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a b s t r a c t

This study presents the implementation and the merits of an Ensemble Kalman Filter (EnKF) algorithm

with an inflation procedure on the 1D shallow water model MASCARET in the framework of operational

flood forecasting on the ‘‘Adour Maritime” river (South West France). In situ water level observations are

sequentially assimilated to correct both water level and discharge. The stochastic estimation of the back-

ground error statistics is achieved over an ensemble of MASCARET integrations with perturbed hydrolog-

ical boundary conditions. It is shown that the geometric characteristics of the network as well as the

hydrological forcings and their temporal variability have a significant impact on the shape of the univari-

ate (water level) and multivariate (water leve l and discharge) background error covariance functions and

thus on the EnKF analysis. The performance of the EnKF algorithm is examined for observing system sim-

ulation experimen ts as well as for a set of eight real flood events (2009–2014). The quality of the ensem-

ble is deem ed satisfactory as long as the forecast lead time remains under the transfer time of the

network, when perfect hydrological forcings are considered. Results demonstrate that the simulated

hydraulic state variables can be improved over the entire network, even where no data are available, wit h

a limited ensemble size and thus a computational cost compatible with operational constraints. The

improvement in the water level Root-Mean-Square Error obtained with the EnKF reaches up to 88% at

the analysis time and 40% at a 4-h forecast lead time compared to the standalone model.

1. Introduction

Flood and inundation represent major societal and economic

 issues (Guha-Sapir et al., 2012; Stocker et al., 2013; World

Meteorological Organization, 2011). For instance, 2016 European

floods caused a total loss of about 1 billion euros and 19 deaths.

Anticipating and monitoring in real-time strong flood events is

thus a key challenge for national and international flood forecast-

ing agencies, which are in charge of water level and discharge pre-

diction, risk assessment and alert system to inform government

authorities and general public (Weerts et al., 2011; Werner et al.,

2009). For this purpose, they rely on the complementary use of

observations and numerical models. In France, the national flood

forecasting center (SCHAPI – Service Central d’Hydrométéorologie

et d’Appui à la Prévision des Inondations) is since 2006, in charge

of the surveillance of 22,000 km of rivers and provides, in collabo-

ration with the 22 local flood forecasting services (SPC – Service de

Prévision des Crues), producing a twice-daily color-scaled risk map

available on-line 1.

Several sources of uncertainty have been identified in hydraulic

models as barriers to forecast process improvement. On the one

hand, input data to the model represent a substantial source of

uncertainty. For instance, hydrological forcing data that describe

boundary conditions for hydraulic models usually result from the

transformation of uncertain observed water levels into discharges

through an uncertain rating curve ( ), orAudinet and André, 1995

from discharges that are forecast by uncertain hydrological mod-

els. On the other hand, the simplification of the flow to a 1D repre-

sentation (with or without flood plain description) is a significant



sentation (with or without flood plain description) is a significant

limitation. Model equations are based on physics simplification
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and parametrization. These parametrization schemes are cali-

brated to adjust the model behavior to observed water levels, typ-

ically through the calibration of friction coefficients that is a

pragmatic way to account for various sources of uncertainty.

Uncertainties in the input data and in the hydraulic parameters

translate into uncertainties in the simulated hydraulic state. Many

studies intent to quantify and account for uncertainties in hydro-

logical and hydraulic models (Vrugt et al., 2008; Bozzi et al.,

2014). Estimating the model output probability density function

(PDF) induces a significant computational cost. In the present

work, the focus is made on a data assimilation (DA) method that

relies on estimating the first two statistical moments, the mean

and the standard deviation (STD) of the hydraulic state, instead

of its complete PDF to be compatible with operational framework.

In order to overcome the limitations of both hydraulic models

and observations, DA combines information from the numerical

model with observations along with modeling and observational

errors, thus reducing the range of uncertainty in the model out-

puts. While originating from meteorology and oceanography, DA

has been recently successfully applied to hydrodynamics

 (Madsen and Skotner, 2005; Biancamaria et al., 2011; Ricci et al.,

2011). Filtering methods have been widely applied for hydraulic

DA as the cost of the numerical model and the size of the state vec-

tor remain limited. For instance, esti-Jean-Baptiste et al. (2011)

mated ungauged lateral forcings on the Rhône river, South East

France, with a Kalman Filter (KF) and a particle filter through an

extended control vector adding unknown forcings to the state vec-

tor. estimated in a two-step procedure theRicci et al. (2011)

upstream forcings on the Adour river, South West France, with

an extended Kalman Filter thus accounting for model nonlineari-

ties and featuring an invariant forecast error covariance matrix

(IKF). Similarly to work achieved by Madsen and Skotner (2005)

and Shiiba et al. (2000), a stationary description of the KF back-

ground error covariance matrix was used in order to lower the

algorithm computational cost, with asymmetric functions charac-

terized by a larger correlation length scale upstream than down-

stream of the observing stations. These statistics do not take into

account flow dependency nor river geometry dependency (slope

or river width variation). The IKF algorithm was able to correct

the hydraulic state (water level and discharge) and to significantly

improve the forecast up to 12-h lead time. Following this work,

Habert et al. (2016) extended the IKF algorithm to the estimation

of the friction coefficients using in situ water level measurements,

thus improving the model water-level/discharge relationship and

the flood phase. Studies have also explored the use of the Ensemble

Kalman Filter (EnKF) that is believed to bring insightful informa-

tion on the background error covariance functions and their flow

non-static dependence. The EnKF ( ) stochasticallyEvensen, 1994

estimates them over an ensemble of members, i.e. a sample of

model integrations that represents the uncertainty in the model

state. used the EnKF to assimilate water levelHartnack et al. (2005)

and discharge in a 1D-2D flood model, thus improving both

hydraulic state and forcings. Several studies demonstrated the

benefits of the EnKF assimilating satellite observations

(Andreadis et al., 2007; Biancamaria et al., 2011; Durand et al.,

2008; Giustarini et al., 2011; Matgen et al., 2010; Neal et al.,

2009; Yoon et al., 2012 Durand et al. (2008)). For instance, showed

that the EnKF is successful at rebuilding river bathymetry through

the assimilation of synthetic remote sensing data.

The objective of the paper is to demonstrate, in both analysis

and forecast modes, the merits of a state estimation EnKF algo-

rithm on the 1D shallow water model MASCARET in the framework

that the use of Desroziers’ criteria com-Desroziers et al. (2005)

bined with a specific methodology presented in Miyoshi (2005)

and applied in allows for a proper estimation ofLi et al. (2009)

the observation error statistics. The stochastic estimation of the

background error statistics is achieved over an ensemble of MAS-

CARET integrations with perturbed hydrological boundary condi-

tions. Assuming that errors in simulated water level are mostly

due to uncertainty in forcing input data is a common hypothesis

(Maggioni et al., 2012; Alemohammad et al., 2015; Dumedah and

Walker, 2017; Li et al., 2016 ). Perturbed hydrological forcing fields

are generated assuming that the hydrological forcing field error is a

time-varying Gaussian Process with a Gaussian correlation func-

tion of fixed length scale. The novelty in the present paper is that

the explicit formulation of background error covariances with EnKF

allows for time and space description of background error statis-

tics. An inflation method is implemented combining work from

 Anderson (2007) and Li et al. (2009), in order to enlarge the spread

of uncertainty within the ensemble, which tends to be under-

dispersive in forecast mode. The resulting algorithm is denoted

by IEnKF (Inflated Ensemble Kalman Filter). The merits of the IEnKF

for reducing uncertainty is shown on water level and discharge

ensemble simulations and means over synthetic experiments rep-

resentative of flood conditions (Observing System Simulation

Experiments – OSSE) as well as the re-analysis of eight recent flood

events (2009–2014) on the ‘‘Adour Maritime” network.

The structure of the paper is as follows: Section provides a2

description of MASCARET and the ‘‘Adour Maritime” river. The

IEnKF is presented in Section with focus on ensemble generation,3

a posteriori observation error estimation, inflation, numerical

implementation and performance metrics. DA results are detailed

in Section . Conclusions and perspectives for this work are given4

in Section .5

2. Modeling of the Adour river

2.1. The 1D hydraulic model MASCARET

MASCARET 2 is a component of the open-source integrated suite

of solvers TELEMAC-MASCARET for use in the field of free surface

flow modeling and is mainly developed by EDF and CEREMA

( ). It solves the following conservative formGoutal and Maurel, 2002

of the 1D shallow water equations:

@S
@t þ

@Q
@x ¼ qa

@Q
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þ @
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:

where is the wetted area (mS 2), is the discharge (mQ 3 s1), qa is the

lateral inflow (m 2 s1 ), stands for the gravity (m sg 2 ), Zs is the free

surface height (m) and S f is the friction modeled with the Strickler

formula: Sf ¼
Q2

K2
s S2 R4 3=

h

, with K s the Strickler coefficient (m 1/3 s1) and

Rh (m) the hydraulic radius. In this work, we use the unsteady ker-

nel of MASCARET based on the well-balanced finite volume Roe

scheme ( ) developed by . FromRoe, 1981 Goutal and Maurel (2002)

MASCARET outputs can be derived the water level (or water height)

of the free surface (m). The pair ( ) is referred to as the hydrau-Z Z Q;

lic state in the following.

The practical implementation of the ‘‘Adour Maritime” hydrau-

lic model requires the following input data: bathymetry, upstream

and downstream boundary conditions, lateral inflows, roughness

coefficients and initial condition for the hydraulic state. The imper-



rithm on the 1D shallow water model MASCARET in the framework

of operational flood forecasting on the ‘‘Adour Maritime” river in

South West France. In situ water level observations are sequen-

tially assimilated to correct both water level and discharge (space

borne data are not yet used at operational level). It is first shown

coefficients and initial condition for the hydraulic state. The imper-

fect description of these data translate into errors in the simulated

water state.

2.2. The Adour river

The ‘‘Adour Maritime” hydraulic network ( ) is located inFig. 1

South West France, close to the Atlantic Ocean. The 161-km long

section of the river network used in this work is composed of 7

reaches with 3 confluences and 3 dams located on reaches 3, 6

and 7. The entire network is under tidal influence except upstream

of the dams.

The tidal influence of the Atlantic Ocean combined with the

influence of the Pyrenees mountainous region result in a complex

atmospheric and hydraulic dynamic over the Adour catchment.

According to SCHAPI’s statistical records, the Adour catchment is

ranked amongst the most challenging catchments in France due

to a large number of severe alerts annually (orange and red levels

on the color-scaled risk map produced by SCHAPI). The alerts are

defined by water level thresholds at Cambo, Orthez, Dax, Escos

and Peyrehorade. For example, the yellow, orange and red thresh-

olds at Peyrehorade are set to 2.1, 4.1 and 4.9 m, respectively. Flood

events can be categorized in three types. First, flood peaks occur-

ring on reach 4 with a slow dynamic over 7 to 14 days and maxi-

mum discharge between 400 and 1000 m 3 s1 . Second, flood

peaks on reaches 6 and 7 resulting from flash flood events over 2

to 3 days with a maximum discharge between 800 and

1650 m 3 s1 for reach 6 and a maximum discharge between 400

and 1100 m 3 s1 for reach 7. Third, flood peaks on reach 3 that

are eventually correlated in time with flood peaks on reaches 6

and 7 and last 2 to 3 days. These events might occur simultane-

ously and be worsened by tidal influence.

In this context, upstream forcings are described by observed

water levels (available at 15-min rate) translated into discharges

with a local rating curve established at the observing stations of

Dax, Orthez, Escos and Cambo. Since rating curves are built from

a limited number of measurements and are usually extrapolated

for higher flows, there are significant uncertainties due to these

upstream boundary conditions. The downstream forcing is given

by observed water level at the observing station of Convergent

on the Atlantic Ocean’s coast. Water level observations are avail-

able hourly at Peyrehorade, Urt, Villefranque, Pont-Blanc and

Lesseps. It takes approximately 5, 10 and 12 h for the upstream

forcings to propagate to Peyrehorade and Pont-Blanc, Urt and Les-

seps, respectively. In forecast simulation mode, the upstream

hydrological forcings are set constant to the last observed value

beyond this transfer time, and the downstream forcing is given

by the forecast water level computed by the French national

hydrographic and oceanographic service SHOM (Service Hydro-

graphique et Océanographique de la Marine).

The 1D hydraulic model terrain is described with 548 topo-

graphic and bathymetric cross sections interpolated over 2795 grid

points. The river is represented as a 1D flow bounded with infinite

banks except in the neighboring of Peyrehorade, where a limited

number of cross sections gives a local description of the flood

plains. This model was developed for operational purposes by the

Gironde-Adour-Dordogne (GAD) SPC in collaboration with SCHAPI.

It suffers from three major limitations. First, some lateral inflows

are not accounted for in the hydraulic model resulting in incorrect

simulated water level during major flood events. Second, the mod-

eling of the network with infinite banks and then the lack of flood

plains on most of the domain result in errors when the simulated

water level rises above the banks height. Third, errors in rating

curves at observing stations may lead to the use of wrong dis-

charge values for friction calibration. Nonetheless, sensitivity anal-

ysis of the simulated water level according to the friction

coefficient in the vicinity of Urt and Peyrohorade show that the

simulated water level error are not completely due to the friction

coefficient error, especially at the flood peak. We assume each fric-

tion coefficient follows a Gaussian distribution centered around

the calibrated value with a variance of 16. shows the waterFig. 2

level PDF at Peyrehorade resulting from a Monte Carlo sampling

(5000 members) of the friction coefficient K s at Peyrehorade. The

resulting water level PDF obtained with MASCARET (black line)

features a 5-cm STD and slightly deviates from the Gaussian fit

(red line). Similar results (not show here) are obtained for down-

stream and upstream friction areas. The water level error

explained by friction errors is thus significantly smaller than the

differences between the free run and the observation that are

observed at flood peak in this study (up to 1 m at Peyrehorade

Fig. 1. Hydraulic network scheme of the ‘‘Adour Maritime” river network simulated with MASCARET with reach indices. Water level observing stations are represented by red

crosses. Dams on reaches 3, 6 and 7 are represented by black markers.



and 50 cm at Urt, see ). The most significant errors for thisFig. 16

hydraulic model are most likely due to upstream/lateral forcings

and the incomplete river geometry description. Independently of

the sources of the errors, the DA algorithm targets here the water

level.

3. Ensemble-based data assimilation algorithm

3.1. Ensemble-based state estimation approach

The EnKF algorithm ( ) implemented in this workEvensen, 1994

solves a state estimation problem. The control vector denoted by x

is composed of the hydraulic state, i.e. the discretized water level

and discharge over space. The EnKF decomposes in an analysis step

and a forecast step that are sequentially applied to correct the

hydraulic state ( presents a schematic of the assimilationx Fig. 3

cycle 1 with the EnKF analysis achieved at time ). The EnKF½ i ; i i

relies on the MASCARET integration of an ensemble of N e perturbed

members xb k;
i

(indexed by the superscript standing for ‘‘back-b

ground”) and on the assumption that the stochastic estimate of

the ensemble statistics is a fair representation of the model state

error statistics. For an analysis at time , the background errori

covariance matrix B i is stochastically estimated as:

Bi ¼
1

N e  1

X

Ne

k¼1

xb k;
i

 xb
i

 

xb k;
i

 xb
i

 T

; ð Þ1

where corresponds to the index of the ensemble member,k

xb
i ¼

1
Ne

PNe

k¼1x
b k;
i corresponds to the ensemble mean over the back-

ground members and stands for the transposition operator. Then,T

the Kalman gain Ki is computed with K i ¼ BiH
T HB iH

T þ R
 1

,

where is the tangent linear of the observation operator thatH H

maps the control vector onto the observation space (here corre-H

sponds to the selection of the water level and/or the discharge at

the observing stations), and where is the observation error covari-R

ance matrix. For each ensemble member over the th assimilationi

cycle, the analysis step consists in assimilating a perturbed observa-

tion vector y o
i þ e

o k;
i (with e

o k;
i

a Gaussian noise with zero mean,

Burgers et al. (1998)) to correct the background estimate x
b k;
i using

the classical KF update equation:

xa k;
i ¼ xb k;

i þK i y
o
i þ e

o k;
i H xb k;

i

 h i

; ð Þ2

where xa k;
i

(indexed by the superscript standing for ‘‘analysis”) isa

the resulting hydraulic state used as initial condition for the next

assimilation cycle. As illustrated in , the ensemble of analyzedFig. 3

states obtained at time ( 1) is propagated forward in time byi

MASCARET ( Mi i1; ) to provide an ensemble of background states

at time :i

xb k;
i ¼Mi i1; ðx

a k;
i1Þ ð Þ: 3

The model error is supposed to be negligible in this work. The

perturbation of the observations in Eq. ,(2) y o
i þ e

o k;
i , is introduced

to maintain some spread within the ensemble and avoid filter

divergence.

In the present study, as the control state is composed of thex

hydraulic state , the matrix (Eq. ) (for simplicity purpose,ð ÞZ Q; B (1)

we remove the index in the following) decomposes into fouri

symmetrical sub-matrices that correspond to univariate and

multivariate covariances. In the following, we denote B ZZ and BQQ

the univariate water level and discharge background error

covariance sub-matrices, and B ZQ and BQZ the multivariate water

level/discharge background error covariance sub-matrices with

BZQ ¼ ðBQZÞ
T . Thus, can be written asB

Fig. 2. Comparison of water level PDF with respect to the Strickler friction

coefficients K s at the observing station of Peyrehorade. Black line represents the PDF

built using kernel smoothing from the Monte Carlo sampling (5,000 members); red

line represents the Gaussian fit.



Fig. 3. xSchematic representation of the EnKF algorithm for state estimation ( corresponds to the discretized water level along the network) over the assimilation cycle withi

MASCARET integration from time ( 1) to time , and with the EnKF analysis at time .i  i i

B ¼
BZZ BZQ

BQZ BQQ

 

:

Water levels at the observing stations are translated into a

water level correction. The role of the matrix is to spread thisB

water level correction over the entire hydraulic network according

to the univariate covariance functions and to translate it into a dis-

charge correction according to the multivariate covariance func-

tions. The stochastic estimation of allows for a time varyingB

description of these statistics, which reflects the influence of the

river geometry and network design in 1D and even more signifi-

cantly in 2D when the flow may move from river bed to flood

plains. The representation of the ensemble is thus a key issue for

the EnKF.

3.2. Ensemble generation

In this study, we consider that the major source of uncertainty

in the simulated water state results from an approximate knowl-

edge of the catchment hydrology that provides upstream and lat-

eral boundary conditions to the hydraulic model. The uncertain

input space is thus described by stochastic forcing fields that are

time varying. The generation of perturbed members for these forc-

ing fields should preserve the statistical characteristics of the

errors as achieved in when assessing theMaggioni et al. (2012)

impact of satellite error structure on soil moisture simulated by a

land surface model.

There are several ways to introduce these perturbations.

Alemohammad et al. (2015) proposed to reduce the input uncer-

tain space with a singular vector decomposition applied to precip-

itation fields to generate stochastic perturbation in position and

magnitude. used similar techniques (with empiricalLi et al. (2016)

orthogonal functions) to reduce the size of the uncertain input

space when quantifying uncertainties in initial and wind forcing

uncertainties propagated by an ocean model. In the present study,

upstream and downstream boundary conditions are perturbed

using Gaussian processes, whose length scale is chosen in ade-

quacy with the time scales of the hydraulic model. Downstream

the hydraulic network, the water level is perturbed with a Gaus-

sian noise characterized by a zero mean and a 6-h temporal corre-

lation length scale that is coherent with the tidal cycle; the

amplitude of the perturbation is set equal to the observation error

at this observing station. At the upstream stations, the ensemble is

generated by adding a Gaussian noise to the observed forcings. The

observed upstream forcings are perturbed with a Gaussian noise

characterized by a 4-h temporal auto-correlation length-scale,

which was estimated with synthetic experiments. The amplitude

of the perturbation is set equal to 15% of the discharge to account

for the uncertainty in the rating curve that increases for high flow

conditions. a illustrates the upstream forcing perturbation forFig. 4

three ensemble members at Escos during the 2011 flood event. The

resulting perturbation of the water level and discharge at Peyreho-

rade is displayed in b and c, respectively.Fig. 4

3.3. EnKF implementation

The EnKF algorithm is implemented with OpenPALM 3 (Buis

et al., 2006; Piacentini et al., 2011). It is an open-source, flexible

and powerful dynamic code coupler that has been jointly developed

at CERFACS (Centre Européen de Recherche et Formation Avancée en

Calcul Scientifique) and ONERA (Office National d’Etudes et de

Recherches Aérospatiales) since 1996. OpenPALM provides a

straightforward parallel environment based on high performance

implementation of the Message Passing Interface standard (i.e.

MPICH, OpenMPI, LAM/MPI). This interface is able to perform both

data parallelism (i.e. simultaneous execution on multiples cores of

the same code component for a unique data set) and task parallelism

(i.e. simultaneous execution on multiples cores of multiple tasks

across the same or different data sets).

Task parallelism is particularly well adapted for the present

Fig. 4. (a) Time series of the upstream forcing on reach 6 during 2011 flood event:

the black solid line corresponds to the observed ‘‘nominal” forcing; green, red and

blue dashed lines correspond to perturbed forcings. The perturbation corresponds

approximately to 15% of the nominal forcing. (b) Water levels and (c) discharges at

Peyrehorade during 2011 flood event for the corresponding forcings.



Task parallelism is particularly well adapted for the present

ensemble-based DA algorithm, where each MASCARET model

integration in the EnKF forecast step can be achieved indepen-

dently of the others. The PalmParasol functionality in OpenPALM

particularly addresses this need through the master/slaves princi-

ple: the master processor spawns multiple copies of MASCARET

(the slaves), each on one or several processors with a different

set of input parameters (hydrological forcing in the present case).

This allows for an efficient management of memory and processor

allocation issues according to available resources.

3.4. Estimation of the observation error statistics

A method for the a posteriori estimation of the observation

error is provided by and is here applied to provideLi et al. (2009)

a more accurate description of the observation error variance than

that prescribed to 10 cm in . This estimation reliesRicci et al. (2011)

on the consistency criterion for presented inR Desroziers et al.

(2005). Assuming that the matrices and are correct, the follow-B R

ing relation holds:

hdo a d
T
o b i ¼ R; ð Þ4

where do b ¼ yo Hxb;1; ;. . . yo Hxb N; e

 

and do a ¼

yo Hx
a;1

; ;. . . yo Hx
a N; e

 

represent the forecast and analysis

residuals with respect to the observation, respectively, and where

h i: denotes the expectation operator.

In the present case, the observation error covariance matrix isR

assumed to be diagonal with constant and uniform variance

denoted by r2
o (since the measuring instruments are supposed to

be independent and identical) with time invariant characteristics.

Thus, Eq. sums up to(4)

hdo a d
T

o b i ¼ r2
o: ð Þ5

When the size of the ensemble is limited, Eq. cannot be used(5)

for a proper estimation of ro; Miyoshi (2005) and Li et al. (2009)

proposed a method to accumulate information over successive

assimilation cycles. ro obtained from Eq. and the estimation(5)

rb
o obtained from Eq. over the previous assimilation cycle are(6)

combined using the following KF analysis equation, in which the

control vector reduces to the scalar variable ro:

ra
o ¼

ðmoÞ
2
rb
o þ ðmbÞ

2
ro

ðmo Þ
2
þ ðmbÞ

2
; ð Þ6

where rb
o and ra

o are respectively the background and analyzed val-

ues for ro over the current assimilation cycle, and where m b and mo

denote respectively the background and observation error STD for

ro . The flowchart of the ro-estimation is given in .Fig. 5

The analyzed error STD for ro is then given by the KF update

equation in the scalar case:

ðmaÞ2
¼ 1

ðmbÞ
2

ðmbÞ
2
þ ðmo Þ

2

!

ðmbÞ
2
:

Regarding the KF forecast step, a persistence model is assumed

for the dynamics of ro along the assimilation cycles such that the

background values for ro and its STD at time ( 1) are obtainediþ

from the analysis time as follows:i

rb
o i; þ1 ¼ ra

o i;

m
b
iþ1 ¼jm

a
i

A slow decrease of the error in ro is artificially prescribed with

the parameter j ¼ 1 03 as suggested in .: Li et al. (2009) Miyoshi

(2005) showed that the final estimate of ro is not sensitive to the

values of mo and j ( j > 1). Here mb is initially set to 1 and mo is

This methodology is validated on a set of synthetic experiments

in Section . The observation error variance is estimated once4.1.1

and for all on real data in Section .4.2.1

3.5. Background error inflation

A common drawback of the EnKF is that when the size of the

ensemble is limited, it tends to be under-dispersive and may

diverge over time ignoring the observed information. Anderson

and Anderson (1999) proposed to artificially increase the disper-

sion within the ensemble by introducing a multiplicative inflation

factor to the ensemble anomalies (the inflation factor increases the

model state error variance at the observation point). Following this

idea, we add inflation to the EnKF algorithm used for state estima-

tion (IEnKF) in this study.

According to , the difference between eachAnderson (2007)

member of the background ensemble x b and its mean can be

inflated using a time-varying inflation factor 1, thus definingk >

a new set of background states ~xb k; as well as a new set of anoma-

lies over which the background error covariance matrix can be

computed:

~xb k;  xb ¼ k xb k;  xb
 

: ð Þ7

The inflation factor is here derived from the consistency crite-k

rion presented in , based on the assumptionDesroziers et al. (2005)

that the errors in the background and observation error matrices

are uncorrelated and properly described. In this context, the fol-

lowing relation holds:

hdo b d
T
o b i ¼ HBHT þ ð ÞR: 8

In the literature, proceeded to the simultaneousLi et al. (2009)

estimation of covariance inflation and observation errors. Here the

observation error variance estimation described in Section is3.4

achieved independently of the inflation coefficient computation.

Considering only one observation is assimilated, matrices in Eq.

(8) reduce to scalars: HBH
T ¼ r2

b and R ¼ r2
o . If Eq. does not(8)

hold and hdo b d
T
o b i r2

o

 

> r2
b

, then the inflation factor is spec-k

ified as

hdo b d
T
o b i ¼ k

2
r2

b þ r2
o ;

thus implying that verifies:k

k
2
¼
hdo b d

T
o b i r2

o

r2
b

; ð Þ9

and the inflated background error variance at the observation point

is increased to ~rb
2 ¼ k

2
r2

b
. The inflation is then applied from the

observation point to the entire computational domain (grid points

are indexed with ) consistently with the shape of the correlationj

function at the observation point usingC

~xb k; ðjÞ  xb ðjÞ ¼ 1 þ ðk Þj ð Þj1 C jð Þ x b k; ðjÞ  xb ð Þj
 

: ð Þ10

This formulation ensures that 1 þ ðk Þj ð Þj1 C jð Þ > 1, implying

that the ensemble mean and the background error correlations

over the computational domain are preserved and that the back-

ground error covariances are locally increased in the vicinity of

the observation point. The flowchart of the inflation procedure is

given in .Fig. 6

When No observations distributed over the hydraulic network

are assimilated, the observation error matrix is diagonal. TheR

inflation equation now reads:

~xb k; ðjÞ  xb ð þjÞ ¼ 1
X

No

ðkn  Þj1 Cnð Þjj

!

xb k; ðjÞ  xbð Þj
 

; ð Þ11



values of mo and j ( j > 1). Here mb is initially set to 1 and mo is

set to 0.85.

X

n¼1

!

 

where 1 þ
PNo

n¼1ðkn  Þj1 C nð Þjj is larger than 1 if kn > 1 for all obser-

vation points ( 1n ¼ ; ;. . . N o). If HBH
T is not diagonal, a subset of

observation points can be selected so that the matrix HBH
T is diag-

onal, thus reducing to the previous case. On the ‘‘Adour maritime”

network, the model state error covariance functions have a large

spatial extent so that the HBH T is never diagonal, that is why only

3.6. Criteria for probabilistic forecast estimation

This section presents three criteria that are commonly used in 
meteorological applications to analyze probabilistic forecast per-

formance (Talagrand et al., 1997). The consistency criterion charac-

terizes the adequation between the distribution of the ensemble 
members and a set of observations through the use of the rank his-

Fig. 5. Flowchart of the sequential estimation of the observation error STD ro over a given assimilation cycle.

Fig. 6. Flowchart of the background error inflation procedure between the EnKF forecast and analysis steps over a given assimilation cycle; is the inflation factor.k



spatial extent so that the HBH is never diagonal, that is why only 
one observing point is used to compute the inflation factor k.

members and a set of observations through the use of the rank his-

togram for a given forecast lead time. Over a flood event for which

the DA algorithm is sequentially applied, the forecast values are

ranked in increasing order defining ðN e þ Þ1 classes. Then the

occurrence of the observed values within these classes is repre-

sented as a histogram. A flat histogram is satisfactory and means

that the ensemble members and the observations follow similar

distributions. In contrast, a U-shape histogram means that the

ensemble is under-dispersive.

The reliability criterion evaluates the coherence between the

forecasted and observed probabilities of an event. An event is

defined as Z ZP Tf g, where is the random variable forecast valueZ

and ZT is a threshold value. The reliability plot represents the pos-

terior observation frequency with respect to the prior forecast

probability for a given forecast lead time. The ensemble is reliable

if this relation follows the first bisector; it is under- or over-

predictive otherwise.

The accuracy criterion characterizes the ability of the forecast to

describe the reality through the well-known Brier score (Brier,

1950). Nonetheless, for the Brier score the set of possible outcomes

is binary, for example: was the forecast water level higher than a

given threshold? In this study, as the observations spread covers

a wide range of values, the CRPS (Continuous Rank Probability

Score) is used; its expression is given by

CRPS ¼
1

T

X

T

t¼1

Z

R

F pðxÞ  F oð Þx
 2

dx;

with Fp the ensemble cumulative distribution function (CDF) and

FoðxÞ ¼ 1 ½y;þ1½ð Þx the observation CDF. The CRPS is computed for dif-

ferent lead times and is expected to increase with the forecast lead

time.

Examples of consistency rank histogram, reliability plot and

accuracy plot are provided in at Peyrehorade.Figs. 7 and 8

3.7. Data assimilation experiments

For verification purposes, experiments representative of the

‘‘Adour Maritime” conditions are first carried out in the framework

of OSSE and are referred to as DA-OSSE; experiments assimilating

real water level measurements along the river network are referred

to as DA-REAL.

3.7.1. Description of DA-OSSE

DA-OSSE1 experiments (Section ) show how to properly4.1.1

estimate observation error statistics following the methodology

presented in Section . Synthetic upstream forcings that are rep-3.4

resentative of the ‘‘Adour Maritime” non-flooding conditions are

used: 50 m 3 s1 at Dax and Escos, 70 m 3 s1 at Orthez and

20 m3 s1 at Cambo. MASCARET is integrated for these reference

forcings and a Gaussian noise is added to the water level simula-

tions at the observing stations to generate synthetic observations.

Perturbations are introduced to these reference forcings to gener-

ate an ensemble of water level simulations.

DA-OSSE2 experiments (Section ) test in forecast mode, the4.1.2

consistency, reliability and accuracy properties of the ensemble

presented in Section on the eight flood events available on3.6

the ‘‘Adour Maritime” network. For each event, upstream per-

turbed forcings are set up using time series observed during the

flood events. MASCARET is integrated for these observed forcings

and a Gaussian noise (with observation error STD computed in Sec-

tion ) is added to the simulated water level at the observing4.2.1

stations to generate synthetic observations.

DA-OSSE3 (Section 4.1.3) mimics real conditions on the ‘‘Adour 
Maritime” river network, where uncertainties on lateral inflows are 
important during flood events such as 2011 flood event. The refer-

ence upstream forcings are set up using the observed forcings and

maximum discharge of 575 m 3 s1. A Gaussian noise is added to

the MASCARET simulation outputs at the observing stations. Each

background member results from the integration of each upstream

and the lateral inflow is removed.

3.7.2. Description of DA-REAL

In DA-REAL1 (Section ), realistic observation error statistics4.2.1

are derived from a case in which upstream forcings provided by

observations are almost constant (50 m 3 s1 at Dax and Escos,

70 m3 s1 at Orthez and 20 m 3 s1 at Cambo). The ensemble is

based on perturbed upstream forcings; the IEnKF assimilates water

level observations at the observing stations of Peyrehorade and

Pont-Blanc with a maximum lead time of 12 h that correspond to

the maximum transfer time of the network.

In DA-REAL2 (Section ), the performance of the IEnKF algo-4.2.2

rithm is evaluated against the eight flood events in terms of RMSE

time series and illustrated on the 2014 flood event.

For DA-OSSE1, DA-OSSE3 and DA-REAL, 40 members are gener-

ated (numerical experiments not reported here show that 40 mem-

bers are sufficient to properly estimate covariance functions). For

DA-OSSE2, only 16 members were used to circumvent the lack of

available data and provide a correct estimation.

4. Results

4.1. Synthetic experiment results (DA-OSSE)

4.1.1. Estimation of observation error STD

The observation error STD ro is estimated by applying the crite-

ria presented in Section to DA-OSSE1 (the same approach is3.4

applied to DA-REAL in Section ). We consider three different4.2.1

values for ro : 0.025, 0.075 and 0.125 m. The methodology is

applied sequentially over 150 assimilation cycles (this corresponds

approximately to 6 days for a 1-h DA frequency). The estimated

value of ro reported in is computed as the mean value com-Table 1

puted for ro between cycles 50 and 150, a time period over which

the estimation of ro converges. shows that the observationTable 1

error STD ro can be accurately retrieved with a relative error of less

than 5 2 .: %

4.1.2. Estimation of ensemble forecast properties

The quality of ensemble forecasts is estimated by applying the

methodology presented in Section to DA-OSSE2.3.6

The rank histogram displayed in a for a 5-h forecast leadFig. 7

time that is shorter than the transfer time at Peyrehorade (6 h) is

nearly flat. This implies that the ensemble and the observations

follow the same random variable for this lead time; water level

forecast can be therefore provided with uncertainty range (for

example, with STD or with box plots).

Even though several synthetic flood events are used in DA-

OSSE2, because of the lack of data for flood peaks, it is not possible

to evaluate the reliability property for a single probabilistic event

of the type Z ZP Tf g. Nonetheless, since there is no model error

and no bias on the forcings in DA-OSSE2, since error observations

are homogeneous, reliability is evaluated on a set of events

Z ZP k
T

n o

, where ZkT covers different threshold values Z T . The reli-

ability line in Fig. 7c is close to the identity line, meaning that fore-

cast probabilities are in agreement with observed frequencies for 
this lead time. When the forecast lead time (here 12 h) is longer 
than the transfer time, the ensemble is not consistent with the 
observations, nor reliable as shown in Fig. 7b-d. This is due to the 
unrealistic description of the inflow as the upstream forcings are set 
constant beyond the last observed time. The ensemble is



ence upstream forcings are set up using the observed forcings and

a synthetic lateral inflow on reach 6.This lateral inflow reaches a

are set constant beyond the last observed time. The ensemble is

deemed under-dispersive, under-predictive for forecast probabili-

ties lower than 0.5 and over-predictive for forecast probabilities

Fig. 8 shows that the forecast accuracy rapidly decreases when

the forecast lead time exceeds the transfer time (for example 5 h at

Peyrehorade). This is particularly true where the sensitivity to the

upstream forcings is large. In the present case, since the water level

at Lesseps is more sensitive to the downstream boundary condition

than to the upstream one, the forecast accuracy remains satisfying,

even when upstream forcings are unrealistic (beyond 12 h).

4.1.3. Hydraulic state estimation

4.1.3.1. Comparison of EnKF and IEnKF. The capability of the IEnKF 
to compute accurate water level and discharge is assessed in DA-

OSSE3. This setting is closer to operational conditions where there 
are various sources of uncertainty such as those related to lateral 
inflows. The objective is to show the merits of inflation to compute 
correct water level and discharge, even with important error on 
lateral inflows, through a comparison between IEnKF and EnKF

Fig. 7. DA-OSSE2 experiment – Ensemble forecast properties at the Peyrehorade station at 5-h (left panels) and 12-h (right panels) forecast lead times. (a)-(b) Rank diagram.

(c)-(d) Reliability diagram.

Fig. 8. DA-OSSE2 experiment – CRPS for lead times from 1 to 12 h at Peyrehorade

(red line) and Lesseps (green line) stations.

Table 1

Prescribed and estimated observation error STD ro following methodology presented

in Section , i.e. with the following parameters3.4 j m¼ 1 03: ; b ¼ 1 and m
o ¼ 0 85 – DA-:

OSSE1 experiment.

Prescribed ro (m) 0.025 0.075 0.125

Estimated ro (m) 0.0263 0.0748 0.13125



ties lower than 0.5 and over-predictive for forecast probabilities 
larger than 0.5.

lateral inflows, through a comparison between IEnKF and EnKF 
results in Fig. 9.

In the EnKF (green curve), as the size of the sample is limited,

the uncertainty description is only partial and the ensemble tends

to collapse as observations are assimilated. As a consequence, the

variance of the model ensemble decreases along DA cycles in

Fig. 9 and the observations have a smaller impact on the analysis.

This is a common drawback of the EnKF (in the extreme case obser-

vations are ignored by the DA analysis).

The inflation approach (red curve) is an artificial way to over-

come this limitation adding some dispersion within the ensemble

members. The ensemble variance is reduced as observations are

assimilated as expected with DA; still, the IEnKF forecast step is

able to input enough dispersion with in the ensemble so that the

variance of the ensemble remains large enough for observations

to have an impact on the following DA analysis cycle.

Fig. 9 illustrates that the difference between analyzed water

level and water level observations is more efficiently reduced by

IEnKF (red curve) than by EnKF (green curve), especially when

the discrepancy between the model free run (black curve) and

the observations (blue curve) is large. This justifies the use of IEnKF

rather than EnKF. In the following, the shape, the temporal and

spatial variability of the covariance functions for IEnKF is studied

here and compared to that of deterministic IKF algorithm (Ricci

et al., 2011).

4.1.3.2. Covariance functions. The 2011 flood event lasted more

than 6 days (about 150 h) and decomposes in two flood peaks.

The covariance functions are analyzed for two different times,

before the first flood peak at 25 h and during the second flood peak

at 100 h. Note that the time is given with respect to the flood start.

Fig. 10a displays the background error univariate covariance func-

tion related to water level (term B ZZ, Section ) and b dis-3.1 Fig. 10

plays the background error multivariate covariance function

related to water-level/discharge variables (term B QZ , Section )3.1

associated with the observing station at Peyrehorade. These func-

tions are presented along reaches 6–5-2–1 for the IKF (green lines)

and for the IEnKF at times 25 h (red line) and 100 h (blue line).
The IEnKF water level univariate covariance function shows 

important discontinuity where the river geometry features abrupt 
and frequent changes, for instance at the dam location on reach 6 
(vertical blue dashed line) as well as at the river network upstream 
where the bathymetry profile is smoother with a large, relatively

tidal influence, the covariance function is smooth and decreases.

The IKF covariance function presents significantly shorter correla-

tion length scales than that of the IEnKF, especially downstream

of the observation point, and has no coherence with the river

geometry by construction.

The IEnKF water level/discharge multivariate covariance func-

tion presents a discontinuity at each confluence between reaches

(vertical black dashed line) since discharge is an additive variable.

It also features larger spatial extent than that of the IKF function. It

is worth mentioning that in the IKF, the water level/discharge mul-

tivariate relation is prescribed with a proportionality coefficient

between the ratio of the water level and discharge increments

and the ratio of the background water level and discharge values

at the observing station; discharge conservation is thus explicitly

preserved at confluences.

4.1.3.3. Water level and discharge analysis increments. The mean 
(ensemble-averaged) water level and discharge increments 
obtained through the IEnKF and IKF analysis steps at time 25 h 
(red lines) and time 100 h (blue lines) are shown in Fig. 11. The
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Fig. 9. DA-OSSE3 experiment – Difference between analyzed and observed water

levels at Peyrehorade for 2011 event for EnKF (green curve) and IEnKF (red curve).

The model free run (black curve) and observations (blue curve) are plotted in the

right y-axis.

Fig. 10. DA-OSSE3 experiment – (a) Water level covariance function associated

with analysis at Peyrehorade at time 25 h (solid red line) and at time 100 h (blue

solid line) with the IEnKF. The time-invariant counterpart for the IKF is given in

green solid line. (b) Same caption as (a) for water-level/discharge covariance

function. Vertical red dashed lines represent the Peyrehorade observing station.

Vertical black dashed lines represent the separation between two reaches corre-

sponding to confluences. Vertical blue dashed lines represent the dam position on

reach 6. Black solid lines correspond to bathymetry (right y-axis).



where the bathymetry profile is smoother with a large, relatively 
uniform slope. Downstream of the dam, the Adour river is under

(red lines) and time 100 h (blue lines) are shown in Fig. 11 . The 
IEnKF corrections are consistent with the previously-described

covariance functions and thereby with the network geometric

properties (see the bathymetry profile in continuous black line in

Fig. 10a-b, right -axis). They provide an optimal and spatially-y

distributed correction in water level and discharge. As the error

correlation length scales are large, the impact of a local observation

is spread onto the entire hydraulic network, both for water level

and discharge. The corrected hydraulic state is thus used as initial

condition for further forecast and in particular for the next assim-

ilation cycle.

4.1.3.4. Water level and discharge analysis. In the following, results 
are presented in terms of the time-evolving mean water level/dis-

charge computed over the ensemble, which results from the IEnKF 
sequential application in the context of DA-OSSE3 experiment. Fig. 
12a-b show the water level temporal evolution at Peyrehorade and 
Urt during the whole 2011 flood event in terms of ensemble means 
(red solid lines) and STD (red dotted thin lines). In the pre-sent case, 
only observations at Peyrehorade are assimilated in order to 
highlight the impact of the spatial correction due to the

assimilated). IEnKF results at the analysis time are compared to

the MASCARET standalone simulation (black line – referred to as

free run and corresponding to a case without DA) and to the avail-

able observations (blue line) over the 6 days. a-b present theFig. 13

counterpart of a-b for the river discharge. At the analysisFig. 12

time, the water level at Peyrehorade and Urt is brought closer to

the observations than the free run. The discharge is also signifi-

cantly improved at both observing stations. The spread of the

water level and discharge ensemble is significantly reduced with

DA, showing that DA reduced uncertainty at the analysis time.

Fig. 12 Fig. 12c presents the counterpart of a for the 2-h forecast

water level (at Peyrehorade). In addition, d presents theFig. 12

counterpart of b for the 4-h forecast water level (at Urt).Fig. 12

The objective is to analyze how the IEnKF performance varies with

respect to the forecast lead time. While a significant improvement

is obtained for short-range forecast (1 to 3-h forecast) on the water

level ensemble mean, the improvement resulting from the IEnKF

decreases as the forecast lead time increases since the persistence

of the hydraulic state correction is limited in time. For increasing

lead time, the analyzed water level thus drifts back towards the

free run because of model uncertainties (forcing, geometry, fric-

tion); the assimilation is less efficient in reducing uncertainty

and thus the ensemble spread. This highlights the need to extend

the control vector to model parameters and hydrological forcing

to improve medium- to long-range forecasts (3 to 6-h forecast

and 6 to 24-h forecast, respectively). Beyond the transfer time of

the upstream forcing, the error in the forecast water level signifi-

cantly increases as unrealistic forcings are input to the system.

4.1.3.5. Intermediate conclusions and discussion. The DA-OSSE3

results on the 2011 flood event show that (1) a water level obser-

vation (here at Peyrehorade) is translated into a spatial correction

in water level and discharge; (2) the analysis is coherent with the

reference state; and (3) it is better than the free run, even where no

observations are available (here at Urt) and for variables that are

not assimilated (i.e. river discharge). While this provides a proper

validation of the IEnKF algorithm, it should be noted that in the

framework of real DA, the ensemble-based estimation of the uni-

variate and multivariate covariance functions may lead to a smaller

improvement. Indeed, the estimation of these functions relies on

the quality of the model. For instance, if the description of the

bathymetry or the friction coefficient is erroneous, the water

level/discharge relation in the model may be inconsistent with that

of the reality and the DA algorithm may fail to derive a satisfactory

increment over the entire network for both variables from a lim-

ited number of assimilated observations. This is the advantage of

the OSSE framework; the water level/discharge relation within

the model is similar to that of the observations. This will be further

discussed in Section .4.2

4.2. Real data experiment results (DA-REAL)

4.2.1. Estimation of observation error STD

To estimate the observation error STD ro with real data (DA-
REAL1), we selected data with small error in the hydrological forc-

ings so that the model error at the observing stations is small. ro is 
estimated through successive DA cycles with the same method as 
presented in Section 4.1.1 for DA-OSSE1 experiments. It is found 

that the estimated ro (black dashed line in Fig. 14) converged to 
0.044 m (continuous black line in Fig. 14); this value is obtained 
as the average value between assimilation cycles 60 to 150. Thus, 
in the following DA-REAL experiments, the observation error STD

Fig. 11. DA-OSSE3 experiment – (a) Analyzed water level increment associated

with analysis at Peyrehorade at time 25 h (solid red line) and at time 100 h (blue

solid line) with the IEnKF. The time-invariant counterpart for the IKF is given in

green solid line. (b) Same caption as (a) for discharge increment. Vertical red dashed

lines represent the location of Peyrehorade station. Vertical black dashed lines

represent the separation between two reaches corresponding to confluences.

Vertical blue dashed lines represent the dam position on reach 6. Black solid lines

correspond to bathymetry (right y-axis).



order to highlight the impact of the spatial correction due to the 
covariance functions (in real cases all available observations are

in the following DA-REAL experiments, the observation error STD 
ro is fixed constant and equal to 0.044 m.

Fig. 12. DA-OSSE3 experiment – Ensemble water level at (a)-(c) Peyrehorade and (b)-(d) Urt. (a)-(b) correspond to the analysis time (+0-h forecast lead time). (c) corresponds

to the 2-h forecast lead time. (d) corresponds to the 4-h forecast lead time. Solid red lines represent the mean IEnKF estimate; red dotted lines represent the ensemble STD;

blue lines represent observations; black lines represent the free run mean; and black dotted lines represent the STD of the ensemble free run. (For interpretation of the

references to colour in this figure legend, the reader is referred to the web version of this article.)



4.2.2. Hydraulic state estimation

In the context of DA-REAL2, the IEnKF is evaluated against a set

of eight flood events on the Adour catchment from 2009 to 2014.

Hourly water level observations were assimilated at Peyrehorade

and Pont-Blanc. In the following, results are presented for the

2014 event that is characterized by a simultaneous flood peak on

reaches 3–6-7 (Cambo, Escos, Orthez, respectively) followed by a

flood peak on reach 4 (Dax). a-b present the time-evolvingFig. 15

observed river discharge at upstream stations and the time-

evolving water level at the downstream stations.

Water level results of the sequential application of the IEnKF for

the 2014 flood event are displayed in a-b at Peyrehorade andFig. 16

Urt, respectively. At the analysis time (+0-h forecast lead time), the

assimilation leads to excellent results and the water level at Peyre-

horade is as satisfying as in DA-OSSE3 experiment. The improve-

ment at Urt is less obvious: the water level is improved, except

close to the flood peak that remains overestimated. At the begin-

ning of the flood event, the lack of flood plain modeling near Urt

is penalizing and the infinite banks assumption in the 1D model

results in an erroneous water line dynamic that causes errors in
Fig. 14. DA-REAL1 experiment – Iterative estimation of the observation error STD

ro along assimilation cycles (dashed line) and the resulting reference value 0.044 m

(solid line).

Fig. 15. DA-REAL2 experiment – (a) Discharge time series at upstream stations and

Fig. 16. DA-REAL2 experiment – Ensemble water level comparison at (a) Peyreho-

rade and (b) Urt for the 2014 flood event. The mean analysis is represented in red



(b) water level time series at the downstream station over the 2014 flood event. See

Fig. 1 for a scheme of the ‘‘Adour Maritime” network.

line; the observations are represented in blue; and the mean free run is represented

in black.

the water level covariance functions. Thus, in spite of the assimila-

tion of observed water level at Peyrehorade, the simulated water

level at Urt remains overestimated for high flow on reaches 6

and 7. After the flood peak, for medium flow, MASCARET predic-

tions are realistic and the simulated water level is improved at Urt.

Table 2 summarizes the improvement in the mean RMSE

obtained thanks to the IEnKF for the eight flood events, for forecast

lead times ranging from 0 to 12 h depending on the observing sta-

tion on the hydraulic network. Assimilating observations at Peyre-

horade and Pont-Blanc significantly improves the water level RMSE

for short- to medium-range lead time at these locations. The water

level is also improved at Lesseps, where no observation is assimi-

lated. However, the impact at Urt is not significant on average

due to model errors in this area.

5. Conclusion and discussion

This study describes the application of the EnKF algorithm on

the ‘‘Adour Maritime” hydraulic network (South West France)

using the 1D hydrodynamic code MASCARET.

Results show that flow dependent error covariance statistics are

accurately estimated using only 40 ensemble members. The model

state functions are found to be closely related to the network

geometry as well as the hydrological forcing; one interesting prop-

erty is that they are characterized by an important spatial extent.

To increase EnKF performance, two additional algorithms esti-

mating observation and background error covariances at the

observing stations were implemented. The resulting algorithm is

referred to as the IEnKF. It is shown on a set of synthetic experi-

ments that, under the assumption that the observation error is

constant, the observation error STD can be accurately estimated.

Using real data, a realistic observation error STD was estimated

at 4.4 cm on the ‘‘Adour Maritime” network. Additionally, back-

ground error inflation was found efficient to properly represent

the error variability in the hydraulic state and to avoid EnKF col-

lapse and divergence from the observations.
Results showed on a synthetic experiment with ungauged lat-

eral inflow that the IEnKF data-driven model provided better 
results, in terms of analyzed and forecast water level and discharge 
for short forecast lead times (1 to 3 h), compared to the free run. 
Experiments with a set of eight recent flood events (2009–2014) 
provided good results at the stations where the assimilation is per-

overestimated because of the lack of flood plain in the ‘‘Adour Mar-

itime” hydraulic model.

Properties of probabilistic forecast with IEnKF on the ‘‘Adour

Maritime” network were then examined on several synthetic flood

events through three criteria: consistency, reliability and accuracy.

Under the assumption that the only source of uncertainty lies in

observation error, probabilistic forecasts were correctly estimated

according to these criteria for forecast lead times shorter than

the transfer time of upstream forcings along the network.

Nonetheless, this study features several limitations. First, the

lack of flood plain in the ‘‘Adour Maritime” hydraulic model results

in a mis-estimation of the model state covariance functions and

can lead to the result degradation in the correlation area of the sta-

tion where observations are assimilated. Efforts are ongoing at SPG

GAD to overcome this modeling limitation. Another limitation on

the ‘‘Adour Maritime” network lies in the uncertainties in the forc-

ings. On the one hand, there are ungauged lateral inflows (such as

Bidouze or Luy rivers) whose contributions can be very important

during flood events and which are not accounted for in the present

hydraulic network. On the other hand, correcting errors in the forc-

ings has a limited impact in forecast mode as the correction is

propagated downstream and finally exits the network.

Despite those limitations, this study presents several perspec-

tives. The IEnKF strategy presented here could be applied to 2D

hydraulic modeling that also suffers from uncertain hydrological

forcings; for instance, the correction could be extended to pressure

and wind surface forcings. In this context, the need to reduce the

uncertain input space dimension would be even more crucial for

generating coherent ensemble and representative flow dependent

background error covariance functions (the flow may move from

the river bed to the flood plains). Another direct application is to

supply corrected boundary conditions for 2D hydraulic models in

the context of multi-dimensional (1D-2D) hydrodynamic model

combined with DA on the 1D model. Multi-dimensional coupling

with IEnKF on the 1D model is a promising approach to improve

short-term (1–3 h) forecast performance as highlighted by ongoing

studies on the ‘‘Adour Maritime” network.
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