and the vorticity interaction is known to result in a repulsive effect [7]. Since we argue

that the force arises from the wake, we conjecture that it also scales with ρV 2
wD2

eq.

Hence, balancing gravity with an inertial wake-induced wall force for the perpendicular direction,

the criterion for bubble departure from the wall would be

ρV 2
wD2

eq & ρD3
eqg cos θ. (1)

For the motion in the direction parallel to the wall, we can balance the buoyancy with a viscous drag

force:

µDeqVw ∼ ρD3
eqg sin θ. (2)

Taking the ratio of Eqs. (1) and (2), we have

Rew & cot θ. (3)

Therefore, we can say that when the wall Reynolds-number angle surpasses a certain critical value,

the bubble will not be able to remain sliding on the wall beyond the angle θ . This critical condition

is expected to apply for a spheroidal bubble for which the drag force is dominated by the viscous

effect [13]. In Fig. 7 we replot our results, separating the data into two different sets. In Fig. 7(a) the

results corresponding to We < 1.2 are shown in terms of Rew as a function of cot θ as suggested by

Eq. (3). The data clearly show that there is indeed a linear relation between Rew and cot θ for the

critical conditions. For the transition, our data can be closely fitted to

Rew = Re0 + 310 cot θ, (4)

where Re0 ≈ 80. In fact, the value of Re0 coincides with the transition data for vertical walls from

De Vries et al. [4] and Takemura and Magnaudet [3]. The transition conditions reported by Tsao

and Koch [9] (black squares) are also in consistent agreement with Eq. (4).

For bubbles with large values of Wew (here Wew > 1.5) we observed that the transition is not

given by Eq. (3). For such cases the bubbles are more deformed, as shown in Figs. 6(c) and 6(d).

We conducted visualization experiments of the wake structure for this case. Figure 8 shows the flow
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FIG. 7. Conditions for transition: (a) Wewall < 1.2 and wall Reynolds Rewall as a function of cot θ and

(b) Wewall > 1.5 and wall Weber Wewall as a function of inclination angle θ . The symbols are according to

Table I. In all cases, the closed and open symbols show the experiments in which sliding or bouncing was

observed, respectively. The black squares are the data from Tsao and Koch [9]; the asterisks and crosses

are results from Takemura and Magnaudet [3] and De Vries et al. [4], respectively. The dashed line in (a)

corresponds to Eq. (4). The vertical dash-dotted line in (b) corresponds to θ = 43.7◦.

around a sliding bubble for experiment E10 (see Table I) for an angle slightly below the critical one

(θ = 50◦). Significant vortex shedding in the bubble wake is clearly observed; hence, in this case,

the resulting drag would be dominated by inertial effects.

Therefore, the force balance parallel to the wall is now

ρV 2
wD2

eq ∼ ρD3
eqg sin θ. (5)
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FIG. 8. Visualization of the bubble wake for a sliding bubble, slightly below the transition angle. The image

was taken at steady sliding tDeq/Vterm = 54 for E10 in Table I for θ = 50◦. The colors show the value of the

vorticity, normalized by Deq/Vterm.
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The ratio of Eqs. (1) and (5) suggests that for the transition cot θ should be constant. Figure 7(b)

shows again Rew as a function of cot θ , but only for experiments with Wew > 1.5. The transition is

now clearly observed for a constant angle around cot θ ≈ 1, corresponding to a value of θ ≈ π/4.

These data cover a significant range of Rew (from 200 to 600).

It is important to note that the strength of the wake-induced lift and the drag force, and as a result

the induced transition criteria, is probably affected by the Reynolds and Weber number corrections.

Indeed, there are several factors that may affect the magnitude of these forces: the structure of the far

wake, the vorticity production on the bubble surface, the bubble shape, the interaction with the wall,

and even the possible presence of surfactants. The fact that our model prediction agrees well with

the experiments indicates that such a dependence of the forces on Re and/or We is not significant

for the range of parameters explored here.

V. CONCLUSION

In this investigation we studied the interaction of an air bubble rising in a viscous fluid during its

interaction with an inclined wall. This particular problem had been addressed previously. Tsao and

Koch [14] first reported that, for air bubbles in water, the interaction changes from steady sliding

to repeated bouncing at a certain angle. They argued that the condition for transition occurred at

a certain critical Weber number, based on the sliding velocity Wew. Conversely, Takemura and

Magnaudet [3] claimed that, for a vertical wall, the transition would occur for a certain critical value

of Rew. In this investigation, due to a wider range of experimental conditions, we demonstrated that,

instead, the transition results from the appearance of a wake-induced lift. Furthermore, we found

that there are two different regimes for the transition depending on the value of the Weber number

(based on the wall velocity), which in turn determines the shape of the bubble, the wake structure,

and therefore the nature of the drag force (viscous or inertial) on it.
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