
A PAC-Theory of
Clustering with Advice

by

Mohammad Zokaei Ashtiani

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2018

c©Mohammad Zokaei Ashtiani 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/158325697?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the examining
Committee is by majority vote.

External Examiner: Maria-Florina Balcan
Associate Professor, Dept. of Computer Science, Carnegie Mellon University

Supervisor(s): Shai Ben-David
Professor, Dept. of Computer Science, University of Waterloo

Internal Member: Pascal Poupart
Professor, Dept. of Computer Science, University of Waterloo

Internal Member: Yaoliang Yu
Assistant Professor, Dept. of Computer Science, University of Waterloo

Internal-External Member: Ali Ghodsi
Professor, Dept. of Statistics and Actuarial Science, University of Waterloo

ii

This thesis consists of material all of which I authored or co-authored: see Statement of
Contributions included in the thesis. This is a true copy of the thesis, including any required final
revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Statement of Contributions

Parts of this dissertation are based on some publications that I have co-authored. In particular,
Chapter 3 is based on a joint work with Shai Ben-David [9]. Also, Chapter 4 is based on a joint
work with Shrinu Kushagra and Shai Ben-David [14]. Chapters 6 and 7 are based on joint works
with Abbas Mehrabian and Shai Ben-David [12, 11]. Finally, a much more complete version of
[11] was later prepared together with Shai Ben-David, Nick Harvey, Chris Liaw, Abbas Mehrabian
and Yaniv Plan [10].

iv

Abstract

In the absence of domain knowledge, clustering is usually an under-specified task. For any
clustering application, one can choose among a variety of different clustering algorithms, along
with different preprocessing techniques, that are likely to result in dramatically different answers.
Any of these solutions, however, can be acceptable depending on the application, and therefore, it
is critical to incorporate prior knowledge about the data and the intended semantics of clustering
into the process of clustering model selection.

One scenario that we study is when the user (i.e., the domain expert) provides a clustering of a
(relatively small) random subset of the data set. The clustering algorithm then uses this kind of
“advice” to come up with a data representation under which an application of a fixed clustering
algorithm (e.g., k-means) results in a partition of the full data set that is aligned with the user’s
knowledge. We provide “advice complexity” of learning a representation in this paradigm.

Another form of “advice” can be obtained by allowing the clustering algorithm to interact
with a domain expert by asking same-cluster queries: “Do these two instances belong to the same
cluster?”. The goal of the clustering algorithm will then be finding a partition of the data set that
is consistent with the domain expert’s knowledge (yet using only a small number of queries).
Aside from studying the “advice complexity” (i.e., query complexity) of learning in this model,
we investigate the trade-offs between computational and advice complexities of learning, showing
that using a little bit of advice can turn an otherwise computationally hard clustering problem into
a tractable one.

In the second part of this dissertation we study the problem of learning mixture models,
where we are given an i.i.d. sample generated from an unknown target from a family of mixture
distributions, and want to output a distribution that is close to the target in total variation distance.
In particular, given a sample-efficient learner for a base class of distributions (e.g., Gaussians),
we show how one can come up with a sample-efficient method for learning mixtures of the base
class (e.g., mixtures of k Gaussians). As a byproduct of this analysis, we are able to prove tighter
sample complexity bounds for learning various mixture models. We also investigate how having
access to the same-cluster queries (i.e., whether two instances were generated from the same
mixture component) can help reducing the computational burden of learning within this model.

Finally, we take a further step and introduce a novel method for distribution learning via a
form of compression. In particular, we ask whether one can compress a large-enough sample set
generated from a target distribution (by picking only a few instances from it) in a way that allows
recovery of (an approximation to) the target distribution. We prove that if this is the case for all
members of a class of distributions, then there is a sample-efficient way of distribution learning
with respect to this class. As an application of this novel notion, we settle the sample complexity
of learning mixtures of k axis-aligned Gaussian distributions (within logarithmic factors).

v

Acknowledgements

My sincere gratitude goes to my supervisor, Professor Shai Ben-David, who helped me
patiently throughout this long journey. I was extremely lucky to have such a brilliant advisor and
teacher. I would not have been able to deliver this dissertation without his support.

I would like to thank my thesis committee members – Professor Ali Ghodsi, Professor Pascal
Poupart, Professor Yaoliang Yu and Professor Maria-Florina Balcan – for providing valuable
feedback and comments about my work.

I would like to thank Abbas Mehrabian and Shrinu Kushagra who are also the co-authors of
parts of this dissertation. I am also grateful to Vinayak Pathak and Samira Samadi for the helpful
discussions regarding the topics of this dissertation.

I will not forget my marvelous time in Waterloo with my incredible friends.

My deepest appreciation goes to my lovely parents, Sima and Morteza, for basically everything
I have accomplished. I am thankful to my brother, Mojtaba, for his constant support, and to my
sister, Mahya, for her sincere encouragements.

Most importantly, I would like to thank Elnaz, my best friend and my beloved wife. Without
her help and support, I would have simply given up. She made my graduate life joyful, cheered
me up in my weak moments, and literally helped me with my research. I feel extremely blessed to
have her by my side.

vi

Dedication

In loving memory of Parisa.

vii

Table of Contents

List of Figures xii

List of Tables xiii

1 Introduction 1

1.1 Objectives . 2

1.1.1 Formalization of Clustering with Advice 2

1.1.2 Algorithms for Clustering with Advice 3

1.1.3 Lower bounds for Clustering with Advice 3

1.1.4 Unsupervised Learning with Advice . 4

1.1.5 Learning Mixture Models . 4

1.2 Summary of Contributions . 4

1.2.1 Representation Learning for Clustering with Advice 4

1.2.2 Efficient Clustering with Advice . 5

1.2.3 Learning Mixture Models with/without Advice 5

1.2.4 Learning Mixture Models via Compression 6

1.3 How to Read this Dissertation . 6

2 Clustering with Advice: Background 8

2.1 Advice Protocol . 8

2.2 Semi-Supervised Clustering Methods . 9

viii

2.2.1 Constrained Clustering . 9

2.2.2 Metric Learning for Clustering . 10

2.2.3 Generative Models . 10

2.2.4 The Merge-Split Model . 11

2.2.5 Property-based Clustering . 12

2.3 Conclusions . 13

3 Representation Learning for Clustering with Advice 15

3.1 Contributions . 16

3.2 Preliminaries and Notations . 17

3.3 Formal Problem Statement (PAC-ReCLAD) . 18

3.4 The Case of K-means Clustering (ReKLAD) . 19

3.4.1 Definitions and Notations . 20

3.4.2 PAC-ReKLAD . 21

3.5 Statistical Analysis of ReKLAD . 21

3.5.1 Technical Background . 22

3.5.2 ERM as a Representation Learner . 22

3.5.3 Classes of Mappings with a Uniqueness Property 24

3.6 Uniform Convergence Results . 25

3.6.1 Preliminaries . 25

3.6.2 Reduction to Binary Hypothesis Classes 26

3.6.3 L1-Covering Number and Uniform Convergence 28

3.6.4 Bounding L1-Covering Number . 29

3.7 Sample Complexity of PAC-ReKLAD . 29

3.8 Conclusions . 30

3.8.1 Future Research Directions . 31

3.9 Appendix: Proof of Lemma 3.1 . 32

ix

4 Efficient Clustering with Advice 35

4.1 Contributions . 36

4.2 Related Work . 37

4.3 Problem Formulation . 38

4.3.1 Center-based Clustering . 38

4.3.2 The γ-Margin Property . 38

4.3.3 The Algorithmic Setup . 39

4.4 An Efficient SSAC Algorithm . 39

4.5 Hardness Results . 42

4.5.1 Hardness of Euclidean k-Means with Margin 42

4.5.2 Overview of the Proof . 43

4.5.3 Reduction Design . 44

4.5.4 Lower Bound on the Number of Queries 44

4.6 Conclusions . 46

4.6.1 Subsequent Results . 46

4.7 Appendix: Relationships Between Query Models 47

4.8 Appendix: Comparison of γ-Margin and α-Center Proximity 47

4.8.1 Centers from Input Instances . 48

4.8.2 Unrestricted Centers from the Metric Space 50

4.9 Appendix: Proofs of Lemmas 4.3 and 4.4 . 50

4.10 Appendix: Concentration Inequality . 53

5 Learning Mixture Models: Background 54

5.1 The Formal Framework . 55

5.1.1 Learning Mixture Models . 56

5.2 Related Work . 56

x

6 Learning Mixture Models with/without Advice 58

6.1 Contributions . 59

6.2 Learning Mixture Models . 59

6.3 Learning Mixtures of Gaussians . 65

6.3.1 Mixtures of Axis-Aligned Gaussians . 65

6.3.2 Mixtures of General Gaussians . 66

6.4 Learning Mixtures of Gaussians with Queries 66

6.5 Learning Mixtures of Log-Concave Distributions 67

6.6 Conclusions . 67

6.7 Appendix: Proofs of Theorems 6.3 and 6.6 . 68

7 Learning Mixture Models via Compression 71

7.1 Contributions . 72

7.2 Distribution Compression Schemes . 73

7.3 Robust Compression Implies Agnostic Learning 74

7.4 Robust Compression of Products of Distributions 76

7.5 Compression of Mixtures of Distributions . 77

7.6 Robust Compression of Univariate Gaussian Distributions 79

7.7 Compression of Mixtures of Axis-aligned Gaussians 82

7.8 Compression of Mixtures of General Gaussians 83

7.9 Further Discussions . 83

7.10 Appendix: Proofs of Auxiliary Results . 83

8 More Future Directions 86

References 88

xi

List of Figures

4.1 Geometry of Hl,m. This figure is similar to Fig. 1 in [83]. Reading from left to
right, each row Ri consists of a diamond (si), 6m+ 1 bullets (ri,1, . . . , ri,6m+1),
and another diamond (fi). Each rows Gi consists of 3m circles (gi,1, . . . , gi,3m). . 45

4.2 The locations of xi,j , x′i,j , yi,j and y′i,j in the set Zi. Note that the point gi,j is not
vertically aligned with xi,j or ri,2j . This figure is adapted from [83]. 45

6.1 Algorithm for learning the mixture class Fk . 62

xii

List of Tables

4.1 Known results for α-center proximity . 48

4.2 Results for γ-margin . 49

xiii

Chapter 1

Introduction

Clustering can be thought as the task of automatically dividing a set of objects into “coherent”
subsets. This definition is not concrete, but its vagueness allows it to serve as an umbrella term
for a wide diversity of algorithmic paradigms. Clustering algorithms are being routinely applied
in a huge variety of fields.

Clustering is a challenging task particularly due to two impediments. The first problem is that
clustering, in the absence of domain knowledge, is usually an under-specified task; the solution
of choice may vary significantly between different intended applications. The second one is that
performing clustering under many natural models is computationally hard.

Consider the task of dividing the users of an online shopping service into different groups. The
result of this clustering can then be used for example in suggesting similar products to the users
in the same group, or for organizing data so that it would be easier to read/analyze the monthly
purchase reports. Those different applications may result in conflicting solution requirements. In
such cases, one needs to exploit domain knowledge to better define the clustering problem.

Technically speaking, given a dataset that needs to be clustered for some application, one
can choose among a variety of different clustering algorithms, along with different preprocessing
techniques, that are likely to result in dramatically different answers. Any of these solutions,
however, can be acceptable, and therefore it is critical to incorporate prior knowledge about the
data and the intended clustering semantics into the process of model selection for clustering.

Regretfully, many of the existing approaches for incorporation of domain knowledge into
clustering—which are sometimes called semi-supervised clustering methods—are not systematic,
and involve trial-and-error or follow embarrassingly ad hoc measures. A major goal of this
dissertation is to address this shortcoming.

1

In particular, we would like to propose and study multiple notions of “advice” that can make
the clustering problem well-defined. Note that advice is a generic term that we use to call the
various types of “hints” about the clustering problem which are provided by a domain expert.
For example, advice can be in the form of some constraints (on the final clustering solution) that
are given off-line, or be the answers to some queries that are adaptively asked by the clustering
algorithm.

Furthermore, we want to define and analyze the “advice complexity” of clustering problems
in a formal framework. In other words, we would like to know how much advice is enough to
guarantee finding an (approximately) optimal solution.

Aside from the information-theoretic aspects, we plan to study the computational benefits
of advice as well. More interestingly, we would like to see if using a little bit of advice from
an expert (or an oracle) can turn a computationally hard clustering problem into a tractable one.
Proving such results is the second major theme in this dissertation.

Finally, we would like to take a further step and investigate the usability of advice in other
unsupervised learning problems, such as density estimation and learning mixture models. In
particular, we are interested to investigate the effect of advice on the computational and statistical
complexities of those problems.

Our aim is to address the mentioned problems in a formal framework. Therefore, we will
rely on mathematical proofs rather than simulations and experiments. In particular, we will often
require finding a probably approximately correct (PAC) solution for learning problems. The
specific settings and the details of each framework differ from problem to problem, and much of
our effort has been devoted to developing novel formal frameworks that (i) make sense in practice
and (ii) can be rigorously analyzed.

1.1 Objectives

In the previous section we alluded to the high level goals of this dissertation. In this section we
make our objectives more concrete.

1.1.1 Formalization of Clustering with Advice

The starting point of our research was seeking new ways of incorporating domain knowledge
into clustering within a formal framework. Accordingly, developing new learning models is an
essential goal of this work, which can be made possible by answering the following questions.

2

Communication Protocol. How should the learner and the domain expert communicate?
What kind of (off-line or interactive) protocol can we develop that is both user-friendly and
effective?

Performance Measure. What objective function should we use to evaluate the performance
of clustering with advice?

Model. What kinds of models can we use to encode domain expert’s knowledge? For instance,
expert’s intuitions may be modeled as a “representation” of data or as a similarity metric between
points. The class of models that we use should be rich enough to capture expert’s knowledge; yet,
there should be some inductive bias that makes solving the problem statistically possible.

Theoretical Guarantees. What types of statistical and computational guarantees should we
expect from these algorithms?

Assumptions. Are there assumptions (about the data or the given advice) that can make
clustering with advice possible? We ideally want realistic assumptions that hold for real world
applications—those which are not oversimplifying the question yet making the problem practically
and theoretically feasible.

1.1.2 Algorithms for Clustering with Advice

Our next goal is to come up with efficient solutions to the clustering problems that we formalize.
More specifically, our aim is to answer these questions.

Algorithms. What kind of methods/algorithms can we use to train the (parameters of the)
proposed models?

Advice Complexity. What is the advice complexity of the proposed method?

Computational Complexity What is the computational complexity of the proposed method?

1.1.3 Lower bounds for Clustering with Advice

We would also like to provide computational and information-theoretic limits for any method that
one may use for clustering with advice.

Lower Bounds for Advice Complexity. What are the lower bounds that we can prove for
advice complexity of the problem?

Lower Bounds for Computational Complexity. What are the lower bounds that we can
prove for computational complexity of the problem?

Trade-offs. Is there a trade-off between computational complexity and advice complexity?

3

1.1.4 Unsupervised Learning with Advice

We are curious to see the effect of using advice not only in clustering, but also in other unsupervised
learning problems. One of the applications that can benefit from such forms of advice is learning
mixture models.

Learning Mixture Models. Can advice reduce the statistical or computational complexity of
learning mixture models?

Other Applications. Can the tools that we develop for learning with advice make statistical
or computational analysis of other problems simpler?

1.1.5 Learning Mixture Models

We mentioned that a side-goal of this dissertation is to investigate whether advice can reduce the
statistical or computational complexity of learning mixture models. While studying this problem,
we realized that even in the standard density estimation setting (i.e., without queries), the sample
complexity of learning mixture models is an open problem. Therefore, a major technical goal of
our work is to develop new techniques and sharp bounds on the sample complexity of learning
mixture models.

1.2 Summary of Contributions

In each of the following subsections, we present the outline of our contributions within a specific
chapter of this dissertation.

1.2.1 Representation Learning for Clustering with Advice

We address the problem of communicating domain knowledge from a user to the clustering
algorithm. We propose a protocol in which the user provides a clustering of a relatively small
random sample of a data set. The clustering algorithm then uses that sample to come up with a
data representation under which k-means clustering results in a clustering (of the full data set)
that is aligned with the user’s clustering. We provide a formal statistical model for analyzing
the sample complexity (i.e., advice complexity) of learning a clustering representation within
this paradigm. We then introduce a notion of capacity of a class of possible representations,
in the spirit of the VC-dimension, showing that classes of representations that have finite such

4

dimension can be successfully learned with sample size error bounds. In particular, we show that
for classes of representations induced by linear embeddings, this dimension grows bi-linearly
with the Euclidean dimension of the source and the target spaces.

1.2.2 Efficient Clustering with Advice

We propose a framework for Semi-Supervised Active Clustering framework (SSAC), where the
learner is allowed to interact with a domain expert, asking whether two given instances belong to
the same cluster or not. We study the query and computational complexity of clustering in this
framework. We consider a setting where the expert conforms to a center-based clustering with a
notion of margin, and show that there is a trade off between computational complexity and query
complexity; we prove that for the case of k-means clustering (i.e., when the expert conforms to a
solution of k-means), having access to relatively few such queries allows efficient solutions to
otherwise NP hard problems.

In particular, we provide a probabilistic polynomial-time (BPP) algorithm for clustering in
this setting that asks O

(
k2 log k + k log n) same-cluster queries and runs with time complexity

O
(
kn log n) (where k is the number of clusters and n is the number of instances). The algorithm

succeeds with high probability for data satisfying margin conditions under which, without queries,
we show that the problem is NP hard. We also prove a lower bound on the number of queries
needed to have a computationally efficient clustering algorithm in this setting.

1.2.3 Learning Mixture Models with/without Advice

We consider PAC learning of probability distributions (a.k.a. density estimation), where we
are given an i.i.d. sample generated from an unknown target distribution, and want to output
a distribution that is close to the target in total variation distance. Let F be an arbitrary class
of probability distributions, and let k-mix(F) denote the class of k-mixtures of elements of F .
Assuming the existence of a method for learning F with sample complexity mF(ε), we provide a
method for learning k-mix(F) with sample complexity O(k log k ·mF(ε)/ε2).

This general result enables us to improve the best known sample complexity upper bounds
for a variety of important mixture classes. First, we show that the class of mixtures of k axis-
aligned Gaussians in Rd is PAC-learnable with Õ(kd/ε4) samples, which is tight in k and d
up to logarithmic factors. Second, we show that the class of mixtures of k Gaussians in Rd is
PAC-learnable with sample complexity Õ(kd2/ε4), which improves the previous known bounds
of Õ(k3d2/ε4) and Õ(k4d4/ε2) in its dependence on k and d. Finally, we show that the class of

5

mixtures of k log-concave distributions over Rd is PAC-learnable using Õ(d(d+5)/2ε−(d+9)/2k)
samples.

We also show how these results are related to clustering with advice. In particular, we show
that using advice we can have a computationally efficient algorithm for learning mixtures, provided
that an efficient algorithm for learning the base class exists.

1.2.4 Learning Mixture Models via Compression

We study sample-efficient distribution learning, where – just like the previous subsection – a
learner is given an i.i.d. sample from an unknown target distribution, and aims to approximate that
distribution.

We introduce a novel method for distribution learning via a form of compression. Having a
large-enough sample from a target distribution, can one compress that sample set – by picking
only a few instances from it – in a way that allows recovery of (an approximation to) the target
distribution from the compressed set? We prove that if this is the case for all members of a class
of distributions, then there is a sample-efficient way of distribution learning for this class.

As an application of our approach, we provide a sample-efficient method for distribution
learning with respect to the class of mixtures of k axis-aligned Gaussian distributions over Rd.
This method uses only Õ(kd/ε2) samples (to guarantee with high probability an error of at most
ε). This is the first sample complexity upper bound that is tight in k, d, and ε up to logarithmic
factors.

Along the way, we prove several properties of compression schemes. Namely, we prove that
if there is a compression scheme for a base class of distributions, then there is a compression
scheme for the class of mixtures as well as the products of that base class. These closure properties
make compression schemes a powerful tool. For example, the problem of learning mixtures of
axis-aligned Gaussians reduces to that of compressing one-dimensional Gaussian distributions,
which we show is possible using a compressed set of constant size.

1.3 How to Read this Dissertation

The dissertation is composed of two major parts. The first one is about clustering and includes
Chapters 2, 3 and 4. Note that Chapters 3 and 4 are orthogonal, and it is possible to skip the first
one (which is based on an older result) without having a problem grasping the other.

6

The second part of the thesis is focused on learning mixture models and includes Chapters 5,
6 and 7. In this case, it is recommended to look at Chapter 6 before reading Chapter 7. In a sense,
Chapter 7 is an improved version of Chapter 6 for the special case of Gaussian distributions.

These two major parts of the dissertation are connected based on the fact that mixture models
can be leaned with advice as well (just like clustering methods). These two parts are, however,
independent and the reader can start with reading each of them that she/he is interested. Fur-
thermore, in order to make the dissertation easier to read, we have tried to make each chapter
as self-contained as possible. Moreover, some of the proofs are omitted from the main text, and
postponed to the appendices at the end of the corresponding chapters.

7

Chapter 2

Clustering with Advice: Background

In this chapter we review the relevant literature on the problem of clustering with advice. Advice
can be thought as a form of supervision that can help doing model selection for clustering. More
generally, advice can be thought as any form of hint that the domain expert can provide about a
set of instances that are going to be clustered.

Clustering with advice can be conceptually categorized as a special case of “semi-supervised
learning”. However, to make it more specific to clustering (rather than to e.g., classification),
some authors use the term “semi-supervised clustering” [22, 24, 59].

In the next section, we categorize semi-supervised clustering models in terms of the protocol
used to convey supervision. Then, we will review different approaches to semi-supervised
clustering.

2.1 Advice Protocol

The most common method to convey supervision is through a set of pairwise must/cannot-link
constraints over the instances [86]. These constraints are sometimes called “side-information”
[87]. In this setting it is usually assumed that the given data points lie in some metric space and
the learner has access to the pairwise distances; however, this rough distance information is not
enough for clustering and the supervised constraints should also be taken into account.

In some other scenarios, the supervised feedback is in the form of pairwise similarities
[58, 47]. In this case, the goal is to learn a good clustering without seeing/measuring all the
pairwise similarities. In order to reduce the amount of required supervision, usually an active

8

setting is used where the pairwise similarities are asked by the learner gradually [58, 47]. In a
related setting, [84] considered an active framework where the learner, instead of asking about a
pairwise similarity, makes a one-vs-all query (which means that the similarity of the instance with
all of the other instances is requested).

Inspired by the query models in concept learning [6], Balcan et al. [18] proposed an interactive
setup where in each step the learner outputs a clustering, and the teacher corrects him. This
correction is either in the form of a split advice, or a merge advice. This type of supervision has
the advantage of being more intuitive for the domain expert (i.e., the teacher). However, for most
of the large data sets with large number of clusters it is hard for the teacher to check the output of
the learner in each step (unless e.g., the outcome of the clustering is meaningfully visualizable).

Another possibility is to ask the expert to provide a clustering of a small subset of instances.
The learner then learns how to cluster the whole data set based on this demonstration. We will
study this new setting in Chapter 3.

Yet another idea is to allow the learner to ask queries like “Do instances x1 and x2 belong to
the same cluster?” We will study this new form of supervision in Chapter 4.

2.2 Semi-Supervised Clustering Methods

2.2.1 Constrained Clustering

Semi-supervised clustering with pairwise constraints is probably the oldest method to inject
supervision into clustering. The common way of using such supervision is by changing the
objective of clustering so that violation of these constraints is penalized [37, 61, 25]. These
methods are sometimes called “constrained clustering”.

There have been several attempts to benefit from supervision for k-means clustering. Wagstaff
et al. [86] modified the well known Lloyd’s algorithm [65] to avoid assigning conflicting instances
to the same cluster. Also, Basu et al. [22] used labeled data to initialize the centers for the Lloyd’s
algorithm.

Hierarchical (i.e., agglomerative) clustering methods have also been extended to the supervised
setting. In [74], pairwise constraints were used to prune the clustering tree. Davidson and Ravi [36]
also studied this setting, and showed some computational hardness results about the satisfiability
of these constraints.

The problem with the constrained clustering is that most of the proposed methods are ad
hoc in two ways. First, the objective of clustering is selected in an ad hoc way without a clear

9

justification. Second, the optimization problem is usually NP-hard, and only heuristics are used to
solve the problem.

2.2.2 Metric Learning for Clustering

Another approach—which is relevant to our representation learning approach in Chapter 3—keeps
the clustering method fixed and instead searches for a metric that roughly fits the given constraints.
In particular, the metric is learned based on some objective function over metrics [87, 5, 80], so
that pairs of instances marked as must-link will be close in the new metric space (while cannot-link
pairs are kept far apart).

Note, however, that the objective functions used for metric learning are rather ad hoc, and
oblivious to the choice of clustering algorithm. In other words, it is not clear in what sense they are
compatible with the adopted clustering algorithm (such as k-means). This means that performing
clustering in the new space does not necessarily result in a clustering consistent with the given
side-information.

A systematic way to define the objective of metric learning is to use the clustering loss directly.
We will elaborate on this approach when we introduce the representation learning framework in
Chapter 3.

Another way to address this deficiency is to combine the two optimization problems: the
metric learning, and the constrained clustering. Bilenko et al. [31] proposed an objective function
to optimize the metric and the clustering at the same time. They then used an iterative EM-type
algorithm for optimization. Also, Basu et al. [23] proposed a similar framework with a different
objective. The drawbacks of these integrated models are similar to those of constrained clustering:
(i) the choice of objective function is not justified, and (ii) the proposed algorithm is not guaranteed
to find a good solution to the optimization problem.

Assuming a probabilistic generative model for the data, Gopal and Yang [51] propose to learn
a linear embedding of the data that is aligned with the labeled examples. We will elaborate more
on this method in the next subsection.

2.2.3 Generative Models

Generative models are being used in different learning tasks, including semi-supervised clustering.
In these models, it is assumed that the instances (together with their true assigned partitions) are
generated from a structured distribution. The task is then to approximate this distribution based
on the given labeled and unlabeled instances. In order to make this possible, one needs to make

10

assumptions about the distribution of the data. The common approach is to consider a parametric
class of distributions and try to estimate the parameters of the underlying distribution.

Basu et al. [24] considered a generative model based on Hidden Markov Random Fields
(HMRFs). They showed that this model can be regarded as a probabilistic interpretation of [23],
where the Euclidean distortion is generalized to Bregman’s divergence. It was then showed [59]
that this in turn is a special case of the weighted kernel k-means problem [40].

In a related work, Gopal and Yang [51] proposed an approach in which it is assumed that the
data is generated by a mixture model (Gaussian or Von-Mises Fisher). The parameters of this
model is then found such that the probability of generating the supervised labels is maximized. In
particular, a shared covariance matrix is learned for all of the components (which is equivalent
to learning a linear transformation for the data with unit variance model), enabling them to find
clusters that were not present in the given supervised data.

These models are useful when we have solid information about the data generating distribution.
However, in practice, the data is almost never generated exactly from the probabilistic model of
choice. One way to address this situation is to provide an “agnostic” guarantee: the outcome
of the algorithm should not be too bad if the assumption about the data generating distribution
is ‘marginally’ violated. Unfortunately, we are not aware of such guarantees in the context of
semi-supervised clustering.

Moreover, to make the problem computationally tractable, these methods usually resort to the
maximum likelihood principle (rather than e.g., using the fully Bayesian approach). However,
there is no guarantee that the maximum likelihood solution would be desirable (as it uses only
a point-estimate of the hidden variables). Finally, even finding the solution to the maximum
likelihood problem is sometimes computationally hard.

Despite the shortcomings of the existing models, there is a great potential for the applicability
of this general methodology as it provides a natural way of encoding domain knowledge for
semi-supervised clustering.

2.2.4 The Merge-Split Model

In Section 2.1, we briefly mentioned the framework proposed by Balcan and Blum [18]. In
this setting (which is the first interactive clustering model that is formally analyzed), the learner
outputs a clustering in each step, and the teacher corrects him by advising to either merge two
clusters or split a cluster. In the beginning, the only thing that the learner knows is that the true
clustering belongs to a given set of possible clusterings (i.e., a hypothesis class). In [18, 17], the

11

computational and query complexity of this problem was investigated, showing some upper and
lower bounds (e.g., for the case of finite hypothesis classes).

In order to get those bounds, it is expected from the teacher to respond to queries that have an
excessive size (i.e., the teacher needs to look at the whole clustering of the data each time)—a task
that is often exhausting (if not impossible) for the teachers. Therefore, this framework is especially
applicable for the cases where the outcome of the clustering can be visualized and comprehended
by a domain expert. Some efforts have been made to extend this framework to more practical
scenarios, e.g., by considering the case of noisy teachers or a teachers with incomplete response
[17].

Another issue that may arise is that the outcome of clustering can drastically change in each
iteration, making it hard for the user to understand and guide the outcome of the algorithm. In
order to handle this, [15] considered a setting where in each iteration only local changes are made
to the clustering outcome.

The interactive nature of the merge-split model is particularly interesting. Also, the framework
is theoretically solid and the algorithms are accompanied with theoretical guarantees of success.
Note, however, that currently the positive results are proved only for some special hypothesis
classes; also, the provided algorithms are usually not sufficiently efficient for practical applications.
Improving these results is therefore an important direction for future research.

2.2.5 Property-based Clustering

A totally different approach to the problem of communicating user expertise for the purpose of
choosing a clustering tool is discussed in [2]. They considered a set of properties (or requirements)
for clustering algorithms, and investigated which of those properties hold for various algorithms.
The user can then pick the right algorithm based on the requirements that she wants the algorithm
to meet.

However, to turn such an approach into a practically useful tool, one will need to come up
with properties that are relevant to the end user of clustering – a goal that is still far from being
reached. Also, these properties are more useful for picking the general clustering paradigm
(e.g., agglomerative or center-based), rather than picking the specific parameters (e.g, the target
embedding).

12

2.3 Conclusions

We reviewed the existing methods for semi-supervised clustering. In each of these models, the
domain knowledge is conveyed, modeled, and then used by the clustering algorithm in a certain
way. Many of these methods, however, follow a rather ad-hoc approach that is not theoretically
justified. In the following, we mention some of the drawbacks of the existing approaches.

• The choice of the objective function is not justified. For the metric learning methods,
the objective function is usually picked in a way that makes the optimization problem easy
to solve. However, it is not clear why optimizing such an objective would translate into a
desirable clustering. For the constrained clustering methods, usually the objective function
is not even explicit, and it is not clear how the outcome of the iterative method should be
interpreted/evaluated. Finally, as described before, the use of maximum likelihood approach
for the generative models is not well justified.

• It is not clear how much ‘advice’ is needed. It is important to know how much advice
(e.g., constraints, queries, etc.) from the domain expert is required to make semi-supervised
clustering possible. With the exception of the merge-split model [18], no upper or lower
bounds for the advice complexity of the existing methods is obtained.

• The objective functions are hard to optimize. Adding constraints to the optimization
problems usually makes them harder to solve. For example, the unconstrained version of
the k-means clustering problem is already NP-hard, and therefore the constrained version
is even harder to tackle. This is usually the case for generative models (specially in the
fully Bayesian setup) as well. Furthermore, clustering in the merge-split model can be
computationally hard too.

• The supervision protocol is not user friendly. In the merge-split model, it is required for
the domain expert to analyze the clustering of the whole data set every time a query is asked.
Aside from certain applications where the clustering of the data is easily visualizable/inter-
pretable, this task is impossible for the user of the clustering method.

• The assumptions about the data are not realistic. In generative models for clustering, it
is usually assumed that the data is generated by a specific parametric distribution. Unfortu-
nately, there is no guarantee about the outcome of these methods when the true distribution
fails to match the expectations. In particular, it is important to have a robust algorithm with
an ‘agnostic’ guarantee.

13

It is of course hard to address all of these issues in a single unified framework. However, there
is still much room for improvement, particularly in the development of the theoretical aspects of
the semi-supervised clustering problem.

14

Chapter 3

Representation Learning for Clustering
with Advice

The aim of Clustering with Advice (CLAD) is developing a systematic approach to convey
and utilize domain knowledge for clustering applications. In particular, we are looking for a
semi-supervised clustering framework, where the supervised feedback can be used to perform
model selection for clustering. Therefore, defining a supervision protocol and a learning model is
essential in enabling CLAD.

In this chapter, we approach the challenge by considering a scenario in which the domain
expert (i.e., the intended user of the clustering) conveys her domain knowledge by providing
a clustering of a small random subset of her data set. For example, consider a big customer
service center that wishes to cluster incoming requests into groups to streamline their handling.
Since the data base of requests is too large to be organized manually, the service center wishes
to employ a clustering program. As the clustering designer, we would then ask the service
center to pick a random sample of requests, manually cluster them, and show us the resulting
grouping of that sample. The learning algorithm then uses that demonstration to pick a clustering
method that, when applied to the full data set, will result in a clustering that follows the patterns
demonstrated by that sample clustering. We address this paradigm from a statistical machine
learning perspective.

Aiming to achieve generalization guaranties for such an approach, it is essential to introduce
some inductive bias. We do that by restricting the clustering algorithm to a predetermined
hypothesis class (or a set of concrete clustering algorithms). In a recent Dagstuhl workshop, Blum
[32] proposed to do that by fixing a clustering algorithm, say k-means, and searching for a metric
over the data under which k-means optimization yields a clustering that agrees with the training

15

sample clustering. One should note that, given any domain set X , for any k-partitioning P of
X , there exists some distance function dP over X such that P is the optimal k-means clustering
solution to the input (X, dP)1. Consequently, to protect against potential overfitting, the class of
potential distance functions should be constrained. In this chapter, we provide (apparently the
first) concrete formal framework for such a paradigm, as well as a generalization analysis of this
approach.

In this work we focus on center based clustering – an important class of clustering algorithms.
In these algorithms, the goal is to find a set of “centers” (or prototypes), and the clusters are the
Voronoi cells induced by this set of centers. The objective of such a clustering is to minimize
the expected value of some monotonically increasing function of the distances of points to their
cluster centers. The k-means clustering objective is arguably the most popular clustering paradigm
in this class. Currently, center-based clustering tools lack a vehicle for incorporating domain
expertise. Domain knowledge is usually taken into account only through an ad hoc choice of input
data representation. Regretfully, it might not be realistic to require the domain expert to translate
sufficiently elaborate task-relevant knowledge into hand-crafted features.

As a model for learning representations, we assume that the user-desirable clustering can be
approximated by first mapping the sample to some Euclidean (or Hilbert) space and then per-
forming k-means clustering in the mapped space (or equivalently, replacing the input data metric
by some kernel and performing center-based clustering with respect to that kernel). Here, the
clustering algorithm is supposed to learn a suitable mapping based on the given sample clustering.
We call this approach ReCLAD which stands for REpresentation learning for CLustering with
ADvice.

The main question addressed in this chapter is that of the sample complexity: what is the
size of a sample, to be clustered by the domain expert, that suffices for finding a close-to-optimal
mapping (i.e., a mapping that generalizes well on the test data)? Intuitively, this sample complexity
depends on the richness of the class of potential mappings that the algorithm is choosing from. In
standard supervised learning, there are well established notions of capacity of hypothesis classes
(e.g., VC-dimension) that characterize the sample complexity of learning. This chapter aims to
provide such relevant notions of capacity for clustering.

3.1 Contributions

Our first contribution is to provide a statistical framework to analyze the problem of representation
learning for clustering. We assume that the expert has some implicit target clustering of the dataset

1This property is sometimes called k-Richness

16

in his mind. The learner however, is unaware of it, and instead has to select a mapping among
a set of potential mappings, under which the result of k-means clustering will be similar to the
target partition. An appropriate notion of loss function is introduced to quantify the success of the
learner. Then, we define the analogous notion of PAC-learnability2 for the problem of learning
representation for clustering.

The second contribution of this chapter is the introduction of a combinatorial parameter, a
specific notion of the capacity of the class of mappings, that determines the sample complexity
of the clustering learning tasks. This combinatorial notion is a multivariate version of pseudo-
dimension of a class of real-valued mappings. We show that there is uniform convergence of
empirical losses to the true loss, over any class of embeddings, F , at a rate that is determined by
the proposed dimension of F . This implies that any empirical risk minimization algorithm (ERM)
will successfully learn such a class from sample sizes upper bounded by those rates. Finally, we
analyze a particular natural class—the class of linear mappings from Rd2 to Rd1—and show that
roughly speaking, sample size of O(d1d2

ε2
) is sufficient to guarantee an ε-optimal representation.

3.2 Preliminaries and Notations

Let X be a finite domain set. A k-clustering of X is a partition of X into k subsets. If C is a k-
clustering, we denote the subsets of the partition byC1, ..., Ck, therefore we haveC = {C1, .., Ck}.
Let πk denote the set of all permutations over [k] where [k] denotes {1, 2, ..., k}. We define the
difference between two k-clusterings, C1 and C2, with respect to X as follows

∆X(C1, C2) = min
σ∈πk

1

|X|

k∑
i=1

|C1
i ∆C2

σ(i)| (3.1)

where |.| and ∆ denote the cardinality and the symmetric difference of sets respectively. For a
sample S ⊂ X , and C1 (a partition of X), we define C1

∣∣∣
S

to be a partition of S induced by C1,

namely C1
∣∣∣
S

= {C1
1 ∩ S, . . . , C1

k ∩ S}. Accordingly, the sample-based difference between two
partitions is defined by

∆S(C1, C2) = ∆S(C1
∣∣∣
S
, C2

∣∣∣
S
) (3.2)

2PAC stands for the well known notion of “probably approximately correct”, popularized by [81].

17

Fix an unsupervised clustering algorithm, e.g., k-means clustering, that given a data set,
outputs a k-partition of the data. We denote CX as the outcome of clustering X (i.e., it is a
k-clustering of X). Note that the unsupervised clustering algorithm is fixed and should be clear
from the context.

Let f be a mapping from X to Rd. We define Cf
X the result of clustering X after mapping it

to a new space using f . In other words, Cf
X = Cf(X).

The difference between two mappings f1 and f2 with respect to X is defined by the difference
between the result of clustering using these mappings. Formally,

∆X(f1, f2) = ∆X(Cf1
X , C

f2
X) (3.3)

3.3 Formal Problem Statement (PAC-ReCLAD)

Let C∗ be the target k-clustering of X . A representation learning algorithm A(., .) takes as input
a sample set S ⊂ X and its clustering, C∗

∣∣∣
S

, and outputs a mapping f from a set of mappings F .

We call this learning problem ReCLAD which stands for REpresentation learner for CLuster-
ing with ADvice.

Definition 3.1. Probably Approximately Correct Representation Learning for Clustering with
Advice (PAC-ReCLAD)

Let F be a set of mappings from X to Rd. A representation learning algorithm A is a
PAC-ReCLAD learner with sample complexity mF : (0, 1)2 7→ N with respect to F , if for every
(ε, δ) ∈ (0, 1)2, every domain set X and every clustering of X , C∗, the following holds:

if S is a randomly (uniformly) selected subset of X of size at least mF(ε, δ), then with
probability at least 1− δ

∆X(C∗, CfA
X) ≤ inf

f∈F
∆X(C∗, Cf

X) + ε (3.4)

where fA = A(S,C∗
∣∣∣
S
), is the output of the algorithm.

Remark 3.1. In this definition, fA is the mapping that the algorithm outputs. Using this mapping,
X is mapped to a new space. The result of clustering in this new space is CfA

X . Therefore, it is
assumed that a fixed unsupervised clustering is used to cluster the data in the new space. In the
next section, we will fix the k-means clustering for this purpose.

18

Remark 3.2. This can be regarded as a formal PAC framework to analyze the problem of
clustering with advice. The learner is compared to the best mapping in the class F . This means
that this is an agnostic framework.

Remark 3.3. In this proposal, we investigate the transductive setup, where there is a given data
set, known to the learner, that needs to be clustered. Clustering often occurs as a task over some
data generating distribution (e.g., [85]). The current work can be readily extended to that setting.
However, in that case, we assume that the clustering algorithm gets, on top of the clustered sample,
a large unclustered sample drawn form that data generating distribution.

A natural question is providing bounds on the sample complexity of PAC-ReCLAD with
respect to F . Intuitively, for richer classes of mappings, we need larger clustered samples.
Therefore, we need to introduce an appropriate notion of “capacity” for F and bound the sample
complexity based on it. This is addressed in the next sections.

In the next section, we specialize the general framework of ReCLAD for the case of k-means
clustering.

3.4 The Case of K-means Clustering (ReKLAD)

In the previous section it was stated that the ReCLAD method relies on an unsupervised clustering
method. In this section, we fix the k-means clustering algorithm in the ReCLAD framework. It
means that we are looking for a representation of data under which the result of k-means clustering
is consistent with the domain knowledge. We call this approach ReKLAD (which stands for
REpresentation Learning for K-means clustering with ADvice).

k-means is a center-based clustering method. This means that the clustering outcome is the
Voronoi cells induces by the set of k centers that the algorithm outputs. The k-means clustering
objective is arguably the most popular center-based clustering paradigm. This makes the study of
ReKLAD interesting and important. Also, k-means is especially interesting because it is flexible:
for any target clustering in any domain, there exists a corresponding embedding to a new space
such that the solution of k-means in the new space is the same as target clustering3.

We formulate the ReCLAD problem for the case of k-means clustering. In the following, we
introduce the formal definitions.

3This property is sometimes called k-Richness

19

3.4.1 Definitions and Notations

Let f be a mapping from X to Rd, and µ = (µ1, . . . µk) be a vector of k centers in Rd. The
clustering defined by (f, µ) is the partition over X induced by the µ-Voronoi partition in Rd.
Namely,

Cf (µ) = (C1, . . . Ck), where for all i,

Ci = {x ∈ X : ‖f(x)− µi‖2 ≤ ‖f(x)− µj‖2 for all j 6= i}

The k-means cost of clustering X with a set of centers µ = {µ1, . . . , µk} and with respect to
a mapping f is defined by

COSTX(f, µ) =
1

|X|
∑
x∈X

min
µi∈µ
‖f(x)− µi‖22 (3.5)

The k-means clustering algorithm finds the set of centers µfX that minimize this cost4. In other
words,

µfX = arg min
µ

COSTX(f, µ) (3.6)

Also, for a partition C and mapping f , we can define the cost of clustering as follows.

COSTX(f, C) =
1

|X|
∑
i∈[k]

min
µj

∑
x∈Ci

‖f(x)− µj‖22 (3.7)

The following proposition shows the “k-richness” property of k-means objective.

Proposition 3.1. Let X be a domain set. For every k-clustering of X , C, and every d ∈ N+, there
exist a mapping g : X 7→ Rd such that Cg

X = C.

Proof. The mapping g can be picked such that it collapses each cluster Ci into a single point in
Rn (and so the image of X under mapping g will be just k single points in Rn). The result of
k-means clustering under such mapping will be C.

For a mapping f as above, let Cf
X denote the k-means clustering of X induced by f , namely

Cf
X = Cf (µ

f
X) (3.8)

4We assume that the solution to k-means clustering is unique. We will elaborate about this issue in the next
sections.

20

3.4.2 PAC-ReKLAD

Now that we have the needed notations, we can formally define the PAC-ReKLAD problem.
However, the definition is exactly the same as that of PAC-ReCLAD (Definition 3.1). We only
need to make the use of k-means clustering as the unsupervised tool explicit.

We avoid repeating the definition. We just note for PAC-ReKLAD is the same as PAC-
ReCLAD, except that the meaning of Cf

X is more explicit: Cf
X is k-clustering induced by first

mapping X to a new space using f , and then performing k-means clustering in the new space.

Proving a bound on the sample complexity of PAC-ReKLAD is the subject of the rest of this
chapter.

3.5 Statistical Analysis of ReKLAD

The important question that was raised in the previous sections was that of the sample complexity
(i.e., advice complexity): what is the size of a sample, to be clustered by the domain expert, that
suffices for finding a close-to-optimal embedding (i.e., a mapping that generalizes well on the test
data)?

Intuitively, this sample complexity depends on the richness of the class of potential embeddings
that the algorithm is choosing from. In standard supervised learning, there are well established
notions of capacity of hypothesis classes (e.g., VC-dimension) that characterize the sample
complexity of learning. In this chapter we will introduce relevant notions of capacity for ReCLAD.

Particularly, we introduce a combinatorial parameter, a specific notion of the capacity of the
class of mappings, that determines the advice complexity of ReKLAD. This combinatorial notion
is a multivariate version of pseudo-dimension of a class of real-valued mappings. We show that
there is uniform convergence of empirical losses to the true loss, over any class of mappings, F ,
at a rate that is determined by the proposed dimension.

This implies that any empirical risk minimization algorithm (ERM) will successfully learn
such a class from sample sizes upper bounded by those rates.

Finally, we analyze a particular natural class – the class of linear mappings from Rd2 to Rd1 –
and show that roughly speaking, sample size of O(d1d2

ε2
) is sufficient to guarantee an ε-optimal

answer.

21

3.5.1 Technical Background

Statistical convergence rates of sample clustering loss to the optimal clustering loss, with respect
to some data generating probability distribution, play a central role in our analysis. From that
perspective, most relevant to our work in this chapter are results that provide generalization bounds
for k-means clustering. Ben-David [27] proposed the first dimension-independent generalization
bound for k-means clustering loss based on compression techniques. This result was tightened
in [30] through an analysis of Rademacher complexity. Also, [69] investigated a more general
framework, in which generalization bounds for k-means as well as other algorithms can be
obtained.

It should be noted that these results are about the standard clustering setup (without any
supervised feedback), where the data representation is fixed and known to the clustering algorithm.
However, analysis of the semi-supervised clustering problem – particularly PAC-ReKLAD –
requires new tools. Also, note that the loss function in ReKLAD is not the usual k-means
clustering loss.

3.5.2 ERM as a Representation Learner

In order to prove an upper bound for the sample complexity of ReKLAD, we need to consider
an algorithm, and prove a sample complexity bound for it. Here, we show that any ERM-type
algorithm5 can be used for the ReKLAD framework. Therefore, we will be able to prove an upper
bound for the sample complexity of PAC-ReKLAD.

Let F be a class of mappings and X be the domain set. A TERM6 learner for F takes as input
a sample S ⊂ X and its clustering Y and outputs:

ATERM(S, Y) = arg min
f∈F

∆S(Cf
X

∣∣∣
S
, Y) (3.9)

Note that we call it transductive, because it is implicitly assumed that it has access to the
unlabeled dataset (i.e., X). A TERM algorithm goes over all mappings in F and selects the
mapping which is the most consistent mapping with the given clustering: the mapping under
which if we perform k-means clustering of X , the sample-based ∆-difference between the result
and Y is minimized.

5ERM stands for Empirical Risk Minimization
6TERM stands for Transductive Empirical Risk Minimizer

22

Intuitively, this algorithm will work well when the empirical ∆-difference and the true ∆-
difference of the mappings in the class are close to each other. In this case, by minimizing the
empirical difference, the algorithm will automatically minimize the true difference as well. In
order to formalize this idea, we define the notion of “representativeness” of a sample.

Definition 3.2. (ε-Representative Sample) Let F be a class of mappings from X to Rd. A sample
S is ε-representative with respect to F , X and the clustering C∗, if for every f ∈ F the following
holds

|∆X(C∗, Cf
X)−∆S(C∗, Cf

X))| ≤ ε (3.10)

The following theorem shows that for the TERM algorithm to work, it is sufficient to supply it
with a representative sample.

Theorem 3.1. (Sufficiency of Uniform Convergence) Let F be a set of mappings from X to Rd. If
S is an ε

2
-representative sample with respect to X , F and C∗ then

∆X(C∗, C f̂
X) ≤ ∆X(C∗, Cf∗

X) + ε (3.11)

where f ∗ = arg minf∈F ∆X(C∗, Cf
X) and f̂ = ATERM(S,C∗

∣∣∣
S
).

Proof. Using ε
2
-representativeness of S and the fact that f̂ is the empirical minimizer of the loss

function, we have

∆X(C∗, C f̂
X) ≤ ∆S(C∗, C f̂

X) +
ε

2
(3.12)

≤ ∆S(C∗, Cf∗

X) +
ε

2
(3.13)

≤ ∆X(C∗, Cf∗

X) +
ε

2
+
ε

2
(3.14)

≤ ∆X(C∗, Cf∗

X) + ε (3.15)

Therefore, we just need to provide an upper bound for the sample complexity of uniform
convergence: “how many instances do we need to make sure that with high probability our sample
is ε-representative?”

23

3.5.3 Classes of Mappings with a Uniqueness Property

In general, the solution to k-means clustering may not be unique. Therefore, the learner may end
up with finding a mapping that corresponds to multiple different clusterings. This is not desirable,
because in this case, the output of the learner will not be interpretable. Therefore, it is reasonable
to choose the class of potential mappings in a way that it includes only the mappings under which
the solution is unique.

In order to make this idea concrete, we need to define an appropriate notion of uniqueness.
We use a notion similar to the one introduced by [19] with a slight modification7.

Definition 3.3. ((η, ε)-Uniqueness) We say that k-means clustering for domain X under mapping
f : X 7→ Rd has a (η, ε)-unique solution, if every η-optimal solution of the k-means cost is ε-close
to the optimal solution. Formally, the solution is (η, ε)-unique if for every partition P that satisfies

COSTX(f, P) < COSTX(f, Cf
X) + η (3.16)

would also satisfy

∆X(Cf
X , P) < ε (3.17)

In the degenerate case where the optimal solution to k-means is not unique itself (and so Cf
X

is not well-defined), we say that the solution is not (η, ε)-unique.

It can be noted that the definition of (η, ε)-uniqueness not only requires the optimal solution
to k-means clustering to be unique, but also all the “near-optimal” minimizers of the k-means
clustering cost should be “similar”. This is a natural strengthening of the uniqueness condition, to
guard against cases where there are η0-optimizers of the cost function (for arbitrarily small η0)
with totally different solutions.

Now that we have a definition for uniqueness, we can define the set of mappings for X under
which the solution is unique. We say that a class of mappings F has (η, ε)-uniqueness property
with respect to X , if every mapping in F has (η, ε)-uniqueness property over X .

Note that given an arbitrary class of mappings F , we can find a subset of it that satisfies (η, ε)-
uniqueness property over X . Also, as argued above, this subset is the useful subset to work with.
Therefore, in the rest of this chapter, we investigate learning for classes with (η, ε)-uniqueness
property. In the next section, we prove uniform convergence results for such classes.

7Our notion is additive in both parameters rather than multiplicative

24

3.6 Uniform Convergence Results

In Section 3.5.2, we defined the notion of ε-representative samples. Also, we proved that if a
TERM algorithm is fed with such a representative sample, it will work satisfactorily. The most
technical part of the proof is then about the question “how large should be the sample in order to
make sure that with high probability it is actually a representative sample?”

In order to formalize this notion, let F be a set of mappings from a domain X to (0, 1)n8.
Define the sample complexity of uniform convergence, mUC

F (ε, δ), as the minimum number m
such that for every fixed partition C∗, if S is a randomly (uniformly) selected subset of X with
size m, then with probability at least 1− δ, for all f ∈ F we have

|∆X(C∗, Cf
X)−∆S(C∗, Cf

X)| ≤ ε (3.18)

The technical part of this chapter is devoted to provide an upper bound for this sample
complexity.

3.6.1 Preliminaries

Definition 3.4. (ε-cover and covering number) Let F be a set of mappings from X to (0, 1)n. A
subset F̂ ⊂ F is called an ε-cover for F with respect to the metric d(., .) if for every f ∈ F there
exists f̂ ∈ F̂ such that d(f, f̂) ≤ ε. The covering number, N (F , d, ε) is the size of the smallest
ε-cover of F with respect to d.

In the above definition, we did not specify the metric d. In our analysis, we are interested in
the L1 distance with respect to X , namely:

dXL1
(f1, f2) =

1

|X|
∑
x∈X

‖f1(x)− f2(x)‖2 (3.19)

Note that the mappings we consider are not real-valued functions, but their output is an n-
dimensional vector. This is in contrast to the usual analysis used for learning real-valued functions.
If f1 and f2 are real-valued, then L1 distance is defined by

8In the analysis, for simplicity, we will assume that the set of mappings is a function to the bounded space (0, 1)
n

wherever needed

25

dXL1
(f1, f2) =

1

|X|
∑
x∈X

|f1(x)− f2(x)| (3.20)

We will prove sample complexity bounds for our problem based on the L1-covering number
of the set of mappings. However, it will be beneficial to have a bound based on some notion
of capacity, similar to VC-dimension, as well. This will help in better understanding and easier
analysis of sample complexity of different classes. While VC-dimension is defined for binary
valued functions, we need a similar notion for functions with outputs in Rn. For real-valued
functions, we have such notion, called pseudo-dimension [78].

Definition 3.5. (Pseudo-Dimension) Let F be a set of functions from X to R. Let S =
{x1, x2, . . . , xm} be a subset of X . Then S is pseudo-shattered by F if there are real numbers
r1, r2, . . . , rm such that for every b ∈ {0, 1}m, there is a function fb ∈ F with sgn(fb(xi)−ri) = bi
for i ∈ [m]. Pseudo dimension of F , called Pdim(F), is the size of the largest shattered set.

It can be shown (e.g., Theorem 18.4. in [8]) that for a real-valued class F , if Pdim(F) ≤ q
then logN (F, dXL1

, ε) = O(q) where O() hides logarithmic factors of 1
ε
. In the next sections, we

will generalize this notion to Rn-valued functions.

3.6.2 Reduction to Binary Hypothesis Classes

Let f1, f2 ∈ F be two mappings and σ be a permutation over [k]. Define the binary-valued
function hf1,f2σ (.) as follows

hf1,f2σ (x) =

{
1 x ∈ ∪ki=1(C

f1
i ∆Cf2

σ(i))

0 otherwise
(3.21)

Let HFσ be the set of all such functions with respect to F and σ:

HFσ = {hf1,f2σ (.) : f1, f2 ∈ F} (3.22)

Finally, let HF be the union of all HFσ over all choices of σ. Formally, if π is the set of all
permutations over [k], then

HF = ∪σ∈πHFσ (3.23)

26

For a set S, and a binary function h(.), let h(S) = 1
|S|
∑

x∈S h(x). We now show that a
uniform convergence result with respect to HF is sufficient to have uniform convergence for
the ∆-difference function. Therefore, we will be able to investigate conditions for uniform
convergence of HF rather than the ∆-difference function.

Theorem 3.2. Let X be a domain set, F be a set of mappings, and HF be defined as above. If
S ⊂ X is such that

∀h ∈ HF , |h(S)− h(X)| ≤ ε (3.24)

then S will be 2ε-representative with respect to F , i.e., for all f1, f2 ∈ F we will have

|∆X(Cf1
X , C

f2
X)−∆S(Cf1

X , C
f2
X)| ≤ 2ε (3.25)

Proof.
|∆S(Cf1

X , C
f2
X)−∆X(Cf1

X , C
f2
X)| (3.26)

=

∣∣∣∣∣
(

min
σ

1

|S|
∑
x∈S

hf1,f2σ

)
−

(
min
σ

1

|X|
∑
x∈X

hf1,f2σ

)∣∣∣∣∣ (3.27)

≤ 2

∣∣∣∣∣max
σ

(
1

|S|
∑
x∈S

hf1,f2σ − 1

|X|
∑
x∈X

hf1,f2σ

)∣∣∣∣∣ (3.28)

≤ 2
∣∣∣max

σ

(
hf1,f2σ (S)− hf1,f2σ (X)

)∣∣∣ ≤ 2ε (3.29)

The fact that HF is a class of binary-valued functions enables us to provide sample complexity
bounds based on VC-dimension of this class. However, providing bounds based on VC-Dim(HF)
is not sufficient, in the sense that it is not convenient to work with the class HF . Instead, it will be
nice if we can prove bounds directly based on the capacity of the class of mappings, F . In the
next section, we address this issue.

27

3.6.3 L1-Covering Number and Uniform Convergence

The classes introduced in the previous section, HF and HFσ , are binary hypothesis classes. Also,
we have shown that proving a uniform convergence result for HF is sufficient for our purpose. In
this section, we show that a bound on the L1 covering number of F is sufficient to prove uniform
convergence for HF .

In Section 3.5.3, we argued that we only care about the classes that have (η, ε)-uniqueness
property. In the rest of this section, assume that F is a class of mappings from X to (0, 1)n that
satisfies (η, ε)-uniqueness property.

Lemma 3.1. Let f1, f2 ∈ F . If dL1(f1, f2) <
η
12

then ∆X(f1, f2) < 2ε

We leave the proof of this lemma for the appendix in the end of the chapter, and present the
next lemma.

Lemma 3.2. Let HF be defined as in the previous section. Then,

N (HF , dXL1
, 2ε) ≤ k!N (F , dXL1

,
η

12
) (3.30)

Proof. Let F̂ be the η
12

-cover corresponding to the covering number N (F , dXL1
, η
12

). Based on the
previous lemma, H F̂σ is a 2ε-cover for HFσ . But we have only k! permutations of [k], therefore,
the covering number for H F̂ is at most k! times larger than H F̂σ . This proves the result.

Basically, this means that if we have a small L1 covering number for the mappings, we will
have the uniform convergence result we were looking for. The following theorem proves this
result.

Theorem 3.3. LetF be a set of mappings with (η, ε)-uniqueness property. Then for some constant
α ≥ 0 we have

mUC
F (ε, δ) ≤ O(

log k! + logN (F , dXL1
, η
α

) + log(1
δ
)

ε2
) (3.31)

Proof. Following the previous lemma, if we have a small L1-covering number for F , we will also
have a small covering number for HF as well. But based on standard uniform convergence theory,
if a hypothesis class has small covering number, then it has uniform convergence property. More
precisely, (e.g., Theorem 17.1 in [8]) we have:

mUC
HF (ε0, δ) ≤ O(

logN (HF , dXL1
, ε0
16

) + log(1
δ
)

ε20
) (3.32)

Applying Lemma 3.2 to the above proves the result.

28

3.6.4 Bounding L1-Covering Number

In the previous section, we proved if the L1-covering number of the class of mappings is bounded,
then we will have uniform convergence. However, it is desirable to have a bound with respect
to a combinatorial dimension of the class (rather than the covering number). Therefore, we will
generalize the notion of pseudo-dimension for the class of mappings that take value in Rn.

Let F be a set of mappings form X to Rn. For every mapping f ∈ F , define real-valued
functions f1, . . . , fn such that f(x) = (f1(x), . . . , fn(x)). Now let Fi = {fi : f ∈ F}. This
means that F1, F2, . . . , Fn are classes of real-valued functions. Now we define pseudo-dimension
of F as follow.

Pdim(F) = nmax
i∈[n]

Pdim(Fi) (3.33)

Proposition 3.2. Let F be a set of mappings form X to Rn. If Pdim(F) ≤ q then

logN (F, dXL1
, ε) = O(q)

where O() hides logarithmic factors.

Proof. The result follows from the corresponding result for bounding covering number of real-
valued functions based on pseudo-dimension mentioned in the preliminaries section. The reason
is that we can create a cover by composition of the ε

n
-covers of all Fi. However, this will at most

introduce a factor of n in the logarithm of the covering number.

Therefore, we can rewrite the result of the previous section in terms of pseudo-dimension.

Theorem 3.4. Let F be a class of mappings with (η, ε)-uniqueness property. Then

mUC
F (ε, δ) ≤ O(

k + Pdim(F) + log(1
δ
)

ε2
) (3.34)

where O() hides logarithmic factors of k and 1
η
.

3.7 Sample Complexity of PAC-ReKLAD

In this section, we provide the main result of this chapter. In Section 3.5.2 we had showed that
uniform convergence is sufficient for a TERM algorithm to work. Also, in the previous section,

29

we proved a bound for the sample complexity of uniform convergence. The following theorem,
which is the main technical result of this chapter, combines these two and provides a sample
complexity upper bound for PAC-ReKLAD framework.

Theorem 3.5. (Sample Complexity of ReKLAD)

Let F be a class of (η, ε)-unique mappings. Then the sample complexity of representation
learning for k-means clustering (ReKLAD) with respect to F is upper bounded by

mF(ε, δ) ≤ O(
k + Pdim(F) + log(1

δ
)

ε2
) (3.35)

where O hides logarithmic factors of k and 1
η
.

The proof is done by combining Theorems 3.1 and 3.4.

The following result shows an upper bound for the sample complexity of learning linear
mappings (or equivalently, Mahalanobis metrics).

Corollary 3.1. Let F be a set of (η, ε)-unique linear mappings from Rd1 to Rd2 . Then we have

mF(ε, δ) ≤ O(
k + d1d2 + log(1

δ
)

ε2
) (3.36)

Proof. It is a standard result that the pseudo-dimension of a vector space of real-valued functions
is just the dimensionality of the space (in our case d1) (e.g., Theorem 11.4 in [8]). Also, based on
our definition of Pdim for Rd2-valued functions, it should scale by a factor of d2.

3.8 Conclusions

In this chapter we introduced the problem of representation learning for clustering with advice
(ReCLAD) and provided a formal statistical framework for analyzing this framework. In ReCLAD,
the learner—unaware of the target clustering of the domain—is given a clustering of a small
sample set. The learner’s task is then finding a mapping (among a class of mappings) under which
the result of clustering of the domain is as close as possible to the true clustering. For the special
case of k-means clustering, this framework was called ReKLAD.

In section 3.5, we provided the results on the advice complexity of PAC-ReKLAD. More
specifically, a notion of vector-valued pseudo-dimension for the class of mappings was defined,

30

and the sample complexity was upper bounded based on it. This means that for the classes with
higher such dimension, more clustered samples are required. Furthermore, it was proved that any
ERM-type algorithm that has access to such a sample will work satisfactorily

In order to prove this result, a notion of uniform convergence was defined, and it was shown
that the rate of convergence depends on the pseudo-dimension of the class of mappings. This was
in turn proved using a bound on the covering number of the set of mappings.

3.8.1 Future Research Directions

The choice of k-means clustering was rather arbitrary, except that it is rich. Therefore, it will be
useful to extend the results of PAC-ReKLAD to other clustering algorithms (i.e., considering the
general PAC-ReCLAD framework).

It can be noted that we did not analyze the computational complexity of the proposed algo-
rithms for PAC-ReKLAD. In fact, the problem is NP-hard, as the standard k-means clustering
is hard even without learning the representation. However, it is important to provide computa-
tionally efficient algorithms. This can be done either by picking other clustering algorithms or
by exploiting the “niceness” of data-generating distribution (e.g., a similar notion of uniqueness
proposed by [19] makes the complexity of k-means clustering problem polynomial). In the next
chapter, we propose another model for semi-supervised clustering where computationally efficient
learning is actually possible.

In ReCLAD framework, we assumed that the clustered sample is picked randomly. However,
we may also consider an active/adaptive setting, where the learner chooses this sample set
gradually. Furthermore, we assumed that the number of clusters is given and fixed for both
the main task (i.e., clustering of the whole domain set) and the clustering of the given sample.
However, it is conceivable that the domain expert would partition the small sample into a fewer
number of clusters. Therefore, it is important to “learn” how to pick the right number of clusters
as well.

There are other supervision protocols that were discussed in Chapter 2. In particular, in
many cases the supervised feedback is in the form of pairwise constraints. This is in contrast to
CLAD framework where the domain expert gives the clustering of a random sample. Therefore,
it is important to study the connection between these two scenarios, and possibly extend our
results to the other case. Another supervision protocol which has not been studied yet is the
comparison-based clustering where the domain expert is asked to compare two given clusterings
and should select one that is better. This can be more intuitive for the expert in many cases.

Finally, in this framework, we used supervision as a tool to capture domain knowledge.
However, in addition to the information-theoretic benefits of supervised feedback, there can be

31

computational gains as well. For example, k-means clustering is NP-hard. However, if we have
access to an oracle (i.e., domain expert), we may be able to find the solution using a few queries.
We will study this new line of research in the next chapter.

3.9 Appendix: Proof of Lemma 3.1

Let F : X 7→ (0, 1)n be a set of mappings that have (η, ε)-uniqueness property. Let f1, f2 ∈ F
and dL1(f1, f2) <

η
12

. We need to prove that ∆X(f1, f2) < 2ε. In order to prove this, note that
due to triangular inequality, we have

∆X(f1, f2) = ∆X(Cf1(µf1), Cf2(µf2))

≤ ∆X(Cf1(µf1), Cf1(µf2)) + ∆X(Cf1(µf2), Cf2(µf2)) (3.37)

Therefore, it will be sufficient to show that each of the ∆-terms above is smaller than ε. We
start by proving a useful lemma.

Lemma 3.3. Let f1, f2 ∈ F and dL1(f1, f2) <
η
6
. Let µ be an arbitrary set of k centers in (0, 1)n.

Then

|COSTX(f1, µ)− COSTX(f2, µ)| < η

2

Proof.
|COSTX(f1, µ)− COSTX(f2, µ)|

=

∣∣∣∣∣
(

1

|X|
∑
x∈X

min
µj∈µ
‖f1(x)− µj‖2

)
−

(
1

|X|
∑
x∈X

min
µj∈µ
‖f2(x)− µj‖2

)∣∣∣∣∣ (3.38)

≤ 1

|X|
∑
x∈X

max
µj∈µ

∣∣∣‖f1(x)− µj‖2 − ‖f2(x)− µj‖2
∣∣∣ (3.39)

=
1

|X|
∑
x∈X

max
µj∈µ

∣∣∣‖f1(x)‖2 − ‖f2(x)‖2 − 2 < µj, f1 − f2 >
∣∣∣ (3.40)

=
1

|X|
∑
x∈X

max
µj∈µ

∣∣∣ < f1 − f2, f1 + f2 − 2µj >
∣∣∣ (3.41)

32

≤ 3

|X|
∑
x∈X

‖f1 − f2‖ ≤
3η

6
≤ η

2
(3.42)

Now we are ready to prove that the first ∆-term is smaller than ε, i.e., ∆X(Cf1(µf1), Cf1(µf2)) <
ε. But to do so, we only need to show that COSTX(f1, µ

f2)− COSTX(f1, µ
f1) < η; because in

that case, due to (η, ε)-uniqueness property of f1, the result will follow. Now, using Lemma 3.3,
we have

COSTX(f1, µ
f2)− COSTX(f1, µ

f1) (3.43)

≤
(
COSTX(f2, µ

f2) +
η

2

)
− COSTX(f1, µ

f1) (3.44)

= min
µ

(COSTX(f2, µ))−min
µ

(COSTX(f1, µ)) +
η

2
(3.45)

≤ max
µ

(COSTX(f2, µ)− COSTX(f1, µ)) +
η

2
(3.46)

≤ η

2
+
η

2
≤ η (3.47)

where in the first and the last line we used Lemma 3.

Finally, we need to prove the second ∆-inequality, i.e., ∆X(Cf1(µf2), Cf2(µf2)) ≤ ε. Assume
contrary. But based on (η, ε)-uniqueness property of f2, we conclude thatCOSTX(f2, C

f1(µf2))−
COSTX(f2, C

f2(µf2)) ≥ η. In the following, we prove that this cannot be true, and hence a
contradiction.

Let mx = arg minµ0∈µf2 ‖f1(x)− µ0‖2. Then, based on the boundedness of f1(x),f2(x) and
we have:

COSTX(f2, C
f1(µf2))− COSTX(f2, C

f2(µf2)) (3.48)

=

(
1

|X|
∑
x∈X

‖f2(x)−mx‖2
)
− COSTX(f2, µ2) (3.49)

=

(
1

|X|
∑
x∈X

‖f2(x)− f1(x) + f1(x)−mx‖2
)
− COSTX(f2, µ2) (3.50)

33

=
1

|X|
∑
x∈X

‖f2(x)− f1(x)‖2 +
1

|X|
∑
x∈X

‖f1(x)−mx‖2

+
1

|X|
∑
x∈X

2 < f2(x)− f1(x), f1(x)−mx > −COSTX(f2, µ2)
(3.51)

≤ 2

|X|
∑
x∈X

‖f2(x)− f1(x)‖+ COSTX(f1, µ1)

+
4

|X|
∑
x∈X

‖f2(x)− f1(x)‖ − COSTX(f2, µ2)
(3.52)

≤ 6

|X|
∑
x∈X

‖f2(x)− f1(x)‖+ (COSTX(f1, µ1)− COSTX(f2, µ2)) (3.53)

≤ 6η

12
+
η

2
≤ η (3.54)

34

Chapter 4

Efficient Clustering with Advice

Clustering is a challenging task particularly due to two impediments. The first problem is that
clustering, in the absence of domain knowledge, is usually an under-specified task: the solution
of choice may vary significantly between different intended applications. The second one is that
performing clustering under many natural models is computationally hard.

Consider the task of dividing the users of an online shopping service into different groups. The
result of this clustering can then be used for example in suggesting similar products to the users
in the same group, or for organizing data so that it would be easier to read/analyze the monthly
purchase reports. Those different applications may result in conflicting solution requirements. In
such cases, one needs to exploit domain knowledge to better define the clustering problem. For
example, the framework that we proposed in the previous chapter addressed the same problem.

At the same time, mitigating the computational problem of clustering is critical. Solving
most of the common optimization formulations of clustering is NP-hard (in particular, solving the
popular k-means and k-median clustering problems). One approach to address this issues is to
exploit the fact that natural data sets usually exhibit some nice properties and likely to avoid the
worst-case scenarios. In such cases, optimal solution to clustering may be found efficiently. The
quest for notions of niceness that are likely to occur in real data and allow clustering efficiency is
still ongoing (see [28] for a critical survey of work in that direction).

In this chapter, we take a new approach to alleviate the computational problem of clustering.
In particular, we ask the following question: can weak supervision (in the form of answers to
natural queries) help relaxing the computational burden of clustering? This will add up to the other
benefit of supervision: making the clustering problem better defined by enabling the accession of
domain knowledge through the supervised feedback.

35

The general setting considered in this chapter is the following. Let X be a set of elements that
should be clustered and d a dissimilarity function over it. The oracle (e.g., a domain expert) has
some information about a target clustering C∗X in mind. The clustering algorithm has access to
X, d, and can also make queries about C∗X . The queries are in the form of same-cluster queries.
Namely, the algorithm can ask whether two elements belong to the same cluster or not. The goal
of the algorithm is to find a clustering that meets some predefined clusterability conditions and is
consistent with the answers given to its queries.

We will also consider the case that the oracle conforms with some optimal k-means solution.
We then show that access to a ’reasonable’ number of same-cluster queries can enable us to
provide an efficient algorithm for otherwise NP-hard problems.

4.1 Contributions

The two main contributions of this chapter are the introduction of the semi-supervised active
clustering (SSAC) framework and, the rather unusual demonstration that access to simple query
answers can turn an otherwise NP hard clustering problem into a feasible one.

Before we explain those results, let us also mention a notion of clusterability (or ‘input
niceness’) that we introduce. We define a novel notion of niceness of data, called γ-margin
property that is related to the previously introduced notion of center proximity [16]. The larger
the value of γ, the stronger the assumption becomes, which means that clustering becomes easier.
With respect to that γ parameter, we get a sharp ‘phase transition’ between k-means being NP
hard and being optimally solvable in polynomial time1.

We focus on the effect of using queries on the computational complexity of clustering. We
provide a probabilistic polynomial time (BPP) algorithm for clustering with queries, that succeeds
under the assumption that the input satisfies the γ-margin condition for γ > 1. This algorithm
makes O

(
k2 log k + k log n) same-cluster queries to the oracle and runs in O

(
kn log n) time,

where k is the number of clusters and n is the size of the instance set.

On the other hand, we show that without access to query answers, k-means clustering is
NP-hard even when the solution satisfies γ-margin property for γ =

√
3.4 ≈ 1.84 and k = Θ(nε)

(for any ε ∈ (0, 1)). We further show that access to Ω(log k+log n) queries is needed to overcome
the NP hardness in that case. These results, put together, show an interesting phenomenon.
Assume that the oracle conforms to an optimal solution of k-means clustering and that it satisfies

1The exact value of such a threshold γ depends on some finer details of the clustering task; whether d is required
to be Euclidean and whether the cluster centers must be members of X .

36

the γ-margin property for some 1 < γ ≤
√

3.4. In this case, our lower bound means that
without making queries k-means clustering is NP-hard, while the positive result shows that with a
reasonable number of queries the problem becomes efficiently solvable.

This indicates an interesting trade-off between query complexity and computational complexity
in the clustering domain.

4.2 Related Work

In Chapter 2 we reviewed the relevant literature to semi-supervised clustering. To recap, the most
common method to convey supervision for clustering is through a set of pairwise must-link/cannot-
link constraints on the instances [22, 24, 59]. Note that in contrast to the interactive supervision
protocol that we will propose, the supervision is non-interactive in these scenarios. Another
example of the non-interactive use of supervision was the ReCLAD framework introduced in the
previous chapter.

On the theory side, Balcan et al. [18] proposed a framework for interactive clustering with
the help of a user. In particular, the user was provided with the current clustering, and told the
algorithm to either split a cluster or merge two clusters. See Section 2.2.4 for details.

Our proposed setup combines the user-friendliness of must-link/cannot-link queries (as op-
posed to asking the domain expert to answer queries about whole data set clustering, or to cluster
sets of data) with the advantages of interactiveness.

Furthermore, the computational complexity of clustering has been extensively studied in
computer science literature. Many of these results are negative, showing that clustering is
computationally hard. For example, k-means clustering is NP-hard even for k = 2 [35], or in a
2-dimensional plane [83, 67]. In order to tackle the problem of computational complexity, some
notions of niceness of data under which the clustering becomes easy have been considered (see
[28] for a survey).

The closest proposal to the one that we will consider in this chapter is the notion of α-center
proximity introduced by Awasthi et al. [16]. We discuss the relationship of these notions in
Appendix 4.8. In the restricted scenario (i.e., when the centers of clusters are selected from the
data set), their algorithm efficiently recovers the target clustering (outputs a tree such that the
target is a pruning of the tree) for α > 3. Balcan and Liang [21] improved the assumption to
α >
√

2 + 1. Ben-David and Reyzin [29] showed that this problem is NP-Hard for α < 2.

Variants of these proofs for our γ-margin condition yield the feasibility of k-means clustering
when the input satisfies the condition with γ > 2 and NP hardness when γ < 2, both in the case

37

of arbitrary (not necessarily Euclidean) metrics2.

4.3 Problem Formulation

4.3.1 Center-based Clustering

The framework of clustering with queries can be applied to any type of clustering. However,
in this work, we focus on a certain family of common clusterings – center-based clustering in
Euclidean spaces3.

Let X be a subset of some Euclidean space, Rd. Let CX = {C1, . . . , Ck} be a clustering (i.e.,
a partitioning) of X . We say x1

CX∼ x2 if x1 and x2 belong to the same cluster according to CX .
We further denote by n the number of instances (|X |) and by k the number of clusters.

We say that a clustering CX is center-based if there exists a set of centers µ = {µ1, . . . , µk} ⊂
Rn such that the clustering corresponds to the Voroni diagram over those center points. Namely,
for every x in X and i ≤ k, x ∈ Ci ⇔ i = arg minj d(x, µj).

Finally, we assume that the centers µ∗ corresponding to C∗ are the centers of mass of the
corresponding clusters. In other words, µ∗i = 1

|Ci|
∑

x∈C∗i
x. Note that this is the case for example

when the oracle’s clustering is the optimal solution to the Euclidean k-means clustering problem.

4.3.2 The γ-Margin Property

Next, we introduce a notion of clusterability of a data set, also referred to as ‘data niceness
property’.

Definition 4.1 (γ-margin). Let X be set of points in metric space M . Let CX = {C1, . . . , Ck} be
a center-based clustering of X induced by centers µ1, . . . , µk ∈M . We say that CX satisfies the
γ-margin property if the following holds. For all x ∈ Ci and y ∈ Cj ,

γd(x, µi) < d(y, µi)

Similar notions have been considered before in the clustering literature. The closest one to our
γ-margin is the notion of α-center proximity [21, 16]. We discuss the relationship between these
two notions in Appendix 4.8.

2In particular, the hardness result of [29] relies on the ability to construct non-Euclidean distance functions. Later
in this chapter, we prove hardness for γ ≤

√
3.4 for Euclidean instances.

3In fact, our results are all independent of the Euclidean dimension and apply to any Hilbert space.

38

4.3.3 The Algorithmic Setup

For a clustering C∗ = {C∗1 , . . . C∗k}, a C∗-oracle is a function OC∗ that answers queries according
to that clustering. One can think of such an oracle as a user that has some idea about its desired
clustering, enough to answer the algorithm’s queries. The clustering algorithm then tries to recover
C∗ by querying a C∗-oracle. The following notion of query is arguably most intuitive.

Definition 4.2 (Same-cluster Query). A same-cluster query asks whether two instances x1 and x2
belong to the same cluster, i.e.,

OC∗(x1, x2) =

{
true if x1

C∗∼ x2
false o.w.

(we omit the subscript C∗ when it is clear from the context).

Definition 4.3 (Query Complexity). An SSAC instance is determined by the tuple (X , d, C∗).
We will consider families of such instances determined by niceness conditions on their oracle
clusterings C∗.

1. A SSAC algorithm A is called a q-solver for a family G of such instances, if for every
instance in G, it can recover C∗ by having access to (X , d) and making at most q queries
to a C∗-oracle.

2. Such an algorithm is a polynomial q-solver if its time-complexity is polynomial in |X | and
|C∗| (the number of clusters).

3. We sayG admits anO(q) query complexity if there exists an algorithmA that is a polynomial
q-solver for every clustering instance in G.

4.4 An Efficient SSAC Algorithm

In this section we provide an efficient algorithm for clustering with queries. The setting is the one
described in the previous section. In particular, it is assumed that the oracle has a center-based
clustering in his mind which satisfies the γ-margin property. The space is Euclidean and the center
of each cluster is the center of mass of the instances in that cluster. The algorithm not only makes
same-cluster queries, but also another type of query defined as below.

Definition 4.4 (Cluster-assignment Query). A cluster-assignment query asks the cluster index
that an instance x belongs to. In other words OC∗(x) = i if and only if x ∈ C∗i .

39

Note however that each cluster-assignment query can be replaced with k same-cluster queries
(see Appendix 4.7). Therefore, we can express everything in terms of the more natural notion of
same-cluster queries, and the use of cluster-assignment query is just to make the representation of
the algorithm simpler.

Intuitively, our proposed algorithm does the following. In the first phase, it tries to approximate
the center of one of the clusters. It does this by asking cluster-assignment queries about a set of
randomly (uniformly) selected point, until it has a sufficient number of points from at least one
cluster (say Cp). It uses the mean of these points, µ′p, to approximate the cluster center.

In the second phase, the algorithm recovers all of the instances belonging to Cp. In order to do
that, it first sorts all of the instances based on their distance to µ′p. By showing that all of the points
in Cp lie inside a sphere centered at µ′p (which does not include points from any other cluster), it
tries to find the radius of this sphere by doing binary search using same-cluster queries. After that,
the elements in Cp will be located and can be removed from the data set. The algorithm repeats
this process k times to recover all of the clusters.

The details of our approach is stated precisely in Algorithm 1. Note that β is a small constant4.
Theorem 4.1 shows that if γ > 1 then our algorithm recovers the target clustering with high
probability. Next, we give bounds on the time and query complexity of our algorithm. Theorem
4.2 shows that our approach needs O(k log n+ k2 log k) queries and runs with time complexity
O(kn log n).

Lemma 4.1. Let (X , d, C) be a clustering instance, where C is center-based and satisfies the
γ-margin property. Let µ be the set of centers corresponding to the centers of mass of C. Let µ′i
be such that d(µi, µ

′
i) ≤ r(Ci)ε, where r(Ci) = maxx∈Ci d(x, µi) . Then γ ≥ 1 + 2ε implies that

∀x ∈ Ci,∀y ∈ X \ Ci ⇒ d(x, µ′i) < d(y, µ′i)

Proof. Fix any x ∈ Ci and y ∈ Cj . d(x, µ′i) ≤ d(x, µi) + d(µi, µ
′
i) ≤ r(Ci)(1 + ε). Similarly,

d(y, µ′i) ≥ d(y, µi) − d(µi, µ
′
i) > (γ − ε)r(Ci). Combining the two, we get that d(x, µ′i) <

1+ε
γ−εd(y, µ′i).

Lemma 4.2. Let the framework be as in Lemma 4.1. Let Zp, Cp, µp, µ′p and η be defined as in
Algorhtm 1, and ε = γ−1

2
. If |Zp| > η, then the probability that d(µp, µ

′
p) > r(Cp)ε is at most δ

k
.

Proof. Define a uniform distribution U over Cp. Then µp and µ′p are the true and empirical mean
of this distribution. Using a standard concentration inequality (Theorem 4.9 from Appendix 4.10)
shows that the empirical mean is close to the true mean, completing the proof.

4It corresponds to the constant appeared in generalized Hoeffding inequality bound, discussed in Theorem 4.9 in
appendix 4.10 in supplementary materials.

40

Algorithm 1: Algorithm for γ(> 1)-margin instances with queries
Input: Clustering instance X , oracle O, the number of clusters k and parameter δ ∈ (0, 1)
Output: A clustering C of the set X

C = {}, S1 = X , η = β log k+log(1/δ)
(γ−1)4

for i = 1 to k do
Phase 1
l = kη + 1;
Z ∼ U l[Si] // Draws l independent elements from Si uniformly at random
For 1 ≤ t ≤ i,
Zt = {x ∈ Z : O(x) = t}. //Asks cluster-assignment queries about the members of
Z
p = arg maxt |Zt|
µ′p := 1

|Zp|
∑

x∈Zp x.

Phase 2
// We know that there exists ri such that ∀x ∈ Si, x ∈ Ci ⇔ d(x, µ′i) < ri.
// Therefore, ri can be found by simple binary search
Ŝi = Sorted({Si}) // Sorts elements of {x : x ∈ Si} in increasing order of d(x, µ′p).
ri = BinarySearch(Ŝi) //This step takes up to O(log |Si|) same-cluster queries
C ′p = {x ∈ Si : d(x, µ′p) ≤ ri}.
Si+1 = Si \ C ′p.
C = C ∪ {C ′p}

end

Theorem 4.1. Let (X , d, C) be a clustering instance, where C is center-based and satisfies the
γ-margin property. Let µi be the center corresponding to the center of mass of Ci. Assume
δ ∈ (0, 1) and γ > 1. Then with probability at least 1− δ, Algorithm 1 outputs C.

Proof. In the first phase of the algorithm we are making l > kη cluster-assignment queries.
Therefore, using the pigeonhole principle, we know that there exists cluster index p such that
|Zp| > η. Then Lemma 4.2 implies that the algorithm chooses a center µ′p such that with
probability at least 1 − δ

k
we have d(µp, µ

′
p) ≤ r(Cp)ε. By Lemma 4.1, this would mean that

d(x, µ′p) < d(y, µ′p) for all x ∈ Cp and y 6∈ Cp. Hence, the radius ri found in the phase two of
Alg. 1 is such that ri = max

x∈Cp
d(x, µ′p). This implies that C ′p (found in phase two) equals to Cp.

41

Hence, with probability at least 1 − δ
k

one iteration of the algorithm successfully finds all the
points in a cluster Cp. Using union bound, we get that with probability at least 1− k δ

k
= 1− δ,

the algorithm recovers the target clustering.

Theorem 4.2. Let the framework be as in theorem 4.1. Then Algorithm 1

• Makes O
(
k log n+ k2 log k+log(1/δ)

(γ−1)4
)

same-cluster queries to the oracle O.

• Runs in O
(
kn log n+ k2 log k+log(1/δ)

(γ−1)4
)

time.

Proof. In each iteration (i) the first phase of the algorithm takesO(η) time and makes η+1 cluster-
assignment queries (ii) the second phase takes O(n log n) times and makes O(log n) same-cluster
queries. Each cluster-assignment query can be replaced with k same-cluster queries; therefore,
each iteration runs in O(kη+ n log n) and uses O(kη+ log n) same-cluster queries. By replacing
η = β log k+log(1/δ)

(γ−1)4 and noting that there are k iterations, the proof will be complete.

Corollary 4.1. The set of Euclidean clustering instances that satisfy the γ-margin property for
some γ > 1 admits query complexity O

(
k log n+ k2 log k+log(1/δ)

(γ−1)4
)
.

Remark 4.1. In fact, the algorithm does not need to know the value of k in advance: a new cluster
should be created whenever the queried instance does not match with any of the (representatives
of the) current clusters (through same-cluster queries).

4.5 Hardness Results

4.5.1 Hardness of Euclidean k-Means with Margin

Finding k-means solution without the help of an oracle is generally computationally hard. In
this section, we will show that solving Euclidean k-means remains hard even if we know that
the optimal solution satisfies the γ-margin property for γ =

√
3.4. In particular, we show the

hardness for the case of k = Θ(nε) for any ε ∈ (0, 1).

In Section 4.4, we proposed a polynomial-time algorithm that could recover the target clus-
tering using O(k2 log k + k log n) queries, assuming that the clustering satisfies the γ-margin
property for γ > 1. Now assume that the oracle conforms to the optimal k-means clustering
solution. In this case, for 1 < γ ≤

√
3.4 ≈ 1.84, solving k-means clustering would be NP-hard

without queries, while it becomes efficiently solvable with the help of an oracle 5.
5To be precise, note that the algorithm used for clustering with queries is probabilistic, while the lower bound that

we provide is for deterministic algorithms. However, this implies a lower bound for randomized algorithms as well
unless BPP 6= P

42

Given a set of instances X ⊂ Rd, the k-means clustering problem is to find a clustering
C = {C1, . . . , Ck} which minimizes f(C) =

∑
Ci

min
µi∈Rd

∑
x∈Ci
‖x − µi‖22. The decision version of

k-means is, given some value L, is there a clustering C with cost ≤ L? The following theorem is
the main result of this section.

Theorem 4.3. Finding the optimal solution to Euclidean k-means objective function is NP-hard
when k = Θ(nε) for any ε ∈ (0, 1), even when the optimal solution satisfies the γ-margin property
for γ =

√
3.4.

This results extends the hardness result of [29] to the case of Euclidean metric, rather than
arbitrary one, and to the γ-margin condition (instead of the α-center proximity there). The full
proof is rather technical and is deferred to the Appendix 4.9. In the next sections, we provide an
outline of the proof.

4.5.2 Overview of the Proof

Our method to prove Theorem 4.3 is based on the approach employed by [83]. However, the
original construction proposed in [83] does not satisfy the γ-margin property. Therefore, we have
to modify the proof by setting up the parameters of the construction more carefully.

To prove the theorem, we will provide a reduction from the problem of Exact Cover by 3-Sets
(X3C) which is NP-Complete [50], to the decision version of k-means.

Definition 4.5 (X3C). Given a set U containing exactly 3m elements and a collection S =
{S1, . . . , Sl} of subsets of U such that each Si contains exactly three elements, does there exist m
elements in S such that their union is U?

We will show how to translate each instance of X3C, (U,S), to an instance of k-means
clustering in the Euclidean plane, X . In particular, X has a grid-like structure consisting of l
rows (one for each Si) and roughly 6m columns (corresponding to U) which are embedded in the
Euclidean plane. The special geometry of the embedding makes sure that any low-cost k-means
clustering of the points (where k is roughly 6ml) exhibits a certain structure. In particular, any
low-cost k-means clustering could cluster each row in only two ways; One of these corresponds
to Si being included in the cover, while the other means it should be excluded. We will then show
that U has a cover of size m if and only if X has a clustering of cost less than a specific value
L. Furthermore, our choice of embedding makes sure that the optimal clustering satisfies the
γ-margin property for γ =

√
3.4 ≈ 1.84.

43

4.5.3 Reduction Design

Given an instance of X3C, that is the elements U = {1, . . . , 3m} and the collection S, we
construct a set of points X in the Euclidean plane which we want to cluster. Particularly, X
consists of a set of points Hl,m in a grid-like manner, and the sets Zi corresponding to Si. In other
words, X = Hl,m ∪ (∪l−1i=1Zi).

The set Hl,m is as described in Fig. 4.1. The row Ri is composed of 6m + 3 points
{si, ri,1, . . . , ri,6m+1, fi}. Row Gi is composed of 3m points {gi,1, . . . , gi,3m}. The distances
between the points are also shown in Fig. 4.1. Also, all these points have weight w, simply
meaning that each point is actually a set of w points on the same location.

Each set Zi is constructed based on Si. In particular, Zi = ∪j∈[3m]Bi,j , where Bi,j is a subset
of {xi,j, x′i,j, yi,j, y′i,j} and is constructed as follows: xi,j ∈ Bi,j iff j 6∈ Si, and x′i,j ∈ Bi,j iff
j ∈ Si. Similarly, yi,j ∈ Bi,j iff j 6∈ Si+1, and y′i,j ∈ Bi,j iff j ∈ Si+1. Furthermore, xi,j, x′i,j, yi,j
and y′i,j are specific locations as depicted in Fig. 4.2. In other words, exactly one of the locations
xi,j and x′i,j , and one of yi,j and y′i,j will be occupied. We set the following parameters.

h =
√

5, d =
√

6, ε =
1

w2
, λ =

2√
3
h, k = (l − 1)3m+ l(3m+ 2)

L1 = (6m+ 3)wl, L2 = 3m(l − 1)w,L = L1 + L2 −mα,α =
d

w
− 1

2w3

Lemma 4.3. The set X = Hl,n ∪ Z has a k-clustering of cost less or equal to L if and only if
there is an exact cover for the X3C instance.

Lemma 4.4. Any k-clustering of X = Hl,n ∪ Z with cost ≤ L has the γ-margin property where
γ =
√

3.4. Furthermore, k = Θ(nε).

The proofs are provided in Appendix 4.9. Lemmas 4.3 and 4.4 together show that X has a
k-clustering of cost ≤ L satisfying the γ-margin property (for γ =

√
3.4) if and only if there is an

exact cover by 3-sets for the X3C instance. This completes the proof of Theorem 4.3.

4.5.4 Lower Bound on the Number of Queries

In the previous section we showed that k-means clustering is NP-hard even under γ-margin
assumption (for γ <

√
3.4 ≈ 1.84). On the other hand, in Section 4.4 we showed that this is not

the case if the algorithm has access to an oracle. In this section, we show a lower bound on the
number of queries needed to provide a polynomial-time algorithm for k-means clustering under
margin assumption.

44

�R1 • • • • . . . • • �
G1 ◦ ◦ . . . ◦
�R2 • • • • . . . • • �

Gl−1 ◦ ◦ . . . ◦
�Rl • • • • . . . • • �

d 2 2 d− ε

4

Figure 4.1: Geometry of Hl,m. This figure is
similar to Fig. 1 in [83]. Reading from left to
right, each row Ri consists of a diamond (si),
6m + 1 bullets (ri,1, . . . , ri,6m+1), and another
diamond (fi). Each rows Gi consists of 3m
circles (gi,1, . . . , gi,3m).

•
ri,2j−1

•
ri,2j

•
ri,2j+1

√
h2 − 1

•xi,j
h

•x′i,j

◦
gi,j

•yi,j

•y′i,j

•
ri+1,2j−1

•
ri+1,2j

•
ri+1,2j+1

√
h2 − 1

α

12

Figure 4.2: The locations of xi,j , x′i,j , yi,j and
y′i,j in the set Zi. Note that the point gi,j is not
vertically aligned with xi,j or ri,2j . This figure
is adapted from [83].

Theorem 4.4. For any γ ≤
√

3.4, finding the optimal solution to the k-means objective function
is NP-Hard even when the optimal clustering satisfies the γ-margin property and the algorithm
can ask O(log k + log |X |) same-cluster queries.

Proof. Proof by contradiction: assume that there is a polynomial-time algorithm A that makes
O(log k+log |X |) same-cluster queries to the oracle. Then, we show there exists another algorithm
A′ for the same problem that is still polynomial but uses no queries. However, this will be a
contradiction to Theorem 4.3, which will prove the result.

In order to prove that such A′ exists, we use a ‘simulation’ technique. Note that A makes only
q < β(log k + log |X |) binary queries, where β is a constant. The oracle therefore can respond to
these queries in maximum 2q < kβ|X |β different ways. Now the algorithm A′ can try to simulate
all of kβ|X |β possible responses by the oracle and output the solution with minimum k-means
clustering cost. Therefore, A′ runs in polynomial-time and is equivalent to A.

45

4.6 Conclusions

In this chapter we introduced a framework for semi-supervised active clustering (SSAC) with
same-cluster queries. Those queries can be viewed as a natural way for a clustering mechanism
to gain domain knowledge, without which clustering is an under-defined task. The focus of our
analysis was the computational and query complexity of such SSAC problems, when the input
data set satisfies a clusterability condition – the γ-margin property.

Our main result shows that access to a limited number of such query answers (logarithmic
in the size of the data set and quadratic in the number of clusters) allows efficient successful
clustering under conditions (margin parameter between 1 and

√
3.4 ≈ 1.84) that render the

problem NP-hard without the help of such a query mechanism. We also provided a lower bound
indicating that at least Ω(log kn) queries are needed to make those NP hard problems feasibly
solvable.

With practical applications of clustering in mind, a natural extension of this model is to allow
the oracle (i.e., the domain expert) to refrain from answering a certain fraction of the queries,
or to make a certain number of errors in its answers. It would be interesting to analyze how
the performance guarantees of SSAC algorithms behave as a function of such abstentions and
error rates. Interestingly, we can modify our algorithm to handle a sub-logarithmic number of
abstentions by checking all possible oracle answers to them (i.e., similar to the “simulation” trick
in the proof of Theorem 4.4).

4.6.1 Subsequent Results

In this section we will mention some of the recent subsequent results that have been shown by
other researchers about the semi-supervised active clustering (SSAC) model.

Recall that the algorithm that we proposed recovers the exact optimal clustering (with high
probability), assuming that the solution satisfies some niceness (i.e., γ-margin) condition. Ailon
et al. [4] removed the niceness assumption, providing an efficient approximate solution (in terms
of k-means cost) to the k-means clustering problem using queries. Again, this result demonstrates
that the computationally hard problem of approximate clustering can be solved efficiently if
the learner has access to same-cluster queries. More recently, Gamlath et al. [49] extended this
analysis to the case where we are not only interested in minimizing the k-means loss, but we
would also want to recover (approximately) the original partition of the instances.

The SSAC model has been adapted for other clustering algorithms as well. Ailon et al. [3] used
same-cluster queries to solve the approximate correlation clustering problem. Also, Mazumdar
and Saha [72] considered clustering in the stochastic block model using same-cluster queries.

46

The SSAC framework has been extended to the case of noisy oracle as well. Kim and
Ghosh [55, 56] considered “weak” oracles that can convey a degree of confidence (based on
the geometry of the points) for the query answers. Mazumdar and Saha [71] studied the crowd
sourcing scenario where the teachers (i.e., oracles) output the correct answer with some fixed
probability p (they consider various clustering schemes, including correlation clustering and
stochastic block model). Finally, the relationship between SSAC model and locally encodable
source coding was investigated by Mazumdar and Saha [70], showing some information-theoretic
limitations of same-cluster queries in the unstructured setting (e.g., when the geometry of the
instances is unavailable), and offering the use of AND queries instead.

4.7 Appendix: Relationships Between Query Models

Proposition 4.1. Any clustering algorithm that uses only q same-cluster queries can be adjusted
to use 2q cluster-assignment queries (and no same-cluster queries) with the same order of time
complexity.

Proof. We can replace each same-cluster query with two cluster-assignment queries as in
Q(x1, x2) = 1{Q(x1) = Q(x2))}.
Proposition 4.2. Any algorithm that uses only q cluster-assignment queries can be adjusted to
use kq same-cluster queries (and no cluster-assignment queries) with at most a factor k increase
in computational complexity, where k is the number of clusters.

Proof. If the clustering algorithm has access to an instance from each of k clusters (say xi ∈ Xi),
then it can simply simulate the cluster-assignment query by making k same-cluster queries
(Q(x) = arg maxi 1{Q(x, xi)}). Otherwise, assume that at the time of querying Q(x) it has only
instances from k′ < k clusters. In this case, the algorithm can do the same with the k′ instances
and if it does not find the cluster, assign x to a new cluster index. This will work, because in the
clustering task the output of the algorithm is a partition of the elements, and therefore the indices
of the clusters do not matter.

4.8 Appendix: Comparison of γ-Margin and α-Center Prox-
imity

In this chapter, we introduced the notion of γ-margin niceness property. We further showed upper
and lower bounds on the computational complexity of clustering under this assumption. It is

47

Table 4.1: Known results for α-center proximity
Euclidean General Metric

Centers
from data

Upper bound :
√

2 + 1 [21]
Lower bound : ?

Upper bound :
√

2 + 1 [21]
Lower bound : 2 [29]

Unrestricted
Centers

Upper bound : 2 +
√

3 [16]
Lower bound : ?

Upper bound : 2 +
√

3 [16]
Lower bound : 3 [16]

therefore important to compare this notion with other previously-studied clusterability notions.

An important notion of niceness of data for clustering is α-center proximity property.

Definition 4.6 (α-center proximity [16]). Let (X , d) be a clustering instance in some metric space
M , and let k be the number of clusters. We say that a center-based clustering CX = {C1, . . . , Ck}
induced by centers c1, . . . , ck ∈ M satisfies the α-center proximity property (with respect to X
and k) if the following holds

∀x ∈ Ci, i 6= j, αd(x, ci) < d(x, cj)

This property has been considered in the past in various studies [21, 16]. In this appendix we
will show some connections between the notions of γ-margin and α-center proximity.

It is important to note that throughout this chapter we considered clustering in Euclidean
spaces. Furthermore, the centers were not restricted to be selected from the data points. However,
this is not necessarily the case in other studies.

An overview of the known results under α-center proximity is provided in Table 4.1. The
results are provided for the case that the centers are restricted to be selected from the training set,
and also the unrestricted case (where the centers can be arbitrary points from the metric space).
Note that any upper bound that works for general metric spaces also works for the Euclidean
space.

We will show that using the same techniques one can prove upper and lower bounds for
γ-margin property. It is important to note that for γ-margin property, in some cases the upper and
lower bounds match. Hence, there is no hope to further improve those bounds unless P=NP. A
summary of our results is provided in 4.2.

4.8.1 Centers from Input Instances

Theorem 4.5. Let (X, d) be a clustering instance and γ ≥ 2. Then, Algorithm 1 in [21] outputs
a tree T with the following property:

48

Table 4.2: Results for γ-margin
Euclidean General Metric

Centers
from data

Upper bound : 2 (Thm. 4.5)
Lower bound : ?

Upper bound : 2 (Thm. 4.5)
Lower bound : 2 (Thm. 4.6)

Unrestricted
Centers

Upper bound : 3 (Thm. 4.7)
Lower bound : 1.84 (Thm. 4.3)

Upper bound : 3 (Thm. 4.7)
Lower bound : 3 (Thm. 4.8)
Awasthi

Any k-clustering C∗ = {C∗1 , . . . , C∗k} which satisfies the γ-margin property and its cluster
centers µ1, . . . , µk are in X , is a pruning of the tree T . In other words, for every 1 ≤ i ≤ k, there
exists a node Ni in the tree T such that C∗i = Ni.

Proof. Let p, p′ ∈ C∗i and q ∈ C∗j . [21] prove the correctness of their algorithm for α >
√

2 + 1.
Their proof relies only on the following three properties which are implied when α >

√
2 + 1.

We will show that these properties are implied by γ > 2 instances as well.

• d(p, µi) < d(p, q)
γd(p, µi) < d(q, µi) < d(p, q) + d(p, µi) =⇒ d(p, µi) <

1
γ−1d(p, q).

• d(p, µi) < d(q, µi)
This is trivially true since γ > 2.
• d(p, µi) < d(p′, q)

Let r = maxx∈C∗i d(x, µi). Observe that d(p, µi) < r. Also, d(p′, q) > d(q, µi) −
d(p′, µi) > γr − r = (γ − 1)r.

Theorem 4.6. Let (X , d) be a clustering instance and k be the number of clusters. For γ < 2,
finding a k-clustering of X which satisfies the γ-margin property and where the corresponding
centers µ1, . . . , µk belong to X is NP-Hard.

Proof. For α < 2, [29] proved that in general metric spaces, finding a clustering which satisfies
the α-center proximity and where the centers µ1, . . . , µk ∈ X is NP-Hard. Note that the reduced
instance in their proof, also satisfies γ-margin for γ < 2.

49

4.8.2 Unrestricted Centers from the Metric Space

Theorem 4.7. Let (X, d) be a clustering instance and γ ≥ 3. Then, the standard single-linkage
algorithm outputs a tree T with the following property:

Any k-clustering C∗ = {C∗1 , . . . , C∗k} which satisfies the γ-margin property is a pruning of T .
In other words, for every 1 ≤ i ≤ k, there exists a node Ni in the tree T such that C∗i = Ni.

Proof. [20] showed that if a clustering C∗ has the strong stability property, then single-linkage
outputs a tree with the required property. It is simple to see that if γ > 3 then instances have
strong-stability and the claim follows.

Theorem 4.8. Let (X , d) be a clustering instance and γ < 3. Then, finding a k-clustering of X
which satisfies the γ-margin is NP-Hard.

Proof. [16] proved the above claim but for α < 3 instances. Note however that the construction
in their proof satisfies γ-margin for γ < 3.

4.9 Appendix: Proofs of Lemmas 4.3 and 4.4

In Section 4.5 we proved Theorem 4.3 based on two technical results (i.e., lemma 4.3 and 4.4). In
this appendix we provide the proofs for these lemmas. In order to start, we first need to establish
some properties about the Euclidean embedding of X proposed in Section 4.5.

Definition 4.7 (A- and B-Clustering of Ri). An A-Clustering of row Ri is a clustering in the form
of {{si}, {ri,1, ri,2}, {ri,3, ri,4}, . . . , {ri,6m−1, ri,6m}, {ri,6m+1, fi}}. A B-Clustering of row Ri is
a clustering in the form of {{si, ri,1}, {ri,2, ri,3}, {ri,4, ri,5}, . . . , {ri,6m, ri,6m+1}, {fi}}.

Definition 4.8 (Good point for a cluster). A cluster C is good for a point z 6∈ C if adding z to C
increases cost by exactly 2w

3
h2.

Given the above definition, the following simple observations can be made.

• The clusters {ri,2j−1, ri,2j}, {ri,2j, ri,2j+1} and {gi,j} are good for xi,j and yi−1,j .
• The clusters {ri,2j, ri,2j+1} and {gi,j} are good for x′i,j and y′i−1,j .

Definition 4.9 (Nice Clustering). A k-clusteirng is nice if every gi,j is a singleton cluster, each Ri

is grouped in the form of either an A-clustering or a B-clustering, and each point in Zi is added
to a cluster which is good for it.

50

It is straightforward to see that a row grouped in an A-clustering costs (6m+ 3)w−α while a
row in B-clustering costs (6m+ 3)w. Hence, a nice clustering of Hl,m ∪Z costs at most L1 +L2.
More specifically, if t rows are grouped in an A-clustering, the nice-clustering costs L1 +L2− tα.
Also, observe that any nice clustering of X has only the following four different types of clusters.

(1) Type E - {ri,2j−1, ri,2j+1}
The cost of this cluster is 2w and the contribution of each location to the cost (i.e., cost

#locations
)

is 2w
2

= w.
(2) Type F - {ri,2j−1, ri,2j, xi,j} or {ri,2j−1, ri,2j, yi−1,j} or {ri,2j, ri,2j+1, x

′
i,j} or {ri,2j, ri,2j+1, y

′
i−1,j}

The cost of any cluster of this type is 2w(1 + h2

3
) and the contribution of each location to the

cost is at most 2w
9

(h2 + 3). This is equal to 16
9
w because we had set h =

√
5.

(3) Type I - {gi,j, xi,j} or {gi,j, x′i,j} or {gi,j, yi,j} or {gi,j, y′i,j}
The cost of any cluster of this type is 2

3
wh2 and the contribution to the cost of each location is

w
3
h2. For our choice of h, the contribution is 5

3
w.

(4) Type J - {si, ri,1} or {ri,6m+1, fi}
The cost of this cluster is 3w (or 3w − α) and the contribution of each location to the cost is
at most 1.5w.

Hence, observe that in a nice-clustering, any location contributes at most ≤ 16
9
w to the total

clustering cost. This observation will be useful in the proof of the lemma below.

Lemma 4.5. For large enough w = poly(l,m), any non-nice clustering of X = Hl,m ∪ Z costs
at least L+ w

3
.

Proof. We will show that any non-nice clustering C of X costs at least w
3

more than any nice
clustering. This will prove our result. The following cases are possible.

• C contains a cluster Ci of cardinality t > 6 (i.e., contains t weighted points)
Observe that any x ∈ Ci has at least t − 5 locations at a distance greater than 4 to it, and 4
locations at a distance at least 2 to it. Hence, the cost of Ci is at least w

2t
(42(t− 5) + 224)t =

8w(t − 4). Ci allows us to use at most t − 2 singletons. This is because a nice clustering
of these t + (t − 2) points uses at most t − 1 clusters and the clustering C uses 1 + (t − 2)
clusters for these points. The cost of the nice cluster on these points is ≤ 16w

9
2(t− 1). While

the non-nice clustering costs at least 8w(t− 4). For t ≥ 6.4 =⇒ 8(t− 4) > 32
9

(t− 1) and
the claim follows. Note that in this case the difference in cost is at least 8w

3
.

• C contains a cluster of cardinality t = 6
Note that among all clusters of cardinality 6, the following has the minimum cost: Ci =
{ri,2j−1, ri,2j, xi,j, yi−1,j, ri,2j+1, r2j+2}. The cost of this cluster is 176w

6
. Arguing as before, this

allows us to use 4 singletons. Hence, a nice cluster on these 10 points costs at most 160w
9

. The
difference of cost is at least 34w.

51

• C contains a cluster of cardinality t = 5
Note that among all clusters of cardinality 5, the following has the minimum cost: Ci =
{ri,2j−1, ri,2j, xi,j, yi−1,j, ri,2j+1}. The cost of this cluster is 16w. Arguing as before, this allows
us to use 3 singletons. Hence, a nice cluster on these 8 points costs at most 16w 8

9
. The difference

of cost is at least 16w
9

.
• C contains a cluster of cardinality t = 4

It is easy to see that amongst all clusters of cardinality 4, the following has the minimum cost.
Ci = {ri,2j−1, ri,2j, xi,j, ri,2j+1}. The cost of this cluster is 11w. Arguing as before, this allows
us to use 2 singletons. Hence, a nice cluster on these 6 points costs at most 32w

3
. The difference

of cost is at least w
3

.
• All the clusters have cardinality ≤ 3

Observe that amongst all non-nice clusters of cardinality 3, the following has the minimum
cost: Ci = {ri,2j−1, ri,2j, ri,2j+1}. The cost of this cluster is 8w. Arguing as before, this allows
us to use at most 1 more singleton. Hence, a nice cluster on these 4 points costs at most 64w

9
.

The difference of cost is at least 8w
9

.
It is also simple to see that any non-nice clustering of size 2 increases the cost by at least w.

Proof of lemma 4.3. The proof is identical to the proof of Lemma 11 in [83]. Note that the
parameters that we use are different with those utilized by [83]; however, this is not an issue,
because we can invoke our lemma 4.5 instead of the analogous result in Vattani (i.e., lemma 10 in
Vattani’s paper). The sketch of the proof is that based on lemma 4.5, only nice clusterings of X
cost ≤ L. On the other hand, a nice clustering corresponds to an exact 3-set cover. Therefore,
if there exists a clustering of X of cost ≤ L, then there is an exact 3-set cover. The other
way is simpler to proof; assume that there exists an exact 3-set cover. Then, the corresponding
construction of X makes sure that it will be clustered nicely, and therefore will cost ≤ L.

Proof of lemma 4.4. As argued before, any nice clustering has four different types of clusters. We
will calculate the minimum ratio ai = d(y,µ)

d(x,µ)
for each of these clusters Ci (where x ∈ Ci, y 6∈ Ci

and µ is mean of all the points in Ci.) Then, the minimum ai will give the desired γ.

(1) For Type E clusters ai = h/1 =
√

5.

(2) For Type F clusters. ai =

√
4+16(h2−1)

3

2h/3
=
√

17
5
≈ 1.84.

(3) For Type I clusters, standard calculation show that ai > 2.

(4) For Type J clusters ai =
2+
√
6

2√
6

2

> 2.

52

Furthermore, |X | = (12lm+ 3l − 6m)w and k = 6lm+ 2l − 3m. Hence for w =poly(l,m) our
hardness result holds for k = |X |ε for any 0 < ε < 1.

Lemmas 4.3 and 4.4 complete the proof of the main result (Theorem 4.3).

4.10 Appendix: Concentration Inequality

Theorem 4.9 (Generalized Hoeffding’s Inequality (e.g., [13])). Let X1,Xn be i.i.d random
vectors in some Hilbert space such that for all i, ‖Xi‖2 ≤ R and E[Xi] = µ. If n > c log(1/δ)

ε2
,

then with probability at least 1− δ, we have that∥∥∥µ− 1

n

∑
Xi

∥∥∥2
2
≤ R2ε

53

Chapter 5

Learning Mixture Models: Background

Learning distributions is a fundamental problem in statistics and computer science, and has
numerous applications in machine learning and signal processing. The problem can be stated as:

Given an i.i.d. sample generated from an unknown probability distribution g, find a
distribution ĝ that is close to g in total variation distance.1

This strong notion of learning is not possible in general using a finite number of samples.
However, if we assume that the target distribution belongs to or can be approximated by a family
of distributions, then there is hope to acquire algorithms with finite-sample guarantees. In this
chapter, we study learning the important families of mixture models within this framework.
As an example of this setting, assume that the target distribution is a Gaussian mixture with k
components in Rd. Then, how many examples do we need to find a distribution that is ε-close
to the target? This sample complexity question, as well as the corresponding computational
complexity question, has received a lot of attention recently (see, e.g. [48, 33, 79, 41, 46, 1]).

We also want to study a related setting, where the learner can ask queries about the actual
mixture component that an instance is generated from. We will then investigate if these queries
can help reducing the computational or statistical complexity of learning mixture models. This
new direction can be thought as generalizing the results of the previous chapter about center-based
clustering to the mixture learning setting.

Notice that we consider PAC learning of distributions (a.k.a. density estimation), which is
different from parameter estimation. In the parameter estimation problem, it is assumed that

1Total variation distance is a prominent distance measure between distributions. For a discussion on this and other
choices see [39, Chapter 5].

54

the target distribution belongs to some parametric class, and the goal is to learn/identify the
parameters (see, e.g., [34, 26, 76]).

5.1 The Formal Framework

Generally speaking, a distribution learning method is an algorithm that takes a sample of i.i.d.
points from distribution g as input, and outputs (a description) of a distribution ĝ as an estimation
for g. Furthermore, we assume that g belongs to or can be approximated by classF of distributions,
and we may require that ĝ also belongs to this class (i.e., proper learning).

Let f1 and f2 be two probability distributions defined over the Borel σ-algebra B. The total
variation distance between f1 and f2 is defined as

‖f1 − f2‖TV = sup
B∈B
|f1(B)− f2(B)| = 1

2
‖f1 − f2‖1 ,

where

‖f‖1 :=

∫ +∞

−∞
|f(x)|dx

is the L1 norm of f . In the following definitions, F is a class of probability distributions, and g is
a distribution not necessarily in F . Denote the set {1, 2, ...,m} by [m]. All logarithms are in the
natural base. For a function g and a class of distributions F , we define

OPT(F , g) := inf
f∈F
‖f − g‖1

Definition 5.1 (ε-approximation, (ε, C)-approximation). A distribution ĝ is an ε-approximation
for g if ‖ĝ − g‖1 ≤ ε. A distribution ĝ is an (ε, C)-approximation for g with respect to F if

‖ĝ − g‖1 ≤ C ×OPT(F , g) + ε

Definition 5.2 (PAC-Learning Distributions, Realizable Setting). A distribution learning method
is called a (realizable) PAC-learner for F with sample complexity mF(ε, δ), if for all distribution
g ∈ F and all ε, δ > 0, given ε, δ, and a sample of size mF(ε, δ), with probability at least 1− δ
outputs an ε-approximation of g.

Definition 5.3 (PAC-Learning Distributions, Agnostic Setting). ForC > 0, a distribution learning
method is called a C-agnostic PAC-learner for F with sample complexity mC

F(ε, δ), if for all
distributions g and all ε, δ > 0, given ε, δ, and a sample of size mC

F(ε, δ), with probability at least
1− δ outputs an (ε, C)-approximation of g.2

2Note that in some papers, only the case C ≤ 1 is called agnostic learning, and the case C > 1 is called
semi-agnostic learning.

55

Clearly, a C-agnostic PAC-learner (for any constant C) is also a realizable PAC-learner, with
the same error parameter ε. Conversely a realizable PAC-learner can be thought of an∞-agnostic
PAC-learner.

5.1.1 Learning Mixture Models

Let ∆n denote the n-dimensional simplex:

∆n = {(w1, . . . , wn) : wi ≥ 0,
k∑
i=1

wi = 1}

Definition 5.4. Let F be a class of probability distributions. Then the class of k-mixtures of F ,
written Fk, is defined as

Fk :=

{
k∑
i=1

wifi : (w1, . . . , wk) ∈ ∆k, f1, . . . , fk ∈ F

}
.

5.2 Related Work

In the computer science literature, PAC learning of distributions was introduced by [54]; we refer
the reader to [42] for a recent survey. A closely related line of research in statistics (in which
more emphasis is on sample complexity) is density estimation, for which the book by [39] is an
excellent resource.

One approach for studying the sample complexity of learning a class of distributions is
bounding the VC-dimension of its associated Yatracos class (see Definition 6.3), and applying
results such as Theorem 6.10. (These VC-dimensions have mainly been studied for the purpose
of proving generalization bounds for neural networks with sigmoid activation functions.) In
particular, the VC-dimension bound of [7, Theorem 8.14] – which is based on the work of [53] –
implies a sample complexity upper bound of O((k4d2 + k3d3)/ε2) for PAC learning mixtures of
axis-aligned Gaussians, and an upper bound of O(k4d4/ε2) for PAC learning mixtures of general
Gaussians (both results hold in the more general agnostic setting).

A sample complexity upper bound of O(d2k3 log2 k/ε4) for learning mixtures of Gaussians in
the realizable setting was proved in [46, Theorem A.1] (the running time of their algorithm is not
polynomial). Our algorithm is motivated by theirs, but we have introduced several new ideas in

56

the algorithm and in the analysis, which has resulted in improving the sample complexity bound
by a factor of k2.

For mixtures of spherical Gaussians, a polynomial time algorithm for the realizable setting
with sample complexity O(dk9 log2(d)/ε4) was proposed in [79, Theorem 11]. We improve their
sample complexity by a factor of Õ(k8). In the special case of d = 1, a non-proper agnostic
polynomial time algorithm with the optimal sample complexity of Õ(k/ε2) was given in [33], and
a proper agnostic algorithm with the same sample complexity and better running time was given
in [63].

An important question is finding polynomial time algorithms for learning distributions. To the
best of our knowledge, no polynomial time algorithm for learning mixtures of general Gaussians
is known. See [46] for the state-of-the-art results. Another important setting is computational
complexity in the agnostic learning, see, e.g., [41] for some positive results.

A related line of research is parameter estimation for mixtures of Gaussians, see, e.g., [34,
26, 76], who gave polynomial time algorithms for this problem assuming certain separability
conditions (these algorithms are polynomial in the dimension and the error tolerance but exponen-
tial in the number of components). Recall that parameter estimation is a more difficult problem
and any algorithm for parameter estimation requires some separability assumptions for the target
Gaussians, whereas for density estimation no such assumption is needed. E.g., consider the case
that k = 2 and the two components are identical; then there is no way to learn their mixing
weights.

We finally remark that characterizing the sample complexity of learning a class of distributions
in general is an open problem, even for the realizable (i.e., non-agnostic) case (see [42, Open
Problem 15.1]).

57

Chapter 6

Learning Mixture Models with/without
Advice

In this chapter, we consider a scenario in which we are given a method for learning a class of
distributions (e.g., Gaussians). Then, we ask whether we can use it, as a black box, to come up
with an algorithm for learning a mixture of such distributions (e.g., mixture of Gaussians). We
will show that the answer to this question is affirmative.

We propose a generic method for learning mixture models. Roughly speaking, we show that
by going from learning a single distribution from a class to learning a mixture of k distributions
from the same class, the sample complexity is multiplied by a factor of at most (k log2 k)/ε2. This
result is general, and yet it is surprisingly tight in many important cases. In this dissertation, we
assume that the algorithm knows the number of components k.

As a demonstration, we show that our method provides a better sample complexity upper
bound for learning mixtures of Gaussians than the state of the art. In particular, for learning
mixtures of k Gaussians in Rd, our method requires Õ(d2k/ε4) samples, improving by a factor
of k2 over the Õ(d2k3/ε4) bound of [46]. Furthermore, for the special case of mixtures of axis-
aligned Gaussians, we provide an upper bound of Õ(dk/ε4), which is the first optimal bound with
respect to k and d up to logarithmic factors, and improves upon the Õ(dk9/ε4) bound of [79],
which is only shown for the subclass of spherical Gaussians.

We also consider a related setting, where in addition to receiving a sample, the algorithm can
ask queries about it. In particular, the algorithm can ask whether two instances were generated
from the same component (i.e., same-cluster queries of the previous chapter). We show that using
this kind of query, one can devise a computationally efficient method for learning mixtures.

58

6.1 Contributions

Let F be a class of probability distributions, and let Fk denote the class of k-mixtures of elements
of F . In our main result, Theorem 6.1, assuming the existence of a method for learning F
with sample complexity mF(ε), we provide a method for learning Fk with sample complexity
O(k log2 k ·mF(ε)/ε2). Our mixture learning algorithm has the property that, if the F -learner is
proper, then the Fk-learner would be proper as well (i.e., the learner will always output a member
of Fk). Furthermore, the algorithm works in the more general agnostic setting provided that the
base learners are agnostic learners.

We provide several applications of our main result. In Theorem 6.4, we show that the
class of mixtures of k axis-aligned Gaussians in Rd is PAC-learnable with sample complexity
O(kd log2 k/ε4) (see Theorem 6.5). This bound is tight in terms of k and d up to logarithmic
factors. In Theorem 6.7, we show that the class of mixtures of k Gaussians in Rd is PAC-learnable
setting with sample complexity O(kd2 log2 k/ε4). Finally, in Theorem 6.9, we prove that the class
of mixtures of k log-concave distributions over Rd is PAC-learnable using Õ(d(d+5)/2ε−(d+9)/2k)
samples. To the best of our knowledge, this is the first upper bound on the sample complexity of
learning this class.

Additionally, we show that if the learner has access to same-cluster queries, then learning
can be done in a computationally efficient manner. We show that Gaussian mixture models can
be learned in polynomial time using O(d2k log k/ε2) samples and O(d2k2 log k/ε2) same-cluster
queries. This is an interesting result, as recently there have been some works suggesting that
(without queries) there is not much hope for efficient learning of mixtures of Gaussians (see [46]
for precise statements). Therefore, in the spirit of the results of the previous chapter, there is a
trade-off between the computational and the information-theoretic aspects of learning for the case
of mixture learning as well.

6.2 Learning Mixture Models

Assume that we have a method to PAC-learn F . Does this mean that we can PAC-learn Fk? And
if so, what is the sample complexity of this task? Our main theorem gives an affirmative answer
to the first question, and provides a bound for sample complexity of learning Fk.

Theorem 6.1. Assume that F has a C-agnostic PAC-learner with sample complexity mC
F(ε, δ) =

λ(F , δ)/εα for some C > 0, α ≥ 1 and some function λ(F , δ) = Ω(log(1/δ)). Let Fkρ be the set
of k-mixtures whose all components are ρ-close to F . Then there exists a PAC-learner for Fkρ
that finds a density with error at most 3Cρ+ ε and requires mFkρ (ε, δ) =

59

O

(
λ(F , δ

3k
)k log k

εα+2

)
= O

(
k log k ·mF(ε, δ

3k
)

ε2

)

samples.

We immediately obtain the following corollary.

Corollary 6.1. Assume that F has a realizable PAC-learner with sample complexity mF(ε, δ) =
λ(F , δ)/εα for some α ≥ 1 and some function λ(F , δ) = Ω(log(1/δ)). Then there exists a
realizable PAC-learner for the class Fk requiring mFk(ε, δ) =

O

(
λ(F , δ

3k
)k log k

εα+2

)
= O

(
k log k ·mF(ε, δ

3k
)

ε2

)

samples.

Some remarks:

1. Our mixture learning algorithm has the property that, if the F-learner is proper, then the
Fk-learner is proper as well.

2. The computational complexity of the resulting algorithm is exponential in the number of
required samples.

3. The condition λ(F , δ) = Ω(log(1/δ)) is a technical condition that holds for all interesting
classes F .

4. One may wonder about tightness of this theorem. In Theorem 2 in [79], it is shown that if
F is the class of spherical Gaussians, we have mO(1)

Fk (ε, δ) = Ω(kmF(ε, δ/k)), therefore,
the factor of k is necessary in general. However, it is not clear whether the additional factor
of log k/ε2 in the theorem is tight.

5. The constant 3 (in the 3Cρ-agnostic result) comes from [39, Theorem 6.3] (see Theo-
rem 6.2), and it is not clear whether it is necessary. If we allow for randomized algorithms
(which produce a random distribution whose expected distance to the target is bounded by
ε), then the constant can be improved to 2, see [68, Theorem 22].

60

6. It may be possible to extend this result for learning mixture models in the agnostic setting,
where each component is not necessarily ρ-close to the base class (but the target distribution
is still ρ-close to the class of mixtures). However, our original proof turned out to be
incorrect, therefore, we weakened the statement of the theorem. I would like to thank
Yaoliang Yu for finding the flaw.

In the rest of this section we prove Theorem 6.1. Let g be the true data generating distribution,
and let

g∗ = arg min
f∈Fk

‖g − f‖1 and ρ = ‖g∗ − g‖1 = OPT(Fk, g) . (6.1)

We have
g =

∑
i∈[k]

wiGi,

where each Gi is a probability distribution. Let ρi := OPT(F , Gi), and by the assumption we
have ∑

i∈[k]

wiρi ≤ ρ. (6.2)

The idea now is to learn each of the Gi’s separately using the agnostic learner for F . We will view
g as a mixture of k distributions G1, G2, . . . , Gk.

For proving Theorem 6.1, we will use the following theorem on learning finite classes of
distributions, which immediately follows from [39, Theorem 6.3] and a standard Chernoff bound.

Theorem 6.2. Suppose we are given M candidate distributions f1, . . . , fM and we have access
to i.i.d. samples from an unknown distribution g. Then there exists an algorithm that given the
fi’s and ε > 0, takes log(3M2/δ)/2ε2 samples from g, and with probability ≥ 1− δ/3 outputs
an index j ∈ [M] such that

‖fj − g‖1 ≤ 3 min
i∈[M]

‖fi − g‖1 + 4ε .

We now describe an algorithm that with probability ≥ 1 − δ outputs a distribution with L1

distance 13ε+ 3Cρ to g (the error parameter is 13ε instead of ε just for convenience of the proof;
it is clear that this does not change the order of magnitude of sample complexity). The algorithm,
whose pseudocode is shown in Figure 6.1, has two main steps. In the first step we generate a
set of candidate distributions, such that at least one of them is (3ε+ ρ)-close to g in L1 distance.
These candidates are of the form

∑k
i=1 ŵiĜi, where the Ĝi’s are extracted from samples and are

estimates for the real components Gi, and the ŵi’s come from a fixed discretization of ∆k, and

61

Input: k, ε, δ and an i.i.d. sample S
0. Let Ŵ be an (ε/k)-cover for ∆k in `∞ distance.
1. C = ∅ (set of candidate distributions)
2. For each (ŵ1, . . . , ŵk) ∈ Ŵ do:

3. For each possible partition of S into
A1, A2, ..., Ak:

4. Provide Ai to the F-learner, and let Ĝi

be its output.
5. Add the candidate distribution∑

i∈[k] ŵiĜi to C.
6. Apply the algorithm for finite classes (Theorem 6.2) to C and output its result.

Figure 6.1: Algorithm for learning the mixture class Fk

are estimates for the real mixing weights wi. In the second step, we use Theorem 6.2 to obtain a
distribution that is (13ε+ 3Cρ)-close to g.

We start with describing the first step. We take

s = max

{
2kλ(F , δ/3k)

εα
,
16k log(3k/δ)

ε

}
(6.3)

i.i.d. samples from g. Let S denote the set of generated points. Note that λ(F , δ) = Ω(log(1/δ))
implies

s = O(kλ(F , δ/3k)× ε−α).

Let Ŵ be an ε/k-cover for ∆k in `∞ distance of cardinality (k/ε + 1)k. That is, for any
x ∈ ∆k there exists w ∈ Ŵ such that ‖w − x‖∞ ≤ ε/k. This can be obtained from a grid in
[0, 1]k of side length ε/k, which is an ε/k-cover for [0, 1]k, and projecting each of its points onto
∆k.

By an assignment, we mean a function A : S → [k]. The role of an assignment is to “guess”
each sample point is coming from which component, by mapping them to a component index.
For each pair (A, (ŵ1, . . . , ŵk)), where A is an assignment and (ŵ1, . . . , ŵk) ∈ Ŵ , we generate
a candidate distribution as follows: let A−1(i) ⊆ S be those sample points that are assigned
to component i. For each i ∈ [k], we provide the set A−1(i) of samples to our F-learner, and
the learner provides us with a distribution Ĝi. We add the distribution

∑
i∈[k] ŵiĜi to the set of

candidate distributions.

62

Lemma 6.1. With probability ≥ 1− 2δ/3, at least one of the generated candidate distributions is
(3ε+ Cρ)-close to g.

Before proving the lemma, we show that it implies our main result, Theorem 6.1. By the
lemma, we obtain a set of candidates such that at least one of them is (3ε+ Cρ)-close to g (with
failure probability ≤ 2δ/3). This step takes s = O(kλ(F , δ/3k)× ε−α) many samples. Then, we
apply Theorem 6.2 to output one of those candidates that is (13ε+ 3Cρ)-close to g (with failure
probability ≤ δ/3), therefore using log(3M2/δ)/2ε2 additional samples. Note that the number
of generated candidate distributions is M = ks × (1 + k/ε)k. Hence, in the second step of our
algorithm, we take

log(3M2/δ)/2ε2 = O

(
λ(F , δ/3k)k log k

εα+2

)
= O

(
mF(ε, δ/3k)k log k

ε2

)
additional samples. The proof is completed noting the total failure probability is at most δ by the
union bound.

We now prove Lemma 6.1. We will use the following concentration inequality, which holds
for any binomial random variable X (see [75, Theorem 4.5(2)]):

Pr{X < EX/2} ≤ exp(−EX/8) . (6.4)

Say a component i is negligible if

wi ≤
8 log(3k/δ)

s

Let L ⊆ [k] denote the set of negligible components. Let i be a non-negligible component. Note
that, the number of points coming from component i is binomial with parameters s and wi and thus
has mean swi, so (6.4) implies that, with probability at least 1− δ/3k, S contains at least wis/2
points from i. Since we have k components in total, the union bound implies that, with probability
at least 1− δ/3, uniformly for all i /∈ L, S contains at least wis/2 points from component i.

Now consider the pair (A, (ŵ1, . . . , ŵk)) such that A assigns samples to their correct indices,
and has the property that |ŵi − wi| ≤ ε/k for all i ∈ [k]. We claim that the resulting candidate
distribution is (3ε+ Cρ)-close to g.

Let Ĝ1, . . . , Ĝk be the distributions provided by the learner. For each i ∈ [k] define

εi :=

(
2λ(F , δ/3k)

wis

)1/α

63

For any i /∈ L, since there exists at least wis/2 samples for component i, and since

wis/2 = λ(F , δ/3k)ε−αi = mF(εi, δ/3k) ,

we are guaranteed that ‖Ĝi − Gi‖1 ≤ Cρi + εi with probability 1 − δ/3k (recall that each Gi

is ρi-close to the class F). Therefore, ‖Ĝi − Gi‖1 ≤ Cρi + εi holds uniformly over all i /∈ L,
with probability ≥ 1− δ/3. Note that since α ≥ 1, the function w1−1/α

i is concave in wi, so by
Jensen’s inequality we have

∑
i∈[k]

w
1−1/α
i ≤ k

(
∑
i∈[k]

wi/k)1−1/α

 = k1/α ,

hence ∑
i/∈L

wiεi =

(
2λ(F , δ/3k)

s

)1/α∑
i/∈L

w
1−1/α
i

≤
(

2kλ(F , δ/3k)

s

)1/α

.

Also recall from (6.2) that
∑

i∈[k]wiρi ≤ ρ. Proving the lemma is now a matter of careful
applications of the triangle inequality:∥∥∥∥∥∥

∑
i∈[k]

ŵiĜi − g

∥∥∥∥∥∥
1

=

∥∥∥∥∥∥
∑
i∈[k]

ŵiĜi −
∑
i∈[k]

wiGi

∥∥∥∥∥∥
1

≤

∥∥∥∥∥∥
∑
i∈[k]

wi(Ĝi −Gi)

∥∥∥∥∥∥
1

+

∥∥∥∥∥∥
∑
i∈[k]

(ŵi − wi)Ĝi

∥∥∥∥∥∥
1

≤

∥∥∥∥∥∑
i∈L

wi(Ĝi −Gi)

∥∥∥∥∥
1

+

∥∥∥∥∥∑
i/∈L

wi(Ĝi −Gi)

∥∥∥∥∥
1

+
∑
i∈[k]

|ŵi − wi|
∥∥∥Ĝi

∥∥∥
1

≤ 2
∑
i∈L

wi +
∑
i/∈L

wi(εi + Cρi) +
∑
i∈[k]

ε/k × 1

≤ 2k × 8 log(3k/δ)

s
+

(
2kλ(F , δ/3k)

s

)1/α

+ Cρ+ ε

≤ ε+ ε+ ε+ Cρ ,

64

where for the last inequality we used the definition of s in (6.3). This completes the proof of
Lemma 6.1.

6.3 Learning Mixtures of Gaussians

Gaussian Mixture Models (GMMs) are probably the most widely studied mixture classes with
numerous applications; yet, the sample complexity of learning this class is not fully understood,
especially when the number of dimensions is large. In this section, we will show that our method
for learning mixtures can improve the state of the art for learning GMMs in terms of sample
complexity. In the following,Nd(µ,Σ) denotes a Gaussian density function defined over Rd, with
mean µ and covariance matrix Σ.

6.3.1 Mixtures of Axis-Aligned Gaussians

A Gaussian is called axis-aligned if its covariance matrix Σ is diagonal. The class of axis-aligned
Gaussian Mixtures is an important special case of GMMs that is thoroughly studied in the literature
(e.g. [48]).

Theorem 6.3. Let F denote the class of d-dimensional axis-aligned Gaussians. Then F is
3-agnostic PAC-learnable with m3

F(ε, δ) = O((d+ log(1/δ))/ε2).

We defer the proof of this result to Section 6.7. Combining this theorem with Theorem 6.1 we
obtain the following result:

Theorem 6.4. The class Fk of mixtures of k axis-aligned Gaussians in Rd is PAC-learnable with
sample complexity mFk(ε, δ) = O(kd log k log(k/δ)/ε4).

This theorem improves the upper bound of O(dk9 log2(d/δ)/ε4) proved in [79, Theorem 11]
for spherical Gaussians in the realizable setting. Spherical Gaussians are special cases of axis-
aligned Gaussians in which all eigenvalues of the covariance matrix are equal, i.e., Σ is a multiple
of the identity matrix. The following minimax lower bound (i.e., worst-case on all instances) on
the sample complexity of learning mixtures of spherical Gaussians is proved in the same paper.

Theorem 6.5 (Theorem 2 in [79]). The class Fk of mixtures of k axis-aligned Gaussians in Rd in
the realizable setting has mFk(ε, 1/2) = Ω(dk/ε2).

Therefore, our upper bound of Theorem 6.4 is optimal in terms of dependence on d and k (up
to logarithmic factors) for axis-aligned Gaussians.

65

6.3.2 Mixtures of General Gaussians

For general Gaussians, we have the following result.

Theorem 6.6. Let F denote the class of d-dimensional Gaussians. Then, F is 3-agnostic PAC-
learnable with m3

F(ε, δ) = O((d2 + log(1/δ))/ε2).

We defer the proof of this result to Section 6.7. Combining this theorem with Theorem 6.1,
we obtain the following result:

Theorem 6.7. The class Fk of mixtures of k Gaussians in Rd is PAC-learnable with sample
complexity mFk(ε, δ) = O(kd2 log k log(k/δ)/ε4).

This improves by a factor of k2 the upper bound of O(k3d2 log k/ε4) in the realizable setting,
proved in [46, Theorem A.1].

Note that Theorem 6.5 gives a lower bound of Ω(kd/ε2) for mFk(ε, δ), hence the dependence
of Theorem 6.7 on k is optimal (up to logarithmic factors). However, there is a factor of d/ε2

between the upper and lower bounds.

6.4 Learning Mixtures of Gaussians with Queries

The learning algorithm that we used to prove Theorem 6.7 about learning mixtures of Gaussians
is not efficient. In fact, its time complexity is exponential in k, d and 1/ε. Nevertheless, the
existence of a polynomial-time algorithm (with respect to k, d, and 1/ε) is a major open problem.
Therefore, it would be interesting to see if the use of same-cluster queries can help here, as it did
in Chapter 4.

Assume that the distribution learning method has access to a same-cluster oracle, and can
therefore ask whether two instances were generated from the same component or not. We showed
in Section 4.7 that k same-cluster queries can be used to answer to a cluster-assignment query.
In other words, we would like to know if having access to a cluster-assignment oracle—one
that can tell us the index of the component which generated an instance—can provide us with a
polynomial-time algorithm for learning GMMs.

Note that in the proof of Theorem 6.1, we created an exponential number of candidate
distributions and then chose between them. In fact, this was the reason that our algorithm was
computationally inefficient. However, this would not be necessary if the method has access to the
“labels” (i.e., the component indices) of the given instances. In particular, the algorithm does not

66

need to guess the labels (as they are given) or the mixing weights (as they can be substituted by
their empirical values). Therefore, together with the fact that the base learners are efficient (i.e., a
single Gaussian distribution can be learned in polynomial-time in the realizable setting, see [10,
Appendix B]), we would have a polynomial time for learning GMMs in the realizable case. This
result can even be extended to the non-realizable setting, using the fact that there are efficient and
robust methods for learning a single Gaussian distribution (see, [43, 60, 44]).

6.5 Learning Mixtures of Log-Concave Distributions

A probability density function over Rd is log-concave if its logarithm is a concave function. The
following result about the sample complexity of learning log-concave distributions is the direct
consequence of the recent work of [45].

Theorem 6.8. Let F be the class of distributions corresponding to the set of all log-concave den-
sities over Rd. Then F is 3-agnostic PAC learnable using m3(ε, δ) = O((d/ε)(d+5)/2 log2(1/ε))
samples.

Using Theorem 6.1, we come up with the first result about the sample complexity of learning
mixtures of log-concave distributions.

Theorem 6.9. The class of mixtures of k log-concave distributions over Rd is PAC-learnable
using Õ(d(d+5)/2ε−(d+9)/2k) samples.

6.6 Conclusions

We studied PAC learning of classes of distributions that are in the form of mixture models, and
proposed a generic approach for learning such classes in the cases where we have access to a
black box method for learning a single-component distribution. We showed that by going from
one component to a mixture model with k components, the sample complexity is multiplied by a
factor of at most (k log2 k)/ε2.

Furthermore, as a corollary of this general result, we provided upper bounds for the sample
complexity of learning GMMs and axis-aligned GMMs—O(kd2 log2 k/ε4) and O(kd log2 k/ε4)
respectively. Both of these results improve upon the state of the art in terms of dependence on k
and d.

67

It is worthwhile to note that for the case of GMMs, the dependence of our bound is 1/ε4.
Therefore, proving an upper bound of kd2/ε2 remains open.

Also, note that our result can be readily applied to the general case of mixtures of the
exponential family. Let Fd denote the d-parameter exponential family. Then the VC-dimension
of the corresponding Yatracos class (see Definition 6.3) is O(d) (see Theorem 8.1 in [39]) and
therefore by Theorem 6.10, the sample complexity of PAC learning Fd is O(d/ε2). Finally,
applying Theorem 6.1 gives a sample complexity upper bound of Õ(kd/ε4) for learning Fkd .

6.7 Appendix: Proofs of Theorems 6.3 and 6.6

We follow the general methodology of [39] to prove upper bounds on the sample complexity
of learning Gaussian distributions. The idea is to first connect distribution learning to the VC-
dimension of a class of a related set system (called the Yatracos class of the corresponding
distribution family), and then provide upper bounds on VC-dimension of this system. Our
Theorem 6.10 gives an upper bound for the sample complexity of agnostic learning, given an
upper bound for the VC-dimension of the Yatracos class. We remark that a variant of this result,
without explicit dependence on the failure probability, is proved implicitly in [33] and also appears
explicitly in [45, Lemma 6].

Definition 6.1 (A-Distance). Let A ⊂ 2X be a class of subsets of domain X . Let p and q be two
probability distributions over X . Then the A-distance between p and q is defined as

‖p− q‖A := sup
A∈A
|p(A)− q(A)|

Definition 6.2 (Empirical Distribution). Let S = {xi}mi=1 be a sequence of members of X . The
empirical distribution corresponding to this sequence is defined by p̂S(x) =

∑m
i=1

1{x=xi}
m

.

The following lemma is a well known refinement of the uniform convergence theorem, see,
e.g., [7, Theorem 4.9].

Lemma 6.2. Let p be a probability distribution over X . Let A ⊆ 2X and let v be the VC-
dimension of A. Then, there exist universal positive constants c1, c2, c3 such that

PrS∼pm{‖p− p̂S‖A ≥ ε} ≤ exp(c1 + c2v − c3mε2) .

Definition 6.3 (Yatracos class). For a class F of functions from X to R, their Yatracos class is
the family of subsets of X defined as

Y(F) := {{x ∈ X : f1(x) ≥ f2(x)} for some f1, f2 ∈ F}

68

Observe that if f, g ∈ F then ‖f − g‖TV = ‖f − g‖Y(F).

Definition 6.4 (Empirical Yatracos Minimizer). Let F be a class of distributions over domain X .
The empirical Yatracos minimizer is defined as LF : ∪∞m=1X

m → F satisfying

LF(S) = arg min
q∈F
‖q − p̂S‖Y(F).

Theorem 6.10 (PAC Learning Families of Distributions). Let F be a class of probability distri-
butions, and let S ∼ pm be an i.i.d. sample of size m generated from an arbitrary probability
distribution p, which is not necessarily in F . Then with probability at least 1− δ we have

‖p− LF(S)‖TV ≤ 3 OPT(F , p) + α

√
v + log 1

δ

m

where v is VC-dimension of Y(F), and OPT(F , p) = infq∗∈F ‖q∗ − p‖TV , and α is a universal
constant. In particular, in the realizable setting p ∈ F , we have

‖p− LF(S)‖TV ≤ α

√
v + log 1

δ

m

Remark 6.1. The L1 distance is precisely twice the total variation distance.

Proof. Let q∗ = arg minq∈F ‖p − q‖TV , so ‖q∗ − p‖Y(F) ≤ ‖q∗ − p‖TV = OPT(F , p). Since
LF(S), q∗ ∈ F we have ‖LF(S)− q∗‖TV = ‖LF(S)− q∗‖Y(F). By Lemma 6.2, with probability

≥ 1−δ we have ‖p−p̂S‖A ≤ α
√

(v + log 1
δ
)/m for some universal constant α. Also, sinceLF(S)

is the empirical minimizer of the Y(F)-distance, we have ‖LF(S)− p̂S‖Y(F) ≤ ‖q∗ − p̂S‖Y(F).
The proof follows from these facts combined with multiple applications of the triangle inequality:

‖p− LF(S)‖TV ≤ ‖LF(S)− q∗‖TV + ‖q∗ − p‖TV
= ‖LF(S)− q∗‖Y(F) + OPT(F , p)
≤ ‖LF(S)− p̂S‖Y(F) + ‖p̂S − q∗‖Y(F) + OPT(F , p)
≤ ‖q∗ − p̂S‖Y(F) +

(
‖p̂S − p‖A + ‖p− q∗‖Y(F)

)
+

OPT(F , p) ≤
(
‖q∗ − p‖Y(F) + ‖p− p̂S‖A

)
+

‖p− p̂S‖Y(F) + 2 OPT(F , p)
≤ ‖q∗ − p‖TV + 2‖p− p̂S‖Y(F) + 2 OPT(F , p)

≤ 2α

√
v + log 1

δ

m
+ 3 OPT(F , p) .

69

Theorem 6.10 provides a tool for proving upper bounds on the sample complexity of distri-
bution learning. To prove Theorems 6.6 and 6.3, it remains to show upper bounds on the VC
dimensions of the Yatracos class of (axis-aligned) Gaussian densities.

For classes F and G of functions, let

NN(G) := {{x : f(x) ≥ 0} for some f ∈ G}

and
∆F := {f1 − f2 : f1, f2 ∈ F} ,

and notice that
Y(F) = NN(∆F).

We upper bound the VC-dimension of NN(∆F) via the following well known result in statistical
learning theory, see, e.g., [39, Lemma 4.2].

Theorem 6.11 (Dudley). Let G be an n-dimensional vector space of real-valued functions. Then
V C(NN(G)) ≤ n.

Now let h be an indicator function for an arbitrary element in NN(f1 − f2), where f1, f2 are
densities of (axis-aligned) Gaussians. Then h is a {0, 1}-valued function and we have:

h(x) = 1{N (µ1,Σ1) > N (µ2,Σ2)}

= 1{α1 exp(
−1

2
(x− µ1)

TΣ−11 (x− µ1)) >

α2 exp(
−1

2
(x− µ2)

TΣ−12 (x− µ2))}

= 1{(x− µ1)
TΣ−11 (x− µ1)

− (x− µ2)
TΣ−12 (x− µ2)− log

α2

α1

> 0} .

The inner expression is a quadratic form, and the linear dimension of all quadratic functions is
O(d2). Furthermore, for axis-aligned Gaussians, Σ1 and Σ2 are diagonal, and therefore, the inner
function lies in an O(d)-dimensional space of functions spanned by {1, x1, . . . , xd, x21, . . . , x2d}.
Hence, by Dudley’s theorem, we have the required upper bound (d or d2) on the VC-dimension of
the Yatracos classes. Finally, Theorems 6.6 and 6.3 follow from applying Theorem 6.10 to the
class of (axis-aligned) Gaussian distributions.

70

Chapter 7

Learning Mixture Models via Compression

Learning about a probability distribution from a sample generated by that distribution is a
fundamental task. In this chapter, we follow the same formulation of Chapters 5 and 6 for
distribution learning. Determining the sample complexity of learning with respect to a general
class of distributions in this model is an open problem (see [42, Open Problem 15.1]).

In this chapter, we study the class of k-mixtures of axis-aligned Gaussians over Rd (i.e.,
distributions whose probability density functions (PDFs) are convex combinations of k axis-
aligned Gaussians’ PDFs). Distribution learning with respect to this class, as well as the related
class of mixtures of spherical Gaussians (those whose covariance matrices are multiples of the
identity matrix), has been studied extensively [79, 41, 48]. Surprisingly, the best possible sample
complexity of learning with respect to these classes is still unknown.

The state-of-the-art in terms of k and d is the result that we proved in the previous chapter
(Theorem 6.1), which provides an upper bound of Õ(kd/ε4) for learning with respect to the class
of mixtures of axis-aligned Gaussians. On a high level, the idea was to start with an i.i.d. sample of
size Õ(kd/ε2), and then partition this sample in every possible way into k subsets. Then, roughly
O(kkd/ε

2
) “candidate distributions” were generated based on those partitions. The problem was

then reduced to learning with respect to a finite class of candidates. However, the exponential
dependence of the number of candidates on 1/ε made the final bound loose in terms of 1/ε. It
turns out that there is no easy way to remove that exponential dependence.

As the main technical result of this chapter, we prove that the class of k-mixtures of axis-
aligned Gaussian distributions over Rd can be learned using Õ(kd/ε2) samples. This is the first
result that, up to logarithmic factors, matches the known lower bound of Ω(kd/ε2) [79].

We prove our main result by introducing a new form of sample compression. On a high-level,
we show that if we are able to “encode” members of a class of distributions using only a few of

71

the samples generated from them, then we can get an upper bound on the sample complexity of
learning with respect to that class. In particular, by proposing a compression scheme for the class
of mixtures of axis-aligned Gaussians, we come up with a nearly sharp upper bound on the sample
complexity of learning with respect to that class.

Let us emphasize again that we address the problem of density estimation rather than that of
parameter estimation (see [42, Section 15.2] for their difference). This is motivated by the fact
that in many applications, identifying the parameters is not the goal per se; instead, it suffices to
have a good approximation of the target distribution.

The approach we adopt for proving the upper bound is algorithmic. However, our focus
is not on computational efficiency. In particular, the bound is proved using a sample-efficient
method whose running time is exponential in terms of the Euclidean dimension and the number
of components of the mixture.

7.1 Contributions

In this chapter, we introduce a novel method for learning distributions via a form of sample
compression. Given a class of distributions, assume that there is a method for “compressing” the
samples that are generated by any distribution in the class. Further, assume that there exists a fixed
decoder for the class, such that given the compressed set of instances, it approximately recovers
the original distribution. In this case, if the size of the compressed set is guaranteed to be small,
we show that the sample complexity of learning that class is small as well.

We say that a class admits (t,m) compression if there exists a compression scheme such
that after generating m samples from any distribution in the class, we are guaranteed, with high
probability, to have a subset of size at most t of that sample, from which the decoder reconstructs
the original distribution.

We will also formalize a related but stronger notion of robust compression, where the target
distribution is supposed to be encoded using samples that are not necessarily generated from the
target itself, but are generated from a distribution that is close to the target (see Definition 7.2).

We prove that robust compression implies agnostic/robust learning. In particular, we show
that if a class admits (t,m) robust compression, then the sample complexity of agnostic learning
with respect to this class is roughly O(m+ t logm/ε2). Note that m and t can be functions of ε,
the accuracy parameter.

We also prove some closure properties of compression. Namely, we prove that if a base
class admits compression, then the class of k-mixtures of that base class, as well as the class of

72

products of the base class, are compressible (Lemmas 7.1 and 7.2). Consequently, it will suffice
to provide a compression scheme for one-dimensional Gaussian distributions in order to obtain a
compression scheme for mixtures of axis-aligned Gaussians (and therefore, to be able to bound
the sample complexity of learning that class).

As the final step, we prove that the class of one-dimensional Gaussian distributions admits
(O(1), O(1/ε)) robust compression. Constructing this constant-size robust compression scheme
ultimately enables us to prove a sharp bound for the sample complexity of learning, in terms of
the dependence on ε.

The above results together imply an upper bound of Õ(kd/ε2) for learning k-mixtures of
axis-aligned Gaussian distributions over Rd (and consequently, for the subset of mixtures of
spherical Gaussian distributions). This is the first upper bound for this class that is tight in d, k,
and ε, and matches, up to logarithmic factors, the minimax lower bound of Ω(kd/ε2) [79].

The compression framework that we introduce is generic, and can be used to prove sample
complexity upper bounds for other classes of distributions as well.

7.2 Distribution Compression Schemes

For a distribution g, S ∼ gm means that S is an i.i.d. sample of size m generated from g. Let F
be a class of distributions over a domain Z.

Definition 7.1 (distribution decoder). A distribution decoder for F is a deterministic function
J :

⋃∞
n=0 Z

n ×
⋃∞
n=0{0, 1}n → F , which takes a finite sequence of elements of Z and a finite

sequence of bits, and outputs a member of F .

Definition 7.2. [robust distribution compression schemes] Let t1, t2,m : (0, 1)→ Z≥0 be func-
tions, and let r ≥ 0. We say that F admits (t1, t2,m) r-robust compression if there exists a
decoder J for F such that for any distribution g ∈ F , and for any distribution q on Z with
‖g − q‖1 ≤ r, the following holds:

For any ε ∈ (0, 1), if S ∼ qm(ε), then with probability at least 2/3, there exists a
sequence L of at most t1(ε) elements of S, and a sequence B of at most t2(ε) bits, such that
‖J (L,B)− g‖1 ≤ ε.

Essentially, the definition asserts that with high probability, there should be a (small) subset of
S and some (small number of) additional bits, from which g can be reconstructed. We say that the
distribution g is “encoded” with L and B, and in general we would like to have a compression

73

scheme of a small size. This compression scheme is called “robust” since one wants to reconstruct
g based on a sample that is generated from q rather than g itself. We will mainly consider constant
values of r, and therefore q can be quite dissimilar to g.

Remark 7.1. In the next sections, we will see that (t1 + t2), the total number of bits and instances
used for compression, is the core quantity in the analysis. Therefore, we sometimes use the
notation of (t,m) compression rather than the triplet notation, which means that the total number
of bits and instances together is bounded by t. An “efficient” encoding will be one in which the
size of the compression scheme, t(ε) is either bounded by a constant, or at most logarithmically
dependent on 1/ε.

Remark 7.2. In the definition above we required the probability of existence of L and B to be at
least 2/3, but note that if this holds, one can boost this probability to 1− δ by generating a sample
of size m(ε) log(1/δ).

7.3 Robust Compression Implies Agnostic Learning

In this section, we show that if a class of distributions can be compressed, then it can be learned;
thus we build the connection between robust compression and agnostic learning. We will need the
following useful result about PAC-learning of finite classes of distributions, which immediately
follows from [39, Theorem 6.3] and a standard Chernoff bound. Essentially, it suggests that finite
classes of size M can be 3-learned in the agnostic setting using O(log(M/δ)/ε2) samples. Denote
by [M] the set {1, 2, ...,M}.

Theorem 7.1. Suppose we are given M candidate distributions f1, . . . , fM and we have access
to i.i.d. samples from an unknown distribution g. Then there exists an algorithm that given the
fi’s and ε > 0, takes log(3M2/δ)/2ε2 samples from g, and with probability ≥ 1− δ/3 outputs
an index j ∈ [M] such that

‖fj − g‖1 ≤ 3 min
i∈[M]

‖fi − g‖1 + 4ε .

Theorem 7.2. Suppose F admits (t1, t2,m) r-robust compression. Let t(ε) := d(ε/6) + t(ε/6).
Then F can be max{3, 2/r}-learned in the agnostic setting using

O

(
m(

ε

6
) log

1

δ
+
t(ε) log(m(ε

6
) log(1/δ)) + log(1/δ)

ε2

)
= Õ

(
m(

ε

6
) +

t(ε)

ε2

)
samples.

74

Proof. Let q be the target distribution that the samples are being generated from. Let α =
inff∈F ‖f − q‖1 be the approximation error of q with respect to F . The goal of the learner is to
find a distribution ĥ such that ‖ĥ− q‖1 ≤ max{3, 2/r} · α + ε.

First, consider the case α ≤ r. In this case, we develop a learner that finds a distribution ĥ
such that ‖ĥ− q‖1 ≤ 3α + ε. Let g ∈ F be a distribution such that ‖g − q‖1 ≤ α + ε

12
(such a g

exists by the definition of α). By assumption, F admits (t1, t2,m) compression. Let J denote the
corresponding decoder. Given ε, the learner first asks for an i.i.d. sample S ∼ qm(ε/6)·log(2/δ). By
the definition of robust compression, we know that with probability at least 1− δ/2, there exist
L ∈ St1(ε/6) and B ∈ {0, 1}t2(ε/6) such that ‖J (L,B)− g‖ ≤ ε/6 (see Remark 7.2).

The learner is of course unaware of L and B. However, given the sample S, it can try all
of the possibilities for L and B and create a candidate set of distributions. More concretely, let
H = {J (L,B) : L ∈ St1(ε/6), B ∈ {0, 1}t2(ε/6)}. Note that

|H| ≤ (m(ε/6) log(2/δ))t1(ε/6)2t2(ε/6)

≤ (m(ε/6) log(2/δ))t(ε).

Since H is finite, we can use the algorithm of Theorem 7.1 to find a good candidate ĥ from H . In
particular, we set the accuracy parameter in Theorem 7.1 to be ε/16 and the confidence parameter
to be δ/2. In this case, Theorem 7.1 requires

log(6|H|2/δ)
2(ε/16)2

= O

(
t(ε) log(m(ε

6
) log(1

δ
)) + log(1

δ
)

ε2

)
additional samples—which is Õ(t(ε)/ε2)—, and its output ĥ will be an (ε,3)-approximation of q:

‖ĥ− q‖1 ≤ 3‖h∗ − q‖1 + 4
ε

16

≤ 3(‖h∗ − g‖1 + ‖g − q‖1) +
ε

4

≤ 3(ε/6 + (α + ε/12)) +
ε

4
≤ 3α + ε.

Note that the above procedure uses Õ(m(ε/6) + t(ε)
ε2

) samples, and the probability of failure is at
most δ (i.e., the probability of either H not containing a good h∗, or the failure of Theorem 7.1 in
choosing a good candidate among H , is bounded by δ/2 + δ/2 = δ).

The other case, α > r, is trivial: the learner outputs some distribution ĥ. Since ĥ and q are
density functions, we have ‖ĥ− q‖1 ≤ 2 < 2

r
· α < max{3, 2/r} · α + ε.

75

7.4 Robust Compression of Products of Distributions

In this section, we show that if a class F of distributions can be compressed, then the class of
distributions that are formed by taking products of distributions in F can also be compressed.
Recall that if p1, . . . , pd are d distributions over domainsZ1, . . . , Zd, then their product

∏d
i=1 pi is a

distribution over
∏d

i=1 Zi defined as (
∏d

i=1 pi)(
∏d

i=1Ai) =
∏d

i=1 pi(Ai) for any measurableA1 ⊆
Z1, . . . , Ad ⊆ Zd. For a class F of distributions, we define Fd :=

{∏d
i=1 pi : p1, . . . , pd ∈ F

}
.

The following proposition is standard; see the appendix of this chapter for a proof.

Proposition 7.1. For i ∈ [d], let pi and qi be probability distributions over the same domain Z.
Then ‖Πd

i=1pi − Πd
i=1qi‖1 ≤

∑d
i=1 ‖pi − qi‖1.

Lemma 7.1 (Compressing Product Distributions). If F admits (t1(ε), t2(ε),m(ε)) r-robust com-
pression, then Fd admits (dt1(ε/d), d.t2(ε/d),m(ε/d) log 3d) r-robust compression.

Proof. Let G = Πd
i=1gi be an arbitrary element of Fd. Let Q be an arbitrary distribution over Zd,

subject to ‖G−Q‖1 ≤ r. Let q1, . . . , qd be the marginal distributions of Q on the d components.
First, we claim that ‖qj − gj‖1 ≤ r for each j ∈ [d]. For, suppose there exists some j ∈ [d] with
‖qj − gj‖1 > r. By symmetry, we may assume j = 1. This means ‖q1 − g1‖TV > r/2, so there
exists A ⊂ Z such that p1(A)− q1(A) > r/2. This means

‖Q−G‖1/2 = ‖Q−G‖TV
≥ PrQ(A× Z × · · · × Z)−PrG(A× Z × · · · × Z)

= q1(A)− g1(A) > r/2,

which contradicts ‖G−Q‖1 ≤ r. Hence, we have ‖qj − gj‖1 ≤ r for all j ∈ [d].

We know that F admits (t1, t2,m) r-robust compression. Call the corresponding decoder J ,
and let m0 = m(ε/d) log(3d), and S ∼ Qm0 . The goal is then to encode an ε-approximation of
G using d.t1(ε/d) elements of S and d.t2(ε/d) bits.

Note that each element of S is an n-dimensional vector. For each i ∈ [d], let Si ∈ Zm0

be the set of the i-th components of elements of S. By definition of qi, we have Si ∼ qm0
i for

each i. Thus, for each i ∈ [d], since ‖qi − gi‖ ≤ r, with probability at least 1 − 1/3d there
exists a sequence Li of at most t1(ε/d) elements of Si, and a sequence Bi of at most t2(ε/d)
bits, such that ‖J (Li, Bi)− gi‖1 ≤ ε/d. By the union bound, this assertion holds for all i ∈ [d],
with probability at least 2/3. We may encode these L1, . . . , Ld, B1, . . . , Bd using d.t1(ε/d)
elements of S and d.t2(ε/d) bits. Our decoder for Fd then extracts L1, . . . , Ld, B1, . . . , Bd from
these elements and bits, and then outputs

∏d
i=1 J (Li, Bi) ∈ Fd. Finally, Proposition 7.1 gives

‖Πd
i=1J (Li, Bi)−G‖1 ≤

∑d
i=1 ‖J (Li, Bi)− gi‖1 ≤ d× ε/d ≤ ε, completing the proof.

76

7.5 Compression of Mixtures of Distributions

In this section, we show that if a class F of distributions can be compressed, then the class of
distributions that are formed by taking mixtures of distributions in F can also be compressed.
We start by defining mixtures. Let ∆n denote the n-dimensional simplex, ∆n := {(w1, . . . , wn) :
wi ≥ 0,

∑n
i=1wi = 1}.

Definition 7.3. Let F be a class of probability distributions. Then the class of k-mixtures of F ,
written k-mix(F), is defined as

k-mix(F) :=

{
k∑
i=1

wifi : (w1, . . . , wk) ∈ ∆k, fj ∈ F

}
.

Lemma 7.2 (Compressing Mixtures). Let m(ε) be an invertible function and suppose that
xm−1(km(ε/3)x) is a concave function of x. If F admits (t1, t2,m) compression for t1 and t2
that are independent of ε, then k-mix(F) admits (kt1, kt2 + k log2(4k/ε), s(ε)) compression,
where

s(ε) = max {2 log(6k)km(ε/3), 48k log(6k)/ε} .

Remark 7.3. Any function of the form m(ε) = Cε−α with α ≥ 1 satisfies the first assumption of
the lemma.

Proof. Suppose g∗ ∈ k-mix(F) is the distribution to be compressed. Thus we have g∗ =∑
i∈[k]wifi with each fi ∈ F and (w1, . . . , wk) ∈ ∆k.

The samples from g∗ can be partitioned into k parts, so that samples from the i-th part have
distribution fi. We compress each of the parts individually.

Moreover, we compress the mixing weights w1, . . . , wk using bits, as follows. Consider an
(ε/3k)-cover in `∞ for ∆k, of size (1 + 3k/ε)k. Such a cover can be obtained from a mesh of
grid-size ε/3k, and projecting each of its point onto ∆k. Let (ŵ1, . . . , ŵk) be an element in the
cover that has

‖(ŵ1, . . . , ŵk)− (w1, . . . , wk)‖∞ ≤ ε/3k,

then, wi − ŵi ≤ ε/3k for all i. Moreover, the particular element (ŵ1, . . . , ŵk) of the cover can be
encoded using log2((1 + 3k/ε)k) ≤ k log2(4k/ε) bits.

For any i ∈ [k], we say component i is negligible if
wi ≤ 8 log(6k)/s.

By a standard Chernoff bound together with a union bound over the k components, with probability
at least 5/6, for each non-negligible component i, we have at least wis/2 samples from i. Let

β = km(ε/3), εi = m−1(wiβ) = m−1(wikm(ε/3)).

77

Let i be a non-negligible component. Since s ≥ 2 log(6k)β we havewis/2 ≥ log(6k)×m(εi),
so since F admits (t1, t2,m) compression and fi ∈ F , with probability at least 1 − 1/6k there
exists t1 samples from part i and t2 bits, from which the decoder can construct a distribution f̂i
with ‖fi− f̂i‖1 ≤ εi (recall that we have assumed that t1 and t2 are constant and thus independent
of εi). Using a union bound over the k components, this is true uniformly over all non-negligible
components, with probability at least 5/6. (Note that, for negligible components i, there is no
guarantee about f̂i.) Hence, given the mixing weights ŵ1, . . . , ŵk, the decoder outputs

∑
ŵif̂i.

Thus to complete the proof of the lemma, we need only show that ‖
∑
wifi −

∑
ŵif̂i‖1 ≤ ε,

which we prove by showing two inequalities.

First, let L ⊆ [k] denote the set of negligible components. Since s ≥ 48k log(6k)/ε, if i ∈ L
then wi ≤ 8 log(6k)/s ≤ ε/6k, and thus∑

i∈L

wi ≤ k × ε/6k ≤ ε/6.

Second, since the function h(x) = xm−1(βx) is concave in x, by Jensen’s inequality we have
1
k

∑
h(wi) ≤ h(

∑
wi/k) = h(1/k), which gives∑
i∈[k]

wiεi =
∑
i∈[k]

wim
−1(βwi) ≤ k × (1/k)m−1(β(1/k))

= m−1(β/k) = ε/3,

where for the last equality we used the definition of β = km(ε/3). Putting everything together,
we obtain ∥∥∥∥∥∥

∑
i∈[k]

(ŵif̂i − wifi)

∥∥∥∥∥∥
1

≤

∥∥∥∥∥∥
∑
i∈[k]

wi(f̂i − fi)

∥∥∥∥∥∥
1

+

∥∥∥∥∥∥
∑
i∈[k]

(ŵi − wi)f̂i

∥∥∥∥∥∥
1

≤

∥∥∥∥∥∑
i∈L

wi(f̂i − fi)

∥∥∥∥∥
1

+

∥∥∥∥∥∑
i/∈L

wi(f̂i − fi)

∥∥∥∥∥
1

+
∑
i∈[k]

|ŵi − wi|
∥∥∥f̂i∥∥∥

1

≤ 2
∑
i∈L

wi +
∑
i/∈L

wiεi +
∑
i∈[k]

ε/3k × 1

≤ ε/3 + ε/3 + ε/3 = ε,

completing the proof of the lemma.

78

7.6 Robust Compression of Univariate Gaussian Distributions

In this section, we show that the class of 1-dimensional Gaussians can be compressed. This is
the core result of our analysis, and will ultimately enable us to show that the class of mixtures of
axis-aligned Gaussians can be compressed, hence can be learned as well.

LetN (µ, σ) denote a 1-dimensional Gaussian distribution with mean µ and standard deviation
σ. We will need the following lemma, bounding the L1 distance of two Gaussians in terms of
their parameters. The proof can be found in the appendix.

Lemma 7.3. There exist a constant c2 such that for any µ, σ, µ̂, σ̂ with |µ̂ − µ| ≤ ε1σ and
|σ̂ − σ| ≤ ε2σ and ε1, ε2 ∈ (0, 1/2) we have ‖N (µ, σ)−N (µ̂, σ̂)‖1 ≤ c2(ε1 + ε2).

Any vector (p1, . . . , pn) ∈ ∆n induces a discrete probability distribution over [n] defined by
Pr(i) := pi.

Lemma 7.4. Let (p1, . . . , p2n+1) ∈ ∆2n+1 and (q1, . . . , q2n+1) ∈ ∆2n+1 be discrete probability
distributions with `1 distance between them ≤ t. Suppose we have 2n + 1 bins, numbered 1 to
2n+ 1. We throw m balls in these bins, where each ball chooses a bin independently according to
qi. We pair bin 1 with bin 2, bin 3 with bin 4, . . . , and bin 2n− 1 with bin 2n; so bin 2n + 1 is
unpaired. The probability that, for all pairs of bins, at most one them gets a ball, is not more than

2n

(
t/2 + p2n+1 +

n∑
i=1

max{p2i−1, p2i}

)m

Proof. Let P1 = {1, 2}, P2 = {3, 4}, ..., Pn = {2n−1, 2n}, and letA := {A ⊂ [2n] : |A∩Pi| =
1 ∀i ∈ [n]}. Clearly |A| = 2n. For any A ∈ A, let EA be the event that, the first ball does not
choose a bin in A, and let FA be the event that, none of the balls chooses a bin in A. Then,

Pr[EA] =
∑

i∈[2n+1]\A

qi

≤ ‖p− q‖TV +
∑

i∈[2n+1]\A

pi ≤ t/2 +
∑
i/∈A

pi

≤ t/2 + p2n+1 +
n∑
i=1

max{p2i−1, p2i},

and so Pr[FA] = Pr[EA]m ≤ (t/2 + p2n+1 +
∑n

i=1(p2i−1 ∨ p2i))m. Finally, observe that, if for
each pair of bins, at most one them gets a ball, then there exists at least one A ∈ A, such that
none of the balls chooses a bin in A. The lemma is thus proved by applying the union bound over
all events {FA}A∈A.

79

Theorem 7.3. The class of all Gaussian distributions over the real line admits (4, 1, O(1/ε))
0.773-robust compression.

Proof. Let q be any distribution (not necessarily a Gaussian) such that there exists a Gaussian
g = N (µ, σ) with ‖q−g‖1 ≤ r ≤ 0.773. Our goal is to encode g using samples generated from q.
Let m = C/ε for a large enough constant C to be determined, and let S ∼ qm be an i.i.d. sample.
The idea is to approximately encode µ and σ using only four elements of S and a single bit.

We start by defining the decoder J . Our proposed decoder takes as input four instances
x1, x2, y1, y2 ∈ R, and one bit b ∈ {0, 1}. The decoder then outputs a Gaussian pdf based on the
following rule:

J (x1, x2, y1, y2, b) =

N (x1+x2
2

, |y1−y2|
3

) : if b = 1

N (x1+x2
2

, |y1 − y2|) : if b = 0

Our goal is thus to show that, with probability at least 2/3, there exists x1, x2, y1, y2 ∈ S and
b ∈ {0, 1} so that ‖J (x1, x2, y1, y2, b)− g‖ ≤ ε.

Let M = 1/ε and partition the interval [−2σ, 2σ) into 4M subintervals of length εσ. Enu-
merate these intervals as I1 to I4M , i.e., Ii = [−2σ + (i − 1)(εσ),−2σ + i(εσ)). Also let
I4M+1 = R \

⋃4M
i=1 Ii. We state two claims which will imply the theorem, and which will be

proved later.

Claim 1. With probability at least 5/6, there exist y1, y2 ∈ S such that at least one of the
following two conditions holds: (a) y1 ∈ Ii and y2 ∈ Ii+M for some i ∈ {M+1, 2M+2, ..., 2M}.
In this case, we let b = 0, and so J (x1, x2, y1, y2, b) will have standard deviation |y1 − y2|.
(b) y1 ∈ Ii and y2 ∈ Ii+3M for some i ∈ [M]. In this case, we let b = 1, and so J (x1, x2, y1, y2, b)

will have standard deviation |y1−y2|
3

.
Also, if both cases of (a) and (b) happen, we will go with the first rule. Note that if Claim 1 holds,
and σ̂ is the standard deviation of J (x1, x2, y1, y2, b), then we will have |σ̂ − σ| ≤ εσ.

Claim 2. With probability at least 5/6, there exist x1, x2 ∈ S such that x1 ∈ Ii and x2 ∈
I4M−i+1 for some i ∈ [2M]. If so, J (x1, x2, y1, y2, b) will have mean x1+x2

2
=: µ̂.

Also note that if Claim 2 holds, then |µ̂− µ| ≤ εσ. Therefore, if both claims hold, Lemma 7.3
gives J (x1, x2, y1, y2, b) = N (µ̂, σ̂) would be a c2ε-approximation for N (µ, σ) = g, for some
constant c2. In other words, g can be approximately reconstructed, up to error c2ε, using only four
data points (i.e., {x1, x2, y1, y2}) from a sample S of size O(1/ε) and a single bit b (the definition
of robust compression requires an ε-compression. For getting this, one just needs to refine the
partition by a constant factor, which multiplies M by a constant factor, and as we will see below,
this will only multiply m by a constant factor). Note also that the probability of existence of such
four points is at least 1− (1− 5/6)− (1− 5/6) ≥ 2/3.

80

Therefore, it remains to prove Claim 1 and Claim 2. We prove Claim 1, and the proof for
Claim 2 is similar.

View the sets I1, . . . , I4M , I4M+1 as bins, and consider the i.i.d. samples as balls landing in
these bins according to q. Let pi :=

∫
Ii
g(x)dx and qi :=

∫
Ii
q(x)dx for i ∈ [4M + 1]. Note that,

by triangle’s inequality, the `1 distance between (p1, . . . , p4M+1) and (q1, . . . , q4M+1) is not more
than the L1 distance between g and q, which is at most r. Let x ∨ y := max{x, y}.

We pair the bins as follows: Ii is paired with Ii+M for i ∈ {M + 1, . . . , 2M}, and Ii is paired
with Ii+3M for i ∈ [M]. Therefore, by Lemma 7.4, the probability that Claim 1 does not hold can
be bounded by

22M

(
2M∑

i=M+1

(pi∨pi+M)+
M∑
i=1

(pi∨pi+3M)+p4M+1+
r

2

)m

= 22M

 5
2
M∑

i= 3
2
M+1

pi+
M∑

i=M
2
+1

pi+

7
2
M∑

3M+1

pi+p4M+1 +
r

2

m

,

where in the last step we used the fact that pi are coming from a Gaussian, and thus p1 ≤
· · · ≤ p2M = p2M+1 ≥ · · · ≥ p4M (we have also assumed, for simplicity, that M is even). Let
Φ(A) := Prx∼N (0,1) [x ∈ A]. Then we get

2.5M∑
i=1.5M+1

pi +
M∑

i=M/2+1

pi +
3.5M∑
3M+1

pi + p4M+1 + r/2

= Pr[N (µ, σ) ∈ [µ− σ/2, µ+ σ/2]]

+ 2Pr[N(µ, σ) ∈ [µ− 3σ/2, µ− σ]]

+ Pr[N(µ, σ) /∈ [µ− 2σ, µ+ 2σ]] + r/2

= Φ([−0.5, 0.5])+2Φ([−1.5,−1])+2Φ((−∞,−2])+
r

2

< 0.383 + 0.184 + 0.046 +
r

2
= 0.613 + r/2 ≤ 0.9995.

Therefore since M = Θ(1/ε), by making m = C/ε for a large enough C, we can make this
probability arbitrarily small, completing the proof of Claim 1.

81

Via a similar argument, the probability that Claim 2 does not hold can be bounded by

22M

(
2M∑
i=1

max{pi, p4M−i+1}+ p4M+1 + r/2

)m

= 22M

(
2M∑
i=1

pi + p4M+1 + r/2

)m

= 22M (Φ([−1, 1]) + Φ([2,∞) + r/2)m

< 22M (0.5 + 0.023 + r/2)m < 22M (0.91)m < 1/6,

for m = C/ε with a large enough C.

Remark 7.4. By using more bits and adding more scales, one can show that 1-dimensional
Gaussians admit (4, b(r), O(1/ε)) r-robust compression for any fixed r < 1 (the number of
required bits and the implicit constant in the O will depend on the value of r), but this will not
result in an improvement in the main result of this chapter, Corollary 7.1.

7.7 Compression of Mixtures of Axis-aligned Gaussians

Theorem 7.4. The class of mixtures of k axis-aligned Gaussian distributions over Rd admits
(O(kd), O(kd+ k log(k/ε)), O((kd log k log d)/ε)) compression.

Proof. Let G denote the set of all 1-dimensional Gaussian distributions. By Theorem 7.3, G
admits (O(1), O(1), O(1/ε)) compression.

By Lemma 7.1, the class Gd admits (O(d), O(d), O((d log d)/ε)) compression.

Then, by Lemma 7.2, the class k-mix(Gd) admits (O(kd), O(kd+k log(k/ε)), O((kd log k log d/ε)))
compression.

Applying Theorem 7.2 we obtain the main result of this chapter.

Corollary 7.1. The class of mixtures of k axis-aligned Gaussians in Rn can be learned using
Õ(kd/ε2) many samples.

We note that this bound is tight up to logarithmic factors, as a minimax (worst-case) lower
bound of Ω(kd/ε2) was proved in [79, Theorem 2].

82

7.8 Compression of Mixtures of General Gaussians

We want mention that the compression framework is powerful enough to be used for determining
the sample complexity of mixtures of general Gaussians as well. In fact, we have been able to
settle the sample complexity of learning this class up to logarithmic factors [10]. In particular, we
have showed that the minimax rate of learning mixtures of k Gaussians in Rd is Θ̃(kd2/ε2). This
very recent result is excluded from this thesis.

7.9 Further Discussions

In the context of binary classification, the fully combinatorial notion of Littlestone-Warmuth
compression has been shown to be sufficient [64] and necessary [77] for learning. For distribution
learning, while we have shown that compression is sufficient, its necessity remains an open
problem.

Another related concept to compression is the notion of core-sets. In a sense, core-sets can
be viewed as a special case of compression, where the decoder is required to be the empirical
error minimizer. See the work of [66] for the use core-sets in maximum likelihood estimation.
Nevertheless, in our case, the additional flexibility of compression schemes proves to be useful in
allowing for a constant-size scheme, and ultimately having a sharper bound in terms of ε.

7.10 Appendix: Proofs of Auxiliary Results

Proposition 7.2. For i ∈ [d], let pi and qi be probability distributions over the same domain Z.
Then ‖Πd

i=1pi − Πd
i=1qi‖1 ≤

∑d
i=1 ‖pi − qi‖1.

Proof. For i ∈ [d], let pi and qi be arbitrary probability distributions over the same domain. We
will prove that

‖Πn
i=1pi − Πd

i=1qi‖TV ≤
d∑
i=1

‖pi − qi‖TV ,

and this gives the proposition, since the L1 distance is precisely twice the total variation distance.
By the coupling characterization of the total variation distance, there exist couplings (X1, Y1),
(X2, Y2), ..., (Xd, Yd), such that for each i we have Xi ∼ pi, Yi ∼ qi, and Pr[Xi 6= Yi] =

83

‖pi − qi‖TV . Observe that (X1, . . . , Xd) ∼
∏
pi and (Y1, . . . , Yd) ∼

∏
qi, hence by the union

bound,

‖Πd
i=1pi−Πd

i=1qi‖TV ≤ Pr[(X1, . . . , Xd) 6= (Y1, . . . , Yd)] ≤
∑

Pr(Xi 6= Yi) =
∑
‖pi−qi‖TV .

Proposition 7.3. Suppose that g and g∗ are distributions with ‖g−g∗‖1 = ρ and g∗ =
∑

i∈[k]wifi,
with (w1, . . . , wk) ∈ ∆k and where each fi is a distribution. Then, we may write g =

∑
i∈[k]wiGi,

such that each Gi is a distribution, and for each i we have ‖fi −Gi‖ ≤ ρ.

Proof. Suppose that g and g∗ are distributions with ‖g − g∗‖1 = ρ and g∗ =
∑

i∈[k]wifi, with
(w1, . . . , wk) ∈ ∆k and where each fi is a distribution. Then we want to show that we may write
g =

∑
i∈[k]wiGi, such that each Gi is a distribution, and for each i we have ‖fi −Gi‖ ≤ ρ.

Write

g = g∗ + h =
k∑
i=1

wifi + h =
k∑
i=1

wi(fi + h) (7.1)

with ‖h‖1 = ρ. Note that fi + h is not necessarily a density function. Let D denote the set of
density functions, that is, the set of nonnegative functions with unit L1 norm. Note that this is a
convex set. Since projection is a linear operator, by projecting both sides of (7.1) onto D we find

g =
k∑
i=1

wiGi,

where Gi is the L1 projection of fi + h onto D (since g ∈ D, the projection of g onto D is itself).
Also, since fi ∈ F ∩ D and projection onto a convex set does not increases distances, we have

‖fi −Gi‖1 ≤ ‖fi − (fi + h)‖1 = ‖h‖1 = ρ,

as required.

The following lemma is [57, Lemma 4.9].

Lemma 7.5 ([57]). There is a constant c1 such that for any σ1, σ2 ∈ R+ we have

‖N (0, σ1)−N (0, σ2)‖1 ≤ c1

(
max(σ1, σ2)

2

min(σ1, σ2)2
− 1

)

84

Lemma 7.6. For any µ1, µ2 ∈ R we have

‖N (µ1, 1)−N (µ2, 1)‖1 ≤ |µ1 − µ2|

Proof. Let DKL(f‖g) denote the KL-divergence between f and g. Using Pinsker’s inequality,
we have

‖N (µ1, 1)−N (µ2, 1)‖1 ≤
√

2DKL(N (µ1, 1)‖N (µ2, 1)) =
√

2(1/2)(µ1 − µ2)2 = |µ1 − µ2|.

Lemma 7.7. There exist a constant c2 such that for any µ, σ, µ̂, σ̂ with |µ̂ − µ| ≤ ε1σ and
|σ̂ − σ| ≤ ε2σ and ε1, ε2 ∈ (0, 1/2) we have

‖N (µ, σ)−N (µ̂, σ̂)‖1 ≤ c2(ε1 + ε2).

Proof. Setting c2 = max{8c1, 1}, the proof follows from the use of triangle inequality, Lemmas
7.5 and 7.6, and the fact that variation distance is scale invariant (recall that ε1, ε2 ∈ (0, 1/2)):

‖N (µ, σ)−N (µ̂, σ̂)‖1 ≤ ‖N (µ, σ)−N (µ̂, σ)‖1 + ‖N (µ̂, σ)−N (µ̂, σ̂)‖1
≤ ε1 + 8c1ε2 ≤ c2(ε1 + ε2).

85

Chapter 8

More Future Directions

We proposed the future directions at the end of the corresponding chapters. In this chapter, we
will mention a few additional research directions.

Efficient Representation Learning for Semi-Supervised Clustering. As discussed in Chap-
ter 2, in practice, model selection for clustering is often done via ad hoc methods. Furthermore, it
is impossible to perform model selection without looking at the intended semantics of the domain
of interest. Therefore, it is critical to devise user-friendly protocols that enable conveying domain
knowledge into the process of model selection for clustering. In Chapter 3 and Chapter 4 we intro-
duced new frameworks for achieving this goal. However, we are still far from the intended gold
standard: a semi-supervised clustering method that is provably (i) computationally efficient, (ii)
statistically tractable, and (iii) rich enough to capture user knowledge. In particular, the proposed
method in Chapter 4 was not rich enough for all applications (in the sense that it assumed the
intended clustering has a particular geometric structure). It seems that performing representation
learning for clustering is the natural way for addressing the richness issue. Note that the proposed
representation learning method in Chapter 3 was not computationally efficient. Therefore, the
existence of an efficient representation learning method for semi-supervised clustering (with a
guarantee of success given enough advice) remains a major direction of future research.

Semi-supervised Clustering with Noisy Oracles. In Chapter 4, we showed how semi-
supervised clustering can be done efficiently using same-cluster queries. To answer to these
queries, however, we would need an oracle that could verify whether two instances belong to the
same cluster or not. The access to such a perfect oracle however is unrealistic in many applications.
Therefore, being able to handle noisy oracles is an important missing feature of our results. Note
that this would even allow us to train a classifier to answer to most of the queries (and ask the
domain expert only if it could not confidently classify the given instance).

86

Density Estimation via Compression: More Classes, and More Distances. In Chapter 7
we proposed a method for sample-efficient distribution learning (i.e., density estimation). While
we proved our results only for Gaussian distributions and their mixtures, our framework was
generic and could be adopted to obtain sample-efficient methods for learning other classes of
distributions. Therefore, extending our results to learning other classes of distributions (and
distance functions) remains an exciting direction of future research.

87

References

[1] Jayadev Acharya, Ilias Diakonikolas, Jerry Li, and Ludwig Schmidt. Sample-optimal density
estimation in nearly-linear time. In Proceedings of the Twenty-Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’17, pages 1278–1289, Philadelphia, PA, USA,
2017. Society for Industrial and Applied Mathematics.

[2] Margareta Ackerman, Shai Ben-David, and David Loker. Towards property-based classifica-
tion of clustering paradigms. In Advances in Neural Information Processing Systems, pages
10–18, 2010.

[3] Nir Ailon, Anup Bhattacharya, and Ragesh Jaiswal. Approximate correlation clustering
using same-cluster queries. arXiv preprint arXiv:1712.06865, 2017.

[4] Nir Ailon, Anup Bhattacharya, Ragesh Jaiswal, and Amit Kumar. Approximate clustering
with same-cluster queries. arXiv preprint arXiv:1704.01862, 2017.

[5] Babak Alipanahi, Michael Biggs, Ali Ghodsi, et al. Distance metric learning vs. fisher dis-
criminant analysis. In Proceedings of the 23rd national conference on Artificial intelligence,
pages 598–603, 2008.

[6] Dana Angluin. Queries and concept learning. Machine learning, 2(4):319–342, 1988.

[7] Martin Anthony and Peter Bartlett. Neural network learning: theoretical foundations.
Cambridge University Press, 1999.

[8] Martin Anthony and Peter L Bartlett. Neural network learning: Theoretical foundations.
cambridge university press, 2009.

[9] Hassan Ashtiani and Shai Ben-David. Representation learning for clustering: A statistical
framework. In Uncertainty in AI (UAI), 2015.

88

[10] Hassan Ashtiani, Shai Ben-David, Christopher Liaw, Abbas Mehrabian, and Yaniv Plan.
Settling the sample complexity for learning mixtures of gaussians. arXiv preprint
arXiv:1710.05209, 2018.

[11] Hassan Ashtiani, Shai Ben-David, and Abbas Mehrabian. Agnostic distribution learning via
compression. arXiv preprint arXiv:1710.05209v1, 2017.

[12] Hassan Ashtiani, Shai Ben-David, and Abbas Mehrabian. Sample-efficient learning of
mixtures. In AAAI, 2018.

[13] Hassan Ashtiani and Ali Ghodsi. A dimension-independent generalization bound for kernel
supervised principal component analysis. In Proceedings of The 1st International Workshop
on Feature Extraction: Modern Questions and Challenges, NIPS, pages 19–29, 2015.

[14] Hassan Ashtiani, Shrinu Kushagra, and Shai Ben-David. Clustering with same-cluster
queries. In Advances in neural information processing systems, pages 3216–3224, 2016.

[15] Pranjal Awasthi, Maria Florina Balcan, and Konstantin Voevodski. Local algorithms for
interactive clustering. Journal of Machine Learning Research, 18(3):1–35, 2017.

[16] Pranjal Awasthi, Avrim Blum, and Or Sheffet. Center-based clustering under perturbation
stability. Information Processing Letters, 112(1):49–54, 2012.

[17] Pranjal Awasthi and Reza B Zadeh. Supervised clustering. In Advances in Neural Information
Processing Systems, pages 91–99, 2010.

[18] Maria-Florina Balcan and Avrim Blum. Clustering with interactive feedback. In Algorithmic
Learning Theory, pages 316–328. Springer, 2008.

[19] Maria-Florina Balcan, Avrim Blum, and Anupam Gupta. Approximate clustering without
the approximation. In Proceedings of the twentieth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 1068–1077. Society for Industrial and Applied Mathematics,
2009.

[20] Maria-Florina Balcan, Avrim Blum, and Santosh Vempala. A discriminative framework for
clustering via similarity functions. In Proceedings of the fortieth annual ACM symposium
on Theory of computing, pages 671–680. ACM, 2008.

[21] Maria Florina Balcan and Yingyu Liang. Clustering under perturbation resilience. In
Automata, Languages, and Programming, pages 63–74. Springer, 2012.

89

[22] Sugato Basu, Arindam Banerjee, and Raymond Mooney. Semi-supervised clustering by
seeding. In In Proceedings of 19th International Conference on Machine Learning (ICML-
2002), 2002.

[23] Sugato Basu, Mikhail Bilenko, and Raymond J Mooney. Comparing and unifying search-
based and similarity-based approaches to semi-supervised clustering. In Proceedings of the
ICML-2003 workshop on the continuum from labeled to unlabeled data in machine learning
and data mining, pages 42–49. Citeseer, 2003.

[24] Sugato Basu, Mikhail Bilenko, and Raymond J Mooney. A probabilistic framework for semi-
supervised clustering. In Proceedings of the tenth ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 59–68. ACM, 2004.

[25] Sugato Basu, Ian Davidson, and Kiri Wagstaff. Constrained clustering: Advances in
algorithms, theory, and applications. CRC Press, 2008.

[26] Mikhail Belkin and Kaushik Sinha. Polynomial learning of distribution families. In
Proceedings of the 2010 IEEE 51st Annual Symposium on Foundations of Computer Science,
FOCS ’10, pages 103–112, Washington, DC, USA, 2010. IEEE Computer Society.

[27] Shai Ben-David. A framework for statistical clustering with constant time approximation
algorithms for k-median and k-means clustering. Machine Learning, 66(2-3):243–257, 2007.

[28] Shai Ben-David. Computational feasibility of clustering under clusterability assumptions.
CoRR, abs/1501.00437, 2015.

[29] Shalev Ben-David and Lev Reyzin. Data stability in clustering: A closer look. Theoretical
Computer Science, 558:51–61, 2014.

[30] Gérard Biau, Luc Devroye, and Gábor Lugosi. On the performance of clustering in hilbert
spaces. Information Theory, IEEE Transactions on, 54(2):781–790, 2008.

[31] Mikhail Bilenko, Sugato Basu, and Raymond J Mooney. Integrating constraints and metric
learning in semi-supervised clustering. In Proceedings of the twenty-first international
conference on Machine learning, page 11. ACM, 2004.

[32] Avrim Blum. Approximation-stability and perturbation-stability. In DAGSTUHL Workshop
on Analysis of Algorithms Beyond the Worst Case, 2014.

[33] Siu-On Chan, Ilias Diakonikolas, Rocco A. Servedio, and Xiaorui Sun. Efficient density
estimation via piecewise polynomial approximation. In Proceedings of the Forty-sixth

90

Annual ACM Symposium on Theory of Computing, STOC ’14, pages 604–613, New York,
NY, USA, 2014. ACM.

[34] Sanjoy Dasgupta. Learning mixtures of Gaussians. In Foundations of Computer Science,
1999. 40th Annual Symposium on, pages 634–644. IEEE, 1999.

[35] Sanjoy Dasgupta. The hardness of k-means clustering. Department of Computer Science
and Engineering, University of California, San Diego, 2008.

[36] Ian Davidson and SS Ravi. Agglomerative hierarchical clustering with constraints: Theoreti-
cal and empirical results. In Knowledge Discovery in Databases: PKDD 2005, pages 59–70.
Springer, 2005.

[37] Ayhan Demiriz, Kristin P Bennett, and Mark J Embrechts. Semi-supervised clustering using
genetic algorithms. Artificial neural networks in engineering (ANNIE-99), pages 809–814,
1999.

[38] Luc Devroye and Gábor Lugosi. Nonasymptotic universal smoothing factors, kernel com-
plexity and yatracos classes. The Annals of Statistics, pages 2626–2637, 1997.

[39] Luc Devroye and Gábor Lugosi. Combinatorial methods in density estimation. Springer
Series in Statistics. Springer-Verlag, New York, 2001.

[40] Inderjit S Dhillon, Yuqiang Guan, and Brian Kulis. Kernel k-means: spectral clustering and
normalized cuts. In Proceedings of the tenth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 551–556. ACM, 2004.

[41] I. Diakonikolas, G. Kamath, D. M. Kane, J. Li, A. Moitra, and A. Stewart. Robust estimators
in high dimensions without the computational intractability. In 2016 IEEE 57th Annual
Symposium on Foundations of Computer Science (FOCS), pages 655–664, Oct 2016.

[42] Ilias Diakonikolas. Learning Structured Distributions. In Peter Bühlmann, Petros Drineas,
Michael Kane, and Mark van der Laan, editors, Handbook of Big Data, chapter 15, pages
267–283. Chapman and Hall/CRC, 2016.

[43] Ilias Diakonikolas, Gautam Kamath, Daniel M Kane, Jerry Li, Ankur Moitra, and Alistair
Stewart. Robust estimators in high dimensions without the computational intractability. In
Foundations of Computer Science (FOCS), 2016 IEEE 57th Annual Symposium on, pages
655–664. IEEE, 2016.

91

[44] Ilias Diakonikolas, Gautam Kamath, Daniel M Kane, Jerry Li, Ankur Moitra, and Alistair
Stewart. Robustly learning a gaussian: Getting optimal error, efficiently. In Proceedings of
the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2683–2702.
SIAM, 2018.

[45] Ilias Diakonikolas, Daniel M Kane, and Alistair Stewart. Learning multivariate log-concave
distributions. In Proceedings of Machine Learning Research, volume 65 of COLT’17, pages
1–17, 2017.

[46] Ilias Diakonikolas, Daniel M Kane, and Alistair Stewart. Statistical query lower bounds for
robust estimation of high-dimensional Gaussians and Gaussian mixtures. arXiv preprint
arXiv:1611.03473v2 [cs.LG], 2017. To appear in Proceedings of the 58th Annual IEEE
Symposium on Foundations of Computer Science (FOCS ’17).

[47] Brian Eriksson, Gautam Dasarathy, Aarti Singh, and Robert Nowak. Active clustering:
Robust and efficient hierarchical clustering using adaptively selected similarities. arXiv
preprint arXiv:1102.3887, 2011.

[48] Jon Feldman, Rocco A. Servedio, and Ryan O’Donnell. PAC learning axis-aligned mixtures
of Gaussians with no separation assumption. In Proceedings of the 19th Annual Conference
on Learning Theory, COLT’06, pages 20–34, Berlin, Heidelberg, 2006. Springer-Verlag.

[49] Buddhima Gamlath, Sangxia Huang, and Ola Svensson. Semi-supervised algorithms for
approximately optimal and accurate clustering. arXiv preprint arXiv:1803.00926, 2018.

[50] Michael R Garey and David S Johnson. Computers and intractability, volume 29. wh
freeman New York, 2002.

[51] Siddharth Gopal and Yiming Yang. Transformation-based probabilistic clustering with
supervision.

[52] Mary Inaba, Naoki Katoh, and Hiroshi Imai. Applications of weighted voronoi diagrams and
randomization to variance-based k-clustering. In Proceedings of the tenth annual symposium
on Computational geometry, pages 332–339. ACM, 1994.

[53] Marek Karpinski and Angus Macintyre. Polynomial bounds for VC dimension of sigmoidal
and general pfaffian neural networks. Journal of Computer and System Sciences, 54(1):169 –
176, 1997.

[54] Michael Kearns, Yishay Mansour, Dana Ron, Ronitt Rubinfeld, Robert E. Schapire, and
Linda Sellie. On the learnability of discrete distributions. In Proceedings of the Twenty-sixth

92

Annual ACM Symposium on Theory of Computing, STOC ’94, pages 273–282, New York,
NY, USA, 1994. ACM.

[55] Taewan Kim and Joydeep Ghosh. Relaxed oracles for semi-supervised clustering. arXiv
preprint arXiv:1711.07433, 2017.

[56] Taewan Kim and Joydeep Ghosh. Semi-supervised active clustering with weak oracles.
arXiv preprint arXiv:1709.03202, 2017.

[57] Bo’az Klartag. A central limit theorem for convex sets. Inventiones mathematicae, 168(1):91–
131, 2007.

[58] Akshay Krishnamurthy, Sivaraman Balakrishnan, Min Xu, and Aarti Singh. Efficient active
algorithms for hierarchical clustering. arXiv preprint arXiv:1206.4672, 2012.

[59] Brian Kulis, Sugato Basu, Inderjit Dhillon, and Raymond Mooney. Semi-supervised graph
clustering: a kernel approach. Machine learning, 74(1):1–22, 2009.

[60] Kevin A Lai, Anup B Rao, and Santosh Vempala. Agnostic estimation of mean and covari-
ance. In Foundations of Computer Science (FOCS), 2016 IEEE 57th Annual Symposium on,
pages 665–674. IEEE, 2016.

[61] Martin HC Law, Alexander P Topchy, and Anil K Jain. Model-based clustering with
probabilistic constraints. In SDM. SIAM, 2005.

[62] David A. Levin, Yuval Peres, and Elizabeth L. Wilmer. Markov chains and mixing times.
American Mathematical Society, Providence, RI, 2009.

[63] Jerry Li and Ludwig Schmidt. Robust and proper learning for mixtures of gaussians via
systems of polynomial inequalities. In Satyen Kale and Ohad Shamir, editors, Proceedings
of the 2017 Conference on Learning Theory, volume 65 of Proceedings of Machine Learning
Research, pages 1302–1382, Amsterdam, Netherlands, 07–10 Jul 2017. PMLR.

[64] Nick Littlestone and Manfred Warmuth. Relating data compression and learnability. Techni-
cal report, Technical report, University of California, Santa Cruz, 1986.

[65] Stuart P Lloyd. Least squares quantization in pcm. Information Theory, IEEE Transactions
on, 28(2):129–137, 1982.

[66] Mario Lucic, Matthew Faulkner, Andreas Krause, and Dan Feldman. Training mixture
models at scale via coresets. arXiv preprint arXiv:1703.08110, 2017.

93

[67] Meena Mahajan, Prajakta Nimbhorkar, and Kasturi Varadarajan. The planar k-means
problem is np-hard. In WALCOM: Algorithms and Computation, pages 274–285. Springer,
2009.

[68] Satyaki Mahalanabis and Daniel Stefankovic. Density estimation in linear time. In 21st
Annual Conference on Learning Theory - COLT 2008, Helsinki, Finland, July 9-12, 2008,
pages 503–512, 2008.

[69] Andreas Maurer and Massimiliano Pontil. k-dimensional coding schemes in hilbert spaces.
Information Theory, IEEE Transactions on, 56(11):5839–5846, 2010.

[70] Arya Mazumdar and Soumyabrata Pal. Semisupervised clustering, and-queries and locally
encodable source coding. In Advances in Neural Information Processing Systems, pages
6492–6502, 2017.

[71] Arya Mazumdar and Barna Saha. Clustering with noisy queries. In Advances in Neural
Information Processing Systems, pages 5790–5801, 2017.

[72] Arya Mazumdar and Barna Saha. Query complexity of clustering with side information. In
Advances in Neural Information Processing Systems, pages 4685–4696, 2017.

[73] Colin McDiarmid. Concentration, pages 195–248. Springer Berlin Heidelberg, Berlin, Hei-
delberg, 1998. available at http://www.stats.ox.ac.uk/people/academic_
staff/colin_mcdiarmid/?a=4139.

[74] Vincent Michel, Alexandre Gramfort, Gaël Varoquaux, Evelyn Eger, Christine Keribin, and
Bertrand Thirion. A supervised clustering approach for fmri-based inference of brain states.
Pattern Recognition, 45(6):2041–2049, 2012.

[75] Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized Algorithms
and Probabilistic Analysis. Cambridge University Press, New York, NY, USA, 2005.

[76] Ankur Moitra and Gregory Valiant. Settling the polynomial learnability of mixtures of
Gaussians. In Proceedings of the 2010 IEEE 51st Annual Symposium on Foundations of
Computer Science, FOCS ’10, pages 93–102, Washington, DC, USA, 2010. IEEE Computer
Society.

[77] Shay Moran and Amir Yehudayoff. Sample compression schemes for vc classes. Journal of
the ACM (JACM), 63(3):21, 2016.

[78] David Pollard. Convergence of stochastic processes. David Pollard, 1984.

94

http://www.stats.ox.ac.uk/people/academic_staff/colin_mcdiarmid/?a=4139
http://www.stats.ox.ac.uk/people/academic_staff/colin_mcdiarmid/?a=4139

[79] Ananda Theertha Suresh, Alon Orlitsky, Jayadev Acharya, and Ashkan Jafarpour. Near-
optimal-sample estimators for spherical Gaussian mixtures. In Z. Ghahramani, M. Welling,
C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors, Advances in Neural Information
Processing Systems 27, pages 1395–1403. Curran Associates, Inc., 2014.

[80] Wei Tang, Hui Xiong, Shi Zhong, and Jie Wu. Enhancing semi-supervised clustering: a
feature projection perspective. In Proceedings of the 13th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 707–716. ACM, 2007.

[81] Leslie G Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142,
1984.

[82] V. N. Vapnik and A. Ya. Chervonenkis. On the uniform convergence of relative frequencies
of events to their probabilities. Theory of Probability & Its Applications, 16(2):264–280,
1971.

[83] Andrea Vattani. The hardness of k-means clustering in the plane. Manuscript, accessible at
http://cseweb. ucsd. edu/avattani/papers/kmeans hardness. pdf, 617, 2009.

[84] Konstantin Voevodski, Maria-Florina Balcan, Heiko Röglin, Shang-Hua Teng, and Yu Xia.
Active clustering of biological sequences. The Journal of Machine Learning Research,
13(1):203–225, 2012.

[85] Ulrike Von Luxburg and Shai Ben-David. Towards a statistical theory of clustering. In
Pascal workshop on statistics and optimization of clustering, pages 20–26, 2005.

[86] Kiri Wagstaff, Claire Cardie, Seth Rogers, Stefan Schrödl, et al. Constrained k-means
clustering with background knowledge. In ICML, volume 1, pages 577–584, 2001.

[87] Eric P Xing, Michael I Jordan, Stuart Russell, and Andrew Y Ng. Distance metric learning
with application to clustering with side-information. In Advances in neural information
processing systems, pages 505–512, 2002.

95

	List of Figures
	List of Tables
	Introduction
	Objectives
	Formalization of Clustering with Advice
	Algorithms for Clustering with Advice
	Lower bounds for Clustering with Advice
	Unsupervised Learning with Advice
	Learning Mixture Models

	Summary of Contributions
	Representation Learning for Clustering with Advice
	Efficient Clustering with Advice
	Learning Mixture Models with/without Advice
	Learning Mixture Models via Compression

	How to Read this Dissertation

	Clustering with Advice: Background
	Advice Protocol
	Semi-Supervised Clustering Methods
	Constrained Clustering
	Metric Learning for Clustering
	Generative Models
	The Merge-Split Model
	Property-based Clustering

	Conclusions

	Representation Learning for Clustering with Advice
	Contributions
	Preliminaries and Notations
	Formal Problem Statement (PAC-ReCLAD)
	The Case of K-means Clustering (ReKLAD)
	Definitions and Notations
	PAC-ReKLAD

	Statistical Analysis of ReKLAD
	Technical Background
	ERM as a Representation Learner
	Classes of Mappings with a Uniqueness Property

	Uniform Convergence Results
	Preliminaries
	Reduction to Binary Hypothesis Classes
	L1-Covering Number and Uniform Convergence
	Bounding L1-Covering Number

	Sample Complexity of PAC-ReKLAD
	Conclusions
	Future Research Directions

	Appendix: Proof of Lemma 3.1

	Efficient Clustering with Advice
	Contributions
	Related Work
	Problem Formulation
	Center-based Clustering
	The -Margin Property
	The Algorithmic Setup

	An Efficient SSAC Algorithm
	Hardness Results
	Hardness of Euclidean k-Means with Margin
	Overview of the Proof
	Reduction Design
	Lower Bound on the Number of Queries

	Conclusions
	Subsequent Results

	Appendix: Relationships Between Query Models
	Appendix: Comparison of -Margin and -Center Proximity
	Centers from Input Instances
	Unrestricted Centers from the Metric Space

	Appendix: Proofs of Lemmas 4.3 and 4.4
	Appendix: Concentration Inequality

	Learning Mixture Models: Background
	The Formal Framework
	Learning Mixture Models

	Related Work

	Learning Mixture Models with/without Advice
	Contributions
	Learning Mixture Models
	Learning Mixtures of Gaussians
	Mixtures of Axis-Aligned Gaussians
	Mixtures of General Gaussians

	Learning Mixtures of Gaussians with Queries
	Learning Mixtures of Log-Concave Distributions
	Conclusions
	Appendix: Proofs of Theorems 6.3 and 6.6

	Learning Mixture Models via Compression
	Contributions
	Distribution Compression Schemes
	Robust Compression Implies Agnostic Learning
	Robust Compression of Products of Distributions
	Compression of Mixtures of Distributions
	Robust Compression of Univariate Gaussian Distributions
	Compression of Mixtures of Axis-aligned Gaussians
	Compression of Mixtures of General Gaussians
	Further Discussions
	Appendix: Proofs of Auxiliary Results

	More Future Directions
	References

