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Abstract

In this thesis, we study the capacitated generalization of the Matroid Median Problem
which is a generalization of the classical clustering problem called the k-Median problem.
In the capacitated matroid median problem, we are given a set F of facilities, a set D of
clients and a common metric defined on F ∪ D, where the cost of connecting client j to
facility i is denoted as cij. Each client j ∈ D has a demand of dj, and each facility i ∈ F
has an opening cost of fi and a capacity ui which limits the amount of demand that can
be assigned to facility i. Moreover, there is a matroid M = (F , I) defined on the set of
facilities. A solution to the capacitated matroid median involves opening a set of facilities
F ⊆ F such that F ∈ I, and figuring out an assignment i(j) ∈ F for every j ∈ D such
that each facility i ∈ F is assigned at most ui demand. The cost associated with such a
solution is :

∑
i∈F fi +

∑
j∈D djci(j)j. Our goal is to find a solution of minimum cost.

As the Matroid Median Problem generalizes the classical NP-Hard problem called k-
median, it also is NP-Hard. We provide a bi-criteria approximation algorithm for the
capacitated Matroid Median Problem with uniform capacities based on rounding the nat-
ural LP for the problem. Our algorithm achieves an approximation guarantee of 76 and
violates the capacities by a factor of at most 6. We complement this result by providing
two integrality gap results for the natural LP for capacitated matroid median.
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Chapter 1

Introduction

Consider the following scenario, the multinational furniture company UKEA has decided
to open stores in the Greater Toronto Area (GTA) and is interested in finding the best
locations to open their stores. They have done their research on the ground and know
the demands of their products in all the GTA neighborhoods. They are interested in
minimizing the total distance people have to travel to come to their stores while being
constrained by having a budget to only open k stores.

This problem, and its variants involving a variety of different objective functions and
constraints are clustering problems which have been intensively studied in the past couple
of decades. The problem described above is an example of the k-median problem, wherein
we have a set of candidate centers (facilities) and a set of clients with demands, both located
at points in a metric space. In the simplest version of the problem, called the uncapacitated
k-median problem (UKM), the goal is to open at most k-centers and assign every client
to a center so as to minimize the sum of the distances between clients and their assigned
facilities. A more general version of the problem is the capacitated k-median problem
(CKM), wherein each facility has a capacity (possibly different for different facilities) that
limits the total demand that may be assigned to the facility. A related problem that is
also widely popular in literature is called the uncapacitated facility location problem (UFL),
wherein each center has an opening cost but there is no constraint on the total number of
facilities that can be opened. Here the goal is to open a subset of facilities and assign the
clients to open facilities so as to minimize the sum of the facility-opening costs and the
sum of the distances between clients and their assigned centers. Similar to k-median, one
can consider a capacitated generalization of the problem call capacitated facility location
(CFL).
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Even the simplest versions of these problems (UKM and UFL) turn out to be computa-
tionally intractable and much of the literature in theoretical computer science has focused
on the design of approximation algorithms for these problems [Shm00].

Consider the following problem that is similar to the k-median problem. Suppose that
the set of facilities is partitioned into red facilities and blue facilities; and the solution is
supposed to assign clients to open facilities while being constrained to open at most kr red
facilities and at most kb blue facilities. This problem is called the red-blue median problem
[HKK10] and can be viewed of as a generalization of the k-median problem in which the
cardinality constraint on the set of facilities is replaced by a partition matroid constraint.
More generally, one can think of having an arbitrary matroid on the set of facilities and
constraining the solution so that the set of open facilities forms an independent set of this
matroid. This problem is called the matroid median problem [KKN+11, Swa16] and it turns
out to be a powerful generalization. The matroid median problem with facility opening
costs captures and unifies various facility location type problems that had previously been
investigated separately (eg. the data placement problem [BRS08], mobile facility location
[FS11a, AFS13], etc). Capacities arise naturally in these applications and incorporating
them leads to models that better capture the underlying application.

In this thesis, we investigate the matroid median problem with capacities. We define
the problem precisely in Section 1.1 and state the results in section 1.2. We conclude this
chapter with an overview of related work in Section 1.3.

1.1 Problem definition and special cases

In the capacitated matroid median (CMM) problem, we are given a set of facilities F and a
set of clients D and a common metric defined on F ∪ D. Each facility i ∈ F is associated
with an opening cost fi and a capacity Ui, and each client j ∈ D is associated with a
demand dj. Moreover, there is a matroid M = (F , I) defined on the set of facilities. The
goal is to open a set of facilities F ⊆ F such that F ∈ I and figure out an assignment
i(j) ∈ F for each client j such that for each i ∈ F , the total demand assigned to i is at
most Ui. The assignment cost incurred by a client j under such an assignment is given
by djci(j)j. The goal is to minimize the total cost - sum of the facility opening costs and
assignment costs which is given by:

∑
i∈F fi +

∑
j∈D djcj(i)j.

There are two variants of CMM that can be considered : the case when the capacities
are uniform (Ui = U for each i ∈ F) which we denote by CMM-UC, and the case with non-
uniform capacities (in which the facilities are allowed to have different capacities) which
we denote by CMM-NC.
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The CMM problem is the capacitated generalization of the matroid median problem
(UMM), that is in UMM we have Ui = ∞ for each i ∈ F . It is easy to see how CMM
captures CKM and CFL. In CKM, there are no facility opening costs and the matroid on
the set of facilities simply captures the cardinality constraint, i.e., every set of size at most
k is independent. In CFL, there are facility opening costs and there is no constraint on
the set of open facilities (so the matroid is the trivial one where every set is independent).

In the next section, we describe our results for CMM. To better understand the nature
of our results, we briefly give an overview of the nature of results known for CKM and
UMM. A more detailed discussion of these results can be found in Section 1.3.

Prior work on CKM has led to bi-criteria approximation algorithms relative to the
natural LP, where algorithms that achieve a constant factor approximation guarantee with
respect to the natural LP are known to violate either, the cardinality constraint on the total
number of facilities that can be opened (the bound k) or the capacity constraints on the
facilities, by an O(1) factor [AvdBGL15, CGTS99, BFRS15]. For UMM, again constant
factor approximation algorithms are known relative to the natural LP [KKN+11, Swa16].
In this work, we investigate whether we can leverage the techniques utilized in these strands
of work to obtain similar guarantees for capacitated matroid median. More specifically, we
investigate if the natural LP leads to bi-criteria constant-factor approximation guarantees.

1.2 Our results

We essentially settle the approximability of capacitated matroid median relative to the
natural LP (modulo O(1)-factors). Our main result is a constant factor approximation
algorithm for the capacitated matroid median problem with uniform capacities (CMM-
UC) which violates capacities by a factor of at most 6. More formally,

Theorem 1.1. There is an approximation algorithm for CMM-UC that computes a solu-
tion of cost at most 76OPT and violates the capacities by a factor of at most 6, where OPT

denotes the cost of the optimal solution to the natural LP relaxation.

We give the algorithm and its analysis which proves Theorem 1.1 in Chapter 2.

We complement our main theorem above with a couple of integrality gap examples for
the natural LP. Our first integrality gap example shows that for the capacitated matroid
median problem with non-uniform capacities (CMM-NC), the natural LP has unbounded
integrality gap, even if we are allowed to violate the capacities by any constant factor.
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Theorem 1.2. The natural LP for CMM-NC has unbounded integrality gap even when a
solution is allowed to violate the capacity constraint by a factor of β, for any β ≥ 0.

Our second integrality gap result considers a result complementary in nature to the
previous two results. As we discussed in the previous section, for capacitated k-median,
two types of bicriteria O(1)-approximation results are known relative to the natural LP, one
where capacitaties are violated, and one where the cardinality bound is violated. Analogous
to the case of violating the cardinality constraint, we may consider guarantees relative to the
natural LP that violate the matroid constraint on the set of facilities. Here, an α violation
of the matroid constraint by a vector y ∈ RF means that for every S ⊆ F ,

∑
i∈S yi ≤ α·r(S),

where r(.) is the rank function of the matroid. We were able to show the following result
for results of this nature:

Theorem 1.3. The natural LP for CMM-UC has unbounded integrality gap even when a
solution is allowed to violate the matroid constraint by a factor of α, for any α ≥ 0.

We can summarize the results of Theorems 1.1, 1.2 and 1.3 using the following table,
which summarizes the integrality gap of the natural LP for capacitated matroid median
with uniform/non-uniform capacities for the two types of results studied in literature (ca-
pacity/cardinality violation). Each cell shows the integrality gap along with maximum
violation factor of the integral solution.

Capacities Cardinality violation Capacity violation
Uniform Unbounded, for any constant violation ≤ 76, with violation ≤ 6

Non-uniform Unbounded, for any constant violation Unbounded, for any constant violation

Table 1.1: Integrality gap of natural LP for CMM - Contribution of this thesis.

1.3 Related work

There has been a great deal of work on facility location and k-median problems and these
problems have been thoroughly examined through various algorithmic techniques.

The uncapacitated facility location problem especially has been attacked using a variety
of algorithmic frameworks. The first constant-factor approximation guarantee for UFL was
obtained by Shmoys et al [STA97], using LP-rounding. Since then, many LP techniques
like filtering [LV92], primal-dual [JV01] and dual-fitting [JMM+03] have been used to
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achieve a better understanding of the problem. The current best approximation ratio
for UFL is 1.488 by Li [Li11]. On the other hand, the capacitated facility location has
not seen the same amount of success as its uncapacitated counter part. Until recently,
the only known approximation guarantees for capacitated facility location were achieved
through local search techniques. Bansal et al. gave a 5-approximation algorithm for CFL
with non-uniform capacities [BGG12] and Aggarwat et al. gave a 3-approximation for
CFL with uniform capacities [ALB+13]. It was a big open problem to get an LP-based
approximation algorithm for CFL; this was resolved positively by An et al in which they
gave a constant factor LP-based approximation algorithm for CFL [ASS14].

On the other hand, for CKM, all known algorithms achieve bi-criteria approximation
guarantees. The natural LP for CKM is known to have unbounded integrality gap even
if the capacity constraints or the cardinality constraint is allowed to be violated to an
extent of (2− ε). There are two variants of CKM considered in literature - soft CKM and
hard CKM. In soft CKM, we’re allowed to open multiple facilities at the same location
(but these still count towards the cardinality constraint). For soft CKM with non-uniform
capacities, Chuzhoy and Rabani gave primal-dual based 40-approximation algorithm that
violates capacities by a factor of 50 [CR05]. Byrka et al. gave an O( 1

ε2
) approximation

algorithm for hard CKM with uniform capacities that violates capacities by a factor of at
most 2 + ε [BFRS15]. Gijswit and Li also gave a (7 + ε)-approximation algorithm for hard
CKM with non-uniform capacities which opens at most 2k facilities [AvdBGL15].

More recently, stronger LP’s have been introduced for CKM with uniform capacities
and CKM with non-uniform capacities. The Rectangle LP was used by Li to give a
O( 1

ε2
)-approximation algorithm for CKM with uniform capacities that opens at most (1 +

ε)k facilities [Li17]. Byrka et al. then used the configuration LP to achieve a O( 1
ε2

)-
approximation algorithm for CKM with uniform capacities that violates capacities by a
factor of (1 + ε) [BRU16]. Finally, Demirci and Li gave a O( 1

ε5
)-approximation algorithm

for CKM with non-uniform capacities which violates the capacity constraint by a factor of
(1 + ε) [DL16]. Getting a true approximation algorithm for CKM still remains a big open
problem.

For the uncapacitated matroid median problem (UMM), there are true constant factor
approximation algorithms known based on rounding the natural LP. The paper of Krish-
naswamy et al [KKN+11] gave a 16-approximation algorithm for UMM without facility
opening costs. Swamy then gave an 8-approximation algorithm was given for the problem
with facility opening costs [Swa16]. Recently, Krishnaswamy et al [KLS17] improved upon
this ratio by providing an approximation algorithm that achieves a guarantee of 7.081, al-
though this does not quite prove an improved integrality gap for the natural LP of matorid
median.
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Chapter 2

Our Algorithm

In this chapter, we present our algorithm for CMM-UC and its analysis. This is the
first approximation guarantee for the capacitated generalization of the matroid median
problem. Our algorithm achieves an approximation guarantee of 76 while violating the
capacity constraints by a factor of at most 6. This will prove our main result, which is
stated in Theorem 2.1.

In the next section, we describe the natural LP relaxation for CMM-UC. This LP has
an exponential number of constraints but can be solved using the ellipsoid method, as we
argue that one can construct a separation oracle using standard techniques. In Section 2.2
we give an overview of our algorithm and provide a complete description of our algorithm.
Our algorithm involves three main steps, clustering, rounding to obtain a half-integral
solution, and converting the half-integral solution to an integral solution. The analysis of
this algorithm begins in Section 2.3 in which we discuss the properties that we obtain as a
result of our clustering step. In Section 2.4, we discuss in detail and analyze the procedure
of getting a half-integral opening vector for the facilities. Finally, in Section 2.5, we analyze
the process of obtaining an integral opening vector from this half-integral opening vector.

The techniques used in our rounding algorithm build upon previous work on capacitated
k-median and uncapacitated matroid median. There are quite a few similarities to the
rounding procedure used for uncapacitated matroid median, but we have to work harder
to handle the complications introduced by capacities. Our initial clustering step is also
similar to that of capacitated k-median but the presence of the general matroid constraint
prohibits us from moving around facility weight locally between clusters and requires a
more global approach.
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2.1 An LP relaxation for CMM-UC

We will use the variables {yi}i∈F for each facility i ∈ F to indicate whether facility i is
open or not. Variables {xij}i∈F ,j∈D will indicate if client j is assigned to facility i. Using
these variables, we can express the matroid median problem as an integer program and
then relax the integrality constraints to obtain the following linear program. Throughout,
we use i to index facilities in F , and j to index clients in D.

minimize
∑
i

fiyi +
∑
j

dj
∑
i

cijxij (P)

subject to
∑
i

xij ≥ 1 ∀j ∈ D (1)∑
j

djxij ≤ Uyi ∀i ∈ F (2)∑
i∈S

yi ≤ r(S) ∀S ⊆ F (3)

xij ≤ yi ∀i ∈ F , j ∈ D (4)

0 ≤ xij, yi ≤ 1 ∀i ∈ F , j ∈ D (5)

Constraint (1) says that every client should be assigned and constraint (4) ensures that
a client is assigned to a facility only if that facility is open. Constraint (2) ensures that the
total number of clients assigned to a facility is at most its capacity. Finally, constraint (3)
ensures that the open set of facilities is independent. Note that any solution to CMM-UC
translates to an integer solution to (P).

Although the above LP has exponential number of constraints, we can separate over
it in polynomial time, as follows. Consider an arbitrary fractional solution (x, y). We can
easily check if the solution satisfies constraints (1), (2) and (4) in polynomial time. To
check if the vector {yi : i ∈ F} satisfies constraint (3), it is equivalent to checking the
following condition:

min
S⊆F

{
r(S)−

∑
i∈S

yi

}
≥ 0

The function f(S) = r(S)−
∑

i∈S yi is submodular as the matroid rank function, r(.),
is submodular. Hence, we can use a polynomial time algorithm for submodular function

7



minimization to check if constraint (4) is satisfied. Hence, with the use of a polynomial time
algorithm for submodular function minimization, we can construct an efficient separation
oracle for the above LP and use the ellipsoid method to solve the LP in polynomial time.
There are more efficient ways of constructing separation oracles for the matroid polytope.

The following definition will be useful and will be referred to throughout the thesis.
β-violated solution. A solution (x′, y′) is a β-violated solution if (x′, y′) satisfies con-
straints (1), (3), (4), (5) and violates constraint (2) by a factor of at most β.

2.2 Overview of the Algorithm

Our algorithm is based on rounding an optimal solution to (P). Hence given an instance of
CMM-UC, we solve the natural LP relaxation and obtain the optimal solution (x, y). For
a client j, let Cj =

∑
i∈F cijxij denote the unit assignment cost of j under the assignment

x. Let OPT denote the value of the optimum LP solution (x, y). Note that the solution
(x, y) is a 1-violated solution. Thus OPT =

∑
i∈F fiyi +

∑
j∈D dj

∑
i∈F cijxij =

∑
i∈F fiyi +∑

j∈D djCj. For a set S ⊆ F , we use y(S) to denote
∑

i∈S yi.

Our focus will be on rounding to obtain an integral facility-opening vector; given such
an opening vector, we can solve a min-cost flow problem to obtain the assignments for the
clients D. We prove the following theorem, which is a more formal restatement of Theorem
1.1.

Theorem 2.1. We can efficiently round (x, y) to a 6-violated solution (x̃, ỹ), where ỹ is
integral, of cost at most 76OPT. Thus, we obtain an approximation guarantee of 76 while
violating capacities by a factor of at most 6.

At a high level, the algorithm consists of three components: (1) Clustering to move
(roughly speaking) to a more structured instance. (2) Leveraging the structure obtained
after the clustering to round to a half-integral solution and (3) rounding the half-integral
solution to an integral solution.

Clustering the original instance. First, as is standard for rounding algorithms for
k-median and its variants, we use the LP solution to transform our instance to a more
structured instance. That is, we will use (x, y) to cluster clients and facilities around
certain cluster centers (which will also be clients). The properties that we seek from the
clustering are (i) that the cluster centers should lie far apart, which will ensure that each
cluster will have a certain minimum facility weight, and (ii) every client should be ‘near’
a cluster center. We use D′ to refer to the set of cluster centers. We then assign every
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facility to the cluster center nearest to it. The set of facilities assigned to a cluster center
k are referred to as Fk (we will often refer to Fk also as k’s cluster) : property (i) will
ensure that Fk will have a total facility weight of at least 1

2
, that is y(Fk) ≥ 1

2
. We will

sparsify our instance by ‘moving’ demand from the original client locations to the cluster
centers, thereby obtaining a more structured instance where all the demand is aggregated
at the cluster centers. In this process of moving the demands, a client j might split it’s
demand across multiple cluster centers, property (ii) will ensure that the total movement
cost is at most 6OPT (see Lemma 2.4). Let Dk denote the demand aggregated at cluster
center k ∈ D′ after this movement, the movement process ensures that Dk ≤ Uy(Fk) for
every k ∈ D′.

Given this clustering, we would like to treat each cluster independently, but various
difficulties arise in doing so. The facility weight y(Fk) for k ∈ D′ could be less than 1,
and so we will not be able to handle the demand Dk using facilities solely in Fk without
blowing up y(Fk), but doing so could violate the matroid constraints. This difficulty also
arises in uncapacitated k-median (and matroid median) but some rounding algorithms
for capacitated k-median follow such an approach to obtain a guarantee that violates the
cardinality constraint by an O(1) factor. However, such a cluster-by-cluster approach is
not viable for CMM since the matroid constraint is a global constraint and could couple
the different clusters. Instead, as in k-median and uncapacitated matroid median, since
the clustering step will ensure y(Fk) ≥ 1

2
for every k ∈ D′, we will first seek to obtain and

half-integral solution.

In doing so, one subtle point of departure with respect to UMM is that, there is no
simple way of translating the LP solution (x, y) for the original instance to a fractional
solution to the clustered instance. In UMM, the assignment x restricted to the cluster
centers (and with the new demands {Dk}k∈D′) yields a feasible fractional solution of cost
at most OPT, which is convenient as it allows one to solely work with the structured instance.
Here however, this restriction is no longer a feasible fractional solution as the demand Dk of
k ∈ D′ could be larger than dk. Another possible fractional assignment for the structured
instance is setting x′ik = total demand served by i

Dk
; x′ completely assigns the Dk demand and

satisfies the capacity constraints (i.e. constraints (1) and (2) in (P) are satisfied), but it
may no longer be that x′ik ≤ yi

1. Thus, while the structured instance with the clusters
will be quite useful to us, we cannot quite work solely with this instance and forget about
the original instance (like in UMM). We will however, round (x, y) to obtain a 3-violated
half-integral solution and then round this to a 6-violated integral solution. We proceed to
give an overview of these two steps.

1For example, consider a cluster Fk with only one facility i; an assignment such as x′ will ensure that
x′
ik = 1 regardless of the value of yi
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Getting a half-integral solution. An important consequence of property (i) is that in
each cluster, the LP has opened a facility weight of at least 1

2
. We will exploit this and

obtain a rounded solution that opens a facility weight of at least 1
2

in each cluster as well.
As noted earlier, for clusters with y(Fk) < 1, we will not be able to open a facility-weight
of at least 1 in Fk, and so will not be able to assign the Dk demand solely to facilities in
Fk. If our rounded solution ŷ ends up opening a facility weight less than 1 in Fk, even if
allocate ŷi fraction of the demand Dk to facility i, there will be a 1− ŷ(Fk) fraction of the
demand left to allocate. To handle such clusters, we will assign a (1 − ŷ(Fk))-fraction of
the demand Dk to (facilities opened from) a “neighboring” cluster center (defined suitable
later). Since each cluster has a weight of at least 1

2
in the rounded solution, we can ensure

that between the two clusters, we have enough facility weight to distribute the demand
Dk completely. We will choose the neighboring cluster center carefully so that (a) the cost
of assigning the requisite fraction of the Dk-demand to the neighbor is bounded, and (b)
a cluster is designated as a neighbor of at most 2 clusters, so that its facilities are not
too overloaded by the demands of too many other clusters. This latter consideration does
not arise in UMM, and is another place where we need to diverge from the algorithm and
analysis of UMM. For clusters with y(Fk) ≥ 1, we will ensure that that we can open a
max(1, bDk

U
c) facility-weight in Fk, which will ensure that we can assign the Dk demand to

the facilities opened from Fk while violating capacities by a factor of at most 2.

To precisely define how we round to a half-integral solution, for each cluster center
k ∈ D′, we will define a function Tk that will act as a proxy for the assignment cost of
Dk in the rounded (half-integral solution). Also, each cluster Fk will give rise to certain
constraints; we will append these with the matroid rank constraints to obtain a polytope
P̂ ⊆ RF (see Step A4 in Algorithm 1). In Lemma 2.6 and 2.8 we show that there exists a

z∗ ∈ P̂ such that
∑

i∈F fiz
∗
i +
∑

k∈D′ Tk(z
∗) is O(OPT). The constraints of P̂ are structured

enough to conclude half-integrality of P̂ (see Lemma 2.9). Thus by minimizing T (z) =∑
i∈F fizi+

∑
k∈D′ Tk(z) over P̂ , we can obtain a half-integral facility-opening vector ŷ with

T (ŷ) ≤ T (z∗) = O(OPT). We show how to use this to obtain a half-integral assignment
vector x̂ (this will involve making copies of some cluster centers; see Algorithm 3). This
gives our half-integral solution (x̂, ŷ). We prove that Tk(ŷ) gives an upper bound on the
cost of assigning Dk demand under the facility-opening vector ŷ, and that the cost of
(x̂, ŷ) is at most Tk(ŷ) = O(OPT) (Lemma 2.11). Also, we show that the capacity violation
incurred is at most a factor of 3 (Lemma 2.12), so that (x̂, ŷ) is a 3-violated solution of
cost O(OPT).

Getting an integral solution. A useful consequence of having a half-integral assignment
vector x̂ is that the solution is filtered − which means that if a cluster center k is assigned to
a facility i, then cik ≤ 2

∑
i∈F cikx̂ik = 2Ĉk. We use a standard facility location clustering

10



to further prune D′ (the cluster centers obtained via the initial clustering) to a subset D̃
such that the facilities serving distinct clients in D̃ are disjoint, and every k ∈ D′ \ D̃
shares a facility with some nearby j ∈ D̃. Given this, it is easy to write down another
proxy program, this time involving minimizing a linear function over an integral polytope,
and solving this yields an integral facility-opening vector which leads to a solution where
capacities are (further) violated by a factor of 2 (Lemma 2.14). We now give a detailed
description of the algorithm, and then proceed to analyze the algorithm.

11



Algorithm 1: Algorithm for CMM-UC

A1. Obtain optimal LP solution (x, y) by solving program (P ).
A2. Clustering. - D′ := ∅.
- Consider clients j in increasing order of Cj. If for client j,
there exists no client k ∈ D′ such that cjk ≤ 4Cj, then D′ = D′ ∪ {j}.
A3. - Define Fk = {i ∈ F : cik = minj∈D′ cij} for each k ∈ D′.
- For each k ∈ D′, Dk =

∑
j∈D
∑

i∈Fk djxij (Intuitively, Dk is the total

demand moved from the original client locations to cluster center k).
A4. Obtaining a half-integral solution.

- Define F ′k = {i ∈ Fk : cik ≤ 2Ck} for each k ∈ D′.
- Define γk = mini 6∈Fk cik for each k ∈ D′.
- Define Gk = {i ∈ Fk : cik ≤ γk} for each k ∈ D′.
- Partition the set of cluster centers as follows:

• D1 = {k ∈ D′ : Dk < U and y(Gk) > 1}

• D3 = {k ∈ D′ : Dk < U and y(Gk) ≤ 1} r

• D2 = {k ∈ D′ : Dk ≥ U}

- Obtain half-integral opening vector ŷ by solving the following

linear program,

min
z∈P̂

fizi +
∑
k∈D′

Tk(z) ,where

Tk(z) =


Dk

∑
i∈Fk cikzi k ∈ D1

2U
∑

i∈Fk cikzi k ∈ D2

Dk

∑
i∈Gk cikzi +Dk(1− z(Gk))5γk k ∈ D3

P̂ =

{
z(F ′k) ≥

1

2
∀k ∈ D′, z(Fk) ≥ max

(
1, bDk

U
c
)
∀k ∈ D1 ∪ D2,

z(Gk) ≤ 1 ∀k ∈ D3, z(S) ≤ r(S) ∀S ⊆ F
}

A5. Obtain assignment x̂ for the clustered instance using Algorithm 3

(page 26) on input ŷ.
A6. Use Algorithm 4 (page 29) to obtain an integral solution for the

clustered instance on input (x̂, ŷ).
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2.3 Properties of the clustered instance

We now show that the clustering step leads to a structured instance with various useful
properties. In particular, we will argue that every cluster Fk has facility-weight at least 1

2
,

and that the cost of aggregating demands at the cluster centers is at most 6OPT (Lemma
2.4).

For a subset of facilities F ⊆ F , let x(F, j) =
∑

i∈F xij denote the fraction of j’s demand
served by facilities in F .

Performing the clustering as in Step A2 of Algorithm 1 gives us the following properties:

Lemma 2.2. The set D′ of cluster centers satisfies the following two properties:

(i) if k, k′ ∈ D′, then ckk′ ≥ 4 max(Ck, Ck′).

(ii) ∀j ∈ D, there exists k ∈ D′ such that cjk ≤ 4Cj and Ck ≤ Cj.

Proof. (i) Without loss of generality, assume that k was considered before k′ by the algo-
rithm. k′ was selected as a cluster center only because there was no k′′ ∈ D′ such that
ckk′′ ≤ 4Ck. As k was already selected as a cluster center when considering k′, this implies
that ckk′ ≥ 4Ck′ = 4 max(Ck, C

′
k).

(ii) Consider a client j ∈ D. If j ∈ D′, then its distance to itself is 0 which is at most
4Cj. Otherwise consider j ∈ D\D′. As j was not selected as a cluster center, it means that
at the time j was being considered, ∃k ∈ D′ such that cjk ≤ 4Cj. As we never remove a
center after it has been added to D′, this means that there is a k ∈ D′ such that cjk ≤ 4Cj.
Moreover, as k was considered before j, it means that Ck ≤ Cj. �

Let nc : F ∪ D → D′ (for nearest center) be a function that, for l ∈ F ∪ D, denotes
the closest cluster center to l, i.e., nc(l) = arg mink∈D′ clk (Note that ties are broken
arbitrarily, but in a consistent way). Hence, the Fk’s defined in Algorithm 1 is simply,
Fk = {i ∈ F : nc(i) = j}. The partition defined by the Fk’s satisfy the following useful
property, which we will repeatedly use.

Claim 2.3. Let i be a facility such that i ∈ Fk for k ∈ D′ and let j be any client in D.
Then, cik ≤ cij + 4Cj

Proof. As i ∈ Fk, the distance cik ≤ cik′ for any k′ ∈ D′. Thus, cik ≤ cnc(j)i ≤ cij + cnc(j)j ≤
cij + 4Cj, where the last inequality follows from part (ii) of (Lemma 2.2). �
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We now show that the cost of moving the demands from the clients to the cluster
centers according to step A3 in Algorithm 1 is bounded.

Lemma 2.4. The movement cost
∑

k∈D′(dj · x(Fk, j))cjk incurred in moving demand dj
from j to the cluster centers is at most 6djCj.

Proof. For each cluster center k ∈ D′, j sends dj · x(Fk, j) amount of demand to k. Hence,
the movement cost is

∑
k∈D′

djx(Fk, j)cjk =
∑
k∈D′

dj
∑
i∈Fk

xijcjk

≤
∑
k∈D′

dj
∑
i∈Fk

xij(cik + cij) (triangle inequality)

≤
∑
k∈D′

dj
∑
i∈Fk

xij(2cij + 4Cj) (Claim 1.3)

= 2dj
∑
i

cijxij + 4djCj
∑
i

xik

= 6djCj

�

Summing up across all clients, we see that the total movement cost is at most
∑

j 6djCj ≤
6OPT.

Thus, we can conclude,

Corollary 2.5. If there is β-violated solution to the clustered instance of cost at most αOPT,
then there is a β-violated solution to the original instance of cost at most (α + 6)OPT.

Proof. In order to obtain a solution to the original instance, we need to move the demands
from the cluster centers back to the original clients. The cost of moving back j’s demand is∑

k∈D′ djx(Fk, j)cjk, which according to Lemma 2.4 is at most 6djCj. Summing up across
all clients gives us

∑
j 6djCj ≤ 6OPT. �

In the sequel, we focus on showing that our algorithm returns a 6-violated solution to
the clustered instance of cost at most 70OPT. By the above corollary, this immediately
translates to a 6-violated solution to the original instance of cost at most 76OPT, thereby
yielding the approximation guarantee stated in Theorem 2.1.
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2.4 Getting a half-integral solution

In this section, we explain how the proxy problem solved in step A4 arises, describe Algo-
rithm 3 mentioned in step A5, and show how these lead to a half-integral solution (x̂, ŷ).

Recall that for k ∈ D′, we have F ′k = {i ∈ F : cik ≤ 2Ck}, γk = mini 6∈Fk cik and
Gk = {i ∈ Fk : cik ≤ γk}. Note that F ′k ⊆ Fk because for all facilities i such that cik ≤ 2Ck,
the closest center to i has to be k, otherwise we would have a contradiction to part (i) of
Lemma 2.2. We also defined γk as, γk = mini 6∈Fk cik as the distance between k and the
facility closest to k but not in Fk and using this defined Gk = {i ∈ Fk : cik ≤ γk}. Again,
using part (i) of Lemma 2.2, we can see that γk ≥ 2Ck; thus, F ′k ⊆ Gk ⊆ Fk.

Claim. For k ∈ D′,
∑

i∈F ′k
yi ≥ 1

2
.

Proof. This follows as a simple consequence of Markov’s inequality. Markov’s inequality
states that for a non-negative random variable X and any constant c > 0, Pr[X ≥ c] ≤
E[X]
c

. As Ck =
∑

i∈F cijxij and
∑

i∈F xij = 1, we can see that
∑

i∈F :cij≥2Ck xij ≤
1
2
. Thus,∑

i∈F :cij≤2Ck xij =
∑

i∈F ′k
xij ≥ 1

2
. From constraint (4) in (P) we know that xij ≤ yi for all

i ∈ F , j ∈ D. Thus,
∑

i∈F ′k
yi ≥

∑
i∈F ′k

xij ≥ 1
2
. �

For a set of F ′ ⊆ F of facilities, let cost1(F
′) =

∑
j dj
∑

i∈F ′ cijxij be the cost of
assigning demands to facilities in F ′ under the LP solution (x, y). Also, define cost2(F

′) =∑
j djCj ·x(F ′, j) to be the fraction of the total assignment cost proportional to the amount

of demand assigned to facilities in F ′ under the LP solution (x, y). Hence,
∑

i∈F fiyi +
cost1(F) =

∑
i∈F fiyi + cost2(F) = OPT.

Explanation and analysis of the proxy problem in step A4. We obtain a
half-integral solution in step A4 of Algorithm 1 by minimizing the function T (z) given

by
∑

i∈F fizi +
∑

k∈D′ Tk(z) over the polytope P̂ , where Tk(z) is a function that acts as
a convenient proxy for the cost incurred in assigning Dk demand to the facilities opened
(fractionally) under z (Lemma 2.11). More precisely, we will ensure that: (a) there is a

point z∗ ∈ P̂ such that T (z∗) ≤ 35OPT (Lemma 2.8); and (b) extreme points of P̂ are

half-integral (Lemma 2.9). Thus optimizing T over P̂ will yield a half integral ŷ ∈ P̂ ,
and the proxy function is set up so that we further have: (c) using ŷ, we can obtain a
half-integral solution of cost at most T (ŷ)y) ≤ T (z∗) ≤ 35OPT.

As mentioned in Algorithm 1, P̂ contains some constraints for each cluster Fk, as well
as the matroid constraints. The definition of Tk, and the constraints that we include for
cluster k, will depend on the type of cluster k. The cluster centers D′ were partitioned into
the following three types of clusters:
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• D1 = {k ∈ D′ : Dk < U and y(Gk) > 1}

• D3 = {k ∈ D′ : Dk < U and y(Gk) ≤ 1}

• D2 = {k ∈ D′ : Dk ≥ U}

As we have y(F ′k) ≥ 1
2

for every k ∈ D′, we want to ensure that this is true for all clusters

in the rounded solution as well and hence, we will add this constraint to P̂ . For cluster

centers D1 ∪ D2 we also have that y(Fk) ≥ max

(
1, bDk

U
c
)

and therefore we incorporate

these constraints into P̂ as well. And finally, for k ∈ D3, we know that y(Gk) ≤ 1. Thus,

P̂ is defined as:

P̂ =

{
z(F ′k) ≥

1

2
∀k ∈ D′, z(Fk) ≥ max

(
1, bDk

U
c
)
∀k ∈ D1 ∪ D2,

z(Gk) ≤ 1 ∀k ∈ D3, z(S) ≤ r(S) ∀S ⊆ F
}

For k ∈ D1 ∪ D2, we will be able to use the facilities opened from Fk to assign the Dk

demand, and Tk(.) will encode the cost incurred in doing so. For k ∈ D3, we will need to
assign some fraction of the Dk-demand outside of k’s cluster, but we will show that we can
ensure that this portion is assigned to a facility i with cik ≤ 5γk. Recall that, the proxy
function Tk(.) for cluster k is defined as:

Tk(z) =


Dk

∑
i∈Fk cikzi k ∈ D1

2U
∑

i∈Fk cikzi k ∈ D2

Dk

∑
i∈Gk cikzi +Dk(1− z(Gk))5γk k ∈ D3

We now provide some intuition for the above definition. For clusters defined by centers
k ∈ D1, we have ensured that a facility weight of at least 1 is always opened within the
cluster, that is, for these clusters we know that z(Fk) ≥ 1. Under this constraint, the term
Dk

∑
i∈Fk cikzi provides an upper bound on k’s assignment cost.

For centers k ∈ D2, we have ensured that the facilities in Fk are open to an extent of
at least bDk

U
c. That is, for these clusters we know that, z(Fk) ≥ bDkU c. As Dk ≥ U for

for k ∈ D2, opening a facility weight of bDk
U
c will (1) allow us to handle all the demand

within the cluster (as z(Fk) ≥ 1), (2) with at most a factor 2 violation in capacities, there

16



is enough capacity in the cluster Fk to handle all the demand within the cluster. Hence,
under this constraint, the term 2U

∑
i∈Fk cikzi provides an upper bound on the assignment

cost of demand Dk as
(
2U · bDk

U
c
)
≥ Dk.

For clusters defined by centers k ∈ D3, we have ensured that the facilities in F ′k are
open to an extent of at least 1

2
and that facilities in Gk are open to an extent of at most

1. That is, for z ∈ RF+, we want z(F ′k) ≥ 1
2

and z(Gk) ≤ 1. Given such an opening vector,
only a z(Gk) ≥ 1

2
fraction of the demand can be distributed within the cluster Fk. We will

show that the residual demand can be assigned to a facility i′ ∈ F ′k′ where k′ ∈ D′\{k} and
ci′k ≤ 5γk. The constraint z(Fl) ≥ 1

2
for all l ∈ D′ ensures that there is always a facility

open to an extent of at least 1/2 in F ′l for every l ∈ D′. Hence, under these constraints,
the term Dk

∑
i∈Gk cikzi +Dk(1− z(Gk))5γk is an upper bound on the assignment cost of

demand Dk located at k.

The opening vector z∗. We now define an opening vector z∗ ∈ RF . We will show
that z∗ ∈ P̂ and that T (z∗) is bounded in terms of OPT. The openings for the facilities
depend on the type of cluster the facility is present in.

For facilities i ∈ Fk where k ∈ D1. Order the facilities in Fk in increasing order of
distance from the center k. Let yi1 , yi2 , . . . , yi|Fk| be such an ordering and let il be the
nearest facility to k such that yi1 + . . .+ yil−1

+ yil ≥ 1. Define the opening as follows:

z∗ir =


yir if r < l

1− (yi1 + . . .+ yil−1
) if r = l

0 otherwise

For facilities i ∈ Fk where k ∈ D2,

z∗i =

{
max(xik,

∑
j djxij

U
) if i ∈ F ′k∑

j djxij

U
if i ∈ Fk \ F ′k

Finally, for facilities i ∈ Fk where k ∈ D3,

z∗i =

{
yi if i ∈ Gk

0 otherwise

It is easy to see that z∗ satisfies the constraints in P̂ .

Lemma 2.6. z∗ ∈ P̂ .
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Proof. For each cluster center k ∈ D′, z∗(F ′k) ≥
∑

i∈F ′k
xik which, from Markov’s inequality,

we know is at least 1
2
. For cluster centers k ∈ D3, z

∗(Gk) = y(Gk) ≤ y(Fk) ≤ 1. For
k ∈ D1, according to the procedure of opening facilities, z∗(Gk) = 1. Finally for k ∈ D2,

as z∗i (Fk) ≥
∑
j djxij

U
for each i ∈ Fk. Thus, z∗(Fk) ≥ Dk

U
. As Dk ≥ U for centers in D2, this

finishes the proof. �

We bound the cost of T (z∗) by showing that Tk(z
∗) for each center k ∈ D′ can be bound

in terms of cost1(Fk) and cost2(Fk), the cost that the LP pays for assigning demand to the
facilities in Fk. Summing up Tk(z

∗) across all k hence will bound T (z) in terms of OPT.

Lemma 2.7. Consider a cluster center k ∈ D′ with demand Dk. The optimal value of the
program,

min
∑
i∈F

Dkcikzi s.t. z(F) ≥ 1, 0 ≤ zi ≤ yi ∀i ∈ F (Rk)

is at most 2cost1(Fk) + 5cost2(Fk).

Proof. Note that the solution to the above linear program is simple. Sort the facilities in
increasing order of distance from k. Let i1, i2, . . . , i|F| be such an ordering. Let l be the

smallest integer such that
∑l

p=1 yi ≥ 1. The optimal solution to the above linear program

is setting z∗ip = yip for 1 ≤ p ≤ l−1, setting z∗il = 1−
∑l−1

p=1 yi and setting z∗i = 0 otherwise.

A key step in upper bounding the cost of this solution is to notice that for each j ∈ D,
setting zi = xij also produces a feasible solution to Rk and hence the cost of this solution
is at least the cost of z∗.

We analyze the cost of solution z∗ by expanding out Dk as
∑

j∈D dj ·x(Fk, j), and then
bounding the contribution of client j by considering the assignment {xij}i∈F instead.
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Dk

∑
i∈F

cikz
∗
i =

∑
j∈D

djx(Fk, j)
∑
i∈F

cikz
∗
i

≤
∑
j∈D

djx(Fk, j)
∑
i

cikxij

≤
∑
j∈D

djx(Fk, j)
∑
i

(cij + cjk)xij (triangle inequality)

=
∑
j∈D

djx(Fk, j)
∑
i

cijxij +
∑
j∈D

djx(Fk, j)
∑
i

cjkxij

Notice that the first term is just
∑

j∈D djx(Fk, j)Cj from the definition of Cj, and so∑
j∈D djx(Fk, j)Cj = cost2(Fk).

For the second term,

∑
j∈D

djcjkx(j, Fk) ≤
∑
j∈D

dj
∑
i∈Fk

(cij + cik)xij (triangle inequality)

≤ cost1(Fk) + dj
∑
i∈Fk

cikxij

≤ cost1(Fk) + dj
∑
i∈Fk

(cij + 4Cj)xij (Claim 2.3)

= cost1(Fk) + 5cost2(Fk)

Thus, Dk

∑
i∈F cikz

∗
i ≤ 2cost1(Fk) + 5cost2(Fk). �

We will use the above lemma to bound the cost of T (z∗) in terms of OPT.

Lemma 2.8. T (z∗) ≤ 35OPT

Proof. For centers defined by k ∈ D1. Notice that Tk(z
∗) is exactly the optimum value

of Rk from Lemma 2.7. So, Tk(z
∗) ≤ 2cost1(Fk) + 5cost2(Fk) for k ∈ D1.
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For centers defined by k ∈ D3. According to the definition of γk, for every facility
i 6∈ Gk, cik ≥ γk. Thus, Dk

∑
i∈Gk cikz

∗
i +Dk(1−z(Gk))γk is a lower bound on the optimum

value of Rk. So, by Lemma 2.7, we have Hence,

Tk(z
∗) = Dk

∑
i∈Gk

cikz
∗
i +Dk(1− z∗(Gk))(5γk) ≤ 5(Dk

∑
i∈Gk

cikz
∗
i +

∑
j

djx(j, Fk)(1− z∗(Gk))γk)

≤ 5(2cost1(Fk) + 5cost2(Fk))

= 10cost1(Fk) + 25cost2(Fk)

Thus, for clusters defined by centers k ∈ D3, Tk(z
∗) ≤ 12cost1(Fk) + 30cost2(Fk).

Finally, for clusters defined by centers k ∈ D2, we will show that Tk(z
∗) ≤

4cost1(Fk) + 16cost2(Fk).

For the analysis, we partition the facilities in Fk based on our choice of z∗ as follows,

Let F 1
k = {i ∈ Fk | z∗i = xik} and F 2

k = Fk \ F 1
k .

Thus,

TK(z∗) = 2U
∑
i∈Fk

cikz
∗
i

= 2U
∑
i∈F 1

k

cikxik

︸ ︷︷ ︸
a

+ 2U
∑
i∈F 2

k

cik ·
∑

j djxij

U︸ ︷︷ ︸
b

We bound the above expression in a term-by-term fashion,

Consider term ‘a’. Note that F 1
k ⊆ F ′k, and hence, for every i ∈ F 1

k , cik ≤ 2Ck.

Thus, 2U
∑

i∈F 1
k
cikz

∗
i = 2U

∑
i∈F 1

k
cikxik ≤ 4UCk

∑
i∈F 1

k
xik ≤ 4DkCk, where the last

inequality follows from Dk ≥ U for these clusters and the fact that
∑

i∈F 1
k
xik ≤ 1.

For client in k ∈ D′, we define nbr(k) = arg minj∈D′\{k} cjk.

Expanding Dk as
∑

j djx(Fk, j),
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4DkCk = 4
∑
j∈D

djx(Fk, j)Ck

= 4
∑

j∈D:Cj≥Ck

djx(Fk, j)Ck + 4
∑

j∈D:Cj<Ck

djx(Fk, j)Ck

≤ 4
∑

j∈D:Cj≥Ck

djCjx(Fk, j) +
∑

j∈D:Cj<Ck

djx(Fk, j)cknbr(k)

(2.1)

where the last inequality follows from part (i) of Lemma 2.2, that ckk′ ≥ 4 max(Ck, Ck′) for
any k, k′ ∈ D′. For clients j ∈ D such that Cj < Ck, we can show that cknbr(k) ≤ 2cij + 8Cj
for any facility i ∈ Fk. This is because, as Cj < Ck, we know there is another cluster center
k′′ ∈ D′ such that k 6= k′′ and cjk′′ ≤ 4Cj. Thus:

cknc(j) ≤ ckk′′

≤ ckj + cjk′′ (triangle inequality)

≤ ckj + 4Cj (Lemma 2.2)

≤ cij + cik + 4Cj (triangle inequality)

≤ 2cij + 8Cj (Claim 2.3)

Thus, ∑
j∈D:Cj<Ck

djx(Fk, j)cknbr(k) =
∑

j∈D:Cj<Ck

dj
∑
i∈Fk

cknbr(k)xij

≤
∑

j∈D:Cj<Ck

dj
∑
i∈Fk

(2cij + 8Cj)xij

Finally, plugging this into (2.1),

4
∑

j∈D:Cj≥Ck

djCjx(Fk, j) +
∑

j∈D:Cj<Ck

djx(Fk, j)cknbr(k)

≤ 4
∑

j∈D:Cj≥Ck

djCjx(Fk, j) + 8
∑

j∈D:Cj<Ck

djCj
∑
i∈Fk

xij + 2
∑

j∈D:Cj<Ck

dj
∑
i∈Fk

cijxij

≤ 8cost2(Fk) + 2cost1(Fk)
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Now, consider term ‘b’,

2U
∑
i∈F 2

k

cik

∑
j djxij

U
≤ 2

∑
i∈F 2

k

cik
∑
j

djxij

= 2
∑
j∈D

dj
∑
i∈F 2

k

cikxij

≤ 2
∑
j∈D

dj
∑
i∈F 2

k

(cij + 4Cj)xij (Claim 2.3)

= 2cost1(F
2
k ) + 8cost2(F

2
k )

Hence, combining the analysis for terms ‘a’ and ‘b’ gives:

2U
∑
i∈Fk

cikz
∗
i ≤ 2cost1(Fk) + 8cost2(Fk) + 2cost1(F

2
k ) + 8cost2(F

2
k )

≤ 2cost1(Fk) + 8cost2(Fk) + 2cost1(Fk) + 8cost2(Fk)

≤ 4cost1(Fk) + 16cost2(Fk)

As {Fk}k∈D′ form a partition of the facility set F , summing up across all cluster centers,

T (z∗) =
∑
i∈F

fiz
∗
i +

∑
k∈D1

Tk(z
∗) +

∑
k∈D2

Tk(z
∗) +

∑
k∈D3

Tk(z
∗)∑

i∈F

fiyi +
∑
k∈D′

(10cost1(Fk) + 25cost2(Fk))

≤ 10(
∑
i∈F

fiyi + cost1(F)) + 25cost2(F) ≤ 35OPT

�

Lemma 2.9. P̂ has half-integral extreme points.

Proof. The proof of Lemma 2.9 is very similar to an analogous result in [Swa16] and we

prove it here for completeness. The half-integrality of P̂ follows from the fact that every
extreme point is defined by a linearly independent system of tight constraints comprising
some z(S) = r(S) equalities corresponding to a laminar set system, and some z(F ′k) = 1

2
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and z(Gk) = 1 for k ∈ D3, z(F ′k) = 1
2

and z(Fk) = 1 for k ∈ D1, and some z(F ′k) = 1
2

and z(Fk) = bDk
U
c equalities. The constraint matrix of this system thus corresponds

to equations coming from two laminar set systems; such a matrix is known to be totally
unimodular. As the right hand side of our system is half-integral, from this we can conclude
that P̂ has half-integral extreme points.

�

Thus, we can obtain a half-integral extreme point solution ŷ ∈ P̂ such that T (ŷ) ≤
T (z∗).

2.4.1 Obtaining a half-integral assignment vector x̂ correspond-
ing to ŷ

For cluster centers in D3, we know that 1
2
≤ ŷ(Fk) ≤ 1 according to the constraints in

P̂ . Thus, we define a relation σ : D3 → D′ to handle the residual demand Dk in the case
ŷ(Fk) < 1. We will define σ(.) with the following properties in mind. (i) We want σ(k) to
be close to k as the cost incurred to move the residual demand will be ∼ ckσ(k). (ii) We
don’t want a cluster center in D′ to be defined as a neighbour for too many centers in D3

as we don’t want the capacity violation incurred as a result of this extra demand to be too
much.

Recall that for k ∈ D′, we defined nbr(k) = minj∈D′\{k} cjk.

The relation σ : D3 → D′ is defined as follows:

Algorithm 2: Assign neighbors

-Create G with V (G) = D′ and E(G) = {(k, nbr(k)) : ∀k ∈ D3}
for For each k0 with an incoming arc do

Let k1, . . . , kl be children of k0 ordered in increasing order of

distance from k0.
(B1) Define σ(k1) = k0.
(B2) Define σ(kr) = kr−1 for 2 ≤ r ≤ l .

end

In the algorithm above, every component G is an out-tree rooted at either a node in
D1 ∪ D2 or a 2-cycle (k, k′)(k′, k) in D3. As we break ties consistently, we cannot have
cycles with length larger than 2.

23



(a) Rooted at a node in D1 ∪ D2 (b) Rooted at a 2-cycle of clients in D3

Figure 2.1: 2 types of components in G from Algorithm 2, an edge u→ v in the diagram
implies that σ(u) = v.

Lemma 2.10. The relation σ : D3 → D′ satisfies the following properties:

1. ckσ(k) ≤ 4γk for each k ∈ D3.

2. For any k ∈ D3 and i ∈ F ′σ(k), cik ≤ 5γk.

3. |σ−1(k)| ≤ 1 for every k ∈ D1 ∪ D2.

4. |σ−1(k)| ≤ 2 for every k ∈ D3.

Proof. (1) To see the first property, consider a node k0 with at least one incoming arc and
let k1, . . . , kl be its children ordered in increasing order of distance from k0. According
to our method of defining σ, for k1, ck1σ(k1) = ck1nbr(k1). And for kr, 2 ≤ r ≤ l, ckrσ(kr) ≤
cnbr(kr)kr−1 +cnbr(kr)kr ≤ 2cnbr(kr)kr as nbr(kr−1) = nbr(kr) and cnbr(kr)kr−1 ≤ cnbr(kr)kr . Thus,
for k = kr, 1 ≤ r ≤ l, ckσ(k) ≤ 2cknbr(k). We now show that cknbr(k) ≤ 2γk. Note that for
γk = mini 6∈Fkcik and let i be the facility attaining this minimum. As i 6∈ Fk, there is
another cluster center k′ such that i ∈ Fk′ and cik′ ≤ γk. Thus, ckk′ ≤ 2γk and by definition
of nbr(k), cknbr(k) ≤ ckk′ ≤ 2γk. Thus, ckσ(k) ≤ 2cknbr(k) ≤ 4γk.
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(2) For k ∈ D3, let i ∈ F ′σ(k), and by definition, ciσ(k) ≤ 2Cσ(k). For cluster centers k ∈ D3

with σ(k) = nbr(k), we show that cik ≤ 3γk. For these clusters, 2Cσ(k) = 2Cnbr(k) ≤
4max{Cnbr(k),Ck}

2
≤ cknbr(k)

2
≤ γk. Thus, cik ≤ cσ(k)k + ciσ(k) = cnbr(k)k + cnbr(k)i ≤ 2γk +

2Cnbr(k) ≤ 3γk.

For cluster centers k ∈ D3 with σ(k) 6= nbr(k), we will show that cik ≤ 5γk. For these

clusters, note that cknc(k) ≥ cσ(k)nbr(k). Thus, 2Cσ(k) ≤ 4max{Cσ(k),Cnbr(k)}
2

≤ 1
2
cσ(k)nbr(k) ≤

1
2
cknbr(k) ≤ γk. Thus, cik ≤ cσ(k)k + ciσ(k) ≤ 4γk + 2Cσ(k) ≤ 5γk.

For properties (3) and (4), consider a client k ∈ D1 ∪D2, k doesn’t have an outgoing edge.
As k can only have incoming edges, it is considered in step (B1) at most once, and when
considered, there exists only one k′ ∈ D3 such that σ(k′) = k.

For a client k ∈ D3, we know that k has exactly one outgoing edge and hence it is
considered in step (B2) exactly once and moreover, in step (B2), there exists at most one
k′′ such that σ(k′′) = k. Also, it is possible that k has incoming edges in G. Thus, it can
also be considered in step (B1) . Thus for k ∈ D3, σ

−1(k) ≤ 2. �
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We are now ready to define the procedure to obtain half-integral x̂.

Algorithm 3: Obtain half-integral assignments for clustered solution.

(A1) For centers k ∈ D1. Let F ′ ⊆ Fk such that ŷ(Fk) = 1.
Set x̂ik = ŷi for each i ∈ F ′.

(A2) For centers k ∈ D2. Make dDk
U
e copies of k.

Set the demand of bDk
U
c of these copies to U. If Dk

U
is not

integral, set the demand of the remaining copy to

frac(Dk
U

) = Dk
U
− bDk

U
c.

Since ŷ(Fk) ≥ bDkU c and the capacities {Uŷi}i∈Fk are multiples of U
2
,

We can assign the bDk
U
c copies with demand U to facilities in Fk

such that the fraction of a copy’s demand to facilities in Fk is

half-integral, and each facility i ∈ Fk is assigned at most Uŷi
demand.

For the remaining copy with demand frac(Dk
U

), if there is some i ∈ Fk
with ŷi = 1, assign this copy completely to i; otherwise, pick any

two facilities i, i′ ∈ Fk with ŷi = ŷi′ = 1
2
, and assign a

1
2
-fraction of this copy’s demand to both i and i′.

(A3) For centers k ∈ D3. For each i ∈ Fk with ŷi > 0, set x̂ik = ŷi.
If ŷ(Fk) < 1, set xi′k = 1− ŷ(Fk) where i′ ∈ F ′σ(k).

For k ∈ D2, let Dk,c be the set containing copies of k and let D2,c =
⋃
k∈D2
Dk,c. Finally,

let Dc = D1 ∪ D2,c ∪ D3. Thus, each cluster center in Dc has a half-integral assignment
under x̂.

Lemma 2.11. The cost of the solution (x̂, ŷ) is at most the cost of T (ŷ) ≤ T (z∗).

Proof. The facility opening cost of the solution (x̂, ŷ) is
∑

i∈F fiŷi. To show that the cost
of solution (x̂, ŷ) is at most T (ŷ), what remains to be shown is that for each cluster center
k ∈ D′, the assignment cost is at most Tk(ŷ).

Consider a cluster center k ∈ D1. The assignment cost for k is Dk

∑
i∈Fk cikx̂ik, which

according to how we’ve set up the assignments is at most Dk

∑
i∈Fk cikŷi = Tk(ŷ).

Consider a cluster center k ∈ D3. If ŷ(Gk) = 1, then the assignment cost isDk

∑
i∈Gk cikx̂ik =

Dk

∑
i∈Gk cikŷi = Tk(ŷ). Else, the assignment cost is Dk

∑
i∈Gk cikx̂ik + Dk(1 − ŷ(Gk))ci′k

where i′ ∈ Fσ(k). From property (2) of Lemma 2.10, we know that ci′k ≤ 5γk. Thus, the
assignment cost under x̂ is Dk

∑
i∈Gk cikx̂ik +Dk(1− ŷ(Gk))(5γk).
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Finally, consider a cluster center k ∈ D2. Notice that as we are sending a demand of at
most 2Uŷi to a facility i ∈ Fk, the total cost of such a solution is at most

∑
i∈Fk cik(2Uŷi) =

2U
∑

i∈Fk cikŷi = Tk(ŷ). �

Lemma 2.12. The solution (x̂, ŷ) is a 3-violated solution for the clustered instance.

Proof. Notice that according to the assignments, the solution (x̂, ŷ) satisfies constraints
(1), (3), (4) and (5). We will show that it violates constraints (2) by a factor of at most 3.
Note that centers in D3 send at most a demand of U

2
outside the cluster.

Consider a cluster k ∈ D1. If there is no k′ ∈ D1 such that σ(k′) = k, then for each
facility i ∈ Fk,

∑
j∈D′ Djx̂ij ≤ Uŷi as k is the only cluster center assigning its demand to

facilities in Fk, and Dk ≤ U . Otherwise, there exists only 1 center k′ ∈ D1 (Property 3 in
Lemma 2.10) such that σ(k′) = k. As k′ sends a demand of at most

Dk′
2
≤ U

2
to a facility

in F ′k, we can conclude that for each facility i ∈ Fk,
∑

j∈D′ Djx̂ij ≤ 2Uŷi.

Consider a cluster k ∈ D2. If there is no k′ ∈ D1 such that σ(k′) = k, then for
each facility i ∈ Fk,

∑
j∈D′ Djx̂ij ≤ 2Uŷi as only the copies created for k send demand to

facilities in Fk, and the x̂ assignment sends at most (2U)ŷi demand to any facility in Fk.
Otherwise, there exists only 1 center k′ ∈ D1 such that σ(k′) = k. As k′ sends a demand
of at most

Dk′
2
≤ U

2
to a facility in F ′k, we can conclude that for each facility i ∈ Fk (that

is open to an extent of at least 1
2
),
∑

j∈D′ Djx̂ij ≤ 3Uŷi.

Finally consider a cluster k ∈ D3. If there is no k′ ∈ D1 such that σ(k′) = k, then
for each facility i ∈ Fk,

∑
j∈D′ Djx̂ij ≤ Uŷi as k is the only center assigned to these

facilities and Dk ≤ U . Otherwise, there are at most 2 centers in D3 that are sending a
demand of at most U

2
each to a facility in F ′k. Thus, we can conclude that for each facility

i ∈ Fk,
∑

j∈D′ Djx̂ij ≤ 3Uŷi.

This finishes the proof. �

2.5 Getting an integral solution

From Lemma 2.11 and Lemma 2.12, we know that (x̂, ŷ) is a 3-violated solution to the
clustered instance of cost at most 35OPT.

We are now working with the client set Dc which contains the copies of cluster centers
in D2(D2,c) and cluster centers D1 and D3. We obtain an integral solution (x̃, ỹ) for these
cluster centers. This naturally translates to an integral solution (x′, ỹ) for the instance
with cluster centers D′, were x′ is fractional by setting x′ik = total demand assigned to copies of k

Dk
.
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It is easy to see from this definition that every facility i will be assigned the same amount
of demand under both (x̃, ỹ) and (x′, ỹ), and so, the cost of (x′, ỹ) is the same as the cost
of (x̃, ỹ).

We now describe the algorithm that takes as input a half-integral solution (x̂, ŷ) and
outputs an integral solution (x̃, ỹ) which is done using a simple facility-location clustering
step.
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Algorithm 4: Half-integral to integral

1. Let (x̂, ŷ) be a half-integral solution for the clients in Dc.
-Define Ĉk =

∑
i∈F cikx̂ik for each k ∈ Dc. (Assignment cost under x̂)

-Define Sk = {i ∈ F : x̂ik > 0} for each k ∈ Dc.
2. Clustering. Let D̃ = ∅.
-Let L denote list of clients in Dc ordered in increasing order of

assignment costs under x̂.
-while L 6= ∅ do

Add first client k ∈ L to D̃.
for each j ∈ L (including k) such that Sj ∩ Sk 6= ∅ do

Set ctr(j) = k
Remove j from L.

end

end
3. Obtain integral solution.

(Note, when Sj 6⊆ Sctr(j), |Sj \ Sctr(j)| = |Sj ∩ Sctr(j)| = 1.)
-Obtain integral opening vector ỹ by solving the following program,

min
z∈P̃

fizi +
∑
k∈Dc

Hk(z) ,where

P̃ =

{
z(Sk) = 1 ∀k ∈ D̃, z(S) ≤ r(S) ∀S ⊆ F

}

Hk(z) =


Dk

∑
i∈ctr(k) cikzi Sk ⊆ Sctr(k)

Dkcikzi + (1− zi)Dk(ci′k +
∑

i′′∈Sctr(k) ci′′ctr(k)) otherwise, with

Sk \ Sctr(k) = {i},
Sk ∩ Sctr(k) = {i′}

4. Integral assignments

for every client j ∈ Dc do
If Sj ⊆ Sctr(j), assign j to facility open in Sctr(j)
Else, Let i be facility in Sj \ Sctr(j)

if ỹi = 1, Assign j to i
Else, assign j to facility open in Sctr(j)

end
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Note that the polytope P̃ described in the algorithm above is integral. This is because
it is the intersection of the matroid polytope for M with the matroid base polytope for
the partition matroid defined by the sets Sj for j ∈ D̃. Such a polytope is known to have
integral extreme points. Thus, minimizing H(z) = fizi +

∑
k∈Dc Hk(z) over P̃ yields an

integral vector ỹ

In Lemma 2.13, we show that the cost of H(ỹ) is at most twice the cost of (x̂, ŷ) and
thus at most 70OPT. In Lemma 2.14 we show that (x̃, ỹ) violates capacities by a factor of
at most 6 and that its cost is at most H(ỹ).

Lemma 2.13. The cost of H(ỹ) is at most twice the cost of (x̂, ŷ), that is, H(ỹ) ≤ 70OPT.

Proof. We prove this Lemma by exhibiting a z′ such that z′ ∈ P̃ with H(z′) ≤ 70OPT.
As ỹ was obtained by solving the linear program minz∈P̃ fizi +

∑
k∈Dc Hk(z), we know

that H(ỹ) ≤ H(z′). z′ is defined as follows: z′i = xij if i ∈ Sj for some j ∈ D̃, else
z′i = ŷi. According to the definition of z′, for each j ∈ D̃,

∑
i∈F x̂ij = 1 = z(Sj). Moreover,

z′i ≤ ŷi ≤ yi for each i ∈ F . Thus, z′ ∈ P̃ .

As z′i ≤ ŷi for each i ∈ F ,
∑

i∈F fiz
′
i ≤

∑
i∈F fiŷi. As the cost of (x̂, ŷ) is

∑
i∈F fiŷi +∑

k∈Dc DkĈk, to complete the proof, we will show that for each center k ∈ Dc, Hk(z
′) ≤

2DkĈk. A property that is a consequence of our clustering procedure and that we will
utilize repeatedly in this proof is that for k ∈ Dc, Ĉk ≥ Ĉctr(k).

For k ∈ Dc such that Sk = Sctr(k), Hk(z) = Dk

∑
i∈Sctr(k) cikzi. Thus, Hk(z

′) = DkĈk ≤
2DkĈk. If for k ∈ Dc, Sk ⊂ Sctr(k), let i be the facility in Sk ∩ Sctr(k) and i′ be the facility
in Sctr(k) \ Sk. Then,

Hk(z
′) =

1

2
Dk(cik + ci′k)

≤ 1

2
Dk(cik + ci′ctr(k) + cictr(k) + cik)

= Dkcik +DkCctr(k)

≤ 2Dkcik = 2DkCk

Otherwise, Hk(z
′) = Dkcikzi + (1− zi)Dk(ci′k +

∑
i′′∈Sctr(k) ci′′ctr(k)), with Sk \ Sctr(k) =

{i}, Sk ∩ Sctr(k) = {i′}. Again, if z′i = 1, and Hk(z
′) = Dkcik ≤ 2DkĈk. Else, z′i = 1

2
and

Hk(z
′) can be bounded as follows
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Hk(z
′) =

1

2
Dkcik +

1

2
Dkci′k +

1

2
Dk(ci′ctr(k) + ci′′ctr(k))

= DkĈk +DkĈctr(k)

≤ 2DkĈk.

Hence, we have shown that Hk(z
′) ≤ 2DkĈk for every k ∈ Dc. �

Lemma 2.14. The solution (x̃, ỹ) is a 6-violated solution and has cost at most H(ỹ).

Proof. For k ∈ Dc such that Sk ⊆ Sctr(k), the assignment cost under x̃ is Dkcik where i is
the facility open in Sctr(k). Note that this is exactly equal to

∑
i∈Sctr(k) cikỹi = Hk(ỹ).

For k 6∈ D̃ with Sk 6⊆ Sctr(k), let i be the facility in Sk \ Sctr(k) and i′ be the facility in
Sk ∩ Sctr(k). If |Sctr(k)| = 1, if ỹi = 1, then k’s assignment cost is cik, else it is equal to ci′k,
hence, k’s assignment cost is Dk(cikỹi + ci′kỹi′) = Hk(ỹ).

If |Sctr(k)| = 2, let i′′ be the facility in Sctr(k) \ Sk. if ỹi = 1, then k’s assignment
cost is Dkcik = Hk(ỹ). Else, k’s assignment cost is Dkci′k or Dkci′′k and we can see that
Dkci′k, Dkci′′k ≤ Dk(ci′k + ci′ctr(k) + ci′′ctr(k)) = Hk(ỹ).

Consider a cluster Sk for k ∈ Dc. The total demand being handled by the facilities
in the cluster is at most 3U (as the total facility weight ŷ(Sk) is 1). According to our
assignments, the total demand being sent to this cluster is at most doubled. All this
demand will be assigned to only one facility as according to the integer opening vector ỹ,
only one facility is open inside Sk - hence, this facility is handling a demand of at most 6U .
The other case is when there is a cluster center k ∈ Dc \ D̃ and it’s assigned completely
to i ∈ Sk \ Sctr(k). As the demand being sent to this facility is also at most doubled, the
demand its handling is at most 6U . �

Thus, from Corollary 2.5, Lemma 2.14 and Lemma 2.15, we can conclude Theorem 2.1.
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Chapter 3

Integrality gaps

In this chapter, we provide integrality gap results for the natural LP relaxation for capac-
itated matroid median. For the special case of capacitated k-median and even with no
facility-opening costs, there are instances, where any integral solution has to open at least
2k facilities or violate the capacity constraint by a factor of at least 2 in order to have cost
that can be bounded in terms of the LP optimum cost.

Our algorithm from the previous chapter shows that for CMM with uniform capacities,
we can get an integral solution of cost at most 76OPT if the integral solution is allowed
violate the capacity constraint by a factor of at most 6. We show in Section 3.1 that a
similar result based on rounding the natural LP is not possible for CMM with non-uniform
capacities. In Section 3.2, we then provide an integrality gap example showing that even
for capacitated matroid median with uniform capacities, if we are not allowed to violate
capacities, then we must violate the matroid constraints by a non-constant factor in order
to obtain a solution whose cost can be bounded relative to the natural LP optimum (we
define what we mean by violating the matroid constraints precisely in section 3.2). This
shows that a result analogous to capacitated k-median, wherein we respect capacities but
violate k, is not possible (based on rounding the natural LP) for capacitated matroid
median, even with uniform capacities.
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3.1 Gap example for CMM with non-uniform capac-

ities

The natural LP-relaxation for CMM with non-uniform capacities is the same as (P), but
the right hand side of constraint (2) is now Uiyi, where Ui is the capacity of facility i. We
show that for every constant β > 0, there exists an instance of CMM-NC such that the LP
optimum is 0, but every β-violated integral solution has strictly positive cost. Thus, we
cannot obtain a result where we return a solution that violates capacities by an O(1)-factor
and has cost that is bounded in terms of the LP-optimum. This proves Theorem 1.2 from
Section 1.2.

Let β > 0 and let U be an integer greater than β. The instance has U groups, each
consisting of a client with demand U and two facilities - one with capacity U , which we
call a red facility and the other with capacity 1, which we call a blue facility. The clients
and the facilities are co-located in each group, that is, the distance between them is 0.
The distance between points in different groups is, say 1 (the exact value of the distance
between groups is not important, but it is important that this distance between groups is
strictly positive). The matroid defined over the set of facilities,M = (F , I), is a partition
matroid: I = {F ′ ⊆ F : |F ′ ∩ FU | ≤ U − 1} where FU is the set of facilities of capacity U ,
that is, the red facilities.

The LPOPT for the above instance is 0 as we can construct a fractional solution (x, y)
of cost 0. The solution is built as follows. Consider a group and let j be the client and
let iU and i1 be the facilities of capacities U and 1 respectively in the group. Let yi1 = 1,
yiU = 1− 1

U
and let xi1j = 1

U
, xiU j = 1− 1

U
. It is easy to see that this solution is feasible for

(P). In any β-violated integral solution, there must be a group in which iU is not open due
to the matroid M. As capacity can only be violated up to an extent of β, there must be
some demand that has to be assigned to a facility outside the group, which ensures strictly
positive cost.
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Figure 3.1: Integrality gap example for CMM with non-uniform capacities

3.2 Gap example for CMM with uniform capacities

Generalizing the definition of β-violated solution, we say that (x, y) is an (α, β)-violated
solution to (P), if it violates the matroid rank constraints by an α factor i.e., y(S) ≤
α r(S) ∀S ⊆ F , and capacities by a β factor, and satisfies the remaining constraints of
(P); that is, (x, y) satisfies:

∑
i∈F xij = 1 for all j ∈ D and 0 ≤ xij ≤ yi ≤ 1 for all

i ∈ F , j ∈ D. Using results from matroid intersection, one can show that if (x, y) is an
integral (α, β)-violated solution , then the set of open-facilities can be partitioned into at
most α independent sets. Thus, this notion can be viewed as a generalization of the notion
of violating the cardinality bound k in capacitated k-median.

We show that for every constant α > 0, there exists an instance of CMM, even with
uniform capacities, such that the LP-optimum is 0, but every (α, 1)-violating integral
solution has strictly positive cost. This shows that we cannot obtain a solution that
respects capacities, and violates the matroid constraints by a constant-factor, and has cost
that is bounded relative to the LP-optimum. This proves Theorem 1.3 in Section 1.2.

Let α > 0 and let U be an integer greater than α. The instance has U groups. The
facility set is partitioned into U blue facilities and U red facilities, each with capacity
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1. Each group contains a client with demand 1 + 1
U

and, one red and one blue facility.
The client and facilities are co-located in each group and the distance between points in
different groups is 1 (again, the exact distance is not important, but this distance should
be positive). The matroid over the set of facilities, M = (F , I), is a partition matroid:
I = {F ′ ⊆ F : |F ′ ∩ Fr| ≤ 1} where Fr is the set of red facilities.

1 + 1
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· · ·
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U

1
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Figure 3.2: Integrality gap example for CMM with uniform capacities

The LPOPT for the above instance is 0. A fractional solution (x, y) of cost 0 is described
as follows. Consider a group and let j be the client in the group and let r and b denote the
red and blue facilities in the group respectively. Set yb = 1 and yr = 1

U
. For j’s assignment,

set xjr = 1
U+1

and xjb = U
U+1

. It is easy to see that the solution satisfies the constraints of
(P). In any (α, 1)-violating integral solution, as the matroid constraints are allowed to be
violated up to a factor of at most α, we can open at most α red facilities. So since, U > α,
there will be a group whose red facility is not open. Since we are not allowed to violate
capacities, some of the demand in this group must be assigned to facilities outside of this
group, which incurs a positive cost.
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Chapter 4

Applications

It was shown in [Swa16] that matroid median is quite a versatile model which, in addition
to generalizing k-median and facility location, is able to capture various (seemingly dis-
parate) facility-location problems considered in literature. As remarked earlier, many of
these facility location problems can be considered in the context of facility capacities, which
often lead to more realistic models. We show in this chapter that our result for capacitated
matroid median yields results for certain capacitated variants of the facility location prob-
lems captured by matroid median. Our reductions from the capacitated facility location
problems to capacitated matroid median naturally mimic the reductions in [Swa16] from
the (uncapacitated) problem to the (uncapacitated) matroid median problem.

4.1 The Data Placement problem

Problem definition. In the data placement problem, we are given a set of facilities F , a
set of clients D and a set of data objects O. We have assignment costs {cij}i∈F ,j∈D where
the cij’s form a metric. Each client j ∈ D is associated with a demand dj of data object
o(j) ∈ O and each facility i ∈ F has an object capacity oi ∈ Z+ which corresponds to the
number of different types of objects the facility i can serve. A storage cost of f io is incurred
if facility i is being used to serve a client j of data object type o. We want to determine
a set of data objects O(i) ⊆ O to assign to each facility i ∈ F such that |O(i)| ≤ oi
and assign each client to a facility i(j) ∈ F such that o(j) ∈ O(i(j)). The objective is to
minimize

∑
i∈F
∑

o∈O(i) f
o
i +

∑
j∈D djcji(j).

We can consider a capacitated variant, where for each facility i ∈ F , and object o ∈ O,
we have have an associated capacity uoi which limits the total demand of clients demanding
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object o that can be assigned to i: that is, a solution is feasible if additionally, we also
have

∑
j:i(j)=i,o(j)=o dj ≤ uoi for every i ∈ F , o ∈ O.

Baev and Rajaraman gave the first constant factor approximation for the uncapacitated
version of the problem [BR01], and this factor was improved to 10 [BRS08] and then to 8
[Swa16].

Reduction to capacitated matroid median. Given an instance of the capacitated data
placement problem, we reduce it to an instance of capacitated matroid median as follows.
The facility set is F × O; each facility (i, o) has an opening cost of f oi and a capacity of
uoi . The client set is D. We set c(i,o)j = cij if o(j) = o and ∞ otherwise. This ensures that
each client j is assigned to a facility containing object o(j). These new distances form a
metric if the cij’s form a metric. The object capacity constraints are incorporated via the
matroid constraint where a set S ⊆ F × O is independent if |(i′, o) ∈ S : i′ = i| ≤ oi for
every i ∈ F .

Thus, our result for CMM with uniform capacities yields a 76-approximation algorithm
for capacitated data placement with uniform capacities, while violating capacities by a
factor of 6. In Chapter 5, we discuss a different capacitated variant of the data placement
problem.

4.2 The mobile facility location problem

Problem definition. The input is a metric space (V, {cij}). We have a set D ⊆ V of
clients with each client j having a demand of dj, and a set F ⊆ V of initial facility locations.
A solution moves each facility i ∈ F to a final location si ∈ V incurring a movement cost
of cisi and assigns each client j to a final location s of some facility incurring an assignment
cost of djcsj. The goal is to minimize the sum of all the movement and assignment costs.

We can consider various versions of the capacitated generalization of mobile facility
location. In one version, we can consider the case where each destination s ∈ V is associated
with a capacity Us and at most Us demand can be assigned to the facility that is moved to s.
A more general version would be to associate a capacity of Ui,s for every pair i ∈ F , s ∈ V
such that a facility i can be assigned at most Ui,s demand when moved to a location s.
Note that this general version is flexible enough to capture the case when more than one
facility is assigned to the same location s. If F ′ ⊆ F are the set of facilities assigned to
a location s ∈ V , then the capacity at s is equal to

∑
i∈F ′ Ui,s. Our reduction to CMM

below can capture this more general version of capacitated mobile facility location.
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Friggstad and Salavatipour gave an 8-approximation for the uncapacitated version of
the problem [FS11b]. Another algorithm with an approximation guarantee of 8 is through
the reduction from UMM by Swamy [Swa16].

Reduction to capacitated matroid median. Given an instance of capacitated mobile
facility location, we reduce it to an instance of capacitated matroid median as follows. The
facility set is F ×V and the client set is D. The facility (i, si) denotes that i ∈ F is moved
to location si ∈ V in the final solution and has opening cost cisi and a capacity of Ui,si .
We set c(i,s)j = csj for every facility (i, s) ∈ F × V and client j. These new distances form
a metric: we have c(i,s)j ≤ c(i,s)k + c(i′,s′)k + c(i′,s′)j as csj ≤ csk + cs′k + cs′j . The constraint
that a facility can only be moved to one final location is encoded in the matroid constraint
as follows: A set S ⊆ F × V is independent if |{(i′, s) ∈ S : i′ = i}| ≤ 1 for all i in F .

Thus, our result for CMM with uniform capacities yields a 76-approximation algorithm
for capacitated mobile facility location with uniform capacities, while violating capacities
by a factor of 6.

4.3 The metric uniform MLCFL

Problem definition. We are given a set F of facilities and a set D of clients with
assignment costs {cij}j∈D,i∈F , where the cij’s form a metric. Also, we have a monotone
latency-cost function λ : Z+ → R+. The goal is to choose a set F ⊆ F of facilities to
open, assign each open facility i ∈ F a distinct time-index ti ∈ {1, . . . , |F|}, and assign
each client j to an open facility i(j) ∈ F so as to minimize

∑
i∈F fi +

∑
j∈D(ci(j)j +λ(ti(j)).

In the capacitated version, each facility i ∈ F is associated with a capacity ui, which
limits the number of clients that may be assigned to it.

The problem was introduced by Chakrabarty and Swamy who gave a 10.773-approximation
algorithm for the problem [CS11] which was improved to an 8-approximation in [Swa16].

Reduction to capacitated matroid median. The facility set is defined as F ×
{1, . . . , |F|} and the matroid on this set encodes that a set S is independent if |{i ∈ F :
(i, t) ∈ S}| ≤ 1 for all t ∈ {1, . . . , |F|}. We set f(i,t) = fi, u(i,t) = ui and c(i,t)j = cij + λ(t);
note that these distances form a metric.

Thus, our result for CMM with uniform capacities yields a 76-approximation algorithm
for capacitated MLCFL with uniform capacities, while violating capacities by a factor of
6.
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Chapter 5

Conclusions and Future Work

In this thesis, we presented an approximation algorithm for the capacitated matroid median
problem with uniform capacities (CMM-UC) which violates the capacity constraint by a
factor of at most 6. Moreover, we were able to show that the natural LP has unbounded
integrality gap for (i) CMM-UC when the solution is not allowed to violate capacities and
only allowed to violate the matroid constraint, and for (ii) CMM-NC when the solution
is not allowed to violate the matroid constraint and only allowed to violate the capacity
constraint. Our work leads to various further interesting open questions, and we mention
some of them below.

5.1 Results based on the natural LP

• Is it possible to get a constant factor approximation algorithm for CMM-NC when
the solution is allowed to violate capacities and only allowed to violate the matroid
constraint by a small factor (1 + ε)? Note that our integrality gap for CMM-NC fails
when a small violation in the matroid constraint is allowed.

• Similar to the question above, is it possible to obtain a constant factor approximation
algorithm for CMM-UC when the solution is allowed to violate the matroid constraint
and allowed to violate the capacity constraint by a small factor (1 + ε)? Our gap
example for this case also fails when a small violation of the capacity constraint is
allowed.

• The constants that our algorithm achieves, both in the approximation factor and
capacity violation, are pretty large. It will be interesting to find algorithms that
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obtain smaller constants. In the same vein, we know that for k-median, the capacities
have to be violated by a factor of at most 2, is this the same for CMM? Or can we
find gap examples which show that the capacity violation has to be at least a factor
of c for 2 < c ≤ 6? As a step in this direction, our algorithm loses an additional factor
of 2 in the capacity violation in converting a half-integral solution to an integral one.
It would be good to understand whether such a loss is necessary in order to round
losing only an O(1)-factor in the cost.

5.2 Results based on newer LP’s

Recent years have seen great progress on the capacitated k-median problem. This progress
was spurred by [Li17] and [Li16] in which constant factor approximation algorithms for
CKM-UC and CKM-NC were given in which the solution opens at most (1 + ε)k facilities.
The configuration LP of [Li16] was further used to give a constant factor approxima-
tion algorithm for CKM-UC which opens at most k facilities and violates the capacity
constraint by a factor of at most (1 + ε) [BRU16]. This result was further generalized
by [DL16] to the non-uniform capacities case thus settling the k-median problem up to
pseudo-approximations.

The breakthrough result of [ASS14] gave the first LP-based constant factor approxi-
mation algorithm for capacitated facility location. They introduce a stronger LP based on
multi-commodity flows and show that this LP has a constant integrality gap for CFL.

Hence, this leads us to the natural question of whether the power of these newer LP’s
can be harnessed to get better results for CMM-UC and CMM-NC.

5.3 Applications

In section 4.1, we showed that our our approximation algorithm for capacitated matroid
median yields a 76-approximation for capacitated data placement with uniform capacities
with capacity violation at most 6. That is, our algorithm produces a solution, that for
every open facility i ∈ F , assigns at most oi different data objects to i and assigns at
most a demand 6U to i for each kind of data object (where uoi = U for each i ∈ F , i ∈
O). Myerson, Mungala and Plotkin considered a different variant of capacitated data
placement in [MMP01]. They considered the version in which every facility i ∈ F has
a object-capacity oi limiting the different types of data objects that can be assigned to
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the facility i and a global client capacity ui that limits the total demand that can be
assigned to i across the different types of data objects assigned to it. Their algorithm
provides a constant-factor guarantee, but with logarithmic violation in the object and
client capacities. Thus, it is an interesting question to see if it is possible to obtain a
constant-factor approximation algorithm for this variant with no object-capacity violation
and a constant-capacity violation.
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