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Abstract  

Combustion of fossil fuels and many other industrial activities inevitably produces carbon dioxide 

(CO2) that is released into the atmosphere and is currently deemed to be among the major 

contributors to global warming. One of the prominent solutions proposed to mitigate global 

warming concerns from CO2, capture and storage (CCS), did not attract many CO2 emitting 

industries as expected, mainly because of economic reasons. On the contrary, environmental 

pollution concerns associated with plastic waste, and the demand for sustainable feedstock for their 

production constitute grand challenges facing our society with regard to the production and use of 

plastics. As a result, the materials science community is striving to generate sustainable and 

biodegradable plastics to substitute conventional synthetic plastics from resources that do not pose 

direct completion with food production. This manuscript aims to provide a general overview of the 

recent progress achieved in CO2 based polymers for sustainable biopolymers such as co-polymers, 

and polymer blends. The synthesis, material properties, processability, and performances of 

important CO2 based co-polymers are critically reviewed. Furthermore, a critical review of CO2 

co-polymers as components of polymer blend with a focus on the most relevant CO2 based 

aliphatic polycarbonates, poly (propylene carbonates) (PPC), is conducted.  

Keywords: Carbon dioxide, poly (propylene carbonate), poly (ethylene carbonate), polymer 

blends, biodegradable polymers, packaging, biodegradability  
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1. Introduction 

1.1. Carbon dioxide as a resource rather than a greenhouse gas burden 

Carbon dioxide (CO2) is produced by several anthropogenic activities, and it is considered as the 

major contributor to global warming because of its greenhouse properties. Current emission rate of 

CO2 is about 35 billion tonnes per year with major sources from combustion of fossil fuel, 

utilization of biomass for energy and decomposition of carbonates (mainly in the steel and cement 

industries) [1]. Some reports showed that the accumulation of CO2 in the atmosphere has increased 

from a concentration of 270 ppm at the beginning of the industrial revolution to more than 385 

ppm today [2].This increase is regarded as a possible cause for the greenhouse effect that brings 

about global warming, and its mitigation is a subject of environmental concern. While carbon 

dioxide is indispensable for the existence of all living organisms via photosynthesis of green plants, 

the utilization of carbon dioxide as a feedstock for industrial products is rather limited. More 

recently, the capture and utilization of CO2, and its chemistry in general has attracted the attention 

of the scientific community.  

It is anticipated that carbon-based fossil fuels will continue to supply a sizeable portion of the 

energy consumption for at least the next few decades. Consequently, an increase in CO2 emission 

resulting from the use of fossil fuel will continue to raise serious concerns in relation to its 

greenhouse effect, and as a result, there is a tremendous effort to reduce CO2 accumulation. Direct 

reduction of CO2 emission from the source, CO2 capture and storage, and conversion of CO2 into 

building block for platform chemicals and fuels are widely accepted approaches to mitigate the 

accumulation concerns. In this context, the use of CO2 as a carbon building block to produce basic 

chemicals, plastics, inert solvents, fuels, and other high value products is desirable not only to limit 

its emission into the atmosphere, but also to partially replace fossil derived resources to produce 
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chemicals and materials. More recently, significant research and development effort is in place to 

investigate possible applications of CO2 for value-added applications (Figure 1). CO2 is an 

attractive feedstock because it is abundant, inexpensive, safe, non-flammable, non-oxidant, FDA 

approved for food related use, balanced geographic distribution, and renewable. In addition, it is 

suitable for the separation and extraction of thermally unstable materials, and can be used as a 

building block for making commodity chemicals, solvents, fuels and materials. However, it is a 

relatively low energy (C1) and inert molecule. This is a major hurdle to the scientific community as 

it means that reactions involving CO2 consume a lot of energy, and thus catalysts that overcome 

the low reactivity need to be developed [3]. 

The potential uses of CO2 in chemical products such as carboxylates, carbonates, and carbamates 

are extensively reported in the literature [4]. CO2 can also have applications as refrigerants, fire 

extinguishing gas, industrial solvent, and production of carbonated beverages. Several companies 

represent success stories on the utilization of CO2. For instance, Covestro (former Bayer Material 

Science), launched a polyurethane foam product from their manufacturing plant near Cologne, 

Germany based on polyether polycarbonate polyol precursor partially derived from CO2 [5] . In 

addition, Novomer Inc., a Cornell University spin-off, has filed several patents on conversion 

processes, catalysis, polymer synthesis and applications of CO2 derived polyols [5–7]. The 

company has sold a portion of their technology (known as Converge®) to Saudi Arabia’s Aramco 

for a $100 million [8] Converge® is reported to provide high performance, cost competitive and 

more sustainable CO2 based polyol for specialty coating, adhesive, sealant, foams, and elastomer 

applications. Petronas, a Malaysian multinational oil and gas company, has been capturing about 

160 ton of CO2 per day from steam reformers since 1999 [9]. The captured CO2 from the reformers 

is then purified (especially from H2S and SOx pollutants) and used for urea fertilizer production in 

combination with ammonia.  
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Figure 1. CO2 as a renewable feedstock in common consumer applications 
 

Furthermore, CO2 has the potential to become a strategic molecule for the progressive introduction 

of renewable chemicals and materials [10] that are not based on agricultural feedstock, which 

currently are competing with food production [11]. The objective of this paper is to critically 

review the recent progress in the utilization of carbon dioxide for bio-based plastics development. 

It highlights brief updates on the capture and utilization of CO2, and provide a detailed overview of 

CO2 based co-polymers, and their potential applications. Polymer blends obtained from carbon 

dioxide based polymers are also critically reviewed.  

1.2. Carbon dioxide capture, storage and availability as a resource 
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To reduce CO2 emissions and prevent its concentrations in the atmosphere, it can be separated 

from the flue gas of; for example, a fossil fuel based power plant and subsequently sequestrated 

(Figure 2). Carbon capture and sequestration (CCS) is considered as one of the proposed technics 

as a means to enable continued use of fossil fuels.  CCS technology involves three major process 

steps: capture, transport and sequestration. Capture is currently the most expensive process step 

and a target of vital technology research focusing on cost reduction. Some reports show that CO2 

capture can contribute up to 75% of the overall CCS cost [12–14]. Suitable CCS technology 

storage sites include depleted gas fields, oceans, and saline aquifers. Such sites require a highly 

impermeable rock layer to prevent CO2 leakage from the storage reservoir. Despite the significant 

advances made in CCS, there are still inherent limitations to it. These limitations include excessive 

energy consumption and associated economics for CO2 capture, low capture efficiency and slow 

sorption kinetics [1], uncertainties in storage life time of sites, seismic instability and accidental 

leakage safety concerns from storage sites [1,15], and capacity constraints [15].  

 

Figure 2. Schematic image of CCS. Adapted from ref. [16] Wiley copyright © 2014.  

Also, underground injection of CO2 into reservoirs is widely accepted as a visible means for 

reducing anthropogenic CO2 emissions. In this technology, CO2 is injected into an oil and gas 
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reservoirs to mobilize and displace oil and gas known as the enhanced oil recovery (EOR) platform 

to create economic gains that partly offset sequestration costs [15]. One of the most popular such 

projects is the Weyburn EOR project in Saskatchewan, Canada that employs both EOR and CCS 

[17]. In this project, 5000 tonnes/day of CO2 (95% pure) is injected, and a total of approximately 

20 million tonnes of CO2 is expected to be stored in the reservoir over the EOR project life.  It is 

important to highlight here that CO2 based EOR cannot be applied to all oil reservoirs because of 

mainly economic constraints.  For its efficient use in oil and gas reservoirs, large quantities of pure 

CO2 need to be obtained at a reasonable cost that includes CO2 separation, transportation and 

injection installations. More recently, cheaper CO2 obtained from gas fields is gaining more 

popularity particularly in the US because of the availability of CO2 gas fields, such as the Bravo 

Dome and McElmo Dome gas fields [16]. Other technologies proposed to mitigate CO2 release 

include CO2 capture via anion-functionalized liquids capture [18,19], mineral CO2 sequestration in 

which CO2 is chemically stored in solid carbonates by the carbonization of minerals into a 

geologically stable final form [16]. Leung et al. [13] conducted an extensive literature review on 

the current status of CO2 capture and storage technologies.  
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Emerging technologies, such as zero emission power plants, are expected to significantly reduce 

the complexity of separation, which is perhaps the costliest process step in recovering CO2. 

Membrane separation processes, also provide several advantages over other conventional 

separation techniques. For instance, membrane materials that provide high selectivity for CO2 over 

oxygen or nitrogen using polymeric and inorganic materials [12] are plausible options. Porous 

membranes with supporting amine solutions were also shown to be effective for the separation of 

CO2 [20]. The use of specifically designed sieves, also known as molecular sieves, that separate 

molecules based on molecular weight or size have shown a potential for CO2 adsorption. Efforts to 

enhance the adsorption of CO2 by molecular sieves include incorporation of amine functional 

group on the sieves that has the prospect to interact with CO2 resulting in the formation of, for 

example surface ammonium carbamate in anhydrous conditions, and carbonate species in hydrous 

conditions [12,21]. 

Although it is unlikely that CO2 utilization could consume significant quantities to mitigate the 

emission concerns, development of products and processes for chemical transformation of CO2 

into useful compounds would be of immense importance from the standpoint of green and 

sustainable chemistry [1]. This is because CO2 is attractive as an environmentally friendly 

chemical reagent [3,22,23]. While large-scale utilization of CO2 is still limited, production of urea 

is currently the largest use of CO2 in organic synthesis. It is also used to produce industrial scale 

salicylic acid and several carbonates (Scheme 1). The rapidly increasing interest in using 

supercritical CO2 as a natural product extraction and fractionation agent, and its use as a 

hydrophobic solvent that is capable of replacing organic solvents in several applications presents 

important uses of CO2. For example, the use of dense CO2 as one of the few reaction medias used 

for the direct synthesis of hydrogen peroxide from H2 and O2 is notable [24]. 
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Scheme 1. Utilization of CO2 as a feedstock for chemical synthesis of: (a) Urea; (b) Methanol; (c) 

Cyclic carbonate; (d) salicylic acid [25–27]. 

The capture and conversion of CO2 to produce sustainable, synthetic hydrocarbon or carbonaceous 

fuels, most notably for transportation purposes as a mid- to long-term option is also being 

investigated. In this regard, four major strategies involving CO2 conversion by physico-chemical 

approaches are highlighted: sustainable (or renewable) synthetic methanol, dimethyl ether, syngas 

production derived from coal-, gas- or oil-fired electric power stations flue gases, and 

photochemical production of synthetic fuels [28]. Olah and co-workers [29] presented a detailed 

literature review analysis of the chemical recycling of CO2 to methanol and dimethyl ether. Other 

researchers have reported the employment of genetically modified cyanobacterium to consume 

carbon dioxide and produce liquid fuel isobutanol that has the potential to complement gasoline 

[30]. Table 1 summarizes key CO2 transformation pathways to chemicals and fuels. The recent 

advancement in carbon capture and sequestration as a key element in the global effort to mitigate 

emissions is providing substantial quantities of CO2 as a renewable feedstock for conversions to 

commodity chemicals, fuels, and polymeric materials at a reasonable cost.   

Table 1. Conversion process of CO2 to fuels, and chemicals [31–35]. 
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Transformati
on Process Examples of Applications Comments 

Artificial 
photoreduction 

- Carbon monoxide (CO), formic acid, 
synthesis gas (CO/H2) 

- Products of 
photoelectrochemical 
reduction of CO2 is 
dependent on the metal 
photoelectrodes. 

Electrochemic
al reduction 

- Numerous products including CO, 
HCOOH, alcohols and light 
hydrocarbons can be reduced from CO2. 

- There is a significant 
theremodynamic efficiency 
improvement need 

Hydrogenation 

- Heterogeneous catalytic hydrogenation 
of CO2 may produce a wide variety of 
products including methane, methanol, 
dimethyl ether, higher hydrocarbons, 
and alcohols. 

- Cost of hydrogen could be a 
challenge 

Synthesis of 
organic 
carbonates 

- Synthesis of carbonates such as 
dimethyl carbonate, dialkyl carbonates 
with longer chains (e.g. diphenyl 
carbonate, cyclic carbonates) 

- Very few metal oxides are 
catalytically active for the 
direct carbonate synthesis 
from alcohol and CO2 

Reforming 
- Involves the reaction between 

hydrocarbons (CnHm) and CO2 to form 
synthesis gas 

- Suitable catalyst 
development is still at its 
infancy 

Photocatalytic 
reduction of 
CO2 with 
water 

- Renewable and carbon-neutral fuels,  
CO and CH4 can be produced when 
water vapor serves as the electron 
donor. 

- Reduction of CO2 by typical 
catalyst TiO2 is still low. 

Biological 
fixation 

- Use CO2 as a C1 source by microalgae 
for biofuels (e.g. ethanol) and chemicals 
(e.g. succinic acid) production 

- Gas fermentation technology 
is still under development. 
C1 feedstock is not energy 
dense. 

 

2. CO2 based co-polymers 

The development of sustainable and environmentally benign polymers from renewable feedstocks 

is important to reduce the dependence of most engineering and commodity plastics on fossil-based 

resources[36–38]. Moreover, the global shift from reusable containment and packaging to single-

use contributed to an extraordinary growth in the plastics market [39]. For instance, the global 

plastic production reached about 407 million tonnes in 2017 [39]. The most extensively produced 

commodity plastics such as low density poly(ethylene) (LDPE), linear low density poly(ethylene) 

(LLDPE), high density poly(ethylene) (HDPE), poly(propylene) (PP), poly(ethylene terephthalate) 
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(PET), poly(styrene) (PS) and poly(vinyl chloride) (PVC) constitute close to 70% of the overall 

production as shown in Figure 3a [39]. Overall, about 38% of all plastics produced are employed 

in packaging applications (Figure 3b), mainly because of the appealing cost structure and excellent 

packaging attributes of plastics [40] over other materials such as metals or glasses.  

In addition to their prevalent use, the stable carbon – carbon bond in the backbone of most of these 

polyolefin and polyolefin derivative plastics that withstand biodegradation, resulted in a 

tremendous increase in the share of plastics in municipal solid waste. In middle – and high income 

– countries, plastic waste increase was estimated from less than 1% in 1960 to more than 10% by 

2005 [39,41]. The geographic distribution limitation and unstable and unpredictable prices of fossil 

fuel feedstock for such plastics coupled with the alarming waste accumulation and pollution 

associated with non-biodegradable plastic caused an increasing research interest in sustainable 

polymers. In the quest for an alternative raw material to fossil derived resources, agricultural 

feedstock such as polysaccharides, proteins, chitosan, lignin, algae, glycerol, and lipids are being 

extensively studied [11,42–45]. 

 

Figure 3. (a) Type of plastics produced worldwide (in percent); and (b) plastic use in the 
packaging industry in the world in 2015 [40].Others include thermosets, elastomers, coatings etc. 
that are not listed here. 
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2.1.  Synthesis of CO2 polymers 

More recently, research and development efforts in catalysis, process development, and polymer 

science and engineering put a spotlight on CO2 based polymers. However, the kinetic and 

thermodynamic stability of CO2 has limited its extensive utilization as a feedstock for polymers. 

Many reactions pathways for the conversion of CO2 into useful polymers involve positive change 

in enthalpy (∆H) and thus they are endothermic. Consequently, a substantial input of energy, 

effective reaction conditions, and often active catalysts, are necessary for such conversions [46]. 

Despite these challenges, methods to overcome the high energy barriers based on reduction, 

oxidative coupling with unsaturated compounds on low valent metal complexes, and increasing the 

electrophilicity of the carbonyl carbon are being developed [23]. 

CO2 can be copolymerized with a number of cyclic ethers (e.g. cyclohexene and propylene 

epoxides, aziridines, episulfides) to produce a range of novel alternating aliphatic polycarbonate 

co-polymers [47]. Aliphatic polycarbonates refer to thermoplastic polycarbonates with a repeating 

carbonate [– O – C(O) – O –] backbone linkage with no aromatic groups between the carbonate 

linkages, contrary to the most useful engineering aromatic polycarbonates. Some of the aliphatic 

polycarbonates produced by the alternating copolymerization of CO2 with epoxides include 

poly(ethylene carbonate), poly(propylene carbonate), poly(butylene carbonate), poly(pentene 

carbonate), poly(hexene carbonate), poly(styrene carbonate), poly(cyclohexene carbonate), 

poly(cyclopentene carbonate), and poly(cyclohexadiene carbonate) [48–50]. Of these, 

poly(ethylene carbonate) (PEC), poly (propylene carbonate) (PPC), poly(butylene carbonate) 

(PBC), and poly(cyclohexene carbonate) (PCHC), as shown in Scheme 2, constitute major 

industrial CO2 application potentials [27]. The utilization of the energy rich three- membered 

oxirane to react with CO2 and produce alternating CO2 based aliphatic polycarbonates is gaining 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

13 
 

ground as a sustainable alternative to the old technology of ring opening polymerization of (ROP) 

of cyclic carbonate monomers to produce synthetic aliphatic polycarbonates. The other alternative 

to produce aliphatic polycarbonates has been the environmentally malign synthesis that involves 

polycondensation of trans-diols (e.g. bisphenol –A) with toxic phosgenes.   

 

Scheme 2. Copolymerization of epoxides with CO2 to produce: (a) R = H, poly (ethylene 

carbonate) (PEC), and R= CH3, Poly (propylene carbonate); (b) poly (cyclohexene carbonate).  

As shown in Scheme 2, the co-polymerization of CO2 with oxirane occurs in the presence of 

catalysts.  The successful copolymerization of CO2 with styrene oxide, limonene oxide, indene 

oxide, and epichlorohydrin have also been reported in the literature [51]. Although, the reaction 

scheme for the synthesis of PEC and PPC aliphatic carbonates were reported in 1969 [52,53], their 

use has been limited mainly because of limitations in catalysis efficiency and the material 

performance of the polymers. Thermal properties are among the major challenge of most aliphatic 

polycarbonates. For instance, the glass transition temperature (Tg) of PEC and PPC is 20 oC, and 

35 – 40 °C (close to human body temperature), respectively [54]. Such Tg ranges indicate that the 

polymers are too flexible for a rigid engineering plastic applications, and too rigid for a typical 

industrial elastomeric application, warranting the need for further modification.  

Many studies [55–59] demonstrated that the ring-opening co-polymerization of carbon dioxide and 

epoxides is highly dependent on the selection of catalyst. Recent research effort results 
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demonstrated that various homogeneous and heterogeneous organometallic catalysts that contain 

Zn (II), Cr (III), and Co(III) complexes are commonly used [60]. The proposed series of catalytic 

polymerization reactions are illustrated in Scheme 3. The polymerization reaction initiates when an 

epoxide molecule displaces a metal bound initiator ligand, and subsequent ring opening by the 

nucleophilic attack of a carbonate group or ligand to form a metal alkoxide intermediate. Carbon 

dioxide then gets inserted into the intermediate to form a metal carbonate species, and this 

carbonate serves as the nucleophile for the succeeding chain propagations. The ring opening 

continues, and the reaction therefore propagates cycling between metal alkoxide and carbonate 

intermediates. Changing the reactions conditions or exposure to reagents lead to hydrolysis of the 

growing chain, and polymerization termination through the formation of a polymer chain end-

capped with a hydroxyl group [14,55]. 

 
Scheme 3. Catalytic cycle of epoxy – CO2 copolymerization [14]. 

In the quest for improved catalysts for CO2 co-polymerization, research attentions have focused on 

environmental benign organometallic catalysts. This is to avoid the undesirable consequence of 

rather toxic metal catalysts that can potentially limit some industrial applications, and to qualify for 

composting and biodegradation requirements of the polymeric materials. In this contest, metal 
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center catalysts based on Zn, Mg, Fe, Ti, Al, etc. are being extensively investigated. Catalyst 

properties such as surface area, amount of crystallinity, size, and morphology can also significantly 

influence the catalytic activity besides the type of catalyst [61], and as such it is another growing 

area of research. For instance, due to the excellent catalytic activity, selectivity, low cost, safety, 

and ease of synthesis,  Zinc glutarate appeared to be one of the most effective compounds for 

commercial use in the copolymerization of CO2 and propylene oxide [62,63]. Therefore, several 

studies have focused to enhance the catalytic activity of Zinc glutarate to produce cost competitive 

PPC [61,64]. However, the currently available best catalyst systems are still one or two orders of 

magnitude lower in efficiency than the common catalysts used for the synthesis of polyolefins [65]. 

The inefficiencies are associated with activity, product yield, and purity of the product [60]. 

Because of the properties and success in catalysis, numerous studies show that PPC is the leading 

CO2 based co-polymer in terms of production. For example, a report by Research and Markets [66] 

show that about 63,000 tonnes of PPC was produced in China alone in 2016, with an ex-works 

price of about USD 4.02/kg.  In the same year, the global market size of PPC was estimated to 

constitute about $610 million and is expected to grow at a rate of 6.64% annually. Key industrial 

players in the PPC market includes Empower materials, SK Energy, Novomer, BASF, Cardia 

BioplasticsTM, Tianguan, Nantong Huasheng, Bangfeng, Jiangsu Jinlong-CAS Chemical Co., Ltd, 

etc. Some governments (e.g. China) have started issuing policies to support the development of 

CO2 based biodegradable polymers including PPC. Reports on the commercial production of other 

CO2 based polymers is rather scarce.  

 

2.2. Mechanical and thermal properties 
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Aromatic polycarbonates are well-known engineering thermoplastics with a range of applications 

such as eyewear, medical devices, automotive components, digital discs, lighting fixtures, etc. The 

success of these aromatic polycarbonates is due to the unique combination of properties: extreme 

toughness, outstanding optical transparency, high heat distortion resistance, impact resistance, and 

excellent compatibility with several polymers [67]. On the contrary, aliphatic polycarbonates are 

largely unexplored commercially until the 2000s despite their synthesis in the 1930s’ at Carothers’ 

laboratory of DuPont [68]. This is mainly because of the characteristic low melting point, high 

susceptibility to hydrolysis, and low molecular weight that result in a rather inferior property 

compared to many traditional polymers [51]. 

Recent commercial success stories of aliphatic polycarbonates from CO2 are mainly as a low 

molecular weight polycarbonate polyols, to produce polyurethanes for varies applications 

including automotive, coating, adhesive applications. Overall, the use of CO2 as a feedstock to 

produce polycarbonate co-polymers, while mitigating CO2 accumulation in the environment, 

resulted in a renewed research and commercial interest in aliphatic polycarbonates. Moreover, the 

quest for biodegradable industrial biopolymers for which the hydrolysis susceptibility of aliphatic 

polycarbonates that used to be perceived as major limitations turned into their competitive 

advantages [51,69,70]. This renewed research interest led to an advancement in catalysis and 

application development efforts of CO2 co-polymers.  

Like other polymers, the properties of the aliphatic polycarbonates depends on the backbone and 

side chains [71]. For example, Thorat and co-workers [48] reported that PEC in its low Tg range 

(ca. 10 °C) behaves as an elastomer at room temperature with an elongation at break of over 600% 

and completely recovers to the initial length after unloading.  Conversely, the mechanical 

properties of PPC are more complicated owing to its amorphous morphology and higher Tg 

(35−42 °C) compared to PEC. Overall, PPC is brittle at low temperatures (below 20 °C), and 
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exhibits poor dimensional stability at elevated temperatures. Table 2 presented mechanical 

properties and thermal degradation temperatures of a few common CO2 based aliphatic 

polycarbonates. Comparison of PPCs as a function of molecular number average (Mn) (Table 2) 

indicates that higher molecular weight improves tensile modulus. However, most commercial 

PPCs display a wide range of polydispersity index (PDI), and comparisons based on solely Mn 

would not be accurate. Studies have shown that CO2 derived aliphatic polycarbonates are 

completely amorphous [48,60]. Crystallization of PEC and PPC has not been observed, even for a 

regioregular microstructure. 

Thorat et al. [48] studied the physical properties of a homologous series of CO2 based aliphatic 

polycarbonates with different side chain-lengths and showed that factors such as side chain length, 

intermolecular dipolar interaction, and stiffness of the backbone chain affect the mechanical, 

thermal properties and decomposition behavior of CO2. A notable observation in this study 

includes polycarbonates derived from long-chain epoxides that exhibit Tg below room temperature. 

On the contrary, polycarbonates derived from cyclohexene oxide showed a Tg of 105 °C, which is 

among the highest reported for similar polymers. Koning et al. [72] synthesized poly (cyclohexane 

carbonate) (PCHC) from CO2 and cyclohexene oxide. The properties of the PCHC showed a high 

Tg of 135 °C in comparison with both PPC and PEC, and behaves like a brittle polymer with an 

elongation at break and tensile modulus of 1.7 % and 3600 MPa, respectively. The brittleness of 

PCHC is thought to be associated with the low chain entanglement density.  

Poly(butylene carbonates) (PBC) prepared using melt polycondensation method, exhibited a 

degree of crystallinity (calculated from wide angle x-ray diffraction), glass transition temperature, 

melting temperature, and thermal decomposition temperature of 22%, -32 °C, 55.2 °C, and 

>180 °C, respectively [73]. In an effort to improve the thermal stability of PBC, Cai et al. [74] 

incorporated cyclohexanedimethylene carbonate and prepared a series of poly (butylene-co-1,4-
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cyclohexanedimethylene carbonate) (PBCCs) random co-polymers. The glass transition (Tg), 

melting temperature and thermal decomposition temperature of the PBCC co-polymers exhibited a 

monotonous increase with an increase in the concentration of the co-polymer component. The 

increase in Tg ranges from -32 °C for the baseline PBC to 47 °C for PBCC co-polymers that 

contain 90% cyclohexanedimethyle carbonate. The increase in thermal decomposition temperature 

ranges from 337 to 373 °C for the aforementioned samples [74]. Clear changes in tensile properties 

and crystallinity was also presented as a result of the co-polymerization effort.  

Table 2. Mechanical properties and peak degradation temperature (Tdeg) of CO2 based poly 
(alkylene carbonate) polymers. 
 

Polymer 
Tensile yield 

strength 
(MPa) 

Tensile 
modulus 
(MPa) 

Elongation 
at break 

(%) 

Tdeg 
(TGA,  

°C) 
Reference 

Poly(ethylene carbonate) - 3-8 >600 229 [48] 
Poly(ethylene carbonate) 
(Mn 127 kDa, PDI 1.9) 

10 88.04 - - [75] 

Poly(propylene carbonate) 
(Mn 50kDa, PDI 1) 

21.5 830 330 285 [76] 

Poly(propylene carbonate) 
(Mn 260kDa, PDI 4.97) 

17 680 255 290 [77] 

Poly (propylene carbonate) 
(Mn 350 kDa, PDI 5) 

15 2000 >300 302 [78] 

Poly(butylene carbonate) 
(Mn 70,400, PDI 1.76) 

28.1 320 447 337 [74] 

Poly(cyclohexane 
carbonate) (Mn 42 kDa, 
PDI 6) 

43 3600 1.7 - [72] 

 
As illustrated in Table 2, the peak thermal decomposition temperature of PPC is above 250 °C 

from thermogravimetric studies. It is important to point here out that the PPCs are obtained from 

different companies, and as a result, there is a difference in the catalyst used for production as is in 

molecular weight. As expected, the thermal degradation temperatures presented here showed a 

correlation between molecular weight and decomposition temperatures. The higher molecular 

weight PPC (Mn = 350 KDa), and the lower molecular weight PPC (Mn = 50 KDa) exhibited a 
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peak decomposition temperature of 302 and 205 °C, respectively. Overall, the thermal 

decomposition temperature of PPC is in the range of 180 to 260 °C [79–81], depending on the 

molecular size, catalyst used to prepare the PPC, the co-polymer component  (cyclic propylene 

carbonate used during PPC synthesis), the ambient gas and the heating rate during the 

measurement.  A study by Tao and co-workers [82] showed the improvement in the thermal 

degradation behavior of PPC with an increase in molecular weight. The employed 

thermogravimetric study results are shown in Figure 4a.  The onset thermal degradation 

temperature showed an increase by about 37 °C as the molecular weight (Mn) of the PPC increased 

from 109 to 227 kg/mol. In general, this study showed that increasing the molecular weight via 

terpolymerization or multipolymerization might be an important method to improve the 

mechanical and thermal properties of PPCs. In a recent study, the effect of molecular weight (2 to 

263 kDa) on the thermal stability of PPC has been reported. The 2 kDa molecular weight PPC is a 

polyol [83]. It is interesting to note that both 2 kDa and 137 kDa molecular weight PPC showed 

nearly the same onset thermal decomposition temperature with heating rate of 1 °C/min under N2 

atmosphere (Figure 4b). However, the rate of decomposition of 2 kDa PPC is much faster than 

PPC with137 kDa molecular weight. Such behavior is expected as low molecular weight polymers 

with more end groups can undergo faster unzipping mechanism than high molecular weight 

polymers. In the same study, the effect of ambient gas during the thermal decomposition of PPC is 

reported (Figure 4c). The PPC appeared to have higher thermal stability under air atmosphere 

compared to the corresponding samples under nitrogen atmosphere. This could be due to specific 

intermediate species during the PPC decomposition process react with oxygen to slow the 

decomposition. Further investigation is worthwhile to better understand the role of oxygen in PPC 

decomposition phenomenon. 
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A 

 
b 

 
C 

 
Figure 4. (a) TGA curves of PPC with various molecular weights. (a) Mn = 109 kg/mol; (b) Mn = 
132 kg/mol; (c) Mn = 156 kg/mol; (d) 227 kg/mol. Adapted from ref.[82] Springer, copyright ©. 
(b) Neat Novomer PPC with molecular weights of 2 kDa, 137 kDa, 160 kDa, 219 kDa, and 263 
kDa at a ramp rate of 1 oC/min in N2 atmosphere. Adapted from ref. [81] Elsevier, copyright © 
2006. (c) Neat Novomer PPC with molecular weights of 2 kDa, 137 kDa, 160 kDa at a ramp rate 
of 5 C/min in N2 and ambient air atmosphere. Adapted from ref. [81] Elsevier, copyright © 2006. 
 

Mechanisms for the thermal decomposition of aliphatic polycarbonates reported in the literature 

includes: (i) random chain scission (chain scissions occur at random locations), (ii) polymer 

unzipping/end-chain scission (individual chain ends are stripped successively starting from the 

end), (iii) chain stripping (side groups are cleaved from the backbone), and (iv) grafting and 

crosslinking (bonds are created between chains) [60,81,84]. Cyclic propylene carbonate by random 

chain scission is the typical degradation product generated from thermal decomposition of PPC 

(Scheme 4) [60,81,85]. Different research teams [86] have studied stabilizing agents and additives 
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that inhibit polymer chain-end unzipping and random chain scission of PPC, that enhance thermal 

stability. Maleic anhydride, pyridine, benzoyl chloride, ethyl silicate, acetic anhydride, phosphorus 

oxychloride, 4-nitrophenyl chloroformate, and vinyl chloroformate have been used to end-cap the 

PPC and inhibit unzipping reaction during thermal processing [81].  

 
Scheme 4. (a) Chain unzipping reaction in PPC occurring via an alkoxide or carbonate backbiting 
pathway creating the cyclic propylene carbonate as the product. (b) Chain scission reaction in PPC 
via thermally induced cleavage of C-O bonds creating carbon dioxide as one of the products[81]. 
 

Li et al. [87] demonstrated that chain unzipping depolymerization dominated the thermal 

decomposition of PCHC. Separate studies by Bahramian et al. [88] and Li et al. [87] highlighted 

the importance of residual metal catalyst system in the thermal decomposition of such polymers. 

For instance, the onset thermal decomposition temperature of PCHC containing 5 ppm zinc 

catalyst was 56 °C higher than that of PCHC that contains 4,400 ppm of residual Zinc [87]. For 

PPC, similar observation of increasing rate of thermal decomposition with an increase in residual 

catalyst concentration was reported (Figure 5a) [88]. It can be seen from Figure 5a that PPC with 

2450 ppm zinc showed two distinct degradation slopes with lower thermal stability compared to 

PPC with 250 and 1250 ppm Zinc residue. The first change in the slope was attributed to the cyclic 

propylene carbonate impurity decomposition, which was formed during PPC synthesis. After the 

purification of the PPC by high-pressure CO2/water system, a cyclic propylene carbonate 
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decomposition was not observed in the PPC, while an improvement in thermal stability was 

marked. Overall, the thermal stability of the PPC was effectively improved by reducing the 

residual Zinc catalyst apart from enhancing mechanical properties.  

Similarly, Figure 5b presents the thermal degradation of PCHC as a function of various Zinc 

concentrations from thermogravimetric analysis. The curves showed the increase in the onset and 

peak degradation temperatures with the reduction in the residual catalyst content. It was also 

evident that the change in catalyst concentration affected the molecular size of the PCHCs. The 

number average molecular weight differences among the samples with the three catalyst levels was 

about 10 kDa among each other, and it can be anticipated that the molecular size variation could 

also play a role in the observed thermal degradation behaviors. In a broad sense, it appears that 

PCHC polymers have better thermal stability than PPC and PEC. PEC on the other hand generally 

exhibits a lower decomposition temperature in comparison with PPC or PCHC [48]. 

 
a 

 
b 

 
Figure 5. (a) Dynamic TGA curves (N2- 5˚C/min) for PPC with various zinc contents: (250 ppm 
Zinc content with Mw of 509,570 and PDI 2.79; 1250 ppm Zinc content with Mw of 508,373 and 
PDI 2.97: 2450 ppm Zinc content with Mw of 463,746 and PDI 3.26) Adapted from ref.[88] RSC 
©. (b) Effect of catalyst residue on thermal stability of PCHC – 1 (Mn = 46.3 KDa, Zn content 
4500 ppm), PCHC – 2 (Mn 58.6, Zn content 120 ppm), and PCHC – 3 (Mn 69.6, Zn content 
5ppm). Adapted from ref.[87] Springer, copyright ©. 
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Tao et al.[82] synthesized a range of high molecular weight PPCs by incorporating small quantities 

of difunctional epoxides to the catalyst system. The variation in molecular weight (Mn) of the PPC 

resulted in a dramatic impact on both the thermal and mechanical performance of the polymers. 

Figure 6 presented the dependence of storage modulus (E’) as a function of temperature for various 

molecular weight of PPC from dynamic mechanical analysis studies. This study clearly showed the 

dependence of storage modulus on molecular weight, specifically near the glass transition 

temperature (Tg). For instance, below Tg while the storage modulus of the low molecular weight 

PPC (Mn = 109 kg/mol) was 4.3 GPa, the high molecular weight PPC in the study (Mn = 227 

kg/mol) exhibited a storage modulus of about 6.9 GPa. This is a 60% increase in with 

approximately double of the molecular weight.   In the rubbery zone (above Tg), PPC with Mn of 

227 kg/mol displayed a modulus of 38 MPa, whereas PPC with Mn of 109 kg/mol showed a 

modulus of only 8.6 MPa. This is a 340% difference between the high and low molecular weight 

PPCs. Furthermore, modest changes in the Tg was observed from the inflection point of the storage 

modulus (Figure 6). While PPC with Mn of 85 kg/mol showed a Tg of around 43 °C, PPC with Mn 

of 227 kg/mol showed a Tg of about 51 °C [82]. 

 

Figure 6. Plots of storage modulus (E’) against temperature of PPC with different Mn. (a) Mn = 
85 kg/mol; (b) Mn = 109 kg/mol; (c) Mn – 156 kg/mol; (d) Mn = 227 kg/mol.  Adapted from ref. 
[82] Elsevier, copyright © 2006 
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2.3. Physical properties 
 
CO2 based polymers are generally amorphous resulting in good optical transparency after they are 

processed via melt extrusion, solution casting, injection molding or compression molding. PPC is 

amorphous in most polymer processing and treatment techniques, including electrospinning that 

usually aligns and changes crystal morphology. The weak molecular chain interaction, and the 

presence of many weak polar, flexible C – O – C bonds in the backbone leads to its amorphous 

state[82,89], which is quite different from many polyolefins that shows various range of 

crystallization behaviors. However, some CO2 based aliphatic polycarbonates may crystallize 

under special treatment. For instance, Takahashi and Kojima [90] demonstrated the crystallization 

of poly(trimethylene carbonate) under tension, even though the polymer returns to a complete 

amorphous morphology when the tension is relaxed. PBS also exhibited some crystallinity [74]. 

Wu and co-workers [91] reported CO2-based PCHC polymer from the asymmetric alternating 

copolymerization of CO2 and cyclohexene oxide with semi-crystalline morphology. This polymer 

is stereoregular with typical semi-crystalline thermoplastic behavior, which displays a high melting 

point (Tm) of 215−230 °C and a peak decomposition temperature of 310 °C. Wide angle X-ray 

diffraction study of PEC polymer by Unger et al. [75] showed a wide, amorphous halo 

morphology, confirming the amorphousness of PEC like PPC.  

Solubility of polymers is important not only to prepare solution cast films, but also to conduct 

characterizations such as molecular size quantification. PPC is soluble in chlorinated hydrocarbons 

(e.g., chloroform, dichloromethane, benzene, and dichloroethane), tetrahydrofuran (THF), acetone, 

methyl ethyl ketone, ethyl acetate, etc. [92,93], while insoluble in water, ethylene glycol, ethyl 

alcohol, methanol, and other aliphatic hydrocarbons. Substituted aromatic compounds are also 

poor solvents of PPC[60,93], PBC and PCHC are soluble in THF [72,94]. Liu et al. [95] conducted 

detailed investigation on the solubility of PEC by characterizing the physical properties of PEC 
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solutions in various solvent systems. The study showed that PEC is soluble in chloroform, 1,4-

dioxan, N-methylpyrrolidone (NMP), dimethyl sulfoxide, dimethyl formamide, and 2 -pyrrolidone, 

which have a solubility parameter ranging from 9.3 to 14.7 cal1/2cm3/2. The study demonstrated 

that 1,4-dioxan was the best solvent among the studied systems. Dichloromethane also solubilizes 

PEC. The lack of functional groups on common aliphatic polycarbonates usually limits 

modification potential to enhance either their physical or thermal properties. As observed in many 

polymer systems, the incorporation of functional groups offers an array of further functionalization 

or modification options to tailor such material properties including hydrophilicity, hydrophobicity, 

biocompatibility, and biodegradability for various purposes [50,96,97]. Thus, the incorporation of 

active functional groups in these CO2 based aliphatic polycarbonates is an expected growth area.  

2.4. Processing and applications  

The fact that CO2 based poly(ether carbonates) are made by fixation of CO2, and their outstanding 

properties such as relative ease of processability, strength, low density, biodegradability, and good 

electrical insulation render these materials of high industrial interest for applications in the 

electronics, industrial packaging, agricultural mulch films, foams, biomedical and health care 

sectors. Moreover, the recent advances achieved in the catalysis of CO2 copolymerization makes 

industrial scale production of aliphatic polycarbonates feasible. The major limitation to the 

industrial scale thermoplastic processing of some of these common polymers is the low thermal 

degradation temperature. For instance, most PEC and PPC currently available in the market start to 

degrade in the vicinity of 150 and 180 °C, respectively. Thus, methods of broadening the 

properties and processing window to enhance the applicability of aliphatic polycarbonates need to 

be investigated.   
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Since poly (ether carbonates) have the propensity to absorb some moisture [78,98], drying is 

important prior to processing to avoid hydrolysis. However, the low glass transition temperature of 

some of the common polymers in this group (e.g. PEC, PPC) limits traditional elevated 

temperature drying. Thus, low temperature vacuum drying, or freeze-drying may be employed to 

avoid sticking of pellets that otherwise would occur if dried at elevated temperatures. PPC can be 

processed by all major thermoplastic processing techniques such as injection molding [78], blow 

molding [99], blown films [100], extrusion film casting [78], compression molding [101], solvent 

casting for films [98], spin casting [93], and electrospinning [102,103]. It is important to note that 

solvent casting have possibility to remove the stabilizing agent by dissolution [81]. Consequently, 

the thermal stability of the PPC could be reduced. PEC can also be processed as a thermoplastic 

employing extrusion for film casting [104], solution casting for coating and thin films [105], 

electrospinning into a fiber [106], and spray coating [107]. PCHC can also be processed with 

various thermoplastic processing methods: extrusion [108], injection molding [108], compression 

molding [72], and electrospinning [109]. Poly (butylene carbonate) is a new entrant to the family 

of poly (ether carbonates) and as a result, its processability and applications are not extensively 

identified in the literature. Some literatures reported that PBC have beneficial properties in tape 

casting and other applications where flexibility and good green strength are critical [73] could also 

find biomedical and environmental applications [110]. 

The increasing environmental concern from plastic waste prompted considerable interest in the 

preparation of biodegradable materials. Geyer and co-workers [41] analyzed the global mass 

production of plastics, their use and fate, and presented the lifetime distribution for eight core 

industrial use (Figure 7). Packaging, that constitute 38 – 41% [39,87] of all plastics produced, has 

the shortest lifetime. Thus, there is a special interest in replacing stable plastics that have short 

lifetime applications such as packaging, shopping bags, composting bags, mulch films, and other 
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consumer uses. CO2 co-polymers such as PEC and PPC are excellent candidates for use in 

packaging and other short lifetime plastic applications. The potential of CO2 co-polymers in 

packaging is not only because of their biodegradability, but also because of the excellent gas 

barrier properties. For example, the oxygen permeability of PPC is below 20 cm3/m2/day/atm, this 

is much better than other biodegradable and compostable polymers, such as poly (lactic acid) 

(PLA), poly(butylene succinate) and Ecoflex that shown a permeability of 550, 1200, and 1400 

cm3/m2/day/atm, respectively [71]. 

 

Figure 7. Product lifetime distributions for the eight industrial use sectors plotted as log-normal 
probability distribution functions (PDF). Adapted from Ref.[39] Science advances, copyright © 
2017. 
 

The use of CO2 based polyether carbonates as the polyol component for polyurethane polymer 

production is perhaps one of the most advanced application, which is currently pursued at a 

commercial scale by multinational companies such as Covestro and Aramco. Polyurethanes, with a 

global production of about 20 metric tonnes in 2014 [111] are among the top six most extensively 

used polymers for an array of applications (e.g. foams, elastomers, coatings, thermoplastics, 

sealents, and adhesives). All polyurethanes are built by the polyaddition process of polyols and 

(poly) isocyanates, with a characteristic chain link of urethane group. This paves the way for an 

immense quantity of CO2 co-polymer utilization as a sustainable feedstock of polyurethanes. 
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Additionally, polyols are important polymer additives for applications as plasticizers, chain 

extenders, and processing aids [112]. While a diverse variety of polyols exist in the market, 

polyether polyols, polyester polyol, and polycarbonate polyols constitute the majority of the polyol 

production.  

Conventional polyols are sourced from petroleum feedstock through an energy demanding process 

that result in a large CO2 footprint [113]. This has resulted in a significant interest for renewable 

resourced and eco-friendly process for the development of polyols. A typical example of this effort 

is the chemical conversion of vegetable oils into polyols. However, the use of edible resources for 

such industrial products is creating direct competition with food and feed production [114]. On the 

contrary, CO2-based co-polymers do not rely on agricultural processes. Thus, the use of CO2 as a 

renewable and ubiquitous co-monomer to produce polyether carbonate polyols can provide an eco-

balance resulting in enhanced sustainability [113]. Life cycle analysis suggested that 

oligoethercarbonates with 20 wt.% CO2 can reduce greenhouse gas emissions by 11–19% while 

saving 13–16 % of fossil resource [115]. Scheme 5 illustrates the reaction between polyether 

polyol, derived from CO2, and isocyanate crosslinking agents for the synthesis of polyurethane. 

CO2 based polyurethane foams can be used for many applications because of their properties 

(mechanical, hydrolysis/oxidation resistance), and are comparable or even better than conventional 

polyurethanes [116]. This has resulted in an increased industrial activity for the commercial 

production of CO2 based polyols. For instance, Huasheng Polymer Co. in Nantong city, Jiangsu 

province, China has been in progress to produce 10,000 tonnes/year of CO2-polyols [117]. 

Covestro (Germany) has also planned to setup a factory, which can produce 5000 tonnes/year of 

CO2-polyols [118]. 
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Scheme 5. Reaction between CO2 based polyol and isocyanates for the production of 
polyurethanes.  
 

2.5. Other uses of CO2 based aliphatic polycarbonates  

The unique combination of biodegradability, renewability and biocompatibility of CO2 based 

aliphatic co-polymers have attracted a significant interest for industrial polymers and biomedical 

applications. The use of CO2 in polymers is one of the most successful examples of a process that 

utilizes CO2 as a feedstock. About 30 – 50% of these polymers mass is derived from carbon 

dioxide, with the remainder derived from petrochemicals [115,119]. Applications of carbon 

dioxide polymers in industrial plastics are dependent on molecular weight regimes. The low-

molecular-weight hydroxyl end-capped polycarbonates are applied as polyols in the manufacture 

of polyurethane [120]. The relatively low viscosities and glass transition temperatures of these 

polymers makes them suitable substitutes for the common petrochemical based polyols that are 

used to make furniture foams, adhesives, clothing and coatings [121]. Alternatively, the high-

molecular weight polycarbonates can be used in rigid plastics, blends with bio-based and 

petrochemical based polymer, matrices for polymer (nano)composites, etc. [78,122]. Table 3 and 

Figure 8 summarizes reported possible applications for these polymers.  

Table 3. Applications of CO2 based aliphatic polycarbonates co-polymers. 

Aliphatic 
polycarbonate 

polymer 
Applications 

Poly(ethylene 
carbonate) 

- Ion-conductive polymer for flexible solid electrolytes [90,123] 
- Binder for ceramic powder [124] 
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- Coatings, pastes and inks [104] 
- Used to make high purity technical parts [104] 
- Multi-layer packaging film barrier layer due to its low oxygen barrier 

feature [125] 
- Medical applications (e.g. for controlled drug release because of its 

biodegradability [125] 
- Temporary adhesives for wafer-to-wafer bonding [126] 

Poly(propylene 
carbonate) 

- Reactive hot melt adhesives for plastics (polycarbonates, acrylonitrile 
butadiene, poly(methyl methacrylate)), metals (metals, steel) [127] 

- Polyurethane foams for mattresses, automotive seats, armrests, 
sponges, furniture cushioning, foam sheetings etc. [128] 

- Waterborne polyurethane emulsions: polypropylene carbonate was 
used as the soft segment for coating and films applications [94] 

- Thermoplastic polyurethane adhesives [129] 
- Biomedical material for tissue scaffolding, drug-delivery carriers, 

non-woven fabrics etc. [109,119] 
- Functional biodegradable packaging film (e.g. antimicrobial film) 

[130] 
- Electrospun fiber mats for porous materials [102] 
- Ion-conductive polymer for flexible solid electrolytes [90,123] 
- Temporary adhesives for wafer-to-wafer bonding [126] 

Poly (butylene 
carbonate) 

- Tape casting and other applications where flexibility and good green 
strength are critical [73] 

- Biomedical and environmental applications [110] 

Poly (cyclohexene 
carbonate) 

- Temporary adhesives for wafer-to-wafer bonding [126] 
- Binders, electronics, coating resins, surfactants and foams and others 

[51] 
- Hydrogels [94] 
- Moldable rigid thermoplastics such as toys, utensils, soothing articles 

etc. [131] 
- Decomposable channel former [132] 
- Pore former [132] 
- Sacrificial placeholder [132] 

 

 

Figure 8. Sustainable polymer applications from CO2 based aliphatic polycarbonates. PEC, PPC 
and PCHC can be prepared by copolymerization of CO2 with oxiranes.  
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3. Polymer blends from carbon dioxide based polymers and co-polymers 

Polypropylene carbonate (PPC) is the most studied polymer in comparison with the other CO2 

derived polymers such as poly (ethylene carbonate) (PEC), poly (butylene carbonate) (PBC), and 

poly (cyclohexene carbonate) (PCHC). However, the widespread commercial use is still limed 

because of limitations in processability limitations, performance (e.g. poor thermal stability and 

mechanical properties) and cost factors. Several research efforts including blending it with other 

polymers, incorporation of additives, and incorporation of fillers are currently in progress to 

mitigate these shortcomings. The following section reviews the key understanding achieved in 

the use of PPC as a co-blend of various polymer formulation systems, including biodegradable 

and non-biodegradable polymers. Process technology, compatibilization chemistries and their 

impact on the phase morphology and performance attributes of the blend are also reviewed.  

3.1. PPC based polymer blends 

In order to improve processability and/or cost structure of PPC,  melt blending is one of the most 

cost-effective and technically less challenging method to prepare polymeric materials with 

desirable features, and as such, it is crucial to the plastic industry[133]. Many commercially 

successful blends are made through traditional melt blending processes (e.g. extrusion). For 
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instance, super tough nylon (Zytel ST801), is an engineering thermoplastic made by melt 

compounding of nylon 6,6 with functionalized rubber. Interactions, miscibility, compatibility, 

composition, and individual component properties are some of the crucial parameters that 

determine polymer blend properties [134]. The interactions between polymers can be characterized 

by the Flory–Huggins thermodynamic interaction parameter, which in heterogeneous blends can 

be related to the size of the dispersed particles [135]. Depending on the component polymer – 

polymer interactions, polymer blends can be categorized as (i) miscible; forming a single phase, 

(ii) immiscible; forming two phases while remaining compatible, and (iii) incompatible with high 

interfacial tension [136,137]. Miscible blends can be produced when the polymer blend possesses 

single-phase morphology at the microscopic level. On the other hand, the morphological features 

of immiscible blends exhibit phase separation at the microscopic level. In general, most polymer 

pairs are not miscible because of low entropy of mixing and high enthalpy besides difference in the 

solubility parameter of the blended components. When immiscible polymer blends show 

improvements in their mechanical performance, they could be considered as compatible blends or 

partially miscible blends [134].  

Thermal, mechanical, and thermomechanical properties are typically used to identify the individual 

polymers miscibility and compatibility within the blend at the molecular scale [138]. For example, 

miscibility of polymers in a blend system can be recognized through glass transition temperature 

(Tg) measurements. This is because miscible blends show single Tg while immiscible blends show 

multiple Tg. Understanding of the phase morphology and compatibility of immiscible polymer 

blends is crucial because these features substantially influence the performances of the final blend 

material. The phase morphology of polymer blends itself depends on the blended polymers 

viscosity, processing parameters, blend composition, and compatibility.  
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Compatibilization is an effective strategy to improve the performances of the immiscible polymer 

blends by enhancing the compatibility between the blended components. The compatibility of the 

blends can be enhanced by the incorporation of additives such as compatibilizers [139–141]. A 

compatibilizer improves the interfacial adhesion or reduces the surface tension between two 

polymer phases via intermolecular bonding and chain entanglements, thereby enhancing the 

mechanical properties of the blends [134]. Thus, the formation of miscible and compatible blends 

is essential to achieve enhanced properties as compared to their individual counterparts. The first 

patent on compatibilization of binary polymer blends was published in the 1950s. From 1960s 

onwards, the compatibilization of different binary polymer blends such as poly(vinyl chloride) 

(PVC)/polyolefin [142], PVC/elastomer [143], PVC/polybutadiene [144], poly(vinylidene 

fluoride) (PVDF)/poly(methyl methacrylate) (PMMA) [145], and polystyrene (PS)/poly(vinyl 

methyl ether) [146] have been investigated in both academia and industries. The first reviews on 

the compatibilization and interfacial properties of polymer blend systems were published in the 

1970’s by Yu [147], Gaylord [148], Lipatov [149], and Paul [150,151]. In recent reviews, 

Muthuraj et al. [134], and Imre and Pukánszky [135] comprehensively reviewed the 

compatibilization of varies biodegradable polymer blends. These review articles pointed out that 

the compatibility of polymer blends could be enhanced by adding reactive or non-reactive 

compatibilizers. Among the compatibilizers, block copolymers, graft copolymers, targeted fillers, 

impact modifiers, and γ-irradiation or electron beam (combined with or without a co-agent) are 

widely used to enhance the compatibility of polymer blends. 

3.2. PPC blends with biodegradable polymers 

CO2 co-polymers, such as poly (propylene carbonate), in their current development stage will not 

fulfil most performance requirements for commercial applications as a polymer. This is because 

such polymers have high susceptibility to hydrolysis and low molecular weight, resulting in 
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relatively poor mechanical properties, and rather low melting temperature as discussed in section 

3.1. Consequently, blending of such polymers with other polymers to improve both their 

performance and cost structure have been of much interest, in line with the concept of 

sustainability and eco-friendliness (Figure 9). In other cases, PPC have been used as an “additive” 

to improve the performance or environmental sustainability of other polymers. In this section, 

various blends of CO2 co-polymers, with a focus on PPC, with biodegradable and non-

biodegradable polymers are discussed (Table 4). 

 

Figure 9. PPC blended with different biodegradable and non-biodegradable polymers. 

3.2.1. PPC/PLA blends  

Poly (lactic acid) (PLA) is among the most promising polymers in the emerging bioplastics market 

due to its availability and attractive cost structure. This polymer is a biocompostable thermoplastic 

with good transparency that can be derived from fully renewable monomer, i.e. lactic acid [60]. 

The lactide monomer can form two stereoisomers because lactic acid contains two chiral carbon 

centers. Therefore, the performance of PLA is strongly dependent on its stereochemical monomer 
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compositions [134]. PLA can be used for many applications including packaging, textiles, three 

dimensional (3D) printing, electronic components, cosmetics, biomedical (e.g., biocompatible 

sutures, implants, biologically active controlled release devices), etc. Because of its renewability 

and compostability, PLA is widely considered as a very promising material to produce bio-based, 

biocompostable and in some cases, biodegradable polymer blend materials with other biopolymers 

pairs.  Blending of PLA with other polymers usually target improving its performance properties 

(e.g., brittleness), cost structure, and biodegradability. Ma et al. [152] studied the effect of melt 

blending PLA with PPC at 110-120 ℃. Two independent glass transition temperatures assigned to 

PLA and PPC, respectively were observed. It was reported that the Tg of PPC phase increased 

from 22 to 34 ℃ with increasing PLA component in the blend, whereas the Tg of PLA phase 

decreased slightly (by 3 ℃) as the PPC concentration increased in the blend. The changes in the Tg 

of both polymers indicated the partial miscibility between PLA and PPC [152]. It was also 

mentioned that the thermal stability of PPC was improved in the blends compared to neat PPC.  

Due to the inherently higher tensile strength and Young’s modulus of PLA, the PPC/PLA blend’s 

tensile yield strength and modulus increased with increasing PLA content. The experimental 

tensile yield strength and Young’s modulus values of the PPC/PLA blend with up to 60 wt. % PLA 

were superior to theoretically predicted values. On the contrary, lower experimental tensile yield 

strength and Young’s modulus were observed compared to theoretically calculated tensile yield 

strength and Young’s modulus values when the PPC/PLA blends prepared with higher than 60 

wt.% PLA. Such a negative deviation of PPC/PLA blends with higher than 60 wt. % PLA was due 

to the poor interfacial interaction between the components. The toughness of the PPC/PLA blends 

increased with increasing PLA content up to 50 wt. %. However, the toughness of the PPC/PLA 

blends has reduced when the PLA content increased to 50-70 wt. %. The observed toughness 

reduction was attributed to a phase inversion. However, another study [60] on a PLA/PPC blends 
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gave different experimental data and conclusions from the study mentioned above. In this study, 

the blend of PPC and PLA was also prepared through extrusion blending, but at a temperature of 

170 oC [60]. There were no changes observed in the Tg of the two polymer phases. Moreover, it 

was reported that a good dispersion of the components in the matrix was detected, illustrating a 

good compatibility. The Young’s modulus ranged from 600 to 3800 MPa, and the yield strength 

linearly changed from 4 to 80 MPa with increasing PLA content in the PPC matrix [60].  

A similar observation was reported in an injection moulded PPC/PLA blends [78].  The injection 

moulded PPC/PLA (60/40) blends was considered as an optimal blend because it provided a 

substantial increase in elongation without too much compromise in tensile strength. Therefore, the 

PPC/PLA (60/40) blend was selected by Sun et al. [78] and compatibilized with different 

concentration (0.2, 0.5 and 1 phr) of epoxy chain extender (Joncryl ADR 4368-C). Chain extenders 

are normally low molecular weight multifunctional compounds with desirable thermal stability. 

Melt processing of polymer blends in the presence of such chain extenders can cause long chain 

branch structures, crosslinking structures, block or graft copolymer structure formations via 

covalent bonding [153]. Such covalently linked block, graft or crosslinked copolymer structures 

enhance the compatibility between the component blend polymers. As a result of the covalent 

bond, such chain extender compatibilized polymer blends exhibit much higher mechanical 

properties as compared to their corresponding blends prepared without chain extender. For 

example, the PPC/PLA (60/40) blend prepared with 0.5 phr chain extender showed a dramatic 

increase in elongation (1940%), tensile strength (37%), and secant modulus (16%) compared to the 

baseline PPC/PLA (60/40) blend without compatibilizer. These improvements suggest that PPC-

Joncryl-PLA co-polymer formation improved the compatibility between the PPC and PLA in the 

presence of Joncryl. In the same study, it was also noted that the water vapor permeability (WVP) 

of the base PPC was reduced after blending with PLA due to the high crystallinity of the PLA. The 
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oxygen permeability (OP) of the PPC/PLA blends were much lower than both PPC and PLA. Such 

permeability improvements are very desirable attributes for packaging applications. However, the 

use of Joncryl compatibilizer did not positively influence the WVP and OP of the PPC/PLA blends 

compared to PPC/PLA blend without Joncryl. Overall, an optimal Joncryl concentration could be a 

potential chain extender and compatibilizer for PPC/PLA blend systems [78].  

Yao et al. [154] improved the compatibility of the PPC/PLA blend with the help of maleic 

anhydride (MAH). The MAH concentration was varied from 0.15 to 1.5 wt. % to enhance the 

compatibility and miscibility of the PPC/PLA blends. The PPC/PLA blend prepared with 0.3 wt.% 

MAH exhibited an optimal improvement in compatibility based on the reduction of inclusion 

phase size. When the PPC/PLA blends are prepared with higher than 0.3 wt.% MAH, the 

compatibility between the blends was reduced, which is in agreement with their earlier study [80]. 

The ductility of the PPC/PLA blend was improved in the presence of MAH compared to the 

PPC/PLA blend without MAH. The enhanced ductility of the PPC/PLA was attributed to the 

plasticization effect of the MAH.  In the PPC/PLA blend, the PLA content was varied while 

keeping constant ratio (0.3 wt.%) of MAH. While the PPC/PLA blends tensile strength has 

reduced up to 30 wt.% PLA incorporation, an increase was observed when the incorporated PLA 

was beyond 30 wt.%.   

Influence of polyvinyl acetate (PVAc) on the MAH end-capped PPC (MAH-PPC)/PLA blends 

compatibility was explored by Gao et al. [155]. A uniform dispersion of MAH-PPC was obtained 

in the MAH-PPC/PLA blends when 10 wt.% PVAc was added into the MAH-PLA blends. The 

PVAc was located at the interface of the MAH-PPC/PLA blends to bridge the MAH-PPC and 

PLA. The formed bridges led to an increase in the compatibility between PLA and MAH-PPC 

irrespective of the blend composition in the resulting blends. The improved interfacial adhesion 

between PPC and PLA resulted in finer phase morphology which was far more favorable in 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

38 
 

triggering large-scale shear yielding compared to the coarse phase morphology observed in the 

PPC/PLA blend without compatibilizer [156]. It was observed that the PPC/PLA blends with PPC 

as a major phase showed tensile strength (28.5 MPa) and Young’s modulus (1.4 GPa) values 

comparable to commodity polymers such as polypropylene [157].  

The elongation at break of the MAH-PPC/PLA blends was effectively improved with the help of 

tetrabutyl titanate (Ti(OBu)4) transesterification catalyst [158]. During this reactive process, 

oligomers of MAH-PPC, MAH-PLA and MAH-PPC-b-PLA co-polymer were generated by direct 

ester-carbonate exchange, alcoholysis, and acidolysis reactions. The produced block co-polymer 

was located at the interface to compatibilize the MAH-PPC/PLA blend while the formed oligomers 

plasticized the MAH-PPC/PLA blend. Due to this plasticization effect, the elongation of the MAH-

PPC/PLA blends have increased with plastic deformation whereas tensile strength has decreased 

compared to the baseline pristine blend. Among the produced blends, a maximum elongation (~ 

400%) was observed in the MAH-PPC/PLA/Ti(OBu)4 (70/30/1 phr) blend with a tensile strength 

of ~ 29 MPa. However, the impact resistance of the MAH-PPC/PLA blend did not show 

significant improvement after compatibilization. This could be attributed to a lack of elastomeric 

or rubber structure formation to spread deformation energy to large parts of the matrix.  

However, the impact strength/toughness of the PLA was substantially improved by mechanical 

blending with commercially available thermoplastic PPC polyurethane (PPCU) [159]. The improved 

toughness of the PLA was due to the shear yielding that occurred in the PLA matrix by the cavitation of 

PPCU particles.  The PPCU/PLA (50/50) blend showed impact strength of 102.8 kJ/m2 with an 

elongation at break of 457.9%[159]. In another study, PPC-b-PLA co-polymer was formed in 

PPC/PLA blends during reactive blending with Ti(OBu)4 catalyst (0.5 and 1 wt.%) by 

transesterification (Figure 10) [160]. The formed PPC-b-PLA copolymer improved the miscibility 

and compatibility of the resulting blend. In addition to an increase in compatibility/adhesion 
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between PPC and PLA phase, the PPC-b-PLA co-polymer can also form block co-polymer 

micelles in the matrix, which decreases the coarsening rate in the morphology development as 

shown in Figure 10b. The elongation at break of PPC/PLA (60/40) blend with optimal catalyst 

concentration (0.5 wt.%) exhibited a nearly two-fold increase compared to the uncompatibilized 

PPC/PLA (60/40) blend. Hwang et al. [161] improved the compatibility between PLA and PPC 

blend with MAH and Luperox 101 initiator by reactive processing. The oxygen barrier properties 

of the blends slightly increased compared to neat PLA because of the increased crystallinity.  

 

Figure 10. Schematic representation of the compatibilization of PLA/PPC blends with the 
transesterification reaction. Adapted from ref. [160] copyright © 2018  

 

In another study, the miscibility of blown film PPC/PLA blend was improved with the help of 9 

wt.% biodegradable plasticizer i.e., poly(1,2-propylene glycol adipate) (PPA) [162]. Due to the 

high transparency of PLA, the clarity of the PPC/PLA/PPA blend was higher when the blend was 

prepared with higher PLA content. A similar trend was observed in the haze values. Depending on 

the PPC/PLA compositions, the machine direction and transverse direction tear strength of the 

resulting blend films varied between 100.6-131.8 kN/m and 112.8-143.4 kN/m, respectively. These 

tear strength values are much higher than polyethylene film (73.3 kN/m in the machine direction 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

40 
 

and 83.3 kN/m in the transverse direction) that was processed similarly [162]. In summary, several 

studies have demonstrated that the blending of PLA with PPC, together with coupling agents can 

improve key performance features (e.g. mechanical, thermal properties), and processability of PPC 

polymers.  

3.2.2. PPC/PHBV blends  

Microbial – produced poly (hydroxy butyrate-co-valerate) (PHBV) is fully biodegradable bio-

polyester polymer, which has potential application in a wide range of application platforms, 

including the packaging and biomedical fields[163]. PHBV, produced by a variety of 

microorganisms as an internal carbon storage, is an optically active and biocompatible 

thermoplastic amenable to melt-processing. The relatively high cost, brittleness and narrow melt-

processing window constitutes major limitations of PHBV [60,163]. With the intention of utilizing 

the ductile PPC to modify the brittleness of PHBV while maintaining the biodegradability, Corre et 

al. [164] prepared a blend of PPC and PHBV through extrusion blending at 170 oC. The study 

showed that the rather fragile mechanical behavior of PHBV was improved in the presence of 

PPC, as observed from the improved elongation at break. The impact strength of the blends was 

also significantly enhanced compared to the neat PHBV, which is a significant improvement 

concerning its potential utilization for film development. Moreover, the barrier properties of PPC 

(for both oxygen and water) were improved due to the high crystallinity of PHBV. This study 

demonstrated that blending PHBV and PPC could be a practical and feasible way to extend their 

application field as bioplastics, especially in the packaging platform.  

Injection molded PPC/PHBV blends with different concentrations of PHBV were prepared by 

Enriquez et al. [165] and Corre et al. [164]. Owing to the high strength and stiffness of PHBV, the 

tensile yield strength, Young’s modulus, and heat deflection temperature of the PPC all increased 
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with increasing PHBV content in the resulting PPC/PHBV blends. In these samples, the toughness 

of the PPC reduced with increasing PHBV due to the inherent rigidity of the PHBV. Furthermore, 

it was observed that the PPC shrinkage could be entirely eliminated with the addition of 30 wt.% 

PHBV [165]. Corre et al. [164] used melt blended PPC/PHBV films (100 and 150 µm) to study the 

oxygen permeability (OP) and water vapor permeability (WVP) at 23 oC and 50% RH [164]. The 

PHBV had lower WVP and OP compared to neat PPC because of the crystallinity of PHBV. The 

lower oxygen and water permeability of the PHBV assisted in the reduction of the OP and WVP of 

the PPC/PHBV blends compared to neat PPC. The reduced OP and WVP from neat PPC down to 

neat PHBV were not linear. It was found that the PPC/PHBV (50/50) blend has lower OP and 

WVP than other prepared blends. This phenomenon could have come from the thinner morphology 

of the blend, leading to a longer torturous pathway [164].   

Melt compounding of PLA/PHBV/PPC ternary blends were prepared to study their compatibility 

and mechanical performances [166].  The produced ternary blends were not miscible. Despite their 

immiscibility, the ternary blends showed superior toughness compared to binary blends of PPC 

with either PLA or PPC. The improved toughness was mainly due to the synergistic effect of the 

dispersed components [166]. Similarly, the performances of a solution blended PPC/PHBV with 

different blend compositions were investigated by Peng et al. [167] and Tao et al. [168]. The 

PPC/PHBV blends showed complete immiscibility because of their difference in crystallinity. The 

crystallization rate difference between PPC and PHBV hindered the reactivity between the 

molecules to enhance miscibility.  

Reactive compatibilization is expected to improve the interfacial interaction between PPC and 

PHBV, thereby enhancing the performances of the resulting blends. For example, Li et al. 

[169,170] conducted reactive compatibilization of a PPC/PHBV blend with 0.2 wt.% dicumyl 

peroxide (DCP) and 1 wt.% glycidyl methacrylate (GMA). During reactive processing, PHBV 
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graft PPC co-polymer was formed by a transesterification reaction. The formed copolymers 

improved the compatibility with small and uniform droplets of PHBV inclusion phase. 

Furthermore, the compatibilized PPC/PHBV blend showed about 12.3% reduction in crystallinity. 

The mechanical performances of the reactive compatibilized PPC/PHBV blends were compared 

with mechanically blended PPC/PHBV blends [170]. The impact energy and elongation at break of 

the reactive compatibilized PPC/PHBV blends were 10 and 18 times higher than the mechanically 

blended corresponding blends, respectively. As explained earlier, the observed improvements in 

the mechanical properties were due to the enhanced miscibility with the help of reactive 

processing.  

3.2.3. PPC/PHB blends 

Poly (3-hydroxybutyrate) (PHB) is another promising biodegradable thermoplastic polyester. It 

possesses superior biodegradability and biocompatibility that makes it a favorable material in the 

face of global concern associated with plastic waste pollution and non-renewable fossil feedstock 

utilization.  Additionally, PHB has very similar properties to conventional polypropylene and 

polyethylene, which are among the most extensively utilized petroleum-based commodity plastics 

[134,171]. Nonetheless, the brittleness and high-cost structure of PHB has limited its commercial 

success in many applications [134,172]. Since PPC is a ductile polymer with high elongation at 

break, it was hypothesized that blending of PPC with PHB could be an appropriate route to 

produce polymer blends with improved and optimized properties.  

For instance, Yang and Hu [172], investigated a solution blend of PHB and PPC using chloroform 

as a common solvent. Two distinct observations were made here depending on the concentrations 

of the PPC and PHB component regimes. When higher loadings of PHB were used (>30 wt. %), 

two distinct Tg values were observed, indicating the immiscibility between PPC and PHB. The 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

43 
 

crystallization behavior of PHB did not show any significant changes as PPC was added into the 

system. The morphological study of the blends showed clear phase separations between the PPC 

and PHB phases in these composition ranges. The observations here demonstrated that there was 

no miscibility between the two polymers as the PHB concentration in the blend increased beyond 

30wt. %. However, the elongation at break of PHB was significantly enhanced with a slight 

decrease in the tensile strength, which was indicative of an improvement in the toughness of the 

blends. This suggests that PPC could be acting as a plasticizer of the PHB in these concentration 

ranges.  The same study [172] reported that the solution blending of PPC with PHB exhibited 

enhanced  miscibility when the blends were prepared with <30 wt.% PHB concentration. In 

another study, solution casting (chloroform as solvent) of PPC/PHB blend was performed. Results 

demonstrated that these blends are immiscible in most compositions and only miscible when the 

PHB content is 10 wt.% or lower [173]. Yang and Hu [172] observed that the addition of PHB 

enhanced the strength of PPC, but reduced its ductility tremendously. In fact, the ductility 

decreased from 1090 to 2.7 % with the addition of 40 wt. % PHB, due to the crystallization of 

PHB within the blend.  

More recently, researchers are working on modifying and improving the miscibility of PPC/PHB 

blends so that a new green material with tailored properties can be obtained. For example, 

electrospinning of PPC/PHB blends with acetyl triethyl citrate (ATEC) plasticizer and polyvinyl 

acetate (PVAc) compatibilizer was prepared by using a solvent mixture of 90% chloroform  and 

10% dichloromethane [174]. With the incorporation of these additives into the PPC/PHB blend, 

the miscibility of the blends was greatly improved via hydrogen bonding interaction (Figure 11). It 

could be seen that the blend in the absence of additives exhibited complete immiscibility with a big 

inclusion domain size. On the contrary, the inclusion domain size was reduced considerably with 

uniform dispersion and an enhanced embedment of PPC in the PHB matrix when the blend was 
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prepared with higher additive loading (Figure 11 d and d’). This phenomenon was ascribed to the 

fact that the additives aimed at dispersing the PPC into small domains in the PHB matrix, leading 

to interactions between PPC and PHB. As a result, the electrospun PPC/PHB/PVAc/ATEC 

(25/43/12/20) blend (prepared with 25% solvent concentration) fibres showed a maximum 

elongation at break of 475% and a maximum tensile strength of 22 MPa. The fibres developed as 

such could be used in air and water filters, absorbent pads in diapers, wound dressings, surgical 

sutures, and drug delivery applications. 

 

Figure 11. Optical micrographs of the PHB/PPC/PVAc/ATBC blends with and without polarized 
(a, a’) 75/25/00/00, (b, b’) 47/25/08/20, (c, c’) 45/25/10/20 and (d, d’) 43/25/12/20. Adapted from 
reference168 copyright © 2017. 

 

Propylene carbonate (PC) was shown to be an effective plasticizer for PPC. For example, Zhou et 

al. [175], investigated MAH end-capped PPC/PHB blends plasticized with different concentrations 

(0-15 wt.%) of PC to study the brittle-ductile transition of the resulting blends. In this study, the 

brittle-ductile transition of the PPC/PHB (50/50) blend had reduced from 60 to 10 oC after the 

addition of 12.5 wt.% of PC. As expected, the modulus of the plasticized PPC/PHB blend had 

diminished with increasing PC content.  The PPC domain size in the plasticized PPC/PHB blend 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

45 
 

became uniform and smaller. This phenomenon was demonstrated to be beneficial in improving 

the toughness and reducing the brittle-ductile transition of the resulting blends. 

3.2.4. PPC/PBS blends 

Poly (butylene succinate) (PBS) is an aliphatic biodegradable polyester that can be produced from 

poly-condensation of succinic acid and 1,4-butandiol[176–179]. Recent efforts demonstrated the 

production of succinic anhydride building block via fermentation of polysaccharides, and as such 

PBS can be partially biobased [134,180]. There is also an intense research activity to produce 1, 4-

butandiol from renewable feedstock, and as such it is more than likely that PBS can be completely 

bio-resourced in the next few years. PBS as a material is a semi-crystalline, biodegradable and 

compostable polymer with excellent thermal stability (wide processing window) that offers 

outstanding material properties comparable to conventional polymers such as polyethylene and 

polypropylene [134]. Therefore, PBS is an interesting candidate to produce fully biodegradable 

polymer blends with PPC. Melt blended PPC/PBS binary blends were investigated by Zhang et al. 

[181], Pang et al. [182], Chen et al. [183], and Henke et al. [184]. Zhang et al. [181] observed the 

partial miscibility of PPC/PBS blends that was prepared with 10 wt.% PBS. When the PBS content 

increased above 10 wt. %, the resulting blends exhibited complete immiscibility due to the onset of 

crystallization, which led to phase separation. It was also observed that the PPC/PBS blend with 10 

wt. % PBS showed minimal increment in the impact strength compared to neat PPC. The impact 

strength of the PPC/PBS blends was negatively affected when the PBS content was increased 

above 10 wt. % in the resulting blends. In contrast, the ductility of the PPC/PBS blends has 

gradually reduced up to 20 wt. % PBS incorporation, while further addition of PBS resulted in an 

exponential deterioration resulting in a brittle polymeric blend. Optimum properties were obtained 

in the PPC/PBS (90/10 wt. %) blends with considerable miscibility.  
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Unlike the observation by Zhang et al. [181], Pang et al. [182] noted the enhanced miscibility with 

increasing PBS content in PPC/PBS blends. This study claims that the enhanced miscibility was 

attributed to the reduced viscosity of these blends. The viscosity reduction had resulted from the 

higher processing temperatures and processing times. Due to the orientation-strengthening effect 

of PBS, both the yield strength and strength at break of PPC/PBS blends were enhanced with 

increasing PBS content. Furthermore, the yield strength of the blends exhibited a marked 

improvement in the PPC-rich regimes. Henke et al. [184] prepared a series of PPC/PBS blends 

without any compatibilizer and found that almost all mechanical and thermal properties 

deteriorated, indicating that PPC has a detrimental effect on neat PBS and vice versa. The impact 

toughness of the PPC/PBS blend could be improved by the addition of ˂ 10 wt.% of PBS. The 

shrinkage of the PPC was entirely eliminated by blending it with 50 wt.% PBS.  

The performances of the PPC/PBS blend could be effectively improved with the incorporation of 

suitable additives like compatibilizers or coupling agents. Chen et al. [183] selected 

triphenylmethane triisocyanate (TTI) (0–0.54 wt.%) as a reactive compatibilizer  to compatibilize a  

PPC/PBS blend film by a calendaring process. Both tensile strength and ductility of the blends 

increased with increasing TTI up to 0.36%, above which it deteriorated significantly. In this study, 

processing parameters such as die temperature (160–210 °C) and calendaring roller speed (15–35 

rpm) were optimized to enhance the performances of the resulting blends. The blends prepared 

with a die temperature of 200 oC showed optimal mechanical properties. Due to the orientation of 

the crystalline phase toward machine direction (MD), the mechanical properties of the blend films 

were superior in MD as compared to transverse direction (TD). Similarly, calendar roller speed 

enhanced the properties in MD while it deteriorated in TD.  

In another study,  PPC was modified with L-Aspartic acid (Asp) to improve its melt processability 

[86]. It can be seen from the Figure 12 that the PPC processed without Asp at 120 oC (Figure 12A) 
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and 150 oC (Figure 12C) showed lower viscosity because of the molecular weight reductions. On 

the other hand, PPC modified with Asp exhibited no significant reduction in the average molecular 

weight indicating good thermal stability at 120 oC (Figure 12B) and 150 oC (Figure 12D). The 

compatibilizing effect of the Asp in the PPC/PBS blends was investigated with 2 wt.% of Asp. The 

resulting PPC/PBS/Asp blends exhibited remarkably improved flexibility, yield strength, and 

Young’s modulus compared to similar blends prepared without Asp. The observed improvement in 

the properties was attributed to the enhanced interfacial compatibility between PPC and PBS with 

the help of Asp. 

 

Figure 12. The extrusion photographs of (A) extruded neat PPC at 120oC, (B) extruded PPC with 
2% Asp at 120 oC, and (C) extruded neat PPC at 150 oC, (D) extruded PPC with 2% Asp at 150 oC. 
Adapted from ref. [86] copyright © 2016. 

 

3.2.5. PPC/Starch blends 

Starch is a renewable, biodegradable, natural polysaccharide polymer. It has attracted significant 

attention as a co-blend component of various biodegradable and non-biodegradable polymers to 

produce sustainable materials due to its film-forming properties, melt processability after 

plasticization, renewability, biodegradability, modifiability, low cost, and abundance [185,186]. In 

this sense, the inherent properties of starch derived from various resources were exploited as a co-

blend of CO2 based co-polymers, specifically PPC in the last two decades. Several of these studies 
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have focused on optimizing the processing method (e.g. melt blending, reactive blending, etc.,), 

and the material performance of starch–PPC blend. For instance, Ge et al. [187] conducted melt 

compounding of PPC with corn starch (CS) at 150 ℃.  

The performances of PPC/CS blend systems were investigated by Peng et al. [188], Ge et al. 

[187], Zeng et al. [189], and Ma et al [190]. Peng et al. [188] prepared PPC/CS blends from 100/0 

to 60/40 ratios and found that the resulting blends exhibited good compatibility due to hydrogen 

bonding interaction between the hydroxyl groups of CS and carbonyl groups of PPC. Quantum 

mechanical modelling, based on density functional theory (DFT), has been used to confirm 

hydrogen bonding interactions between the PPC and starch [191]. It was predicted that two 

hydrogen bonds with -11 kJ/mol average binding energy per hydrogen bonding could form 

between the monomer of amylose and one monomer of PPC. The computationally predicted 

hydrogen bonding distance between the amylose and PPC can be seen in Figure 13.   

 

Figure 13. Geometrically optimized structures of one amylose monomer with one PPC monomer 
complexes at (a) quantum mechanical calculation based on DFT and (b) Semi-empirical method 
based calculation. Adapted from ref. [191] copyright © 2007. 
 

In another study[187], PPC/CS blend ratios of 65/35 to 30/70 were prepared. The Young's 

modulus of the PPC was enhanced with the addition of starch [187,188], irrespective of the 

concentration.  The experimental Young’s modulus values of the PPC/starch blends were found to 

be higher than the theoretical values of the blends. The higher experimental Young’s modulus was 

due to the excellent interaction between the PPC and starch. On the other hand, the percent 
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elongation at break of PPC had drastically reduced from 641 to 1.87% when PPC/starch blends 

were prepared with 35 wt.% starch. The reduced elongation at break was in agreement with the 

observed Young's modulus improvements of the blends [187].  It was observed that the PPC blend 

with higher amount of CS content showed voids and gaps between the PPC matrix and CS 

particles. The observed voids and gaps between the PPC and CS were attributed to the 

incompatibility and poor interfacial adhesion between the blended components [187], at higher 

loading of starch 

Chemical modification of starch is one way to improve the compatibility of starch with PPC. As an 

illustration of this, Zeng et al. [189] modified starch via acetylation to enhance the hydrophobicity 

of the resulting starch. As expected, the hydrophobicity of the modified starch was dependant on 

the degree of substitution of the acetyl groups. Unlike lower degree of acetyl group substitution 

(≤0.51), the higher degree of acetyl group substitution showed a single-phase microstructure. The 

acetylated starch/starch acetate with PPC blends showed improved compatibility and strong 

interfacial adhesion between the blend phases. Zeng et al [189] also studied the mechanical 

properties of the PPC/starch acetate blends. They found that the tensile strength increased with 

increasing starch content while the impact strength was decreased. The degree of acetyl group 

substitution (DS) on the starch controlled the mechanical properties of the PPC/starch acetate 

blends. For instance, a maximum strength was observed in the PPC/starch acetate blend prepared 

with 0.51 DS starch. Due to the good dispersion of starch acetate in the PPC matrix, the continuity 

of the ductile PPC phase was interrupted when the blends were prepared with a higher DS starch 

content. Consequently, the toughness of the resulting blend was reduced. Overall, the PPC/starch 

acetate blends exhibited enhanced strength and ductility compared to that of the neat PPC.  

Similar to melt blended PPC/acetylated starch, the tensile properties of the PPC/S-g-PMA blends 

were investigated by Ge et al. [192] through melt blending PPC/polymethylacrylate grafted starch 
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(PMA-g-S). This blend showed dramatic improvement in the interfacial adhesion and 

compatibility between the PPC and starch [192]..  The PPC/PMA-g-S blends showed an almost 

linear tensile strength increment up to 35 wt.% S-g-PMA loading. There was no change in tensile 

strength when S-g-PMA was incorporated beyond 35 wt.% compared to the neat PPC. The 

toughness of the PPC was also enhanced with the addition of S-g-PMA due to the secondary 

bonding interaction between the components. Due to the stiffening effect of modified starch, the 

modulus of the PPC was improved with the addition of up to10 wt.% starch, while the further 

addition of S-g-PMA resulted in saturation.  

In a separate study, 1 wt.% succinic anhydride (SA) was used to compatibilize PPC/starch blend as 

reported by Ma et al. [190]. When the PPC/starch blends were prepared with SA, a better 

interfacial interaction between the PPC and starch was observed compared to uncompatibilized 

blend. Besides, morphological analysis revealed that the starch particles were very smooth in the 

uncompatibilized blend while coarse starch particles (black arrow in Figure 14C) were formed in 

the compatibilized blend (Figure 14c). This morphological observation suggests that the 

compatibility between the PPC and starch was improved in the presence of SA.  The improved 

compatibility between the PPC and starch with SA can be explained as follows: SA can end-cap 

with PPC and starch during melt processing. When SA end-capped PPC and starch were located in 

the same vicinity to interact with PPC and starch, the interfacial tension could reduce, resulting in 

the improvement of compatibility. The enhanced compatibility between the PPC and starch with 

SA increased the mechanical properties (e.g., break stress, break strain, and Young’s modulus) 

compared to similar blends without SA (Figure 14a and 14b).  

Since the components are bio-based and biodegradable, the PPC/starch blends are also bio-based 

and expected to be fully biodegradable, which gives it an added advantage of being environmental 

friendly. In addition, the relatively low cost of starch drives the overall cost of the PPC/starch 
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blend besides the observed improvements in mechanical and thermal properties of such PPC – 

PPC blends. Thus, a blend of PPC with starch have great potential to be utilized in various 

applications that benefit from biodegradability and improved cost structure.  

 

Figure 14. The effect of starch contents on mechanical properties (a and b) of PPC/starch 
composites with and without SA; (c) surface morphology of PPC/starch (70/30) blend (a and b) 
and PPC/starch/SA blend (c and d). Adapted from ref. [190] Elsevier © 2017. 
 

3.2.6. PPC/EVOH blends  

Poly(ethylene-co-vinyl alcohol) (EVOH) is a biodegradable, semi-crystalline thermoplastic with 

excellent processability, transparency, chemical resistance and gas barrier properties [193]. Studies 

have explored the performance improvement of PPC through blending with EVOH. In order to 

investigate the advantages of EVOH blending with PPC, Wang et al. [194] prepared PPC/EVOH 

blends with different compositions by melt blending. They have found that PPC/EVOH blends 
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were not miscible when the blend was prepared with low EVOH (<40 wt. %) content. However, 

when the PPC/EVOH blends were made with higher than 40 wt.% EVOH, the resulting blends 

showed better miscibility due to molecular interaction between the PPC and EVOH. There was no 

change in the tensile strength with up to 30 wt. % of EVOH incorporation to the PPC. Owing to 

the rigidity of EVOH, the ductility of the PPC blends were deteriorated with the incorporation of 

EVOH up to 30 wt. %. A further increase in EVOH content, up to 60 wt. %, showed the tensile 

strength of the blend increasing without any change in ductility. The increased strength with 

increasing EVOH content (40-60 wt. %) was due to the enhanced miscibility via intermolecular 

interaction between the EVOH and PPC. The EVOH and PPC have contributed synergistically to 

provide rigidity and ductility to the PPC/EVOH blends, respectively. It was concluded that the best 

performances were obtained in the PPC/EVOH blends with EVOH content between 40-60 wt. %.  

After obtaining a proper compatibility between an optimized polyvinyl alcohol (PVA) and  EVOH 

binary (70 wt. % PVA – 30 wt. % EVA) blend, Chen et al. [195] prepared ternary blends of PVA, 

EVOH, and ultrahigh molecular weight (Mn = 250 KDa) poly(propylene carbonate) (UHMW-

PPC). The UHMW-PPC content was varied from 50 to 100 wt. % in the ternary blend. Good 

compatibility across various phases was observed in the resulting ternary blends because of the 

reaction between the hydroxyl groups and carbonyl groups of the PVA/EVOH blend and UHMW-

PPC, respectively. As a result, a considerable increase in tensile strength of the PPC matrix was 

observed due to the reinforcing effect of PVA/EVOH. However, the elongation at break of neat 

PPC (350 %) was significantly reduced (~5%) after the incorporation of 10 wt. % PVA/EVOH. 

There was no further reduction in the elongation at break with increasing PVA/EVOH content in 

PPC.  

3.2.7. PPC blends with other biodegradable polymers  
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In addition to PLA, PHB, PHBV, PBS, starch, and EVOH, some other biodegradable polymers 

have also been blended with PPC to produce PPC based sustainable materials. For example, PBAT 

is a semi-aromatic, biodegradable polymer that is produced by polycondensation reaction between 

1,4-butanediol, terephthalic acid, and adipic acid[134,176,178,179,196]. It has mechanical 

properties similar to that of low-density polyethylene (LDPE), while the oxygen barrier property of 

the PBAT is 50% lower than LDPE [134] limiting its application in high barrier packaging. The 

PBAT properties can be tailored through blending with PPC to extend its application range. For 

example, various ratios of PPC/PBAT blend blown film were investigated by Pan et al. [197]. In 

this study, the Tg and crystallite dimension of the PBAT was reduced in the presence of amorphous 

PPC. The tensile strength and tear strength of the PPC/PBAT blend films were much higher than 

the neat PBAT. Specifically, the tear strength of the PPC/PBAT (50/50) blends showed 166 kN/m 

(transverse direction, TD) and 175 kN/m (machine direction, MD). This value was significantly 

higher than that of the neat PBAT tear strength (e.g. 74 kN/m (MD) and 42 kN/m (TD)). The CO2, 

N2 and O2 permeability coefficient of the neat PBAT also reduced from 7.12 to 2.61 barrer, from 

0.59 to 0.087 barrer, and from 0.73 to 0.17 barrer after blending it with 50 wt. % PPC, 

respectively. CO2 has better solubility in PPC, because PPC itself is synthesized from carbon 

dioxide and propylene oxide by co-polymerization. Moreover, owing to the excellent flexibility 

and amorphous character, the PPC can intercalate into the amorphous region of the PBAT, thereby 

restricting the movement of small molecules through the polymeric chains. The reduction in 

permeability of the PPC/PBAT blend towards O2 and N2 was due to the reduced availability of 

active sites in the PPC matrix to form physical interaction with oxygen and nitrogen molecules.  

In the study of Xing et al. [198], PPC was blended with different ratios of cellulose acetate 

butyrate (CAB) (100/0 to 0/100) via melt processing. Even though these blends were 

thermodynamically immiscible, they exhibited partial miscibility due to hydrogen bond 
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interactions. Both tensile strength and elastic modulus of PPC/CAB blends were significantly 

improved with increasing CAB content [198]. For example, the PPC/CAB (50/50) blend exhibited 

21 times higher tensile strength than the neat PPC. These improvements were attributed to the 

strengthening effect of CAB in the PPC. Owing to the compatibility between PPC and CAB, the 

PPC/CAB blend had some level of ductility while increasing the CAB content. Zhang et al. [199] 

also prepared a blend of maleic anhydride end capped PPC (MAH-PPC) with thermoplastic liquid 

crystalline ethyl cellulose (EC) by solution casting. While the study did not include methods for 

analyzing compatibility and miscibility of these blends, it clearly demonstrated the enhancement in 

thermal stability of PPC because of the EC blending.  

Polyvinyl alcohol (PVA) is a biodegradable synthetic polymer with excellent flexibility, chemical 

resistance, high oxygen and aroma barrier properties because of its semi-crystalline structure, and 

comparatively high glass transition temperature (Tg) [100,200]. These features are beneficial to 

improve PPC’s properties in a blend system. In one study, a melt blend of PPC/PVA showed good 

compatibility as a result of  hydrogen bonding between the PPC and PVA, thereby producing a 

fine dispersion of inclusion phase [201]. Hydrogen bonding interaction between the carbonyl 

groups and terminal hydroxyl groups of PPC and hydroxyl groups of PVA was schematically 

represented in (a) and (b), respectively in Figure 15 [201]. The PVA can produce carbonyl groups 

after partial alcoholysis, which can form hydrogen bonding (Figure 15a’) with the terminal 

hydroxyl groups of PPC, thus establishing a physical cross-linked network structure at a 

microscopic level. These network structures localized at the PPC/PVA interface provide good 

compatibility between PPC and PVA at a macroscopic level. Due to the good compatibility, the Tg 

of the PPC was increased from 34.1 to 44.0 °C when 30 wt. % PVA was added into the PPC. Such 

a blend also improved the tensile strength and Young’s modulus of the PPC from 10.5 to 39.7 MPa 

and from 146.5 to above 700 MPa, respectively. When the PPC/PVA blends were prepared with 
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over 50 wt.% of PVA, the exposure of PPC carbonyl group during melt process was limited 

because of the accrued high viscosity. Consequently, weak interaction between the PPC and PVA 

was observed with two relaxation (Tg) peaks. In another investigation, benzenesulfonyl end-capped 

PPC (BC-PPC)/PVA blends were prepared by solution blending [202]. Before making the blends, 

the benzenesulfonyl end capping was employed in PPC to improve the thermal stability of the 

PPC. It was found that the BC-PPC/PVA blends were miscible in the PVA rich composition range 

whereas BC-PPC/PVA blends were immiscible in the PPC rich composition range. The observed 

immiscibility of the BC-PPC/PVA blends were attributed to the presence of end-capped 

benzenesulfonyl, which exhibited repulsive effect due to sulfonyl group and the spatial impact due 

to benzene ring. 

In another study [100], miscible PPC based ternary blends were prepared with PVA and polyester 

based thermoplastic polyurethane (TPU) in a blown film process. The effects of different 

concentrations of a binary blend of PVA and TPU (50%/50%) in PPC matrix were investigated. 

The PPC/(50% PVA/50% TPU) blends did not show phase separation which suggested that the 

blended components were miscible at a microscopic level. In addition, the miscibility was 

validated with a single Tg observation. As a result, the mechanical properties (tensile strength, 

elongation at break, and tear strength) of the PPC/(50% PVA/50% TPU) blend blown films were 

found to be superior to the neat PPC at 0 oC.  At room temperature, the tear strength and elongation 

at break of these PPC/(50% PVA/50% TPU) blown films increased remarkably with the addition 

of 30% (50% PVA/50% TPU) blend. Overall, the PPC/(50% PVA/50% TPU) blown film 

performances were comparable with commercial polyethylene. These observations could widen 

the PPC based material applications in the area of blown film platforms. In another study, Zhang et 

al.[203] demonstrated that the entire composition of PPC/poly(p-vinylphenol) (PVPh) blends are 

miscible with a single Tg. The miscibility of the resulting blends was attributed to the formation of 
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strong hydrogen bonds between hydroxyl groups and the oxygen functional groups of PVPh and 

PPC, respectively.  

 

Figure 15. Hydrogen bonding interaction between PPC and PVA [201]. 

Chen et al.[204] have produced PPC based blends with hyper-branched poly (ester-amide) (HBP) 

by melt blending. These blends showed particle miscibility via hydrogen bond formation between 

PPC and HBP. In order to observe the phase morphology of the blends, the HBP phase was 

selectively removed from the PPC/HBP blend by using methanol. The PPC/HBP blend with 2.5 

wt. % of HBP showed uniform dispersion of the inclusion phase. However, the HBP domain size 

increased with increasing HBP content up to 5 wt. %. The increased HBP domain size was 

attributed to the domination of intramolecular interaction between the functional groups of HBP 

compared to intermolecular interaction between the PPC and HBP. The maximum tensile strength 

and elongation at break of the PPC/HBP blends were observed with 0.5 wt.% and 2.5 wt.% HBP 

concentration, respectively. The observed improvements in the properties were due to the 

enhanced interfacial interaction between the PPC and HBP through hydrogen bonding. However, 

both tensile strength and elongation at break were detrimentally affected when the HBP content 

was above 5 wt.%. These reductions were attributed to the phase separation of HBP by 

agglomeration in the PPC phase.  
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Wu et al. [110] modified PPC properties by melt blending with different concentrations of 

poly(butylene carbonate) (PBC). The Pukanszky model suggested the existence of some extent of 

interfacial adhesion between the PPC and PBC, although the PPC was found to be immiscible with 

PBC. In this study, both tensile toughness and impact toughness of PPC/PBC blends were much 

higher than the neat PPC. The marked impact toughness improvement was mainly attributed to 

cavitation and shear yielding mechanisms. Furthermore, the PPC/PBC blends with 20 to 30 wt.% 

of PBC showed brittle to ductile transition. Unlike tensile strength, the elongation at break of the 

PPC/PBC blend increased with increasing PBC content up to 50 wt.%. The enhanced toughness of 

the PPC after blending with PBC could extend the application for PPC.  

3.3. PPC blends with non-biodegradable polymers  

In addition to PPC blends with biodegradable polymer, there are few studies conducted on PPC 

blends with non-biodegradable polymers (Table 4). For example, poly (methyl methacrylate) 

(PMMA) [205–207], poly(ethylene-co-vinyl acetate) (EVA) [208], polystyrene (PS) [209], 

urethanes [210], epoxy [112], polypropylene (PP) [211], and bisphenol A (BPA) [212]. The goal 

of blending PPC with non-biodegradable polymers is to tailor the properties of PPC (e.g., 

processability, mechanical, thermal). In other cases, PPC can be utilized as an additive (e.g., 

plasticizer, impact modifier) to other polymers. More recently, there is an interest to reduce the 

carbon footprint of synthetic polymers via incorporation of renewable polymers. PPC and other 

CO2 based co-polymers are among the candidates that are being extensively researched for such 

purposes.  

3.3.1. PPC/PMMA blends 

Poly(methyl methacrylate) (PMMA) can be used to improve the performances of the PPC because 

it has excellent mechanical properties with a high Tg. PPC/PMMA blends are thermodynamically 
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immiscible [205]; thus there is a need for compatibilization. For example, Li and Shimizu [205] 

investigated the compatibilization of PPC/PMMA blend with PVAc. In this study, the 

compatibilizer used in PPC/PMMA blends enhanced the dispersion of PMMA phase in PPC by 

changing the phase morphology from sea-island to co-continuous morphology. As a result, the 

PPC/PMMA blends showed increments in both tensile strength and modulus with increasing 

PVAc content up to 5 phr. Beyond 5 phr, the PPC/PMMA blends did not exhibit any change in 

strength while the modulus deteriorated. However, the percent elongation at break of all the 

studied PPC/PMMA/PVAc blend ranges were very high (400%) due to the enhanced compatibility 

between PPC and PMMA. The PPC/PMMA blends produced as such have a lot of potential in 

various application platforms including those that currently rely on polyethylene, PP, and PS 

[205].  

In another study by Yoo et al. [206], PPC/PMMA blends were compatibilized with three different 

compatibilizers i.e. poly(ethylene-co-glycidyl methacrylate) (EGMA), poly(styrene-g-

acrylonitrile)-maleic anhydride (SAN-g-MAH), and maleic anhydride (MAH). The effects of these 

compatibilizers were investigated by varying their concentrations in a PPC/PMMA (70/30) blend. 

It was found that the PMMA inclusion phase size significantly reduced from 3.4 to 0.9 µm with the 

addition of these compatibilizers, which was attributed to the enhanced interaction between the 

PPC and PMMA phase. The enhanced compatibility was by the virtue of the combined effect of 

the polar–polar interaction between PPC and MAH along with the intermolecular forces between 

acrylonitrile of SAN and PMMA. Similar to SAN-g-MAH compatibilized PPC/PMMA blend, 

EGMA compatibilized (5 phr) PPC/PMMA blend showed strength improvement. In the case of 

MAH compatibilizer, the PPC/PMMA blend yielded maximum strength with the addition of 0.5 

phr MAH. Due to the plasticization effect of the compatibilizer, the tensile strength of the 

PPC/PMMA blend was reduced when the compatibilizer content increased above 5 phr. Among 
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the selected three compatibilizers, the SAN-g-MAH compatibilizer was more effective because of 

the enhanced miscibility between the blended components. Yang et al. [207] used supercritical 

CO2 as a solvent to conduct in situ synthesis modification of PPC/PMMA blends. The modified 

PPC/PPMA blends showed enhanced properties because of the improved compatibility and fine 

dispersion of PMMA in the PPC. The PPC/PMMA blend with 5 wt.% of PMMA resulted in a 

fourfold increase in tensile strength [207]. The yield strength of the PPC increased by 180% with a 

small amount (3.5 wt. %) of PMMA addition into the PPC. Significant improvement in properties 

with the small amount of PMMA addition was due to the fine (nanosize) dispersion of PMMA in 

the PPC matrix. The observed improvements in the tensile strength are comparable with the 

PPC/PMMA (70/30) blends prepared by other techniques.   

3.3.2. PPC blends with other non-biodegradable polymers 

Fei et al. [212] prepared PPC/Bisphenol A (BPA) blend using solution blending. The PPC/BPA 

blend with lower BPA concentration (e.g. <30 wt. %) demonstrated miscibility due to the 

hydrogen bonding interaction between the PPC and BPA. When the BPA content was increased 

beyond 30 wt. %, the resulting PPC/BPA blend showed immiscibility due to BPA crystallization. 

The mechanical properties of PPC and low molecular weight urethanes such as 1,6-

bis(hydroxyethyl urethane)hexane (BEU), 1,6-bis (hydroxyisopropyl urethane) hexane (BPU), and 

1,6-bis(methyl urethane)hexane (HDU) blends were studied by Chen et al. [210]. When 1 wt.% of 

BEU was added to PPC, significant strengthening effects were observed in the resulting blend, 

with a 37% increase in strength. With a further increase in BEU, strength decreased while 

elongation at break increased. However, the strength was still superior to that of pure PPC until the 

addition of 10 wt.% BEU. The PPC/BPU blend with 5 wt.% BPU showed a two-fold increase in 

elongation at break compared to neat PPC, while its tensile strength was 50 MPa. This indicates 

the simultaneous toughening and the reinforcing effects, providing further confirmation of the 
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importance of hydrogen-bond interactions in the miscibility and compatibility of the blends. 

However, when the BPU content was increased beyond 10 wt.%, the strength was inferior to that 

of neat PPC.  

Distinct yielding and stable neck growth through cold drawing were observed when the HDU 

content was varied over the range of 5–10 wt.%. Although HDU had a lower Young's modulus 

compared to BPU and BEU, transition had occurred from brittle to ductile for the blend. PPC/HDU 

blend with 10 wt.% of HDU exhibited a remarkable elongation at break, 53 times higher in 

comparison to neat PPC, while its tensile strength (30 MPa) was comparable to that of the LDPE. 

The molecular-level miscibility between HDU and PPC, combined with the decrease in Tg values 

for the blends, were considered as the principal causes for the satisfactory plasticization of the 

blend. Due to enhancement in mobility of the chain segment, the plasticizer was observed to 

behave like a lubricant that has been mixed with polymers, thereby reducing cohesion of the 

molecular chains. During tensile testing, the molecular chains were observed to gradually entangle 

and get oriented. This, in turn, dispersed the fracture energy more effectively, and thereby delayed 

the final rupturing of the material. The toughening of PPC by HDU was not accompanied by any 

drastic reduction in the mechanical stress of the blend. However, an increase in HDU content 

beyond 10 wt. % led to the domination of hydrogen bonding and crystallinity over the dilution 

effect of plasticization. This led to a reduction in the elongation at break and an increase in tensile 

strength.  

PPC was also used as an additive to improve the flexibility and drawability of isotactic 

polypropylene (iPP) by melt blending [211]. Higher yield stress and Young’s modulus were 

observed when 3 wt.% PPC was added to iPP. Unlike iPP, PPC/iPP blend samples were broken in 

ductile fashion during high elongation speed. The observed high ductility of PPC/iPP blends 

during high stretching rate can be explained as follows (Figure 16): the stress concentration of the 
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PPC domain surface boundary creates voids, which subsequently produces a sizeable amount of 

craze perpendicular to the stretching direction. The crazes dissipate the mechanical energy while 

preventing the cavitation development towards the longitudinal direction. Combination of voids in 

the crazes can form micro-cracks opposite to the stretching direction.     

 

Figure 16. Failure mechanism of iPP/PPC at a high elongation speed (redraw from reference [211] 
Wiley © 2017. The black arrow indicates the running direction of crazes. 

 

Various compositions of PPC/EVA blends were prepared via melt blending as reported by Wu et 

al. [208]. It was observed that the PPC and EVA were partially miscible with good interfacial 

interaction between them. The Tg value of the PPC increased with increasing EVA content, 

indicating the improvement in compatibility between the PPC and EVA. Similar to Tg increase, the 

tensile strength, Young’s modulus and thermal stability of the PPC increased with increasing EVA 

content in the resulting blends. Due to the partial miscibility between the PPC and PS, the PPC/PS 

blend prepared with 40 wt.% PS showed a three-fold increase in tensile strength compared to neat 

PPC [209]. Calderón and co-workers [213] found good interfacial interaction between the PPC and 

polyoxymethylene due to dipole–dipole interactions. Meanwhile, a drastic reduction in the percent 

elongation at break of PPC was observed when 40 wt.% of PS was added into PPC [209]. 

Likewise, Huang et al. [214] found partial miscibility between PPC and epoxy. The tensile 

toughness and impact toughness of the hot pressed bio-based epoxy/poly(furfuryl alcohol) (PFA) 
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blend were significantly improved with the addition of PPC polyol (10, 20, and 30 phr) [112]. 

Besides nanoscale size dispersion of PPC polyol in the epoxy/PFA, the marked toughness 

improvement was attributed to the interpenetrating polymer network (IPN) formation between the 

blended components. Chen et al. [215] prepared a PPC based triblock copolymer, i.e. PCL-PPC-

PCL to improve the toughness of epoxy.  The epoxy with 30 wt.% of PCL-PPC-PCL block 

copolymer showed 320% increase in elongation at break and 180% increase in toughness 

compared to neat epoxy, indicating that this strategy can improve the toughness of epoxies. 

In summary, many PPC based blends have been studied by various researchers to understand the 

compatibility, miscibility and their mechanical performances. It was found that the majority of the 

PPC blends showed immiscibility or partial miscibility behaviour. The observed partial miscibility 

and compatibility in the PPC blends were due to the hydrogen bonding interaction between the 

blended components. The observed immiscibility of the PPC blends was due to the difference in 

glass transition temperature of the constituents. Mechanical properties of the PPC blends were 

dictated by the blend components concentration, compatibility, and miscibility with the blended 

components. 

Table 4. PPC based blends with biodegradable and non-biodegradable polymers. 
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Blends Preparation method Compatibility/ 
Miscibility 

Compatibilizer/ 
Plasticizer 

Enhanced performances References 

PPC/PLA Melt blending Partial miscible 
and compatible 

- Thermal stability, Yield 
strength, and Young’s modulus  

[152], [60] 

PPC/PLA Melt blending Compatible Joncryl ADR 4368-C Elongation, tensile strength, 
secant modulus, water vapor 
barrier, and oxygen barrier 

[78] 

PPC/PLA Melt blending Compatible Maleic anhydride Ductility [154], [80] 
MAH-PPC/PLA Melt blending Compatible Polyvinyl acetate Interfacial adhesion [155] 
MAH-PPC/PLA Melt blending Compatible Tetrabutyl titanate  Elongation [158], [160] 
PPC polyurethane/PLA Melt blending - - Elongation and impact strength [159] 
PPC/PLA Melt blending Compatible Maleic anhydride and 

luperox 101 initiator 
Oxygen barrier [161] 

PPC/PLA Melt blending Compatible Poly(1,2-propylene 
glycol adipate) 

Transparency, haze, and tear 
strength  

[162] 

PPC/PHBV Melt blending - - Water vapor barrier, and oxygen 
barrier 

[164], [165] 

PLA/PHBV/PPC Melt blending Immiscible - Toughness, less shrinkage [166] 
PPC/PHBV Solution blending Immiscible - - [167], [168] 
PPC/PHBV Melt blending Compatible Dicumyl peroxide and 

glycidyl methacrylate 
Impact energy and elongation [169,170] 

PPC/PHB Solution blending Miscible -  [172], [173] 
PPC/PHB Electrospinning Miscible Polyvinyl acetate and 

acetyl triethyl citrate  
Elongation and tensile strength [174] 

PPC/PHB Melt blending  Propylene carbonate Impact toughness [175] 
PPC/PBS Melt blending Partial miscible - Ductility 

Elimination of shrinkage  
[181], [182], 
[184] 

PPC/PBS Melt blending Compatible Triphenylmethane 
triisocyanate 

Tensile strength and ductility [183] 

PPC/PBS Melt blending Compatible L-Aspartic acid Flexibility, yield strength and 
Young’s modulus 

[86] 

PPC/Starch Melt blending Compatible - Young’s modulus [187,188] 
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PPC/Starch Melt blending Compatible Acetylated starch Strength and ductility [189] 
PPC/Starch Melt blending Compatible Polymethylacrylate 

grafted starch 
Toughness  [192] 

PPC/Starch Melt blending Compatible Succinic anhydride stress, strain and Young’s 
modulus 

[190] 

PPC/EVOH Melt blending Compatible - Tensile strength [194] 
UHMW-PPC/EVOH Melt blending Compatible - Tensile strength [195] 
PPC/PBAT Melt blending - - Tear strength and gas barrier 

properties 
[197] 

PPC/CAB Melt blending Partial miscibility - Tensile strength and elastic 
modulus 

[198] 

MAH-PPC/liquid crystalline 
ethyl cellulose 

Solution blending - - - [199] 

Benzenesulfonyl end-capped 
PPC/PVA 

Solution blending Immiscible - - [202] 

PPC/PVA Melt blending Compatible - Tensile strength and Young’s 
modulus 

[201] 

PPC/PVA/TPU Melt blending Miscible - Tensile strength, elongation at 
break, and tear strength 

[100] 

PPC/ poly(p-vinylphenol) Solution blending Miscible - - [203] 

PPC/ hyperbranched poly(ester-
amide) 

Melt blending Compatible - Tensile strength and elongation 
at break 

[204] 

PPC/PBC Melt blending Immiscible - Tensile toughness and impact 
toughness 

[110] 

PPC/PMMA Melt blending Compatible Polyvinyl acetate Tensile strength and modulus [205] 
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PPC/PMMA Melt blending Compatible Poly(ethylene-
coglycidyl 
methacrylate), 
poly(styrene-g-
acrylonitrile)-maleic 
anhydride, and maleic 
anhydride 

Tensile strength [206] 

PPC/PMMA Supercritical CO2 based  
in situ synthesis 

Compatible - Tensile strength [207] 

PPC/Bisphenol A Solution blending Miscible - - [212] 
PPC/bis(hydroxyethyl 
urethane)hexane, PPC/1,6-
bis(hydroxyisopropyl urethane) 
hexane, and PPC/1,6-bis(methyl 
urethane)hexane  

Melt blending Compatible - Toughness and strength [210] 

PPC/iPP Melt blending - - Ductility [211] 
PPC/EVA Melt blending Compatible - Tensile strength, Young’s 

modulus and thermal stability 
[208] 

PPC/polyoxymethylene Melt blending Compatible - - [213] 
PCL-PPC-PCL/epoxy Melt blending Compatible - Elongation and toughness [215] 
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4. Concluding remarks 

The use of CO2 as a feedstock in sustainable polymer development is a feasible approach that 

can significantly contribute towards the reduction of its accumulation in the atmosphere. 

Moreover, the use of CO2 as a building block reduces the reliance on non-renewable, and less 

environmental-friendly fossil resources for the production of plastics. Typical CO2 co-polymers 

are attractive polymers because not only are they derived by fixation of up to 50% of their mass 

with CO2, but also the polymers made are biodegradable and biocompatible. The most studied 

CO2 derived aliphatic polycarbonate, PPC, can be processed with regular thermoplastic 

processing equipment such as extrusion, injection molding, blow molding into a variety of forms, 

and exhibit similar characteristics as many thermoplastics. Many application development 

technologies on PPC polymer focus on its use in the packaging industry. The less studied PEC 

on the other hand, exhibits superior oxygen barrier performance compared to many traditional 

packaging plastics including polyethylene, and polypropylene. Thus, it can play a significant role 

in reducing food spoilage caused by oxidation in multilayer plastic food packaging, barrier 

coatings, or in biomedical materials and other niche applications where oxygen barrier is 

important.  

The manufacturing technology, catalysis, polymer processing, and application development of 

many of these aliphatic polycarbonate polymers are still at a relatively early stage. As a result, 

their full potential as a material is yet to be explored. The low glass transition temperature, and 

rather insufficient strength constitutes the major performance limitations of CO2 co-polymers. 

Moreover, since many polymers used for packaging applications are highly commoditized, their 

acceptability is driven by cost than performance. Thus, cost reduction in addition to performance 

improvement of CO2 co-polymers are the grand challenges that need to be addressed for their 
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extensive utilization. In an effort to enhance the cost – and performance – competitiveness and 

expand the application range of these polymers, numerous studies have focused on blending 

them with other polymers. Some of the advances achieved in such multiphase polymeric 

materials demonstrated excellent performance with a clear potential to substitute conventional 

non-biodegradable polymers. The global drive to reduce plastic waste accumulation that 

prompted interest in sustainable materials could provide further motivations for innovations in 

CO2 co-polymers. 
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