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‘We propose a variational approach for the calculation of the quantum entanglement entropy of assem-
blies of rotating dipolar molecules. A basis truncation scheme based on the total angular momentum
quantum number is proposed. The method is tested on hydrogen fluoride (HF) molecules confined in
Ceo fullerene cages themselves trapped in a nanotube to form a carbon peapod. The rotational degrees
of freedom of the HF molecules and dipolar interactions between neighboring molecules are consid-
ered in our model Hamiltonian. Both screened and unscreened dipoles are simulated and results are
obtained for the ground state and one excited state that is expected to be accessible via a far-infrared
collective excitation. The effect of basis truncation on energetic and entanglement properties is exam-
ined and discussed in terms of size extensivity. It is empirically found that for unscreened dipoles,
a total angular momentum cutoff that increases linearly with the number of rotors is required in
order to obtain proper system size scaling of the chemical potential and entanglement entropy. Recent
experiments [A. Krachmalnicoff ez al., Nat. Chem. 8, 953 (2016)] suggest substantial screening of
the HF dipole moment, so much smaller basis sets are required to obtain converged results in this
realistic case. Static correlation functions are also computed and are shown to decay much quicker in
the case of screened dipoles. Our variational results are also used to test the accuracy of perturbative
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and pairwise ansatz treatments. Published by AIP Publishing. https://doi.org/10.1063/1.5011769

l. INTRODUCTION

It has become self-evident that for computational technol-
ogy to push past the inevitable breakdown of Moore’s law,'!
the use of quantum information devices (QIDs) will be neces-
sary.” The current model for the achievement of true QIDs
is the utilization of entangled quantum states—i.e., a quantum
system whose states cannot be expressed as a simple prod-
uct. Most often, these candidate quantum systems are the spin
states of single particles, e.g., bosons or fermions. These types
of systems have proven to be quite robust but have two major
drawbacks: (1) in most cases, they are limited to two lev-
els and (2) they are difficult to construct outside of highly
controlled laboratory settings. Most likely, (1) is a nonstarter
since to date, binary switches have provided enough com-
plexity to bring computer science to the point it is at today.
On the other hand, it is unclear whether or not the exotic
methods and cost prohibitive materials currently employed
to study quantum entanglement will ever be viable for mass
production, meaning (2) is the current source of immediate
limitation. It is entirely possible that these issues will be too
difficult to overcome, and it is, therefore, paramount that other
candidates be explored. In particular, carbon fullerene-based
nano-molecular assemblies (NMAs), which can be produced
using available methodologies, could prove to be a viable alter-
native.>"'> One drawback of directly using NMAs is that one
must then rely on the electronic states of the carbon struc-
ture as the medium for the desired process. However, the
advent of endofullerenes—i.e., the confinement of an atom
or molecule inside a closed fullerene structure—has added yet
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another level of tunable complexity to this pursuit. Specif-
ically, “rotor-doped” NMAs, which are systems of end-
ofullerenes, have become a subject of great interest.'*!7
However, the study of confined molecules is relatively new,
and only modest characterization of these systems has been
done.

To underpin this pursuit, we present here a model Hamil-
tonian that is a first approximation to the type of confined
molecule NMAs alluded to above, in a similar manner to
that of the Bose-Hubbard model.!® In particular, the Hamil-
tonian described herein approximates confined molecules as
a linear chain of pinned, rigid rotors with dipole-dipole inter-
actions. A schematic representation of the model is shown
in Fig. 1. The model contains parameters that can be tuned
to simulate realistic molecular assemblies of many different
types. To showcase its depth and breadth, we present results
in two parametric regimes—high and low dipole coupling. We
explore these two limits in the context of two physically real-
istic systems—the bare and screened dipole interactions of
hydrogen fluoride (HF). Although similar assemblies of polar
rotors have recently been examined for use as the basis of a
quantum computer,'*~%? in the present work, we include all the
rotational degrees of freedom and do not truncate the system
to a qubit representation.

Since our goal is the characterization of quantum infor-
mation properties of these systems, the quantity in which
we are interested is the entanglement entropy or, more for-
mally, the von Neumann (vN) entropy S4 of a given subsystem
of the total NMA. Pragmatically, we subdivide the NMA
into two parts, A and B, and compute the vN entropy of A
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FIG. 1. Schematic representation of the peapod confined rotor model. The
hydrogen and fluorine atoms composing the HF molecule are, respectively,
represented as green and red van der Waals spheres.

relative to B. This yields a measurement of the degree to which
A and B are entangled—i.e., how much information can be
gleaned about B from a measurement of A. In the quantum
information world, this entanglement can then be used as a
resource.”? Unfortunately, the journey from theoretical under-
standing of S4 to a working QID is long, and, most likely,
realistic QIDs will be comprised of much more complicated
structures, but the information presented herein should provide
a good starting point from which a robust framework can be
built.

The remainder of this paper is organized as follows: The-
oretical concepts are presented in Sec. II; results for energetic,
entanglement, and correlation properties are given in Sec. III;
we provide concluding remarks in Sec. IV.

Il. THEORY

In the case of confined diatomic molecules inside a
fullerene cage, it is not easy to say how much environmen-
tal interactions, e.g., cage deformations, will affect the low
lying rovibrational spectra of the molecules contained therein.
Although, it can be concluded from recent developments'’
that, as a good first approximation, a linear NMA of this
type can be treated as a chain of pinned rotors under the
effect of screened dipole-dipole interactions. Due to this,
we propose the following model Hamiltonian as a starting
point for the characterization of angular momentum-based
QIDs,

H:aiz?wzw, (1)
i=1 i<j

where n is the number of rotors in the chain, @ and § are the
adjustable physical parameters, and
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o X+ i - 24
Vij=——5—
G =i
is the dipole potential, with the chain axis aligned along the
space-fixed z-axis. In the present case, the parameter a equals
the rotational constant B = %%/(2I) where I is the moment of
inertia of the rotor, and the coupling 8 = u?/(4megR>) depends
on the dipole moment y of the molecule and the distance R
between adjacent rotors.

We seek to compute the ground state |0) (with energy
E() and the first non-degenerate excited state |1) (with energy
E)) via a variational basis set calculation. That is, we expand
the Hamiltonian in a finite numerical basis and compute the
eigenvalues and eigenvectors via numerical methods,

@)

Hy = 1HT) . A3)

The basis set utilized is a direct product of free rotor eigenstates
(spherical harmonics),

D) = Q) limiy = limibma, .. Limyy,— (4)
i=1

with
Bllemiy = el + Dlemy . ()

Along with this, we also impose a specific basis truncation
scheme, as to ease the exponential scaling of the direct product

basis,
n
Z I, <L. (6)
i=1

The drastic effect of this truncation is shown in Table I for
several system sizes. This method, referred to as Bound exci-
tation Truncation (BT), is similar to that utilized by Poirier
and co-workers;?*> however, this scheme has different phys-
ical implications despite the underlying mathematics being the
same. In Refs. 24 and 25, the underlying basis set used was
that of harmonic oscillator eigenstates, which are known to
have linear energy scaling, E, = hiw(v + 1/2), as a function of
the vibrational quantum number v for oscillator frequency w.
By contrast, the energy scaling of the free rotor is quadratic,
E; = BI(l + 1). This implies a different physical meaning
between bounding of the two basis set indices. In the case
of harmonic oscillators, the truncation parameter has a direct

TABLE 1. Growth of basis size N and number of non-zero Hamiltonian matrix elements with system size n and

truncation parameter L.

L=2 L=4 L=6 L=8 L=10
n N  Elements N Elements N Elements N Elements N Elements
2 6 23x10! 19 1.1x10% 44 33x10? 85 7.1x10% 146 1.3x10°
3 13 84x10! 76 8.6x 102 284 43%x10° 809 1.5x10% 1925 3.9x10%
4 23 20x10® 220 35x10° 1236 2.8x10* 4961 14x10° 15847 5.1x10°
5 36 40x10> 516 1.1x10* 4116 12x10° 22391 85x10° 93392  4.2x10°
6 52 6.8x10%2 1048 2.6x10* 11340 42x10° 80907 3.8x10° 430032 2.5x10’
7 71 11x10° 1919 56x10* 27161 12x10° 247220 14x107 1639212 1.1x108
8 93 1.6x10° 3251 1.1x10° 58447 29x10° 663060 4.4x107 5383876 4.4x108
9 118 23x10° 5185 2.0x10° 115600 6.5%x10° 1602688 1.2x10% 15681136 1.5x10°
10 146 3.1x10° 7881 33x105 213616 1.3x107 3559136 3.0x10% 41376016 4.3x10°
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relation to the energy of the system—i.e., polyad truncation
is an energy-based criterion. Here, the truncation parameter
can be viewed as an “occupation number,” in that we have
a bound number of rotor excitations that can be added to or
removed from the system. This suggests a second quantiza-
tion framework, similar to that of the Bose-Hubbard model.
However, unlike the Bose-Hubbard model, the total number
of excitations is bounded, not fixed (“=" becomes “<”). It is
therefore possible to think of the pinned rotor Hamiltonian
under BT as a grand canonical ensemble of virtual particles.
As aconsequence of this, we are not able to easily make energy
arguments in terms of the basis performance since we have the
incorrect basis “scaling” with respect to the zeroth energy. For
that we would need 27:1 ll.2 < E. Unfortunately, this makes
the total basis size (V) scaling intractable very quickly and
is, therefore, not utilized. For proper exploration of the sub-
tle implications of this difference—I vs />—a full phase space
analysis should be employed, but that is far beyond the scope
of what is presented here. With regards to N and its scaling,
it should also be noted that N was greatly reduced by the uti-
lization of symmetry. Specifically, if we let 3" | [; = l;o; and
Z;’zl m; = Mo, then the two symmetries in question are the
even and odd parity of /;,; and the integer value of mi;o;. Both
the states we wish to compute come from the same mo; = 0
block; however, |0) has even [, character, whereas |1) has
odd I, character.

For comparison to the many-body (MB) method described
above, we also utilize two approximate approaches. Currently,
neither of the methods yield eigenfunctions, only eigenener-
gies, and are, therefore, not relevant in the latter conversation
about entanglement. However, these approximations do pro-
vide qualitative insight, and, at the very least, yield a criterion
for properly choosing L-values since they can easily give us
asymptotic behavior. The first approximate method we used
is second order perturbation theory (PT). It turns out that the
second order correction to the ground state energy is analytic
since the dipole potential can be expressed in terms of coor-
dinate operators, X;, ¥;, and Z;. These operators produce very
strict selection rules, and as a result, there are only two non-
zero matrix elements (technically three, but two have the same
value due to exchange symmetry),

2
Ef(n) = —f—a(|<1010|v12|0000>|2

n—1 .
+2(111-1] 71210000 ) Z ”_6’
1
i=1

ﬁz n—1 n—i
This yields a simple expression and provides a baseline for
comparison. In the low coupling regime, this approximation
works well, in that it at least captures the qualitative behavior;
of course, it becomes less useful in the high coupling limit, but
that is a well-known limitation of PT.

The second approximation is a pairwise additive approach
(PW)—i.e., we assume E for the total system is simply the
sum of pair energies. The PW energies are computed by diag-
onalizing the Hamiltonian for a single pair (n = 2) of rotors
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that are separated by an integer multiple of the lattice spacing.
This yields
n—1
Ey'(n) = (n - DE). (8)
i=1

Whether exact or approximate, eigenenergy calculation
was not our primary goal. In fact, most of the tools devel-
oped above are only used as a proof for the accuracy the MB
eigenstates, which are needed to compute S4. To begin, we
first partition the total system into two subsystems, A and B.
In general, this partitioning can be arbitrary, but for computa-
tional simplicity, it useful to choose a division that is respected
by the underlying basis being used. Since we utilize a direct
product of single particle basis functions, it stands to reason
that a single particle partitioning (SPP) would be an obvious
choice. That is to say, we should choose A to be a single rotor
and B to be the rest in the chain. This type of partitioning
will yield a measure of how an individual rotor is entan-
gled to the full system—i.e., how much information is gained
about the system by doing a measurement on a single mem-
ber. In practice though, doing an experimental measurement
on a single rotor would be highly non-trivial since the lattice
spacings necessary for reasonable entanglement would be on
the order of the wavelength of the probe, e.g., a far-infrared
photon.

In any event, we wish to compute the von Neumann
entropy for the subsystem A,

M
Sa=- i, ©)
i=1
where {44, 15, ..., A9, } is the set of eigenvalues of the reduced
density operator,
pa = Trp[pl. (10)

To compute the eigenvalues, we expand p4 in the basis of the
subsystem A and diagonalize. In the context of SPP where A
is the jth rotor and B is the rest, we can recast p4 by exploiting
the aforementioned basis structure,

71 Ak _ k kx
(ljmj|Pj|ljmj> = chj’_mjfncljmjn’ (1D
n
where C?m-n are the expansion coefficients of wavefunction
77

k) and n = {llml, Cey lj_1mj_1,lj+1,mj+1, Ce l,,m,,} is the
configuration over which the tracing occurs. For SPP, the basis
size of the represented reduced density matrix is no larger than
that of a single particle Hilbert space—i.e., the set {Ilm)}leo,
which makes diagonalization trivial.

lll. RESULTS

For rotor-doped NMAss to be viable, the rotor-rotor inter-
actions must be long range enough as to still be significant at
realistic lattice distances. For linear assemblies of Cgg cages,
it has been shown that the center-to-center distance is 19.0
bohrs.!” HF represents a strong candidate molecule since the
dipole strength is still significant, even at several times that
distance; however, one cannot simply ignore cage interactions.
To properly describe a basic NMA, perhaps comprised of sev-
eral HF@Cgp cages confined to a linear configuration inside a
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TABLE II. Hamiltonian parameters (in cm™!) for the screened and
unscreened dipole moment of HF.

Screened Unscreened
@ 20.561 20.561
B 1.0 16.5
Bla 0.049 0.802

single walled carbon nanotube (SWNT), the effects of the
cages on the dipole-dipole interactions must be taken into
account. Recent studies have shown that the rotor-rotor inter-
action can be approximated by treating the cage effects as
a screening of the dipole moment.'®!” This provides a good
foundation to treat a basic rotor-doped NMA as a chain of
pinned dipoles, described by Eq. (1). For HF, the gas phase
dipole moment is 1.8265 D, ¢ while for HF@ Cg, this value is
reduced to 0.45 D.'® The value of & = 20.561 cm™! was used
for both cases.?’

A. Screened hydrogen fluoride: Low coupling

Hamiltonian parameters for the screened HF system can
be seen in Table II. With the screening, this system repre-
sents the low end of the coupling regime—i.e., SB/a <« 1.
However, due to advances in fullerene chemistry, one could
imagine that these devices could become highly tunable, allow-
ing for an arbitrary combination of parameters. In any event,
this configuration, screened HF, represents the most physi-
cally realistic device that could be made using current meth-
ods and is, therefore, an important staging point for future
understanding.

1. Energies

With this in mind, we computed Ey for NMA chains of
screened HF with n = 2—10 using the three methods discussed
in Sec. II. For the MB Hamiltonian, we computed the eigen-
spectrum for L = {2, 4, 6, 8, 10}. These results are given in
Table III. In this low coupling regime, we see that Eq is con-
verged for all calculations beyond L = 2. Moreover, since the
coupling is small, the two approximate methods yield results
within 1073 cm™' of the exact results. Looking deeper, we
can conclude that since all of the exact results are converged
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beyond L = 2, L = 4 is the “appropriate level of theory” for
all relevant systems sizes. This is promising since the basis
size (N) needed for the largest system size n = 10 is only
N = 7881, which is a trivial diagonalization. This is dramatic
savings over L = 10, which yields a basis size of N = 41 376
016. In practice, the latter calculation is done using sparse
iterative methods, reducing it to a somewhat trivial calcula-
tion by today’s standards.”® In any event, the computed val-
ues are numerically identical, obviating the latter calculation,
and, more importantly, the need for atypical computational
resources.

A subtle issue that is difficult to glean from Table III is a
lack of “size extensivity,” a well-known problem in the field
of quantum chemistry.”> We can see that for L = 2, we get
results that are within ~107° to ~10™% cm™! from L = 4, which
is <0.1% difference. However, this does not tell the entire
story. If we compute the chemical potential, u = Ejj — Eg‘l, it
becomes obvious that as we tend toward large n, L = 2 yields
the wrong asymptotic behavior. This can be observed in the top
panel of Fig. 2. At large n, the addition of a new rotor should
have almost no effect on the total energy of the system—i.e.,
u should tend toward a constant value. That is not the case
for L = 2, and we must increase to L = 4 to get the desired
result. Felker and Baci¢ observed the same large size behav-
ior in their recent work.>* Upon analysis of their computed
ground state energies for assemblies of HyO@Cg, we see u
displays the same constant behavior with increasing n. This is
true despite their Hamiltonian including translational motion
of the dopant molecule. From all this, we can conclude that
it is not enough to rely only on the numerical convergence of
the eigenenergies; in fact, doing so could yield the wrong bulk
behavior.

2. Entanglement

Using Eq. (11), we computed S4(n) for both L = 2 and
L =4 with the SPP of j = 1. These results can be seen in Fig. 3
(top panel). Again, the size extensivity issue is apparent for
L = 2, exhibited by S4 decreasing with increased n. Also as
before, we regain the proper bulk behavior by increasing to
L = 4. To explain this behavior, we examine the configuration
entropy of the basis, S; = InN, which is determined by the
number of accessible states. If we do not implement BT and
simply use a standard direct product (DP) basis, with d single

TABLE III. Ground state energy (in 1073 cm™!) for screened HF chains computed using three methods: MB, PW,
and PT. The MB energies, LE'(‘)‘B, were found at various values of L to show convergence. The last two columns
(italicized) show the results of perturbation theory and of the pairwise approximation.

n 2E|(»)m 4EE/)|B 6E1\;n3 SEI(\;IB IOEB«B E(P)T E(I;W

2 -8.10537 —-8.10557 —-8.10557 -8.10557 -8.10557 —-8.105 96 -8.105 57
3 -16.3622 -16.3635 -16.3635 -16.3635 -16.3635 -16.3385 -16.348 1
4 -24.6308 -24.6350 —24.6350 —24.6350 -24.6350 -24.582 3 —24.6018
5 -32.9000 -32.908 8 -32.9088 -32.9088 -32.908 8 -32.8280 -32.857 5
6 -41.1682 -41.1832 -41.1832 -41.1832 -41.1832 —41.074 2 -41.1138
7 —49.4349 -49.4577 —49.4577 —49.4577 -49.4577 —49.3206 -49.3702
8 =57.7000 =57.7324 -57.7324 =57.7324 -57.7324 -57.567 1 -57.626 7
9 —65.963 5 -66.007 1 —66.007 1 —66.007 1 -66.007 1 -65.8136 —65.8832
10 -74.2253 -74.2818 —74.2818 —74.2818 -74.2818 —74.060 1 -74.1398
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FIG. 2. Chemical potential as a function of n for the ground state of screened
(top panel) and unscreened (bottom panel) HF. Different L truncation values
are used, along with the chemical potential computed using the pairwise (PW)
and perturbative (PT) approximations.

particle states, then N would scale exponentially with the
number of rotors, N* = d". This would yield S, as a linear
function of n, S2°(n) = n In d, which is extensive. However,
with BT, N scales as a power law in n, N*'(n) o nk, yield-
ing S¥(n) = L In n + O(1), which is fundamentally different
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< 0.001105
n

0.001100

0.001095

np

0.16 1

Thhe

oA
=00 O s N

o

np

FIG. 3. von Neumann entropy as a function of the size np of partition B for
Jj = 1 partitioning for the ground state of screened (top panel) and unscreened
(bottom panel) HF for different L truncation values.
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scaling than DP. This suggests the heuristic argument that when
the configuration entropy is non-extensive, the basis may not
grow sufficiently quickly to faithfully represent the eigenstates
of the Hamiltonian.

Thus, L should have some functional dependence on »n to
ensure proper large n behavior—i.e., a constant L will even-
tually fail. From the computed energies, we can conclude that
L =4 is sufficient for the n range studied here since it yields
the same results as larger L values. However, we will see later
that at larger coupling, L = 4 breaks down in the same manner,
implying that L is not only dependent on # but also on the cou-
pling strength. Beyond this, not much can be said about the
exact form of L. A full analysis of the parameter space would
be necessary to define a proper L-function, and this is left for
future research.

3. Correlations

With unfettered access to numerically exact wavefunc-
tions, one could conceivably analyze any property of the sys-
tem to explore entanglement. The most obvious is, of course,
entanglement entropy; however, another quantity that holds
interest is the dipole correlation operator, Cp,q,. If we let
e; = eyi+ ey,j+ e k be the unit vector representing the
orientation of the ith dipole, then we can define

Caray = (Olea,e;10) , (12)

where e, is the Cartesian component & = X, y, Z.

Using this, we computed the x and z correlation functions
between i = 6 and j = 1-10. This can be seen in the top panel
of Fig. 4. Due to symmetry, the x and y functions have the
same value, and, therefore, the y analysis is omitted. Both x
and z have a maximum value of ~1/3 at j = 6, which for low
coupling makes sense, since the total dipole autocorrelation is
unity and the ground state is nearly isotropic. What is more
interesting is that in this coupling regime, we see only small
nearest neighbor correlations, with effectively zero interac-
tions beyond, for both x and z. However, the z projection (the
principal axis of the chain) has positive correlation, whereas
x is negative. This difference in sign can be understood by
referring to Eq. (2), where we see that the x and z contribu-
tions to the potential energy have opposite sign: x is positive
and z is negative. Moreover, we know the ground state wave-
function is expected to have greatest amplitude in regions of
more negative potential energy. This implies that the correla-
tions will be maximal when z; and z; have the same sign since
that corresponds to the most negative value of the potential.
Conversely, x; and x; must have opposite signs for their contri-
butions to the potential to maximally negative. Despite all of
this, the main conclusion these results show is that a screened
HF molecule in the current peapod geometry is nearly uncor-
related, especially beyond the nearest neighbor. However, the
situation will be quite different in the case of unscreened HF
(vide infra).

B. Unscreened hydrogen fluoride: Large coupling

Although the screened HF NMA represents the most phys-
ically realistic system, we have seen in Sec. III A that the
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FIG. 4. Ground state correlation functions between site 6 and site j for
screened (top panel) and unscreened (bottom panel) HF for n = 10.

features of the entanglement and correlations are somewhat
uninteresting. This is due to the reduced level of interaction
resulting from the dipole screening; however, one could envi-
sion doping the buckypeapod with a new molecule of larger
dipole moment or smaller rotational constant (e.g., LiF) which
would still maintain large coupling even in the presence of
screening. In any event, unscreened HF represents an NMA
with large coupling and is, therefore, of significance in terms
of entanglement analysis.

1. Energies

Similar to the screened case in Sec. III A, we computed
Eq for n = 2-10 with L = {2, 4, 6, 8, 10}. These results can
be seen in Table I'V. Here, we see a stark contrast to Table III.
The values do not converge quickly, and the approximations
are much worse. For PT, this is to be expected since the larger
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perturbation makes the underlying basis less appropriate. In
fact, in the case of B/ > 1, the spherical harmonics would
be the incorrect choice, and one should utilize the eigenstates
of the potential (the position representation) since the poten-
tial would be the dominant term. As for PW, the longer range
coupling due to increased dipole strength makes a purely addi-
tive approximation incorrect—i.e., the larger coupling makes
E for the total system less like a sum of single particle ener-
gies. In any event, none of these methods yield results that
would be considered horrendous; however, some would not
be considered spectroscopic. The smallest basis, L = 2, yields
decent results (within 1%) for n = 2, but we must increase to
L =6 to get <1% convergence for n = 10. As we now know,
though, convergence analysis does not tell the entire story.
The more fundamental issue can be observed in Fig. 2 (bot-
tom panel), where we see u for the unscreened system. There,
the size extensivity issue (discussed above) is much more pro-
nounced than it was for screened dipoles. In fact, for L =2, we
see completely incorrect behavior. Even for L = 4, the results
break down quickly. One thing of note is that both approxi-
mate methods, despite being relatively inaccurate, display the
proper asymptotic scaling. Moreover, we can glean from Fig. 2
that we must choose at least L = 6 for our results to be exten-
sive. Even that is somewhat suspect since it is clear that n = 10
is very close to the limit for L = 6. To go beyond this, L = 6
would no longer be sufficient, but if the goal is to get spectro-
scopic accuracy with the least amount of computational effort,
then L = 6 is the best choice.

2. Entanglement

This behavior is echoed when we look at S4. In Fig. 3 (bot-
tom panel), we see that L = 2 and L = 4 results are blatantly
incorrect, in that they have very wrong asymptotic behavior.
Moreover, L = 6 is beginning to turn around. As was laid out
before, this can be somewhat understood by the fact that the
configuration entropy has the wrong scaling with n. Also, itcan
now clearly be seen that for proper scaling to be maintained
throughout (given the constraint of minimal computational
effort), one would need to derive an explicit expression for
the n dependence of L.

Since the behavior of S, is a little more interesting in
this case, we can also look at how it changes with site index.
In the top panel of Fig. 5, we see S4 as a function of j for

TABLE IV. Ground state energy (in cm™!) for unscreened HF chains computed using three methods: MB, PW,
and PT. The MB calculations were carried out at various values of L to show convergence.

n 2E|(\;m 4E;\;IB ()E;\)IB SEI(»)m IOE;\;IB E[I;T E(};w

2 -2.16527 -2.17940 -2.17941 -2.17941 -2.17941 —2.206 84 -2.17941
3 —4.48352 —4.58712 —4.587 64 -4.587 64 —4.587 64 —4.448 17 —4.393 56
4 —-6.73642 -7.076 44 —7.08112 -7.081 14 —-7.081 14 -6.69253 -6.61074
5 —-8.88218 -9.58981 -9.609 20 -9.609 39 -9.609 40 —8.937 43 -8.828 46
6 -10.9237 -12.1000 -12.1531 -12.1540 -12.1540 -11.1824 —11.046 3
7 -12.8723 -14.5918 —14.7040 -14.707 1 -14.7072 -13.4275 —13.2642
8 -14.7392 -17.0565 -17.2568 —17.2648 -17.2650 -15.6726 -15.4821
9 -16.534 1 -19.4893 -19.8079 -19.8250 -19.8255 -17.9177 -17.700 1
10 -18.2650 -21.8875 —22.3545 -22.3864 -22.3876 -20.162 8 -19.9180
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FIG. 5. von Neumann entropy as a function of SPP site location for the ground
(top panel) and first excited state (bottom panel) of unscreened HF, computed
with L = 5.

n={3,5,7,9}. This plot yields insight into how entangled a
rotor is to the rest of the system. We see right away that the end
rotors have very different properties than those in the middle
of the chain—i.e., they are much less entangled to the rest of
the system than the inner rotors. This is true regardless of n. As
n gets larger, however, the level of entanglement of the inner
rotors becomes more smooth, implying a constant S4 value at
very large n. The fact that the endpoints exhibit such different
behavior compared to the middle could be useful, depending
on the desired application.

3. Correlations

As before, we computed Cy,q,- This can be seen in the bot-
tom panel of Fig. 4. One major difference between the screened
and unscreened system is that now the z autocorrelation is
much larger than the isotropic value of 1/3, implying that the
fluctuations of the orientation about the average are smaller.
This is to be expected since in the infinite coupling limit the
system would become ferroelectric. We can also note that the
z correlation has a much larger range. In fact, at this system
size, every rotor is correlated with those in the middle (Cy;;
is not zero at the endpoints). For the x component, we see a
more exaggerated anti-correlation with nearest neighbors than
for the screened system.

C. Excited states

Along with the preceding analysis of |0), we also ana-
lyzed the entanglement behavior of |1). Here, we define |1)
to be the ground state of the my = 0 and /i,y odd symmetry

J. Chem. Phys. 148, 074112 (2018)

block. Energetically, this is the second state in the total (with-
out symmetry) eigenspectrum. This state is also of interest
since it is El allowed—i.e., the transition dipole moment,
% <l )Zl’.’:l é,-| O>|2, is non-zero.

Like before, we computed S4 via Eq. (11). Figure 6 shows
the results of this for the j = 1 SPP as a function of n for var-
ious values of L for the screened (top panel) and unscreened
(bottom panel) cases. For the screened system, all values of L
yield converged results. However for the unscreened system,
itis clear that L = 1 is not sufficient, vis-a-vis the large numer-
ical discrepancy between L = 1 and L = 3, even at small n.
The L = 5 results are taken to be converged since the L = 6
results were converged for |0). In any event, we are not nec-
essarily interested in a full convergence study of |1). We are
more interested in the qualitative behavior of S4. In particular,
how it is different from |0). This main difference is that Su
decreases with increased n—i.e., the amount by which each
rotor is entangled to the rest of the system decreases as the
system size is increased. This behavior is the exact opposite of
the ground state behavior and is somewhat counter intuitive.
Upon further analysis, though, this behavior does make sense.
If we assume |1) can be approximated as a symmetric combi-
nation |sym(n)) of a single [ excitation, then we can explain
the decrease in S4 by noting that as n increases, the amount of
information gained by measuring the j = 1 rotor decreases. To
be more explicit, start with n = 2. This would yield an approxi-
mate excited state of the form [sym(2)) = \/%(I 1000)+]0010Y).
A measurement of [ for j = 1 would either yield zero or
one. However, it would also yield perfect information about
j = 2 since the system is in a Bell state and has maximal

np

FIG. 6. von Neumann entropy as a function of chain length for j = 1 parti-
tioning with L = 1, 3, 5 for the first excited state of screened (top panel) and
unscreened (bottom panel) HE.
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entanglement entropy (5S4 = In2) in the {|00), |10)} subspace.
Now, if we increase the system size to n =3, then |1) would have
the form [sym(3)) = %(HOOOOO) + 1001000) + [000010)).
Again, measuring / for j = 1 would yield either one or zero, but
this time we gain less information about the rest of the system.
If we measure / = 1, then B is in the state |0000); however, if
[=0then Biseitherin |1000) or |0010). Extending this analysis
to arbitrary n, we can derive a general expression for the “Bell
state entropy” as a function of n, Sy, = In(n) — ”n;l In(n—1),
which has an asymptotic limit of zero. This result can also be
seen in Fig. 6. Furthermore, the overall decrease in S4 with
increased n can be seen in the bottom panel of Fig. 5. There
we see similar behavior to that of |0), in that both exhibit the
same “rainbow” pattern, but now the overall rainbow shifts
downward with 7.

Lastly, we also computed S4 for the superposition state,
[y =y |0) ++/1 — y2 |1), where v is a real-valued parameter,
and |0) and |1) are the aforementioned ground and excited
states for the HF chain. On its own, this state can be viewed
as a two -level qubit living on the prime meridian of the Bloch
sphere. Whether or not this state would constitute a viable

0.6

Sa

0.2 o

0.4

Sa

0.0

0.4

Sa

0.2

0.0 0.2 0.4 0.6 0.8 1.0

FIG. 7. von Neumann entropy as a function of state coefficient, y, for a
superposition of the ground and first excited states of HF, computed with
L = 5. Free rotor (top panel), screened (middle panel), and unscreened (bot-
tom panel) dipole results are shown. In the free rotor case, the first excited
level is degenerate, but we are interested in the 8 — 0 limit, so we choose
1) = [sym(n)).
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candidate for quantum computation is beyond the scope of
what is presented here, but one could imagine applying some
operation on the system as to induce this state with a tunable y.
Results for screened, unscreened, and free dipoles are shown
in Fig. 7, which shows S4(y) for the j = 1 SPP. Predictably, the
entanglement is maximum when y = 0 for all three systems,
which corresponds to a pure |1) state. For both the free rotor
and screened dipole cases, S4 decreases monotonically as y
goes to unity. The free rotor ground state is a product state,
resulting in S4 — 0 as expected. The behavior of the screened
dipole ground state is similar to that of the free rotor since
the entanglement is low. However for the unscreened system,
|0) is not a product state and therefore has a non-vanishing
entanglement entropy.

IV. CONCLUDING REMARKS

We have studied quantum entanglement in a chain of
rotors with dipole interactions using a variational description.
To do so, we have developed a basis truncation scheme that
allows the treatment of systems with a varying number of
rotors. We have tested the approach for a chain of HF@Cg
molecules. Both the weakly (screened dipoles) and strongly
(unscreened dipoles) interacting regimes were considered. We
have shown that to maintain the so-called size extensivity of
the calculation, the L truncation parameter has to scale with
the size of the system. The loss of size extensivity was more
pronounced for the unscreened case as expected. Our results
show that screened HF leads to very short correlations and
therefore minimal entanglement while its unscreened counter-
part exhibits correlations that extend much farther with much
higher particle entanglement.

The quest for reliable, inexpensive QIDs has been ongoing
for many years, and much progress has made. The introduction
of endofullerenes—i.e., the confinement of a molecule inside a
closed fullerene structure—has ushered in a new era of NMA
research. The quantification of entanglement in endohedral
fullerenes is a first step in the exploration of their adequacy
as QID candidates. In this respect, it is important to note that
quantum computation schemes have already been explored in
the context of trapped cold polar molecules,’'* where the
rotational and dipolar coupling terms of the Hamiltonian are
identical to the terms in Eq. (1). Beyond this, Refs. 19-22
offer very interesting insights into direct applications of polar
molecule assemblies for quantum computing. To that end, they
treat these assemblies as collections of qubits and then study
register initialization, feasibility of the entangling CNOT oper-
ation, and effects of temperature. Future work will focus on
reconciling our use of the full Hilbert space of continuous
rotors with that of the qubit representation.

From the present results, we were able to compute and
characterize several important quantities in terms of quantum
information, shedding light on several possible levels of tun-
ability. Moreover, we also demonstrated that QID devices of
this type live in the realm of realistic possibility. A rotor-doped
buckypeapod of HF could be realized with current experimen-
tal techniques and under the screened dipole approximation
does exhibit a small amount of quantum entanglement. If HF
is changed to an appropriate molecule, we showed that the
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entanglement behavior is much more pronounced. The
“desired” amount of entanglement will depend on the proposed
quantum information scheme.

To truly understand the depth and breadth of this model,
a full analysis of the parametric state space will be necessary.
This could unlock interesting regimes, which could establish
parameter settings for desired device effects—i.e., we could
find values of @ and g that we would want to target. For
instance, recent quantum Monte Carlo calculations of dipo-
lar rotor chains suggest a transition from a disordered to an
ordered phase near a ~ 8.3>-3% Note that the latter study did not
address the issue of entanglement. Such a calculation would
require a Monte Carlo estimator of the entanglement entropy
such as the replica trick recently implemented for continuous
space.>’40

We conclude by observing that the present approach can
be applied to non-linear molecules by expansion of the model
to generic, asymmetric tops, while the inclusion of transla-
tional motion coupled to the rotational motion would serve to
make the model more realistic.>® In this context, one would
require a potential energy surface for the HF@Cgq interac-
tion. Such a potential has recently been published by our
group.*! One could also envisage more elaborate two- or three-
dimensional lattice geometries that could obviate the need for
polyatomic dopants. Moreover, external electric fields with
either spatial (e.g., non-uniform transverse fields) or tempo-
ral (e.g., pulses) variation could also be utilized to modulate
the entanglement properties. The analysis presented here only
looked at single particle partitioning, but the methods can
easily be extended to subsystems with more than a single parti-
cle. Complicated, multi-dimensional geometric configurations
would open the door for a wide variety system partitionings.
One could imagine a “sheet” of rotors, where some area of
the sheet defines the subset A, or a cube, where A is some
internal volume. The latter could allow us to study fundamen-
tal questions such as the area law scaling of entanglement
entropy. #0:42-45
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