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Abstract

This work describes a mechatronic system composed

by a robot arm that can play chess autonomously. The

system is based on an industrial-grade robot manipu-

lator, a computer vision system, and an open source

chess engine. Classification algorithms were imple-

mented in order to detect whether a given chessboard

square is occupied, and in that case, if the piece is

black or white. Such algorithms were compared in

terms of their complexity of implementation, execu-

tion time and accuracy of predictions. To achieve an

uniform illumination of the chessboard, a theoretical

model of an LED illuminance curve was used to find

the best orientation for each diode using a genetic al-

gorithm. Both the support base for the LEDs and the

chess pieces were made using a 3D printer. This im-

plementation demonstrates the capabilities of the pro-

posed vision-based system, whose complexity can be

increased in the future for a number of applications.

Keywords: chess, computer vision, decision making,

human-robot cooperation, mechatronics.

1 Introduction

In general, chess games require the location and iden-

tification of a set of pieces on a board, knowledge

of the game rules -the set of posible valid moves to

execute-, a representation of the actual state of the

game for future decision making, and the manipula-

tion of physical parts; all this while coordinating with

the human opponent. This work presents a mecha-

tronic system consisting of a robotic arm that plays
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chess in an autonomous manner against a human op-

ponent.

Briefly, this implementation is based on an

industrial-grade robot manipulator, a computer vision

system, and an open source chess game engine. The

chess engine, based on the GNU Chess open source

package, is used as the back-end engine for the chess

game. In order to achieve a proper and uniform level

of illumination on the chessboard surface, a theoret-

ical model of the illuminance curve of an LED was

used as the evaluation function for a genetic algo-

rithm, implemented to optimize each LED orienta-

tion using heuristic techniques so as to uniformly dis-

tribute the average illumination over the chessboard

surface. Once a good enough light distribution was

found, a 3D support base model was generated and

3D printed, where the LEDs were mounted accord-

ing to the optimal orientation obtained. The system’s

hardware might be easily increased, so that more de-

manding tasks can be performed, attending or the

uncertainty and physical restrictions of real environ-

ments [1].

A number of works describing the human-robot

interaction have extensively analyzed the decision-

making by turns problem in different contexts [2], [3].

There also exist diverse implementations of systems

involving industrial type robots in strategy games

such as chess and checkers among others. One of

the first implementations, the Marine-Blue [4] is un-

doubtedly one of the most recognized. Some applica-

tions, such as in [5], use a simplified XY linear slide

system. However, those autonomous systems com-

monly use instrumented boards and parts specially co-

designed with the manipulator in order to simplify the

tasks of piece detection and manipulation [6]. This

issue results in specific designs that do not incorpo-

rate, in the design phase, the complexities introduced

by the use of arbitrary pieces and boards on real en-

vironments. The implementations in Gambit [6] and

Baxter [7] seems to be the closest systems to the one

here presented in terms of functionality. Gambit’s use

SVMs to learn the piece types and besides it uses

two cameras including depth information. Similarly
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to our work, Baxter takes a simpler approach to the

perception problem since its computer vision system

is based on a single camera embedded in the robot’s

arm.

Particularly, the mechatronic system here presented

does not require of any special instrumentation or spe-

cific modeling of parts in order to perform piece detec-

tion, which guarantees the feasibility of performing

multiple and different tasks in future applications.

Since the chessboard is not referenced to the robot

arm, the board corners can be located anywhere in-

side the image. Using edge and corner detection algo-

rithms, the region of interest is dynamically extracted

on each picture, see Fig. 3.

The chessboard state is monitored before and after

the human player makes his movement, in order to

detect it. In particular, we determine the difference

between a known state of the chessboard, prior to the

movement of the human player, and a new state to be

inferred from a picture captured with a low-cost cam-

era. The detection of the different pieces is carried

out by color and not by shape. Because of that, the de-

tection process, in addition to white and black pieces,

has to classify two extra colors corresponding to the

empty squares, i.e. light and dark squares. Therefore,

the classification problem can be summarized as deter-

mining the content of each square of the chessboard,

from the set of valid results: {white piece, black piece,

nothing}, taking into consideration that there are two

possible values for nothing. It should be noted that

it is not necessary to determine which piece is in the

square (e.g. pawn, bishop, etc.) since the game en-

gine is the responsible for tracking the movements of

each piece.

Results demonstrates the capabilities of the pro-

posed vision-based chess playing system in uncertain

environments, such as with uncontrolled lighting con-

ditions. The system’s complexity is able to be in-

creased in the future for a number of applications.

This work also contributing to numerous studies on

human-computer interactions.

2 Methods

One of the main characteristics of the mechatronic

system presented in this paper is that it is based on

a commercial, industrial-grade robotic arm. This en-

ables a broader and more diverse set of tasks that can

be carried out. A picture of the system can be seen in

Fig. 1.

In particular, the manipulator consists of an ABB

model IRB120 manipulator with 6 degrees of freedom

(DOF). The first three DOF are rotational and provide

position control, while the last three provide control

and orientation of the end effector of the robot, which

consists of a 4-finger parallel gripper and can be easily

replaced to accomplish other particular tasks. The use

of a commercial and industrial-grade robotic manipu-

Figure 1: 6 DOF robot manipulator with controller,

and the chessboard used.

lator also allows the creation of an open and flexible

platform that may support the future expansion both

in terms of hardware and software.

For visual detection of the chess pieces, the cam-

era support was associated with an LED arrangement

to guarantee a uniform distribution of illumination on

the chessboard. Regarding the architecture of the sys-

tem, it consists of the following subsystems:

• Computer vision subsystem

• Open source chess game engine

• Central Control Unit software

• Communication interface with robot controller

• Robot arm

This architecture is organized around a software

module called the Central Control Unit (CCU), as

shown in Fig. 2. The goal of the computer vision

subsystem is to monitor the current state of the chess-

board. Part of this process consists in detecting the

location of the chessboard with respect to the robot’s

base coordinate system, as it is not fixed it can be

accidentally moved during gameplay. Once the sys-

tem correctly locates the chessboard and identifies the

pieces in each square, the state of the game in the

chess engine is updated and evaluated. Following, the

engine determines its next movement, sends its de-

cision to the CCU, which in turn converts the chess
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Figure 2: Brief description of the architecture of the

autonomous chess-playing system.

notation into physical coordinates and commands the

robot controller to execute the actions. Then, the in-

dustrial manipulator moves and/or captures the chess

pieces involved. Finally, the system passes the turn to

the opponent, and the robot stands by in its rest posi-

tion until the human player moves and passes the turn

activating a button associated with the play timer.

2.1 Computer vision algorithms

2.1.1 Image processing

To allow for proper recognition of the pieces on the

chessboard, a photograph of the chessboard is cap-

tured and then processed to obtain the most important

features of the squares and the pieces located in each

them. To achieve this, a 1080p Full-HD camera with

a resolution of 640x480 was mounted on the robot

gripper. Low-cost cameras quality is usually very low,

with high amounts of color noise, most notably in low-

light areas of the scene. Once the photograph has

been captured, the first step of processing consists in

extracting the region of interest (the chessboard), im-

proving the contrast and color saturation of the image,

and finally sampling the colors present in the center of

each square. The full sequence is detailed in Fig. 3.

OpenCV (Open Source Computer Vision Library)

was used to process the obtained image. Therefore, at

the beginning of a game, the manipulator moves to a

position that allows the entire chessboard to be visible

to the camera. Since the aspect ratio of the captured

image is 4:3, the picture must be cut to retain only the

region containing the chessboard. In addition, due to

the chromatic characteristics of the LED illumination,

it is also necessary to correct the color temperature

and increase the color saturation value.

Before starting the analysis, it is necessary to com-

pensate for variations in the illumination of the sur-

face of the chessboard, in order to avoid possible prob-

lems in the piece detection task. To this end, an al-

gorithm to equalize the image luminance histogram

(a) Captured image (b) Region of interest

(c) Color processing (d) Sampling

Figure 3: Sampling process for the color detection of

the pieces.

was implemented. In particular, the Contrast-Limited

Adaptive Histogram Equalization (CLAHE) was used

[8]. This algorithm divides the image into sectors and

subsequently transforms the contrast of each pixel ac-

cording to its environment, so as to achieve a maxi-

mum contrast range in each sector of the image. The

correct distribution of illumination on the surface of

the chessboard is carried out by a set of LEDs, whose

optimal arrangement was obtained by means of a ge-

netic algorithm. The optimum illumination distribu-

tion obtained can be observed in Fig. 9, while the

methodology used is described in section 2.2.

To compute the equalization on the illumination dif-

ferences, the image has to be previously converted

from the RGB color space to a color space with a

luminance channel, and then apply CLAHE on this

channel. In the present work the HSL (Hue - Sat-

uration - Lightness) color space was used, since the

Lightness channel gives a good approximation to the

luminance, and it also has the advantage that the color

information from the Hue channel makes it relatively

easy to classify the contents of the squares. However,

a known disadvantage of histogram equalization algo-

rithms is that, when there is luminance noise in the

image, the results obtained are far from optimal. To

overcome this problem, the image was pre-filtered us-

ing Gaussian blur to suppress the thermal noise char-

acteristic of the camera sensor and to soften the image

colors.

2.1.2 Square content detection

Three different classification algorithms to detect the

pieces were implemented and compared in terms of

their complexity of implementation, execution time

and accuracy of predictions.
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Multisampling and voting

This technique consists of a supervised learning al-

gorithm that takes multiple color samples from each

square (7 samples per square) and predicts the class

for each sample, determining if it corresponds to a

white, black, or empty square given a distance metric.

This algorithm needs a quick calibration process car-

ried out automatically at the beginning of each game,

and it consists of getting a reference color for the

white pieces, black pieces and empty squares. This

reference color is calculated as the average color of

the 9 center pixels of each square containing white

pieces, black pieces or nothing.

The multiple samples approach is used to improve

the detection rates in the cases where, during the

game, the pieces are not perfectly centered in the

square, or in some cases, to avoid light reflections on

some pieces. When all the samples are taken, a simple

voting task is performed:

1. If there are at least two samples closer to the

white reference than to the empty squares refer-

ence, and the number of samples closer to the

white reference is greater than the number of

samples closer to the black reference, then it is

considered that the square is occupied by a white

piece.

2. If there are at least two samples closer to the

black reference than to the empty squares refer-

ence, and the number of samples closer to the

black reference is greater than the number of

samples closer to the white reference, then it is

considered that the square is occupied by a black

piece.

3. In any other case, then it is considered that the

square is empty.

The distance metric used was the Euclidean dis-

tance in the HSL color space.

Modified k-medoids

This algorithm implements a modification of the orig-

inal k-medoids algorithm [9]. In particular, our imple-

mentation needs a calibration process similar to the

one used in the Multisampling and voting algorithm.

In this case, the references are used as initial medoids,

in order to optimize the convergence time of the algo-

rithm and the reliability of the detection process. Un-

like the k-means clustering algorithm that results sen-

sitive to extreme values, since the mean is easily influ-

enced by extreme values, clustering with k-medoids is

more robust when noise and outliers are present in the

data [10]. This is due to the fact that instead of using

the midpoint as the center of a group, k-medoids uses

a real point in the group to represent it. The medoid

is the most centric object of the cluster and with the

Figure 4: Training set used for the decision tree algo-

rithm. White pieces (red), black pieces (green) and

empty squares (blue).

minimum sum of distances to other points. For this

implementation k = 4. That is, it is classified into

four groups, according to white pieces, black pieces,

empty light squares and empty dark squares. How-

ever, the two groups belonging to empty squares were

unified in a single group.

Decision tree

Finally, a decision tree classifier was implemented.

The decision tree was trained using selected data and

the WEKA tool. Data was divided into three classes:

white pieces, black pieces, and empty squares. The

data file had 704 instances, of which 170 belonged to

the white pieces class, 166 to the black pieces class

and the remaining 368 to the empty squares class.

Training points and classes are shown in Fig. 4.

All algorithms were implemented in the C++ lan-

guage. In order to evaluate the robustness of each

of them, a test set consisting of 80 images of differ-

ent chessboard states and different lighting situations

(natural light, LED and fluorescent) was employed.

In addition, some images were purposelly taken with

partial shading on the chessboard or with subtle light-

ing differences between one side of the chessboard

and the other. Finally, some pieces were deliberately

placed outside the center of the squares, so as to sim-

ulate real game conditions.

2.2 Board illumination

It is clear that for the correct implementation of any

computerized vision system it is necessary to obtain

a uniform illumination on the work plane [11]. For

this purpose have been developed lenses with multiple

LEDs and arbitrary shapes [12], diverse lens arrange-
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Figure 5: Left, robot gripper and camera. Right, LED

support mounted around the camera.

ments [13], varying the optical wavelengths [14] and

with specific reflectors for color uniformity [15]. In

other works the location of each LED in the illumina-

tor is varied to reach a uniform illumination [16]. The

present work follows this idea since it is simpler to

develop a prototype of lighting with a 3D printer and

then evaluate its performance.

To achieve a uniform illumination on the chess-

board, an arrangement of LEDs was designed and

placed around the camera. The spatial location of

each LED was fixed, but the orientation (i.e. the lo-

cation on the chessboard where it points) can be var-

ied. In order to hold the LEDs, a 3D printed plastic

support was designed and placed around the camera,

next to the gripper (see Fig. 5).

To guarantee the uniformity of illumination over

the surface of the chessboard, the orientation of each

LED was determined using a genetic algorithm, the il-

lumination model of an LED and the spatial position

of the illuminator with respect to the chessboard. The

goal is to generate and evaluate multiple orientation

configurations and combine them to improve initial

generation [17].

Once the genetic algorithm found a good enough

solution, a set of vectors containing the optimal ori-

entation of each LED was used to build a 3D model

of a support base. This was achieved using the

open source 3D programming and modelling lan-

guage OpenSCAD and other free tools such as Cura

and Slic3r for model slicing and subsequent gener-

ation of the G-code, which is specific to the Prusa

i3 Steel printer with Marlin firmware. In Fig. 6 a

flowchart of the complete process for building the il-

luminator is shown, where the red box indicates the

software used in each section and the blue box shows

the implementation of the genetic algorithm.

Although an LED cannot be considered a perfect

Lambertian source, as it is not a coherent point source

of light, it is still possible to approximate its illumina-

tion model by means of a Lambertian equation [18]

in the form of Eq. 1. This is valid since the photon

emission area is very small compared to the distance

to the object to be illuminated.

E(r,θ ) = E0(r)cosm
θ (1)

where the expression E0(r) represents the irradiance

of the LED on the axis θ = 0 and at a distance r from

Figure 6: Flowchart of the illuminator design and

printing process.

the diode. The exponent m depends on the illumina-

tion angle of the diode according to

m =−
ln(2)

ln
(

cos
(

θ 1
2

)) (2)

Both the value of E0 and the value of m are speci-

fied in the datasheets of the LED manufacturer. How-

ever, after extensive testing, it was determined that

the values provided by these datasheets deviate from

real conditions and those variations affect the calcu-

lated illumination model. To solve this problem, dif-

ferent measurements of the luminance values of an

LED were taken so as to calculate more accurate val-

ues for the parameters E0 and m. In order to get the

measurements, a lux meter was used at each of the

corners of a grid located on a normal plane and at a

known distance of the LED, as shown in Fig. 7 (left).

The illuminance measured at each point is shown in

Fig. 7 (right). By fitting the known model to the data,

the values E0 = 63.81 and m = 6.767 were obtained.

Once the model for the LEDs illumination was ob-

tained, the total illuminance has to be calculated on

the chessboard. For this, the horizontal component

of the illumination of each LED on each point of the

chessboard is calculated and added to the final esti-

mate.

EH =
Icos3

α

h2
(3)

This algorithm was implemented as a function

within the Octave environment in order to evaluate the

illumination levels for the arrangement of LEDs. The

data obtained from the simulation includes the min-

imum, maximum and average levels of illuminance,

and the mean square error between the illuminance of

each point and the mean value.

Since the goal is to achieve uniform illumination
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Figure 7: Left, setup used to estimate the LED pa-

rameters. Right, values measured in each point of the

grid.

on the chessboard surface, a good illuminator config-

uration should provide an average illuminance value

as high as possible, and a mean square error as low as

possible. As a design constraint, it was decided to use

36 LEDs in the illuminator, located in three concen-

tric circles.

2.2.1 Genetic algorithm and design of the illumi-
nator support

A genetic algorithm is a computational optimization

model that uses combination and selection operators

to generate new search points on a space of solutions

[17]. These algorithms, originally inspired by evolu-

tion and natural selection, look for minimal heuristic

solutions in terms of an evaluation function. These

functions are applied on each chromosome, which rep-

resents in the case of the present work, a certain con-

figuration for the orientation of each LED in the illu-

minator.

In order to implement a genetic algorithm, three re-

quirements have to be met: an initial population, an

evaluation function and a crossover function between

the elements in the population. From the 15 initial

populations used in this work, 5 were generated man-

ually, and the remaining 10 were generated in a ran-

dom manner. The initial manually generated popula-

tions are shown in Fig. 8. Noteworthy, the initial pop-

ulations represent the coordinates of the points on the

chessboard to which each of the LEDs is directed to.

This genetic algorithm operates in a genotype-

phenotype mode. The genotype is represented by a

data structure with 2 fields. The first field indicates the

x-coordinate of the point on the board surface where

the LED’s light is directed, and the second field indi-

cates the y-coordinate of the same point. The pheno-

type consists in the illumination level calculated on

the board surface.

As stated in the previous section, the variations of

the illumination levels on the chessboard come from

the variation of the orientation of each LED in the

illuminator. This means that a set of orientations

(i.e. an element of the population) can be evaluated

through a function that calculates the maximum and

Figure 8: Some of the initial populations for the ge-

netic algorithm.

minimum values of illumination on the surface of the

chessboard. The crossover or descendant function for

two given configurations is calculated as the average

between the coordinates of the equal index points in

both configurations, while a random value (mutation)

is added to increase diversity in the new generation

and to avoid the case that all solutions are linear com-

binations of the initial populations.

The algorithm runs according to the steps outlined

in blue in Fig. 6, for a certain number of generations.

In the design of the illuminator the limit was 10000

generations. However, it is possible to establish a stop

criteria based on the uniformity of the light distribu-

tion obtained, or limit the maximum time of execu-

tion of the algorithm. The best distribution achieved

by the algorithm in this implementation is shown in

Fig. 9 (left). The ratio of the minimum to the maxi-

mum illumination in this configuration is 1.0472, i.e.

less than 5%. The Fig. 9 (right) shows, in dotted line,

the location of the illuminator LEDs and the points on

the chessboard to which each one is directed to.

Once a good enough distribution is obtained, the

coordinates of the location of the LEDs in the sup-

port and the orientation vector for each LED are ex-

ported into a text file, which is in turn imported into

an OpenSCAD script that is responsible for generat-

ing the 3D model of the support of the diodes, generat-

ing three-dimensional holes in a user-specified shape

where each LED will be mounted with the optimal ori-

entation. The shape can be indicated by the user, as

shown in Fig. 10, where different support shapes are

Figure 9: Left, illumination level on the chessboard.

Right, orientation of each diode.
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Figure 10: Some of the LED supports printed and

tested.

shown. The supports shown were generated by dif-

ferent runs of the genetic algorithm, and once printed

were tested and compared according to the uniformity

of the light distribution on the chessboard under real

world conditions.

2.3 Chess movements

2.3.1 Detection of human player movements

The GNU Chess open source package is used as the

back-end engine for the chess game and, in conse-

quence, a software interface had to be developed for

the interaction between the CCU and the chess en-

gine. This interface allows to determine the move-

ments made by the human player and also allows the

robot to execute the next movement returned by the

analysis engine. To detect the last movement exe-

cuted by the human player, two matrices containing

the state of the chessboard before and after the hu-

man player movement are compared. In Fig. 11 an

example of detection is provided. The first matrix

contains the known chessboard state before the hu-

man movement. The second matrix contains the cal-

culated chessboard state after the human movement,

as a result of executing the classification algorithm on

the image obtained with the camera.

An advantage of working with matrix arrays is that

it is possible to perform the subtraction operation be-

tween pair elements to identify any change in the

chessboard between movements, thus obtaining a ma-

trix of changes in terms of a difference matrix.

Based on the difference matrix, the system can now

detect all the legal movements in a game of chess: ba-

sic movement, capture, short and long castling, pawn

promotion and en-passant capture –this is a particular

case of capture for the algorithm, since the destina-

tion square of the capturing pawn is not that of the

captured piece–. It is important to notice that each

of these movements has a particular signature in the

difference matrix and thus allows obtaining the hu-

man movement in chess notation with little additional

work. In the difference matrix, non-variant squares

are represented as zeros.

Figure 11: Difference matrix for a basic movement.

The behavior of the difference matrix for each type

of movement is analyzed given the case that the hu-

man opponent plays with white pieces. If this is not

the case, the only difference is that the signs of the

matrix elements are inverted. The matrix signature

for all types of movements are given by:

1. Basic movement: The origin square of the move-

ment is represented by the value -1, while the

destination square has the value 1.

2. Capture: The origin of the movement is repre-

sented, as in the previous case, by the value -1.

However, in this case, the destination square has

the value 2.

3. Castling: Castling detection is relatively sim-

ple because there are only two possibilities per

color of pieces: short castling and long castling.

The first or last rows of the chessboard is ana-

lyzed (for the case that the human plays white

or black pieces, respectively) and compared with

the known values [-1 1 1 -1] and [-1 0 1 1 -1] for

the case of short and long castling respectively.

4. En-passant capture: The origin square of the

pawn that captures is represented by a value of

-1. However, because the captured pawn is not in

the destination square, there will be two squares

with value 1 in the difference matrix. This is eas-

ily solved because it is known that the pawn cap-

turing has to move diagonally.
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5. Pawn promotion: This happens when a white

pawn arrives at row 8, or when a black pawn ar-

rives at row 1. By default it is considered that the

promotion is to a Queen, however, this behavior

can be changed to allow the coronation to any

other piece.

2.3.2 Robot movement execution

In order for the CCU to communicate with the robot, a

communication interface was developed between the

robot controller and the embedded computer. Such in-

terface runs under Windows and was programmed in

C# language using the VisualStudio environment, as

the robot manufacturer provides a tool named PCSDK

to communicate with the robot controller based on C#.

This tool allows system integrators, third parties or

end users to develop their own custom user interfaces

to the IRC5 controller. Therefore, PC applications

can be run independently, communicating with the

robot controller through a wired or wireless TCP/IP

network.

When started, the interface software searches for

any IRC5 controller on the local network. Once the

search is finished, the user must select which of the

detected controllers will be used to start the commu-

nication. Here, the system waits for the user to config-

ure the controller in Automatic mode and to power the

actuators. Once this configuration is finished, the con-

troller is connected remotely to access the program

and control it from the CCU. In the next step, ini-

tialization and calibration parameters are sent and a

confirmation from the human player is expected, by

pressing the end-of-turn button. Once the button is ac-

tivated, the interface sends a signal to the CCU so that

it begins to process the movement. Once processed,

the interface waits for a data packet (in XML format)

to send a motion execution command to the robotic

arm. The data contained in the package is then con-

verted into a group of symbols that the controller can

process. These symbols include the type of movement

to be executed, coordinates of the pieces in the chess-

board and heights of the pieces involved.

3 Results

Robustness and runtime comparisons for the three

classification algorithms implemented are shown in

Fig. 12 and in Table 1. The multisampling and voting

classification algorithm is the most robust but it is also

the slowest. This is explained by the fact that it has to

perform a large number of operations on each of the 7

samples, both in the computing of color averages and

in the actual voting process. In addition, it can be seen

that the time curve is quite irregular. Such variations

may be caused by external factors, e.g. given the con-

siderable amount of time needed to perform the image

processing and voting, or the operating system having

Figure 12: Algorithm execution time comparison.

Table 1: Classification matrices for the implemented

algorithms.

Multisampling and voting

Real color

W B E

C
la

ss

W 1084 0 0

B 0 982 0

E 0 0 3054

Modified k-Medoids

Real color

W B E

C
la

ss

W 1084 0 0

B 0 964 0

E 0 18 3054

Decision Tree

Real color

W B E

C
la

ss

W 1084 1 0

B 0 974 0

E 0 7 3054

to attend other tasks simultaneously. The second rea-

son may be related to a greater number of accesses to

memory, explained naturally by the greater amount of

data used by this algorithm.

Although the k-Medoids classifier achieved a sig-

nificantly lower execution time, the results are far

from expected. Since a classification error may cause

the chess match to be interrupted it might consider-

ably affect the concentration of the human player. A

number of small peaks can be observed in the time

graph, and these correspond to those chessboard im-

ages that have been a little more challenging for the

classification algorithm to process and needed more

iterations in the main cycle to converge.

Finally, the decision tree classifier resulted to be

the fastest. This is explained by the fact that the clas-

sification process consists, in the worst case, of only

3 logical comparisons. Moreover, although results are

not optimal, its performance was very good, with even

fewer errors than the k-Medoids algorithm.
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All classifiers used the same 80 images, and exactly

the same image processing work was performed be-

fore the classification step. At this point, future work

may include improvement of the classification tech-

niques or the use of alternative methods to process

the images, since in some cases, slight changes in il-

lumination led to detection errors. In addition, the

calibration operation used for voting classifiers and k-

Medoids may take into account not only the color of

the square and its contents but also the amount of light

present in the chessboard at the moment of calibration.

This problem might be even worse when playing on

outdoor environments with natural light or even with

time-varying illumination (near a window for exam-

ple). Moreover, alternative metrics of distance should

be implemented that can take into account variance

in the samples, such as the Mahalanobis distance, to

improve precision in the classification process.

To verify the proper operation of the computer vi-

sion algorithm for pieces detection in a real situa-

tion, 10 complete chess games were played against

a human opponent using the multisampling and vot-

ing classifier, and errors were quantified. Results are

shown in Table 2. To make a comparison, detection

errors were also evaluated in 10 games using just the

artificial illumination present in the laboratory (fluo-

rescent tubes, with highly non-uniform illumination

on the playing surface). Results can be seen in Ta-

ble 3.

A false positive (FP) means the system detects a

piece (of any color) in an empty square, a false nega-

tive (FN) means the system detects an empty square

instead of a piece, and a classification error (CE) is

obtained if the classification algorithm incorrectly de-

termines the color of the piece. The total number

of movements performed by the manipulator in each

game was saved. For cases where movement errors

were detected, the detection matrix was manually cor-

rected so as to be able to continue the game. A sig-

nificant improvement in performance can be seen in

Table 2 and Table 3 when the level of illumination

used on the chessboard was uniform. The error rate

was reduced from 11.76% using only the artificial il-

lumination present in the laboratory, to 2.86% with

uniform LED illumination.

During experiments, some inappropriate behaviors

were observed. First, when the illumination was not

uniform, the shadows caused by the pieces on the

empty squares or on pieces of lesser height affected

the correct detection of the color or even the detec-

tion of a false presence of a piece in a square. False

positives are explained mostly by empty squares of

dark color that, when partially shaded, are mistaken

for black colored pieces. False negatives largely con-

sist of shaded white pieces, which are confused with

clear empty squares, while color errors are entirely

shaded white pieces, in areas with poor illumination.

When uniform illumination was used, false neg-

Table 2: Results using LED illuminator

Game Movements FP FN CE

1 24 1 0 0

2 31 0 0 0

3 19 0 0 0

4 22 0 0 1

5 21 2 0 0

6 37 0 0 0

7 23 1 0 1

8 19 0 0 0

9 21 0 0 0

10 28 1 0 0

Total 245 5 0 2

Table 3: Results not using LED illuminator

Game Movements FP FN CE

1 19 0 1 3

2 24 1 0 1

3 22 2 0 2

4 15 0 0 1

5 34 3 1 1

6 29 1 0 3

7 19 1 0 1

8 24 0 0 2

9 24 2 1 0

10 28 0 0 1

Total 238 10 3 15

ative errors were completely eliminated, mainly be-

cause there is a greater separation between the color

thresholds of an empty square and the occupied ones.

However, due to the location of the LED support with

respect to the camera, reflections on black pieces (for

example black rook, black knight) may lead to a color

detection error. False positives, although smaller

when using LEDs, still remained remarkably high. A

likely cause may be that even with the LED illumina-

tor in operation, the laboratory lights were on. A solu-

tion to this problem would be to increase the number

of LEDs, in order to achieve a higher level of illumina-

tion on the chessboard thus minimizing external inci-

dences and, therefore, shadows caused by fluorescent

tubes or any other external form of illumination.

4 Conclusions

This work presents a system based on an industrial

robot that is capable of playing chess with a hu-

man opponent using 3D printed pieces and a non-

instrumented board. The interaction with a human op-

ponent is achieved by means of a simple button and a

game timer. The main advantage of our mechatronic

implementation corresponds to its general structure,

without the need of an instrumented chessboard or

specially designed pieces, so that it could be easily
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adapted to other tasks.

Since any piece misclassification may interrupt the

game affecting the human player concentration dif-

ferent classification strategies were implemented and

tested. The multisampling and voting strategy re-

sulted to be the more robust to environmental variabil-

ity but also the slower in terms of compute complexity.

This may be caused by the large amount of processed

data in memory that involves this algorithm. The ob-

tained accuracy for the decision tree classifier was

acceptable, with even fewer detection errors than us-

ing k-Medoids. Notwithstanding, better performance

might be attained by improving the image processing

to mitigate the effects of changes in the illumination

or color.

The implementation of new algorithms is also

planned in order to obtain a greater separation be-

tween the proposed classification classes. Currently

an adaptive algorithm is being developed which,

based on the number of pieces of each color, dynam-

ically re-calculates the reference colors of the chess-

board so as to enhance the detection performance. Re-

garding the communication between the CCU and the

robot controller, a new software interpreter running di-

rectly on the controller is being tested. The last will al-

low to remove the computer running the C# interface,

and making the system work faster due to less inter-

actions. Lastly, as it would be more appropriate using

a perceptually uniform color space rather than the Eu-

clidean distance in the HSL color space, future work

may use the color space L*a*b, since in addition to

having a luminance channel L*, it has the advantage

that distances between colors on the coordinates a*

and b* are proportional to the perceptual differences

between colors.

The mechatronic system implemented is fea-

sible to be migrated to other contexts. A

video of the system in use can be found at

https://www.youtube.com/watch?v=cJwDVGww09Q.

Algorithms and software models were uploaded to

the GitHub open source repository.
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