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Abstract

The goal of this thesis is to provide efficient optimization algorithms for some semi-
supervised learning (SSL) tasks in machine learning. For many machine learning tasks,
training a classifier requires a large amount of labeled data; however, providing labels typ-
ically requires costly manual annotation. Fortunately, there is typically an abundance of
unlabeled data that can be easily collected for many domains. In this thesis, we focus
on problems where an underlying structure allows us to leverage the large amounts of
unlabeled data, while only requiring small amounts of labeled data. In particular, we con-
sider low-rank matrix completion problems with applications to recommender systems, and
semi-supervised support vector machines (S3VM) to solve binary classification problems,
such as digit recognition or disease classification.

For the first class of problems, we study convex approximations to the low-rank matrix
completion problem. Instead of restricting the solution space to low-rank matrices, we
use the trace norm as a convex surrogate. Unfortunately, many trace norm minimization
algorithms scale very poorly in practice since they require a full singular value decom-
position (SVD) at each iteration. Recently, there has been renewed interest in the trace
norm constrained problem utilizing the Frank-Wolfe algorithm, which only requires calcu-
lating the leading singular vector pair, providing an order of magnitude improvement on
the iteration complexity. However, the Frank-Wolfe algorithm empirically has very slow
convergence and in practice yields high-rank solutions, which greatly increases computa-
tional costs. To address this issue, we investigate a rank-drop step for Frank-Wolfe, which
solves a subproblem specifically designed to decrease the rank of the iterate, ensuring that
the Frank-Wolfe algorithm converges along a low-rank path. We show that this rank-drop
subproblem can be decomposed into two cases, where each subproblem can be solved ef-
ficiently and we guarantee that the iterates remain feasible, preserving the projection-free
property of Frank-Wolfe.

Next we show that these ideas can be used to provide scalable algorithms for simul-
taneously sparse and low-rank matrix completion problems. We extend the Frank-Wolfe
analysis to accommodate nonsmooth objectives, which can be used to solve the simultane-
ously sparse and low-rank problem. We replace the traditional linear approximation used
in Frank-Wolfe by a uniform affine approximation to better address poor local approxima-
tions given by the first-order Taylor approximation. We show that this naturally leads to
a sequence of smooth functions that uniformly converges to the original nonsmooth objec-
tive, allowing for a careful balance between approximation quality and convergence that
is closely related to the step sizes of the Frank-Wolfe algorithm. We apply this algorithm
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to solve sparse covariance estimation problems, graph link prediction, and robust matrix
completion problems.

Finally, we propose a variant of self-training for the semi-supervised binary classifica-
tion problem by leveraging ideas from S3VM. To address common issues associated with
self-training, such as error propagation and label imbalances, we proposed an adaptive
scheme using the functional margin of S3VM to construct a confidence measure. The con-
fidence score is used to create rules to adapt the optimization problems to incorporate
label uncertainty and class imbalances. Moreover, we show that the incremental training
approach leverages warm-starts very well, leading to much faster training than standard
S3VM methods alone, with much stronger empirical performance on imbalanced datasets.
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Chapter 1

Introduction

In many machine learning applications, unlabeled data is typically abundant. On the
internet alone, companies are passively collecting massive amounts of data each day. Images
uploaded, articles written, and online purchases all can be easily recorded and utilized for
machine learning tasks. However, it is often very difficult to obtain labels for the data,
usually requiring manual annotation. Thus, it seems natural to create algorithms that can
leverage the massive amounts of unlabeled data without also requiring large amounts of
labeled data.

1.1 Semi-supervised Learning

Semi-supervised learning (SSL) is a paradigm that incorporates both unlabeled and labeled
data into the training process, allowing algorithms to leverage the abundant unlabeled data.
The main idea is to utilize any structure given by the unlabeled data to infer the missing
labels. Figure 1.1 illustrates that, incorporating the unlabeled data into the training set
reveals structure to better guide a classifier.

A computational difficulty associated with SSL problems is that the optimization
problems formulated to incorporate the structure typically lead to NP-hard problems
[13, 85, 30]. Below, we give an overview of the problems we consider as well as the com-
putational difficulties associated with the structure.
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Figure 1.1: The structure given from the unlabeled data greatly helps with creating a
classifier that should generalize better to unseen data. The top row is a classifier trained
on only two labeled points. In the bottom row, we show how different sets of unlabeled
data can greatly impact the choice of classifier.

1.1.1 Low-Rank Approximations

The first class of problems we consider is low-rank approximation. Finding a low-rank
approximation is a natural solution for many recommender systems. Consider a problem
such as recommending movies on Netflix. The ratings can be represented as a matrix where
entry (i, j) yields the rating user i gave for movie j. Since most users do not rate most
movies, we are only given access to a sparse set of observations from a true underlying rating
matrix. To recover the missing entries, we seek a rating matrix that is consistent with the
set of observations which is as low-rank as possible. The low-rank assumption is natural
for recommender systems since we assume that there should be high level of correlation
between ratings of similar users. Similarly, decomposing the matrix into rank-one matrices
can be interpreted as factors that led to the predicted ratings, for example, one rank one
factor can represent the preference of action movies. The low-rank assumption can also
be interpreted as assuming that there should not be too many factors that contribute to
movie preferences, and simple predictive models are preferred.

However, adding a rank-constraint or regularizer makes the optimization problem NP-
hard. In this thesis, we will investigate efficient algorithms to solve convex relaxations to
the low-rank problem where we utilize the trace norm. Despite the convex relaxation mak-
ing the problem theoretically tractable, in practice, the computational complexity for many
trace norm minimization are still too expensive for large machine learning applications. A
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very popular approach for trace norm constrained problems is proximal gradient descent,
which requires a full singular value decomposition (SVD) at each iteration [62]. This leads
to an iteration cost of O(mn2) for the proximal gradient algorithm, which is far too expen-
sive when we consider that both m and n will be large. Interest in Frank-Wolfe methods
have been recently renewed for trace norm constrained problems, largely due to the fact
that the Frank-Wolfe subproblem for trace norm constrained problems only require com-
puting the leading singular vector pair of the gradient, reducing the iteration complexity
to O(mn), an order of magnitude better. However, an obstacle with Frank-Wolfe methods
is the poor observed convergence rates, leading to high-rank intermediate iterates, which
in practice leads to much more expensive iterates and less interpretable solutions. We
investigate methods for maintaining low-rank intermediate iterates while maintaining the
projection-free nature of Frank-Wolfe in an effort to greatly reduce the computational time
and space required for large-scale Frank-Wolfe on trace norm constrained problems.

We will also explore applications that exhibit a simultaneously sparse and low-rank
structure, such as graph link prediction or sparse covariance estimation. Requiring regu-
larization from both the `1 and trace norm terms make the optimization problem much
more challenging since the proximal map and Frank-Wolfe subproblem are no longer simple
to solve [69]. A simple approach to address this issue is to solve the problem in an alternat-
ing fashion via proximal gradient descent [69], but again, this leads to a full SVD at each
iteration. Ideas using Frank-Wolfe have also been tried by using a smooth surrogate func-
tion to replace the `1 term and treating this problem as a trace norm constrained problem
[65, 3], but we show these methods either quickly converge to suboptimal solutions, or take
many iterations to make progress to a reasonable solution [17].

1.1.2 Semi-supervised Classification

The second class of problems we consider are semi-supervised binary classification problems.
This paradigm is useful when we only have access to very small amounts of labeled data.
This is particularly useful in the imbalanced setting, where having access to one class is
particularly difficult, for example, diagnosing medical conditions or assessing fraud. Since
getting a labeled point of data would require an expert such as a doctor to assess a patient,
it is unlikely there will be an abundance of labeled data, and in particular, it may be very
difficult finding patients that are positive for a rare disease. By leveraging the vast amount
of unlabeled data, e.g. all patients that are not specifically tested for a particular disease,
it may be possible to uncover structure to earlier identify warning signs of disease or fraud.

The structure we assume is that there exists a labeling of the data such that a decision
boundary can be found that separates the classes sufficiently well and passes through
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a low-density region. In this context, passing through a low-density region means that
very few points are close to the decision boundary, as in Figure 1.1. Optimizing over
all labelings formulates a mixed-integer programming problem and the problems are NP-
hard [16]. While approximations exist to the S3VM problem [26, 54] which use semi-
definite programming approaches, empirically, the solutions obtained are very sensitive to
the initial labeling and can often be misled when the true labeling distribution is imbalanced
[19]. In this thesis, we will investigate adaptive methods to find approximate solutions to
the mixed-integer programming problem. We show that this nonconvex approach very
naturally incorporates class distribution information and label confidence, improving the
performance on imbalanced and multiclass classification tasks.

1.2 Contributions

The main contributions of this thesis are:

• We improve the computational performance of Frank-Wolfe on trace norm con-
strained problems by proposing rank-drop steps. We increase the set of candidate
directions to ensure that the solution is always low-rank. Empirically, we have found
that this dramatically decreases both the computational time and space required,
leading to much more scalable algorithms. (Appeared in IJCAI 2017 [18]).

• We motivate a nonsmooth variant of Frank-Wolfe to address nondifferentiable objec-
tives for matrix estimation problems. We show that the variant we propose outper-
forms many existing approaches utilizing subgradients or smooth surrogate functions.
This extension is particularly useful for applications such as completing social graphs
and sparse covariance estimation. (To appear in IJCAI 2018 [17]).

• We propose a variant of self-training for the semi-supervised binary classification
problem. We use ideas from Semi-Supervised Support Vector Machines (S3VM) to
establish a confidence measure and create rules to adapt the optimization problems
to incorporate label uncertainty and class imbalances. We show that the modified op-
timization problems motivated are extremely efficient in leveraging warm-starts and
scale much faster than many existing SSL methods. The classification performance is
also much stronger for datasets with imbalanced classes. (Appeared in IJCNN 2017
[19]).
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1.3 Outline

The thesis is organized as follows:

• In Chapter 2, we give an overview of optimization algorithms for learning sparse
structure.

• In Chapter 3, we describe the rank-drop steps. We highlight several computational
issues associated with trace norm constrained problems for Frank-Wolfe and demon-
strate how the rank-drop steps can overcome these issues [18].

• In Chapter 4, we motivate a natural way to incorporate nonsmoothness into the
Frank-Wolfe algorithm. We show that this method improves upon existing nons-
mooth solvers in the sparse and low-rank setting. Combining these ideas with Chap-
ter 3, we demonstrate how to efficiently solve very large `1-loss matrix completion
problems [17].

• In Chapter 5, we propose a self-training framework with adaptive regularization
to solve semi-supervised binary classification problems. We show that our method
greatly improves on existing SSL methods on imbalanced class settings [19].

• In Chapter 6, we summarize our results and provide possible directions for future
work.
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Chapter 2

Optimization Methods for Sparsity

In this chapter, we will give a brief overview of various convex optimization algorithms
that are designed to recover solutions that exhibit a sparse structure. We will highlight
the benefits and limitations of the various methods with an emphasis on the Frank-Wolfe
method to motivate the problems to be studied.

2.1 Sparse Models

In many machine learning applications, the models desired exhibit a sparse structure to
improve generalization performance and interpretability. The canonical example to con-
sider is linear regression, where we observe m outcomes {yi}mi=1, where each yi is associated
with a vector of covariates xi ∈ Rn. For example, we can imagine modeling housing prices
where the price of house i is observed to be yi, and we describe the house’s features in the
vector xi, e.g. size, location, number of washrooms, etc.

A standard approach to model this behavior is to fit a linear function that minimizes
the least squares distance,

β∗ := arg min
β∈Rn+1

‖y −Xβ‖2
2.

The coefficients βj can be viewed as the importance associated with the jth feature. Con-
cretely, if |βj| is small, we can consider the jth feature relatively unimportant for the
modeling {yi}.

A key idea proposed in [73] is that the model’s performance can be improved if we
prefer simpler models. The intuition is that only a few features should be important to
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the predictive performance of the model and the remaining features may only be fitting
to the noise. To accomplish this, LASSO (least absolute shrinkage and selection operator)
added a regularization term λ‖β‖1 to the objective [73]. It is shown in [73] that this indeed
produces sparser solutions and can improve generalization performance in practice.

The intuition that we wish to carry forward is that simplicity of the model can often
be viewed as a parsimonious structure. Even considering the linear regression example
further, the choice of linear regression versus a higher order polynomial can be viewed as
a sparse choice of polynomial basis functions. The primary focus of this thesis will be
on matrix estimation problems, where the sparsity will come from a low-rank assumption,
which corresponds to the ability to describe the matrix with a small number of rank-one
matrices.

2.2 Definitions and Notation

We will begin with various terminology and notation that will be used for the remainder
of the thesis.

Matrix Notations

For square matrices X ∈ Rn×n, we define the trace as tr(X) =
∑

iXii. We will also adopt
the convention that λi is the ith largest eigenvalue in magnitude of a matrix. We will use
λmax and λmin to refer to the largest and smallest eigenvalues in magnitude. We also denote
In to be the identity matrix in Rn×n, where we drop the subscript if the dimension is clear
in the context.

For a general real matrix X ∈ Rm×n, we will use σi(X) to represent the ith largest
singular value. If rank(X) = r, we will say that X = UΣV > is a thin singular value
decomposition (thin SVD) if U ∈ Rm×r,Σ ∈ Rr×r and V ∈ Rn×r, where U>U = Ir,
V >V = Ir, and Σ is a diagonal matrix with positive entries.

We let 〈x, y〉 denote the usual inner product x>y for vectors and the trace inner product
for matrices 〈X, Y 〉 = tr(X>Y ).

Norms

For any norm ‖·‖, we will let ‖·‖∗ be the corresponding dual norm defined by,

‖x‖∗ := max
y:‖y‖≤1

〈y, x〉. (2.1)
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For vectors x ∈ Rn, we will consider the `p norms, ‖x‖p =
∑n

i=1
p
√
|xi|p with `∞ =

maxi|xi|. Lastly, we will denote ‖x‖0 to be the number of nonzeros in x, which is not a
norm.

For matrices X ∈ Rm×n, we will consider the following norms,

‖X‖F :=

√√√√ m∑
i=1

n∑
j=1

|Xij|2, (Frobenius Norm)

‖X‖1 :=
m∑
i=1

n∑
j=1

|Xij|, (Matrix `1 norm)

‖X‖tr :=

rank(X)∑
j=1

σi(X), (Trace/Nuclear norm)

‖X‖sp := σ1(X), (Spectral norm).

Common sets

For any norm, the associated norm ball Ba(x, δ) is defined to be the open ball around x
of radius δ, where the subscript a will correspond to the subscript of the norm of interest.
Formally,

Ba(x, δ) := {y : ‖x− y‖a < δ}.

Define the unit simplex of order n to be

∆n = {x ∈ Rn+1 :
n+1∑
i=1

xi = 1, xi ≥ 0}. (2.2)

Let S ⊆ Rn. We denote the convex hull of S, conv(S), to be the minimal convex set
containing S. The closure of a set X, written as cl(X) or X̄ is denoted as the smallest
closed set containing S, i.e. S and all its limit points. Given some set C ⊆ Rn, the affine
hull of C, denoted as aff(C), is the set

aff(C) = {θ1x1 + · · ·+ θkxk : x1, ..., xk ∈ C,
k∑
i=1

θi = 1}.

For a nonempty convex set C, its relative interior, denoted as relint(C), is defined as
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relint(C) = {x ∈ C : ∃ε > 0,B(x, ε) ∩ aff(C) ⊆ C}.

If S ⊆ Rn is a convex set, we say that x is an extreme point of S if x cannot be written
as a convex combination of distinct points in S. That is, x is an extreme point of S if
x = (1− θ)a+ θb for θ ∈ [0, 1] and a, b ∈ S, then x = a and/or x = b. We say that F is a
face of a convex set S if F is convex, and for any line segment L ⊆ S, if relint(L)∩F 6= ∅,
then L ⊆ F .

Finally, for any function f : Rn → R, the subdifferential of f at x is defined as,

∂f(x) := {g : f(y) ≥ f(x) + 〈y − x, g〉, ∀y ∈ Rn}.

We will call any g ∈ ∂f(x) a subgradient of f at x.

2.3 Sparsity Inducing Norms

When discussing LASSO, we have briefly mentioned that `1 regularization is enough to
recover sparse solutions. We will provide some intuition on why this is the case.

Consider the level sets of the function we wish to minimize as in Figure 2.1. If we also
draw B1(0, δ), if δ is large enough, the global minimum of the function may be contained
in the norm ball. In this case, minimizing the function constrained to the norm ball
of radius δ does not change the solution, and the additional `1 constraint does nothing.
Now consider shrinking the radius of the ball. The optimal solution for the constrained
problem now will be at the intersection of a level set that is tangent to B1(0, δ). The
idea is that the level sets are more likely to intersect B1(0, δ) at a sparse solution. To see
why, consider some dense solution in B1(0, 1), e.g. x = (1/n, 1/n, ..., 1/n)>. We see that
‖x‖2 = 1/

√
n < 1. As the dimension grows larger, the Euclidean distance from the origin

of this uniformly dense solution diminishes. The points which have maximum Euclidean
distance from the origin on the unit `1 ball are the elementary basis vectors, which has
distance 1, independent of the dimension. We see that when the mass of the support of
the vector is more concentrated, then it can be further from the origin and more likely to
be the point of tangency to the level set.

We see this claim of sparse support is true for all `p norms with 1 ≤ p < 2. A general
trend we see is that as p grows larger, denser solutions become more likely to be chosen.
In the case of B∞(0, 1), the point furthest from the origin on the unit ball would be the all
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!1

(a) `1 ball

!2

(b) `2 ball

Figure 2.1: Comparison of level sets intersecting the norm balls. Note that the `1 ball
intersects at a sparser solutions than the `2 ball.

ones vector with Euclidean distance
√
n from the origin, which is much further from the

origin than the sparse elementary basis vectors.

When 0 ≤ p < 1, the sparse points become more exaggerated, but these are not norms
and do not lead to convex optimization problems. A further justification to formalize the
correctness of the `1 norm is to consider the convex relaxation to the `0 “norm” constrained
problem. If we consider the unit `0 ball, then we recognize B0(0, 1) = {cei : c ∈ R} where
ei are the elementary basis vectors. If we restrict our attention to a bounded set, say
B0(0, 1) ∩ B∞(0, δ) for some δ > 0, then the convex hull of this set is precisely B1(0, δ).
Thus, we can view the `1 constraint as the tightest convex relaxation to the `0 norm
problem. Moreover, the fact that the extreme points of the B1(0, 1) are the elementary
basis vectors will provide a key role for Frank-Wolfe methods.

The trace norm ball will be the primary focus in this thesis and often it appears as
a convex surrogate for a low-rank matrix estimation, for example matrix completion for
recommender systems [30, 8]. The intuition for using the trace norm as a surrogate for the
rank constraint is similar to using the `1 for the sparsity constraint. We note that the rank
of the matrix is the number of nonzero singular values. Since the trace norm is simply the
`1 norm of the singular values, the same intuition will carry over.
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2.4 Nonsmooth Convex Algorithms

We consider problems of the form,

min
x
F (x) := f(x) + g(x) (2.3)

where f and g are convex and Lipschitz continuous. Relating back to machine learning
problems, we can consider f to be a loss function and g to be a regularization term, such
as the sparsity inducing norms discussed earlier. We will give a brief overview of methods
to solve (2.3).

Subgradient Methods

If we do not assume that either function is differentiable, then we can consider subgradient
methods.

The iterates for the subgradient method are of the form,

x(k+1) = x(k) − α(k)ξk

where ξk ∈ ∂F (x(k)) and α(k) > 0 is a step size. While the subgradient method is very
flexible and assumes little about the objective function, it is shown in [59] that the algorithm
converges at a rate of O(1/

√
k) and this bound is tight. Thus, for flexibility, we may have

to accept very slow convergence rates.

Proximal Methods

While the convergence rate for the subgradient method is tight for general nonsmooth
functions, if we assume additional properties on f , then it can be shown that the algorithms
can be improved.

Definition 2.4.1. We say that f ∈ Rn is L-smooth if f is differentiable and ∇f is
Lipschitz continuous with Lipschitz constant L. That is for all x, y ∈ Rn,

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖.

Specifically, suppose f is L-smooth, then algorithms such as proximal gradient descent
can be shown to improve the global convergence rate.

Recall the following concepts from convex optimization.
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Lemma 2.4.2. Let f : Rn → R be an L-smooth function. Then for any x, y ∈ Rn,

|f(y)− f(x)− 〈y − x,∇f(x)〉| ≤ L

2
‖y − x‖2

2.

Note that when f is convex, L-smoothness implies that at each point x, there exists a
quadratic centred around x that upper bounds the function globally, i.e.,

f(y) ≤ f(x) + 〈y − x,∇f(x)〉+
L

2
‖y − x‖2

2, ∀y ∈ Rn. (2.4)

The idea behind the algorithm is to replace the smooth term in the objective by the
quadratic approximation given by (2.4). This gives an upper bound on the objective
while potentially simplifying the problem. At each iteration k, we consider minimizing the
following problem instead,

x+ := arg min
x

f(x(k)) + 〈∇f(x(k)), x− x(k)〉+
L

2
‖x− x(k)‖2

2 + g(x)

= arg min
x

L

2
‖x− (x(k) − 1

L
∇f(x(k)))‖2

2 + g(x)

These updates can be interpreted as finding a point x+ that is close to the gradient
step for f (with step size 1/L) that is also good for g.

For a nonsmooth function g, we define its proximal map to be the operation,

prox
α

(x) := arg min
z

1

2α
‖x− z‖2

2 + g(z).

The iterates of proximal gradient descent can then be written as,

x(k+1) = prox
α(k)

(
x(k) − α(k)∇f(x(k))

)
where α(k) ≤ 1/L.

In [6, 62], it is shown that proximal gradient descent converges at a rate of O(1/k) and
can be further accelerated to O(1/k2) using the momentum idea proposed in [57]. We see
that as long as the proximal map is easy to compute, then we can achieve much faster
convergence than subgradient descent.

The optimality conditions for the proximal map are given by

∇f(x(k)) +
1

α(k)
(x− x(k)) ∈ −∂g(x).
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Thus, when g(x) = λ‖x‖1, the proximal map is given by,

prox
α(k)

(
x(k) − α(k)∇f(x(k))

)
= Sλα(k)

(
x(k) − α(k)∇f(x(k))

)
where Sλ(x) is the soft-thresholding operator

[Sλ(x)]i := sgn(xi) max{|xi| − λ, 0}. (2.5)

When g(X) = λ‖X‖tr, the proximal map can be computed as,

prox
α(k)

(
X(k) − α(k)∇f(X(k))

)
= Udiag(Sλα(k)(σ))V >

where Udiag(σ)V > is an SVD of X(k) − α(k)∇f(X(k)), and σ is the vector of singular
values of X(k) − α(k)∇f(X(k)) [62].

For the trace regularized problem, the proximal map requires a full SVD at each it-
eration. Note that even if X(k) were low-rank, the matrix X(k) − 1

L
∇f(X(k)) could be

full-rank, which incurs an O(mn ·min{m,n}) cost for the full SVD, preventing scalability
to very large datasets.

A main application we will focus on, for trace regularized problems, is the matrix
completion problem, e.g.,

min
X∈Rm×n

1

2
‖PΩ(X − Y )‖2

F + λ‖X‖tr. (2.6)

Here Y is the true underlying matrix that we wish to estimate and Ω ⊆ {1, ...,m}×{1, ..., n}
is a collection of indices (i, j) where the value of Yij is known. The operation PΩ(·) restricts
the loss only to the set Ω, i.e.,

PΩ(X) =

{
Xij, if (i, j) ∈ Ω

0, otherwise.

For matrix completion problems, a key insight observed in [56] is that the proximal step
is taken on a matrix that exhibits a “sparse + low-rank structure”. To see why, note that
∇f(X) = PΩ(X − Y ) is sparse, and X(k) is assumed to be low-rank and efficient solvers
can be used.

Specifically when the step size α(k) = 1 for the proximal gradient step, this algorithm is
known as the SoftImpute algorithm. Due to this structure, it is observed that SoftImpute
typically scales much better than the accelerated version of the proximal gradient descent
since the acceleration destroys the sparse + low-rank structure [82]. This highlights the fact
that the SVD cost can become prohibitive in a large scale setting, that a simple algorithm
can be preferable even when the convergence rate is much worse.
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Projected Gradient Descent

If we consider the constrained form of (2.3) instead, i.e. minx f(x) s.t. g(x) ≤ δ for some
δ > 0, we can see that this becomes a special case of the proximal gradient descent on
the function f(x) + Ig(x)≤δ(x), where Ig(x)≤δ(x) = 0 when g(x) ≤ δ, and ∞ otherwise.
Thus, strong convergence for the projected gradient descent is immediately implied by
the proximal algorithms. However, when g(x) ≤ δ is a trace norm constraint, the same
computational issues arise since the proximal operator becomes the projection operator,
and projection onto the trace norm ball also requires a full SVD.

2.4.1 Summary of related methods

We have seen that for nonsmooth optimization, if the proximal map is cheap to compute,
then proximal gradient descent can provide a large improvement over a simple method
such as subgradient descent. Moreover, we see that the soft-thresholding operator used in
the proximal map directly promotes sparsity which gives structured iterates. The obvious
drawback that we emphasize is that the SVD required for the proximal map in the trace
norm case can be too expensive for very large datasets. It is natural to wonder whether
we can utilize the sparse structure of the problem more efficiently without sacrificing the
improved convergence rate over subgradient methods. One of our main objectives in this
thesis is to solve very large trace-norm constrained problems.

2.5 Frank-Wolfe

The Frank-Wolfe algorithm, also known as the Conditional Gradient algorithm, is a first
order method proposed by Marguerite Frank and Philip Wolfe in 1956 to maximize concave
quadratics over polytopes [31]. At a high level, the main idea of the algorithm is to generate
iterates by minimizing the first order Taylor approximation over the domain. One of the
original motivations for the polytope constraint is that each iteration reduces to an easy
to solve linear program. The historical context is that, at the time, many efficient linear
programming algorithms were just emerging and the Frank-Wolfe method provided a way
to leverage this research to solve more complicated problems. This motivation alone is not
very strong and unsurprisingly, the algorithm was not popular for many years. However,
in recent years, there has been renewed interest where insights, as seen in [41, 46], in which
the Frank-Wolfe algorithm is shown to have very nice properties for optimization problems
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with sparse structures. For the remainder of this chapter, we will highlight why the Frank-
Wolfe algorithm succeeds in this problem setting, as well as potential drawbacks, in order
to motivate our work.

2.5.1 Overview

The Frank-Wolfe method is a first order method for solving problems of the form

min
x∈D

f(x)

where f is convex and differentiable and D is convex and compact.

The algorithm proposed by Frank and Wolfe considers a simple iterative scheme, where
the first-order Taylor approximation is minimized on the domain at each iteration. Thus,
at the current iterate x(k), a linear optimization problem is solved

s(k) := arg min
s∈D

f(x(k)) + 〈∇f(x(k)), s− x(k)〉 = arg min
s∈D

〈∇f(x(k)), s〉. (2.7)

We assume that we have access to a linear minimization oracle (LMO) that solves (2.7).
For Frank-Wolfe to be useful, the LMO has to be able to solve (2.7) efficiently. This is
similar to the assumption required in proximal methods that the proximal map must be
evaluated efficiently. In fact, when we view g(x) = ID as the indicator function, we see
that the LMO and the proximal map only differ by the term 1

2
L‖y − x‖2

2.

When D is a polytope, as in the Frank-Wolfe paper [31], this is a standard linear
program and efficient oracles exist. To motivate why Frank-Wolfe updates are useful for
sparse structure, we recall that for linear optimization, it is sufficient to consider the
extreme points of the set. As alluded to earlier, the extreme points of the `1 ball are the
elementary basis vectors are the atoms. Thus, the intuition for why Frank-Wolfe will be
useful is that the solutions will be gradually built from these atoms, constructing a sparse
solution incrementally. We will formalize this later in the chapter and show that the LMO
for norm balls returns solutions efficiently.

The algorithm continues by taking a convex combination of the current iterate x(k) and
the solution found in (2.7). That is,

x(k+1) := (1− α(k))x(k) + α(k)s(k).

It is important to note that since s(k) is constrained to be feasible in (2.7) and D is a
convex set, then x(k+1) is immediately feasible as long as x0 is feasible. Thus, each iterate
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will be guaranteed to be feasible and we will call this property projection-free. Recall that
an issue with projected gradient descent is that the projection operator requires a full
SVD, preventing scalability despite the strong convergence rates. By avoiding this costly
projection step, as long as the LMO can be computed quickly, there is potential for large
computational savings.

The Frank-Wolfe algorithm is now summarized in Algorithm 1. There are many vari-

Algorithm 1 Frank-Wolfe (FW)

Input: Convex and differentiable f , convex and compact D, max iteration count T , initial
point x0 ∈ D.

Output: Solution x(T+1) ∈ D.
for k = 0...T do
s(k) ← arg mins∈D〈s,∇f(xk)〉
α(k) ← 2

k+2

x(k+1) ← (1− α(k))x(k) + α(k)s(k)

end for

ations of choosing the appropriate step size α(k) (see e.g. [32]) as well as various update
rules for the next iterate x(k+1), (e.g. away steps [80] or the fully-corrective steps [46]). To
guarantee convergence, a simple rule such as α(k) = 2/(k + 2), k = 0, 1, ... is sufficient [46].

2.6 Optimization over Norm Balls

It is not always obvious that there exists an efficient LMO to yield solutions to (2.7).
An important class of problems that have efficient oracles are optimization problems over
norm balls. This is of particular interest in machine learning when the norm is a sparsity
inducing ball such as the `1 norm or the trace norm.

Theorem 2.6.1. [45] Let z ∈ Rn and let ‖·‖ be an arbitrary norm in Rn. Then,

arg min
s:‖s‖≤δ

〈z, s〉 = −δ · ∂‖z‖∗

where ‖·‖∗ denotes the dual norm defined as,

‖z‖∗ = max
‖s‖≤1
〈s, z〉.
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Theorem 2.6.1 can be used to show that the LMO for Frank-Wolfe over norm balls
only needs to return some s(k) ∈ −δ · ∂‖∇f(x(k))‖∗. This is an important result since
characterizing dual norms and their subdifferentials is typically easier than characterizing
the solution space of arbitrary linear optimization problems. Unless one is working with a
very esoteric norm, these quantities are typically well known, e.g. [77] demonstrates how
to compute several dual norms and their subdifferentials for common matrix norms. We
contrast this with the proximal map, which may be difficult to evaluate, even for norm balls.
An example is the latent overlapping group norm ball as proposed in [60], where the dual
norm and its subdifferential are also simply stated, but the corresponding proximal map is
very difficult to solve and requires specialized algorithms to approximate the solution [74].

Optimization over the `1-ball

For `p norms, the dual norms are well known to be `q norms such that 1/p+ 1/q = 1 and
the dual norm of the `1 norm is the `∞ norm. It is easy to verify this from the definition,(

max
z:‖z‖1≤1

〈z, x〉
)

= max
i
|xi| = ‖x‖∞

where the solution is attained at z = sgn(xi)ei, where ei is the ith elementary basis vector.

Thus,
∂‖x‖∞ = conv {sgn(xi)ei : xi = ‖x‖∞}

and
s(k) = arg min

s:‖s‖≤δ
〈∇f(x), s〉 = −δei∗

for any i∗ such that xi∗ = ‖x‖∞ and the Frank-Wolfe step can be evaluated in O(n) time.

2.6.1 Optimization over the trace norm ball

The trace norm ball will be the primary focus in this thesis and often appears as a convex
surrogate for the low-rank matrix estimation problem, e.g.,

min
X∈Rm×n

f(X)

s.t. ‖X‖tr ≤ δ.

The canonical example is the Netflix Prize challenge where the matrix of movie ratings are
best predicted using the low-rank matrix assumption [8, 30].
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The dual norm of the trace norm is the spectral norm, i.e., the largest singular value.
Since this fact seems less obvious than the `1 norm case, we will provide a proof of this
claim for completeness.

Lemma 2.6.2. The dual norm to the trace norm is the spectral norm. Explicitly, if X ∈
Rm×n and

‖X‖tr =

min{m,n}∑
i=1

σi(X)

where σi(X) is the ith largest singular value of X, then the dual norm of the trace norm,
denoted as ‖X‖∗, is

‖X‖∗ = ‖X‖sp = σ1(X)

Proof. Let X = UΣV > be an SVD of X. Let Z = UV >. We have,

〈X,Z〉 = tr(X>Z) = tr(V ΣU>UV >) = ‖X‖tr.

Since ‖Z‖sp ≤ 1, we have max‖Z′‖sp≤1〈Z ′, X〉 ≥ ‖X‖tr.

In the other direction, we have,

max
‖Z‖sp≤1

〈Z,X〉 = max
‖Z‖sp≤1

〈UZV >,Σ〉

= max
‖Z‖sp≤1

min{m,n}∑
i=1

u>i Zviσi(X)

≤ max
‖Z‖sp≤1

min{m,n}∑
i=1

σ1(Z)σi(X)

≤ ‖X‖tr

Thus, we have shown that max‖Z‖sp≤1〈Z,X〉 = ‖X‖tr, so the spectral norm is indeed the
dual norm to the trace norm.

We have established that the Frank-Wolfe steps can be determined by identifying an
element in the subdifferential of the spectral norm. It only remains to characterize elements
of the subdifferential.

Theorem 2.6.3. [77] Let X ∈ Rm×n and ‖·‖sp be the spectral norm. Then,

∂‖X‖sp = conv{uv> : ‖u‖2 = ‖v‖2 = 1, Xv = σ1u}.
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Proof. (sketch) The full proof can be found in [77], but we remark that for the Frank-Wolfe
algorithm, it is sufficient to verify that ∂‖X‖sp ⊇ conv{uv> : ‖u‖2 = ‖v‖2 = 1, Xv = σ1u}
since we only require finding a single element of the subdifferential for the Frank-Wolfe
algorithm.

Clearly, for all leading singular vector pairs (ui, vi),

u>i Xvi = σ1(X) = ‖X‖sp = arg max
Z:‖Z‖tr≤z

〈Z,X〉.

Thus, any Z = uiv
>
i ∈ ∂‖X‖sp for any leading singular vector pair. Moreover, if (u1, v1)

and (u2, v2) are distinct singular vector pairs of X, then it is straightforward to verify that,

(1− α)u1v
>
1 + αu2v

>
2 ∈ ∂‖X‖sp

and
∂‖X‖sp ⊇ conv{uv> : ‖u‖2 = ‖v‖2 = 1, Xv = σ1u}.

Theorem 2.6.3 shows that the LMO for trace norm balls requires computing the leading
singular vector pair of the matrix X(k).

We say that v is an ε-approximate eigenvector to A, if ‖v‖ = 1 and v>Av ≤ λmax(A)+ε.
It is shown in [49, 52] that for a sparse matrix X, an ε-approximate eigenvector can be
computed in O(nnz(X) log(n)/

√
ε) operations using an approximate Lanczos method, thus

the cost of the LMO is almost linear in terms of the number of nonzeros of X.

Theorem 2.6.4. [49] For any matrix A ∈ Rm×n, ε > 0, and σ̂ > σ1(A) is an upper bound
on the largest value of the singular values of A, then the Lanczos bidiagonlization algorithm
returns a pair of unit vectors (u, v) such that,

u>Av ≥ σ1(A)− ε

with high probability, using at most, nnz(A) log(m+n)
√
σ̂√

ε
flops.

2.7 Implications for Sparsity

We emphasize that the iterates formed from the solutions of the LMO for a sparsity in-
ducing norm maintains a sparse structure. Specifically, for the `1 norm for example, at
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each iteration, the iterate adds at most one nonzero entry to the solution, and in the trace
norm case, the rank increases by at most one.

This result is not surprising since the extreme points of the `1 ball are the signed
elementary basis vectors. Similarly, the extreme points of the unit trace norm ball are the
rank-one matrices with ‖X‖sp ≤ 1. In both cases, the linear minimization oracle returns
an extreme point as a solution allowing the Frank-Wolfe method to control the level of
sparsity explicitly. Thus, Frank-Wolfe gives an interesting bridge between combinatorial
constraints, such as rank or sparsity, by directly controlling the level of sparsity with the
iteration count.

2.8 Convergence Analysis

Much of the analysis and intuition for the convergence properties of FW can be attributed
to [45, 46, 50, 41]. In this section, we will reproduce the results and intuitions that will be
useful for the remainder of the thesis.

2.8.1 Weak Duality

In this section, we will assume that f : Rn → R is convex and differentiable and D ⊆ Rn

is a convex and compact set. We begin with a concept of weak duality proposed in [45].

Definition 2.8.1. Let x ∈ D and dx ∈ ∂f(x). For a convex function f , the dual function
is defined as,

ω(x, dx) := min
y∈D

f(x) + 〈y − x, dx〉. (2.8)

Immediately from the definition of subgradients, we get that ω(w, dx) ≤ f(y), for all
x, y ∈ D. However, as seen in [45], this simple notion of duality gap is very useful for
analyzing Frank-Wolfe since the algorithm only requires the linear approximations. From
this definition, we can compute the duality gap

g(x, dx) := f(x)− ω(w, dx) = max
y∈D
〈x− y, dx〉. (2.9)

When f is differentiable at x, we will drop the argument dx from the defintion and simply
write g(x). We note that x∗ = arg minx∈D f(x), g(x, dx) ≥ f(x)− f(x∗) ≥ 0, by definition
of ω and g.

20



The motivation for using this notion of duality over Lagrange duality is that the min-
imization problem in (2.8) is exactly the linear subproblem solved in each Frank-Wolfe
iteration (2.7). Thus, the algorithm implicitly calculates the duality gap for free.

2.8.2 Curvature

Intuitively, for the Frank-Wolfe algorithm to be successful, the linear approximation to
the function f at some x ∈ D cannot deviate too far from f for any point y ∈ D to
ensure that the solution given by (2.7) is meaningful. This concept is formalized by the
curvature constant described in [22, 45]. Let f be a convex and differentiable function on
some convex and compact domain D, then the curvature constant is defined as follows,

Cf := sup
x,s∈D
α∈[0,1]

y=x+α(s−x)

1

α2
(f(y)− f(x)− 〈y − x,∇f(x)〉). (2.10)

We note that Cf ≥ 0 when f(y) is convex. The term f(y) − f(x) − 〈y − x,∇f(x)〉,
known as the Bregman divergence associated with f measures the deviations between f
and its linear approximation at x globally. For Cf to be bounded, we see that the term
1/α2 ensures that the Bregman divergence is O(α2) as α→ 0. To see why this is desirable,
we will show that the curvature constant is closely related to the Lipschitz constant of the
gradient.

Theorem 2.8.2. Let f ∈ Rn be a convex and twice differentiable function and suppose
that ∇f is Lipschitz continuous with Lipschitz constant L. Then,

Cf ≤
1

2
diam(D)2L,

where diam(D) := maxx,y∈D‖x− y‖2 is the diameter of the set.

Proof. Let x, s ∈ D and y = x + α(s − x) for some α ∈ [0, 1]. Using the second order
Taylor expansion of f at x, there is some z along the line-segment from x to y such that,

f(x+ α(s− x)) = f(x) + α〈∇f(x), s− x〉+
α2

2
〈∇2f(z)(s− x), (s− x)〉. (2.11)

Thus, we have that,

Cf ≤ sup
x,s∈D
α∈[0,1]
z∈D

1

2
〈∇2f(z)(s− x), (s− x)〉 ≤ 1

2
diam(D)2 max

z∈D
‖∇2f(z)‖sp
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where the last inequality comes from applying Cauchy-Schwarz and using the definition of
the diameter.

Finally, from Lemma 2.4.2 and (2.11), we have

〈(L · I −∇2f(z))(s− x), s− x〉 ≥ 0 ∀s, x ∈ D. (2.12)

Hence, L · I � ∇2f(z), and ‖∇2f(z)‖sp ≤ L, for all z ∈ D, completing the claim.

Next, we will show that when Cf is bounded, the Frank-Wolfe algorithm always con-
verges. Since the bounded curvature requirement is closely related to the Lipschitz re-
quirement on the gradient, this loosely translates to Frank-Wolfe succeeding if we can
upper bound the function with a quadratic. We now have the tools to formerly prove the
convergence rates of Frank-Wolfe.

2.8.3 Convergence Rate for Frank-Wolfe

We begin with a key lemma that gives a bound on the improvement of each Frank-Wolfe
iteration.

Lemma 2.8.3. Suppose f : Rn → R is a convex and differentiable function and let g(x)
and Cf be defined as in (2.9) and (2.10) respectively. For any x ∈ D and α ∈ [0, 1] it holds
that,

f(x+ α(s− x)) ≤ f(x)− αg(x) + α2Cf

where s := arg mins′∈D〈∇f(x), s′ − x〉.

Proof. From the definition of Cf , we have,

f(x+ α(s− x)) ≤ f(x) + α〈∇f(x), s− x〉+ α2Cf .

By the choice of s it follows that,

〈∇f(x), s− x〉 = min
s′∈D
〈∇f(x), s′ − x〉

= −max
s′∈D
〈f(x), x− s′〉

= −g(x).

This completes the proof.
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The next lemma encapsulates the main induction steps required to show the convergence
of Frank-Wolfe.

Lemma 2.8.4. Let C ∈ R with C ≥ 0, α(k) = 2/(k + 2), and let {x(k)} be a sequence of
real numbers. If the sequence {x(k)} satisfies

x(k+1) ≤ (1− α(k))x(k) + (α(k))2C (2.13)

where α(k) = 2/(k + 2), then,

x(k) ≤ 4C

k + 2
.

Proof. We will prove the desired result by induction. We see that when k = 0, α(k) = 1
and the bound is trivially satisfied.

Now suppose the result holds for some k ≥ 1. We have that,

x(k+1) ≤ (1− α(k))x(k) + (α(k))2C

=

(
1− 2

k + 2

)
x(k) +

(
2

k + 2

)2

C

≤
(

1− 2

k + 2

)
4C

k + 2
+

(
2

k + 2

)2

C

=

(
1

k + 2
− 1

(k + 2)2

)
4C

=
4C

k + 2

(
k + 2− 1

k + 2

)
≤ 4C

k + 2

k + 2

k + 2 + 1

=
4C

(k + 2) + 1

and we have proven the claim for k ≥ 1.

Now we can prove the main convergence result for Frank-Wolfe.

Theorem 2.8.5 ([45]). Let x(k) be the kth iterate given by Algorithm 1 and let x∗ ∈
arg minz∈D f(z). If the step-size at iteration k is given by α(k) = 2/(k + 2) , then,

f(x(k))− f(x∗) ≤ 4Cf
k + 2

.
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Proof. Let x(k+1) := x(k) + α(k)(s(k) − x(k)) where s(k) := arg mins′∈D〈∇f(x), s′ − x〉. From
Lemma 2.8.3 we have that,

f(x(k+1)) ≤ f(x(k))− α(k)g(x(k)) + (α(k))2Cf .

Since g(x(k)) ≥ f(x(k))− f(x∗) we have,

f(x(k+1))− f(x∗) ≤ f(x(k))− f(x(k))− α(k)(f(x(k))− f(x∗)) + (α(k))2Cf

= (1− α(k))(f(x(k))− f(x∗)) + (α(k))2Cf

The proof now follows from Lemma 2.8.4 since the sequence {f(x(k))− f(x∗)} satisfies
(2.13).

We observe that the error is bounded by O(1/k) where the constant in the convergence
rate is the curvature constant Cf . Thus, as expected, when the function is less curved and
closer to linear, we expect the algorithm to converge quicker.

2.9 Accelerated First-Order Methods

A key idea in many first-order methods is the concept of acceleration, first proposed in
[57]. Accelerated gradient descent is a very simple modification of gradient descent where
a specially constructed momentum term is added. The momentum term has also been
later adopted into many modern ideas such as FISTA [6], in which the momentum step
can be incorporated into the proximal gradient step. We will give a quick overview of
the accelerated gradient method as proposed in [57], which can be used to accelerate
convergence for smooth unconstrained convex optimization problems.

Let f be L-smooth. Then, at each iteration, an intermediate term is calculated,

y(k+1) = x(k) − 1

L
∇f(x(k)).

We recognize this as the gradient step with a fixed step size relating to the Lipschitz
constant of the gradient. Next, define the following sequences,

λ(0) = 0, λ(k) =
1 +

√
1 + 4(λ(k−1))2

2
, and γ(k) =

1− λk
λk+1

.
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The accelerated gradient update is then given by

x(k+1) = (1− γ(k))y(k+1) + γ(k)y(k).

It was shown in [57] that for convex L-smooth functions, accelerated gradient descent
converges at a rate of O(1/k2), which is optimal for smooth functions. The intuition behind
why this momentum term helps with convergence is that as the algorithm approaches the
minimizer, the gradient values also diminish, and the rate of progress also slows down.
We might view the additional momentum term as pushing the algorithm further along the
path it is currently going to overcome the diminishing gradient. An intuitive idea is that if
we assume additional properties about the function, such as assuming the function is never
“too flat”, the rate of convergence may be further improved since the gradients diminishes
more slowly. This concept is formalized with a strong convexity assumption.

Definition 2.9.1. Given µ > 0, a differentiable function f is µ-strongly convex over
some convex set D, if for all x, y ∈ D,

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
µ

2
‖y − x‖2

2. (2.14)

If we additionally assume that the function is µ-strongly convex, then it can be shown
the iterates achieve a global linear convergence rate, i.e.,

f(x(k))− f(x∗) ∈ O
(
ρk
)

for some 0 < ρ < 1.

2.9.1 Challenges with Accelerating Frank-Wolfe

It is natural to wonder whether a simple modification of Frank-Wolfe can also achieve a
faster rate similar to [57]. To figure out whether this is possible, we will investigate where
potential issues occur in the convergence analysis.

We will first show that even under the strong convexity assumption, there will be
hurdles that prevent fast convergence using the standard Frank-Wolfe algorithm.

Consider some function f : Rn → R that is L-smooth and µ-strongly convex. As seen
in §2.4, the convexity of f and the L-smoothness allows us to write

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
L

2
‖y − x‖2

2
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for any x, y ∈ Rn.

Let hk = f(x(k)) − f(x∗). As seen in the proof of Theorem 2.8.5, if x(k+1) = x(k) +
α(k)(s(k) − x(k)) with s(k) being the solution given by the LMO, we can rewrite this as,

hk+1 ≤ (1− α(k))hk + (α(k))2L

2
‖s(k) − x(k)‖2

2.

We see that the error can be written as a geometric decrease of the previous iteration plus
some error term that is decreasing quadratically with the step size. A hurdle that prevents
Frank-Wolfe from converging quickly is that the term ‖s(k)−x(k)‖2

2 has no reason to decrease
and can be as large as the diameter of the set at any iteration. For many applications, we
also expect this quantity to be large. For example, for trace-norm constrained problems,
s(k) is a rank-one matrix and we do not expect x(k) to also be a rank-one matrix. Thus,
we can expect ‖s(k) − x(k)‖2

F ≥ σ2(x(k)) due to the Eckart-Young-Mirsky theorem, which
characterizes the best rank-k approximations to a matrix as the rank-k truncated SVD.

One may wonder why not choose the step size appropriately to ensure that α(k)L
2
‖s(k)−

x(k)‖2
2 ≤ hk/2 since this would lead to the following expression,

hk+1 ≤
(

1− α(k)

2

)
hk

which appears to give geometric decrease. But again, we note that since ‖s(k)−x(k)‖2
2 does

not decrease to 0, the step size sequence α(k) → 0 and (1 − α(k)

2
) → 1, and the rate of

decrease is not geometrically decreasing. We see that for the accelerated gradient descent,
the fixed step size of 1/L plays an important role to guarantee that the error decreases
geometrically.

Another idea one might consider is to generate the Frank-Wolfe iterates by directly min-
imizing the quadratic upperbound on the iteration error instead of the linear minimization
problem. Specifically, one can consider solving

s(k) ∈ arg min
s∈D

〈f(x(k)), s− x(k)〉+
L

2
‖s− x(k)‖2

2. (2.15)

Then from the L-smoothness and choice of s(k), we can write

hk+1 ≤ hk + α(k)〈∇f(x(k)), s(k) − x(k)〉+ (α(k))2L

2
‖s(k) − x(k)‖2

2

≤ hk + α(k)〈∇f(x(k)), x∗ − x(k)〉+ (α(k))2L

2
‖x∗ − x(k)‖2

2

≤ (1− α(k))hk + (α(k))2L

2
‖x∗ − x(k)‖2

2
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Note that in the definition of µ-strongly convex functions, setting x = x∗ in (2.14) yields,

f(y)− f(x∗) ≥ µ

2
‖y − x∗‖2

2

for all y ∈ D since 〈∇f(x∗), y − x〉 ≥ 0 at optimality (no feasible descent directions).

Thus, the error bound can be further simplified to,

hk+1 ≤
(
1− α(k) + (α(k))2Lµ

)
hk.

Then setting α(k) = 1/(
√

2Lµ) is sufficient to guarantee global linear convergence. The
issue with this approach is that solving (2.15) is exactly the projected gradient descent
step which is unsuitable for large problems.

The last idea we will mention is to solve the Frank-Wolfe LMO with an additional
constraint that the point s cannot be too far from x. By considering balls around x∗ of
radius

√
hk, then we again see that it may be possible to achieve linear convergence as seen

in [37]. However, this makes solving the subproblem much more expensive, particularly
for trace norm constrained problems and the simple structure of the Frank-Wolfe iterates
may be lost. Recently, there has been renewed interest in pursuing improved convergence
rates for Frank-Wolfe specifically over trace norm balls by considering hybrid algorithms
for Frank-Wolfe and proximal gradient descent for trace norm constrained problems [36, 2].

While global linear rates have been established under the L-smooth and µ-strongly
convex assumptions, it was shown in [2] that outside the very low-rank case, there is
insufficient improvements over standard Frank-Wolfe algorithms in terms of number of
SVD solves required. However, it is worth noting that both [36] and [2] consider the
matrix completion problem which is not strongly convex.

The main point we wish to highlight is that the simplicity of the Frank-Wolfe updates
leads to slower convergence both theoretically and in practice. Since the solution to the
LMO is an atom, as the algorithm proceeds, the information from each atom becomes less
and less relevant, adding a large error term ‖s(k) − x(k)‖2

2 at each iteration.

This idea is formalized in [46], where it is shown that there exist problems such that the
convergence is guaranteed to be slow in practice due to the simple “one atom at a time”
nature of Frank-Wolfe.

Lemma 2.9.2. [46] Let f(x) = ‖x‖2
2 and ∆n−1 be the unit simplex of order n− 1. It holds

that for any 1 ≤ k ≤ n,  min
x∈∆n−1

‖x‖0≤k

f(x)

 =
1

k
.
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We note that the extreme points of ∆n−1 are the elementary basis vectors of Rn. Thus at
each iteration of any Frank-Wolfe like algorithm, at most one nonzero entry can be updated
in x(k). We can then bound the duality gap from below by f(x(k))− f(x∗) ≥ 1

k
− 1

n
.

2.10 Improved Variants of Frank-Wolfe

In the previous section, we have highlighted several issues that can potentially prevent
Frank-Wolfe from converging quickly. In this section, we will now present several variants
that can improve the practical performance of Frank-Wolfe as well as certain problem
settings where these variants theoretically guarantee global linear convergence.

We will begin by formally defining what we consider to be a “Frank-Wolfe variant”.

Definition 2.10.1. Suppose f is a convex function and D is a convex and compact domain.
We call an algorithm which solves x∗ := arg minx∈D f(x) a Frank-Wolfe variant if the
iterates can be written in the form,

x(k+1) = conv({x(0), s(0), ..., s(k)})

where s(j) ∈ arg mins′∈D〈dx, s′ − x(j)〉 where dx ∈ ∂f(x(k)).

Exact Line Search

Instead of fixing α(k) = 2/(k + 2), one might consider choosing the step size that satisfies,

α(k) := arg min
α∈[0,1]

f(x(k) + α(s(k) − x(k))).

A nice property of this line search is to note that if f is differentiable, s(k)−x(k) is a descent
direction since it minimizes 〈∇f(x(k)), s−x(k)〉. Thus, the exact line search variant will be
a monotonically decreasing variant of Frank-Wolfe.

Away Steps

A common issue observed with the Frank-Wolfe algorithm is that if the optimal solution
x∗ is on the boundary and is not an extreme point, then the iterates tend to “zig-zag”
between the vertices of the minimal face containing x∗ [51]. As the current iterate gets
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Figure 2.2: On the left, the zig-zagging phenomenon. On the right, the away-step.

closer to the boundary, the Frank-Wolfe directions become closer to being orthogonal to
the gradient and progress is diminished [51].

If we define Ak := {x(0), s(0), ..., s(k−1)}, assuming x(k) ∈ conv(Ak), we can rewrite
x(k) = βkx

(0) +
∑k−1

i=0 βis
(i) for some β ∈ ∆n−1 where ∆n−1 is the unit simplex defined in

(2.2). We call this an atomic decomposition. The set Sk = {a ∈ Ak : βa > 0} is referred to
as the active set. Essentially, the current iterate is expressed as a convex combination of
the atoms we have observed through the Frank-Wolfe algorithm.

The idea is to expand the set of directions considered by Frank-Wolfe to more directions
than just the extreme points of the set. The away step then also considers the direction
given by,

a∗ ∈ arg min
a′∈Ak

〈∇f(x(k)), x(k) − a′〉 (2.16)

which can be interpreted as the best direction found by moving away from any active vertex
of conv(Sk). We note that since Ak is a finite set of at most k elements, this minimization
is typically much easier than solving the LMO problem.

If the away step yields a more promising descent direction, i.e.,

〈∇f(x(k)), x− a∗〉 ≤ min
s∈D
〈∇f(x(k)), s− x(k)〉

then the next iterate takes the form x(k+1) = x(k) + α(k)(x(k) − a), where α(k) ∈ [0, βa/(1−
βa)]. The values that α(k) can take will ensure that x(k+1) ∈ conv({x(0), s(0), ..., s(k)}),
hence x(k+1) is feasible. Note that the maximum value of α(k) corresponds to setting the
weight of the bad atom to zero.
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A reason for using directions of this form can be appreicated by considering the weights
of the atomic decomposition described. Suppose at iteration k that only c < k atoms are
active. But suppose further that x∗ can be expressed by a strict subset of those c atoms,
call this set A∗. Then what might be observed is that each successive Frank-Wolfe step
returns an atom in A∗. Since the iterates are updated by a convex combination, we see
that the weights of the atoms will gradually move to the atoms of A∗, and the remaining
atoms will diminish at a rate of (1 − α(k)) at each iteration, where we expect α(k) → 0.
Thus, many iterations can be required to finally purge the “bad atoms” from the active
set, leading to slow convergence. If instead the away-steps are considered, each bad atom
may be removed in a single iteration moving the iterate toward the minimal face much
quicker.

Fully-Corrective Steps

The last variant of Frank-Wolfe we will consider fully optimizes over the convex hull of the
solutions provided by the LMO [46]. Formally, the iterates will be generated by,

x(k+1) = arg min
x∈conv({x(0),s(0),...,s(k)})

f(x).

We see that at iteration k, taking the fully-corrective step will lead to the best possible
objective over all possible Frank-Wolfe variants. But this also comes at the obvious cost
of solving a more difficult subproblem to determine the next iterate, where solving this
subproblem can be just as hard as the original problem (e.g., if D is a polytope and
conv({x(0), s(0), ..., s(k)}) = D).

2.11 Optimization over Polytopes

In [51, 64], it was shown that if the function is both L-smooth and µ-strongly convex and D
is a polytope, then Frank-Wolfe can achieve global linear convergence with the away-step
variant. In [63], it was shown that the ideas in [51, 64] are related by a geometric notion
called facial distances which we will briefly summarize.

Let A be a set of m atoms in Rn and let A ∈ Rm×n be a matrix in which the columns
of A represent the atoms in A. For any x ∈ ∆n−1, define S(x) := {ai ∈ A : xi 6= 0}. This
is analogous to the set of active atoms in the atomic decomposition for the away step.
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If x, z ∈ ∆n−1 such that A(x − z) 6= 0 and d = A(x − z)/‖A(x − z)‖2, then we define
the following quantity,

Φ(A, x, z) := min
p∈Rm:〈p,d〉=1

max
s∈S(x),a∈A

〈p, s− a〉. (2.17)

The facial distance is then minimizing the above quantity across all valid x and z, i.e.,

Φ(A) := min
x,z∈∆n−1:A(x−z) 6=0

Φ(A, x, z). (2.18)

One can view taking an away step as moving the weight from a bad atom and uniformly
redistributing its weight amongst the other active atoms. Instead of redistributing the
weight uniformly, we can move all the weight from the bad atom to the best active atom.
This concept is similar to the inner maximization optimization problem in (2.17) if we set
p = ∇f(x(k)). Recall that an issue with the regular Frank-Wolfe steps is that the quantity
〈∇f(x(k)), s(k)− x(k)〉 can become arbitrarily small as the direction becomes orthogonal to
the gradient, slowing down convergence. In [63], the facial distance can be used to bound
the quantity,

− 〈∇f(x(k)), v〉
〈∇f(x(k)), x(k)−x∗

‖x(k)−x∗‖2
〉
≥ Φ(A)

2
. (2.19)

where v is either an away-step or a regular Frank-Wolfe step (whichever achieves the smaller
inner product) and A is a finite set of atoms such that D = conv{A}. This shows that the
directions generated from the away-step variant will not become close to orthogonal with
the gradient, overcoming the issues from the Frank-Wolfe step.

2.12 Summary

We are motivated to study the Frank-Wolfe method due to the projection-free nature as
well as the sparse structure given by the algorithm. In the next chapter, we will see that
for trace norm constrained problems, this projection-free property will lead to significant
computational advantages where the projection operator will require an expensive SVD.

However, there are two issues that we will investigate more closely over the next two
chapters. Firstly, we will see that for the standard trace norm constrained matrix com-
pletion problem, the domain is not a polytope and the objective is not strongly convex.
Therefore, we cannot take advantage of the linear convergence guaranteed by some of
the Frank-Wolfe variants. We show that due to the slow convergence and large iteration
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count required, the algorithm no longer remains competitive with many state-of-the-art
solvers. We will propose a Rank-Drop step variation to ensure that each iterate is indeed a
low-rank solution, greatly decreasing the time and space requirements of the Frank-Wolfe
subproblem.

Secondly, we will address the issue of bounded curvature and its role in Frank-Wolfe.
Often, it is difficult to ensure that the curvature Cf is bounded restricting Frank-Wolfe to
problems where the objective is L-smooth. For nonsmooth problems, a standard approach
is to use a smooth surrogate to which Frank-Wolfe is applied on. This leads to exten-
sive parameter tuning as well as tradeoffs between convergence rate and accuracy. We
will propose a variant using Uniform Affine Approximations to motivate a parameter-free
smoothing schedule without these tradeoffs.
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Chapter 3

Rank-Drop Steps

3.1 Introduction

In this chapter, we will focus on trace norm constrained problems. As discussed earlier,
there are some fundamental issues with accelerating Frank-Wolfe for trace norm constrained
problems since the feasible region is not a polytope. Instead, we will focus on computational
issues to improve convergence speed with respect to CPU time rather than iteration count.
We will highlight computational issues with existing convex approaches, including Frank-
Wolfe, which prevent these algorithms from scaling to very large problems. We will propose
a rank-drop step which we will demonstrate greatly reduces the computational costs and
space requirements, allowing Frank-Wolfe to scale to much larger problems.

If f is a convex and Lipschitz continuous function, then the trace norm constrained
problem takes the form,

min
X∈Rm×n

f(X) s.t. ‖X‖tr ≤ δ. (3.1)

This problem is a typical convex relaxation for rank constrained optimization problems
[30]. Common applications of trace norm constrained problems are matrix completion,
multivariate regression, multi-task learning, and clustering with missing information [30,
46]. As discussed in the previous chapter, projection and proximal methods struggle to
scale for solving (3.1) due to the expensive SVD operations required at each iteration. A
key idea that motivates the study of Frank-Wolfe methods for solving (3.1) is the projection-
free nature of the algorithm. As seen in Theorem 2.6.3, minimizing the Frank-Wolfe linear
subproblem over trace norm balls only requires computing the largest singular vector pair
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of∇f(X(k)). This is significantly cheaper than computing the full SVD when the dimension
of the matrix is large.

In this chapter, we will focus on matrix completion tasks for clarity, although the
methods we describe can immediately be used for any convex trace norm constrained
problem.

3.1.1 Matrix Completion

Due to the Netflix Prize competition, the matrix completion problem has become one of
the most popular and well-studied trace norm constrained problems [8, 30]. Suppose we
are given a matrix Y ∈ Rm×n, where Yij can be viewed as the rating user i gives to movie
j in the movie recommendation context. Usually, users only rate a very small subset of
the movies and most of the entries in Y are unknown, i.e., Y is a sparse matrix.

Let Ω ⊆ {1, ...,m} × {1, ..., n} be an index set representing the entries of Y that are
observed, i.e., Yij is known if and only if (i, j) ∈ Ω and let PΩ : Rm×n → Rm×n be the
projection operator onto the observed set, where the entries are defined as,

[PΩ(X)]ij :=

{
Xij, if (i, j) ∈ Ω

0, otherwise.
(3.2)

The matrix completion optimization problem is then,

min
X∈Rm×n

1

2
‖PΩ(X − Y )‖2

F s.t. ‖X‖tr ≤ δ.

3.1.2 Computational Issues

When the X(k) iterates become too large to store in memory, a factorization of X(k) is
used instead. Since Frank-Wolfe only adds a rank-one matrix at each iteration, an atomic
decomposition is naturally obtained, reducing the storage cost of X(k) from m × n to
(m+n+1)×k, where we mention that typically k � min{m,n}. We call this decomposition
the natural atomic decomposition. However, this decrease in storage comes with an increase
in computational cost since the factorized form requires additional operations to compute
the gradient. For the matrix completion problem, the gradient is,

∇f(X(k)) = PΩ(X(k) − Y ). (3.3)
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To compute ∇f(X(k)) from the atomic decomposition, |Ω| · k operations are required.
Despite Y being a sparse matrix, |Ω| is usually still very large for most applications of
interest. For example in many recommendation services, |Ω| is in the order of ten to one
hundred million entries. We see that the number of operations introduced by computing
the gradient can quickly become too burdensome as the iteration count grows larger.

A computational challenge that arises for Frank-Wolfe when solving (3.1) is that the
trace norm ball is not a polytope and hence, we cannot upper bound the number of atoms
required to describe any current iterate X(k) using the atomic decomposition from Frank-
Wolfe.

Since we expect the optimal solution X∗ to have low-rank, a natural alternative decom-
position would be to consider using the thin SVD of Xk, and the number of atoms required
is upper bounded by min{k,m, n}. We will briefly mention that due to the rank-one up-
date nature of the algorithm, performing an SVD update can be carried out efficiently as
seen in [10] and will not require a full SVD at each iteration. We will give further details
on the implementation later in the chapter.

Clearly rank(X(k)) ≤ k, but for any given iteration k, it is unclear if there is any differ-
ence between rank(X(k)) and k at all. In fact in practice, we often see that rank(X(k)) = k
for many iterations leading to high-rank intermediate iterates. As discussed during the
away-steps in the previous chapter, the weights of any “bad atoms” degrade very slowly at
a rate of (1− α(k)) per iteration. Thus, even if the Frank-Wolfe algorithm would converge
to a low-rank solution, it would take many iterations for the current iterate to sufficiently
“deflate” and remove the unnecessary atoms to achieve a low-rank solution, and usually, a
high rank solution is returned upon convergence.

3.2 Addressing the High-Rank Phenomenon

In this section, we will discuss potential variants to the Frank-Wolfe algorithm that could
address the high-rank phenomenon seen for the standard Frank-Wolfe algorithm. The idea
of using away steps seems very natural idea to remove bad atoms from the set of active
atoms and hopefully reduce the rank of the current iterate.

3.2.1 Away Steps

The away step method maintains a set of active atoms, Ak, such that the current iterate
X(k) is decomposed into an atomic decomposition, i.e., X(k) =

∑
Ai∈Ak βAiAi, where the
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weights vector satisfy βAi > 0 and
∑

Ai∈Ak βAi ≤ 1. The pseudo-code for the away step
algorithm is provided in Algorithm 2.

Algorithm 2 Away Steps

1: Let X(0) ∈ D and A(0) ← {X(0)}.
2: Initialize βZ ← 0,∀Z ∈ D.
3: for k = 0...T do
4: S(k) ← arg minS∈D〈S,∇f(X(k))〉
5: d

(k)
fw ← S(k) −X(k)

6: V (k) ← arg maxV ∈A(k)〈V,∇f(X(k))

7: d
(k)
away ← X(k) − V (k)

8: if 〈∇f(X(k)), dfw〉 ≤ 〈∇f(X(k)), daway〉 then
9: (Standard Frank-Wolfe step)

10: d(k) ← dfw
11: α∗ ← arg minα∈[0,1] f(X(k) + αd(k))

12: βAi ← (1− α∗)βAi , ∀Ai ∈ A(k)

13: βS(k) ← βS(k) + α∗

14: A(k) ← A(k) ∪ {S(k)}
15: else
16: (Away Step)
17: d(k) ← daway
18: α∗ ← arg min

α∈
[
0,

β
V (k)

1−β
V (k)

] f(X(k) + αdk)

19: βAi ← (1 + α∗)βAi , ∀Ai ∈ A(k)

20: βV (k) ← βV (k) − α∗
21: end if
22: X(k+1) ← X(k) + α∗dk
23: A(k+1) ← {A ∈ A(k) : βA > 0}
24: end for

While the pseudocode for the away-steps seems much longer than the standard Frank-
Wolfe algorithm, the bulk of the code is spent updating the weights of the active set. When
a standard Frank-Wolfe step is taken (the first block of the if statement), the next iterate
of Frank-Wolfe can be written as,

X(k+1) = (1− α∗)X(k) + α∗S(k)

where α∗ is the step size found from the exact line search and S(k) is the solution given by
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the LMO. Then the line,
βAi ← (1− α∗),∀Ai ∈ A(k) (3.4)

uniformly decreases the weights for all the active atoms, which corresponds to the (1 −
α∗)X(k) term, and adds a weight of α∗ to the new atom, S(k).

When an away step is taken, the update to the atoms is slightly more complicated.
The next iterate can be written as,

X(k+1) = (1 + α∗)X(k) − α∗V (k)

which explains why the atoms are updated as

βAi ← (1 + α∗)βAi
βV (k) ← βV (k) − α∗.

However, what is less clear is that X(k+1) is feasible since this is not written as a convex
combination of points in D. We observe that summing across the updated weights and
using the fact that V (k) corresponds to some Ai,

∑
Ai∈A(k)

(1 + α∗)βAi − α∗ = (1 + α∗)

 ∑
Ai∈A(k)

βAi

− α∗ ≤ 1.

Thus, as long as all the updated weights βAi are nonnegative, this will still be a valid
convex combination. Let β′

V (k) denote the updated weight of βV (k) . Since only the weight

of V (k) is decreasing, it is sufficient to verify that β′
V (k) ≥ 0. It is simple to verify that,

0 ≤ β′V (k) = (1 + α∗)βV (k) − α∗ ⇔ α∗ ≤ βV (k)

1− βV (k)

leading to the upper bound on α∗ in the step size search. This is only a conservative
step size search and it is possible that there exists a larger step size that would remain
feasible. However, verifying feasibility for trace norm constraints, as discussed previously,
is expensive and this upper bound has a nice interpretation of dropping an atom from the
active set.

An issue with using the natural atomic decomposition (where the atoms correspond to
the Frank-Wolfe steps) is that removing an active atom does not necessarily decrease the
rank of the current iterate. Moreover, the step size returned by the exact line search may
be much smaller than what is necessary to remove the atom from the active set and setting
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the step size to the maximum step size does not usually lead to decreases in objective
value. We will see that away steps using the natural atomic decomposition, which we will
call natural away steps, still usually lead to high-rank intermediate iterates.

The atomic decompositions are of course not unique, and instead of using the natural
atomic decomposition given by the Frank-Wolfe steps to form the atoms, one might consider
using the SVD to provide the atomic decomposition. The corresponding weights can then
be calculated as, βi = σi(X

(k))/δ. This guarantees that any atom that is removed will
guarantee a decrease in rank. Moreover, the weight of the atom naturally corresponds to
the importance to the solution X(k). We will call this variant of away-steps the SVD away
step. We contrast the SVD away steps with the weights given by the natural away steps
where earlier iterations typically receive larger weights. A drawback of the SVD away
step is that the set of directions are restricted to the rank-one matrices corresponding to
the singular vector pairs, and the maximum step size is the corresponding singular values.
Unsurprisingly, it is usually the singular vector pair corresponding to the smallest singular
value which is chosen as the away step, and the corresponding step sizes are usually very
small. Additionally, the directions given by the singular vector pairs do not necessarily
give good descent directions. Because of these issues, the SVD away step variant typically
converges much slower than the other Frank-Wolfe variants we will consider.

3.2.2 CoGEnT

The Conditional Gradient with Enhancement and Truncation (CoGEnT) method proposed
in [67] also can be used to remove active atoms in a set. Instead of using a first-order
approximation as in away-steps, CoGEnT uses a quadratic approximation to estimate the
effect of removing atoms from the active set. Since the SVD is used for the atomic basis,
the performance can still be limited by this choice of atomic basis.

3.2.3 In-Face Steps

In [33], In-Face Steps are proposed to generalize away-steps. Instead of generating descent
directions by moving away from bad atoms, the in-face step selects the best descent di-
rection along the minimal face containing the current iterate. In the polytope setting, the
atoms in the atomic decomposition of X(k) must be a subset of the vertices of the minimal
face containing X(k), denoted FD(X(k)). The main idea motivating the in-face step is that
lower dimensional faces can usually be related to the sparse structure we desire, and in
particular for trace norm constraints, moving to a lower dimensional face will lead to a
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lower rank solution. Thus, by prioritizing solutions on the minimal face containing the
current iterate, the algorithm can maintain sparse structure throughout the algorithm.

For (3.1), as in [70, 33], the minimal face F(X(k)) of Btr(0, δ) containing a point X(k)

is given by the set,

F(X(k)) =

{
Btr(0, δ), when ‖X(k)‖ < δ

UMV >, otherwise,
(3.5)

where X(k) has a thin r rank SVD, UΣV >, M is a real positive semidefinite matrix with
tr(M) = δ.

The pseudocode for the in-face algorithm can now be summarized below in Algorithm
3, where it is assumed that f is an L-smooth function.

The algorithm begins by finding any descent direction that stays in the current face.
Then αmax is calculated to determine the maximum step size that we can take in the
direction d(k) and remain in the minimal face of X(k). X

(k)
B is then a point on the boundary

of the minimal face, and hence a lower dimension face, and X
(k)
A is a point in the interior

of the minimal face. Then, these candidates are checked for sufficient decrease in objective
with a priority of moving to a lower dimension face over staying in the current face, where
the term B(k) is the largest lower bound found for f ∗. Finally, if the decrease condition
is not satisfied or a descent direction d(k) is not found, then a regular Frank-Wolfe step is
taken.

The main benefits of the in-face variant are twofold. First as mentioned earlier, the
priority of moving to a lower dimensional face encourages a sparse structure for the iterates.
Secondly, the sufficient decrease condition does not require knowledge about the Frank-
Wolfe step, unlike the standard away step calculation. Thus, this linear subproblem may
be skipped for each iteration an in-face step is taken.

There is some flexibility for how to choose d(k) and the variants are explored thoroughly
in [33]. A natural choice for d(k), called the away step strategy, is to choose the direction
of steepest descent that moves away from a point on the minimal face. That is,

d(k) := X(k) − arg max
X∈F(X(k))

〈∇f(X(k)), X〉. (3.6)

The authors of [33] also suggest choosing γ1 = 0 and γ2 =∞, which corresponds to always
taking any in-face step that moves to a boundary of the minimal face as long as it does
not worsen the objective and never takes partial steps in the interior of the face. We will
call this the InFace(0,∞) variant.
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Algorithm 3 In-Face Steps

1: Let X(0) ∈ D and B(−1) be an initial lower bound on f ∗.
2: Choose constants L̄ ≥ L, D̄ ≥ diam(D), and constants γ1, γ2 such that 0 ≤ γ1 ≤ γ2 ≤

1.
3: for k = 0...T do
4: B(k) ← B(k−1)

5: Find d(k) such that X(k) + d(k) ∈ FD(X(k)) and 〈∇f(X(k)), d(k)〉 < 0.
6: αmax ← arg maxα{α : x(k) + αd(k) ∈ FD(X(k))}
7: X

(k)
B ← X(k) + αmaxd

(k)

8: X
(k)
A ← X(k) + α(k)d(k) for some α(k) ∈ [0, αmax).

9: if 1

f(X
(k)
B )−B(k)

≥ 1
f(X(k))−B(k) + γ1

2L̄D̄2 then

10: (Check if there is sufficient improvement by taking the in-face step to the boundary.
If true, move to lower-dimensional face.)

11: X(k+1) ← X
(k)
B

12: else if 1

f(X
(k)
A )−B(k)

≥ 1
f(X(k))−B(k) + γ2

2L̄D̄2 then

13: (Check if there is a step in the current minimal face that gives sufficient decrease.
If true, stay in current face.)

14: X(k+1) ← X
(k)
A

15: else
16: (No in-face step is sufficiently good. Do a regular Frank-Wolfe step)
17: S(k) ← arg minS∈D〈∇f(X(k)), S〉
18: X(k+1) ← X(k) + α(k)(S(k) −X(k)) for some α(k) ∈ [0, 1].
19: B̃(k) ← f(X(k)) + 〈∇f(X(k)), S(k) −X(k)〉
20: B(k) ← max{B(k−1), B̃(k)}
21: end if
22: end for
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A minor drawback of the in-face step we observe for the trace norm case is that the
minimal face for any point in the interior of the ball is the entire trace norm ball. Thus
any iterate in the interior of the ball will likely not decrease in rank even if an in-face step
is taken. Moreover, the parameters of γ1 = 0 and γ2 =∞ suggested by the authors of [33]
indicate that the preference for the in-face steps are any steps that can decrease the rank
of the current iterate without worsening the objective. However, the objective in (3.6) only
accounts for local decrease in the objective value along the minimal face. Thus, it is likely
possible to find better directions if we assume that a rank decrease is much more important
than a decrease in the objective in any given iteration.

3.3 Rank-Drop Steps

If we analyze the InFace(0,∞) variant more carefully, we see the choice of γ2 = ∞ seems
unintuitive since this automatically rejects all directions that stay in the interior of the
minimal face. From [33], it appears that, when γ2 = 1 instead, the performance is strictly
worse. A reason for this behavior is that the algorithm will spend several iterations op-
timizing over the current minimal face before exploring higher dimensional faces. When
γ2 = ∞ with γ1 = 0, we typically observe the algorithm converging to a specific rank r
by alternating between increasing the rank with a Frank-Wolfe step and decreasing the
rank with an in-face step. It appears that as long as the in-face step can effectively reduce
the rank of the current solution and maintain the rank r solution, the improvement from
searching a higher dimensional face outweighs the drawback of temporarily increasing the
rank of the solution compared to the InFace(0, 1) variant.

Since it appears that the we should only consider in-face directions that decrease the
rank of the current iterate, we motivate a step that incorporates this idea specifically. We
note that the optimization problem in (3.6) only considers the descent direction along the
minimal face, which can lead to a promising descent direction in the interior of the minimal
face with no guarantee of the objective quality at the boundary of the face. The goal for
the proposed rank-drop steps will be to formulate an objective that better accounts for
the solution after the rank is decreased. Additionally, to be useful for the trace norm
constrained problems, the iterates should also maintain the projection-free nature of the
Frank-Wolfe algorithm. We show that this leads to a challenging nonconvex optimization
problem and propose efficient solutions to approximate better rank-drop steps.

In [28], for a given matrix A, a detailed characterization of all rank-one matrices that
lead to a decrease in the rank of A is given.
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Theorem 3.3.1 ([28]). Let u ∈ Rm, v ∈ Rn, A ∈ Rm×n, and B = A − σ−1uv>. Then
rank(B) = rank(A) − 1 if and only if there are vectors x ∈ Rn and y ∈ Rm such that
u = Ax, v = A>y, and σ = y>Ax 6= 0.

Proof. Suppose that rank(B) = rank(A) − 1. Then there exists some z ∈ Rn such that
Bz = 0 and Az 6= 0. Since Bz = (A − σ−1uv>)z, this implies that Az = σ−1uv>z. By
setting x = (σ/(v>z))z, we conclude that u = Ax. Note that v>z 6= 0 since it is assumed
that Az = σ−1u(v>z) 6= 0.

When rank(B) = rank(A) − 1, there exists some w ∈ Rm such that B>w = 0 and
A>w 6= 0. Similarly, we set y = (σ/(u>w))w and conclude that v = A>y for some y ∈ Rm.

In addition,

y>Ax =
σ

w>u
w>Ax

=
σ

w>Ax
w>Ax

= σ.

This also shows that for every choice of u and v, σ is uniquely defined.

Conversely, suppose that there are vectors x ∈ Rn and y ∈ Rm such that u = Ax,
v = A>y, and σ = y>Ax 6= 0. Then,

B = A− σ−1uv> = A− Axy>A

y>Ax
.

Thus,

Bx =

(
A− Axy>A

y>Ax

)
x = Ax− Ax = 0.

Since Ax 6= 0 by assumption, we have shown that x ∈ null(B) and x 6∈ null(A). Now,
consider any z ∈ null(A). We have that

Bz =

(
A− Axy>A

y>Ax

)
z = Az − Axy>(Az)

y>Ax
= 0

Thus, the dimension of null(B) is strictly larger than the dimension of null(A), which
implies that rank(B) < rank(A). Since B only differs A by a rank-one matrix, it must
be the case that rank(B) = rank(A)− 1.
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3.3.1 The Rank-Drop Optimization Problem

For the remainder of this chapter, we consider the case that rank(X(k)) > 1. Our goal
is to determine a rank-drop step which reduces the rank of X(k) which also leads to the
best objective value. We restrict our attention to the rank-one matrices that can decrease
the rank of a matrix. For a matrix A ∈ Rm×n, let R(A) denote the set of rank-drop steps,
which is defined below

R(A) :={σ−1uv> : ∃x ∈ Rn, y ∈ Rm

s.t. u = Ax, v = A>y, σ = y>Ax 6= 0}.
(3.7)

Since u and v must be in the column and row spans of A respectively, Lemma 3.3.2 shows
that the set of rank-drop steps can be expressed in a more concise form.

Lemma 3.3.2. Let A ∈ Rm×n with a thin rank-r SVD, A = UΣV >. Then we can rewrite
the set of rank-drop steps as,

R(A) =

{
Ust>V >

s>Σ−1t
, s>Σ−1t > 0

}
, (3.8)

where s, t ∈ Rr.

Proof. Assume that σ−1uv> ∈ R(A). Then, following Theorem 3.3.1, u = Ax and v = A>y
for some x and y, and u, v 6= 0. Let A = UΣV > be a thin SVD and write u = Us and
v = V t for some s, t ∈ Rr.

We have,

V t = A>y = V ΣU>y ⇒ Σ−1t = U>y.

Consequently,
σ = y>Ax = y>(Us) = (U>y)>s = t>Σ−1s. (3.9)

Finally, we note that t>Σ−1s can always be made positive by replacing s with −s.

Let Z(k) ∈ R(X(k)). The motivation for rank-drop steps is similar to that of away steps:
we wish to find atoms to move away from that also lead to rank decreases. Formally, we
consider iterates in the following form,

X(k+1) := X(k) + αDrd, where Drd := X(k) − δ Z(k)

‖Z(k)‖tr

. (3.10)
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It is important to consider atoms on the boundary, i.e. δZ(k)/‖Z(k)‖tr, since this guarantees
that there exists some step size, 0 < α ≤ 1 such that the rank of X(k) decreases. Currently,
the update rule for (3.10) does not guarantee a convex combination of points in Btr(0, δ).
However, by guaranteeing the step size is in the interval (0, 1], we can show that there
are easily verifiable conditions for feasibility, preserving the projection free nature of the
algorithm.

Recall for away-steps, the feasibility is guaranteed by expressing the the next iterate
as a convex combination of a subset of the active atoms. The rank-drop steps will use a
similar idea, but instead of maintaining an active set of atoms, we will consider any rank-
drop step where δZ(k)/‖Z(k)‖tr is an active atom in some feasible atomic decomposition
for X(k).

Let rank(X(k)) = r and suppose that for a given rank-drop step Z(k), there exists some
atomic decomposition of X(k) that uses the atom δZ(k)/‖Z(k)‖tr, i.e.,

X(k) = β0δ
Z(k)

‖Z(k)‖tr

+
r−1∑
i=1

βiAi,

where β ∈ ∆r−1. Then we can perform an away-step using this atomic decomposition,
where we know there is some value of α such that the weight of the atom δẐ(k) becomes
zero. Specifically, we know there is an α such that

X(k+1) = (1 + α)

rank(X(k))−1∑
i=1

βiAi = (1 + α)(X(k) − Z(k)).

This decomposition specifically corresponds to when the rank of X(k) decreases after fol-
lowing the direction (X(k) − δZ(k)/‖Z(k)‖tr). The first-order Taylor approximation for f
after any rank-drop step is,

f(X(k+1)) ≈ f(X(k)) + (1 + α)〈∇f(X(k)), X(k) − Z(k)〉.

We would like to solve the following optimization problem to find the best rank-drop step,

min
Z∈Rm×n
α∈R

(1 + α)〈∇f(X(k)), X(k) − Z〉

s.t. Z ∈ R(X(k))∥∥∥∥X(k) + α

(
(X(k) − δ Z

‖Z‖tr

)∥∥∥∥
tr

≤ δ.

rank

(
X(k) + α

(
(X(k) − δ Z

‖Z‖tr

))
= rank(X(k))− 1.
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This problem is too difficult to solve for a general f , since the trace norm constraint is much
more challenging to enforce and verify, and the set R(X(k)) is not convex. In addition, α
has a nontrivial dependency on Z since it is the exact step size required to achieve a rank
decrease. Thus, we will make a few concessions and solve a more tractable problem.

First, we will simplify the objective by removing the α term.

min
Z∈Rm×n
α∈R

〈∇f(Xk), X(k) − Z〉

s.t. Z ∈ R(X(k))∥∥∥∥X(k) + α

(
(X(k) − δ Z

‖Z‖tr

)∥∥∥∥
tr

≤ δ.

rank

(
X(k) + α

(
X(k) − δ Z

‖Z‖tr

))
= rank(X(k))− 1.

(3.11)

Note that by considering the matrix X(k) − Z in the objective of (3.11), we are explicitly
only considering matrices after the full rank-drop step is taken. Thus, the objective can be
interpreted as finding the best r−1 atoms across all atomic decompositions with the highest
descent potential. The rank-drop step Z can be viewed as the least important subspace
of X(k) with respect to the objective, since reassigning its weight to the remaining r − 1
atoms gives the highest potential for descent.

The distinction that we consider all possible atomic decompositions is important since
the away-steps only consider specific atomic decompositions either given from the LMO
or from the SVD of the current iterate. Moreover, the objective we consider explicitly
considers the alignment with the gradient after the rank-drop rather than before, which
we contend is more important if the suggestions of [33] are taken to exclusively choose
away steps that decrease the rank of the current solution as long as the objective is not
worsened. This also allows for finding rank-drop steps inside the trace norm ball whereas
the in-face steps can only decrease the rank when the solutions is on the boundary of the
trace norm ball (or sufficiently close numerically).

Handling the constraints of (3.11) is still a large challenge and testing for feasibility
at each iteration is computationally expensive. We want to establish a verifiable sufficient
condition for rank-drop steps that ensure feasibility.

A key quantity we will use to ensure feasibility of the iterate after a rank-drop step is
the distance from the current iterate to the boundary of the trace norm ball. We consider
two distinct cases. Let κ(X(k)) be half of the distance between X(k) and the boundary of
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the trace norm ball,

κ(X(k)) :=
δ − ‖X(k)‖tr

2
(3.12)

We will assume that the iterate X(k) is rank r, and κ(X(k)) ≥ σr(X
(k)), where κ(X(k))

is defined in (3.12). Recall that an issue with guaranteeing feasibility of these rank-drop
steps is that we cannot guarantee that there exists an atomic decomposition of X(k) using
only feasible atoms (points in Btr(0, δ), in which the atom δẐ(k) is active. We will show
that if the rank-drop step is sufficiently small, it is possible to guarantee that such an
atomic decomposition exists. Thus, we can guarantee feasibility of the next iterate with
an easy to enforce constraint on the rank-drop step.

Theorem 3.3.3. Let X(k) ∈ Btr(0, δ), Z(k) ∈ R(A), and Ẑ(k) = Z(k)/‖Z(k)‖tr. If ‖Z(k)‖F ≤
κ(X(k)), then

X(k+1) = X(k) + α(X(k) − δẐ(k)) ∈ Btr(0, δ), ∀α ∈ [0, αmax]

where

αmax :=
‖Z(k)‖F

δ − ‖Z(k)‖F
.

Moreover, if α = αmax, then rank(X(k+1)) = rank(X(k))− 1.

This theorem states that if we find some sufficiently small rank-drop step, specifically
some rank drop step Z(k) ∈ R(X(k)) ∩ BF (0, κ(X(k)), then decreasing the rank using Z(k)

will lead to a feasible iterate. The idea for the proof is simply to verify that under this
condition, a valid atomic decomposition exists, which includes the atom δZ(k)/‖Z(k)‖tr.

Proof. Define R(k) = X(k) − Z(k). Note that,

‖R(k)‖tr + ‖Z(k)‖tr = ‖X(k) − Z(k)‖tr + ‖Z(k)‖tr

≤ ‖X(k)‖tr + 2‖Z(k)‖tr

≤ δ

where the last inequality uses the fact that Z(k) is rank one and ‖Z(k)‖tr = ‖Z(k)‖F ≤
(δ − ‖X(k)‖tr)/2.

Let R(k) have the thin SVD, R(k) =
∑r−1

i=1 σiuiv
>
i . We can express X(k) as,

X(k) = β0δ
Z(k)

‖Z(k)‖tr

+
r−1∑
i=1

βiδuiv
>
i (3.13)
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where β0 = ‖Z(k)‖tr/δ and βi = σi/δ for i ∈ {1, ..., r − 1}. Note that βi ≥ 0 for all
i ∈ {0, ..., r − 1}, and

‖R(k)‖tr + ‖Z(k)‖tr ≤ δ

⇒ δ

(
r−1∑
i=1

βi

)
+ δβ0 ≤ δ

⇒
r−1∑
i=0

βi ≤ 1

Thus, there exists an atomic decomposition for X(k) that only uses atoms from Btr(0, δ)
where the atom, δZ(k)/‖Z(k)‖tr, is active. Thus, the remaining arguments for showing
feasibility will be identical to the feasibility for away steps given a feasible atomic decom-
position.

To show that X(k+1) ∈ Btr(0, δ). Rewrite X(k+1) as,

X(k+1) = (1 + α)X(k) − αδ Z(k)

‖Z(k)‖tr

= (1 + α)R(k) + (1 + α)β0δẐ
(k) − αδ Z(k)

‖Z(k)‖tr

(using (3.13))

= (1 + α)R(k) + (β0 + β0α− α)δ
Z(k)

‖Z(k)‖tr

=
r−1∑
i=1

(1 + α)βiδuiv
>
i + (β0 + β0α− α)δ

Z(k)

‖Z(k)‖tr

=
r−1∑
i=1

γiδuiv
>
i + γ0δ

Z(k)

‖Z(k)‖tr

where γ0 = (β0 + β0α − α) and γi = (1 + α)βi, ∀i ∈ {1, ..., r − 1}. If we can show that all
γi ≥ 0 and

∑r−1
i=0 γi ≤ 1, then we have shown that X(k+1) can be expressed as a convex

combination of points from Btr(0, δ), and is feasible.

Recall that,

αmax =
‖Z(k)‖F

δ − ‖Z(k)‖F
and β0 =

‖Z(k)‖F
δ

.

If α ∈ [0, αmax], then it is easy to verify that β0 + β0α− α ≥ 0, with equality at α = αmax.
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Thus, γi ≥ 0,∀i ∈ {0, 1, ..., r − 1}. Next, we have that,

r−1∑
i=0

γi = (1 + α)
r−1∑
i=1

βi + (1 + α)β0 − α

= (1 + α)
r−1∑
i=0

βi − α

≤ (1 + α)− α
= 1.

Thus, γi ≥ 0, i = 0, . . . , r − 1, and
∑r−1

i=0 γi ≤ 1. This implies that X(k+1) ∈ Btr(0, δ) if
α ∈ [0, αmax].

Finally, when α = αmax, we have that (β0 + β0αmax − αmax) = 0. Hence, X(k+1) is a
sum of r − 1 rank one matrices and rank(X(k+1)) ≤ r − 1. Since X(k+1) is a rank one
perturbation of X(k), the most the rank can decrease by is 1 and rank(X(k+1)) = r−1.

Theorem 3.3.3 motivates the following formulation to find a rank-drop step,

min
Z

〈−Z,∇f(X(k))〉

s.t. Z ∈ BF (0, κ(X(k))) ∩R(X(k)).
(3.14)

While the additional restrictions make this problem easier to solve, it is unclear if this
feasible region is nonempty. In Lemma 3.3.4, we first establish a lower bound on the trace
norm of the rank-drop step.

Lemma 3.3.4. Let A ∈ Rm×n have rank r and let Z ∈ R(A) be an arbitrary rank-drop
step. Then ‖Z‖tr ≥ σr(A).

Proof. From Lemma 3.3.2, Z = Ust>V >

s>Σ−1t
for some s, t ∈ Rr, with σ = s>Σ−1t > 0.
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We have,

‖Z‖tr = σ−1‖Us‖2‖V t‖2

=
‖Us‖2‖V t‖2

|s>Σ−1t|

≥ ‖s‖2‖t‖2

‖s‖2‖Σ−1t‖2

≥ 1

maxz:‖z‖2=1‖Σ−1z‖2

= σr(A)

Thus, ‖Z‖tr ≥ σr(A).

Now, we can characterize conditions under which the feasible region of (3.14) is nonempty.

Theorem 3.3.5. If rank(X(k)) ≥ 1 with σr(X
(k)) ≤ κ(X(k)), then the feasible region for

(3.14) is non-empty.

Proof. Assume that X(k) has the thin SVD X(k) = UΣV >. We show that the singular
vector pair corresponding to the smallest singular value can be made into a rank-drop
step. Let s = er, where er is the rth elementary basis vector, t = (σr(X

(k))/κ(X(k)))er,
and Z = Ust>V >/s>Σ−1t. Since σr(X

(k)) ≤ κ(X(k)), ‖t‖2 ≤ 1. We conclude that,

‖Z‖F =

∥∥∥∥Ust>V >s>Σ−1t

∥∥∥∥
F

≤ ‖Us‖2‖V t‖2(‖Σ−1s‖2‖t‖2)−1

≤ σr(X
(k))

≤ κ(X(k))

(3.15)

Thus Z ∈ BF (0, κ(X(k))) ∩ R(X(k)), and the feasible region to (3.14) is non-empty. More
generally, we can see that any singular vector pair with singular value σi(X

(k)) ≤ κ(X(k))
will be feasible to (3.14) as well.

Subsequently, we refer to κ(X(k)) ≥ σr(X
(k)), as the interior case, and κ(X(k)) <

σr(X
(k)) as the exterior case.
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3.3.2 The Interior Rank-Drop Problem

Assume that a thin SVD for X(k), X(k) = UΣV >, is given. Using Lemma 3.3.2, the
constraint in (3.14) can be made explicit,

min
s,t∈Rr

〈
X(k) − Ust>V >

s>Σ−1t
,∇f(X(k))

〉
s.t.

Ust>V >

s>Σ−1t
∈ Btr(0, κ(X(k)))

s>Σ−1t > 0.

(3.16)

To make (3.16) more amenable to computation, we remove the fraction using the nor-
malization constraint s>Σ−1t = κ(X(k))−1 and formulate (3.16) equivalently as follows,

min
s,t∈Rr

q(s, t) := 〈∇f(X(k)),−κ(X(k))Ust>V >〉

s.t. s>Σ−1t = κ(X(k))−1

‖s‖2 = 1, ‖t‖2 ≤ 1

(3.17)

Note that the constraints in (3.17) also ensure that s and t cannot be rescaled to
obtain a different solution yielding an identical rank-drop step. The equivalence of (3.14)
and (3.17) is formally established in Theorem 3.3.6.

Theorem 3.3.6. If X(k) ∈ Rm×n with ‖X(k)‖tr ≤ δ and κ(X(k)) ≥ σr(X
(k)), then an

optimal solution to (3.17) is an optimal solution to (3.16). Moreover, an optimal to (3.16)
can always be rescaled into an optimal solution to (3.17).

Proof. First we will show that for any feasible solution (s, t) to (3.16), there exists a
corresponding feasible solution to (3.17) with the same objective value.

Let (s, t) be a feasible solution to (3.16). Define ŝ := s
‖s‖2 and t̂ := κ(X(k))−1

ŝ>Σ−1t
t. We will

show (ŝ, t̂) is feasible for (3.17) and the objective values of (3.16) and (3.17) are equal at
(s, t) and (ŝ, t̂). To see this, note that,

Ust>V >

s>Σ−1t
=

κ(X(k))−1

‖s‖2ŝ>Σ−1
k t

κ(X(k))−1

‖s‖2ŝ>Σ−1
k t

· Ust
>V >

s>Σ−1t

=
Uŝt̂>V >

ŝ>Σ−1t̂

(3.18)

50



But,

ŝ>Σ−1t̂ =
κ(X(k))−1

ŝ>Σ−1t
ŝ>Σ−1t = κ(X(k))−1, (3.19)

satisfying the first constraint of (3.17). We can also conclude,

Ust>V >

s>Σ−1t
= κ(X(k))Uŝt̂>V > (3.20)

showing the objective values are equal (up to constants that do not depend on s or t).

For the norm constraint, ‖ŝ‖2 = 1 by construction. Next, to see that the solution
satisfies the last constraint, the fact that (s, t) is feasible gives us,∥∥∥∥Ust>V >s>Σ−1t

∥∥∥∥
tr

≤ κ(X(k))

⇒ κ(X(k))‖Uŝt̂>V >‖tr ≤ κ(X(k))

⇒ ‖Uŝt̂>V >‖tr ≤ 1

(3.21)

where the first implication uses the result from (3.20). Next, using the fact that the trace
norm of a rank-one matrix is equivalent to its Frobenius norm, we have,

‖Uŝt̂>V >‖tr = ‖Uŝt̂>V >‖F

=

√
tr((Uŝt̂>V >)>(Uŝt̂>V >))

=

√
tr(V t̂ŝ>U>Uŝt̂V >)

=

√
tr(V t̂t̂>V >)

=

√
tr(t̂>V >V t̂)

= ‖t̂‖2

(3.22)

Thus, the results from (3.21) and (3.22) jointly imply that ‖t̂‖2 ≤ 1. It is readily seen
that any feasible solution to (3.17) is a feasible solution to (3.16). Since there exists a
mapping from feasible points in (3.16) to (3.17) and vice versa preserving objective values,
the optimal values must be equal. Thus, an optimal solution to (3.17) is an optimal solution
to (3.16) and the converse result holds as stated.
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Solving the Optimization Problem in the Interior Case

Now we discuss how to solve the Rank-Drop optimization problem (3.17) in the inte-
rior case, i.e., when κ(X(k)) ≥ σr(X

(k)), which is illustrated in Figure 3.2. Let W :=
U>∇f(X(k))V .

rtrB X
(k)

X(
(k)

X( ))σ,

X
(k)

X

trB X
(k)

X( X
(k)

X( )κ, )

Figure 3.1: A diagram of the interior case. Any rank-drop step found in the κ(X(k)) ball
around X(k) can move the solution at most to the boundary of the trace norm ball and is
guaranteed to be feasible.

The Lagrangian for (3.17) is,

L(s, t, λ, ρ, ν) :=s>Wt+ λ(s>Σ−1t− κ(X(k))−1)

+ ρ(s>s− 1) + ν(t>t− 1).

Now suppose that (s, t, λ, ρ, ν) satisfies the KKT conditions. Then the stationarity condi-
tions give

∇tL = 0⇔ W>s+ λΣ−1s = −2νt

∇sL = 0⇔ Wt+ λΣ−1t = −2ρs.
(3.23)
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Let Mλ = −1
2
(W + λΣ−1). Then we can rewrite (3.23) as,

M>
λ s = νt

Mλt = ρs.
(3.24)

Following these equations, we conclude that ρ = s>Mλt = ν‖t‖2
2 for any feasible solution.

Suppose that ‖t‖2 < 1. Then by complementary slackness, we must have that ν = 0⇒
ρ = 0. Equation (3.24) implies that Mλ is rank deficient and there exists λ ∈ R and a
vector x ∈ Rr with x 6= 0, such that,

(W + λΣ−1)x = 0⇔ −ΣWx = λx.

Hence λ is an eigenvalue of −ΣW .

Moreover, (3.24) also implies that s ∈ null(M>
λ ) and t ∈ null(Mλ). For simplicity,

we assume that the eigenvalues of −ΣW are distinct. In this case, (3.23) is satisfied only
when (s, t) are scalar multiples of a singular vector pair of Mλ with the associated singular
value 0.

Let (ŝ, t̂) be the smallest singular vector pair of Mλ for some real λ ∈ eig(−ΣW ). Then
if we let s = ŝ and t = t̂/(κ(X(k))ŝ>Σ−1t̂), then we can show that (s, t, λ, 0, 0) satisfy the
KKT conditions as long as ŝ>Σ−1t̂ < κ(X(k))−1. Note that (s, t, λ) still satisfy (3.24) since
we have only multiplied t by a scalar multiple. Moreover, if ŝ>Σ−1t̂ < κ(X(k))−1, then
‖t‖2 < 1 and,

s>Σ−1t =
ŝ>Σ−1t̂

κ(X(k))ŝ>Σ−1t̂
= κ(X(k))−1. (3.25)

Thus, (s, t, λ, 0, 0) are primal and dual feasible and satisfy the KKT conditions.

Since problem (3.17) is nonconvex and generally difficult to solve, we only consider
candidate KKT points characterized in this fashion, specifically with ‖t‖2 < 1. We note
that since −ΣW is not symmetric, the eigenvalues are not always real-valued, and we
only consider candidates generated from the real eigenvalues. In the event that no feasible
candidate is found, we will show that the rank-drop solution for the exterior case always
yields a feasible rank-drop step and can then be used to generate candidate solutions
instead.

3.3.3 The Exterior Rank-Drop Problem

When κ(X(k)) < σr(X
(k)), we can no longer find rank-drop steps in the ball BF (0, κ(X(k))),

see Figure 3.2. In this case, Lemma 3.3.7 shows that X(k) is either close to the boundary
or has low-rank.
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trB X
(k)

X(
(k)

X( ))σ,

Figure 3.2: A diagram of the exterior case. The directions considered are restricted to the
cone of directions that are nonascent directions for the trace norm.

Lemma 3.3.7. Let r = rank(X(k)). If κ(X(k)) < σr(X
(k)), then ‖X(k)‖tr >

r
r+2

δ.

Proof. Note that σr(X
(k)) ≤ ‖X(k)‖tr/r. Then, the inequality can be rearranged as follows.

κ(X(k)) < σr(X
(k))

δ − ‖X(k)‖tr < 2
‖X(k)‖tr

r

‖X(k)‖tr >
r

r + 2
δ

If we are in the exterior case and X(k) is not close to the boundary, i.e. κ(X(k)) is large,
then from Lemma 3.3.7, the rank of X(k) should be small. Moreover, since κ(X(k)) <
σr(X

(k)), it implies that σr(X
(k)) must also be large. Thus, if we are in the exterior case

far from the boundary, we do not expect to find a good rank-drop step since the current
solution is low-rank, where each rank-one matrix provides a significant contribution to the
current solution.
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Hence, we will only consider the case when the current iterate is close to the boundary.
To ensure feasibility, we will restrict our attention to directions that move into the trace
norm ball. That is, directions that do not increase the trace norm of the current iterate.
We establish the following theorems to facilitate formulating appropriate optimization
problems for this case.

Theorem 3.3.8. Let X(k) ∈ Btr(0, δ) have the thin SVD X(k) = UΣV >. Define D(k) =
X(k) − δẐ(k) with Z(k) ∈ R(X(k)) and Ẑ(k) = Z(k)/‖Z(k)‖tr = Ust>V >, for some s and t
with ‖s‖ = ‖t‖ = 1. Then, (

max
G∈∂‖X(k)‖tr

〈Dk, G〉
)
≤ 0, (3.26)

if and only if δs>t ≥ ‖X(k)‖tr.

Proof. From [77], the subdifferential of the trace norm is,

∂‖X(k)‖tr := {UV > +H : U>H = HV = 0, ‖H‖sp ≤ 1}.

Let G ∈ ∂‖X(k)‖tr be an arbitrary subgradient. Then,

〈G,X(k) − δUst>V >〉
= 〈UV > +H,UΣV > − δUst>V >〉
= tr((UV > +H)>(UΣV > − δUst>V >)

= tr(V U>UΣV > +H>UΣV >)−
δ tr(V U>Ust>V > +H>Ust>V >)

= tr(Σ)− δs>t
= ‖X(k)‖tr − δs>t

This implies that maxG∈∂‖X‖tr〈D(k), G〉 ≤ 0 if and only if δs>t ≥ ‖X(k)‖tr. Since D(k) has
a nonpositive inner product with all elements in the subdifferential, it must be a nonascent
direction for the trace norm at X(k).

Following Theorem 3.3.8, D(k) will be a nonascent direction for the trace norm at X(k)

if and only if δs>t ≥ ‖X(k)‖tr. When X(k) is on the boundary of the trace norm ball,
Corollary 3.3.8.1 below states a simpler and useful characterization.
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Corollary 3.3.8.1. Let X(k) have the thin SVD X(k) = UΣV > with ‖X(k)‖tr = δ. Define
Dk = X(k) − δẐk with Z(k) ∈ R(X(k)) and Ẑk = Z(k)/‖Z(k)‖tr = Ust>V >, for some s and
t with ‖s‖2 = ‖t‖2 = 1. Then, (

max
G∈∂‖X(k)‖tr

〈Dk, G〉
)
≤ 0 (3.27)

if and only if s = t.

Proof. From Theorem 3.3.8, we must have that δs>t ≥ ‖X(k)‖tr = δ. This implies that
s>t ≥ 1. Since ‖s‖2 = ‖t‖2 = 1, we have that s>t ≤ 1, where equality is attained only
when s = t. Thus, δs>t ≥ ‖X(k)‖tr if and only if s = t, completing the proof.

In the exterior case, since we are mostly interested in the situation when X(k) is close to
the boundary of the trace norm ball. Assume that ‖X(k)‖tr ≈ δ and use Corollary 3.3.8.1 to
symmetrize the problem, where we know the rank-drop step takes the form Z = Uss>V >

for some unit vector s. The optimization problem for the exterior case will then be (3.11)
except we simplify the feasible region to directions that do not increase the trace norm.

min
s∈Rr

− 〈∇f(X(k)),
Uss>V >

s>Σ−1s
〉

s.t. ‖s‖2 = 1

(3.28)

Let W = U>∇f(X(k))V . Note that 1
2
s>(W> + W )s = 〈∇f(X(k)), Uss>V >〉. Hence,

in the exterior case, we solve the following optimization problem,

max
s∈Rr

1

2

s>(W> +W )s

s>Σ−1s

s.t. ‖s‖2 = 1.

(3.29)

Here, (3.29) is a generalized eigenvalue problem [21], which solves for,

maxλ s.t. (W +W>)s = λΣ−1s,

which can be further reduced to a standard eigenvalue problem since Σ−1 is a nonsingular
diagonal matrix.
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We will now establish that, using (3.29), the required step size to decrease the rank of the
current iterate also guarantees that the next iterate is feasible, and the step size calculation
is straightforward. Before we prove Theorem 3.3.10, we will require the following Theorem
from [20].

Theorem 3.3.9 ([20]). Suppose that D is symmetric positive semidefinite, S is symmetric,
and rank(D − S) = rank(D)− rank(S). Then D − S is positive semidefinite.

Theorem 3.3.10. Let s be an optimal solution to (3.29) and let D(k) = X(k)− δUss>V >,
where X(k) = UΣV > is a thin SVD with ‖X(k)‖tr ≤ δ. If αmax = (δs>Σ−1s − 1)−1 and
Xk+1 = X(k) + αmaxDk, then rank(Xk+1) = rank(X(k))− 1 and ‖Xk+1‖tr ≤ δ.

Proof. From the definition of Xk+1,

Xk+1 = (1 + αmax)UΣV > − αmaxδUss
>V >

= U((1 + αmax)Σ− αmaxδss
>)V >.

Define
M := (1 + αmax)Σ− αmaxδss

>

From Theorem 3.3.1, it is straightforward to verify that αmaxδss
> ∈ R((1 + αmax)Σ) and

rank(M) = rank(X(k))− 1.

Let λi(M) be the ith eigenvalue of M , then,
r∑
i

λi(M) = tr(M)

= (1 + αmax) tr(Σ)− αmax tr(δss>)

= (1 + αmax)δ − δαmax tr(s>s)

≤ δ

where the second last line uses the fact that tr(Σ) = ‖X‖tr ≤ δ and the cyclic property of
the trace.

From Theorem 3.3.9, M is symmetric positive semidefinite. From
∑

i λi(M) =
∑

i σi(M),
we have ‖M‖tr ≤ δ. Since Xk+1 = UMV >, it follows that ‖Xk+1‖tr ≤ δ.

We remark that the proof of Theorem 3.3.10 only requires that ‖X(k)‖tr ≤ δ and does
not require strict equality as the assumption for the exterior case. For the interior case, if
a valid candidate is not found by exploring all KKT points with ‖t‖2 < 1, then we generate
candidate solutions instead by solving (3.29). Note that even though it is always possible
to determine rank-drop steps in this fashion, the additional constraint that s = t greatly
reduces the search space and it is preferable to solve the interior case properly if possible.
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3.3.4 Summary of Algorithm

We will give a brief summary of the Rank-Drop Frank-Wolfe (RDFW) algorithm. At each
iteration, the algorithm generates a candidate rank-drop step, Z(k) = Uskt

>
k V
>, depending

on whether the iterate is in the interior case or the exterior case. To determine whether to
accept the rank-drop candidate step, we use the same criterion proposed in [33], i.e., we
accept any rank-drop step that does not increase the objective.

The criteria in [40] for away-steps require solving the regular Frank-Wolfe linear sub-
problem at each iteration to determine whether an away-step should be accepted. This
can lead to many unnecessary SVD calculations since the Frank-Wolfe step is computed
even when the step is not taken. The idea used in [33] addresses this issue by constructing
a sufficient decrease condition that is independent of the Frank-Wolfe step, in particular,
for the InFace(0,∞) variant, any in-face step that moves to the boundary and does not
worsen the objective is accepted. This allows the algorithm to maintain a lower rank SVD
as well as allows the algorithm to skip computing a Frank-Wolfe step unnecessarily.

Similarly for RDFW, if it is possible to decrease the rank of the current iterate without
worsening the objective, i.e. if f(X(k) + α(k)(X(k) − δZ(k)) ≤ f(X(k)), the candidate rank-
drop step is accepted and iterate is updated as X(k+1) ← X(k) + α(k)(X(k) − δZ(k)). If
the candidate step is rejected, i.e. f(X(k) + α(k)(X(k) − δZ(k)) > f(X(k)), then a regular
Frank-Wolfe step is performed instead, where Z(k) ← arg minZ∈Btr(0,δ)〈Z,∇f(X(k))〉 and

X(k) ← X(k) + α(k)(Z(k) −X(k)).

The full RDFW algorithm is presented in Algorithm 5, where an overview of solving
the interior and exterior cases is presented in Algorithm 4.

Updating the Thin SVD

The RDFW algorithm requires access to a thin SVD representation of the current iterate
X(k). To avoid computing the factorization at each iteration, we recognize that each
iteration only updates the solution by a rank-one matrix. We can then use the ideas in
[10] to efficiently update the SVD. We will summarize the procedure as follows.

Let A ∈ Rm×n be a rank r matrix with thin SVD A = UΣV >. We wish to find the thin
SVD of the matrix B = A+ uv> for any u ∈ Rm and v ∈ Rn. Note that B can be written
as follows,

B = ( U y )

(
Σ 0
0 1

)
( V v )>.
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Let QURU be a QR decomposition of ( U y ), and QVRV be a QR decomposition of
( V v ). Then,

B = QU

(
RU

(
Σ 0
0 1

)
R>V

)
︸ ︷︷ ︸

=:K

Q>V .

The last step requires taking the SVD of the middle matrix K. Note that K ∈ R(r+1)×(r+1),
so the cost of computing the SVD of K is O((r+1)3). Since we assume that r � min{m,n},
this is much cheaper than computing the leading r singular values of the A. If K =
UKΣKV

>
K is an SVD of K, then the SVD of B is given by,

B =
(
QU UK

)
ΣK

(
QV VK

)>
.

The QR decompositions can be constructed efficiently by viewing the QR decomposi-
tions as QR updates to the matrices U and V , where U = UI and V = V I are valid QR
factorizations since U and V already have orthogonal columns. A simple method to com-
pute a rank-one update to a QR factorization involves Gram-Schmidt to reorthogonalize
the Q matrix, and Givens rotations to ensure that the R matrix is upper triangular [38].
Thus, constructing the matrices QU and QV only require Gram-Schmidt. The final step of
applying Givens rotations to ensure that RU and RV are upper triangular is not necessary,
since these matrices are only used in a product to compute K. Thus, the dominant cost is
usually the SVD of the (r + 1)× (r + 1) system K.

3.4 Convergence Analysis

Following the proof for Theorem 4 in [40], we show that the iterates, from Rank Drop FW
in Algorithm 5, converge to the global optimum of (3.1).

Theorem 3.4.1. Let {X(k)} be a sequence generated by Algorithm 5 and let f ∗ be the
optimal value for problem (3.1). Assume ∇f(X) is Lipschitz continuous in the feasible
region. Then f(X(k))− f ∗ ≤ 8δ2L

4+Nk
fw

, where Nk
fw be the number of FW steps taken up to the

iteration k.

Proof. We will use a similar proof as [40]. Since rank-drop steps always decrease the rank
of the solution, the number of rank-drop steps is bounded by the number of Frank-Wolfe
steps. Thus, any sequence {X(k)} contains an infinite number of Frank-Wolfe steps. Since
rank-drop steps can only decrease the objective, the convergence is guaranteed by the same
arguments as the regular Frank-Wolfe algorithm.
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3.5 Complexity Per Iteration

When computing the rank-drop steps, we note that the dimension of subproblems (3.17)
and (3.29) is r, the rank of the current iterate. However, forming the matrix W :=
U>∇f(X(k))V requires O(r2hmin{m,n}) operations, where h is the maximum number
of nonzero elements in any row or column. In the interior case, we must compute an
eigendecomposition of an r × r matrix which takes O(r3) time. Then, each eigenvalue λ
is used to form the matrix −0.5(W + λΣ−1) where the singular vector pair corresponding
to the zero singular value is computed. The total time required for the interior case is
O(r3 + r2hmin{m,n}). In the exterior case, O(r2) flops are required to compute the
largest eigenvalue. Thus, the total complexity per iteration is O(r3 + r2hmin{m,n}).
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Algorithm 4 Compute Rank-Drop Direction (rankDrop)

1: Input: thin SVD X(k) := UΣV > and ∇f(X(k)).

2: κ(X(k))← δ−‖X(k)‖tr
2

3: W ← U>∇f(X(k))V
4: if κ(X(k)) ≥ σr(X

(k)) then
5: (Interior Case)
6: Λ← eigs(−ΣW )
7: b← −∞
8: for λi ∈ Λ do
9: Mλ := −1

2
(W + λiΣ

−1)
10: (s, t)← SVD(Mλ)

1

11: if κ(X(k))s>Σ−1t ≥ 1 and q
(
s, t

κ(X(k))s>Σ−1t

)
2 > b then

12: (s∗, t∗)← (s, t)

13: b← q
(
s, t

κ(X(k))s>Σ−1t

)
14: end if
15: end for
16: α← (s>Σ−1t)−1

17: αmax ← α
δ−α

18: end if
19: if κ(X(k)) < σr(X

(k)) or b = −∞ then
20: (Exterior case or no candidates from the Interior Case)
21: s∗ ← genEig(0.5(W +W>),Σ−1) 3

22: t∗ ← s∗

23: αmax ← (δs>Σ−1s− 1)−1

24: end if
25: return (s∗, t∗, αmax)

1Return the singular vector pair corresponding to the singular value 0
2q is the objective of the interior rank-drop problem (3.17).
3Solve the generalized eigenvalue problem for the system 0.5(W +W>)x = λΣ−1x.
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Algorithm 5 Rank-Drop Frank-Wolfe (RDFW)

1: Let X0 ∈ S, with initial SVD X0 = UΣV >, and maximum iteration T
2: for k = 0...T do
3: Compute ∇f(X(k))
4: Compute Rank-Drop direction (see Algorithm 4):
5: (sk, tk, α

(k))← rankDrop(U,Σ, V,∇f(X(k)))
6: X̃ ← X(k) + αmax(X(k) − δUskt>k V >)
7: if f(X̃) ≤ f(X(k)) then
8: Xk+1 ← X̃
9: Z(k) ← −δUskt>k V >

10: else
11: (Frank-Wolfe)
12: Z(k) ← arg minZ∈Btr(0,δ)〈Z,∇f(X(k))〉
13: α(k) ← arg minτ∈[0,1] f(X(k) + τ(Z(k) −X(k)))

14: Xk+1 ← X(k) + α(k)(Z(k) −X(k))
15: end if
16: (U,Σ, V )← updateSVD(U,Σ, V, αmax, Z

(k))
17: end for

3.6 Experimental Results

We validate RDFW on a matrix completion task using various datasets from MovieLens1.
We first center and scale each data set to have mean 0 and standard deviation 1. We

Dataset # Users # Movies # Ratings
MovieLens 100k 943 1,682 100,000
MovieLens 1M 6,040 3,900 1,000,209
MovieLens 10M 82,248 10,681 10,000,054
MovieLens 20M 138,493 27,278 20,000,263

Table 3.1: MovieLens Data

compare the proposed RDFW algorithm against the aforementioned Frank-Wolfe variants:

1. The original Frank-Wolfe algorithm with no modifications (Vanilla) [31]

1http://grouplens.org/datasets/movielens/
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2. The away-step variant of Frank-Wolfe using the atoms found observed from the iter-
ations, (Away-Atom) [51]

3. The away-step variant using the SVD as the atomic set, (Away-SVD) [33]

4. the In-Face steps using the InFace(0,∞) variant [33], (In-Face)

We will also compare the performance for matrix completion problems against a state-of-
the-art trace norm regularized solver, ActiveALT [44], which we will briefly summarize.
The algorithm solves the trace norm regularized problem minX F (X) := f(X) + λ‖X‖tr.
The ActiveALT algorithm begins by expressing any iterate as X(k) =

∑
ij σijuiv

>
j , where

U = [ui] and V = [vi] are orthonormal bases for Rm and Rn respectively. The idea is to
prune subspaces that will likely be inactive at the optimal solution, i.e., find the indices
(i, j) where σij = 0 at optimality. The pruning rule is based on the subdifferential ∂σijF ,

and the active subspace at a given iteration X(k), are identified as

A(X(k)) = {uv> : u ∈ U, v ∈ V, u>X(k)v 6= 0 or |u>∇f(X(k)v| ≤ λ}

where we use the notation u ∈ U to denote that u is a column of U .

Once the active subspaces are obtained, the matrices UA and VA are formed where

UA := {u : ∃v ∈ V : uv> ∈ A(X(k))}, and

VA := {v : ∃u ∈ U : uv> ∈ A(X(k))}.

The optimization problem reduces to,

min
S∈Rr×r

f(UASV
>
A ) + ‖UASV >A ‖tr = f(UASV

>
A ) + ‖S‖tr, (3.30)

where r is the number of active columns in U and V . Empirically, it is observed that
r � min{m,n} and the problem is effectively solved using an alternating minimization
approach using second order information for the smooth loss function f .

3.6.1 Experimental Setup

Following [81], we randomly partition each dataset into 50% training, 25% validation,
and 25% testing. The δ value in (3.1) is tuned with δ = µj · ‖Y ‖F , where ‖Y ‖F is the
Frobenius norm of the training data matrix, and µj = 2 + 0.2j, j ∈ N. We increase j
until the mean RMSE on the validation set does not improve by more than 10−3. We
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terminate the algorithm when an upper bound on the relative optimality gap ensures
(f(X(k)) − f ∗)/f ∗ < 10−2 or a maximum iteration count of 2000 is reached. Since the
optimal solution f ∗ is unknown to us, we use

B(k) = max{B(k−1), f(X(k)) + min
S∈D
〈∇f(X(k)), S −X(k)〉

as described in Algorithm 3 as a lower bound on f ∗.

For ActiveALT, a regularized trace norm problem is solved where the regularization pa-
rameter λ is chosen by approximately solving for the Lagrange multiplier from the solution
to the constrained problem. From the optimality conditions, we have U>∇f(X∗)V +λI =
0. Thus, λ is approximated by the mean of the diagonal values of U>f(X(k))V , where X(k)

is the converged solution of RDFW. ActiveALT terminates when f(X(k−1)) − f(X(k)) <
10−4, to match with the criterion suggested in [81] with a maximum iteration count of 150.

Dataset Frank-Wolfe δ ActiveALT λ
MovieLens 100k 3.0 10.94
MovieLens 1M 3.4 22.7
MovieLens 10M 5.2 49.4
MovieLens 20M 6.6 59.04

Table 3.2: Parameters used for each dataset.

3.6.2 Computational Details

All simulations have been run in MATLAB. For all FW variants, we maintain a thin
SVD for the current iterate, where the SVD is updated at each iteration using a rank-one
update as described in [10]. The rank is calculated using the same default rank criterion in
MATLAB, by counting all singular values larger than σ1(X(k)) · ε, where ε ≈ 2.2204e−162.

2A tolerance of 10−6 was also tested and the results were almost identical. This can be explained by
the fact that anytime any of the away-step SVD variant, in-face steps, or RDFW achieved a step size that
should remove an active atom, we deliberately truncate the SVD to avoid numerical issues. The tolerance
is only meant to impact the vanilla and natural away-step ranks, but experimentally, we did not notice
any differences on the final rank.
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Figure 3.3: The ranks of the iterates X(k) compared with the iteration for each algorithm.
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Figure 3.4: The objective values compared with the iterations.
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Figure 3.5: The objective values compared with the time (s).
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Dataset Frank-Wolfe Away-Step (Atom) Away-Step (SVD) In-Face(0,∞) ActiveALT Rank-Drop FW

ML-100k
RMSE 0.874 0.874 0.874 0.874 0.876 0.872
Rank (Max) 943 (943) 943 (943) 82 (97) 81.6 (138) 85 (108) 80 (81)
Time (s) 852.34 807.86 259.19 166.17 92.13 121.90

ML-1M
RMSE 0.805 0.805 0.806 0.807 0.805 0.807
Rank (Max) 1,539 (1,550) 1,405.4 (1,415) 199.2 (208) 192.8 (195) 192 (206) 192 (194)
Time (s) 9,182.07 9,225.69 3,209.33 2,507.60 1,677.23 1,593.35

ML-10M
RMSE 0.799 0.799 0.800 0.800 0.799 0.800
Rank (Max) 724.2 (730) 661.8 (671) 212.8 (215) 201.2 (206) 196.2 (206) 180.8 (184)
Time (s) 23,810.79 25,130.63 19,961.73 12,804.82 14,529.8 8,242.30

ML-20M
RMSE - - - 0.800 0.800 0.801
Rank (Max) - - - 274.6 (471) 206.2 (214) 202 (203)
Time (s) - - - 117,535.82 38,497.16 29,102.62

Table 3.3: Computational results on matrix completion problems averaged over 5 random initializations. The max
rank is the maximum rank observed over all 5 trials. For ML-20M, the FW and AFW algorithms took too long to
successfully terminate.
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3.7 Discussion

When we observe the rank plots in Figure 3.3, we see that the regular Frank-Wolfe algo-
rithm and the atomic away-step variant both maintain very high-rank iterates. In addition,
we observe in Figure 3.4 that the atomic away steps do not appear to improve the conver-
gence rate of the Frank-Wolfe method. This can be attributed to the fact that the trace
norm ball is not a polytope and the away steps can still become orthogonal to the gradient
direction.

While both the in-face step and the SVD variant of the away-step can maintain low-
rank iterates, there are tradeoffs compared to the RDFW method we propose. The SVD
variant of the away steps converges very slowly both in terms of the iteration counts and
CPU time as seen in Figures 3.4 and 3.5. Moreover, we see that the ranks of the SVD
variant of the away step is slightly higher than that of the in-face step or the RDFW
method we suggest.

The in-face steps appears to make more improvement per iteration when the iterate
is inside the trace norm ball than RDFW. This makes sense since the away-steps in the
interior of the trace norm are optimized for the best descent direction amongst all away
steps in the trace norm ball. However, these interior in-face steps do not typically lead to
rank-drop steps and calculating the step size requires a costly binary search. We observe
that the rank of the in-face steps is not as low as RDFW on the earlier iterations. Moreover,
we notice that when the in-face step reaches the boundary of the trace norm ball, the
convergence becomes much slower than RDFW. We conjecture that this is because the set
of rank-drop steps we consider becomes much larger than the set of in-face steps available,
allowing for more promising descent directions. From the CPU time perspective, we see
that this difference magnifies as the size of the dataset increases.

When comparing to ActiveALT, the leading trace norm based matrix completion solver,
is very competitive. RDFW has the additional attractive property that it does not require
knowledge of the structure of the Hessian, or even require f(·) to be twice differentiable, al-
lowing for greater generality. Moreover, since the matrix completion objective is quadratic,
this is the ideal situation for ActiveALT since the underlying solver in ActiveALT only
requires one Newton step to converge, whereas for a nonquadratic objective, the computa-
tional challenge can increase.
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3.8 Conclusions

We have proposed a rank-drop optimization formulation to determine optimally descent
rank-drop steps for the nuclear-norm constrained minimization. By considering the inte-
rior and exterior cases separately to ensure feasibility, we also devise subproblems that can
be efficiently solved. The proposed formulation can be deployed in a projection free mini-
mization method, e.g., Frank-Wolfe method, to efficiently compute a low rank solution by
maintaining low rank intermediate iterates, without compromising the strong convergence
guarantees. While classic Frank-Wolfe methods tend to have very high rank solutions for
nuclear-norm constrained problems, we have shown that the addition of rank-drop steps
can drastically reduce the rank of the iterates, allowing for much faster algorithms to reach
low rank solutions with a significantly smaller space requirement.
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Chapter 4

Nonsmooth Extensions to
Frank-Wolfe

4.1 Introduction

Frank-Wolfe methods (FW) have gained significant interest in the machine learning com-
munity due to its ability to efficiently solve large problems that admit a sparse structure
(e.g. sparse vectors and low-rank matrices). However the performance of the existing
Frank-Wolfe method hinges on the quality of the linear approximation. This typically re-
stricts Frank-Wolfe to smooth functions for which the approximation quality, indicated by
a global curvature measure, is reasonably good.

We are primarily interested in solving problems of the form,

min
X∈Rm×n

f(X) s.t. ‖X‖tr ≤ δ

which we recognize as a convex surrogate to the rank constrained optimization problem.
As discussed in the previous chapter, this problem is well studied in the case where f is
a smooth convex function. For example, in matrix completion, many efficient algorithms
have been proposed, including the Rank-Drop Frank-Wolfe [18], active set methods [44],
and proximal methods [62].

Recently, there has also been interest in solving the trace norm constrained problem
where the objective function is not differentiable, e.g.,

min
X:‖X‖tr≤δ

f(X) := L(X) + λ1‖X‖1. (4.1)
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where L(X) is an empirical loss function. For example, problem (4.1) has been found useful
[69] for sparse covariance estimation and graph link prediction, for which solutions are
expected to exhibit simultaneously sparse and low-rank structure. An inherent challenge
with handling simultaneously sparse and low-rank structure is that these goals are often
competing objectives.

Consider the task of predicting missing edges of a social graph. As an input, we are
given a partially observed symmetric graph Y ∈ {0, 1}m×m, where only the indices in
Ω ⊆ {1, ...,m} × {1, ...,m} are known. The entry Yij = 1 indicates that users i and j
are friends, and Yij = 01 indicates that these users are not friends. The social graph link
prediction problem can be written as,

min
X∈Sm

‖PΩ(X − Y )‖2
F +R(X)

where Sm is the set of symmetric m×m matrices, PΩ(·) projects the loss onto the set Ω,
and R(X) is a regularization term. Suppose that we only observed concrete friendships,
that is, Yij = 1,∀(i, j) ∈ Ω, for example,

Y =


1 ? ? 1 1
? 1 ? ? ?
? ? 1 ? 1
1 ? ? 1 ?
1 ? 1 ? 1

 .

If R(X) = ‖X‖1, the optimal solution is achieved by setting all the unboserved entries to
0, i.e.,

X∗ =


1 0 0 1 1
0 1 0 0 0
0 0 1 0 1
1 0 0 1 0
1 0 1 0 1

 .

However, if instead R(X) = ‖X‖tr, the optimal solution is achieved by setting all the

1Observing that two users are not friends is typically difficult to measure directly. Certain actions such
as removing friends and rejecting requests would fall into this category, but measuring inactivity to label
two users as not friends (e.g. not trying to connect with a suggested user) will require some rule based
labeling.
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observed entries to 1, i.e.,

X∗ =


1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

 .

We see that the solutions given by the regularizations are on the opposing extremes where
the predictors do not agree on any prediction for the edges on the unobserved set. When
R(X) = ‖X‖1, the solution is a full-rank matrix with a very high degree of sparsity. On the
other hand, whenR(X) = ‖X‖tr, the solution is a rank-one matrix that is completely dense.
In both cases, the prediction is not very informative and the truth is likely somewhere in
between. The low-rank assumption encodes the group structure, where we assume that if
user i has many friends in common with user j, then user j’s friends are good suggestions
for the missing labels for i. The sparse regularizer encodes the assumption that most people
are not friends with each other and we do not expect too many relationships in the graph.
By simultaneously requiring both low-rank and sparsity in our iterates, intuitively the
returned graph should have a few dense clusters of friends with few connections between
groups which better agrees with reality compared to either extreme from low-rank or
sparsity alone.

A natural approach to (4.1) is to treat the sum of the trace and `1 norms as one
nonsmooth regularization function, e.g.

min
X

L(X) + λ(‖X‖1 + ‖X‖tr) (4.2)

which is a sum of a smooth loss and nonsmooth regularization term and the standard
framework for proximal methods or Frank-Wolfe can be applied. However, the appeal for
using the proximal method or Frank-Wolfe exist only when the oracle can be evaluted
efficiently. Unfortunately, the proximal map for the combined regularizer in (4.2) is no
longer a simple thresholding operation. In [69], alternating proximal steps are taken, but
this method still fails to scale due to the full SVD computation required at each iteration.
In addition, the alternating heuristic loses convergence guarantees.

When there are both trace norm and `1 norm constraints, the LMO for Frank-Wolfe is
much more expensive to compute than the `1 or trace norm case alone. We also lose the
structural guarantees of the iterates, i.e., we cannot guarantee each iterate has at most k
nonzeros or has rank bounded by k at the kth iteration.

We consider the nonsmooth objective with `1 regularization and trace norm constraints,
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explicitly
min

X∈Rm×n
f(X) + λ‖X‖1 s.t. ‖X‖tr ≤ δ.

We note that when (4.1) corresponds to matrix completion, solvers such as the active set
method in [44] explicitly require second order information, making it unsuitable when the
function is not differentiable, let alone twice differentiable, and are not suitable for (4.1).

We propose a variant of the Frank-Wolfe algorithm to address nonsmooth objectives,
focusing especially on low-rank matrix estimation problems. Nondifferentiability in the
objective function often leads to an unbounded curvature constant, and standard conver-
gence analysis can no longer be applied. Moreover, it becomes unclear how to define the
linear approximation appropriately since choosing an arbitrary subgradient often leads to
inadequate local approximations, leading to poor empirical results.

To address these issues, we replace the traditional linear minimization problem based
on a Chebyshev uniform affine approximation. This modification allows for a well-defined
linear optimization problem even when the objective is nonsmooth or has unbounded cur-
vature. We demonstrate experimentally that this carefully selected linear minimization
leads to significant improvement over a variety of matrix estimation problems, such as
sparse covariance estimation, graph link prediction, and `1-loss matrix completion.

4.2 Curvature and Nonsmoothness

Recall that for smooth convex functions, the Frank-Wolfe algorithm is known to converge
at a rate of O(1/k). The convergence analysis relies on the concept of curvature constant
[22, 45], which measures the quality of the linear approximation.

Let f be a convex and differentiable function f : Rm×n → R, and let D be a convex
and compact subset of Rm×n. Recall the curvature constant

Cf := sup
X,S∈D
α∈[0,1]

Y=X+α(S−X)

1

α2
(f(Y )− f(X)− 〈Y −X,∇f(X)〉).

When the value of Cf is large, it suggests that there are regions in D where the local linear
approximation is poor.

Suppose we wish to extend the concept of Cf to functions f(x) that are convex but
nondifferentiable. We may consider redefining the curvature constant by replacing ∇f(X)
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with a substitute G(x) : Rn → Rn, where a natural choice for G(x) is a subgradient of f at
x. However, even for simple functions, we show that the curvature constant derived from
any linear approximation in this fashion will be unbounded.

Example 1. Let f(x) = λ‖x‖1 and let D be some convex and compact set that contains an
open ball around the origin. Assume x = 0 and y = x+α(s−x). Then for any s ∈ D\{0}
and any G(x), we have,

1

α2
(f(y)− f(x)− 〈y − x,G(x)〉)

=
1

α2
(αλ‖s‖1 − α〈s,G(x)〉)

=
1

α
(λ‖s‖1 − 〈s,G(x)〉)

Note that there always exists s and subgradient G(x) such that 〈s,G(x)〉 ≤ 0. It follows
that, for such s and G(x),

lim
α→0

1

α
(λ‖s‖1 − 〈s,G(x)〉) = +∞.

Hence

lim
α→0

1

α2
(f(y)− f(x)− 〈y − x,G(x)〉) = +∞.

This example shows that, for f(x) = λ‖x‖1, no matter what subgradient is chosen, the
curvature constant is unbounded. This suggests that there are regions where the linear
approximation is very poor. And this is easily observable in practice, not just an overly
pessimistic bound given by the curvature constant. For f(x) = λ|x|. If x = ε for some
small ε > 0, then f is differentiable at x. However, for all y < 0, the linear approximation
given by the Taylor series at x poorly approximates f(y).

This indicates that the original Frank-Wolfe may not be suited for minimizing the
objective function in (4.1). However, the Taylor approximation to `1 norm is exact in a
local neighborhood except at around the points of nondifferentiability, which suggests that
the problem is very well suited for Frank-Wolfe if λ‖x‖ is differentiable in a neighborhood
around x. This motivates the question about how to meaningfully define an appropriate
linear minimization problem around neighborhoods of nondifferentiability, specifically for
the Frank-Wolfe algorithm.
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4.2.1 Existing Work

To overcome the issue of poor Taylor approximations around points of nondifferentiability,
an approximate subdifferential, T (X, ε), which considers all the subgradients for any Y in
an ε-neighborhood of X, is employed in [79]. Specifically, the approximate subdifferential
is defined as,

T (X, ε) :=


∇f(X), if f is differentiable at X⋃
Y ∈BF (X,ε)

∂f(Y ), otherwise.

The linear minimization problem of Frank-Wolfe is then replaced by the following problem,

min
S∈D

max
G∈T (X,ε)

〈−G,S −X〉. (4.3)

The maximization over all approximate subgradients ensures that the direction is not
misled by a particularly poor linear approximation. This leads to a natural notion of
curvature as defined in [68], where the convergence arguments are extended by utilizing a
proposed a generalized curvature constant,

Cf (ε) := sup
X,S∈D
α∈[0,1]

Y=X+α(S−X)

min
G∈T (x,ε)

1

α2
(f(Y )− f(X)− 〈Y −X,G〉).

However, there are a few practical issues with using the above ideas. First, since G is
not necessarily a subgradient of f at X, the difference f(Y )−f(X)−〈Y −X,G〉 can become
negative. Thus, taking the supremum over these values may not measure the maximum
deviation of the linear approximation; in particular, it does not measure deviations from
overestimating linear approximations. Furthermore, it is not obvious how to extend these
ideas to solve (4.1) efficiently since S and G must be solved jointly.

In [65] and [3], the objective in (4.1) is replaced by a smoothed objective. The gradients
of the smoothed objective are given by,

[G(k)(X(k))]ij = ∇L(X(k)) +

{
λ sgn(Xij), if |X(k)

ij | ≥ µ
λ
µ
X

(k)
ij , if |X(k)

ij | < µ,

for the Smoothed Composite Conditional Gradient (SCCG) algorithm in [65], and

G(k)(X(k)) = ∇L(X(k))− 1

β(k)
Xk +

1

β(k)
S(X(k), λβ(k))
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for the Hybrid Conditional Gradient with Smoothing (HCGS) algorithm in [3], where

S(X(k), λβ(k)) = sgn(X)�max{|X| − λβ(k), 0}

is the soft-thresholding operator. In both cases, the objective is replaced by a smooth
function defined by smoothing parameters µ and β(k) respectively, where the smooth ap-
proximation given is the best approximation across all 1/µ-smooth (or resp. 1/β(k)) func-
tions. However, determining how smooth the approximation should be is not easy to know
a priori and often varies depending on the iterate. Empirically, we also observe that there
is a nontrivial dependency between the smoothing parameters and convergence rate. At
any given iteration, if the smoothing parameters are not set appropriately, the algorithm
often makes no progress for many iterations.

In [83], a nonsmooth generalization to the rank-one matrix pursuit is proposed which
utilizes subgradients in the linearized subproblem. To ensure convergence, the rank-one
update at each iteration is replaced by a rank-k variant where k is computed by taking
however many leading singular vectors are required to ensure the solution to the rank-k
subproblem is not too far from the subgradient measured with the `2 norm. Since the
subgradients are typically not low rank, the number of singular vectors required can often
be very large (possibly requiring a full SVD), and this approach can still fail to scale in
similar ways to proximal methods.

The work in [61] also considers Frank-Wolfe methods when the curvature constant is
unbounded. However, the algorithm is specific to the phase retrieval problem for which
the objective is still differentiable, simplifying the analysis.

The Generalized Forwards-Backwards (GenFB) algorithm was introduced to solve (4.1)
by alternating between proximal steps using the trace and `1 norms [69]. As alluded to
earlier, these algorithms tend to scale poorly due to a full SVD required at each iteration.

4.2.2 Achieving a better linear approximation

The previous work on Frank-Wolfe for nonsmooth minimization (4.1) shares a common
idea, i.e., finding a meaningful way to define an appropriate linear optimization subproblem
in a scalable manner. We consider directly minimizing the approximation error over all
possible affine functions over a neighborhood specified carefully for the Frank-Wolfe steps.
We will show that under modest assumptions, the linear subproblems we propose will be
simple to solve and do not rely on specifying the desired level of smoothness as required
by methods discussed in the previous section.
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Definition 4.2.1. Given some r > 0, the uniform affine approximation to a function
f : Rm×n → R is defined as `(Y ) = b∗ + 〈Y −X, ξ∗〉 where,

(ξ∗, b∗) ∈ arg min
(ξ,b)

max
Y ∈B̄∞(X,r)

|f(Y )− b− 〈Y −X, ξ〉| (4.4)

and B̄∞(X, r) is the closed element-wise infinity norm ball of radius r around X.

The above uniform affine approximation can be viewed as choosing an optimal affine
approximation in a given neighborhood of X. The optimality is defined in the uniform
sense, by minimizing the maximum absolute deviation from the original objective f .

This motivates a natural variant of Frank-Wolfe, where at each iteration, the linear
subproblem using a subgradient is replaced with the uniform affine approximation. In
particular, we can view the Frank-Wolfe iterates as,

X(k+1) = X(k) − α(k)(X(k) − S)

where S ∈ D is given by the LMO. Thus, X(k+1) ∈ B̄∞(X(k), α(k)∆) and ∆ = diam(D) =
maxS∈D‖X(k)−S‖∞, where ‖·‖∞ is taken element-wise. For Frank-Wolfe, this implies that
we can restrict our attention to a neighborhood around the current iterate X(k) where the
neighborhood has the radius α(k)∆.

Specifically, we observe that in Frank-Wolfe there exist step size schedules, e.g., α(k) =
2/(k + 2), which are independent of the current iterate and guarantee convergence. Our
proposed approach is to assume that such a step size schedule is specified a priori and to
use the uniform affine approximation defined by the step size schedule for the Frank-Wolfe
subproblems. This allows the linear optimization subproblems to be defined a meaningful
way that is related to the Frank-Wolfe steps and does not require solving complicated
subproblems as in [68] or understanding the desired curvature for the problem as in [3] or
[65]. Moreover, we show that we no longer require f to have bounded curvature constant
or even to be differentiable to guarantee convergence.

4.3 Frank-Wolfe with Uniform Approximations

For the proposed uniform approximation approach to be viable, it is important that the
uniform affine approximation can be calculated efficiently. We begin by considering real-
valued functions and Chebyshev approximations.
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4.3.1 Chebyshev Approximations

Given a real-valued function f and an interval [a, b] ⊆ dom(f), the Chebyshev polynomial
pd(x), is a polynomial of degree not exceeding d that best approximates f on the interval
[a, b] in the uniform sense,

pd(x) = arg min
p∈Πd

max
a≤x≤b

|f(x)− p(x)|

where Πd is the set of polynomials of degree at most d.

Theorem 4.3.1 (Chebyshev Equioscillation Theorem). Let f be a continuous function
from [a, b]→ R and let Πd be the set of polynomials of degree less than or equal to d. Then

g∗ = arg min
g∈Πd

‖f − g‖∞

if and only if there exists d+ 2 points {x1, ..., xd+2} such that a ≤ x1 < ... < xd+2 ≤ b and

f(xi)− g∗(xi) = c(−1)i‖f − g∗‖∞

where c = 1 or −1.

Although the equioscillation theorem only applies to a function of one variable, we will
show it can also be applied when a function is separable. Specifically, under the separa-
bility Assumption 4.3.2 below, we can construct the best uniform affine approximation by
determining the best affine approximation on an interval for each component function.

Assumption 4.3.2. Assume that f : Rm×n → R can be separated into a sum of compo-
nent functions, i.e.,

f(X) =
∑
i,j

fij(Xij).

where each fij : R→ R.

Theorem 4.3.3. Suppose f : Rm×n → R is a continuous function that satisfies Assumption
4.3.2. For a given X(k) ∈ Rm×n and τ > 0, if `ij(Yij) is the Chebyshev polynomial of degree
1 for fij over the interval [Xij − τ,Xij + τ ], then the function `(Y ) =

∑m
i=1

∑n
j=1 `ij(Yij)

is the uniform affine approximation to f as defined in (4.4).
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Proof. Following the equioscillation Theorem 4.3.1, there exists `ij such that,

`ij = arg min
p∈Π1

max
Yij∈[X

(k)
ij −τ,X

(k)
ij +τ ]

|fij(Yij)− p(Yij)|. (4.5)

Let

b+ 〈Y −X(k), ξ〉 =
m∑
i=1

n∑
j=1

`ij(Yij) (4.6)

Since f(X) =
∑m

i=1

∑n
j=1 fij(Xij), we have that,

m∑
i=1

n∑
j=1

max
Yij∈[X

(k)
ij −τ,X

(k)
ij +τ ]

|fij(Yij)− `ij(Yij)|

≥ max
Y ∈B̄∞(X(k),τ)

∣∣∣∣∣
m∑
i=1

n∑
j=1

f(Yij)− `ij(Yij)

∣∣∣∣∣
= max

Y ∈B̄∞(X(k),τ)

∣∣f(Y )− b− 〈Y −X(k), ξ〉
∣∣.

(4.7)

By continuity of f and the equioscillation Theorem 4.3.1, there exists some Ȳij ∈ [X
(k)
ij −

τ,X
(k)
ij + τ ] such that

fij(Ȳij)− `ij(Ȳij) = max
Yij∈[X

(k)
ij −τ,X

(k)
ij +τ ]

|fij(Yij)− `ij(Yij)|. (4.8)

Let Ȳ = [Ȳij]. From fij(Ȳij)− `ij(Ȳij) ≥ 0 and f(X) =
∑m

i=1

∑n
j=1 fij(Xij),

m∑
i=1

n∑
j=1

max
Yij∈[X

(k)
ij −τ,X

(k)
ij +τ ]

|fij(Yij)− `ij(Yij)|

=
m∑
i=1

n∑
j=1

(
fij(Ȳij)− `ij(Ȳij)

)
= f(Ȳ ) + b+ 〈Ȳ −X(k), ξ〉
≤ max

Y ∈B̄∞(X(k),τ)

∣∣f(Y )− b− 〈Y −X(k), ξ〉
∣∣.

(4.9)

Combining (4.7) and (4.9), we have that,
m∑
i=1

n∑
j=1

max
Yij∈[X

(k)
ij −τ,X

(k)
ij +τ ]

|fij(Yij)− `ij(Yij)|

= max
y∈B̄∞(X(k),τ)

∣∣f(Y )− b− 〈Y −X(k), ξ〉
∣∣ (4.10)
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Thus, under Assumption 4.3.2, it suffices to find the Chebyshev polynomials for the
component functions. Assuming additionally that f(X) is convex, we can further charac-
terize the uniform affine approximation.

We use the following lemma.

Lemma 4.3.4 (Convex Mean Value Theorem [78]). If f(x) is a closed proper convex
function from Rm×n → R for X in a convex set D ⊆ Rm×n, then X0 and X1 ∈ relint(D)
implies that there exists 0 < t < 1, and a subgradient G ∈ ∂f(C), where C = tX0+(1−t)X1,
such that f(X1)− f(X0) = 〈X1 −X0, G〉.

Theorem 4.3.5. Suppose that f satisfies Assumption 4.3.2 and each fij is closed, proper,
and convex. Then the best affine approximation as defined in (4.4) to each fij on the
interval [a, b] is given by,

`ij(x) =
fij(c) + h+

ij(c)

2
+
fij(b)− fij(a)

b− a
(x− c)

where

h+
ij(x) := fij(a) +

fij(b)− fij(a)

b− a
(x− a)

and c ∈ (a, b) is chosen to satisfy Lemma 4.3.4, the convex mean value theorem [78] for fij
on [a, b].

Proof. The affine function h+
ij(x) defines the line that connects (a, fij(a)) to (b, fij(b)).

Since fij is convex, fij ≤ h+
ij on [a, b].

From Lemma 4.3.4, there exists c ∈ (a, b) such that

fij(b)− fij(a)

b− a
∈ ∂fij(c)

Define

h−ij(x) = fij(c) +
fij(b)− fij(a)

b− a
(x− c)

The function h−ij(x) is the line tangent to fij(xij) at xij = c and is parallel to h+
ij. Since fij

is convex, fij ≥ h−ij on [a, b].
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By construction, `ij is a line parallel and equidistant to the lines h+
ij and h−ij. Thus, it

is easy to verify that

fij(a)− `ij(a) = −(fij(c)− `ij(c)) = fij(b)− `ij(b) (4.11)

satisfying the equioscillation property. Thus, `ij is the minimax affine approximation to
fij on [a, b].

We remark that the computations in the subproblems do not require the specific value
of c used in Theorem 4.3.5.

4.4 FWUA and Convergence

Using the uniform affine approximation, we propose a FW variant with Uniform Approx-
imations (FWUA), which is described in Algorithm 6. The function update tau will be
described in full in Section 4.4.1, where a specific update rule for τ will be required to
guarantee convergence. The idea will be to stop refining the neighborhood size τ , once the
smooth approximation is sufficiently close to f . We will show that this will be sufficient
to prove convergence.

To establish convergence, subsequently we make the following assumptions.

Assumption 4.4.1. Assume that f satisfies Assumption 4.3.2. In addition, each compo-
nent function fij has the following properties:

(a) fij is a Lij-Lipschitz continuous function.

(b) fij is closed, proper, and convex.

(c) fij is not differentiable on at most a finite set.

(d) If fij is differentiable at a ∈ R, then it is also twice differentiable at a.

While the above set of assumptions appears restrictive, our main goal in this work is to
efficiently solve (4.1) in the context of the trace-norm constrained matrix estimation prob-
lem which has a combination of `1 and `2 loss/regularization, for which these assumptions
are typically satisfied.
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Algorithm 6 Frank-Wolfe with Uniform Approximations (FWUA)

Input: f : A function satisfying Assumptions 4.3.2 and 4.4.1
D: A convex and compact subset of Rm×n

ε: Approximation threshold
K: Max iteration count

1: Let X(0) ∈ D.
2: Let τ 0 ← diam(D).
3: for k = 0..K do
4: α(k) ← 2

k+2

5: τ (k) ← update tau(k, τ (k−1), ε, f)
6: (ξ(k), b(k))← arg min

ξ,b
max

Y ∈B̄∞(X(k),τ (k))
|f(Y )− b− 〈Y −X, ξ〉|

7: S(k) ← arg min
S

b(k) + 〈S −X(k), ξk〉

8: X(k+1) ← X(k) + α(k)(S(k) −X(k)).
9: end for

Definition 4.4.2. Let f be a function that satisfies Assumption 4.3.2 and 4.4.1. For a
given τ > 0, we define the uniform slope function, mij(Xij, τ) : R × R+ → R, for
each i, j, which is the slope of the uniform affine approximation for fij on the interval
[Xij − τ,Xij + τ ].

The uniform slope function can be viewed as a surrogate for the gradient which does
not rely on differentiability of f .

Before establishing the convergence results in Theorem 4.4.5, we require the following
lemmas.

Lemma 4.4.3. Let f be a function that satisfies Assumption 4.3.2 with convex fij and let
mij(Xij, τ) be the corresponding uniform slope function for fij. Then

mij(Xij, τ) = gij

for some c ∈ (Xij − τ,Xij + τ) where gij ∈ ∂fij(c).

Proof. From Theorem 4.3.5, the slope function has the form,

mij(Xij, τ) =
fij(Xij + τ)− fij(Xij − τ)

2τ
(4.12)

which is simply the slope of the secant line of fij from Xij−τ to Xij +τ . Thus, the desired
result follows immediately from the convex mean value theorem.
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Lemma 4.4.4. Let f be a function that satisfies Assumption 4.3.2 and 4.4.1, mij(x, τ) be
the corresponding uniform slope function for fij, and a ≤ b. We have that,∫ b

a

|mij(x, τ)− f ′ij(x)|dx ≤ (b− a) max
y,z∈(a−τ,b+τ)
g∈∂fij(y)
h∈∂fij(z)

|g − h|

where f ′ij(x) ∈ ∂fij(x) can be any subgradient of fij at x.

If fij is additionally twice differentiable on (a− τ, b+ τ), then,∫ b

a

|mij(x, τ)− f ′ij(x)|dx ≤ (b− a)τ max
y,z∈(a,b)

∣∣∣∣f ′′(y)− f ′′(z)

2

∣∣∣∣.
Proof. Using intermediate value theorem for integrals, there exists c ∈ (a, b) such that∫ b

a

|mij(x, τ)− f ′ij(x)|dx = (b− a)|mij(c, τ)− f ′ij(c)|.

From Theorem 4.3.5

mij(c, τ) =
fij(c+ τ)− fij(c− τ)

2τ
. (4.13)

From Lemma 4.4.3, we have that mij(x, τ) = gij for some c ∈ (x− τ, x + τ) and some
gij ∈ ∂f(c). Since mij(x, τ) and f ′ij(x) are just specific subgradients on the evaluated on
the interval (x− τ, x+ τ), we have

|mij(x, τ)− f ′ij(x)| ≤ max
y,z∈(a−τ,b+τ)
g∈∂fij(y)
h∈∂fij(z)

|g − h|.

Following the Lagrange Remainder Theorem, if fij is twice differentiable in (c−τ, c+τ),
we have

fij(c+ τ) = fij(c) + f ′ij(c)τ +
1

2
f ′′ij(d1)τ 2

fij(c− τ) = fij(c)− f ′ij(c)τ +
1

2
f ′′ij(d2)τ 2

(4.14)
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for some d1 ∈ (c, c+ τ) and d2 ∈ (c− τ, c). Substituting (4.14) into (4.13),

fij(c+ τ)− fij(c− τ)

2τ
=

1

2

(
fij(c+ τ)− fij(c)

τ
− fij(c− τ)− fij(c)

τ

)
=

1

2

(
f ′ij(c) +

1

2
f ′′ij(d1)τ + f ′ij(c)−

1

2
f ′′ij(d2)τ

)
= f ′ij(c) +

f ′′ij(d1)− f ′′ij(d2)

2
τ

This implies, ∫ b

a

|mij(x, τ)− f ′ij(x)|dx = (b− a)|mij(c, τ)− f ′ij(c)|

≤ (b− a)τ

∣∣∣∣f ′′ij(d1)− f ′′ij(d2)

2

∣∣∣∣
≤ (b− a)τ max

y,z∈(a,b)

∣∣∣∣f ′′(y)− f ′′(z)

2

∣∣∣∣
and the result follows.

Before we establish the convergence of FWUA, we begin with the following theorem.

Theorem 4.4.5. Let f : Rm×n → R be a function that satisfies Assumption 4.3.2 and
4.4.1 and D be a convex and compact set. Given τ > 0, let mij(Xij, τ) be the uniform slope
function for fij at Xij, and let Xmin = min{Xij|X = (X1,1, ..., Xij, ..., Xmn)> ∈ D}. Let

f̂(X, τ) :=
m∑
i=1

n∑
j=1

∫ Xij

Xmin

mij(x, τ)dx+ fij(Xmin)

Then the following statements hold:

(a) f̂(X, τ) is convex in X,

(b) ∇X f̂(X, τ) is Lipschitz continuous with respect to the `∞-norm with the Lipschitz
constant L/τ , where L is the maximum Lipschitz constant of all fij,

(c) The difference between f̂(X) and f(X) is uniformly bounded, i.e.,

max
X∈D

∣∣∣f̂(X, τ)− f(X)
∣∣∣ ≤ mn(M + 1)D∆fτ, where
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M := the maximum number of points where any fij is not differentiable for any i, j.

D := diam(D),

∆f := max

{
max

i=1,...,m
j=1,...,n
X,Y ∈D

fij twice differentiable at Xij and Yij

∣∣∣∣f ′′ij(Xij)− f ′′ij(Yij)
2

∣∣∣∣,

max
i=1,...,m
j=1,...,n

Xij ,Yij∈[Xmin−τ,Xij+τ ]
gij∈∂fij(Xij)
hij∈∂fij(Yij)

2|gij − hij|
}

(4.15)

Proof. (a) For notational simplicity, we drop the dependency on τ for f̃ij and mij.

We establish that f̃ is convex by showing that each f̃ij is convex. Since f̃ij is a
differentiable function of one variable, f̃ij is convex if and only if f̃ ′ij is nondecreasing
in Xij. We have that for any h > 0,

f̃ ′ij(Xij + h)− f̃ ′ij(Xij) = mij(Xij + h)−mij(Xij)

=
fij(Xij + h+ τ)− fij(Xij + h− τ)

2τ

− fij(Xij + τ)− fij(Xij − τ)

2τ
.

Since fij is convex, we have that the slope of any secant,

S(Xij, Yij) =
fij(Xij)− fij(Yij)

Xij − Yij

is nondecreasing in either Xij or Yij [39].

Thus, f̃ ′ij is nondecreasing follows immediately since,

fij(Xij + τ)− fij(Xij − τ)

2τ
≤ fij(Xij + h+ τ)− fij(Xij − τ)

2τ + h

≤ fij(Xij + h+ τ)− fij(Xij + h− τ)

2τ
.
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(b) From the definition of f̃ ,

∂

∂Xij

f̃(X, τ) = mij(Xij, τ). (4.16)

To verify the Lipschitz condition, note that from Theorem 4.3.5,

mij(Xij, τ) =
fij(Xij + τ)− fij(Xij − τ)

2τ
. (4.17)

For any y, z ∈ R and τ > 0, we have,

|m(z, τ)−m(y, τ)| =
∣∣∣∣fij(z + τ)− fij(z − τ)

2τ
− fij(y + τ)− fij(y − τ)

2τ

∣∣∣∣
≤ 1

2τ
|(fij(z + τ)− fij(y + τ))|+ |(fij(z − τ)− fij(y − τ)|

=
1

τ
Lij|z − y| (since fij is Lipschitz continuous)

(4.18)

Thus, ∥∥∥∇X f̃(Z, τ)−∇X f̃(Y, τ)
∥∥∥
∞

= max
i,j
|mij(Zij, τ)−mij(Yij, τ)|

≤ L

τ
‖Z − Y ‖∞,

where ‖·‖∞ is the component-wise maximum absolute value.

(c) Note we can expand the maximum as follows,

max
X∈D

∣∣∣f̃(X, τ)− f(X)
∣∣∣ = max

X∈D

∣∣∣∣∣
m∑
i=1

n∑
j=1

∫ Xij

Xmin

mij(x, τ)dx+ fij(Xmin)− fij(Xij)

∣∣∣∣∣.
Suppose fij is not differentiable only at the points c1, c2, ..., cMi

. Partition the interval
[Xmin, Xij] as follows. Let Aij be a collection of intervals,

Aij := {[αt, βt] : αt = max{ct − τ, ct−1 + τ,Xmin}, and

βt = min{ct + τ, ct+1 − τ,Xij},

with c0 = Xmin and cMi+1 = Xij. Each interval [αt, βt] is a neighborhood around
a point of nondifferentiability with length at most 2τ . Note that the intervals do
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not overlap except possibly at the endpoints, and do not extend past the interval
[Xmin, Xij].

Let Bij =
⋃

(bt, bt+1) be the minimal set of intervals such that Bij = [Xmin, Xij] \Aij.
Thus, Aij ∪ Bij covers the interval [Xmin, Xij] and we have that for every interval in
Bij, fij is differentiable, and hence twice differentiable from our assumptions.

Then we can write
∫ Xij
Xmin

mij(x, τ)dx as the sum of integrals over intervals from Aij
and Bij,∫ Xij

Xmin

mij(x, τ)dx =
∑

(αt,βt)∈Aij

∫ βt

αt

mij(x, τ)dx+
∑

[bt,bt+1]∈Bij

∫ bt+1

bt

mij(x, τ)dx

If we let f ′ij(Xij) denote an arbitrary subgradient at Xij, then we can write,

fij(Xmin)− fij(Xij) = −
∫ Xij

Xmin

f ′ij(x)dx

since fij is differentiable everywhere on [Xmin, Xij] except on at most a finite set.

Thus,

max
X∈D

∣∣∣f̃(X, τ)− f(X)
∣∣∣

≤ max
X∈D

∣∣∣∣∣
m∑
i=1

n∑
j=1

∫ Xij

Xmin

mij(x, τ)dx+ fij(Xmin)− fij(Xij)

∣∣∣∣∣
≤ max

X∈D

∣∣∣∣∣
m∑
i=1

n∑
j=1

∫ Xij

Xmin

mij(x, τ)dx−
∫ Xij

Xmin

f ′ij(x)dx

∣∣∣∣∣
≤ max

X∈D

m∑
i=1

n∑
j=1

( ∑
[αt,βt]∈Aij

∫ βt

αt

|mij(x, τ)− f ′(x)|dx

+
∑

(bt,bt+1)∈Bij

∫ bt+1

bt

|mij(x, τ)− f ′(x)|dx

)

Let |Aij| and |Bij| denote the number of subintervals for Aij and Bij respectively.
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Then,

max
X∈D

∣∣∣f̃(X, τ)− f(X)
∣∣∣ ≤ max

X∈D

m∑
i=1

n∑
j=1

(|Aij|∆fτ + |Bij|D∆fτ)

≤ mn(M + 1)(1 +D)∆fτ

where in the second last line, we use Lemma 4.4.4, and the last line we have that
|Aij|, |Bij| ≤M + 1 since M is the maximum number of points of nondifferentiability
for all fij.

Theorem 4.4.5 states that the sequence of uniform affine approximations generated
by the FWUA algorithm corresponds to a sequence of smooth functions that uniformly
converges to the original objective if the neighborhood sizes converge to zero. Since the
smooth approximation functions in the sequence have a Lipschitz continuous gradient, we
can leverage standard Frank-Wolfe convergence arguments even if the original function is
not smooth while maintaining an upper bound on the approximation quality of the solution.
Suppose the neighborhood size at iteration k is given by τ (k). In particular, given a sequence
of neighborhood sizes {τ (k)}, we consider the sequence of smooth approximations given by

f̂ (k)(X) =
m∑
i=1

n∑
j=1

∫ Xij

Xmin

(
mij(x, τ

(k))dx+ fij(Xmin)
)
. (4.19)

Since f̂ (k) is differentiable with a L
τ (k)

-Lipschitz gradient, it can be shown that the curvature

constant for f̂ (k) is bounded, i.e.,

Cf̂ (k) ≤
L

τ (k)
diam(D)2

see, e.g., [45].

To make these concepts concrete, consider f(X) = ‖X‖1 where we are interested in
optimizing f over the trace norm ball, ‖X‖tr ≤ δ. We have f(X) = ‖X‖1 =

∑
ij fij(X),

with each fij(Xij) = |Xij|. It it is straightforward to verify that Xmin = −δ and,

mij(Xij, τ) =


−1, when Xij < −τ
Xij
τ
, when −τ ≤ Xij ≤ τ

1, when Xij > τ.
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Since the lower bound of each Xij is −δ, we can compute the integrals using the following
cases. First consider the case when Xij < −τ . Then,∫ Xij

−δ
mij(x, τ)dx+ fij(−δ) = −Xij − δ + δ = −Xij.

When −τ ≤ Xij ≤ τ , we have,∫ Xij

−δ
mij(t, τ)dt+ fij(−δ)

=

∫ −τ
−δ

mij(x, τ)dx+

∫ Xij

−τ
mij(x, τ)dx+ fij(−δ)

=
X2
ij

2τ
+
τ

2
.

Finally, when Xij > τ ∫ Xij

−δ
mij(x, τ)dx+ fij(−δ)

=

∫ τ

−δ
mij(x, τ)dx+

∫ Xij

τ

mij(x, τ)dx+ fij(−δ)

= Xij.

Thus, the expression for f̂(x, τ) is,

f̂(x, τ) =
∑
ij

(
X2
ij

2τ
+
τ

2

)
· 1|Xij |<τ + |Xij| · 1|Xij |≥τ

where 1 is the indicator function. Figure 4.1 illustrates the component functions. Note
that the constant, Xmin, related to the region feasible D, does not appear in the definition
of f̂ and is only mentioned to show that we can relate Xmin with the radius of the trace
norm ball. This can give a better idea on the bounds which appear in the convergence
result.

When f(X) = ‖X‖1, its uniform affine approximation has an attractive property that
f̂ ≥ f . In general, this property may not hold. However from the uniform error bound,
there always exists some constant N (k) ∈ [0, n(M + 1)D∆fτ

(k)] such that f̂ (k) +N (k) ≥ f ,

and the function f̂ (k) +N (k) has all the properties listed in Theorem 4.4.5, except the error
bound in (4.15) becomes ‖f̂ (k)− f‖∞ ≤ 2mn(M + 1)D∆fτ

(k), which is doubled. Thus, we
redefine the sequence of approximations as follows.
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Figure 4.1: The component functions f̂
(k)
ij with τ (k) = 2/(k + 2) and varying k for f(X) =

‖X‖1.

Definition 4.4.6. Let f : Rn → R be a function that satisfies Assumptions 4.3.2 and
4.4.1. The sequence of FWUA smooth approximations are given by

f̃ (k)(X) =
m∑
i=1

n∑
j=1

∫ Xij

Xmin

mij(x, τ
(k))dx+ fij(Xmin) +N (k). (4.20)

where N (k) is the smallest nonnegative number such that f̃ (k) ≥ f .

4.4.1 Update τ

Recall the motivation for the uniform affine approximation is that local approximations
are insufficient when the step sizes are large and the neighborhood of points where the
next iterate can lie should be taken into account. For the Frank-Wolfe algorithm, the next
iterate can be expressed as a convex combination of the current iterate, X(k), and some
feasible point S(k), and the Frank-Wolfe steps take the form,

X(k+1) = X(k) + α(k)(S(k) −X(k)).

Since the uniform affine approximations are taken component-wise, we are interested in
bounding the maximum deviation of any component between successive iterations. Specif-
ically, we are interested in estimating the quantity,

‖X(k+1) −X(k)‖∞ = max
i,j
|X(k+1)

ij −X(k)
ij |. (4.21)
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The role of τ (k) in the algorithm will be to provide an upperbound on the quantity in
(4.21). A straightforward upper bound is given by,

‖X(k+1) −X(k)‖∞ ≤ α(k) max
S∈D
‖S −X(k)‖∞.

In particular, when D = B̄tr(0, δ) is the trace norm ball, then ‖X(k+1) −X(k)‖∞ ≤ 2α(k)δ
and a simple updating rule then for τ (k) is to set,

τ (k) ← 2α(k)δ. (4.22)

As seen in Theorem 4.4.5, when τ (k) is large, the smooth surrogate obtained is a poor
approximation for the original nonsmooth function. However, if τ (k) is too small, it is
possible that the next iterate X(k+1) lies outside the ball B∞(X(k), τ (k)), and we are no
longer confident in the quality of the linear approximation at X(k+1). We wish to find a
value of τ (k) that is smaller than the conservative upperbound of 2α(k)δ such that X(k+1)

is likely to be contained in B∞(X(k+1), τ (k)).

Empirically, we found that the following update rule based upon the previous Frank-
Wolfe steps,

τ (k+1) ← α(k) max
j∈{0,...,4}

‖X(k−j) − S(k−j)‖∞, (4.23)

leads to small values of τ (k) such that X(k+1) ∈ B∞(X(k), τ (k)). This takes the maximum
deviation over the past five iterations as an approximation for the neighborhood size.

Another concern with updating τ (k) is that we cannot allow the function f̃ (k) to become
arbitrarily close to f , since the Lipschitz constant for f̃ (k) can also grow arbitrarily large
given a nonsmooth f . However, if only an ε-accurate solution is desired with ε specified a
priori, one can stop refining the approximation f̃ at some iteration k′ since there exists an
explicit upper bound on the approximation error, and the FWUA algorithm can proceed
as a standard Frank-Wolfe algorithm on the smoothed function when the iteration k > k′.

Specifically, the uniform error bound from Theorem 4.4.5 and a step size of α(k) =
2/(k + 2) guarantees that

4mn(M + 1)D2∆f

k + 2
≤ ε

2
, when k ≥ 8mn(M + 1)D2∆f

ε
− 2.

At iteration k′ =
8mn(M+1)D2∆f

ε
− 1, we stop refining neighborhoods and τ (k) = τ (k′) for all

k ≥ k′. The update tau function is be formalized in Algorithm 7.
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Algorithm 7 update tau

Input: k: Iteration number
τ (k−1): Previous neighborhood size
ε: accuracy tolerance
f : Original function to optimize
{X(i)}k−1

i=0 : Sequence of previous Frank-Wolfe iterates
{S(i)}k−1

i=0 : Solutions to the Frank-Wolfe linear subproblems of previous iterates
[m,n,M,D,∆f ]← parameters of f as described in (4.15).

1: k′ ← 8mn(M+1)D2∆f

ε
− 1.

2: if k > k′ then
3: return τ (k−1)

4: else
5: return τ (k) ← 2 maxj∈{0,...,4}‖X(k−j)−S(k−j)‖∞

k+2

6: end if

The rationale is that the global error, f(X(k)) − f(X∗), can be decomposed into two
components. The first component is the approximation error, defined as,

approximation error := ‖f̃ (k) − f‖ = max
X∈D
|f̃ (k)(X)− f(X)|

which is the error added by using a smoothed approximation to f . The second source of
error is the suboptimality at iteration k, defined as,

smoothed optimality gap := f̃ (k)(X(k))−min
X∈D

f̃ (k)(X)

which is the optimality gap of the smoothed problem,

min
X∈D

f̃ (k)(X).

Once the approximation is sufficiently accurate, i.e., the approximation error is no bigger
than ε/2, the neighborhood size refinement can be stopped at the corresponding iteration
k′. Since f̃ (k′) is smooth, we can minimize f̃ (k) over D using Frank-Wolfe and use standard
Frank-Wolfe analysis to determine the iteration be bounded by ε/2. We formalize this
statement in Theorem 4.4.8.

Before we prove Theorem 4.4.8, we require the following Lemma.

Lemma 4.4.7. Let f : Rm×n → R be a function that satisfies Assumption 4.3.2 and 4.4.1,
X∗ ∈ arg minX∈D f(X), and f̃ (k) be the FWUA smooth approximations defined in (4.19)
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with τ (k) ≤ 2α(k)D. Then,

f̃ (k)(X(k+1))− f̃ (k)(X(k)) ≤ 4K

k + 2

where,

K :=

(
max

i∈{0,...,k}
Cf̃ (k)

)
+ 8mn(M + 1)D2∆f ,

where M,D,∆f are the constants defined in (4.15).

Proof. For any two functions f and g that are defined on D, let ‖f−g‖∞ = maxX∈D|f(X)−
g(X)|. From Lemma 2.8.3, we have that,

f̃ (k)(X(k+1)) ≤ f̃ (k)(X(k))− α(k)(f̃ (k)(X(k))− f̃ (k)(X∗k)) + (α(k))2Cf̃ (k) . (4.24)

From here, since,

‖f (k+1) − f (k)‖∞ ≤ ‖f (k+1) − f‖∞ + ‖f (k − f‖∞ ≤ 2‖f (k) − f‖∞,

we have,
f̃ (k+1)(X(k+1))− 2‖f̃ (k) − f‖∞ ≤ f̃ (k)(X(k+1)).

Substituting this into (4.24) we get,

f̃ (k+1)(X(k+1))− f̃ (k+1)(X∗k+1)

≤ (1− α(k))(f̃ (k)(X(k))− f̃ (k)(X∗k)) + 4‖f̃ (k) − f‖∞ + (α(k))2Cf̃ (k)

≤ (1− α(k))(f̃ (k)(X(k))− f̃ (k)(X∗k)) + (α(k))2K

where the last line uses the fact that ‖f̃ (k)−f‖∞ ≤ mn(M+1)D∆fτ
(k) and τ (k) ≤ 2α(k)D.

The remainder of the proof follows Lemma 2.8.4 since the sequence {f̃ (k)(X(k)) −
f̃ (k)(X∗k)} satisfies (2.13).

Theorem 4.4.8. Let f : Rm×n → R be a function that satisfies Assumption 4.3.2 and
4.4.1, X∗ ∈ arg minX∈D f(X), and let M,D,∆f be the constants defined in (4.15). Then
for any ε > 0, the iterates {X(k)} of Algorithm 6, using α(k) = 2/(k+ 2) and τ (k) ≤ α(k)D,
satisfy

f(X(k))− f(X∗) < ε when k ≥ 8K

ε
with

k′ =

⌈
8mn(M + 1)D2∆f

ε
− 1

⌉
and K :=

(
max

i∈{0,...,k′}
Cf̃ (i)

)
+ 8mn(M + 1)D2∆f .

92



Proof. Let X∗k ∈ arg minX∈D f̃
(k)(X) and for any two functions f and g that are defined

on D, let ‖f − g‖∞ = maxX∈D|f(X)− g(X)|.
We have,

f(X(k))− f(X∗) ≤ f̃ (k)(X(k))− f(X∗)

≤ f̃ (k)(X(k))− f̃ (k)(X∗) + ‖f̃ (k) − f‖∞
≤ f̃ (k)(X(k))− f̃ (k)(X∗k) + ‖f̃ (k) − f‖∞

For all k ≥ k′, we have that f̃ (k) = f̃ (k′), and it follows that

f(X(k))− f(X∗) ≤ f̃ (k′)(X(k))− f̃ (k′)(X∗k) + ‖f̃ (k′) − f‖∞.

Theorem 4.4.5 implies that,

‖f̃ (k) − f‖∞ ≤
4mn(M + 1)D2∆f

k + 2
≤ ε

2
, when k > k′

Thus, when k ≥ k′,

‖f̃ (k) − f‖∞ = ‖f̃ (k′) − f‖∞ ≤
ε

2
. (4.25)

When k ≤ k′, it follows from Lemma 4.4.7 that

f̃ (k)(X(k+1))− f̃ (k)(X(k)) ≤ 4K

k + 2
. (4.26)

When k ≥ k′, we have that f̃ (k) = f̃ (k′). We will show that

f̃ (k′)(X(k+1))− f̃ (k′)(X(k)) ≤ 4K

k + 2
, ∀k ≥ k′. (4.27)

We proceed with induction, where (4.26) provides the base case when k = k′. We assume
(4.27) holds for some k > k′. From Lemma 2.8.3, we have that,

f̃ (k′)(X(k+1)) ≤ f̃ (k′)(X(k))− α(k)(f̃ (k′)(X(k))− f̃ (k′)(X∗k)) + (α(k))2Cf̃ (k′) .

This implies that,

f̃ (k′)(X(k+1))− f̃ (k′)(X∗k′) ≤ (1− α(k))(f̃ (k′)(X(k))− f̃ (k′)(X(k))) + (α(k))2K (4.28)

since K ≥ Cf̃ (k′) . The desired result then follows from Lemma 2.8.4.

Thus,
4K

k + 2
≤ ε

2
whenever k ≥ 8K

ε
− 2. (4.29)

Since at most 8K
ε

iterations are required to guarantee that f̃ (k)(X(k))− f̃ (k)(X∗(k)) ≤
ε
2
,

and 8K/ε ≥ k′, we get the desired bound by combining (4.25) and (4.29).
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4.5 Experimental Results

4.5.1 Sparse and Low-Rank Structure

To highlight benefits of the proposed FWUA, we first compare it against other state-of-
the-art solvers for the problem,

min
X:‖X‖tr≤δ

‖PΩ(X − Y )‖2
F + λ1‖X‖1.

where Y is the given data, Ω = {(i, j)} is the set of observed indices, and PΩ(·) projects the
loss onto Ω. In [69], the above formulation has been shown to yield empirical improvements
over low-rank or sparse regularization alone, for the sparse covariance matrix estimation
and graph link prediction.

We compare FWUA with the following methods:

1. The Generalized Forwards-Backwards algorithm (GenFB) [69]. This variant applies
proximal steps in a sequential fashion for the `1 and trace norm.

2. Hybrid Conditional Gradient with Smoothing (HCGS) [3]. Uses Nesterov Smoothing
[58] to find (1/β(k))-smooth surrogates for the objective function where {β(k)} is an
arbitrary sequence that goes to 0.

3. Smoothed Composite Conditional Gradient (SCCG) [65]. Similar to HCGS with
fixed smoothing parameter µ for all iterations (instead of β(k) schedule).

For all experiments, we terminate any algorithm when it fails to make sufficient progress.
Explicitly, we terminate the at iteration k if,

fmax − fmin

fmin

< 10−4

where,

fmax := max
i∈{0,...,9}

f(X(k−i)) and

fmin := min
i∈{0,...,9}

f(X(k−i)).

That is, when the relative difference between the maximum and minimum objective values
over the past ten iterations becomes sufficiently small, the algorithm terminates. For the
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FW based methods (HCGS, SCCG, FWUA), we set the maximum iteration count 1000.
For the GenFB algorithm the maximum iteration count is set to 100.

For each problem instance, the same λ1 value is used by all three methods and this value
is tuned, by searching over a grid of parameter values, to yield the best test performance
for GenFB. The bound δ for the trace norm, used in all FW variants, is then set to
the trace norm of the solution given by GenFB. For SCCG, the smoothing parameter µ
is additionally tuned to yield the smallest average objective value. HCGS sets β(k) =
1/
√
k + 1 as suggested by the authors [3]. Additionally, we compare the limiting behavior

for SCCG where µ = 0. This corresponds to a specific subgradient, denoted as SCCG
(SG).

Sparse Covariance Estimation

We follow the synthetic experiments described in [69], where the goal is to recover a block
diagonal matrix. We consider square matrices where n = 750 : 250 : 2000 (here we use
MATLAB notation). The true underlying matrix is generated with 5 blocks, where the
entries are i.i.d. and uniformly sampled from [−1, 1]. Gaussian noise, N (0, σ2) is then
added with σ2 = 0.2. For this experiment, all entries are observed.

In Figure 4.2, we remark that since the GenFB algorithm is a regularized algorithm,
the intermediate iterates are not feasible for the constrained problem used for Frank-Wolfe.
Consequently, only the performance of the solution at convergence is compared.

Graph Link Prediction

Next we consider predicting links in a noisy social graph. The input data is a matrix
corresponding to an undirected graph, where the entry Aij = 1 indicates that user i and
j are friends and Aij = 0 otherwise. We consider the Facebook dataset from [53] which
consists of a graph with 4,039 nodes and 88,234 edges, and assume 50% of the entries
are observed. The goal is to recover the remaining edges in the graph. Additionally,
each entry Aij is flipped (0 to 1 or 1 to 0) with probability σ ∈ {0, 0.05, 0.1}, potentially
removing or adding labels to the graph. We report the AUC performance measure of the
link prediction on the remaining entries of the graph as well as the average CPU time over
5 random initializations summarized in Table 4.3 across all levels of σ.
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Parameter Methods Description n Value

λ1 All methods Parameter for `1 norm all 0.4

λ2 GenFB Parameter for trace norm all 10

δ FW Variants Trace norm constraint

750 43.92

1000 73.17

1250 100.43

1500 134.06

1750 169.40

2000 201.46

µ SCCG Smoothing parameter all 0.01

Table 4.1: Parameters used for sparse covariance estimation

Discussion

For both applications, the results agree with our initial intuition that FWUA can improve
the performance of the FW variants while scaling much better than the GenFB algorithm.
We observe in the covariance plots in Figure 4.3, the sparsity patterns for HCGS and SCCG
are much noisier than FWUA and in Table 4.3, the AUC for SCCG and HCGS methods
are lower than GenFB and FWUA.

For SCCG, the smoothing parameter µ is closely related to the convergence rate as well
as the approximation accuracy of the smooth surrogate. Large values of µ will lead to a
better constant in the convergence rate, but this introduces large approximation errors. The
initial expectation was that this tradeoff to be smooth, where gradually decreasing µ should
gradually worsen the rate of improvement per iteration. In return, small values of µ should
yield better final solutions. Instead, we observe an interesting phenomenon for SCCG,
where the algorithm makes no progress for many iterations when µ is too small. This
delay is highlighted in Figure 4.5. We see that the delay observed increases as µ decreases.
This seems to give support to the hypothesis for FWUA where the approximation quality
of the smooth surrogate must be closely related to the step size since it appears that SCCG
can only make progress using small values of µ once the step sizes become sufficiently small.
Since HCGS and SCCG do not factor in step size into the smoothing schedule, we observe
that empirically, the solutions returned from these methods are not as competitive as the
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Figure 4.2: Objective values vs iteration for various synthetic dataset sizes.

FWUA or GenFB algorithm.

4.5.2 `1 Loss Matrix Completion

The last experiment we consider is matrix completion with an `1 loss function on the
MovieLens datasets2. Here, we consider the objective function below

f(X) = ‖PΩ(X − Y )‖1 + λ‖PΩc(X)‖2
F (4.30)

which is proposed in [11] for robustness to outliers. Here the regularization penalizes entries
in the complement of Ω, potentially preventing overfitting.

We compare with the Robust Low-Rank Matrix Completion (RLRMC) algorithm pro-
posed in [11], which solves a nonconvex fixed rank problem by the smoothing `1 term. We

2https://grouplens.org/datasets/movielens/
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Figure 4.3: An example sparsity pattern at termination, values thresholded at 0.01‖X‖∞.
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Figure 4.4: CPU time for varying n on the sparse covariance estimation problem.

additionally compare to the Greedy Low-Rank Learning (GLRL) algorithm proposed in
[83], which greedily updates the solution with low-rank solutions found by computing the
truncated SVD of a subgradient. For scalability, we utilize the rank-drop step subproblems
proposed Chapter 3 for the FWUA algorithm to reduce the rank of the intermediate solu-
tions. The gradient of the smoothed objective, ∇f̃ (k), is used to compute rank-drop steps.
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Parameter Methods σ Description Value

λ1 All methods

0

Parameter for `1

0.01

0.05 0.05

0.01 0.1

λ2 GenFB

0

Parameter for trace norm

5

0.05 25

0.01 50

δ FW Variants

0

Trace norm constraint

1052.88

0.05 590.13

0.01 639.87

µ SCCG
0 and 0.1

Smoothing parameter
0.001

0.05 0.01

Table 4.2: Parameters used for graph link prediction

σ GenFB SCCG SCCG (SG) HCGS FWUA

0
AUC 0.968 0.949 0.873 0.868 0.972

Time (s) 3746.30 1127.91 288.46 263.27 449.89

0.05
AUC 0.829 0.820 0.799 0.806 0.829

Time (s) 4024.96 332.23 378.68 407.87 408.37

0.10
AUC 0.715 0.708 0.707 0.708 0.732

Time (s) 4006.92 363.18 403.27 420.22 481.82

Table 4.3: Graph link prediction averaged over 5 random initializations for the Facebook
dataset. Out of sample AUC and CPU-time are reported. Best performers are bolded.

Since the rank-drop steps are only taken if the objective does not worsen, convergence is
still guaranteed as long as the k used in the step-size 2/(k + 2), only counts the number
of standard Frank-Wolfe steps taken, i.e., the iteration count does not increase when a
rank-drop step is used. The parameters were chosen using a grid search and we report the
best results with respect to the smallest RMSE.

99



200 400 600 800 1000

Iters

1.7

1.75

1.8

1.85

1.9

1.95

f(
X

k
)

×10
4

SCCG-mu=0.01

SCCG-mu=0.001

SCCG-mu=0.0005

SCCG (SG)

Figure 4.5: An example of the progress with varying µ for sparse covariance estimation
with n = 750.

Dataset Parameter Description Methods Value

MovieLens 100k

λ Parameter for ‖PΩc(X)‖2
2 RLRMC 0.001

r Fixed rank
RLRMC 2

GLRL 10

δ Trace norm constraint FWUA 1,200

MovieLens 1M

λ Parameter for ‖PΩc(X)‖2
2 RLRMC 0.001

r Fixed rank
RLRMC 5

GLRL 25

δ Trace norm constraint FWUA 6,400

MovieLens 10M

λ Parameter for ‖PΩc(X)‖2
2 RLRMC 0.005

r Fixed rank
RLRMC 10

GLRL 50

δ Trace norm constraint FWUA 15,000

Table 4.4: Parameters used for matrix completion

Discussion

We observe that FWUA performs better than both RLRMC and GLRL in terms of out
of sample RMSE, but RLRMC is much faster. This is not surprising since RLRMC is a
nonconvex fixed rank model. We observe that the performance of RLRMC is very sensitive
to both the rank and λ parameters, requiring extensive parameter tuning to find reasonable
results. Even a small change in rank (e.g. ±2) can make a dramatic difference in the RMSE.
Thus, if we account for the exhaustive parameter tuning required for RLRMC, in practice,
the computational time required for the entire model evaluation can far exceed the cost of
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Dataset RLRMC GLRL FWUA

ML-100k
RMSE 0.892 0.935 0.876

Time (s) 10.62 43.56 65.39

ML-1M
RMSE 0.817 0.917 0.812

Time (s) 108.97 1,079.11 862.15

ML-10M
RMSE 0.810 0.901 0.801

Time (s) 2,197.20 26,473.89 6,830.31

Table 4.5: Low-rank Matrix Completion averaged over 5 random initializations. Best
performers are bolded.

FWUA, where warm starts can be leveraged for tuning the radius of the trace-norm ball.
Thus, FWUA can be an attractive alternative when a good estimate of the true rank is not
known a priori. We also note that for the large scale example, the number of singular values
required in the truncated SVD used by the GLRL updates became very high, leading to
scalability issues.

4.6 Conclusion

We propose a variant of the Frank-Wolfe algorithm for a nonsmooth objective, by replacing
the first order Taylor approximation with the Chebyshev uniform affine approximation in
the FW subproblem. We show that, for nonsmooth matrix estimation problems, this
uniform approximation is easy to compute and allows for convergence analysis without
assuming a bounded curvature constant. Experimentally we demonstrate that the FWUA
algorithm can improve both speed and classification performance in a variety of sparse
and low-rank learning tasks, while providing a viable convex alternative for `1 loss matrix
completion when little is known about the underlying data.
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Chapter 5

STAR-SVM

5.1 Introduction

A common theme in this thesis is utilizing structure to best leverage small amounts of
labeled data. The key idea has been to assign the missing labels that are most consistent
with the structural assumptions that we make about the data. For example for the matrix
completion task for movie recommendations, we are given a matrix with very few labeled
entries and most reviews are unknown. To infer the missing labels, the structural assump-
tion made is that the underlying matrix is low-rank and the optimization becomes finding
a low-rank matrix that is consistent with the given labels.

For many applications, understanding the structure of the data is nontrivial and cannot
be as easily expressed as the low-rank constraint. It becomes more difficult to define an
appropriate regularization measure to capture the structure in the data . In this chapter,
we will focus on binary classification problems where the structural assumptions are not
simple to encode. The idea we investigate will be to gradually uncover the structure
through self-training and utilize support vector machines to determine confidence. We will
show empirically that this iterative procedure allows for more accurate labels, particularly
in the imbalanced class setting. Moreover, we show that this iterative procedure allows for
leveraging warm starts very efficiently, scaling better than many existing SSL algorithms.

102



Figure 5.1: The structure given from the unlabeled data greatly helps creating a classifier
that generalizes better to unseen data. In the bottom row, we see that different sets of
unlabeled data (corresponding to the same labeled dataset in the top row) can shape the
classifier in very different ways.

5.2 Background

5.2.1 Support Vector Machines

We begin with a brief overview of Support Vector Machines (SVM). The problems we
consider are binary linear classification problems, in which we are given a set of feature
vectors, {xi}ni=1 where each xi ∈ Rm, and a label vector, y ∈ {−1, 1}n, where yi is the label
corresponding to the feature vector xi. The problem is to find a hyperplane that separates
the positive class from the negative class.

The motivation for SVMs relies on the concept of a margin.

Definition 5.2.1. Consider a hyperplane defined by the weights w ∈ Rn and a bias term
b ∈ R. Then the functional margin with respect to a training point (xi, yi) ∈
Rn × {−1, 1}, denoted as p(xi, yi, w, b), is

p(xi, yi, w, b) = yi(w
>xi + b).

Similarly, the functional margin with respect to a training set S = {(xi, yi) : i =
1, ...m} is defined as,

p(S, w, b) = min
(xi,yi)∈S

p(xi, yi, w, b).
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If we use sign(w>xi + b) to assign the label to xi, then the functional margin will be
positive if the point is classified correctly and negative is classified incorrectly. Moreover,
we can interpret points that have a large and positive functional margin to be labelings
that we are confident in since these points are far from the decision boundary. However, by
substituting w with 2w and b with 2b, we see that this corresponds to the same hyperplane
but the functional margins have all been doubled. Thus, it may be more useful to consider
a normalized version of the functional margin.

Definition 5.2.2. The geometric margin with respect to a training point (xi, yi) ∈
Rn × {−1, 1},denoted as q(xi, yi, w, b), is

q(xi, yi, w, b) = yi

(
w>xi + b

‖w‖2

)
.

Analogously, the geometric margin with respect to a training set S = {(xi, yi) : i =
1, ...m} is defined as,

q(S, w, b) = min
(xi,yi)∈S

q(xi, yi, w, b).

The linear SVM problem is to find the separating hyperplane with the maximum geo-
metric margin [9, 24]. This hyperplane can be found by solving the following optimization
problem,

max
w,b,γ

γ

‖w‖2

s.t. yi(w
>xi + b) ≥ γ, ∀(xi, yi) ∈ S.

(5.1)

The objective maximizes the geometric margin while the constraint ensures that all points
are classified correctly and sufficiently far from the hyperplane.

Since the parameter γ measures the functional margin on the training set S, we can
simplify (5.1) by normalizing γ. Note that this does not change the problem since w and b
can be scaled arbitrarily without affecting the solution. The problem in (5.1) can now be
rewritten as,

min
w,b

1

2
‖w‖2

2

s.t. yi(w
>xi + b) ≥ 1, ∀(xi, yi) ∈ S.

(5.2)

The constraints in (5.2) require all points to be correctly classified. However, most
datasets are not linearly separable which would lead to no feasible solutions for (5.1). To
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handle this case, slack variables {ξi}mi=1, are introduced to create a soft margin problem,

min
w,b

1

2
‖w‖2

2 + C

m∑
i=1

ξi

s.t. yi(w
>xi + b) ≥ 1− ξi, ∀(xi, yi) ∈ S

ξi ≥ 0, i = 1, ...,m.

(5.3)

where C ≥ 0 is a penalty parameter.

While the formulation in (5.3) addresses the feasibility issue, it does not address prob-
lems where the data is separable (or nearly separable), but not linearly separable as in
Figure 5.1. The key insight is to use Cover’s Theorem, which states that with high prob-
ability, one can map a training set that is not linearly separable to a higher dimensional
space where the training set becomes linearly separable [25].

Definition 5.2.3. A feature map is a function φ : Rm → V, where V is a Hilbert space.

Let M be the dimension of the Hilbert space corresponding to the image of the feature
map, φ. For SVM, we are typically concerned with M > m to lift the data to a higher
dimensional space. As an example, consider Figure 5.2. The data forms a donut shape
where the inner circle cannot be linearly separated from the outer circle. However, by
considering the radius of each circle, we can easily distinguish the classes. This motivates
the following feature map:

φ(x) =

 x1

x2

‖x‖2


On the right side of Figure 5.2, the data is now linearly separable using the feature map
described. We remark that using the radius of the circles alone would have been sufficient
to separate such a simple case, but we wish to emphasize that the feature map typically
lifts the data to a higher dimension.

Using the feature map in place of the original data transforms the problem as follows,

min
w,b

1

2
‖w‖2

2 + C
m∑
i=1

ξi

s.t. yi(w
>φ(xi) + b) ≥ 1− ξi, ∀(xi, yi) ∈ S

ξi ≥ 0, i = 1, ...,m

(5.4)
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Figure 5.2: On the left, the data is not linearly separable. On the right, the data has been
lifted to a higher dimensional space where the data is trivially separable.

The key difference between (5.2) and (5.4) is that the dimension of w is the same as the
dimension of φ(x). Thus, if φ maps to a much higher dimensional space M � m (possibly
infinite dimensional), then (5.4) is much more expensive to solve.

The solution to this problem comes from considering the dual problem. The dual of
(5.4), see e.g. [9, 24], is,

min
α

e>α− 1

2
α>Y KY α

s.t. 0 ≤ αi ≤ C, i = 1, ...,m

y>α = 0

(5.5)

where e is the vector of all ones, Y = diag(y) is a diagonal matrix where the diagonal
entries are the vector y, and,

Kij = 〈φ(xi), φ(xj)〉.
It is important to emphasize that α ∈ Rm, which is independent of the dimension of the
feature map. Moreover, the formulation only requires the inner products of the feature
maps, not the feature maps themselves.

Definition 5.2.4. Given a feature map φ : X → V where X ⊆ Rm and V is a Hilbert
space, a kernel is a function k : X × X → X → R which satisfies,

k(x, z) = 〈φ(x), φ(z)〉V .

For a finite set X = {x1, ..., xm} where each xi ∈ Rn, the associated matrix,

K = [k(xi, xj)]
m
i,j=1
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is called the kernel matrix or Gram matrix.

If we can evaluate the kernel function efficiently, we can implicitly solve the SVM
problem in a very high dimensional feature space without explicitly computing the features
in the high dimensional space. This is commonly referred to as the “kernel trick” [34]. In
practice, a well known kernel function is typically chosen instead of designing a feature
map and computing the kernel afterwards. A common choice we will use is the Gaussian
kernel defined by the following kernel function,

k(x, y) = exp

(
−‖x− y‖

2
2

2σ2

)
(5.6)

where σ is a parameter.

5.2.2 S3VM

The Semi-Supervised Support Vector Machine (S3VM) problem formulates a binary clas-
sification problem where the training set is only partially labeled. Explicitly, we are given
l labeled points {xi, yi}`i=1, yi = ±1, and u unlabeled points, {xi}mi=l+1, with m = l + u.
We will use the sets L and U to denote the indices for labeled and unlabeled sets respec-
tively. A natural way to incorporate the unknown labels is to treat them as additional
optimization variables. The following optimization problem is then solved to obtain the
optimal hyperplane parameters (w, b), as well as the binary labels for the unlabeled set,
yU = [yl+1, ..., ym]>,

min
yU

min
w,b

P (w, b, yU) =
1

2
wTw + C

∑
i∈L

ξi + C∗
∑
i∈U

ξi

s.t. yi(w · φ(xi) + b) ≥ 1− ξi, i = 1, ...,m

ξi ≥ 0

yi ∈ {−1, 1}

(5.7)

where C and C∗ are nonnegative regularization parameters for the labeled and unlabeled
sets respectively, and φ is a suitably chosen feature map. For many approaches, the inner
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optimization in (5.7) is replaced with its dual as follows,

min
yU

max
α

D(α, yU) = eTα− 1

2
αTY KY α

s.t. yTα = 0

0 ≤ αi ≤ C, i ∈ L
0 ≤ αj ≤ C∗, j ∈ U

(5.8)

where Y = diag(y) and e is the all-ones vector. The resulting problem can be interpreted as
finding the maximum margin across all possible labelings. This encourages the algorithm
to find a labeling such that the decision boundary passes through a low-density region [13].
The combinatorial nature of yU assignment makes solving either optimization problem
extremely challenging.

5.3 Solving the S3VM Problem

Although S3VM is a natural mathematical formulation to incorporate unlabeled informa-
tion, the optimization problem becomes a difficult Mixed-Integer Problem (MIP). Thus
S3VM loses the desirable convex and continuous optimization properties from the original
SVM problem and efficient optimization becomes difficult. A variety of approaches have
been attempted, including local combinatorial searches [47], branch and bound techniques
[14], semidefinite programming (SDP) [26], concave-convex procedures [23], and convex
relaxations [54]. A full survey of the techniques can be found in [15].

The branch-and-bound (BB) approach proposed in [14] shows that the global optimum
found by the BB approach at times achieved strong generalization performance, even when
the traditional S3VM based methods typically struggle. This suggests that existing relax-
ation methods may not be a sufficiently accurate approximation to the original problem,
and better approximations may lead to better generalization performance.

Instead of using full branch-and-bound, one can consider using a simplier heuristic
such as self-training. Self-training is one of the earliest semi-supervised learning (SSL)
techniques [13] which uses a supervised algorithm to gradually expand the labeled set.
Self-training starts by training solely on labeled data. At each iteration, an assessment
is made on the predicted labels, using the current decision function for the unlabeled set.
Points that are labeled confidently will be added to the labeled set and the supervised
method is retrained on the enlarged labeled set, see e.g. [13]. An issue with self-training is
that the intermediate supervised learning steps do not incorporate unlabeled information.
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Additionally, errors tend to propagate since each supervised learner assumes the labeled
set is correct.

In this chapter, we propose a Self-Training with Adaptive Regularization SVM frame-
work (STAR-SVM), which uses self-training to gradually incorporate unlabeled informa-
tion. We view this as gradually approximating the original nonconvex optimization prob-
lem, by a sequence of convex SVM subproblems, which can be readily solved. Additionally,
we will show that the labeled set is grown in a way such that each subproblem can be
quickly solved from the warm-start solution provided by the previous subproblem. This
allows STAR-SVM to find an approximate solution to the nonconvex optimization problem
very quickly. Since self-training can be misled by training errors and noisy datasets, self-
training alone will unlikely yield a good solution to the original S3VM problem. To address
the shortcomings of self-training, we introduce individual regularization parameter Ci for
the loss of each data point which automatically adapts to the degradation in confidence at
each iteration. A confidence-weight parameter γ is utilized to control the rate at which the
confidence declines. Moreover, this allows for a simple way to incorporate class balance
information to also improve the S3VM problem in the highly imbalanced class setting.

5.3.1 Motivation

As noted in [14], the exact solution from the nonconvex optimization problem can lead to
significant improvements over existing convex relaxations. The proposed method is moti-
vated by utilizing this idea to efficiently find solutions to the nonconvex S3VM formulation,
instead of a convex relaxation.

We attempt to solve the combinatorial S3VM optimization problem by successively
approximating the problem with convex SVM subproblems using only partial labels. The
idea is to gradually grow the labeled set with self-training. Self-training for S3VM problems
has been proposed before in [29, 35, 55]. However, none of these methods address a natural
shortcoming of self-training, in which the errors tend to propagate, since each iteration
assumes the labeled set is totally correct. To address these issues, we introduce the idea
of adaptive regularization into the self-training framework.

For most S3VM frameworks, there are separate regularization parameters, C and C∗,
that bound the optimization variables for the labeled and unlabeled examples respectively.
It is suggested to choose C∗ to be smaller than C (usually C∗ = 0.1C) to reflect that we
are less confident in the unlabeled examples, [15]. Choosing a smaller constant penalizes
the errors for the unlabeled set less, but also allow for less contribution to the decision
hyperplane due to the constraints 0 ≤ αi ≤ C∗ in (5.8). Ideally, if we knew beforehand the
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confidence in each label, we could assign an individual Ci to each example to best reflect
the label confidence and better formulate the problem. Utilizing this idea for an S3VM
problem is difficult because the labels are unknown, and thus, confidence measures are also
unknown. However, when self-training is used, the confidence in the labeling is indicated
by the iteration when the example is labeled. The idea is that earlier labels are more
reliable than later labels due to error propagation. To reflect the confidence degrading
at each iteration, we introduce a confidence weighting parameter, γ ∈ [0, 1]. Thus, when
example xi is labeled at iteration k, we adjust the regularization parameter Ci as follows,

Ci = γkC. (5.9)

By limiting the contributions of examples we are less confident in, the effect of error
propagation will be lessened.

Ignoring the Offset

The work in [71] has shown that, when using kernels with a large feature space, such
as the Gaussian RBF kernel, utilizing the offset term, b, does not improve generalization
performance for classification problems. Moreover, the effect of removing the offset term
is that the optimization problem (5.8) does not have the equality constraint, allowing for
simpler solvers such as the one in [72]. For the remainder of the chapter, we will refer to
this particular SVM solver as Training Without Offset SVM (TWO-SVM).

We give a brief overview of the TWO-SVM method proposed in [72]. Many SVM
solvers, such as LibSVM [12], utilize Sequential Minimization Optimization (SMO) [66] to
efficiently solve the optimization problem. To preserve the equality constraint, the SMO
algorithm iteratively chooses pairs of variables, αi and αj with i 6= j, and optimizes the
objective value jointly over these variables called the working set. The process is repeated
until all pairs of variables are optimal. Without offset, the dual problem no longer has
an equality constraint linking the variables αi. Thus, the algorithm can be simplified by
iteratively solving over working sets of size one, that is considering each αi one at a time.
This simplifies the training process allowing for a greedy component-wise gradient descent.
At each iteration, an index i∗ is identified which achieves the greatest improvement in the
dual objective value. Let `(xi, yi, α) be the hinge-loss function

`(xi, yi, α) := max

{
0, 1− yi

∑
j∈Lk

K(xi, xj)yjαj

}
. (5.10)
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The procedure is continued until the duality gap,

gap(α) = αTY KY α− eTα +
∑
i∈Lk

Ci`(xi, yi, α)

+
∑
i∈Uk

C∗i `(xi, yi, α)
(5.11)

becomes sufficiently small.

In this section, we will further illustrate that utilizing the offset term is not suitable for
iterative semi-supervised learning procedures.

Figure 5.3: We compare the decision boundaries returned from an SVM on several inputs
with and without offset. The top row is trained without offset and the bottom row is
trained with offset, σ = 1, and C = 1 (the default parameters for LibSVM). We see that
when the labeled sets are small, the offset term b biases the decision boundary greatly and
overfits the solution.

We train the SVM for a two-moons problem with and without offset using default
LibSVM parameters C = σ = 1 [12]. To demonstrate, in Figure 5.3 we see that the
decision boundary obtained using offset conforms very tightly to the given labels. For
some datasets, a reasonable decision boundary can be obtained through parameter tuning,
but in many SSL problems, the labeled set is not large enough to allow for reasonable
parameter tuning. The issue stems from the fact that the offset provides a global bias on
the decision function, however, we generally have very limited information on the entire
space. When using the offset term, we can see from Figure 5.3 that iteratively assigning
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new labels based on the decision function with offset can lead to very poor generalization
performance. Thus, it seems more fitting for an iterative procedure such as the proposed
method to use the offset-free version of the SVM problem.

Consequently we will use the offset-free version of the S3VM problem in the proposed
method.

Optimization Formulation

The proposed STAR-SVM framework solves a sequence of optimization problems with C∗i
values sequentially determined by the process. For notational convenience, rather than
keeping track of indices in U which are newly labeled, the index sets will be updated at
each iteration. That is, if example xi is assigned a label at iteration k, then we update the
index sets as follows,

Lk+1 = Lk ∪ {i}
Uk+1 = Uk \ {i}.

We will use the convention that L0 and U0 will represent the initial labeled and unlabeled
sets respectively.

The primal optimization problem for each STAR-SVM at iteration k is written as,

min
yU

min
w

Pk(w, yU) =
1

2
wTw +

∑
i∈Lk

Ciξi +
∑
i∈Uk

C∗i ξi

s.t. yi(w · φ(xi)) ≥ 1− ξi, i = 1, ...,m

ξi ≥ 0, i = 1, ...,m

yi ∈ {−1, 1}

(5.12)

We can interpret this as finding the labeling that achieves the maximum margin, i.e.,
finding a labeling that can be separated the best by a decision hyperplane defined by w.
The terms, Ciξi and C∗i ξi can be interpreted as the penalty associated with having a label
misclassified.

For notational simplicity, we have dropped the dependencies of the regularization pa-
rameters Ci and C∗i on k. The associated dual is written as,

min
yU

max
α

Dk(α, yU) = eTα− 1

2
αTY KY α

s.t. 0 ≤ αi ≤ Ci, i ∈ Lk
0 ≤ αj ≤ C∗j , j ∈ Uk,

(5.13)
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where Y is the diagonal matrix of labels, and K is the kernel matrix.

Since no confidence or label information is assumed a priori for points in U0, we initialize
C∗i = 0,∀i ∈ U0. Thus each subproblem involves training an SVM on the labeled set Lk. In
addition, the optimization problems solved at each iteration are standard SVM problems
rather than combinatorial optimization problems, which are intractable.

Note that by incorporating the class proportion information into the regularization
parameters Ci and using the offset-free SVM formulation, the optimization problem does
not have any equality constraint. This is an important point since it makes solving the
SVM problem from a warm-start easier. Note that for other formulations, solving the SVM
requires working sets with a minimum of two elements to preserve the equality constraints.
The SVM subproblems for STAR-SVM can be solved using TWO-SVM, which exploits
updating warm-start solutions.

5.3.2 Confidence Score

For self-training to be successful, a reasonable confidence score must be chosen. The con-
fidence score suggested for branching in [14] is the increase in the lower bound objective
value if the label were swapped. However, this would involve 2|Uk| SVM solves at each iter-
ation, which is not feasible for large datasets. In the following theorem, we will show that
using the magnitude of the functional margin is a reasonable choice to assign confidence.

Without loss of generality, we will partition our variables into labeled and unlabeled
sets as follows,

K =

(
KLL KLU
KUL KUU

)
, y =

(
yL
yU

)
, α =

(
αL
αU

)
, (5.14)

where L and U correspond to the rows or columns indexed by Lk and Uk, respectively.

To measure the confidence of each label, we will measure the change in the objective
value if the label is swapped. Intuitively, if the objective value dramatically worsens if
a label is swapped, then we should be confident in the original label since the current
classifier associates a strong loss with the flipped label. Conversely, if there is not very
much difference in objective if the label is swapped, then the classifier is not biased towards
either labeling and is likely not confident with the current label. For a given index set
I ⊆ Lk, define the function,

∆Dk(α, y | I) := Dk(α, y)−Dk(α, ỹ) (5.15)
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where ỹj = yj when j 6∈ I and ỹj = −yj when j ∈ I, that is the vector of labels with
indices in I swapped. ∆D(α, y | I) is the difference between the objective values in (5.13)
if the indices in I have their labels swapped.

Theorem 5.3.1. Let αL be a feasible solution to the offset-free dual SVM problem (5.13),
trained on the labeled set Lk with corresponding labels yL. Let Lk+1 = Lk ∪ {i}, for any
i ∈ Uk and let yi = sgn(

∑
j∈Lk Ki,jyjαj). Then for any αi ≥ 0,

∆Dk+1([αL, αi], [yL, yi] | {i}) = −2αiyiKi,LYLαL ≤ 0.

Proof. Let YL = diag(yL). Then we can partition Dk+1 as follows.

Dk+1([αL, αi], [yL, yi]) = −1

2
αTLYLKLLYLαL + eTαL−

αiyiKi,LYLαL −
1

2
α2
iKii + αi

Assigning yi = sgn(
∑

j∈Lk Ki,jyjαj), we have

Dk+1([αL, αi], [yL, yi])−Dk+1([αL, αi], [yL,−yi]) =

−2αiyiKi,LYLαL
(5.16)

Since sgn(yi) = sgn(Ki,LYLαL) and αi ≥ 0, the quantity −2αiyiKi,LYLαL ≤ 0, completing
the proof.

Recall that S3VM finds the local maximizer with the smallest objective value. Theorem
5.3.1 states we can decrease the objective value by simply swapping labels for any points
that are inconsistent with the decision hyperplane. Also, we have shown that the magnitude
of the functional margin is proportional to the change from swapping labels. Thus, choosing
examples that have the largest functional margin corresponds to finding the coordinate
which yields the largest rate of change in ∆Dk.

An important aspect of this algorithm we will show is that the intermediate SVM
subproblems can be solved very efficiently using warm-starts. Suppose that the label of the
ith example is introduced to the labeled set at iteration k+ 1, that is, Lk+1 = Lk∪{i}. Let
α∗(k) be the optimal solution to the inner maximization problem in (5.13) over the labeled

set Lk. A natural warm-start solution will be to set αi = 0 (the coefficient corresponding
to the newly added example) and to use coefficients given by α∗k for the indices in Lk.
Explicitly, this corresponds to setting α = [α∗k, 0]> as an initial feasible solution to (5.5) for
the index set Lk+1. In Theorem 5.3.2, we will show that after one iteration of the TWO-
SVM algorithm, which greedily updates one index (which will be index i in this case), the
duality gap of the SVM dual problem (5.13) can be bounded.
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Theorem 5.3.2. Let α∗k be an optimal solution to (5.13) over the set L(k) with labels y(k).
For a feasible solution α, define the dual suboptimality measure as

ν(α) = D(α∗, y(k))−D(α, y(k)).

Let Lk+1 = Lk ∪ {i} be the updated label set for some index i ∈ Uk. If α0 = [α∗k, 0] is an
initial warm-start solution to (5.13) for the set Lk+1 with given labels y(k+1) = [y(k), yi]

>

for some yi ∈ {−1, 1}, and α′ is the updated solution after one iteration of TWO-SVM,
then

ν(α′) ≤ Ci`(xi, yi, α
′)

where ` is the hinge-loss function defined in (5.10).

Proof. As noted in [72], for a given feasible solution α, the duality gap over the training
set (Lk, y(k)) is,

gapk(α) = αTY KY α− eTα +
∑
i∈Lk

Ci`(xi, yi, f)

+
∑
i∈Uk

C∗i `(xi, yi, f)

By strong duality, since α∗L is the optimal solution to the SVM problem trained on Lk,
gapk(α

∗
k) = 0. Thus, using the warm start solution for Lk+1, we have that,

gapk+1(α0) = gapk+1([α∗k, 0]) = Ci`(xi, yi, f). (5.17)

If [α∗k, 0]> is an optimal solution to (5.13) over the training set (Lk+1, y
(k+1)), then the

duality gap is 0 and the result is trivially satisfied. Otherwise, the greedy update for
TWO-SVM will choose index i to improve. In this case, the updated solution given by one
iteration of TWO-SVM is α′ = [α∗k, αi]

> for some 0 ≤ αi ≤ Ci.

Consider,
ν(α′) = Dk+1(α∗k+1, y

(k+1))−Dk+1(α′, y(k+1)). (5.18)

Let Pk+1(w∗, y(k+1)) be the optimal value to the primal problem for the training set
(Lk+1, y

(k+1)). Let (w0, y
(k+1)) be the primal solution associated with the dual solution

(α0, y
(k+1)). Then,

Pk+1(w∗, y(k+1))

≤ Pk+1(w0, y
(k+1))

= Dk+1(α0, y
(k+1)) + gapk+1(α0)

(5.19)

115



where the last line follows from the definition of the duality gap and strong duality.

Again from strong duality, we have that Pk+1(w∗, y(k+1)) = Dk+1(α∗k+1, y
(k+1)). Substi-

tuting (5.19) into (5.18), we get,

ν(α′)

≤ Dk+1(α0, y
(k+1)) + gapk+1(α0)−Dk+1(α′, y(k+1))

≤ gap(α0)

where the last inequality comes from the fact that TWO-SVM updates αi to increase the
objective function, so Dk+1(α′, y(k+1)) ≥ Dk+1(α0, y

(k+1)). The result follows from above
and (5.17).

This indicates that after one step of the TWO-SVM algorithm, the dual suboptimality
measure will be bounded above by a product of the loss and its regularization parameter
Ci. Typically, the loss associated with new training points becomes very small as the
algorithm sees more training points, and the warm-start solution becomes very close to the
optimal solution. This implies that the TWO-SVM algorithm will converge very quickly,
possibly after just a single TWO-SVM update.

Moreover, the following lemma from [72] states a relation between the duality gap and
the step sizes of the ascent directions.

Lemma 5.3.3. ([72]) Let α ∈ [0, C] = [0, C1]× [0, C2]× ...× [0, Cn] and define the function,
σ : (α, I ⊆ {1, ..., n})→ R as,

σ(α|I) := sup
α̃∈[0,C]

α̃i=αi,∀i 6∈I

〈∇D(α), α̃− α〉

where ∇D(α) is the gradient of the SVM dual objective function in (5.8) evaluated at a
feasible point α. Then,

n∑
i=1

σ(α|{i}) = gap(α).

From this lemma we see that by choosing examples that yield small duality gaps, we
limit the sum of the ascent direction step sizes. This means that we can find solutions that
are closer to the warm-start, allowing for a smooth labeling.
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5.3.3 Computational Efficiency

In practice, it is inefficient to only add one label at each iteration, since there are likely
several examples which are quite similar and can be added all at once without compromising
the performance of the algorithm. In most self-training procedures, a confidence threshold
is chosen to accept all labelings that are above this threshold. To avoid introducing new
hyperparameters, we propose to use an adaptive thresholding scheme in Algorithm 8. The
idea is to threshold the confidence scores, where we gradually decrease this threshold as
more points become labeled. The rationale is that the earlier iterations have a very large
impact on the classifier and we wish to only accept points with very high confidence. In
the later iterations when the labeled set becomes large, we expect that any remaining
unlabeled points will be ambiguous and may not strongly belong to either class. Since the
regularization parameters Ci diminish as the iteration count grows larger, these points will
likely contribute very little to the final classifier and we do not wish to spend as much time
rigorously classifying each point compared to the early iterations. We will use the notation
|A| to denote the cardinality of the set A.

Algorithm 8 Adaptive Thresholding

Input: Vector of confidence scores g ∈ R|Uk|
Original Labeled set L0

Original indices of unlabeled points U0

Current labeled set Lk,
Output: Indices of confident labels I

1: τ ← |Lk|−|L0|
|U0|

2: I+ ← {i : gi ≥ (1− τ) max(g)}
3: I− ← {i : −gi ≥ (1− τ) max(−g)}
4: I ← I+ ∪ I−

Incorporating Class Proportion Knowledge

For imbalanced datasets, penalizing the regularization parameters, C, for the positive
and negative classes separately can improve performance, see, e.g. [43]. When data is
highly imbalanced, the positive (minority class) labels may be ignored by the classifier
since the loss for the associated class will be small due to the small size of the minority
class. Thus, by adjusting the regularization parameters to reflect the class ratio, we also
penalize the loss accordingly. For our iterative approach, we can adjust the regularization
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parameters accordingly to reflect the prior knowledge of the class ratios when the labels
are assigned. Let r be the proportion of positive examples (assuming the positive class
is the minority class), either provided as a user parameter or estimated from the labeled

data, r =
∑l
i=1 max(0,yi)

l
, where l = |L0|. Then the associated weights will be defined as,

C+ = rC

C− = (1− r)C.
(5.20)

Combining this with (5.9), the update for Ci at iteration k becomes,

Ci =

{
γkC+, if yi = 1

γkC−, if yi = −1.
(5.21)

5.3.4 Algorithm Overview

We now briefly summarize the proposed algorithm, STAR-SVM, in Algorithm 9.

Although STAR-SVM in Algorithm 9 is motivated in the binary class setting, extending
this algorithm to a multi-class algorithm can be accomplished using a standard one-vs-rest
approach. If there are c classes, we train the STAR-SVM algorithm c times where each
trial corresponds to a different class being the positive class and label all other classes the
negative class. An unlabeled example xi, is given the label j, if xi was labeled positive in
the earliest iteration for the trial where j is the positive class (or the latest trial j if xi
is labeled negatively for all trials). This labeling agrees with the assumption that earlier
labelings correspond to higher confidence. Although other approaches can be considered,
this approach will be used for the subsequent experimental results.

5.4 Experimental Results

In this section, we compare STAR-SVM against leading SSL methods on a variety of
imbalanced datasets, both graph and S3VM based methods are considered. The benchmark
datasets are provided by UCI [4] and Keel [1]. A wide variety of datasets are chosen to
reflect varying structural properties of the data as well as varying class proportion ratios.
This experiment will examine the performance of the classifiers in a setting where little is
known about the true distributions of the data. We emphasize imbalanced datasets since
this is an area where SSL methods typically struggle the most [75, 76]. In addition, we
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Algorithm 9 STAR-SVM

Input: Data X
Size of training set n
Labeled indices L0

Unlabeled indices U0

Labels y
Kernel matrix K
Regularization parameter C
Confidence weight γ
Class proportion r

Output: f ∗(x) =
∑n

i=1K(x, xi)yiαi
k ← 1
repeat
α← TWO-SVM(XL, yL, CL)
g ← KLLdiag(yL)α
I ← threshold(g, |L0|, |U0|, |Lk|)
for j ∈ I do

if gj > 0 then
Cj ← γkC+

else
Cj ← γkC−

end if
end for
Uk+1 ← Uk \ I
yI ← sgn(gI)
Lk+1 ← Lk ∪ I
k ← k + 1

until Uk = ∅
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want to emphasize the importance of adapting regularization parameters to incorporate
class imbalances. Additionally, since S3VM methods are inherently binary classifiers, any
multi-class setting will typically require solving several imbalanced S3VM problems.

5.4.1 Imbalanced Datasets

We demonstrate STAR-SVM’s performance across a variety of imbalanced realworld datasets
from UCI [4] and Keel [1]. The multi-class data has been transformed into imbalanced bi-
nary datasets using the classes suggested in [27]. We summarize the descriptions in Table
5.1.

The methods we compare against are,

1. Gaussian Fields and Harmonic Functions (GFHF) [86], which use the harmonic so-
lution to solve the graph diffusion.

2. Local and Global Consistency (LGC) [84], which use normalized graph Laplacian
and soft constraints for given labels.

3. Greedy Gradient Maximum Cut (GGMC) [75, 76], which use alternating minimiza-
tion over both discrete labels and continuous decision function.

4. Laplacian SVM (LapSVM) [7], which adds graph regularization term to SVM frame-
work.

5. WellSVM [54], which is a convex relaxation to S3VM.

The code for each method is provided by the authors.

For most SSL problems, the labeled set is insufficient to perform reliable parameter
tuning. Moreover, as noted in [15], some methods benefit more from parameter tuning than
others. Thus, to ensure fairness and to simulate a realistic scenario, parameter tuning is not
applied to the datasets in Table 5.1. Instead, all methods used the same set of parameters
summarized in the Table 5.2.

For LapSVM, the results reported here ignore the offset term as well. Despite the fact
that the original LapSVM solver includes a bias term, we have found that the results for
LapSVM have improved dramatically when the offset is ignored for the classification.

For each dataset, n = 20 labeled samples are randomly chosen, with at least one
labeled example from each class. For each dataset, the experiments are repeated using
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Dataset Name Source Dimension Points Num. Positive
Ecoli UCI 7 336 35

Crime UCI 100 1994 100
Libras UCI 7 360 90

Oil [48] 49 937 41
Optical Digits UCI 64 5620 554

Wine UCI 11 4898 183
Satellite Image UCI 36 6435 626

Vowel Keel 10 989 90
Shuttle0vs4 Keel 9 1829 123
Page Block Keel 10 5472 559

Glass4 Keel 9 214 13
Cleveland0vs4 Keel 13 173 13
Contraceptive Keel 9 1473 333

Euthyroid UCI 42 3163 293
Spectrometer UCI 93 531 45

Table 5.1: Imbalanced Datset Description

Parameter Value Description
k 6 k used for k-NN graph construction

kernel type RBF kernel function used
σ 1 RBF kernel width
γA 1 kernel regularization weight for LapSVM
γI 0.1 graph regularization weight for LapSVM
γ 0.7 confidence weight for STAR-SVM
C 1 SVM regularization parameter

Table 5.2: Parameters
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thirty different random initial labeled sets. The imbalance ratio r is estimated from the
given labels. The average performances are reported. We also tried experiments with
n ∈ {2, 5, 10, 50}, but the trends are similar throughout.

For a given classifier, let TP, FP, TN, FN to be the number of true positives, false
positives, true negatives, and false negatives reported by the classifier on a test set. We
report the following imbalanced classification metrics, F1-score, G-mean, and AUC. F1-
score and G-mean are defined as follows,

F1 := 2
TP

TP+FP
· TP
TP+FN

TP
TP+FP

+ TP
TP+FN

and G-mean :=

√
TP

TP + FP
+

TP

TP + FN
,

where the F1 score is the harmonic mean of the precision ( TP
TP+FP

) and recall ( TP
TP+FN

)
classifier, and G-mean is the geometric mean of the precision and recall of the classifier.

If the classifier outputs a score instead of a class label, then we can infer labels by
thresholding the score vector. Explicitly, suppose we are given a vector of scores s ∈ Rn,
where si corresponds to the score associated with training point xi. Given a threshold
value T ∈ R, we can assign a label ŷi = 1 if si > T and ŷi = −1 otherwise. For each value
of T , we can define a true positive rate, which is the recall with labels thresholded at the
value T , and a false positive, denoted FPR(T ) = FP

FP+TN
, where the quantities FP and

TN are associated with the labeling inferred by the threshold at T . The receiver operating
characteristic ROC-curve plots the true positive rate vs. the false positive rate across all
threshold value of T . The area under curve (AUC) is then defined as the area under the
ROC curve.

For imbalanced datasets, we will report the F1-score, Geometric Mean, and AUC which
are more suitable for imbalanced classification [42].

5.4.2 Computing Time Comparisons

For the experiments run on the imbalanced datasets, we report the average CPU time
required to run each algorithm. All algorithms are implemented in MATLAB, however,
LapSVM and WellSVM utilize subroutines written in C++.

In Figure 5.4, we see that STAR-SVM scales much better as the datasets increase
in size. Experimentally, after the first few iterations, each TWO-SVM solve terminates
quickly.
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Dataset Name GFHF LGC GGMC LapSVM WellSVM STAR-SVM
Ecoli 0.54± 0.18 0.05± 0.17 0.48± 0.05 0.50± 0.15 0.48± 0.19 0.53± 0.05
Crime 0.12± 0.06 0.15± 0.10 0.19± 0.07 0.21± 0.08 0.35± 0.14 0.29± 0.10
Libras 0.40± 0.18 0.49± 0.17 0.26± 0.10 0.47± 0.19 0.31± 0.23 0.49± 0.16
Oil 0.08± 0.01 0.17± 0.13 0.12± 0.09 0.16± 0.13 0.08± 0.05 0.22± 0.14
Optical Digits 0.01± 0.01 0.72± 0.21 0.39± 0.12 0.64± 0.17 0.23± 0.24 0.47± 0.08
Wine 0.01± 0.02 0.02± 0.02 0.07± 0.02 0.10± 0.06 0.14± 0.08 0.10± 0.05
Satellite Image 0.08± 0.12 0.28± 0.22 0.28± 0.07 0.36± 0.08 0.24± 0.23 0.44± 0.11
Vowel 0.49± 0.13 0.48± 0.16 0.41± 0.12 0.55± 0.09 0.57± 0.13 0.51± 0.09
Shuttle0vs4 0.87± 0.14 0.88± 0.16 0.94± 0.01 0.89± 0.09 0.76± 0.16 1.00± 0.00
Page Block 0.47± 0.20 0.50± 0.17 0.24± 0.07 0.60± 0.08 0.43± 0.22 0.52± 0.14
Glass4 0.42± 0.11 0.06± 0.10 0.40± 0.11 0.45± 0.11 0.35± 0.17 0.49± 0.11
Cleveland0vs4 0.41± 0.26 0.17± 0.20 0.40± 0.24 0.44± 0.22 0.40± 0.28 0.50± 0.21
Contraceptive 0.21± 0.08 0.18± 0.09 0.29± 0.05 0.32± 0.05 0.29± 0.08 0.36± 0.04
Euthyroid 0.13± 0.08 0.13± 0.09 0.17± 0.05 0.22± 0.07 0.07± 0.06 0.23± 0.06
Spectrometer 0.55± 0.19 0.37± 0.28 0.39± 0.19 0.50± 0.18 0.40± 0.15 0.62± 0.15
Average 0.319 0.310 0.335 0.428 0.339 0.451
Avg. Rank 4.267 4.267 4.400 2.400 4.067 1.600

Table 5.3: F1 Score with 20 labeled examples. Top performers are bolded in each row.

Dataset Name GFHF LGC GGMC LapSVM WellSVM STAR-SVM
Ecoli 0.72± 0.21 0.07± 0.21 0.82± 0.10 0.76± 0.26 0.67± 0.22 0.87± 0.02
Crime 0.26± 0.09 0.32± 0.15 0.49± 0.20 0.47± 0.19 0.59± 0.21 0.53± 0.13
Libras 0.59± 0.24 0.67± 0.22 0.66± 0.18 0.70± 0.24 0.49± 0.26 0.68± 0.19
Oil 0.03± 0.10 0.32± 0.17 0.41± 0.16 0.39± 0.19 0.28± 0.12 0.47± 0.13
Optical Digits 0.07± 0.02 0.87± 0.17 0.77± 0.11 0.91± 0.05 0.39± 0.29 0.78± 0.07
Wine 0.06± 0.07 0.07± 0.07 0.49± 0.07 0.39± 0.14 0.38± 0.14 0.44± 0.13
Satellite Image 0.16± 0.16 0.43± 0.27 0.67± 0.12 0.75± 0.13 0.42± 0.34 0.76± 0.14
Vowel 0.66± 0.15 0.64± 0.18 0.78± 0.11 0.83± 0.10 0.75± 0.14 0.76± 0.10
Shuttle0vs4 0.91± 0.13 0.94± 0.15 1.00± 0.00 0.90± 0.08 0.91± 0.07 1.00± 0.00
Page Block 0.58± 0.19 0.63± 0.18 0.60± 0.10 0.81± 0.08 0.62± 0.22 0.69± 0.14
Glass4 0.66± 0.14 0.10± 0.17 0.75± 0.09 0.78± 0.12 0.59± 0.22 0.82± 0.10
Cleveland0vs4 0.56± 0.32 0.24± 0.26 0.63± 0.34 0.68± 0.32 0.53± 0.33 0.71± 0.28
Contraceptive 0.38± 0.09 0.34± 0.11 0.48± 0.06 0.51± 0.06 0.47± 0.09 0.55± 0.04
Euthyroid 0.37± 0.15 0.29± 0.15 0.46± 0.12 0.51± 0.12 0.25± 0.12 0.56± 0.13
Spectrometer 0.67± 0.18 0.44± 0.29 0.63± 0.22 0.70± 0.18 0.62± 0.14 0.75± 0.14
Average 0.445 0.425 0.643 0.673 0.531 0.691
Avg. Rank 4.933 4.667 2.933 2.333 4.600 1.533

Table 5.4: G-mean for 20 labeled examples
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Dataset Name GFHF LGC GGMC LapSVM WellSVM STAR-SVM
Ecoli 0.91± 0.02 0.67± 0.19 0.90± 0.01 0.92± 0.03 0.93± 0.04 0.94± 0.02
Crime 0.70± 0.10 0.73± 0.04 0.32± 0.04 0.69± 0.12 0.85± 0.08 0.76± 0.05
Libras 0.85± 0.18 0.87± 0.08 0.70± 0.12 0.86± 0.11 0.81± 0.10 0.86± 0.08
Oil 0.50± 0.02 0.76± 0.06 0.48± 0.05 0.72± 0.10 0.72± 0.05 0.76± 0.04
Optical Digits 0.69± 0.18 0.95± 0.06 0.95± 0.01 0.98± 0.02 0.72± 0.18 0.84± 0.07
Wine 0.56± 0.09 0.67± 0.05 0.42± 0.07 0.65± 0.08 0.69± 0.07 0.66± 0.07
Satellite Image 0.88± 0.05 0.64± 0.16 0.88± 0.04 0.88± 0.06 0.68± 0.21 0.79± 0.10
Vowel 0.92± 0.07 0.86± 0.09 0.88± 0.08 0.92± 0.05 0.93± 0.04 0.89± 0.05
Shuttle0vs4 1.00± 0.00 1.00± 0.00 0.98± 0.01 1.00± 0.00 0.99± 0.02 1.00± 0.00
Page Block 0.90± 0.05 0.87± 0.05 0.75± 0.11 0.92± 0.03 0.85± 0.07 0.90± 0.04
Glass4 0.88± 0.09 0.87± 0.03 0.66± 0.11 0.95± 0.05 0.93± 0.04 0.96± 0.02
Cleveland0vs4 0.92± 0.06 0.89± 0.02 0.56± 0.19 0.92± 0.06 0.96± 0.02 0.93± 0.04
Contraceptive 0.53± 0.05 0.53± 0.04 0.54± 0.04 0.53± 0.05 0.59± 0.07 0.57± 0.05
Euthyroid 0.57± 0.07 0.50± 0.06 0.62± 0.05 0.55± 0.07 0.57± 0.06 0.57± 0.09
Spectrometer 0.73± 0.13 0.84± 0.09 0.44± 0.06 0.92± 0.07 0.88± 0.06 0.92± 0.08
Average 0.769 0.776 0.672 0.828 0.808 0.823
Avg. Rank 3.933 4.133 4.733 2.867 2.933 2.400

Table 5.5: AUC for 20 labeled examples
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Figure 5.4: CPU times for imbalanced datasets.
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5.4.3 Discussion

As observed in Tables 5.3-5.5, STAR-SVM shows very strong performance across all met-
rics. We observe that for most datasets, one of the graph-based methods (GFHF, LGC,
and GGMC) typically struggles. This highlights the sensitivity of the graph construction,
which can be very challenging to tune correctly with very limited data.

5.5 Conclusions

In this chapter, we propose a method STAR-SVM that is competitive against state-of-
the-art SSL methods on various real-world datasets. We have shown that by gradually
adjusting the regularization parameters, the optimization problems adaptively incorporate
structure from the unlabeled data even in the presence of noisy datasets. Furthermore, we
have shown theoretically and experimentally that growing the labeled set in this fashion
allows for smooth variations of the classifier, yielding very quick convergence in solving
SVM subproblems using a warm-start. The strong performance of STAR-SVM, in a setting
where little is known about the data, suggests that nonconvex objective functions can be
a promising direction for future S3VM algorithms.
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Chapter 6

Conclusion

In this thesis, we have provided new algorithms to computationally improve a few semi-
supervised learning problems. Since the amount of unlabeled data is growing exceptionally
quickly, there is a tremendous need for scalable algorithms. In particular, it is impractical
to rely purely on manually annotated labels, and algorithms that can leverage the structure
revealed by the vast amount of unlabeled data collected can be very appealing.

Low-rank matrix completion problems are one of the core ingredients in modern rec-
ommender systems. Since the matrices scale with the number of users and the number
of products, it is very important that there exist scalable algorithms to find the low-rank
representations. Even constant factor improvements in computation time can lead to more
frequent retraining schedules, allowing for more accurate representations in real-world set-
tings. We observed that even though the Frank-Wolfe algorithm can greatly reduce the
iteration cost compared to proximal methods [46], the algorithm typically would return a
very high rank solution incurring a much higher computation time along with much higher
memory requirements.

For simultaneously sparse and low-rank matrix estimation problems, we observed that
there is a clear tradeoff between scalable approaches and accurate approaches. While
certain Frank-Wolfe methods existed using smooth surrogates, their methods failed to
converge to reasonably accurate solutions as observed by noisy sparsity patterns and poor
predictive performance [17]. On the other extreme, approaches utilizing proximal gradient
descent scaled very poorly due to the full SVD required, but was able to yield high quality
solutions in practice [69]. Since many problems such as graph link prediction and sparse
covariance estimation require a sparse and low-rank structure, it is tremendously important
to find a better algorithm to quickly find high quality solutions.
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The final set of problems we addressed was for semi-supervised classification tasks.
For many classification tasks, we do not have access to a large amount of labeled data,
e.g. handwritten digits, medical diagnoses, credit card fraud, etc. By leveraging different
structural assumptions, S3VM and semi-supervised graph based methods have been very
successful at returning classifiers with very little labeled data. However, S3VM and graph-
based methods appear to struggle on imbalanced classification tasks and the performance
is very sensitive to the initial labeling.

Below, we give a brief summary of the specific problems encountered with the current
landscape of semi-supervised learning, as well as solutions that we have proposed in the
thesis.

6.1 Rank-Drop Steps

For convex approaches to the low-rank matrix completion problem, we showed that a few
existing convex methods fail to scale. For the proximal gradient descent or projected
gradient descent, the necessity of a full SVD, requiring O(mn2) operations at each iter-
ation, completely prevents these algorithms from scaling to very large problems. While
Frank-Wolfe methods partially solves this problem by only requiring computing the leading
singular vector pair, it unfortunately has a much slower convergence rate, often yielding
very high rank intermediate solutions. The high-rank iterates introduced large storage
requirements as well as expensive gradient computations, negating the benefit of the cheap
iteration cost.

To address this issue, we proposed rank-drop steps to find low-rank intermediate solu-
tions, leveraging the cheap iteration cost of Frank-Wolfe without the computational burden
associated with high-rank intermediate iterates. We accomplished this by introducing two
subproblems specifically created to decrease the rank of the current iterate. By considering
the interior and exterior cases, we showed that the subproblems can be efficiently solved,
yielding promising rank-drop solutions. In the experiments considered, the observed rank
decreased dramatically compared to the standard Frank-Wolfe, and showed improved em-
pirical computational performance over the existing Frank-Wolfe variants.

6.2 Frank-Wolfe with Uniform Affine Approximations

There are many practical applications that require a representation which is both sparse
and low-rank. Using only sparse or low-rank regularizers alone for the graph link pre-
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diction problem, for example, can yield very poor predictions. Unfortunately, there are
not many efficient algorithms to solve problems with both sparse and low-rank regular-
izers. We observed that the alternating proximal approach proposed in [69] scaled very
poorly even on modest sized datasets and many existing Frank-Wolfe based approaches
returned suboptimal solutions due to poor linear approximations. By utilizing uniform
affine approximations, we showed that it is possible to leverage the simple Frank-Wolfe
subproblems without introducing large approximation errors by defining an appropriate
affine approximation that adapts to the Frank-Wolfe step-size schedule. Combining this
idea with the rank-drop steps, we showed that this method can scale to very large problems
and outperforms the existing nonsmooth Frank-Wolfe variants.

6.2.1 Self-Training with Adaptive Regularization

The Semi-Supervised Support Vector Machine (S3VM) solves a nonconvex, mixed-integer
program. Due to the difficulty in solving the problem, convex approximations have typ-
ically been used. However, existing approaches have suffered from poor scalability and
struggle on certain datasets, compared to graph based counterparts. The poor predictive
performance suggests that for some datasets, the convex relaxation may not be a suffi-
ciently accurate approximation to the problem. We presented a self-training approach
with self-adapting regularization parameters for S3VM formulations. At each iteration,
the regularization parameters are adapted to better reflect label confidence, class propor-
tion, and to gradually include more unlabeled points. We showed that updating the S3VM
framework iteratively in this fashion, the sequence of SVM subproblems can be solved
very efficiently and the solution generated by this sequence yields superior performance
compared to leading semi-supervised learning methods. Moreover, by iteratively updating
the weights of the regularization parameters, we could incorporate label imbalances and
greatly outperform many existing semi-supervised learning methods on imbalance datasets.
Finally, we note that the incremental approach to increasing the training set also means
that the kernel matrix can be incrementally built as well, only requiring the active support
vectors from each iteration. This contrasts with existing S3VM and graph-based methods
which require the full dense kernel matrix at the start of training.

6.3 Future Work

There are still many natural questions that we can pursue:
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• Empirically, it seemed that both the in-face step and the rank-drop step converged
faster than the regular Frank-Wolfe step. However, in the convergence proofs for
both the rank-drop step and the in-face step, the convergence rate is worse than
the Frank-Wolfe algorithm by a factor of 2. Is it possible to improve the analysis or
determine conditions where we can theoretically guarantee a better convergence rate
for either variant?

• The convergence rate given for the nonsmooth Frank-Wolfe algorithm proposed (FWUA)
appears overly pessimistic to account for the approximation errors added by each
component, incurring a constant factor of mn. The empirical performance seems to
suggest that the convergence rate can be improved. Is it possible to improve the con-
stant factor of the convergence so it does not scale quadratically with the dimension?

• The STAR-SVM algorithm was motivated by the assumption that the convex re-
laxation was not a sufficiently accurate relaxation to the original S3VM problem.
Is it possible to identify conditions where the convex relaxation is guaranteed to be
insufficient?
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[40] Jacques Guélat and Patrice Marcotte. Some comments on wolfe’s away step. Mathe-
matical Programming, 35(1):110–119, 1986.

[41] Elad Hazan. Sparse approximate solutions to semidefinite programs. Lecture Notes
in Computer Science, 4957:306–316, 2008.

[42] Haibo He and Edwardo A Garcia. Learning from imbalanced data. Knowledge and
Data Engineering, IEEE Transactions on, 21(9):1263–1284, 2009.

[43] He He and Ali Ghodsi. Rare class classification by support vector machine. In ICPR,
pages 548–551, 2010.

[44] Cho-Jui Hsieh and Peder A Olsen. Nuclear norm minimization via active subspace
selection. In ICML, pages 575–583, 2014.

[45] Martin Jaggi. Sparse Convex Optimization Methods for Machine Learning. PhD
thesis, ETH Zurich, October 2011.

133



[46] Martin Jaggi. Revisiting frank-wolfe: Projection-free sparse convex optimization. In
ICML (1), pages 427–435, 2013.

[47] Thorsten Joachims. Transductive inference for text classification using support vector
machines. In ICML, volume 99, pages 200–209, 1999.

[48] Miroslav Kubat, Robert C Holte, and Stan Matwin. Machine learning for the detection
of oil spills in satellite radar images. Machine learning, 30(2-3):195–215, 1998.
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Appendix A

Useful Properties of Matrix Norms

Property A.0.1. Let A ∈ Rm×n be a rank-r matrix. The Frobenius norm has the following
equivalent characterizations:

(i) ‖A‖F =
√∑

ij A
2
ij.

(ii) ‖A‖F =
√

tr(A>A).

(iii) ‖A‖F =
√∑r

i=1 σi(A).

Proof. (i) and (ii) are equivalent immediately follows algebraically. To see that (ii) and
(iii) are equivalent, consider the SVD A = UΣV >. Then,

‖A‖F =
√

tr(A>A)

=
√

tr(V ΣU>UΣV >)

=
√

tr(V >V ΣU>U)

=
√

tr(Σ)

=

√√√√ r∑
i=1

σi(A).

Property A.0.2. The Frobenius norm is orthogonally invariant. Explicitly, if B ∈ Rn×n

and C ∈ Rm×m are orthogonal matrices, then ‖BAC‖F = ‖A‖F .
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Proof. This follows immediately from the fact that ‖A‖F =
√∑r

i=1 σi(A) since the singular
values are orthogonally invariant.

Property A.0.3. If A is a rank-one matrix, then,

‖A‖F = ‖A‖tr = ‖A‖sp.

Proof. Note that the Frobenius norm, the trace norm, and the spectral norm are the `2, `1,
and `∞ norms on the vector of singular values. Since A is rank one, there is only one
singular value and all these norms agree on R.
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Appendix B

Omitted Proofs

B.1 Proof of Theorem 2.6.1

The proof will require the following Lemma from [5].

Lemma B.1.1. [5] Let {fs}S be a collection of functions indexed by some set S and define
f(x) = sups∈S fs(x) where each fs is convex and continuous on dom(f). Additionally,
assume that the set A := {β : fβ(x) = f(x)} is compact (in some metric), and the function
α 7→ fα is upper semi-continuous for each x, then,

∂f(x) = cl

conv

 ⋃
s:fs(x)=f(x)

∂fs(x)

 .

Proof. (Theorem 2.6.1) First, note that,

arg min
s:‖s‖≤δ

〈z, s〉 = −δ arg max
ŝ:‖ŝ‖≤1

〈−z, ŝ〉.

Thus by definition of the dual norm (2.1), if s ∈ arg mins′:‖s′‖≤δ〈z, s′〉, then 〈−z, s〉 =
−δ‖z‖∗.

Let S = {s : ‖s‖ ≤ 1} and denote hs(x) = 〈s, x〉. Then we can consider the dual norm
as a maximum of functions hs over the set S. Hence, to find the values of s that achieve
the maximum, we can utilize Lemma B.1.1. Then the subdifferential is just the convex
hull of the union of the subdifferentials of active functions at x (the functions that attain
the maximum at x).
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We know that,

∂‖z‖∗ = cl

conv

 ⋃
s:hs(z)=‖z‖∗

∂hs(z)

 .

However, ∂hs(z) = s, so we can simplify this set to,

∂‖z‖∗ =
⋃

s:hs(z)=‖z‖∗

s

where we note that since hs is linear, the set
⋃
s:hs(z)=‖z‖∗ s is already closed and convex.

We can now conclude that ∂‖z‖∗ is the convex hull of all s such that ‖s‖ ≤ 1 and
〈z, s〉 = ‖z‖∗ and more specifically,

∂‖z‖∗ = arg max
s:‖s‖≤1

〈z, s〉.
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