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Closed-Form Expressions for Channel Shortening
Receivers Using A Priori Information

Albert Abelló, Jean-Marie Freixe and Damien Roque, Member, IEEE

Abstract—Channel shortening has been studied in the context
of ISI and MIMO channels as a means to compute a posteriori
probabilities with a BCJR algorithm at a reduced computational
complexity. This is done by considering an approximate channel
response of reduced length. In a turbo receiver, soft a priori
information can be linearly combined with the received sequence
to form a new input to the BCJR trellis-based processing. In this
letter, we provide closed-form expressions for the channel short-
ening filters using a generalized mutual information objective
function. The proposed receiver allows a complexity reduction
with respect to numerical optimization approaches which may
also present stability, precision and convergence issues.

Index Terms—inter-symbol interference, turbo equalization,
channel shortening, iterative receivers.

I. INTRODUCTION

Channel shortening (CS) was first explored in [1] as a means
to reduce the complexity of trellis-based detection in the pres-
ence of inter-symbol interference (ISI). This approach consid-
ers a linear preprocessing followed by a trellis-based nonlinear
processing. A complexity reduction with respect to the optimal
approach is obtained by considering an approximate channel
response (the target response) of reduced length. The receiving
filter and the target response are properly optimized. Recent
work on channel shortening considers the mutual information
as the optimization criterion [2] and closed-form expressions
for the receiving and target response filters have been obtained
by assuming that input symbols follow a Gaussian distribution.
Channel shortening has been extended to the optimization of
the transmit filters [3] and a channel shortening receiver with
an additional return filter using a priori information has been
introduced in [4], [5] although no closed-form expressions
have been provided for the return filter and the target response
so far. In [6], the authors observe that further constraints must
be put on the return channel shortening filter in order for
the receiver to perform interference cancellation in a turbo
equalization scheme. These additional constraints do not allow
a closed-form derivation of the channel shortening solution
with a priori information. In this letter, we consider a more
general case in which we do not restrict the choice of the
symbol estimator and we consider a Gaussian model for a
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priori information. We first provide both the preprocessing and
return filters in closed-form. This result allows us to provide
the target response in closed-form by applying the method in
[2] to our resulting generalized mutual information. In a turbo
receiver, this implies that all filters are obtained in closed-
form at each iteration step thus avoiding the use of more
complex numerical optimization methods. We validate the
proposed closed-form solution by comparing it to a standard
numerical optimization approach and we demonstrate practical
performance results by considering a typical Gaussian model
for a priori information.

II. CAPACITY APPROACHING CHANNEL SHORTENING

The received signal at the output of the additive, white,
Gaussian noise (AWGN) channel can be described by the
following discrete-time model

x =Hs+ n (1)

where s = [s0, . . . , sN−1]T is the sequence of trans-
mitted symbols with (·)T the transpose operator, x =
[x0, . . . , xN−1]T is the sequence of received symbols and n =
[n0, . . . , nN−1]T is the sequence of circularly-symmetric in-
dependent complex Gaussian noise samples with variance σ2

n.
The ISI channel is described by a Toeplitz matrix H whose
first column has L+1 nonzero elements h = [h0, h1, . . . , hL]

T

forming the channel impulse response. The conditional prob-
ability density function of x is given by [7]

p(x|s) ∝ exp

(
1

σ2
n

(
2<
{
sHHHx

}
− sHGs

))
(2)

where G =HHH is the channel response after the matched
filter with (·)H the conjugate transpose operator.

On the receiver side, optimal turbo equalization algorithms
need for the computation of symbol a posteriori probabilities
p(sk|x), k = 0, . . . , N − 1 [8] . A suitable factorization of
(2) can be used by the BCJR algorithm to compute exact
a posteriori symbol probabilities [9] although this approach
yields a complexity that is exponential in L. To overcome this
complexity limitation, channel shortening [2], [4] considers a
modified channel law

p̃(x|s) ∝ exp

(
1

σ2
n

(
2<
{
sH (Fx−Bŝ)

}
− sHGrs

))
(3)

where F acts as a linear preprocessing of the observation x
and the band matrix G is replaced by a target response Gr of
reduced length ν ≤ L



(Gr)i,j = 0 | i− j |> ν (4)

with (Gr)i,j the (i, j)th term of the target response. If soft
a priori information ŝ is available to the channel shortening
receiver [4], it can be further preprocessed by B forming the
input sequence

y = Fx−Bŝ. (5)

F
−

BCJR

B

x

ŝ

p(sk|x)y

Fig. 1. Channel shortening receiver with soft a priori information for the
computation of symbol a posteriori probabilities (APP).

The modified channel law (3) along with (5) are used by the
BCJR algorithm to compute approximate a posteriori symbol
probabilities. The channel shortening receiver is depicted in
Figure 1. In [4], the channel shortening filters are obtained
with standard numerical optimization methods by considering
a generalized mutual information objective function

IG = E {log (p̃ (x|s))} − E {log (p̃ (x))} (6)

with

p̃ (x) =

∫ ∞
−∞

p̃ (x|s) p (s) ds

and E {·} the expectation operator. F and B are subject to an
optimization on (6) of the form

(F cs,Bcs) = argmax
F ,B

IG. (7)

To obtain a closed-form solution, we assume that input
symbols follow a circularly-symmetric Gaussian distribution
[2] with variance σ2

s . We assume that input symbols and a
priori symbols have a correlation matrix E

{
sŝH

}
= C1

and that a priori symbols have a correlation matrix
E
{
ŝŝH

}
= C0. We further assume that a priori symbols

are uncorrelated to the channel noise samples E
{
nŝH

}
= 0.

The optimization process is as follows. First, F and B are
obtained by maximizing (6) for a given target response.

Proposition 1: the optimization (7) yields optimal filters

F cs = (Gr + I)
(
HHH + Γ

)−1
HH , (8)

Bcs = (Gr + I)

((
HHH + Γ

)−1
HHH − I

)
C1C

−1
0

(9)
with

Γ = σ2
n

(
I −C1C

−1
0 CH

1

)−1
.

Proof is given in Appendix A. Due to the Hermitian property
of Gr and the optimization (7), F cs and Bcs are band Toeplitz
matrices. A filter processing can thus be implemented on the
receiver side with a complexity quasi linear in the length of
the receiving filters. With optimum F cs and Bcs, the objective
function becomes

IG = log (det {Gr + I}) +N +Tr {(Gr + I)A} , (10)

A = σ2
nH

HΓ−1H
(
HHH + Γ

)−1
. (11)

The optimal Gr can be provided in closed-form by applying
the method proposed in [2] to the resulting generalized mutual
information (10) which takes into account a priori information.
This is done by taking the derivative of (10) and by considering
a Cholesky factorization of the term Gr +I . The optimization
process is summarized in Appendix B.

It can be shown that the linear minimum mean square error
(MMSE) approach using a priori information is a particular
case of rate maximizing channel shortening reception. The
MMSE filters Fmse and Bmse are well known [10] and can
be found by setting

(Fmse,Bmse) = argmin
F ,B

E
{
‖y − s‖2

}
.

The optimum filters can be put on the form

Fmse =
(
HHH + Γ

)−1
HH ,

Bmse =

((
HHH + Γ

)−1
HHH − I

)
C1C

−1
0 .

Therefore, the channel shortening filters equal the MMSE
filters weighted by Gr+I . The two approaches are equivalent
when ν = 0 (i.e., Gr = I , no trellis-based processing is
performed). The full complexity receiver is found by setting
ν = L (i.e., Gr = HHH) which yields the matched filter
F cs =H

H and Bcs = −ΓC1C
−1
0 .

If no a priori information is available to the receiver, then
C1 = C0 = 0, Γ = σ2

nI . In this case, F cs equals the
classical MMSE receiver. On the other hand, with perfect a
priori information ŝ = s and if we consider σ2

s = 1 then
C1 = C0 = I and Γ = ∞I . In this situation, F cs = 0
and Bcs = − (Gr + I). The noiseless case σ2

n = 0 yields
the zero forcing solution weighted by the target response
F cs = GrH

−1 and Bcs = 0.

III. NUMERICAL RESULTS

The transmitted uncoded symbols are obtained using a
binary phase-shift keying (BPSK) mapping. For numerical
simulation, we assume C1 = c1I and C0 = c0I so that
Γ = γI with γ = σ2

n

(
1− |c1|2/c0

)−1
. Performance of the

proposed channel shortening receiver has been evaluated by
assuming an additive white Gaussian noise model for soft a
priori information ŝ = s+ e with e a sequence of circularly-
symmetric independent complex Gaussian noise samples with



TABLE I
SE BETWEEN CLOSED-FORM AND NUMERICAL FILTER OPTIMIZATION

ν = 2

γ gr f cs bcs

0.2 1.5832e-06 1.3836e-06 1.8215e-06
0.4 3.0729e-06 2.3371e-06 3.3412e-06
0.6 7.1155e-06 2.3204e-06 2.7197e-06
0.8 2.2225e-05 3.6139e-06 2.6077e-06
1.0 7.1042e-05 8.3007e-06 4.7152e-06

ν = 3

0.2 2.7235e-06 7.5011e-06 8.7205e-06
0.4 4.5422e-06 1.7081e-05 2.0377e-05
0.6 4.2465e-06 1.5438e-05 1.8783e-05
0.8 7.5227e-06 1.3169e-05 1.5589e-05
1.0 2.4116e-05 1.3224e-05 1.3622e-05

variance σ2
e . This yields correlation coefficients c1 = 1,

c0 = 1+σ2
e . In a turbo receiver [8], a priori information varies

at each iteration step and the receiving filters F cs, Bcs and Gr
can be recalculated accordingly in closed-form as described in
Section II.

Table I shows the squared error between the receiving filters
obtained in closed-form and obtained iteratively using the
gradient projection method [11] on the generalized mutual
information derived in (14) as a function of γ and ν for
σ2
n = 2. The receiving filters f cs, bcs and gr correspond to

a row of F cs, Bcs and Gr respectively. We define the error as
SE = k−1‖f cs − f i

cs‖2 where the superscript (·)i means that
the iterative method was considered and k is the filter length.
Results confirm that a numerical optimization of F , B and
Gr converges toward the optimal closed-form solution.

To better illustrate the complexity reduction obtained with
the closed-form solution, please note that we consider in
general N×N band Toeplitz matrices and we focus on the case
C1 = c1I and C0 = c0I . The direct method for computing
the optimal shortening filters yields a complexity in O(N2).
On the other hand, the gradient projection method, that we
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Fig. 2. Performance results of the channel shortening
receiver for ν = 2 over the partial response channel
h = [0.033, -0.131, -0.037, 0.446, 0.750, 0.446, -0.037, -0.131, 0.033]T .
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Fig. 3. Performance results of the channel shortening receiver over the EPR4
channel h = [0.5, 0.5,−0.5,−0.5]T .

used to validate the closed-form solution, has a complexity in
O(ε · N2) with ε the number of iterations performed by the
algorithm. The number of iterations needed depends on γ, σ2

n

and ν. In the worst case simulation scenario, we needed 2000
iterations to achieve convergence. For a variety of numerical
optimization methods the complexity remains O(ε·N2). Other
than the complexity advantage, the proposed closed-form
solution avoids stability, convergence and precision issues that
must be dealed with when numerical optimization approaches
are used.

Receiver performance is depicted in Figures 2 and 3. The
lines correspond to the optimal closed-form solution. The
markers correspond to the iterative solution after convergence.
The squared errors obtained between the closed-form and the
iterative approaches prove to be sufficiently low in terms of
bit error rate degradation.

IV. CONCLUSION

In this letter, we have provided a generalization of the rate-
maximizing channel shortening receiver using a priori infor-
mation. The receiving filters have been provided in closed-
form at each turbo iteration step thus avoiding the use of
more complex numerical optimization methods. Additionally,
this result enables the derivation of the linear MMSE turbo
approach as a particular case of channel shortening when a pri-
ori information is available to the receiver. Numerical results
show that standard iterative optimization methods converge
toward the optimal closed-form solution. Future work may
study a suitable soft-symbol estimator for the optimal closed-
form channel shortening solution.

APPENDIX

A. Proof of proposition 1

We assume s ∼ CN
(
0, σ2

sI
)
. For ease of reading and

without loss of generality, we take σ2
s = 1 and we introduce

σ2
n in F ,B and Gr respectively, yielding

p̃(x) =
K(x)

πN

∫
s

exp
(
2<
{
sHy

}
− sH (Gr + I) s

)
ds,



K(x) =
1

(πσ2
n)
N

exp

(
−x

Hx

σ2
n

)
.

We restrict Gr to being Hermitian so that rearranging into
squared forms yields

p̃(x) = K(x) det
{
(Gr + I)

−1
}
exp

(
yH (Gr + I)

−1
y
)
.

The mutual information is

IG =E {log (p̃ (x|s))} − E {log (p̃ (x))}
=2<

{
E
{
sHy

}}
− E

{
sHGrs

}
+ log (det {Gr + I})− E

{
yH (Gr + I)

−1
y
}
, (12)

E
{
sHy

}
= Tr

{
FH −BCH

1

}
,

E
{
sHGrs

}
= Tr {Gr} ,

E
{
yH (Gr + I)

−1
y
}
= Tr

{(
F
(
HHH + σ2

nI
)
FH

+BC0B
H − 2<

{
FHC1B

H
})

(Gr + I)
−1
}
. (13)

Introducing (13) in (12) yields

IG = log (det {Gr + I})− Tr {Gr}
+ 2<

{
Tr
{
FH −BCH

1

}}
− Tr

{(
F
(
HHH + σ2

nI
)
FH

+BC0B
H − 2<

{
FHC1B

H
})

(Gr + I)
−1
}
. (14)

The optimal filter F cs is obtained from (14) by setting
∇F cs IG = 0 which yields after some calculations

F cs =
(
BCH

1 + (Gr + I)
)
HH

(
HHH + σ2

nI
)−1

. (15)

We now set ∇Bcs IG = 0 which yields after some calculations

Bcs = (FH − (Gr + I))C1C
−1
0 . (16)

Introducing (16) in (15) yields optimum filters (8) and (9).

B. Optimization of Gr

Gr+I is assumed to be a Hermitian positive-definite matrix
allowing the Cholesky factorization Gr + I = UUH with U
an upper triangular matrix

(U)m,n =

{
um,n if n ≥ m
0 otherwise.

Then, (10) can be rewritten as

IG =

(
2

N∑
n=1

log(un,n)− Tr
{
UAUH

}
+N

)
. (17)

Since the first term in (17) does not contain off-diagonal
values, IG can be optimized over the diagonal and off-diagonal
elements separately [2]

U = argmax
un,n

(
2

N∑
n=1

log(un,n) +N

− argmin
{um,n}m+1≤n≤min(m+ν,N)

Tr
{
UAUH

})
. (18)

By defining the submatrix

Aν
n =

 an+1,n+1 · · · an+1,min(N,n+ν)

...
. . .

...
amin(N,n+ν),n+1 · · · amin(N,n+ν),min(N,n+ν)


and the row vectors aνn =

[
an,n+1, · · · , an,min(N,n+ν)

]
and

uνn =
[
un,n+1, · · · , un,min(N,n+ν)

]
then

Tr
{
UAUH

}
=

N∑
n=1

(
un,n uνn

)(an,n aνn
aνn

H Aν
n

)(
un,n
uνn

H

)
.

Setting ∇uνn Tr
{
UAUH

}
= 0 yields uνn =

−un,naνn(Aν
n)
−1. Introducing uνn in (18) yields

U = argmax
un,n

(
2

N∑
n=1

log(un,n) +N −
N∑
n=1

u2n,ncn

)
(19)

where cn = an,n − aνn(Aν
n)
−1
aνn

H . Setting the derivative of
(19) to zero yields un,n =

√
1/cn.
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