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Abstract

Vortex Induced Vibrations (VIV) of a pivoted circular cylinder were examined through ex-
periments conducted in a water tunnel facility at the University of Calgary. The structural
response and wake dynamics of the system were evaluated with the goal of quantitatively
describing the attendant fluid-structure interaction. Experiments were performed at a
fixed Reynolds number of 3100, a mass ratio of 10.8, and a range of reduced velocities,
4.42 ≤ U∗ ≤ 9.05. Laser based displacement sensors and time-resolved, two-component
particle image velocimetry (PIV) measurements were used to quantify the structural re-
sponse and flow development, respectively. The results provide new insight into the fluid-
structure interaction for pivoted cylinders, which is of practical engineering interest as this
phenomenon is encountered in various civil structures and mechanical devices.

For the investigated conditions, the cylinder traces elliptic trajectories, with the exper-
imental conditions producing three out of four possible combinations of orbiting direction
and primary axis alignment relative to the incoming flow. The study focuses on the quan-
titative analysis of wake topology and its relation to this type of structural response. The
planar phase-averaged wake topology generally agrees with the Morse and Williamson [1]
shedding map for one-degree-of-freedom vortex induced vibrations, with 2S, 2P0, and 2P
shedding patterns observed within the range of reduced velocities studied here. A new Eu-
lerian vortex identification, tracking, and strength quantification methodology is developed
and applied to analyze the vortex shedding process. In the case of 2S vortex shedding,
vortices are shed when the cylinder is approaching the maximum transverse displacement
and reaches the streamwise equilibrium. 2P vortices are shed approximately half a period
earlier in the cylinder’s elliptic trajectory. Leading vortices shed immediately after the
peak in transverse oscillation and trailing vortices shed near the equilibrium of transverse
oscillation. The orientation and direction of the cylinder’s elliptic trajectory are shown to
influence the timing of vortex shedding, inducing changes in the 2P wake topology.

Three dimensional reconstructions of the phase averaged wake velocity measurements
reveal 2S shedding along the span of a stationary cylinder and hybrid shedding for the VIV
cases at U∗ = 5.48 and 7.08, with planar wake topology transitioning from 2S to P+S to
2S, and 2S to P+S, respectively. The observed wake topologies show significant deviation
from predictions based on the Morse and Williamson [1] shedding map. Examination
of the time averaged wake characteristics shows the formation length, wake half-width,
and maximum velocity deficit exhibit spanwise trends that support the observed region of
wake transition between different shedding regimes. Spectral analysis of the wake velocity
indicates cycle-to-cycle variations of the spanwise location of wake topology transition as
well as transience in the frequency of vortex shedding.
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H the Hilbert transform −
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î component of vector x −

ĵ component of vector y −

k spring stiffness coefficient N m−1
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kc cross-stiffness N m−1
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−
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yss steady state cylinder displacement in the trans-
verse direction
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Chapter 1

Introduction

Cross-flow over a cylinder is of fundamental importance to the fluid mechanics community:
it is ubiquitous to engineering applications, such as buildings, bridges, heat exchangers,
offshore structures and pipelines [2–6]. Over the past several decades, numerous studies
have examined the flow around cylindrical structures due to their widespread application
[6–12]. The majority of interest has been focused on an intermediate Reynolds number
range where the phenomenon of vortex shedding occurs in the wake [4]. The flow develop-
ment over a circular cylinder is depicted by the conceptual diagram in Fig. 1.1 and begins
with the approaching fluid diverting around the upper and lower halves of the cylinder.
Boundary layers form at the solid surface due to the no slip-condition and grow towards
the aft of the cylinder as a result of the dominant viscous forces near the surface. Subject
to a sufficient adverse pressure gradient, the boundary layers detach from the surface to
form separated shear layers. For Re & 49 [4], the separated shear layers roll up to develop
vortices that are shed periodically from both sides of the cylinder to form a continuous
pattern in the wake, known as the vortex street [13]. The circular cylinder provides the
foundations to study vortex shedding, which is prevalent in various forms for all bluff
bodies.

Vortex shedding in the near wake causes fluctuating structural forces that can excite
the structure to undergo vibrations [14]. This phenomenon is known as Vortex Induced
Vibrations (VIV) and results in a significant response if the frequency of periodically shed
vortices approaches the natural frequency of the structure [15–19]. The repetitive structural
motion can cause substantial acoustic noise [20] and may impede system operation, with
the extreme being fatigue failure [21, 22]. Knowledge of the fluid-structure interaction is
essential to understand how energy is transferred from the fluid to the structure and how
it can be mitigated from a safety and reliability standpoint. Conversely, the energy may
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Figure 1.1: Diagram of flow development over a circular cylinder.

be harvested as a renewable source by allowing the vibrations to occur [23, 24]. Mitigation
or enhancement of VIV can be achieved through passive or active structural modifications
[5, 25].

The majority of early studies concerning VIV of cylinders constrain the oscillatory
motion in the transverse direction to the flow because the fluid-structure forcing induced
by vortex shedding is primarily transverse to the flow [18, 26–28]. Studies permitting the
cylinder to oscillate in both the transverse and streamwise directions offer a more realistic
representation of practical engineering applications. In most of these two degree-of-freedom
(2DOF) studies, the structures were elastically mounted to produce uniform amplitudes
of vibration along the cylinder span [29–35]. However, practical engineering structures
undergoing VIV often oscillate with an amplitude that varies along the span [36, 37]. A
flexible cantilever [38–40] or flexible cable [41–44] offers the best approximation since their
design can incorporate structural properties that represent a scaled version of a specific
structure. The pivoted cylinder [45–50] is a simplification of the flexible structure and
represents a body having a linear variation of amplitude along its span. Its local flow
features are expected to be generic to other cases of spanwise amplitude variation without
being system specific. The present study focuses on the VIV of a pivoted cylinder.

The structural response for 2DOF VIV of cylinders exhibits two types of trajectories:
figure-eight and elliptic, both of which have been reported to occur naturally [51–53]. The
figure-eight trajectory is described by the frequency of streamwise oscillations being twice
that of the transverse oscillations (fx = 2fy), whereas the frequencies are equal for the
elliptic trajectory (fx = fy). Structures with uniform spanwise amplitude solely exhibit the
figure-eight response [29, 34, 35], while those with spanwise variation of amplitude have been
observed to exhibit both figure-eight [46–48] and elliptic [40, 45, 49] trajectories. Kheirkhah
et al. [45] argue that the structural coupling between the streamwise and transverse motion
governs the occurrence of either figure-eight or elliptic trajectories.

Effects of the reduced velocity and the amplitude of structural oscillations on the wake
topology are well documented in a shedding map for cylinders forced to oscillate with
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1DOF transverse to the flow [1, 54]. Williamson and Roshko [54] describe the vortex for-
mation process in relation to the transverse structural motion for the various shedding
regimes observed. While the shedding map agrees with flow visualizations for 1DOF VIV
in the transverse direction [18, 36], the additional streamwise motion in 2DOF VIV studies
has been shown to cause the observed wake topology to deviate from predictions [34, 47–
49]. Extensive research for the figure-eight trajectory has found the vortex street exhibits
unique patterns in the case of massive amplitudes of oscillation [34, 47]. Furthermore,
Flemming and Williamson [47] observed hybrid vortex shedding in the wake of a pivoted
cylinder undergoing a figure-eight trajectory as a result of the spanwise variation of am-
plitude. On the other hand, there are limited studies focused on the elliptic trajectory
[40, 45, 49]. Kheirkhah et al. [45] used cylinder displacement measurements to investigate
the structural response and focused on identifying the cause for either a figure-eight or
elliptic trajectory. Oviedo-Tolentino et al. [40] and Kheirkhah et al. [49] used qualitative
flow visualization techniques to examine the wake topology in limited planes along the
span. While Kheirkhah et al. [49] identified hybrid shedding in the wake and discuss wake
development, the vortex dynamics at the transition between shedding patterns is unclear.
Furthermore, the influence of the structure’s elliptic trajectory on the vortex formation
process remains to be investigated and would extend observations of the timing of vortex
shedding for 1DOF cases [54–56] to 2DOF cases, thus providing valuable insight into the
effect of an additional degree of freedom on the fluid-structure interaction.

1.1 Study Objectives
VIV studies of pivoted cylinders undergoing an elliptic trajectory have investigated struc-
tural response and have used flow visualization to provide qualitative description of the
attendant wake topology. However, assessment of the elliptic trajectory effects on the wake
development and the vortex dynamics associated with hybrid shedding is presently lack-
ing. The purpose for this investigation is to provide a quantitative assessment of the flow
development and vortex dynamics for a wide range of elliptic structural responses. The
specific research objectives of this thesis are as follows:

1. Investigate the influence of an elliptic trajectory on the wake topology, in order to
(a) provide a quantitative time-resolved description of the wake development for a

range of reduced velocities to confirm previous qualitative observations, and
(b) identify the timing of vortex shedding and its relation to the structural response.

2. Examine the effect of a structural response with spanwise variation of amplitude on
the coherent structures in the wake for a stationary cylinder and two cases of VIV
at U∗ = 5.48 and 7.08 by
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(a) reconstructing the three-dimensional wake topology from time-resolved wake
velocity measurements, and

(b) identifying and characterizing the vortex interactions associated with spanwise
transition between vortex shedding modes.

1.2 Thesis Overview
The thesis is organized as follows: Chapter 2 provides an overview of the relevant literature
on VIV of cylinders and related geometries. The experimental methodology employed and
experimental configuration are described in Chapter 3. An analysis of the results is given
in Chapters 4 and 5, followed by concluding remarks and recommendations in Chapters 6
and 7, respectively.
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Chapter 2

Background

This chapter serves as a comprehensive, but not exhaustive, review of literature pertaining
to flow over a circular cylinder and its related geometries. The focus is to review the
flow development and vortex dynamics in the wake, which are largely governed by vortex
shedding from the cylinder. Following this, a review of the structural response of an
elastically mounted cylinder and the associated fluid-structure interaction is completed
for various flow and structural conditions. The attendant fluid-structure interaction is
essential for understanding how the energy transfer from the fluid to the structure can
be detrimental to performance, requiring mitigation [5, 25], or how it can be utilized for
the purposes of energy extraction [23]. The review first discusses the stationary circular
cylinder in Section 2.1, which instructively provides the fundamentals of flow development.
The following Sections 2.2 and 2.3 present research on cylinders permitted to oscillate
with a uniform spanwise variation of amplitude in either one or two-degrees of freedom.
Sections 2.4 and 2.5 then expand this review with the investigations of cylinders permitted
to oscillate with a spanwise variation of amplitude.

2.1 Flow over a stationary circular cylinder
Flow around a stationary uniform circular cylinder involves the development of a boundary
layer, separated shear layer, and wake region [3, 4]. Numerous studies have examined this
flow due to its widespread application [4–7, 9–12, 15, 57]. A review of the flow development
by Williamson [4] discusses the distinct flow regimes which can be identified based on the
Reynolds number (ReD). For all regimes, the boundary layer forms at the solid surface of
the cylinder, due to the no-slip condition, and grows towards the aft of the cylinder due
to the dominant viscous forces near the surface. Subject to a sufficient adverse pressure
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gradient, the boundary layers detach from the cylinder to form separated shear layers.
For ReD . 49 the flow is laminar and consists of two symmetric recirculating regions
surrounded by separated shear layers that merge at a confluence point downstream of
the cylinder. These regions elongate downstream as the Reynolds number increases until
the flow transitions from the steady laminar regime to unsteady laminar vortex shedding
[58]. In the laminar vortex shedding regime (49 . ReD . 190) the separated shear layers
roll up to develop vortices that shed periodically at the dimensionless shedding frequency
fs = StDU/D. The flow in this regime is considered two-dimensional since vortex shedding
is spanwise invariant with vortices shed parallel to the cylinder. The flow may become
three-dimensional unless laboratory conditions are controlled [13, 59, 60]. As the Reynolds
number is further increased, the inception of secondary streamwise vortex structures causes
the flow to become three-dimensional with transition to turbulence occurring in the far
wake. This wake transition regime exists for 190 . ReD . 1000. Within the range
190 . ReD . 260, mode A and B instabilities cause two discontinuous changes in the wake
[61]. The first occurs near ReD ≈ 180− 194; a the secondary mode A instability develops
and is characterized by paired streamwise vortices separated by a spanwise wavelength of
approximately 3-4 diameters [4]. The second discontinuity occurs over the range 230 .
ReD . 250 as energy is gradually transferred from mode A to mode B [4]. Mode B
is characterized by finer scale streamwise vortices with a smaller spanwise wavelength of
approximately one diameter [4]. As the Reynolds number is increased to 1000, the fine
scale three dimensionalities become increasingly disordered, the length of the formation
region increases, and the transition to turbulence moves upstream towards the near wake.
At ReD ≈ 1000, the laminar shear layers undergo turbulent transition due to a Kelvin-
Helmholtz instability in the free shear layer [62, 63]. Within the regime 1000 . ReD .
2×105, the point of turbulent transition moves upstream with increasing Reynolds number,
but remains in the separated shear layer [64]. This shear layer transition regime has a
Reynolds number range that is applicable to many practical engineering applications and
is the focus of the present study. Within the critical regime, 2 × 105 . ReD . 6 × 106,
turbulent transition remains in the separated shear layers; however, it may cause the
separated shear layers to reattach on one or both sides of the cylinder [5]. The formed
separation-reattachment bubble regions greatly narrow the wake and reduce the drag on
the cylinder. Beyond ReD ≈ 6 × 106, transition occurs in the boundary layer prior to
separation and prevents the formation of separation bubbles [4].

The dynamics of vortex shedding can be divided into three distinct stages: forma-
tion, saturation, and downstream advection [65]. Formation begins with the generation of
vorticity at the surface of the cylinder due to the tangential pressure gradient along this
boundary [66]. This is the sole vorticity source for the shed vortices since vorticity can only
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be generated at the boundaries of a homogeneous fluid [66]. The vorticity is supplied at a
nearly constant rate to the near wake by the viscous boundary layers and separated shear
layers. As the separated shear layers roll up, the circulation concentrates and increases
until saturation is achieved and the vortex sheds [55]. Upon saturation, only a portion
of the vorticity generated at the surface of the cylinder is carried away by the rolled-up
vortices [7]. This is attributed to the cross annihilation of opposite signed vorticity as it is
entrained across the wake from the shear layers [66–68]. The ratio of circulation advected
via the shed vortices to that generated in the same signed boundary layer at the cylinder
surface is termed the deficit ratio. Experimental investigations have directly measured this
ratio to vary between 0.4 and 0.7 [2, 7, 69], depending on the Reynolds number and turbu-
lence intensity. The ratio varies from cycle to cycle because the strength of shed vortices
is not consistent [70].

Vortex dynamics in the wake of a circular cylinder can be complex. Compared to the
vortices shed in the laminar regime, the presence of streamwise and spanwise structures
in the wake of transitional and turbulent regimes can lead to intricate vortex connections.
These interactions are not without physical constraints, the most fundamental being the
Helmholtz’s vortex theorems for irrotational flow [71]:

Theorem 1: Vortex lines move at the velocity of the fluid.
Theorem 2: The strength of a vortex tube (its circulation) is constant along its
length.
Theorem 3: A vortex tube cannot end within a fluid. It must either end at a boundary
or form a closed loop.
Theorem 4: The strength of a vortex tube remains constant in time.

Although these theorems do not hold for viscous flows, they provide valuable insight and
utility in the analysis of vortex behaviour and dynamics in the wake region for flow around
complex geometries [72–74]. In particular, the viscous diffusion of vorticity causes the
strength of vortices to dissipate in time, thus violating the fourth theorem. Furthermore,
the dissipation rate depends on the gradient of the velocity field and may vary along the
length of the vortex tube, thus violating the second theorem.

2.2 One DOF uniform amplitude VIV
Vortex Induced Vibration (VIV) of circular cylinders is a classic fluid-structure interaction
problem and is of relevance to numerous engineering applications [1, 15]. Periodic vortex
shedding that takes place in the near wake induces unsteady structural forcing [14] with
significant response occuring in the lock-in region [15]. Within the lock-in region, the
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cylinder motion is coupled to the vortex shedding, collapsing the frequencies of structural
oscillation and vortex shedding into a single frequency close to the natural frequency of
the structure [15–18]. The structural response transverse to the free stream is dominant
compared to that in the streamwise direction because the induced fluid forces resulting
from the vortex dynamics are primarily in this direction [75]. Therefore, numerous studies
have investigated the VIV of a cylinder constrained to 1DOF in the transverse direction
[18, 26–28] and are summarized in reviews pertaining to VIV [11, 16, 17].

The amplitude of response is defined as half of the peak to peak amplitude of steady
state structural oscillations [45]. The magnitude of oscillations depends primarily upon
the reduced velocity, U∗, mass ratio, m∗, damping ratio, ζ, and Reynolds number, Re,
as determined through a dimensional analysis carried out by Sarpkaya [15]. Other forms
of non-dimensional terms have been derived [76] and are consistent with the analysis by
Sarpkaya [15]. The investigation into VIV of high mass ratio cylinders, m∗ = 320, with
1DOF in the transverse direction by Feng [26] demonstrated that the resonance of a body
occurs over a lock-in region defined by the reduced velocity range 5 ≤ U∗ ≤ 8. Khalak
and Williamson [18] investigated the effects of U∗ on the structural response at low and
moderate mass ratios of m∗ = 2.4 and m∗ = 10.3, 20.6, respectively. They found a lower
mass ratio to correlate with a wider lock-in region, specifically, the lock-in regions of reduced
velocity for the three cases investigated (m∗ = 2.4, 10.3, and 20.6) were 2.5 ≤ U∗ ≤ 13,
3.5 ≤ U∗ ≤ 12, and 4 ≤ U∗ ≤ 10.5, respectively. The peak amplitudes are controlled
principally by the combined mass-damping ratio, m∗ζ. Despite the criticisms of Sarpkaya
[15, 16] stating that the two parameters should not be combined into one, it has largely
become common practice [18, 27, 29, 46, 77] with compelling reasoning provided by Klamo
[76] in their investigation of damping effects on VIV.

Feng [26] and Khalak and Williamson [18] observed distinct branches in the amplitude
response, the number of which depends on the combined mass-damping ratio [18]. Systems
with a high mass-damping parameter exhibit an initial branch, corresponding to the highest
amplitudes reached, and a lower branch in the lock-in region. The transition between these
two branches is hysteretic. In contrast, low mass-damping systems show the existence of
an additional upper response branch situated between the initial and lower branches, and
therefore two mode transitions. The transition between the initial and upper branch is
hysteretic, while the transition between the upper and lower branch is not hysteretic and
instead involves intermittent switching between branches.

Williamson and Roshko [54] studied a cylinder forced to oscillate with a single degree
of freedom (1DOF) transverse to the flow and used flow visualization to create a map of
wake vortex shedding regimes over a range of reduced velocities and oscillation amplitudes,
see Fig. 2.1a. Morse and Williamson [1] created an updated map with higher parameter
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Figure 2.1: Map of vortex shedding regimes adapted by (a) Williamson and Roshko [54]
and (b) Morse and Williamson [1].

resolution using Particle Image Velocimetry (PIV), see Fig. 2.1b. The shedding regimes
identified in the lock-in region include 2S, 2P, P+S and 2P0. The 2S regime involves
shedding of two oppositely signed vortices within each oscillation period, see Fig. 2.2a;
whereas, the 2P regime is defined by two pairs of counter rotating vortices shed in each
period, see Fig. 2.2c. A combination of 2S and 2P patterns involving a vortex pair and a
single vortex shed each period constitutes the P+S regime, see Fig. 2.2b. The 2P0 regime,
defined by Morse and Williamson [1], is similar to 2P except the second vortex shed in
each pair is substantially weaker than the first, see Fig. 2.2d. Morse and Williamson [1]
and Williamson and Roshko [54] observed a regime at higher reduced velocities where the
vortex shedding is not synchronized with the cylinder motion. Despite the desynchronized
shedding, a substantial component of fluid forcing at the frequency of oscillation gives rise
to free cylinder vibrations.

Khalak and Williamson [18] and Brika and Laneville [36] employed flow visualization
techniques in the investigation of high mass-damping systems undergoing VIV with 1DOF
to show that the transition from the initial branch to the lower branch corresponds with
a vortex shedding regime change from 2S to 2P. Their observation agrees with the ex-
periments of Hover et al. [78] and the map developed by Williamson and Roshko [54].
Govardhan and Williamson [27] examined the wake of a low mass-damping system using
PIV and determined the transition between initial and upper response branches corre-
sponds with switching between 2S and 2P vortex shedding, respectively, while there is no
change in the vortex shedding regime with transition between the upper and lower response
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Figure 2.2: Diagram of vortex shedding patterns observed in the wake of a cylinder
undergoing VIV with one or two degrees-of-freedom. Flow is from left to right.

branches since both are associated with the 2P regime.
Govardhan and Williamson [27] further investigated the branch transitions by employ-

ing two distinct formulations for the equations of motion. The traditional equation of
motion is given in Equation 2.1, where m is the mass of the cylinder, c is the structural
damping, k is the total spring stiffness, y = Asin(ωt) is the cylinder motion in the trans-
verse direction, Ftotal is the total fluid force, ω = 2πf ; f is the frequency of oscillation,
and φtotal is the phase angle between the fluid force and the cylinder displacement. This
equation offers a good approximation of the total force when the frequency of cylinder os-
cillation is synchronized with the periodic vortex wake [27]. Lighthill [79] showed that the
total force, Ftotal, acting on the body can be separated into the potential force, Fpotential,
and the vortex force, Fvortex, as shown in Equation 2.2. In this approach, the potential
force contains the entirety of the added mass effect and is given by Fpotential = −Camdy

′′,
where Ca is the ideal added mass coefficient (Ca u 1.0 for a circular cylinder [17]) and md

is the mass of the displaced fluid. The vortex force consists of all shed vorticity minus the
thin boundary vortex sheet to maintain slip associated with the potential flow assumption
involved in this decomposition. Substituting the force decomposition, Equation 2.2, into
Equation 2.1 provides the equation of motion in terms of the vortex force, see Equation 2.3,
where ma is the added mass and φvortex is the phase angle between the vortex induced force
on the structure and the cylinder displacement.

my′′ + cy′ + ky = Ftotalsin(ωt+ φtotal) (2.1)

Ftotal = Fpotential + Fvortex (2.2)
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(m+ma)y′′ + cy′ + ky = Fvortexsin(ωt+ φvortex) (2.3)

High mass-damping systems exhibit a transition between the initial and lower response
branches that results in a simultaneous jump in both the total phase and vortex phase [27].
In the case of low mass-damping systems, the first transition between the initial and upper
branches involves an insignificant change in the total phase and a large jump in the vortex
phase. This is associated with the change between 2S and 2P vortex shedding and accounts
for the switch in the timing of vortex shedding. The second transition between the upper
and lower branches corresponds with a large jump in the total phase and insignificant
change in the vortex phase, since both branches are associated with 2P shedding. This
jump in total phase is not reflective of a switch in the timing of vortex shedding.

The lock-in phenomenon is classically defined as the synchronization of the vortex
formation frequency, fv, and the structural oscillation frequency, f , with the natural fre-
quency of the system, fn, such that the nondimensionalized frequency, f ∗ = f/fn, is close
to unity over a range of reduced velocities [80, 81]. This scenario is valid for high mass
ratio systems [11, 26]; however, significant departure from unity has been observed experi-
mentally for low mass ratio systems [18, 28, 30, 82]. For example, Khalak and Williamson
[28] observed f ∗ ≈ 1.4 throughout the synchronization region for a system with m∗ = 2.4.
This result is in agreement with the discussion of Bearman [11] and the work on the added
mass coefficient by Sarpkaya [83]. Therefore, lock-in cannot be defined as the region within
which the shedding frequency is close to the structural natural frequency. Instead, Khalak
and Williamson [18] suggest that lock-in be defined as the matching of the frequency of
the periodic wake vortex mode with the structural oscillation frequency.

The structural response frequency may be derived from the fundamental equation of
motion, Eq. 2.1, following the procedure of Khalak and Williamson [18],

f ∗ =
√
m∗ + Ca
m∗ + Cea

(2.4)

where Cea is an effective added mass coefficient that includes an apparent effect due to the
total transverse fluid force in phase with the structure’s acceleration. Results of Khalak
and Williamson [18] show that a decrease in the mass ratio results in an increase in the
frequency of structural oscillations, in agreement with Eq. 2.4. Govardhan and Williamson
[27] further investigate this relationship and show that there exists a critical mass ratio,
m∗critical = 0.54 ± 0.02, below which the response frequency and lock-in regime extend to
infinity. The critical mass ratio was obtained by collapsing a large data set of lower branch
frequencies, f ∗lower, at numerous mass ratios onto a single curve fit based on Eq. 2.4, see
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Figure 2.3: Extent of the lock-in region for 1DOF-transverse VIV [27]: (a) variation of
the lower branch frequency (f ∗lower) as a function of the mass ratio, m∗; (b) the lock-in
region extends to infinity as the mass ratio approaches the critical value of m∗critical = 0.54.
Symbols are: •, Govardhan and Williamson [27];4, Khalak and Williamson [18]; ◦, Anand
and Torum [84]; �, Hover et al. [78].

Fig. 2.3a:

f ∗lower =
√

m∗ + 1
m∗ − 0.54 (2.5)

The lower response branch for systems below the critical mass ratio can never be reached
for finite reduced velocities and ceases to exist; hence, the upper branch continues indefi-
nitely and the lock-in region extends to infinity. For systems above the critical mass ratio,
Govardhan and Williamson [27] develop Eq. 2.6 to predict the extent of the lock-in region
by collapsing data from the end of the lower branch in a manner similar to the above anal-
ysis. The expression quantifies the upper boundary of the shaded lock-in region depicted
in Fig. 2.3b.

U∗end of synchronization = 9.25
√

m∗ + 1
m∗ − 0.54 (2.6)
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2.3 Two DOF uniform amplitude VIV
Although numerous papers dedicated to the transverse only VIV of a cylinder provide
insight into the fluid-structure interaction, allowing the cylinder to oscillate streamwise as
well as transverse to the flow offers a more realistic representation of practical engineering
applications. Several investigations have examined cylinders undergoing 2DOF VIV [29–
35]. This section reviews the literature pertinent to 2DOF uniform amplitude VIV and
compares the findings with the 1DOF VIV studies discussed in Section 2.2.

Early investigations of 2DOF VIV, performed by Moe and Wu [30] and Sarpkaya [31],
employed structures with different mass ratios in the streamwise and transverse directions,
and either constant [30] or variable [31] natural frequencies. Sarpkaya [31] found that
for equivalent natural frequencies in the streamwise and transverse directions, fnx = fny,
the additional degree of freedom produced a 19% increase in amplitude and a shift to
higher reduced velocities for the peak transverse response, when compared to their 1DOF
transverse case. Neither Moe and Wu [30] nor Sarpkaya [31] observed evidence of distinct
response branches.

Jeon and Gharib [33] investigated the addition of streamwise motion by forcing a
cylinder to move in the streamwise and transverse directions. The prescribed motion,
Eqs. (2.7) and (2.8), was given phase angles ψ = 0 and 7π/4 and amplitudes Ax = 0.1D
and Ay = 0.5D to produce a figure-eight trajectory, since they suggest nature prefers this
motion. Figure 2.4 depicts the possible figure-eight trajectories for various phase angles.
Two cases of reduced velocity were examined, corresponding to predicted 2S and 2P vortex
shedding based on the Williamson and Roshko [54] shedding map. Jeon and Gharib [33]
observed that the additional streamwise motion increased phase coherence for 2S shedding
and inhibited formation of the second vortex within 2P pairs. It is interesting that such
small streamwise motion can significantly impact wake development. The selected phase
and amplitude from the large set comprising the four parameters Ax, Ay, ψ and fy/fx influ-
ence the resulting conclusions since free vibration studies have observed notably different
figure-eight motion at comparable conditions [34, 35].

x(t) = Axsin(2ωnt+ ψ) (2.7)
y(t) = Aysin(ωnt) (2.8)

Jauvtis and Williamson [34] examined the 2DOF VIV of a cylinder with equivalent
mass ratios and natural frequencies in both directions. For m∗ > 6, the transverse response
exhibited initial, upper and lower branches unlike the continuous response observed in the
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Figure 2.4: Figure-eight cylinder trajectories based on Eqs. (2.7) and (2.8) for various
phase angles, ψ, and Ay/Ax = 2. Flow is from left to right with the motion of the cylinder
in the direction as indicated.

investigations of Moe and Wu [30] and Sarpkaya [31]. A 2S, 2P and 2P vortex shedding
pattern in the wake was observed for the initial, upper and lower branches, respectively.
The response branches, peak amplitudes, induced forces and vortex shedding patterns are
similar to those obtained for 1DOF transverse VIV. Therefore, they conclude that results
from 1DOF VIV can be used to predict the structural response for systems undergoing
2DOF VIV with m∗ > 6. A dramatic change in the fluid-structure interaction occurs
for m∗ < 6, where the additional streamwise motion significantly impacts the amplitude
response in the transverse direction [34, 35]. Of the branches observed form∗ > 6, the upper
branch is replaced by a "super-upper" branch [34], yielding large amplitudes of oscillation,
A∗y ≈ 1.5, that are much greater than the A∗y ≈ 1.0 observed for 1DOF VIV [27]. Cylinder
displacement in the super-upper branch is temporally stable with hysteretic switching
between the super-upper and lower branches. Jauvtis and Williamson [34] propose that
the massive amplitudes of vibration are attributed to the observed 2T vortex shedding
pattern in the super-upper branch, where two triplets of vortices are shed each period of
cylinder oscillation, see Fig. 2.2f. The initial and lower branches exhibit 2S and 2P vortex
shedding patterns, respectively, similar to the 1DOF study of Govardhan and Williamson
[27].

The amplitude of vibration in the streamwise and transverse directions is a function of
both the damping ratio and the mass ratio [35]. Jauvtis and Williamson [34] and Blevins
and Coughran [35] indicate that a lower mass ratio correlates with a wider lock-in region, in
agreement with the 1DOF study of Khalak and Williamson [18]. Specifically, for m∗ = 2.6,
5.01, and 17.1 the reduced velocities defining the lock-in region were 2.4 ≤ U∗ ≤ 12.6,
3.2 ≤ U∗ ≤ 9.8, and 4.0 ≤ U∗ ≤ 7.9, respectively. Srinil and Zanganeh [85] numerically
modeled 2DOF VIV of a circular cylinder based on double Duffing-van der Pol oscillators
with cubic nonlinearities to capture the coupling of streamwise and transverse motion.
They conducted a parametric analysis, which captures the lock-in region and hysteretic
branch transition for a figure-eight trajectory. The predicted amplitudes agree well with
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the experimental results of Jauvtis and Williamson [34] and Blevins and Coughran [35] for
various combinations of mass ratio and damping ratio.

For the frequency response in 2DOF VIV, both the reduced velocity and mass ratio
affect the lock-in frequency of vortex shedding and cylinder oscillation [29, 34, 35] in a
similar manner to transverse 1DOF VIV. For systems with a moderate to high mass ratio,
the nondimensionalized frequency of structural oscillation, f ∗ = f/fn, is close to unity
throughout the lock-in region [35], while there is significant departure from unity for low
mass ratio systems [34, 35]. Following the methodology of Govardhan and Williamson [27]
for the transverse 1DOF case, Jauvtis and Williamson [34] developed Eq. 2.9 from an
extensive set of experiments conducted at different mass ratios. The critical mass ratio,
m∗critical = 0.52, is similar to the 1DOF critical mass ratio, m∗critical = 0.54. This is expected
since the response in the lower branch is primarily in the transverse direction with little
streamwise oscillation affecting the vortex formation [34].

f ∗lower =
√

m∗ + 1
m∗ − 0.52 (2.9)

Published investigations of a cylinder undergoing 2DOF VIV with uniform amplitude
along the span indicate a structural response where the frequency of streamwise oscillations
is approximately twice that of the transverse oscillations, fx = 2fy, for the range of mass
ratios and reduced velocities investigated [29, 31–35]. As such, the motion of the cylinder
traces a figure-eight orbit, where the direction and skew are dictated by the phase difference
between the streamwise and transverse motion [34], see Fig. 2.4.

2.4 One DOF variable amplitude VIV
In addition to the freedom to move in both streamwise and transverse directions, prac-
tical engineering structures undergoing VIV often oscillate with an amplitude that varies
along the span [36, 41]. A flexible cantilever or flexible cable offers the best approximation
since their design can incorporate structural properties that represent a scaled version of a
specific structure. The pivoted cylinder is a simplification of the flexible structure and rep-
resents a body having a linear variation of amplitude along its span. Its local flow features
are expected to be generic to other cases of spanwise amplitude variation without being
system specific. The present study focuses on the VIV of a pivoted cylinder. As with the
uniform amplitude case, it is instructive to first discuss the experimental [36, 37, 77, 86] and
analytical [75] studies investigating the 1DOF VIV of a cylinder with variable amplitude
along its span.
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In the case of a flexible cylinder [36, 75, 86], there are two response branches, initial and
lower, with a hysteretic jump from one to the other. There is no discontinuity in the initial
branch to provide evidence of the third upper branch, unlike the three branches for uniform
spanwise amplitude VIV for comparable mass and damping. Flow visualizations performed
by Brika and Laneville [36] have shown that, 2S and 2P vortex shedding occur in the
initial and lower branches, respectively, coinciding with the suggested map of Williamson
and Roshko [54]. Fujarra et al. [86] hypothesize that the 2S and 2P shedding modes
may exist simultaneously along the span. Splitting of the vortex tubes would occur in a
manner similar to the hybrid mode found by Techet et al. [87] for an oscillating tapered
cylinder. Within the lock-in region, the frequency response of cylinder oscillation and
vortex shedding is greater than the natural frequency of the structure [36, 86], which is
characteristic of the low mass ratio systems undergoing uniform amplitude VIV [18, 28, 82].
Outside of synchronization, the cylinder oscillation and vortex shedding frequency match
the Strouhal frequency of a stationary cylinder.

Compared to the flexible case, the response characteristics of a pivoted cylinder are
similar [37, 77]. Specifically, initial and lower response branches for the low mass ratio
structure examined by Voorhees et al. [77] are observed within the reduced velocity ranges
3.8 ≤ U∗ ≤ 7.0 and 7.0 ≤ U∗ ≤ 9.2, respectively. The frequency response is similar to
systems undergoing uniform amplitude VIV [18, 28, 82], where the cylinder oscillation and
vortex shedding lock onto a frequency slightly above the natural frequency in the lower
response branch. Voorhees et al. [77] made an interesting observation of axial flows oriented
towards the free surface and in excess of 25% of the free stream velocity. They attribute
this flow to the effect of linearly increasing oscillation amplitude along the cylinder span
and argue that increased vortex strength and increased amplitude create an axial pressure
gradient that pumps fluid towards the surface. In combination with the free surface and
pivoted structure, the axial flow results in a three dimensional curvature of the vortices.

2.5 Two DOF variable amplitude VIV
Permitting the cylinder to oscillate streamwise as well as transverse to the flow offers a more
realistic representation of practical engineering applications. Numerous investigations have
examined flexible cantilevers, [38–40], flexible cables [41–44], and pivoted cylinders [45–50]
undergoing 2DOF VIV. This section reviews literature concerning the VIV of cylinders with
2DOF and variable amplitude along their span, and emphasizes the findings for pivoted
cylinders, since this structure is the focus of the present study.
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2.5.1 Amplitude Response
Flemming and Williamson [47] studied a pivoted cylinder mounted as a pendulum, set
up such that its moment of inertia ratio, I∗, and mass ratio, m∗, were equivalent. Their
results indicate that the amplitude response depends on the mass ratio in a similar man-
ner to that of uniform amplitude studies, where the size of the lock-in region decreases
with increasing mass ratio. Specifically, lock-in exists within the reduced velocity ranges
2.5 ≤ U∗ ≤ 19.7, 3.4 ≤ U∗ ≤ 14.1, and 3.8 ≤ U∗ ≤ 11.5 for mass ratios m∗ = 1.03, 2.68,
and 7.69, respectively. A comparison with the results of Kheirkhah et al. [45] and Marble
et al. [50] confirms the mass ratio has a similar effect on lock-in range for a pivoted cylinder
mounted as an inverted pendulum. It should be noted that Flemming and Williamson [47]
varied the reduced velocity by adjusting the free stream velocity, whereas Kheirkhah et al.
[45] and Marble et al. [50] did so by adjusting the natural frequency of the structure, while
maintaining a constant Reynolds number. If the cylinder is instead mounted as a flexible
cantilever or flexible cable, the lock-in region becomes notably smaller at comparable struc-
tural parameters. Oviedo-Tolentino et al. [40] show that for a mass ratio of m∗ = 8.13, the
lock-in region of a flexible cantilever occurs within 4.1 ≤ U∗ ≤ 8.5. Similarly, the results of
Huera-Huarte and Bearman [41], who studied a flexible cable with a mass ratio of m∗ = 1.8
at various tensions, show that the size of the lock-in region is approximately half that for
a pivoted cylinder at a comparable mass ratio [47].

The response branches observed for pivoted cylinders are analogous to 1DOF and 2DOF
uniform amplitude studies. For a moderate mass ratio, the structural response exhibits
initial and lower branches [45, 47, 50]; however, it is unknown whether the transition is hys-
teretic or intermittent. The low mass ratio system examined by Flemming and Williamson
[47] features an additional upper branch with hysteretic transition between the initial and
upper branches and intermittent switching between the upper and lower branches. Am-
plitudes of these branches are similar to that for 2DOF uniform amplitude VIV studied
by Jauvtis and Williamson [34]. For flexible cylinders, the relatively smooth amplitude
response exhibits initial, upper and lower branches for both low and moderate mass ratio
systems [40, 41].

Following the critical mass ratio analysis of 1DOF VIV in the transverse direction found
in Govardhan andWilliamson [27], Flemming andWilliamson [47] experimentally predicted
there exists a critical inertia ratio of I∗critical = m∗critical ≈ 0.5, below which the structural
response exhibits an infinitely wide lock-in region. Their analysis indicates that for any
positive I∗ < I∗critical, both the transverse and streamwise motion will persist to infinite
reduced velocity. Leong and Wei [46] confirm that for a mass ratio of m∗ = 0.45, the lower
branch ceases to exist and the upper branch extends well beyond the maximum reduced
velocity tested. As a result of the lower mass-damping ratio, the maximum amplitude
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in the transverse direction, A∗y u 2.0, is slightly larger than the A∗y u 1.5 observed by
Flemming and Williamson [47], while the maximum streamwise response, A∗x u 2.5, is
much greater than the A∗x u 0.4.

2.5.2 Frequency Response

Regarding the frequency response, the effect of reduced velocity and mass ratio on the
lock-in frequency is largely similar to 1DOF and 2DOF VIV with uniform amplitude. At
reduced velocities below the lock-in region, the frequency of structural oscillation locks
onto the vortex shedding frequency of a stationary cylinder. Within the lock-in region,
both pivoted and flexible systems with a moderate to high mass ratio [40, 45, 50] exhibit a
nondimensionalized frequency, f ∗ = f/fn, that is close to unity. Whereas, that of pivoted
systems with a low mass ratio is greater and departs from unity [46, 47]. Flemming and
Williamson [47] show this departure increases with increasing reduced velocity, unlike the
constant lock-in frequency observed by Jauvtis and Williamson [34] for 2DOF uniform
amplitude VIV.

Two types of trajectories have been observed for VIV of cylinders with spanwise am-
plitude variation: figure-eight [46–48] and elliptic [40, 45, 49], both of which have been
reported to occur naturally [51–53, 88]. The figure-eight response is the same as that ob-
served in VIV of cylinders with uniform spanwise amplitude [29, 34, 35] and is described
by the frequency of streamwise oscillations being twice that of the transverse oscillations
(fx = 2fy). The figure-eight trajectory, based on Eqs. (2.7) and (2.8), is shown in Fig. 2.4
for various phase angles. The elliptic trajectory is distinguished by a frequency response
that is equal in the streamwise and transverse directions (fx = fy). Figure 2.5 depicts the
trajectory, based on Eqs. (2.10) and (2.11), for various phase angles.

x(t) = Axsin(ωnt+ ψ) (2.10)
y(t) = Aysin(ωnt) (2.11)

Kheirkhah et al. [45] argue that the structural coupling between streamwise and trans-
verse motion governs the occurrence of either figure-eight or elliptic trajectories. Their
investigation extends a simplified mathematical model based on the conservation of angu-
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Figure 2.5: Elliptical cylinder trajectories based on Eqs. (2.10) and (2.11) for various
phase angles, ψ, and Ay/Ax = 2. Flow is from left to right with the motion of the cylinder
in the direction as indicated.

lar momentum, proposed by Flemming and Williamson [47], to incorporate the coupling:
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The origin of the coordinate system for this model is located at the top of the pivoted
cylinder when at rest. The left hand side of Eqs. (2.12) and (2.13) considers (i) inertial, (ii)
damping, (iii) restoring (spring, gravity, and buoyancy), and (iv) cross-stiffness structural
moments. The aerodynamic forces are neglected because they are much smaller than the
hydrodynamic forces for a substantial water depth, L0. Equivalent in both streamwise, x,
and transverse, y, directions, the structural stiffness is modeled using linear springs with
an effective stiffness of ke and structural damping is modeled using linear viscous dampers
with a damping coefficient of c. The springs and dampers are located at z = L− b, where
L is the cylinder length and b is the vertical distance from the water tunnel floor to the
springs. Following the methodology of Wardlaw et al. [89], system coupling is modeled
using a cross stiffness term, kc. Kheirkhah et al. [45] and Flemming and Williamson [47]
decompose the fluid moment exerted on the structure (Mx(t) and My(t)) into the total
instantaneous fluid forcing moment and the fluid inertia moment:

Mx(t) =
∫ L

L−L0
Fx(z, t)(L− z)dz − IA

d2(x/L)
dt2

(2.14)

My(t) =
∫ L

L−L0
Fy(z, t)(L− z)dz − IA

d2(y/L)
dt2

(2.15)
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where IA is the added moment of inertia. The terms Fx(z, t) and Fy(z, t), defined in
Eqs. (2.16) and (2.17), respectively, are the instantaneous local forces per unit length the
fluid exerts on the structure, where the force coefficients are Cx(z) = CD(L − z)/L0 and
Cy(z) = CL(L− z)/L0.

Fx(z, t) = 0.5ρU2
0DCx(z)sin(2ωnt+ ψforce) (2.16)

Fy(z, t) = 0.5ρU2
0DCy(z)sin(2ωnt) (2.17)

The non-dimensionalized form of Eqs. (2.12) and (2.13) is:
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where CA is the added mass coefficient, t∗ = tfn is the non-dimensionalized time, and fn,
fr, and Ur, are given in Eqs. (2.20)–(2.22), respectively.

fn = 1
2π

√
keb2 −mgL/2 +mdgL0/2

I + IA
(2.20)

fr = fa
fn

I∗

I∗ + CA
(2.21)

Ur =
(
U∗

U∗c

)2
I∗

I∗ + CA
; U∗c = U

fcD
(2.22)

For systems with very low damping, ζ � 1, and a coupling frequency that is less
than the structure’s natural frequency, fc/fn < 1, the steady state solution of Eqs. (2.18)
and (2.19) is given by Eqs. (2.23) and (2.24), respectively, with a detailed solution discussed

20



by Kheirkhah [90]:

xSS(t∗)
D

= B1

Ur
[d3sin(4πt∗) + d4cos(4πt∗)] +B2

(
U∗
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)2

sin(2πt∗) (2.23)

ySS(t∗)
D

= B1 [d1sin(4πt∗) + d2cos(4πt∗)] +B2

(
2ζ fa
fn

)
cos(2πt∗) (2.24)

where the constants B1, B2, d1, d2, d3, and d4 are provided by Eqs. (2.25)–(2.30), respec-
tively.

B1 = UrCD(L/L0)U∗2
2π3(I∗ + CA) [16ζ2f 2

r + (Ur − 3)2] [16ζ2f 2
r + (Ur + 3)2] (2.25)
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2π3(I∗ + CA) [4ζ2(fc/fa)2 + (U∗/U∗c )4] (2.26)
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Kheirkhah et al. [45] used this mathematical model to analyze trends in the frequency
response. Specifically they determined the dominant frequency of streamwise and trans-
verse vibrations by calculating the ratio of the respective amplitude associated with fn to
that associated with 2fn. These ratios, Rx and Ry, are given in Eqs. (2.31) and (2.32),
respectively.

Rx = B2

B1

(U∗/U∗c )2√
d2

3 + d2
4

Ur (2.31)

Ry = B2

B1

2ζ(fa/fn)√
d2

1 + d2
2

(2.32)

Through means of a parametric analysis, bounded by feasibility in practical applica-
tions, Kheirkhah et al. [45] determined that Rx and Ry depend primarily on U∗c and ζ
within the lock-in region. Figure 2.6 depicts the contours of Rx and Ry computed from
Eqs. (2.31) and (2.32), respectively, using the experimental parameters at U∗ = 6.5 in the
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investigation of Kheirkhah et al. [45]. There are two distinct regions in the streamwise
amplitude ratio, (1) Rx > 1 and (2) Rx < 1, for which the transverse ratio Ry > 1. The
model predicts that structures with strong structural coupling, i.e., lower U∗c , will occur
within the first region and will exhibit an elliptic trajectory where streamwise vibrations
lock onto the natural frequency of the structure, fx = fn. On the other hand, weakly
coupled structures, i.e., high U∗c , are predicted to exhibit a response in the second region
where streamwise vibrations occur at fx = 2fn, thus producing a figure-eight trajectory.
Kheirkhah [90] experimentally verified the predicted response in both regions, where the
dashed box in Fig. 2.6 indicates the region of observed elliptic trajectory response. Fur-
thermore, Leong and Wei [46] and Flemming and Williamson [47] reported figure-eight
trajectories in their VIV studies. Their systems were weakly coupled, i.e.massive coupling
frequency based reduced velocity, U∗c →∞, since the cylinder was mounted as a pendulum
from a flexible pin. As such, their observations agree well with the model prediction.

There exist four distinct types of elliptical trajectories, depicted in Figs. 2.5b, 2.5d,
2.5f, and 2.5h, where the general direction and tilt of the orbit correspond to a range
of phase angles, ψ, between the streamwise and transverse vibrations. Kheirkhah et al.
[45] show that the type of elliptic trajectory is governed by the structural coupling, with
approximate ranges of the coupling frequency based reduced velocity, U∗c , corresponding to
each of the identified trajectory types. Specifically the ranges U∗c < 18.0, 18.0 < U∗c < 26.0,
26.0 < U∗c < 35.7, and 35.7 < U∗c correspond to the phase angle ranges 0 < ψ < π/2,
π < ψ < 3π/2, π/2 < ψ < π, and 3π/2 < ψ < 2π, respectively.

2.5.3 Vortex Shedding

Similar to the study of the elastically mounted cylinder by Jauvtis and Williamson [34],
Flemming and Williamson [47] observe shedding regimes of a pivoted cylinder undergoing
VIV with small streamwise motion generally agree with the Williamson and Roshko [54]
shedding map. However, low mass ratio systems require the streamwise amplitude as a
third dimension on the shedding map to distinguish response branches. The large trans-
verse and streamwise motion of the upper branch indicates existence in quite a different
parameter space, where 2C vortex shedding is observed and is characterized by two pairs
of co-rotating vortices shed each period of oscillation, see Fig. 2.2e. The effect of large
amplitude of oscillation on the predicted shedding regime is further exemplified by the
study of Leong and Wei [46], who used flow visualization to study the wake of a cylinder
below critical mass ratio. They observed P+S shedding in the upper branch around the
maximum amplitude response, which is uncharacteristic of the Morse and Williamson [1]
map. However, unlike Flemming and Williamson [47], Leong and Wei [46] did not confirm
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Figure 2.6: Contours of (a) Rx and (b) Ry computed from Eqs. (2.31) and (2.32), respec-
tively, for the parameters at U∗ = 6.5 in the investigation of Kheirkhah et al. [45]. The
dashed box indicates the experimental conditions for their study of a cylinder undergoing
VIV with elliptic trajectories.
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existence of the 2C shedding mode. This may be due to the location of their measurement
plane since spanwise variation of oscillation amplitude can cause multiple shedding regimes
to coexist along the cylinder span, resulting in a more complex and hybrid type response.

Hybrid shedding features vortex dislocations at the boundaries between different shed-
ding modes, where the vortices split into two parts [13, 60, 72]. Flemming and Williamson
[47], Kheirkhah et al. [49], and Techet et al. [87] examined hybrid vortex shedding in the
wake of a cylinder. Techet et al. [87] used lead precipitation and PIV techniques to examine
the flow past a linearly tapered cylinder forced to oscillate in the transverse direction at
various selected amplitudes and Reynolds numbers Re = 400, 800, and 1500. Flemming
and Williamson [47] and Kheirkhah et al. [49] used PIV and planar laser induced fluo-
rescence, respectively, to investigate changes in shedding regimes from the base to the tip
of a pivoted cylinder. Figure 2.7 depicts the results of the aforementioned investigations
overlaid on the Morse and Williamson [1] vortex shedding map. Each pair of data points
connected by a dashed line corresponds to one tested experimental condition, where the
data points mark the extremes of the spanwise survey. The map predicts that, for the
results of a tapered cylinder at Re = 800 [87], changes in the local response will result in a
transition between 2S and 2P vortex shedding patterns with an intermediary 2P0 pattern.
This prediction agrees well with the flow visualizations for the two lower amplitude cases,
while the case with the largest amplitude was found to exhibit 2P shedding along the entire
cylinder span. Predicted vortex shedding based on results for the pivoted cylinder study by
Flemming and Williamson [47] agrees well with the observed wake topology for U∗ = 3.99,
5.67, and 8.30. However, in contrast to the map’s predictions at U∗ = 6.15 in the upper
response branch, Flemming and Williamson [47] observe a transition from 2C to 2S along
the cylinder span.

For a pivoted cylinder with a moderate mass ratio, Kheirkhah et al. [49] qualitatively
investigated vortex shedding near the boundary between 2P and non-synchronized regimes.
Specifically, Kheirkhah et al. [49] investigated the wake topology at two different planes
along the span for two of the four distinct types of elliptical trajectories identified by
Kheirkhah et al. [45]. The direction of cylinder motion in both cases is CW, while the
phase angle between the streamwise and transverse motion for the first and second cases is
ψ ≈ 135◦ and 17◦, respectively. For both cases, they observed the formation of 2S and 2P
vortices at the planes closest to and furthest from the pivot point, respectively. However,
in the first case, adjacent 2P vortices of the positive sign merged within four diameters
of the cylinder, thus forming a P+S pattern in the wake. Compared to the predicted
hybrid modes in Fig. 2.7, the flow visualizations of Kheirkhah et al. [49] indicate that wake
topologies for 2DOF VIV with spanwise variation of amplitude can deviate significantly
from those predicted by the Williamson and Roshko [54] or Morse and Williamson [1]
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Figure 2.7: Structural response results of hybrid wake investigations overlaid on the
Morse and Williamson [1] vortex shedding map.

shedding maps.
Cagney and Balabani [48] studied the effect of transverse motion by comparing wake

dynamics and structural response for 2DOF VIV of a pivoted cylinder with those from
their streamwise 1DOF VIV study [91]. Both studies exhibit a response containing two
branches that are separated by a region of low amplitude response. They show that vortex
shedding can switch intermittently between symmetric and alternate shedding modes for
both 1DOF and 2DOF VIV; however, the switching does not cause any change in the
streamwise or transverse amplitude of oscillation. This can be explained if the wake is
three-dimensional, since the wake shedding modes may destructively interfere and cause a
reduction in the fluid forcing and amplitude of oscillation [92]. They also argue that the
additional degree of freedom affects the overall fluid-structure dynamics and simplifies the
system by reducing the possible states the cylinder can occupy and thereby the possible
shedding modes.

25



Chapter 3

Experimental Methodology

In this study, the flow around a cylinder with linear variation in amplitude is examined
experimentally, with a focus on the influence of cylinder trajectory on wake development
and the associated vortex dynamics. Experiments were conducted in the recirculating water
tunnel facility at the University of Calgary [93–96]. The model was adapted from a system
previously examined experimentally by Kheirkhah et al. [45, 49, 97]. The mathematical
model by Kheirkhah et al. [45] was used to select the mass, moment of inertia and aspect
ratios in order to obtain significant VIV response within the facility’s operating conditions.
Based on these criteria, the diameter based Reynolds number for the majority of the
investigation was ReD = 3027. Experimental techniques used in the analysis include
laser based displacement sensors and time-resolved two-component PIV measurements to
provide the means for a comprehensive description of the structural response and flow
development.

This chapter describes the experimental setup of the model in the tunnel, measurement
techniques, and methods for data analysis. Details for the equipment calibration and
uncertainty calculations mentioned in this chapter are included in Appendices A and B,
respectively.

3.1 Experimental Setup

3.1.1 Water Tunnel

Experiments were conducted in the free-surface closed-loop water tunnel facility, shown in
Fig. 3.1, at the University of Calgary. Water is pumped into the main plenum and through a
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Figure 3.1: University of Calgary closed-loop water tunnel facility. 1 Settling chamber;
2 flow conditioning; 3 contraction; 4 test section; 5 recirculation.

series of flow conditioning elements to improve uniformity and reduce turbulence intensity.
The conditioning unit consists of one honeycomb flow straightener and three fine screens.
A contraction with a six-to-one ratio accelerates the flow into the first of two test sections.
The reservoir at the end of the second test section facilitates water recirculation back to
the plenum through an axial pump controlled with a variable frequency drive. Both the
walls and the floor of the test sections are made of glass for optical access. The test sections
have a total length of 4 m with a cross-section that is approximately 450 mm in height
and 385 mm in width. Experiments were conducted in the first test section with the water
level maintained at 430 mm, resulting in a uniform free stream velocity of 0.161 m/s and
turbulence intensity less than 1.5% of the free stream velocity.

3.1.2 Cylinder Model

Experiments were performed using a vertically mounted pivoted cylinder model with a
tapered base to reduce friction at the pivot point. A diagram of the model within the
test section is provided in Fig. 3.2, where the origin of the coordinate system is located
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at the base of the cylinder. The x, y, and z-coordinates are in the streamwise, transverse,
and spanwise directions, respectively. The cylinder has a diameter D = 19.4mm, length
L = 1250mm, mass ratio m∗ = 10.8, and a moment of inertia ratio about the pivot point,
I∗, varying from 87.0 to 109.5.

The model was supported by four springs with stiffness, k, of 24.5 N/m mounted as
pairs in the streamwise and transverse directions (Fig. 3.2). The springs were attached to
a mounting frame and a collar around the cylinder. Adjusting the position of the springs
along the vertical axis varied the natural frequency, fn, of the structure, as determined
from spectral analysis of free vibration tests in quiescent water. This provided a range
of reduced velocities (listed in Table 3.1) while maintaining a constant diameter based
Reynolds number, Re. Table 3.1 summarizes essential experimental conditions for both
campaigns. The first campaign examines the wake in a single plane for a wide range of
reduced velocities, while the second campaign focuses on reconstructing the wake for two
specific reduced velocities.

Free vibration tests in air were used to determine the structural characteristics of the

Figure 3.2: Experimental model setup in the first test section of the water tunnel facility.
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Table 3.1: Experimental Conditions

Campaign Re m∗ fn U∗ I∗ ζ (×10−3)
1 3027 10.8 0.96 - 1.89 4.38 - 8.67 87.0 - 115.5 1.6 - 2.9
2 3027 10.8 1.17 & 1.51 5.48 & 7.08 91.2 & 100.4 3.4 & 4.1

system. Figures 3.3a and 3.3b depict the streamwise and transverse response of the cylinder
tip, respectively, when released from rest at (y/D, x/D) = (1, 0). The observed motion
is oscillatory with decaying amplitude. Time is normalized (t∗ = tfa) with respect to the
natural frequency of the structure in air, fa, which was obtained from spectral analysis of
the measured oscillations and is equivalent in both the streamwise and transverse directions
for all cases examined. The presence of streamwise oscillation indicates structural coupling
is present since the system was initially excited in the transverse direction. This coupling is
periodic with a frequency, fc, that pertains to the time between the nodes in the streamwise
component of oscillation (t∗ = 0, t∗ ≈ 140, and t∗ ≈ 280 in Fig. 3.3a). Damping is assessed
with the assumption of logarithmic decay for the underdamped system. The damping
coefficient, ζ, is calculated by computing the mean of the first ten coefficients, as outlined
in Eq. 3.1, where κ is the logarithmic decrement.

ζi = κi
2π

κi = ln
y(t∗ = i− 1)
y(t∗ = i)

ζ =
N=10∑
i=1

1
2π ln

y(t∗ = i− 1)
D

/
y(t∗ = i)

D

/N (3.1)

3.2 Measurement Techniques

3.2.1 Cylinder Displacement

Streamwise and transverse cylinder position were measured using two Hoskin CP24MHT80
laser-based displacement sensors secured to the mounting frame. The sensors have a mea-
suring range of 120 mm, equivalent to ± 6.19 cylinder diameters, and a resolution of 20 µm.
The calibration of the sensor was verified using a Velmex BiSlide traverse, with details of
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Figure 3.3: Structural response in the (a) streamwise (b) transverse directions for free
vibrations in quiescent air with respect to the normalized time, tfn.

the verification outlined in Appendix A. Uncertainty associated with model displacement
measurements is estimated to be within ±0.026D and ±0.004D for the streamwise and
transverse directions, respectively, with details provided in Appendix B.

In the first campaign, the analog signals from the displacement sensors were acquired
using a SainSmart Mega 2560 arduino. The sampling was nonuniform with a mean fre-
quency of 702 Hz. Once acquired, the data was resampled to a uniform 500 Hz and a 0.03%
timing correction was applied to correct for the arduino’s internal clock lag of 26 seconds
over a 24 hour period. In the second campaign, the analog signals were acquired using
a NI USB-6212 board at a sampling frequency of 10 000 Hz. Given the measuring rate
of the displacement sensors is 1500 Hz, the oversampled data was resampled to 100 Hz to
eliminate any repeated data. The final sampling frequency for both campaigns is at least
50 times greater than the largest natural frequency of the structure in the present study
and is sufficient to resolve temporal variation in the cylinder displacement.

3.2.2 Particle Image Velocimetry

Two-component Time-Resolved Particle Image Velocimetry (TR-PIV) measurements were
used to estimate the planar velocity in the horizontal, x−y, and vertical, x−z, planes. The
system configurations for the two planes are depicted in Figs. 3.4a and 3.4b, respectively.
A detailed outline of the operating principles and recommendations for performing 2D
PIV measurements is given by Willert and Gharib [98], Westerweel [99], Scarano and
Riethmuller [100], and Raffel et al. [101]. Here, the procedure and selected parameters
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pertinent to the present study are discussed.
The flow was seeded with nearly neutrally buoyant hollow glass spheres with a mean

diameter of 10 µm and specific gravity of approximately 1.05. A 2 mm thick planar laser
sheet was produced by passing a laser source (Photonics DM30 high-repetition pulsed laser)
through a series of spherical and cylindrical lenses. The laser sheet could be arranged in a
vertical (x− z) or horizontal (x− y) configuration to illuminate the tracer particles, which
approximate the fluid motion. Particle images were captured with Phantom Miro Lab 340
high speed cameras synchronized with the laser via a LaVision timing unit controlled with
LaVision’s DaVis 8 software. During PIV acquisition, the simultaneous measurement of
the controller’s Q-switch and the cylinder displacement allowed for temporal alignment of
the laser displacement and PIV measurements.

For the horizontal plane configuration (Fig. 3.4a), the laser beam was conditioned into
a sheet using two 90◦ turning mirrors and a −10 mm focal length cylindrical lens. A single
high speed camera, fitted with a Nikon 35 mm fixed focal length lens, was placed beneath
the tunnel on mounting rails approximately three diameters downstream of the cylinder. In
the first experimental campaign, the camera’s sensors were cropped to 1728 × 1080 pixels
and images were acquired in single frame mode at a sampling frequency, Fs, of 125 Hz to
provide a particle displacement of 12 pixels in the wake’s outer flow region. In the second
experimental campaign, the camera’s sensors were cropped to 2048 × 1280 pixels. Images
were acquired in double frame mode at a sampling frequency of 20 Hz with a selected

Figure 3.4: Experimental configuration for PIV measurements in the (a) x − y and (b)
x− z planes.
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frame separation time of 3000 µs to provide a particle displacement of 5 to 6 pixels in the
wake’s outer flow region. Double frame acquisition allows for a smaller pixel shift, reducing
the chance that particles will move out of plane. Both the laser optics and camera were
mounted on a Velmex BiSlide MN10 traverse, with a displacement resolution of 5 µm. The
traverse is operated by a stepper motor to precisely control the vertical location of the
measurement plane, with repeatability of 5.1 µm for short term usage.

For the vertical plane configuration (Fig. 3.4b), the laser beam was conditioned into a
sheet using three 90◦ turning mirrors followed by two cylindrical lenses with focal lengths
of −50 mm and −100 mm, for an effective focal length of −33 mm. The two high speed
cameras, fitted with Nikon 60 mm fixed focal length lenses, were placed on mounting rails to
the side of the water tunnel in spanwise succession. The full sensor resolution, 2560 × 1600
pixels, was used for both cameras and the fields of view were overlapped by approximately
10%. Images were acquired in double frame mode at a sampling rate of 20 Hz with a
frame separation time of 3000 µs. The separation time was selected to provide a particle
displacement of 6 pixels in the wake’s outer flow region.

Particle image acquisition and processing was done with LaVision’s DaVis 8 software.
For both PIV configurations, the camera focus was adjusted to produce particles of ap-
proximately 3 pixels in diameter. Calibration was achieved by imaging a calibration target,
consisting of 2 mm filled circular marks in a 10 × 10 mm grid, positioned in plane with the
laser sheet. Third order polynomial functions were fit to the target images for the hori-
zontal PIV planes, whereas a pinhole calibration method was applied to the vertical PIV
planes. The particle images were pre-processed using a spatial sliding minimum subtrac-
tion and intensity normalization. Particle displacements were calculated using an iterative
multi-grid cross-correlation algorithm with window deformation. A final interrogation win-
dow size of 24 × 24 pixels was employed with a 75% overlap, resulting in the vector pitches
outlined in Table 3.2. The results were post-processed using universal outlier detection
with vector removal and replacement [102]. If more than one camera was used, the mean
velocity fields for each camera were cross-correlated to orient the two FOVs. The vector
fields were interpolated onto a common coordinate system and stitched together using a
cosine weighted blending function in the overlap region. Once the results were calculated,
the random errors in the instantaneous velocity fields were evaluated using the correlation
statistics method [103]. The mean uncertainty in the wake region is estimated to be less
than 14.2% and 5.1% of the free stream velocity within 95% confidence for the horizontal
and vertical PIV configurations, respectively. Appendix B provides detailed methodology
and discussion of PIV uncertainty and Table 3.2 provides a summary of the pertinent PIV
parameters.
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Table 3.2: PIV acquisition parameters

Campaign1 Campaign2 Unit
Plane Horizontal Horizontal Vertical -

Lens focal length 35 35 60 mm
Sensor resolution 1728 × 1080 2048 × 1280 2560 × 1600 px
Total field of view 9.3D × 5.8D 8.5D × 5.3D 6.0D × 18.2D -

to 10.5D × 6.6D
PIV mode Single frame Double frame Double frame -

Sample rate, Fs 125 20 20 Hz
Frame separation, ∆t - 3000 3000 µs

Outer flow displacement 12 5 to 6 6 px
Window size 24 × 24 24 × 24 24 × 24 px

2.50 × 2.50 1.95 × 1.95 1.77 × 1.77 mm
to 2.41 × 2.41

Vector pitch 0.624 0.489 to 0.603 0.444 mm
0.032D 0.025D to 0.031D 0.023D -

3.3 Techniques for Data Analysis

3.3.1 Proper Orthogonal Decomposition

The velocity field for turbulent bluff body flow consists of time-averaged and time-
dependent components, where the latter is a combination of quasi periodic coherent struc-
tures and incoherent turbulence. As such, the triple decomposition of the instantaneous
flow field is expressed in Eq. 3.2 [104, 105]; where ~U(~x) is the mean flow field, ~u′(~x, t) is
the component due to coherent motions, and ~u′′(~x, t) is the incoherent component.

~u(~x, t) = ~U(~x) + ~u′(~x, t) + ~u′′(~x, t) (3.2)

Lumley [106] introduced Proper Orthogonal Decomposition (POD) to the fluid me-
chanics community as a method of studying the coherent structures in turbulent flow.
It has since been applied extensively in the analysis of bluff body flows [107–109], with
methodology outlined in detail by Berkooz et al. [110]. In general, POD is an energy based
decomposition of the velocity field, where the fluctuating field, ~u′(~x, t) +~u′′(~x, t), is decom-
posed into a set of spatial modes, ~φi, and temporal coefficients, ai, Eq. 3.3. The present
study employs the POD snapshot method [111], which reduces the computational effort
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by solving the eigenvalue problem for the velocity autocorrelation operator [112]. The
obtained eigenfunctions are the spatial modes and their corresponding eigenvalues are the
relative energy content of each spatial mode, λi. Temporal coefficients are obtained from
the projection of the quasi periodic velocity field onto the ith spatial mode. The obtained
set of N modes is ordered according to its descending relative energy content, where the
relative energy content is indicative of the planar turbulent kinetic energy since the POD
is computed on the 2D velocity fluctuations.

~u′(~x, t) + ~u′′(~x, t) =
N∑
i=1

ai(t)~φi(~x) (3.3)

Given a data set that is statistically large enough to distinguish coherent motions from
turbulence, the quasi periodic component, ~u′(~x, t), of the flow is approximated as the finite
sum of the spatial modes multiplied with their corresponding temporal coefficients. Such
a low order model can be calculated from time resolved data and is useful in resolving the
coherent structures in the flow. For strongly periodic flows, the dominant structures can
be approximated by the first pair of POD modes combined with the mean flow [107–109]:

~uLOM(~x, t) = ~U(~x) + a1(t) ~φ1(~x) + a2(t) ~φ2(~x) (3.4)

3.3.2 Phase Averaging

Phase averaging is a common method of investigating coherent structures whereby data
is conditionally averaged based on a reference signal. This signal is selected such that its
phase is representative of the dominant periodic component of the flow. In the present
study, the flow periodicity is governed by vortex shedding. In doing so, the incoherent
motions in phase averaged fields are eliminated. The present study employs both the first
pair of POD temporal coefficients and the cylinder displacement in the transverse direction
as reference signals. The former must be used for stationary cylinders and is arguably
more indicative of the flow since its periodicity is associated with the advection of the
dominant structures in the wake. The latter was shown to provide similar phase averaged
results and is advantageous when reconstructing a 3D velocity field from multiple two-
dimensional fields as it provides a common reference point between planes. To illustrate
the two methods, the case of 2P shedding at U∗ = 7.08 is considered.

As mentioned in Section 3.3.1, studies have shown that, for strongly periodic flows,
the first two POD modes form a pair associated with the shedding of dominant vortical
structures [107–109]. Depicted in Fig. 3.6a, this pair exhibits strong periodicity with a
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Figure 3.5: Normalized cross plot of POD temporal coefficients a1 and a2 computed
from PIV data acquired in the horizontal, x− y, plane at z/D = 12.4 for 2P shedding at
U∗ = 7.08.

π/2 phase shift. Their normalized cross plot in Fig. 3.5 confirms the periodicity, where
each data point corresponds to a single planar PIV snapshot. The phase angle of vortex
shedding, θ, estimated by Eq. 3.5 and depicted in Fig. 3.6c, can be used to phase average
PIV results, where instantaneous velocity fields are separated into discrete phase bins of
size ∆θ = π/15, exaggerated by the dashed lines in Fig. 3.5. If the phase resolution of
PIV data exceeds ∆θ, multiple fields may fall into a single phase angle bin for a given
oscillation cycle. Thus, to ensure equal weighting between different cycles and minimize
phase smearing, only a single velocity field closest to the midpoint of the bin was selected
from any given cycle for phase averaging.

θ = arctan

(√
λ1

λ2

a2

a1

)
(3.5)

The cylinder displacement in the transverse direction is depicted in Fig. 3.6b. The
Hilbert transform of the signal, outlined in Eq. 3.6, is used to extract its phase, which is
depicted in Fig. 3.6c. In both methods, the phase angle is shifted such that zero phase
(θ = 0) occurs when the cylinder crosses the transverse equilibrium (y/D = 0) in the pos-
itive y-direction. The resultant phases from both methods are nearly identical (Fig. 3.6c),
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Figure 3.6: Reference signals and their computed phase; (a) POD temporal coefficients
a1 and a2, (b) non-dimensionalized cylinder displacement in the transverse direction, and
(c) computed phase of each reference signal.

indicating that phase averaging yields similar results, whether the first pair of POD tem-
poral coefficients or cylinder displacement in the transverse direction is used as a reference
signal.

H(t) = 1
π

∫ ∞
−∞

y(t)
t− s

dt

θ(t) = arctan

(
Himag(t)
Hreal(t)

)
(3.6)

3.3.3 Statistical Vortex Identification

In the present work, vortex strengths and trajectories are characterized for different shed-
ding regimes. Such an analysis requires vortex identification, for which numerous methods
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have been developed over the last several decades. Inherently, the simplest identification
methods are based on vorticity [113, 114] or streamlines [115]. However, the former ap-
proach does not allow differentiation between rotational and shear dominated regions in
the flow [116], while the latter methodology is reference frame dependent [115]. This has
led to several Galilean invariant Eulerian methods, none of which is universally accepted as
optimal. These methods include the ∆-criterion [117], Q-criterion [118], λ2-criterion [116]
and λ2

ci-criterion [119], all based on the velocity gradient tensor as well as the Γ1 & Γ2-
criterion [120], based on the topology of the velocity field. Furthermore, Green et al. [121]
identified Lagrangian coherent structures (LCS) from direct Lyapunov exponents (DLE) to
improve upon the disadvantages of Eulerian methods, specifically the subjectivity involved
with vortex boundary thresholding and the time-dependent rotation variance.

The present study employs the Q-criterion due to its relatively easy implementation
and widespread use in vortex dominated flows [65, 118, 119]. Phase-averaged contours
of positive Q-criterion and the corresponding vorticity contours are shown in Figs. 3.7a
and 3.7b, respectively. It can be seen that a 2S shedding pattern is produced in the wake
for this case, with general vortex identification being rather straightforward for Figs. 3.7a
and 3.7b. However, as typical for turbulent wake flows, robust identification of vortex
boundaries and vortex cores is not trivial due to the presence of smaller scale structures. In
the present study, this is accomplished using a statistical method based on the distribution
of Q-criterion. The utilization of such a statistical approach improves consistency and
reduces subjectivity associated with defining vortex boundaries, especially in the near
wake. Regions identified as vortex cores are grouped by fitting a Gaussian mixture model
(GMM) to the Q-criterion using an iterative expectation-maximization algorithm (EM).
This probabilistic model is often used in machine learning to cluster subpopulations within
an overall population [122, 123].

In terms of the present study, a subpopulation is a region of positive Q-criterion, which
corresponds to a single vortex. The overall GMM probability distribution, p(~x), of the Q-
criterion in the wake is the weighted sum of each subpopulation probability distribution,
Eq. 3.7: where ~µi, Σi, and πi are the mean, covariance, and weight of each subpopula-
tion, respectively. The multi-dimensional probability distribution for each subpopulation
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Figure 3.7: 2S vortex shedding at U∗ = 5.28 with contours of (a) the GMM based
probability distribution, p~x, overlaid on the Q-criterion, greyscale colourbar indicates the
fraction of global maximum, Q/Qmax, and (b) the non-dimensionalized phase-averaged
vorticity field with vortex centroids and boundaries indicated by plus symbols and sur-
rounding ellipses. Note, flow is from left to right and the cylinder is represented by the
black circle at (x/D, y/D) ≈ (0, 0).

is calculated using Eq. 3.8 with the cumulative subpopulation weight being unity (Eq. 3.9).

p(~x) =
K∑
i=1

πiN (~x | ~µi,Σi) (3.7)

N (~x | ~µi,Σi) = 1√
(2π)K |Σi|

exp
(
−1

2(~x− ~µi)TΣi
−1(~x− ~µi)

)
(3.8)

K∑
i=1

πi = 1 (3.9)

The EM algorithm is an iterative numerical technique for maximizing the likelihood
that the GMM represents the subpopulations. It is initialized by estimating the mean and
covariance for each of the K-specified subpopulations from the Q-criterion field and by
assuming their weight is equally distributed, πk = 1/K. Each iteration begins with the ex-
pectation step, which determines the responsibility (probability), γik, that a point in space,
xi, is generated by the subpopulation k, for each of the N points in space and K subpop-
ulations, Eq. 3.10. The maximization step then refines the weight, mean, and covariance
given the newfound responsibilities for each of the subpopulations as per Eqs. (3.11)–(3.13),
respectively. The algorithm refines the model until convergence is reached at 0.0001% of
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the log-likelihood of the overall probability distribution.

γik = πkN (~xi | ~µk,Σk)∑K
j=1 πjN (~xi | ~µj,Σj)

(3.10)

πk =
N∑
i=1

γik
N

(3.11)

~µk =
∑N
i=1 γik~xi∑N
i=1 γik

(3.12)

Σk =
∑N
i=1 γik(~xi − ~µk)T(~xi − ~µk)∑N

i=1 γik
(3.13)

The results from the refined GMM are processed to remove any subpopulations with an
aspect ratio greater than two. In doing so, regions of shear vorticity in the two shear layers
that the Q-criterion identified as rotational vorticity are eliminated from consideration.
Figure 3.7a depicts an example of the resultant GMM probability distribution, which
clusters regions of positive Q-criterion. Vortex centroids are located by the spatial mean
of each subpopulation and their area by the region encompassed within three standard
deviations around the centroid to statistically account for 99.7% of the vortex core for the
assumed Gaussian distribution. The results obtained for the data in Fig. 3.7a are presented
on top of the vorticity contours in Fig. 3.7b. Vortex identification and characterization
were confined to the region that is one diameter downstream of the cylinder and one
diameter upstream of the edge of the FOV, so as to reduce the adverse influence of velocity
measurement boundaries on the results. The results in Fig. 3.7b illustrate that the method
correctly identifies vortices, distinguishing rotational from shear regions, and captures their
skewed shape. It should be noted that the outlined statistical approach was verified to
produce comparable results using the λ2-criterion, see Appendix G for details.

It is important to note that application of the model assumes a Gaussian distribution of
the data within each of the subpopulations. Given that the spatial distribution of vorticity
within a vortex is Gaussian [124–126], it follows that the distribution of the vortex identi-
fication Q-criterion should also be Gaussian since it represents the local balance between
shear strain rate and vorticity magnitude [116], which is greatest at the vortex center with
outward radial decay. This assumption has been verified to be reasonable through the
analysis of quantile-quantile plots of subpopulations. Figure 3.8 depicts quantile-quantile
plots of the Q-criterion distribution for the vortex at x/D ≈ 4.3 in Fig. 3.7. In general
the distributions in the streamwise and transverse directions are very close to the standard
normal, especially within half a diameter from the vortex center. Slight deviation from the
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Figure 3.8: Quantile-quantile plots for the spatial distribution of the vortex identification
Q-criterion in the (a) streamwise and (b) transverse direction for the positively signed
vortex at x/D ≈ 4.3 in Fig. 3.7.

standard normal towards the extremities of the vortex indicates that there is less variance
than expected and that the distribution is slightly skewed in the negative transverse direc-
tion. This discrepancy agrees with the results of Bray [125], who observed increasing error
in the spatial distribution of vorticity outwards from the vortex center.

This iterative GMM refinement employed in this study requires an initial estimate of
the mean, covariance and weight for each of the subpopulations. The mean, ~µk, is manually
input as the approximate cluster center based on the positive Q-criterion for each of the
K subpopulations. The initial covariance, Σk, of each subpopulation is automatically
computed from the Q-criterion surrounding the estimated mean and each subpopulation is
initially weighted equally. The EM algorithm then iteratively refines the mean, covariance
and weighting proportion until convergence is reached. Sensitivity tests have shown that
the covariance computed from data within 0.1D to 5.0D of the initial mean produced
identical refined probability distributions. Furthermore, it was verified that initializing the
spatial mean of each subpopulation to within approximately 1.0D of the true converged
mean consistently produced identically refined probability distributions. As such, the
model is most sensitive to the specified number of subpopulations where more complex
models typically better represent the data. This brings to light that the model suffers from
overfitting, which was addressed in the present study by applying user input to ascertain
how many subpopulations best located the vortices in the wake. An objective method for
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evaluating the quality of the statistical fit and improving the automated identification is
proposed in Chapter 7.
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Chapter 4

Vortex Dynamics in the Wake1

In this chapter, the vortex induced vibrations of a pivoted cylinder are investigated ex-
perimentally at a fixed Reynolds number of 3100 and a range of reduced velocities, 4.4 ≤
U∗ ≤ 9.1. The study focuses on a quantitative analysis of the planar wake topology and its
relation to the structural response. Vortex identification and tracking are used to analyze
the shedding process based on the vortex strength and its core acceleration.

4.1 Amplitude Response
The amplitude response of a pivoted cylinder is characterized using the peak deflection
angle, δ = tan−1(A/L), where A is the amplitude of the high-pass filtered structural
oscillations in either the streamwise or transverse directions. Given the relatively small
deflection angles in the y − z and x − z planes, the following approximations can be
used δyz ≈ Ay/L = A∗y/AR and δxz ≈ Ax/L = A∗x/AR. Figure 4.1 depicts variation
of the peak deflection angles with reduced velocity. Substantial response within 4.7 ≤
U∗ ≤ 9.0 indicates a lock-in region with two response branches: an initial branch (4.7 ≤
U∗ ≤ 5.9) and a lower branch (5.9 ≤ U∗ ≤ 9.0). As will be discussed in more detail
in the following sections, shedding patterns observed from phase-averaged vorticity fields
agree with previously documented 2S and 2P regimes in the initial and lower branches,
respectively [18, 26]. Figure 4.1a shows some variation in amplitude response and length of

1This is an Accepted Manuscript of an article published by Springer Berlin Heidelberg in Experiments
in Fluids on April 12, 2018, available online: 10.1007/s00348-018-2530-3. E. Marble, C. Morton, and S.
Yarusevych, “Vortex dynamics in the wake of a pivoted cylinder undergoing vortex-induced vibrations
with elliptic trajectories.”
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Figure 4.1: Variation of peak deflection angle in the (a) y − z and (b) x− z planes with
the reduced velocity. Deflection angle is measured in degrees.

lock-in region between the results from different studies performed on pivoted cylinders at
comparable structural parameters and Reynolds numbers. The larger maximum amplitude
and intermediate length of lock-in region seen in the present data are primarily due to the
lower damping coefficient and moderate mass ratio [85].

4.2 Frequency Response
Variation of the normalized frequency of streamwise and transverse vibrations with the
reduced velocity is shown in Fig. 4.2a. The dominant frequencies were obtained from
spectral analysis of displacement signals, with representative spectra of streamwise and
transverse displacements depicted in Figs. 4.2b and 4.2c, respectively. Pronounced peaks
in the spectra at the system’s natural frequency and harmonics within 4.85 ≤ U∗ ≤ 8.55
indicate the lock-in region. The dominant peaks of both streamwise and transverse spectra
occur at the natural frequency, indicating the system follows an elliptic trajectory. Energy
content of these peaks is greater and more concentrated in the transverse spectra, implying
a trajectory with larger amplitude of oscillation in the transverse direction. Evidence
of elevated spectral energy content associated with the vortex shedding frequency of a
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Figure 4.2: (a) Normalized frequency of streamwise and transverse vibrations; (b) spectra
of streamwise vibrations, (c) spectra of transverse vibrations. Note, spectra are plotted
with a consistent amplitude offset for clarity.

stationary cylinder is observed only at U∗ = 4.61 in the transverse spectra at f ∗y = 0.87.
Compared with the other cases, the spectral peak at the natural frequency for U∗ = 4.61 is
less pronounced which is attributed to the fact that this condition is near the onset of lock-
in. A comparison of spectra for the fluctuating wake velocity and cylinder displacement
confirmed that vortices shed at the Strouhal frequency for U∗ = 4.61, while shedding
frequency locked onto the structure’s natural frequency for the remaining reduced velocities
examined in Fig. 4.2.

Phase-averaged cylinder trajectories at the PIV laser height for three representative re-
duced velocities are depicted in Fig. 4.3, with associated uncertainty in the phase-averaged
results shown in grey based on a 99% confidence interval. The results show that cylinder
trajectories are elliptic with the majority of motion in the transverse direction, similar to
the cases investigated by Kheirkhah et al. [45] and Oviedo-Tolentino et al. [40]. Kheirkhah
et al. [45] outline four possible regimes for VIV with cylindrical trajectories based on
the orientation of the ellipse with respect to the y-axis and orbiting direction. Three of
these regimes are observed for the range of parameters investigated in the present study
(Figs. 4.3a–c). The fourth regime was not observed because the structural coupling of
the system did not permit for the necessary reduced coupling velocity range as suggested
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Figure 4.3: Cylinder trajectories at PIV measurement plane z/D = 18 for (a) U∗ = 5.28,
(b) U∗ = 5.61, and (c) U∗ = 7.19. A red arrow in each image denotes the orbiting
direction. Grey contours correspond to uncertainty in the phase-averaged results based on
a 99% confidence interval.

by Kheirkhah et al. [45]. For each case of reduced velocity, the direction of orbit and
orientation of the ellipse remain constant during multiple experiments.

4.3 Wake Topology
The results of the present investigation are overlaid on the Morse and Williamson [1] shed-
ding map, developed from forced 1DOF-transverse vibrations of a cylinder, in Fig. 4.4a.
Purple, green and orange markers correspond to 2S, 2Po and 2P shedding regimes, respec-
tively, as determined based on analysis of phase-averaged vorticity fields. Representative
phase-averaged vorticity fields are depicted in Figs. 4.4b–d at the same phase angle of
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cylinder motion. The results suggest that the observed vortex shedding regimes, at the
investigated spanwise plane, agree with the Morse and Williamson [1] shedding map except
for the 2P pattern observed at U∗ = 8.55, in the zone of predicted desynchronized shedding.
This is close to the region where Kheirkhah et al. [49] noticed significant departure from
the predicted shedding regimes for 2DOF variable amplitude VIV. Further deviations form
the vortex shedding map observed by Leong and Wei [46] and Flemming and Williamson
[47] were attributed to the additional streamwise DOF as well as the highly three dimen-
sional wake, which is caused by the structure’s spanwise variable amplitude. The authors
of the present study have verified hybrid vortex shedding in the wake exists near the regime
transitions on the Morse and Williamson [1] shedding map; however, the analysis presented
here focuses on the wake dynamics captured at a single spanwise plane. At the boundary
between 2S and 2P regimes, there is a shift in the phase of vortex shedding with respect to
cylinder motion. Figure 4.4b displays a positive vortex attached to the lower shear layer,
while it has separated in Fig. 4.4c and is located considerably far downstream in Fig. 4.4d.
This shift has been shown to coincide with the transition from 2S to 2P shedding as the
structural response changes between initial and lower branches [1, 27].

The 2Po regime is distinguishable by the weaker second vortex in each vortex pair, as
exemplified by the weak negative vortex at x/D ≈ 1.8 in Fig. 4.4c. Morse and Williamson
[1] observed intermittent switching of the wake within the 2Po regime. This shedding
regime occurs at U∗ = 5.86 in the present study. Corresponding peaks in the spectra of
the streamwise and transverse vibrations in Figs. 4.2b and 4.2c are notably more broadband
than those at neighbouring reduced velocities pertaining to either 2S or 2P regimes. This
indicates temporal variability in the fluid structure interaction that may be attributed
to intermittent switching of the wake between 2S, 2Po, and 2P vortex shedding at these
conditions, as observed by Morse and Williamson [1]. However, unlike the spectral analysis,
examination of the cylinder displacement signals showed that amplitude fluctuations are
insignificant throughout time and are not indicative of such intermittent switching.

The shedding of vortical structures in the wake in relation to the elliptical motion
of the cylinder is illustrated using phase-averaged vorticity field sequences in Fig. 4.5.
Figures 4.5a–e display the wake of 2S shedding at U∗ = 5.28. At the peak of the trajectory
in the transverse direction (Fig. 4.5a), positive vortex A has recently shed, with a weak
region of vorticity between the vortex and the shear layer still identifiable in the image, and
vortex B is in the process of rolling up from the negative shear layer. As the cylinder moves
along its clockwise (CW) trajectory, vortex A advects downstream allowing positive vortex
C to start rolling up (Fig. 4.5b). Near the bottom of the cylinder trajectory (Fig. 4.5e),
vortex C has moved far enough across the wake to impinge upon the negative shear layer,
cutting off the supply of negative vorticity and causing vortex B to shed. This process
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Figure 4.4: (a) Amplitude response at the PIV measurement plane z/D = 18 overlaid
on the Morse and Williamson [1] shedding map. Red, green and blue markers indicate
2S, 2Po and 2P shedding regimes, respectively, and were determined from phase-averaged
vorticity fields. Representative normalized phase-averaged vorticity contours are shown for
(b) U∗ = 5.28, (c) U∗ = 5.86, and (d) U∗ = 7.19.
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repeats itself as the cylinder completes the second half of its oscillatory motion.
Vorticity contours of 2P shedding at U∗ = 6.65 are displayed in Figs. 4.5f–j for half a

period. The orientation and direction of elliptic cylinder trajectory are similar to the 2S
case; however, the transverse amplitude is approximately twice that found for 2S and the
shear layers extend further beyond the cylinder prior to vortex formation. The pairs of
shed counter-rotating vortices, which are characteristic of 2Po and 2P shedding, consist of
a leading and trailing vortex, where the leading vortex sheds first and is followed by the
trailing vortex. At the peak of the trajectory in the transverse direction (Fig. 4.5f), A1 and
A2 are vortices having originated from a negative vortex A that split at an earlier phase in
the cylinder trajectory. Trailing vortex A1 is advecting downstream and vortices A2 and B
are in the process of rolling up. Vortex B moves across the wake as the cylinder continues
CW along its trajectory in Fig. 4.5g, cutting off the supply of vorticity to A2 and causing
it to shed in a similar manner to 2S shedding. Immediately afterwards, vortex C forms at
the end of the negative shear layer and then vortex B splits to form B1 and B2 (Fig. 4.5h).
Govardhan and Williamson [27] speculate the vortex splitting is due to strain caused by
the significant relative velocity between the cylinder and vortex B as well as the velocity
induced by vortex A2. Positive leading vortex A2 and negative trailing vortex B1 then
form a counter rotating pair, see Fig. 4.5i. As the cylinder approaches the bottom of its
trajectory in the tranverse direction, the newly formed vortex pair advects downstream as
vortices B2 and C continue to roll up (Fig. 4.5j). This process repeats itself as the cylinder
completes the second half of its motion period.

The observed 2S and 2P shedding modes generally agree with those reported for the
1DOF-transverse VIV study by Govardhan and Williamson [27] and the 2DOF VIV studies
by Jauvtis and Williamson [34] and Flemming and Williamson [47], at comparable reduced
velocities. There are, however, notable differences in the timing of vortex shedding with
comparison to 1DOF studies. Figures 4.5a–e indicate 2S vortices are shed near the peaks
of transverse motion; whereas, it can be deduced from the studies of Jeon and Gharib
[55] and Hsieh et al. [56] that shedding occurs approximately π/4 prior to the transverse
peaks, while that of Williamson and Roshko [54] indicates shedding occurs approximately
π/2 after the peaks. As for the 2P mode, the observed vortex shedding timing agrees with
the results of Williamson and Roshko [54]; whereas, the study of Jeon and Gharib [55]
indicates that shedding occurs approximately π/4 later in the transverse motion. Such
variability in vortex timings from previous investigations may in part be attributed to the
semi-qualitative identification of this important aspect of wake dynamics.
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Figure 4.5: Phase-averaged vorticity fields illustrating shedding for half a period (θ =
8π/15, 12π/15, 16π/15, 20π/15, and 24π/15); (a-e) 2S shedding at U∗ = 5.28 and (f-j) 2P
shedding at U∗ = 6.65. Zero phase (θ = 0) is when the cylinder crosses the transverse
equilibrium (y/D = 0) in the positive y-direction. Location of the cylinder along its elliptic
trajectory is shown for each flow field.
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4.4 Vortex Shedding Characteristics
The discussion in the previous subsection provides a general overview of vortex shedding
regimes attendant in VIV with elliptic trajectories. Here, additional quantitative analysis is
carried out to study the shedding dynamics. As described in the experimental methodology,
vortices were identified using a statistical method based on the spatial distribution of
vortex identification Q-criterion. The approach fits a GMM to the Q-criterion, calculated
from the phase-averaged velocity fields, and iteratively refines the probability distribution
using an EM algorithm. Vortex centroids were determined from the spatial mean of each
subpopulation and their area by the region encompassed within three standard deviations
around the centroid. The algorithm was verified to produce area estimates that reflect
vorticity diffusion, i.e., vortex areas increase as vortices advect in the wake. Based on this
analysis, the position and kinematics of vortex cores, as well as strength of vortices in
terms of circulation (Γ), were characterized. The absolute vortex trajectories are depicted
in Fig. 4.6 for 2S (Fig. 4.6a) and 2P (Figs. 4.6b and 4.6c) regimes. For the 2P regime,
the effect of the cylinder orbiting direction is illustrated, as the two possible directions
produce distinctly different vortex trajectories and thereby have different effects on the
vortex dynamics in the wake. In contrast, for the 2S regime, the direction of orbiting did
not have any appreciable effect on wake shedding characteristics and is thus not considered
here for brevity. For the 2S regime (Fig. 4.6a), the positive and negative vortices follow a
similar absolute trajectory in the near wake, remaining close to the wake centerline as they
advect downstream. There is a slight advection towards the wake centerline in the region
1.0 ≤ x/D ≤ 3.5, followed by an outward deviation from the centerline. The streamwise
1DOF VIV study by Cagney and Balabani [127], where vortex trajectory was determined
from the swirling strength parameter defined by Wu and Christensen [128], also observed
a “slight transverse rebound" for this shedding regime.

The absolute vortex trajectories for 2P shedding are shown in Figs. 4.6b and 4.6c for
CW and CCW orbiting, respectively. During and shortly after formation, trailing vortices
cross the wake centerline, while leading vortices remain on one side of the wake. Once
shed, both leading and trailing vortices advect outward from the wake centerline as they
travel downstream. Trailing vortices diffuse faster than their leading counterparts due to
significant cross annihilation of vorticity [66], making their identification difficult relatively
early downstream in comparison to the leading vortices. They follow a similar absolute
path for the CW case (Fig. 4.6b); however, for the CCW case, the negative trailing vortex
remains closer to the transverse equilibrium (y/D = 0) in the near wake than the positive
trailing vortex (Fig. 4.6c). The absolute trajectory of leading vortices is initially similar
to the trailing vortices until the positive and negative leading vortices begin to deviate at
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Figure 4.6: Vortex trajectories obtained based on phase-averaged results for (a) 2S shed-
ding at U∗ = 5.28 and 2P shedding at (b) U∗ = 6.65 and (c) U∗ = 7.19. The two selected
2P cases correspond to different direction of orbiting. Red and blue markers indicate
positively and negatively signed vortices, respectively.

x/D ≈ 2.5. For the CW case (Fig. 4.6b), the deviation increases until x/D ≈ 4, at which
point the positive leading vortex remains about 0.5D further from the wake centerline
than the negative leading vortex. In contrast, the negative leading vortex remains about
0.4D further from the wake centerline than the positive leading vortex for the CCW case
(Fig. 4.6c).

Variation of vortex position, acceleration, and circulation with phase of cylinder motion
is presented in Figs. 4.7 and 4.8 for 2S and 2P regimes, respectively, in order to elucidate
the shedding process. The acceleration of vortices is estimated based on numerical differ-
entiation of the streamwise position data, using first order forward and backward difference
schemes at the beginning and end of each data set and a second order central difference
scheme for all inner points. The circulation is computed by integrating the vorticity within
the area defined by GMM vortex identification, with error bars showing the methodologi-
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Figure 4.7: Variation of (a) streamwise vortex core position, (b) streamwise vortex core
acceleration, and (c) vortex strength with respect to phase angle of cylinder motion for
2S shedding at U∗ = 5.28. Dashed lines indicate the estimated timing of vortex shedding,
with shaded regions representing methodological uncertainty.

cal uncertainty associated with phase averaging based on a 99% confidence interval. The
phase angle is defined as zero when the cylinder crosses the wake centerline in the positive
y-direction. The phase-averaged vorticity fields in Figs. 4.5a–e and Figs. 4.5f–j depict the
2S and 2P shedding processes, respectively, at θ = 8π/15, 12π/15, 16π/15, 20π/15, and
24π/15.

Similar to the wake development of a stationary cylinder described in Rockwood et al.
[65], the vortex shedding process in the wake of a cylinder undergoing VIV can be divided
into three distinct stages: formation, saturation, and downstream advection. For 2S and
2P shedding regimes, each shedding process stage is associated with distinct trends in
data presented in Figs. 4.7 and 4.8. The initial stage, vortex formation, occurs as the
separated shear layer rolls up into a vortex. For instance, the formation of the negative
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Figure 4.8: Variation of (a & d) streamwise vortex core position, (b & e) streamwise
vortex core acceleration, and (c & f) vortex strength with respect to phase angle of cylinder
motion for 2P shedding at (a-c) U∗ = 6.65 and (d-f) U∗ = 7.19. Dashed lines indicate
the estimated timing of vortex shedding, with shaded regions representing methodological
uncertainty.

2S vortex labeled as B occurs from 8π/15 ≤ θ ≤ 20π/15 in Figs. 4.5a–c. During
this stage, the vortex core experiences relatively small downstream displacements in the
vortex formation region due to a gradual shear layer elongation, with a linear increase
in acceleration (Figs. 4.7b, 4.8b, and 4.8e). The continuous flux of vorticity supplied
by the shear layer contributes to a nearly linear increase in circulation (Figs. 4.7c, 4.8c,
and 4.8f), which agrees with observations from Jeon and Gharib [55] and Konstantinidis
et al. [129]. The increase in circulation eventually saturates and the vortex sheds [55].
Thus the cylinder phase angle at which shedding occurs can be identified based on the
phase at which maximum circulation is attained [55, 56, 129, 130]. An alternative method
for shedding identification based on the kinematics of vortex cores is explored here, with
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shedding expected to coincide with maximum vortex core acceleration. Peak circulation
and acceleration are estimated from the intersection of two linear fits to the data before
and after the expected instant of shedding. The line prior to shedding is automatically fit
using the first five data points, then extended by iteratively adding points one by one as
long as their deviation from the linear fit is less than two standard deviation of the error
between each of the points and the corresponding fit. The line subsequent to shedding is
similarly generated starting with the point excluded from the first linear fit based on the
aforementioned procedure. Linear fits were implemented because they approximate well
the changes in vortex growth and acceleration during formation and downstream advection
immediately subsequent to shedding, while not introducing much added complexity to the
method. The corresponding phase angles of intersection are marked by vertical dashed
lines, with methodological uncertainty limits identified by shaded regions. It can be seen
that the phase angles corresponding to maximum circulation and peak acceleration agree
to within experimental uncertainty for all the cases, marking the instant of shedding of
the corresponding vortices for each shedding regime. Note that the estimates of shedding
timing from vortex circulation are not affected appreciably if vortex area is defined based
on two or three standard deviations from the centroids in GMM. Comparing streamwise
vortex core position with the estimated vortex shedding phase angles suggests that shedding
is marked by the onset of vortex core position departure from the initial linear trend in
vortex position (Figs. 4.7a, 4.8a, and 4.8d). This is substantiated by the approach employed
by Huang and Green [131] and Rockwood et al. [65], who inferred shedding phase angle
from the changes in the position of the Lagrangian saddle point. Once shed, the vortex
advects downstream, its circulation decaying due to viscous diffusion and cross annihilation
of vorticity [66], and eventually reaches a nearly-constant advection velocity. It can be
seen from a comparison of Figs. 4.7 and 4.8 that the formation and saturation stages of
the shedding process occur more rapidly for 2P than 2S shedding because two additional
vortices are shed within each cylinder oscillation period. Compared to 2S shedding, the
shorter period of formation and greater amplitude of cylinder oscillation for 2P shedding
results in the vortices experiencing greater acceleration at saturation and attaining lower
strength throughout the shedding process.

The results in Figs. 4.7b and 4.7c indicate that positive and negative 2S vortices are
shed approximately ∆θ = π apart, agreeing with 1DOF VIV results from Williamson and
Roshko [54], and have similar accelerations and absolute strengths throughout the shedding
process. The location of the cylinder along its elliptic trajectory and the corresponding
phase-averaged vorticity fields at the identified instances of shedding for the 2S regime are
depicted in Fig. 4.9. It can be seen that 2S vortices are shed as the cylinder passes the
streamwise equilibrium (x/D = 0), with positive and negative vortices shed during the
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Figure 4.9: Phase-averaged vorticity fields corresponding to the identified instances of
vortex shedding for the 2S regime at U∗ = 5.28.

upward and downward transverse motion of the cylinder, respectively.
The flow fields corresponding to the shedding phases for the 2P regimes are shown

in Fig. 4.10. For the case of CW cylinder trajectory (Fig. 4.10a), leading vortices (A2
and B2) shed immediately after the cylinder reaches its transverse peak of oscillation
and trailing vortices (A1 and B1) shed near the transverse equilibrium. For the CCW
orbiting trajectory (Fig. 4.10b), these vortices are shed at phase angles occurring later
in the cylinder’s trajectory as a result of the higher reduced velocity. In both CW and
CCW cases, the leading and trailing vortices of a pair shed within less than one quarter
of a period and experience similar accelerations, Figs. 4.8b and 4.8e. The cumulative
negatively and positively signed circulation generated in each cycle of 2P vortex shedding
are similar for both cases; however, for the CW case, the pair with a leading positive vortex
and negative trailing vortex is stronger upon shedding than the other pair (Fig. 4.8c). In
contrast, this is the weaker pair for the CCW case (Fig. 4.8f). The observed differences
in vortex strength between the two cases are attributed to the differences in vorticity
production associated with trailing and leading vortices. In particular, stronger vortex
pairs (B2 and A1 in Fig. 4.10a, and A2 and B1 in Fig. 4.10b) form when the cylinder
moves in the direction opposite of that of the incoming flow, leading to a higher rate of
vorticity production during this part of the oscillation. On the other hand, the weaker
vortex pairs form when the situation is reversed. Compared to the classical description
developed for 1DOF-transverse VIV [27], the additional streamwise freedom of motion
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Figure 4.10: Phase-averaged vorticity fields corresponding to the identified instances of
vortex shedding for the 2P regime at (a) U∗ = 6.65 and (b) U∗ = 7.19.

in 2DOF VIV impacts the 2P vortex formation process if the cylinder follows an elliptic
orbit. For both cases of orbiting direction, upon saturation, the decay in circulation for the
trailing vortices is faster than that for the leading vortices, which is ascribed to significant
cross annihilation of vorticity as the trailing vortex passes between its leading counterpart
and the oppositely signed shear layer (see Figs. 4.5f–j: B1 passes between A2 and C with
rapid reduction in its local vorticity concentration).

The variation in the cylinder oscillation phase at vortex shedding with reduced velocity
is presented in Fig. 4.11a for all the cases investigated. Zero phase angle (θ = 0) cor-
responds to the instant when the cylinder crosses the transverse equilibrium (y/D = 0)
in the positive direction, and error bars represent methodological uncertainty with a 95%
confidence interval. 2S shedding occurs within the range 4.61 ≤ U∗ ≤ 5.61 with signif-
icant cylinder oscillations starting at U∗ = 4.85. Closed and open markers in the range

56



Figure 4.11: Variation in characteristic phase of vortex shedding with U∗: (a) phase angle
of cylinder oscillation at the moment of shedding and (b) relative phase angle between
vortex shedding and cylinder oscillations. Red and blue correspond to positively and
negatively signed vortices, respectively.

6.19 ≤ U∗ ≤ 8.55 indicate leading and trailing 2P vortices, respectively. Only the leading
2Po vortices at U∗ = 5.86 are shown since the weak nature of trailing 2Po vortices pre-
vented reliable determination of their shedding phase. It can be seen that the timing of
vortex shedding changes notably as the shedding regime changes from 2S to 2P, where 2P
vortices are shed earlier in the elliptic cylinder orbit than 2S vortices of the same sign.

It is also of interest to consider the relative phase angle between vortex shedding and
cylinder oscillation, φvortex shedding. The results are presented in Fig. 4.11b, with the origin
set such that the relative shedding phase is zero at U∗ = 4.85, which is in line with the re-

57



sults of Govardhan and Williamson [27] and Morse and Williamson [1] for a similar reduced
velocity. It can be seen that the relative phase angle does not vary significantly throughout
the 2S regime. It begins to increase as the shedding mode switches to 2Po (U∗ = 5.86),
and a sharp increase is seen at the onset of the 2P regime (U∗ = 6.19). Approximating the
shedding phase of the 2P regime as the average of the relative phase angles of same-signed
leading and trailing vortices, the phase jump from 2S to 2P is approximately π. As such,
2P vortices shed approximately half a period earlier in the cylinder trajectory than 2S
vortices. This phase jump agrees with the results from the high mass damping case by
Govardhan and Williamson [27] who found it to coincide with a slight increase in the fre-
quency of cylinder oscillation. As the reduced velocity increases within the 2P regime, the
relative vortex phase is seen to gradually decrease, in agreement with the 1DOF-transverse
forced vibration study of Morse and Williamson [1].

It has been shown that the timing of 2P vortex shedding relative to the cylinder motion
in the streamwise direction influences the vortex dynamics during formation, specifically,
the vortex strength at shedding. As such, the wake topology shows notable deviations
from the classic 2P shedding observed by Govardhan and Williamson [27] in their 1DOF-
transverse VIV study. Associated changes in the wake topology are elucidated in Figs. 4.12a
and 4.12b for U∗ = 6.65 and U∗ = 7.19, respectively. Phase-averaged vorticity fields are
shown at the peaks of transverse cylinder motion with dashed lines indicating the stream-
wise location of leading vortices in the wake. For the case of CW orbiting in Fig. 4.12a,
the leading vortices in the wake are separated by x/D ≈ 3.5 when the cylinder is at the
top of its trajectory, whereas they are only separated by x/D ≈ 2.0 at the bottom. This
streamwise staggering is a result of the vortex pair B2 and A1 shedding upstream of the
streamwise equilibrium of cylinder oscillation (x/D = 0) while the other pair, A2 and
B1, sheds downstream (Fig. 4.10a). Similar uneven streamwise spacing between vortex
pairs is seen in Fig. 4.12b when the cylinder orbiting direction is CCW, with smaller and
larger streamwise spacing between vortex pairs occurring at opposite cylinder positions.
This indicates that streamwise motion of the cylinder and its phase difference relative to
the transverse motion cause vortex staggering in the wake since both the direction of or-
biting as well as the tilt of elliptical trajectories have a notable influence on wake vortex
dynamics. The observed streamwise staggering leads to changes in induced velocities in
the wake, and is thus contributing to the differences seen between the trajectories of the
leading positive and negative vortices in Figs. 4.6b and 4.6c. Considering the CW case
(Fig. 4.12a) when the cylinder is at the top of its trajectory, the distance between the
positive leading vortex at x/D ≈ 3.7 and the downstream pair is increased; whereas, at
the bottom of the trajectory, the negative leading vortex at x/D ≈ 4.3 is relatively close to
the downstream pair. Consequently, the leading positive and negative vortices experience
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Figure 4.12: Difference in wake topology for the 2P regime for different orbiting directions
assessed based on phase-averaged vorticity fields presented for the same phase of cylinder
oscillations: (a) CW orbiting at U∗ = 6.65 and (b) CCW orbiting at U∗ = 7.19.

different induced velocity from the surrounding structures, leading to the differences seen
in their trajectories in Figs. 4.6b and 4.6c. As expected from Figs. 4.12a and 4.12b, the
trajectories of the leading positive and negative vortices in Figs. 4.6b and 4.6c are reversed
since the orientation of orbiting changes between the two cases.

Several classical definitions of the vortex formation length for a stationary circular
cylinder exist. These include the minimum of the mean pressure on the wake centerline
[2, 9], the maximum of the wake streamwise and transverse velocity fluctuations on the wake
centerline [132, 133], the streamwise extent of the recirculation region [134], and the location
of minimal transverse spacing of the maximum in the streamwise velocity fluctuations [135].
Figure 4.13 compares the streamwise location of vortex shedding determined from the
GMM based circulation analysis with the formation length as per vRMS Max, uRMS Max,
and the streamwise extent of the recirculation region. The results are compared for a
stationary cylinder at U∗ = 0 and all VIV cases investigated in the this chapter, with error
bars representing methodological uncertainty for a 95% confidence interval. Examination
of the stationary case shows good agreement amongst the methods, although the peak
vRMS is slightly further downstream. For the VIV cases, the circulation based location
of vortex shedding is similar for the positively and negatively signed 2S vortices. For 2P
shedding, the leading vortices are shed further downstream than the trailing vortices and
there is a notable difference in the shedding location of positively and negatively signed
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Figure 4.13: Variation of the formation length with U∗. Filled and empty circles cor-
respond to the streamwise location of vortex shedding determined from the GMM based
circulation analysis. Squares and triangles indicate the streamwise location along the wake
centerline to the peak in the vRMS and uRMS fields, respectively. Crosses indicate the
streamwise extent of the recirculation region (U/U0 < 0). Red and blue correspond to
positively and negatively signed vortices, respectively.

leading vortices. As previously discussed, these differences are attributed the timing of 2P
vortex shedding relative to the cylinder motion. Compared to the classical definitions of
the vortex formation length, there is good agreement between the location of vRMS Max

along the wake centerline and the shedding of 2S vortices as well as 2P trailing vortices,
except near the transition between the initial and lower branches in the region 5.5 .
U∗ . 6. The streamwise extent of the recirculation region agrees with these methods
at low reduced velocities, but deviates significantly and ceases to exist as the amplitude
of cylinder oscillations increases and the recirculation region becomes indiscernible in the
mean streamwise velocity field. The locations of peak uRMS along the wake centerline are
generally further upstream than the other methods, except at the lowest reduced velocity.

The findings from this results Chapter indicate that streamwise motion of the cylinder
can significantly impact the vortex dynamics in the wake for 2P shedding. Specifically, the
strength of vortices depends upon whether the cylinder is moving upstream or downstream
during the vortex formation process. Furthermore, the trajectory of leading vortices and
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the streamwise staggering of 2P pairs depends upon vortex shedding timing relative to
the streamwise equilibrium (x/D = 0) of cylinder oscillations in the streamwise direction.
These findings appear to be inherent to the elliptic trajectory-type response. In contrast,
Jauvtis and Williamson [34] and Flemming and Williamson [47] observed that the addi-
tional streamwise motion of the cylinder affects the shedding pattern in the cylinder wake
if the mass ratio is relatively low, m∗ < 6. However, for moderate mass ratios, they found
the application of 1DOF-transverse data reasonably predicts the classically defined wake
modes.
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Chapter 5

Spanwise Wake Development

In this chapter, the spanwise wake development is investigated experimentally at a fixed
Reynolds number of 3100 for a stationary cylinder and two cases of vortex induced vi-
brations of a pivoted cylinder with reduced velocities U∗ = 5.48 and 7.08. Time-resolved
planar PIV measurements in the horizontal and vertical planes in the wake are combined
with the measured structural response to form a comprehensive description of the spanwise
vortical structures. The discussion is divided into six sections: (i) structural response, (ii)
an overview of the flow development, (iii) time averaged velocity fields, (iv) vortex shed-
ding characteristics, (v) reconstruction of the 3D wake topology, and (vi) analysis of the
wake using Proper Orthogonal Decomposition.

5.1 Structural Response
Low pass filtered instantaneous trajectories of the cylinder tip are depicted in Figs. 5.1a
and 5.1b for the VIV cases U∗ = 5.48 and 7.08, respectively. Both cases exhibit an elliptic
trajectory with dominant motion in the transverse direction having oscillations with am-
plitudes that are approximately 10× that of the streamwise direction. Both orbits exhibit
CW rotation; however, their tilt with respect to the y-axis is different and corresponds to
two of the four possible elliptic orientations [45]. Calculated using the Hilbert transform
of the displacement signal, the phase difference between the streamwise and transverse
motion is ψ = 1.69π and 1.33π for U∗ = 5.48 and 7.08, respectively. Similar to the results
presented in Section 4.2, spectral analysis of the displacement signals showed pronounced
energy content near the natural frequency of the structure and its harmonics, with natural
frequencies fn = 1.51Hz and 1.17Hz for U∗ = 5.48 and 7.08, respectively.
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Figure 5.1: Cylinder tip trajectories for (a) U∗ = 5.48 and (b) U∗ = 7.08. A red arrow
in each image denotes the orbiting direction.

The structural response for both cases is overlaid on the Morse and Williamson [1] shed-
ding map, developed from forced 1DOF-transverse vibrations of a cylinder, in Fig. 5.2b.
Each pair of data points connected by a line corresponds to one tested experimental con-
dition, where the data points mark the extremes of the spanwise survey using 2D PIV in
the horizontal, x − y, plane. The investigated spanwise range for each case was selected
to encompass the predicted hybrid shedding. Specifically, the range for U∗ = 5.48 was
selected because, unlike the spanwise transition from 2S near the base to 2P near the
midspan, which has previously been observed [47, 49, 87], the anticipated base to midspan
wake transition from 2P to 2S has not yet been reported. The hybrid wake with 2P and 2S
shedding in spanwise regions with relatively small and large structural oscillations, respec-
tively, is of interest since VIV investigations [27, 34] typically show 2P shedding to occur at
greater amplitudes of oscillation than 2S shedding. The range for U∗ = 7.08 was selected
to focus on the vortex dislocations at the boundary between the desynchronized regime
and 2P shedding. This is of interest because the 2P vortices shed in synchronization with
the structural motion are expected to interact and form connections with vortices in a
desynchronized wake topology lower along the span. Furthermore, the quantitative inves-
tigation of the wake in this region of the map is intended to address significant departures
from the predicted wake topology observed at U∗ = 8.55 in Section 4.3 and at U∗ = 6.6
by Kheirkhah et al. [49] for VIV of a pivoted cylinder.
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Figure 5.2: (a) Experimental geometry and (b) structural response overlaid on the Morse
and Williamson [1] vortex shedding map for the hybrid wake investigations at U∗ = 5.48
and U∗ = 7.08. Data points, connected by a line, mark the extremes of the spanwise
survey.

5.2 Instantaneous Flow Development
Instantaneous snapshots of the streamwise velocity obtained from PIV measurements in
the vertical, x − z, plane are depicted in Figs. 5.3a–c for the stationary, U∗ = 5.48, and
U∗ = 7.08 cases, respectively. The plane is positioned at y/D = 1.25 to pass through
the dominant spanwise coherent structures forming on one side of the wake, which are
identifiable by the bands of high and low streamwise velocity, while avoiding measurement
of the separated shear layer. The flow in Fig. 5.3 is from left to right and the black dashed
lines indicate the extent of the spanwise investigation in the horizontal x− y plane.

For the stationary case, the spanwise vortices in Fig. 5.3a are nearly uniform along
the span and, from visual inspection, have a streamwise wavelength of approximately
2D. This is expected for a uniform flow; however, the free stream characterization in
Appendix C shows that the streamwise velocity is slower than the free stream in the region
z/D . 8. The result is cellular shedding, which was confirmed through observation of
sequential instantaneous streamwise velocity fields and is further analyzed in Appendix F.
It is important to note that the cellular shedding occurs below the spanwise region where
measurements were performed in multiple x− y planes, 8.5 . z/D . 16.

For the VIV cases, the velocity magnitudes induced by vortical structures are notably
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Figure 5.3: Instantaneous streamwise velocity fields in the x− z plane for (a) stationary
cylinder, (b) U∗ = 5.48, and (c) U∗ = 7.08. Black dashed lines indicate the extent of
measurements in multiple x− y planes. The flow is from left to right.

stronger than in the stationary case, but have approximately the same streamwise wave-
length. The contrast between bands is most evident for the case U∗ = 7.08 and is attributed
to where the plane crosses the vortices as well as the vortex pattern in the wake. Unlike
the nearly spanwise uniform structures in the stationary case, the vortices are curved for
U∗ = 5.48 in Fig. 5.3b and tilted downstream for U∗ = 7.08 in Fig. 5.3c. This deformation
is indicative of spanwise changes in vortex shedding and a transition in the wake topology.

Instantaneous snapshots of the vorticity derived from PIV measurements in the hori-
zontal, x− y, plane are depicted in Fig. 5.4 at select heights for the stationary, U∗ = 5.48,
and U∗ = 7.08 cases. These snapshots are representative of the typical vortex shedding
patterns, despite some variations from cycle-to-cycle. The vorticity fields show that sepa-
rated shear layers in the near wake roll up to form vortices that are shed periodically to
form an alternating wake pattern. The streamwise location of vortex formation is relatively
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Figure 5.4: Instantaneous vorticity fields in the x− y plane for (a) stationary cylinder at
z/D ≈ 12, (b, c & d) U∗ = 5.48 at z/D ≈ 19, 12 & 6.5, respectively, and (e & f) U∗ = 7.08
at z/D ≈ 12 & 5, respectively. The black dashed line indicates the location of the vertical
x− z measurement plane.
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consistent along the span for the stationary cylinder and the VIV case at U∗ = 7.08; how-
ever, it moves upstream with increasing z/D at U∗ = 5.48. This upstream shift agrees with
the curvature of the vortex structures in the instantaneous streamwise velocity snapshots
in the x − z plane (Fig. 5.3b) and causes reorientation of the vorticity in the dominant
structures. Since the curvature is relatively small, nearly all the vorticity of the structure
is accounted for when derived from x− y planar wake measurements.

Inspection of the instantaneous vorticity fields shows that wake topology is consistently
2S along the span for the stationary cylinder, whereas the VIV cases exhibit hybrid shed-
ding. For U∗ = 5.48, the wake topology transitions along the span from 2S to P+S to
2S. The lower and upper planes (Figs. 5.4d and 5.4f, respectively) exhibit 2S shedding,
whereby the two oppositely signed vortices, A and B, are shed within one oscillation pe-
riod. Positive vortex B splits to form B1 and B2 in the middle plane (Fig. 5.4c), resulting
in a P+S pattern involving a vortex pair, A and B1, and a single vortex, B2, shed each
oscillation period. For the VIV case at U∗ = 7.08, the wake topology transitions from
2S to P+S. The transition similarly occurs because positive vortex B in the lower plane
(Fig. 5.4f) splits into two vortices, B1 and B2, in the upper plane (Fig. 5.4e) to form the
P+S shedding pattern. Analysis of the wake development and changes along the span are
outlined in more detail in the following sections.

5.3 Time Averaged Flow Field Characteristics
Previous analysis of the instantaneous fields indicates the presence of spanwise changes
in the wake topology. The discussion in this section aims to present some of the trends
relating to these spanwise changes through investigation of the time averaged wake charac-
teristics. Figures 5.5–5.7 present the normalized mean and RMS contours of the streamwise
and transverse velocity components for the stationary, U∗ = 5.48, and U∗ = 7.08 cases, re-
spectively. For clarity, the figures show results in every third plane within the investigated
region.

In general, the VIV cases have a greater impact on the wake than the stationary case.
The wakes for U∗ = 5.48 and U∗ = 7.08 are wider and have stronger velocity fluctuations
than the wake for the stationary case. This is revealed by the transverse extent of the
contours in the mean streamwise velocity fields and the magnitude of the peaks in the RMS
fields. Examination of the mean streamwise velocity fields shows the wake is symmetric
about the wake centerline, y/D = 0, for the stationary case and asymmetric for the VIV
cases, where the mean streamwise velocity is lower on the negative transverse side of the
wake centerline, y/D < 0. This is a result of the vortex dynamics during the shedding
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Figure 5.5: Mean and RMS contours of the streamwise, (a) and (c), respectively, and
transverse, (b) and (d), respectively, velocity for the stationary cylinder case. Note, every
third plane is shown for clarity.
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Figure 5.6: Mean and RMS contours of the streamwise, (a) and (c), respectively, and
transverse, (b) and (d), respectively, velocity for U∗ = 5.48. Note, every third plane is
shown for clarity.
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Figure 5.7: Mean and RMS contours of the streamwise, (a) and (c), respectively, and
transverse, (b) and (d), respectively, velocity for U∗ = 7.08. Note, every third plane is
shown for clarity.
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process as discussed in Section 4.4, and is linked to the direction of elliptic trajectory.
Further analysis of the wake half-width in this section provides quantitative assessment of
the asymmetry.

In all cases, the recirculation region is indicated by the zone downstream of the cylinder
with negative mean streamwise velocity values. It is largest for the stationary case and be-
comes smaller as the amplitude of oscillation increases for the VIV cases. It was verified in
Section 4.4 that this region becomes indiscernible higher along the span for cases with large
amplitudes of oscillation. The location of vortex roll up occurs near the downstream extent
of the recirculation region where the velocity fluctuations are greatest. Various definitions
exist for the vortex formation length [133–135]; however, the findings from Section 4.4
indicate the streamwise location of the maximum vRMS along the wake centerline provides
a formation length estimate that agrees with estimates based on vortex identification for
both the stationary case and the investigated VIV cases. Qualitative observation of vRMS

peaks in Figs. 5.5d and 5.7d indicates the formation length is relatively consistent along the
span for the stationary and U∗ = 7.08 cases, whereas they shift upstream with increasing
z/D for U∗ = 5.48 in Fig. 5.6d.

In addition to the vortex formation length, other parameters used to quantitatively
characterize the mean streamwise flow development are defined in Fig. 5.8. The following
discussion uses ud(x, y) and ud Max to denote the local velocity deficit and the maximum
velocity deficit in the wake, respectively. The velocity deficit is determined as the difference
between the streamwise velocity at the transverse extent of the wake measurements and
the local streamwise velocity, ud = Ue − U . The wake half-width, dwake, is the transverse
distance from the wake centerline to the point where the velocity deficit is 0.5ud Max.
Since the wake can be transversely asymmetric, it is necessary to specify the half-width
corresponding to the positive and negative sides of the wake as d+

wake and d−wake, respectively.

Spanwise variation of the formation length, wake half-width at the location of maximum
vRMS, and maximum velocity deficit with respect to z/D is depicted in Fig. 5.9. Dashed
lines are linear fits to the data using a least squares technique. For the stationary case,
the wake characteristics show good spanwise uniformity. For the VIV case at U∗ = 5.48,
there are three regions, approximately separated at z/D ≈ 13.5 and 16. In the lower region
(z/D . 13.5), the wake is wider, has a shorter formation length, and incurs a smaller
maximum velocity deficit than in the upper region (z/D & 16). Furthermore, distinct
spanwise trends in the wake characteristics distinguish these regions. In the lower region,
the formation length and maximum velocity deficit show a marginal decrease along the
span, whereas they are nearly uniform in the upper region. The wake half-width increases
considerably along the span in the lower region and decreases in the upper region. Such
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Figure 5.8: Wake half-width and velocity deficit nomenclature.

changes in the wake characteristics between the lower and upper regions are consistent with
the transition from P+S to 2S shedding outlined in the instantaneous vorticity snapshots
(Figs. 5.4b and 5.4c). The 2S vortices higher along the span form further upstream than
the P+S vortices near the midspan. Furthermore, the wake width for 2S shedding is smaller
than P+S shedding because 2S vortices do not advect as far from the wake centerline as
P+S vortices [17, 54]. Changes in the wake characteristics between the lower and upper
regions occur over the intermediate region (13.5 . z/D . 16) instead of one specific
height because of cycle-to-cycle variations in vortex shedding, where the spanwise location
of the connection between P+S and 2S vortices may vary. The transient nature of this
vortex dislocation is further examined in Section 5.5 since the results in Fig. 5.9 are time
averaged. For the VIV case at U∗ = 7.08, the spanwise changes in formation length, wake
half-width, and maximum velocity deficit are relatively consistent with little deviation
from the linear fits. Since the spanwise extent of investigation for this case stops below
the transitional range observed for U∗ = 5.48, it is not possible to use the acquired data
to determine whether the wake characteristics will exhibit similar changes. However, such
changes in the wake characteristics higher along the span are not predicted to occur for
U∗ = 7.08 because the Morse and Williamson [1] shedding map (Fig. 5.2b) does not indicate
a wake transition to 2S vortex shedding over this spanwise range.

A comparison between cases shows that the freedom to oscillate generally causes a
shorter formation length and a wider wake with a smaller velocity deficit. However, above
z/D ≈ 16 for the VIV case at U∗ = 5.48, the wake width and maximum velocity deficit are
comparable to the stationary case even though the cylinder is oscillating with a transverse
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Figure 5.9: Spanwise variation of (a) formation length as per the location of maximum
vRMS, (b) wake half-width at the streamwise location of maximum vRMS, and (c) maximum
velocity deficit. Dashed lines are least square fits to data segments.

amplitude of Ay ≈ 0.3D. Such a similarity may be attributed to the wake topology
as opposed to the structural motion since both cases exhibit 2S vortex shedding in this
spanwise region. Below z/D ≈ 13.5, trends in the wake width and maximum velocity
deficit of both VIV cases are comparable, which may be attributed to both cases exhibiting
a transition from 2S to P+S shedding in this region, as indicated by the instantaneous
vorticity snapshots (Fig. 5.4).

Figure 5.10 depicts spanwise changes of the wake half-width calculated at the location
of maximum vRMS in each horizontal plane. The half-width is approximately equal on
the positive and negative sides of the wake centerline for the stationary case, whereas,
for the VIV cases, the half-width is larger on the negative side, y/D < 0. The observed
asymmetry agrees with the findings of Section 4.4, which employs the kinematics and
dynamics of vortices to conclude that asymmetry is governed by the direction of elliptical
orbit due to its impact on wake vortex dynamics. For the case of U∗ = 5.48, the asymmetry
is significant below z/D ≈ 14 where P+S shedding is observed; whereas, the wake becomes
mostly symmetric higher along the span where 2S shedding is observed. Such observations
from the time averaged wake characteristics agree with the results of Chapter 4, which
found symmetry and asymmetry in the wakes of 2S and 2P shedding, respectively. On
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Figure 5.10: Spanwise variation of wake half-width at the streamwise location of maxi-
mum vRMS for (a) stationary cylinder, (b) U∗ = 5.48, and (c) U∗ = 7.08.

the other hand, these results disagree lower along the span where the half-width indicates
an asymmetric wake for both VIV cases despite the instantaneous vorticity snapshots
depicting 2S shedding. The cause for this wake asymmetry was not resolved in the present
study, but is speculated to result from the the vortex connections at the transition from
2S to P+S shedding higher along the span.

Streamwise variation of the wake half-width downstream of the formation length is
depicted in Fig. 5.11. The half-width at a given streamwise location is relatively consistent
along the cylinder span for the stationary case (Fig. 5.11a). In the streamwise direction, the
half-width increases by approximately 0.4D within the first two diameters downstream of
the vortex formation region, x = Lf , and remains nearly constant thereafter. Extrapolation
of these measurements agrees well with the investigations by Hussain and Hayakawa [136],
Ferré and Giralt [137], and Zhou et al. [138], who observed wake half-widths of dwake = 0.80,
0.90, and 0.79, respectively, at x/D = 10 in the wake of a stationary cylinder. Similarly,
for the VIV case at U∗ = 5.48 in Fig. 5.11b, the half-width closer to the pivot point, e.g.
at planes z/D ≈ 6.5 and 9, initially increases by approximately 0.6D then remains nearly
constant. Near the downstream extent of measurement, the half-width becomes smaller
midway along the span, then increases higher along span. Such changes are surprising
because the P+S vortices observed near the midspan in Fig. 5.4c advect further from the
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wake centerline and are expected to cause a wider wake. It is speculated that the thinner
wake results from the asymmetric wake for P+S shedding. For the VIV case at U∗ = 7.08,
the streamwise variation of half-width generally increases with increasing z because of the
spanwise linear variation of amplitude and the wake topology transition from 2S to P+S
shedding. The wake half-width near the streamwise extent of measurement is the largest
for this case because it is characterized by the larger amplitude of structural oscillation.

Bishop and Yarusevych [139] and Okamoto and Takeuchi [140] examine the half-wake
width of a stationary cylinder in the near wake for various blockage ratios. They define
the half-wake width, d98, as the transverse distance between the wake centerline and the
location where the mean streamwise velocity is 98% of the free stream (U/U0 = 0.98).
This definition is different from the previously discussed wake half-width, dwake, which
is based on the velocity deficit. Streamwise variation of d98 for a stationary cylinder is
depicted in Fig. 5.12 for the present study as well as the studies of Bishop and Yarusevych
[139] and Okamoto and Takeuchi [140] for a blockage ratio of 5%. While d98 similarly
increases with downstream progression and exhibits spanwise consistency when compared
to dwake in Fig. 5.11a, the value of d98 is larger than dwake at all streamwise locations due
to their different definitions. The half-wake width is substantially different from the results
of Bishop and Yarusevych [139] and Okamoto and Takeuchi [140] because each study was
performed at a different Reynolds number. Bishop and Yarusevych [139] and Okamoto
and Takeuchi [140] investigated the wake at Re = 57000 and 32200, respectively, whereas
Re = 3100 in the present investigation. Consequently, since the length of the formation
region depends upon the Reynolds number [4], the half-wake width at any given streamwise
location is different between studies. However, there is good agreement between the three
studies if d98 is shifted over x/D such that the formation lengths coincide.

5.4 Vortex Shedding Frequency
The previous section assessed spanwise changes in the time-averaged wake characteristics.
The results suggest that distinct changes in the discussed characteristics are associated with
the spanwise transition of wake topology and amplitude variation along the span. This
section employs a frequency analysis of the velocity field to analyze the vortex shedding
process and investigate the transient nature of the wake topology along the span.

Figures 5.13a–c present spectra of the transverse velocity signal at the location of max-
imum vRMS for each horizontal, x − y, plane in the spanwise PIV investigation of the
stationary, U∗ = 5.48, and U∗ = 7.08 cases, respectively. All spectra exhibit a domi-
nant peak at the vortex shedding frequency. For the stationary case, vortices are shed
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Figure 5.11: Streamwise variation of wake half-width downstream of the formation length
for (a) stationary cylinder, (b) U∗ = 5.48, and (c) U∗ = 7.08.
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Figure 5.12: Streamwise variation of half-wake width, defined as the transverse distance
between the wake centerline and the location where U/U0 = 0.98, for a stationary cylinder.
The data for Bishop and Yarusevych [139] and Okamoto and Takeuchi [140] pertain to
Re = 57000 and 32200, respectively, and a blockage ratio of 5%.

at fD/U0 ≈ 0.205, which agrees with the results of Norberg [141] for a similar Reynolds
number. The peak power bands in the spectra for the VIV cases are more concentrated
than the stationary case and are shifted to the non-dimensionalized natural frequency,
fnD/U0 = 0.182 and 0.141 for U∗ = 5.48 and 7.08, respectively, because vortex shedding
locks onto the structural oscillations. For the case at U∗ = 5.48, the peak power is less
concentrated in the region 13.5 . z/D . 17 where the wake topology transitions from P+S
to 2S. This is likely caused by cycle to cycle variation in the spanwise location of the vortex
dislocations and is discussed in more detail in Section 5.5. For the VIV case at U∗ = 7.08,
there is notable energy content near the vortex shedding frequency of a stationary cylinder,
fsD/U0 ≈ 0.205, within 5 ≤ z/D ≤ 8. This suggests that vortex shedding occurs at two
frequencies and may switch from cycle-to-cycle. A peak at fsD/U0 is not observed in the
other VIV case because of the limited spanwise extent of investigation.

Spectrogram analysis is used to examine temporal variation in the frequency of the
dominant energy content in the wake. Figures 5.14a–c depict spectrograms of the transverse
velocity signal sampled in the plane z/D ≈ 12 at the location of maximum vRMS for the
stationary, U∗ = 5.48, and U∗ = 7.08 cases, respectively. Windows used for each Fourier
transform contain data capturing approximately seven vortex shedding cycles and were
overlapped by 75% to show the temporal evolution of spectral energy content. Similar to
the spectra in Fig. 5.13, the dominant shedding frequency, indicated by the peak energy
content, is near fs for the stationary case and fn for the VIV cases. The frequency of the
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Figure 5.13: Spectra of the transverse velocity signal at the location of maximum vRMS

in each x− y plane for (a) stationary cylinder, (b) U∗ = 5.48, and (c) U∗ = 7.08.
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dominant energy content fluctuates throughout time for the stationary case, whereas, for
the VIV cases, the frequency remains nearly constant. Temporal consistency along with a
greater peak energy content for the VIV cases are a result of vortex shedding locking onto
the structural oscillations. Figure 5.14d depicts the spectrogram lower along the span at
z/D ≈ 5 for U∗ = 7.08. The peak energy content is weaker and intermittently switches
between fn and fs. Evidence of vortex shedding at fs is attributed desynchronization of
the wake development with respect to the cylinder motion, as per predictions from the
Morse and Williamson [1] shedding map. The observed intermittency is likely caused by
cycle-to-cycle variations in the spanwise location of connection between vortical structures
shedding at the fn and fs.

Spectral peaks at higher harmonics are indiscernible in the spectra for the station-
ary case (Fig. 5.13a), but are identifiable in the spectra for the VIV cases (Figs. 5.13b
and 5.13c). Such results from frequency analysis of the transverse velocity signal depend
upon the location at which the signal is sampled. Figures 5.15–5.17 depict spatial con-
tours of the spectral energy content for the stationary, U∗ = 5.48, and U∗ = 7.08 cases,
respectively, where the spectral energy of the transverse velocity signal is integrated over
the bandwidths 0.9fs < f < 1.1fs (Fig. 5.15a) and 1.9fs < f < 2.1fs (Fig. 5.15b) for
the stationary case, and 0.9fn < f < 1.1fn (Figs. 5.16a and 5.17a), 1.9fn < f < 2.1fn
(Figs. 5.16b and 5.17b), and 0.9fs < f < 1.1fs (Fig. 5.17c) for the VIV cases. Regions
of high energy associated with the dominant vortex shedding frequency are located on the
wake centerline near the vortex roll up region; whereas, fluctuations at the second har-
monic are concentrated approximately 0.5D off the wake centerline. Consequently, spectra
of the transverse velocity signal along the wake centerline do not exhibit strong peaks at
the harmonics, as evidenced in Fig. 5.13, where the signal is sampled at the maximum
vRMS along the wake centerline. Examination of spectra for the stationary case reveals
that the second harmonic contains notably less energy than the dominant vortex shedding
frequency, fs, whereas the VIV cases exhibit significant spectral energy at the second har-
monic as a result of the structural motion. For the VIV case at U∗ = 7.08, spectral energy
is largely associated with fluctuations at the natural frequency and its second harmonic
higher along the cylinder’s span (Figs. 5.17a and 5.17b). Near the bottom of the spanwise
region of investigation, some of the energy shifts to the frequency of vortex shedding from
a stationary cylinder (Fig. 5.17c) in agreement with the spectral peaks in Fig. 5.13c and
the spectrogram analysis in Fig. 5.14d. It is predicted that this trend will persist to the
base of the cylinder, whereupon the energy content associated with fs will be the greatest,
thus becoming the dominant vortex shedding frequency.
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Figure 5.14: Spectrogram of the transverse velocity signal at the location of maximum
vRMS in the plane z/D ≈ 12 for (a) stationary cylinder, (b) U∗ = 5.48, and (c) U∗ = 7.08,
and the plane z/D ≈ 5 for (d) U∗ = 7.08. The red dashed line indicates the vortex
shedding frequency of a stationary cylinder, fs.

80



Figure 5.15: Spectral energy of the transverse velocity signal for the stationary cylinder
integrated over the bandwidths (a) 0.9fs < f < 1.1fs and (b) 1.9fs < f < 2.1fs. Note,
every second plane is shown for clarity.

Figure 5.16: Spectral energy of the transverse velocity signal at U∗ = 5.48 integrated
over the bandwidths (a) 0.9fn < f < 1.1fn and (b) 1.9fn < f < 2.1fn. Note, every second
plane is shown for clarity.
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Figure 5.17: Spectral energy of the transverse velocity signal at U∗ = 7.08 integrated over
the bandwidths (a) 0.9fn < f < 1.1fn, (b) 1.9fn < f < 2.1fn, and (c) 0.9fs < f < 1.1fs.
Note, every second plane is shown for clarity.
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5.5 Wake Reconstruction
This section investigates the spanwise changes in vortex shedding by reconstructing the
3D wake topology from phase averaged planar PIV measurements. The focus is to both
qualitatively and quantitatively describe the dominant structures in the wake through
analysis of vortex circulation and examination of the reconstructed fields.

The wake topology for the stationary cylinder was reconstructed from POD-based phase
averaged velocity fields. The horizontal planes were aligned based on the vertical plane
measurements by shifting the phase of each horizontal plane to maximize the cross corre-
lation of streamwise phase averaged velocity signals at the intersection of the two planes.
Figures 5.18a and 5.18b depict every second planar vorticity contour and the Q-criterion
isosurfaces of Q = 0.001Qmax coloured by the sign of spanwise vorticity, respectively. Fig-
ures 5.18c and 5.18d depict these fields half a period later in the vortex shedding cycle.
For the VIV cases, the phase of each displacement based phase averaged velocity field
in the horizontal plane was aligned using the cylinder position obtained from displace-
ment measurements. The phase θ = 0 was set as the instance when the cylinder crosses
the transverse equilibrium, y/D = 0, in the positive transverse direction. Figures 5.19a
and 5.19b depict the planar vorticity contours and Q-criterion isosurfaces, respectively, at
the positive transverse peak of the cylinder trajectory for U∗ = 5.48. The vorticity and
Q-criterion fields are also depicted at the negative transverse peak in Figs. 5.19c and 5.19d.
For the VIV case at U∗ = 7.08, Fig. 5.20 similarly depicts the vorticity and Q-criterion
fields at the positive and negative transverse peaks of cylinder motion.

The wake reconstruction for the stationary case in Fig. 5.18 clearly depicts a consistent
2S topology along the span, in agreement with observation of the instantaneous snapshots.
Examination of the vorticity contours shows the vortex tube sheds from the cylinder at an
earlier phase higher along the span, where the positive vortex at x/D ≈ 3.5 in Fig. 5.18a
is shed in the plane z/D ≈ 16 while remaining connected to the shear layer at z/D ≈ 9.
Consequently, the vortex tubes are slightly curved within the investigated region. The
curvature is caused by the wall effects at the base of the water tunnel, which are analyzed
and discussed in Appendix C.

The wake for the VIV case at U∗ = 5.48 is depicted in Fig. 5.19 and exhibits hybrid
shedding with three distinct regions: 2S below z/D ≈ 7.5, P+S within 7.5 . z/D . 13.5,
and 2S above z/D ≈ 13.5. These regions agree with the instantaneous snapshots, but
contradict the Morse and Williamson [1] shedding map, which predicts an overall transition
from 2P to 2S along the span. Examination of the Q-criterion field in Fig. 5.19b shows
that the positively signed vortex tube at x/D ≈ 3 splits near z/D ≈ 7.5 to form a leading
and trailing vortex tube. The leading vortex tube, upstream of the split, persists along
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Figure 5.18: POD based phase averaged (a & c) planar vorticity contours and (b & d)
Q-criterion isosurfaces of Q = 0.001Qmax coloured by the spanwise vorticity in the wake of
a stationary cylinder. There is a phase difference of π between (a & b) and (c & d). Note
that every second vorticity plane is shown for clarity.
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Figure 5.19: Displacement based phase averaged (a & c) planar vorticity contours and
(b & d) Q-criterion isosurfaces of Q = 0.001Qmax coloured by the spanwise vorticity for
U∗ = 5.48. The cylinder tip is located at the (a & b) positive and (c & d) negative
transverse peaks of the (e) phase averaged cylinder tip trajectory (θ = π/2 and 3π/2,
respectively). Note that every second vorticity plane is shown for clarity.
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Figure 5.20: Displacement based phase averaged (a & c) planar vorticity contours and
(b & d) Q-criterion isosurfaces of Q = 0.001Qmax coloured by the spanwise vorticity for
U∗ = 7.08. The cylinder tip is located at the (a & b) positive and (c & d) negative
transverse peaks of the (e) phase averaged cylinder tip trajectory (θ = π/2 and 3π/2,
respectively). Note that every second vorticity plane is shown for clarity.
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the span while the trailing vortex tube, downstream of the split, appears to dissipate as it
approaches its leading counterpart, the negatively signed vortex tube. The observed decay
of vorticity may be a consequence of either the cross annihilation of vorticity [66] and/or
its reorientation from the spanwise direction into the streamwise and transverse directions,
which cannot be quantified from 2D PIV in the x− y plane. Section 5.5.1 focuses on the
vortex dynamics in this region along the span. Throughout its advection downstream,
the trailing positive vortex becomes weaker until the vorticity contours and Q-criterion in
Figs. 5.19c and 5.19d, respectively, cannot resolve the trailing vortex splitting from the
positive vortex at x/D ≈ 6. The negatively signed vortex tube at x/D ≈ 3.5 in Figs. 5.19c
and 5.19d does not split as it extends along the investigated span. It does exhibit notable
reorientation in the region 13 . z/D . 16, along with the positive leading vortex tube,
both of which result from a phase jump in vortex shedding along the span. This phase jump
is associated with the hybrid wake transition, where P+S vortices are shed earlier in the
elliptic cylinder orbit than the 2S vortices of the same sign higher along the span. Similar
reorientation due to a phase shift lower along the span near the wake transitions from 2S to
P+S is evidenced by the curved band in the instantaneous streamwise velocity snapshot, see
Fig. 5.3b. However, the reconstructed wake does not exhibit such a reorientation because
the investigated spanwise region does not extend low enough towards the pivot point.

Examination of the reconstructed wake for the VIV case at U∗ = 7.08, depicted in
Fig. 5.20, indicates hybrid shedding, where a 2S mode at the bottom of the investigated
region transitions to a P+S mode at the top. This transition agrees with the instantaneous
snapshots and occurs where the positive vortex tube at x/D ≈ 5 in Fig. 5.20b splits into
leading and trailing vortex tubes. Unlike the case of VIV at U∗ = 5.48, the positive
trailing vortex tube persists along the span and none of the vortex tubes exhibit significant
reorientation attributed to a phase jump because the P+S topology does not revert back
to 2S higher along the span. Compared to the case at U∗ = 5.48, the wake reconstruction
for U∗ = 7.08 is relatively noisy and does not resolve the split in the positive vortex tube.
This is attributed to cycle-to-cycle variations in vortex shedding, where the phase averaged
reconstruction incorporates the intermittent vortical structures shed at fs near the base of
the cylinder.

To more clearly visualize vortex dislocations within the region where the wake transi-
tions from 2S to P+S shedding, the instances of transient vortex shedding at fs should
not be used for reconstructing the wake. A spectrogram analysis of the wake velocity
identifies such transient segments. Figure 5.21a depicts the spectrogram of the transverse
velocity signal at the location of maximum vRMS in the plane z/D ≈ 6. Windows used for
each Fourier transform contain data capturing approximately six vortex shedding cycles
and were overlapped by 75% to show the temporal evolution of spectral energy content.
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Figure 5.21: (a) Spectrogram of the transverse velocity signal at the location of maximum
vRMS in the plane z/D ≈ 6 for U∗ = 7.08. The red dashed line indicates vortex shedding
at fs. (b) Phase angle of transverse cylinder displacement. Sections highlighted in red
indicate transient segments of vortex shedding at fs.

PIV data is excluded from phase averaging if the dominant energy content in the wake is
associated with the frequency of vortex shedding from a stationary cylinder, fs, indicated
by the red dashed line. The result is illustrated in Fig. 5.21b, which depicts the phase of
cylinder displacement in the transverse direction. Sections highlighted in red are discarded
from the data prior to phase averaging.

Figure 5.22 presents the vorticity contours andQ-criterion isosurfaces of a displacement-
based phase-averaged low order model (LOM) constructed from the first ten POD modes
and the mean field. In addition to removing transient segments of vortex shedding at
fs prior to phase-averaging, a LOM is used to clearly visualize the dominant vortical
structures by filtering out the smaller, less energetic structures. Analysis of the POD
results is discussed in Section 5.6 and Appendix F. Examination of the Q-criterion in
Figs. 5.22b and 5.22d elucidates the hybrid shedding, where a 2S mode near the base of
the cylinder transitions to a P+S mode at higher z/D. While the negatively signed vortex
tube is consistent along the span, the transition is evidenced by a split in the positive vortex
tube. Figure 5.22b indicates the single positive tube at x/D ≈ 5 splits at approximately
z/D ≈ 7 to form leading and trailing vortex tubes.
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Figure 5.22: Displacement based phase averaged low order model using the first ten POD
modes for U∗ = 7.08; (a & c) planar vorticity contours and (b & d) Q-criterion isosurfaces
of Q = 0.001Qmax coloured by the spanwise vorticity. The cylinder tip is located at the
(a & b) positive and (c & d) negative transverse peaks of the (e) phase averaged cylinder
tip trajectory (θ = π/2 and 3π/2, respectively). Note that every second vorticity plane is
shown for clarity.

89



5.5.1 Vortex Dynamics

In order to form a comprehensive description of the wake topology, it is necessary to ana-
lyze the vortex dynamics along the cylinder span. The GMM based vortex identification
algorithm was used to identify vortices in the planar phase averaged fields and to calculate
their strength. For the stationary cylinder, Figs. 5.23a–c present vortex position, circula-
tion, and size, respectively, in each of the investigated horizontal planes. The results are
presented for fully shed positive and negative vortex tubes for two phases with a separa-
tion of π. Examination of the vortex position in Fig. 5.23a shows the positive and negative
vortex tubes are at nearly identical streamwise locations in the wake, and that both tubes
exhibit a slight curve, which was observed in the wake reconstruction and is a result of the
wall effects of the tunnel. The strength of the vortices is similar and is relatively uniform
along the span with error bars showing the methodological uncertainty associated with
phase averaging based on a 99% confidence interval. Examination of the circulation at
later phases verified that advection of the vortices further into the wake incurs decay as

Figure 5.23: Spanwise variation of vortex (a) streamwise position, (b) circulation, and
(c) area computed using the GMM based vortex identification algorithm for the stationary
case. Red and blue markers indicate positively and negatively signed vortices, respectively,
with a phase separation of π.
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a result of viscous diffusion and cross annihilation of vorticity [66]. The cross sectional
area in the x − y plane of both vortex tubes is approximately the same and is relatively
consistent along the span.

Figure 5.24 depicts vortex position, circulation, and cumulative like-signed circulation
for the VIV case at U∗ = 5.48. The results are presented for two phases with a separation of
π, in which all identified vortex tubes are fully formed and shed from the cylinder. Based
on the location of the wake transition in the vorticity contours of the wake reconstruc-
tion, the GMM algorithm was applied with the assumption of P+S shedding in the range
7.5 . z/D . 13.5 and 2S shedding outside this range. The wake reconstruction reveals
that 2S vortices and leading P+S vortices of the same sign form a continuous connection.
Closer examination of the 2S shedding regions reveals that the two vortex tubes are at
nearly identical streamwise locations and have comparable circulation along the span, sim-
ilar to the observations for the stationary case. However, in the region of P+S shedding,
the negative vortex is located between the positive vortices since the trailing vortex is shed
prior to the leading vortex. Examination of the circulation in Fig. 5.24b reveals that the

Figure 5.24: Spanwise variation of vortex (a) streamwise position, (b) circulation, and
(c) cumulative like-signed circulation computed using the GMM based vortex identification
algorithm for the VIV case at U∗ = 5.48. Red and blue markers indicate positively and
negatively signed vortices at the phases θ = π/2 and 3π/2, respectively.

91



positive leading vortex is weaker than the negative leading vortex because some component
of the positive vorticity flux generated at the cylinder surface is supplied to the positive
trailing vortex. Considered in terms of the cumulative negatively and positively signed cir-
culation generated in each cycle of shedding the strengths agree within the methodological
uncertainty over the investigated span, similar to the stationary case.

The wake reconstruction in Fig. 5.19b indicates that the trailing positive vortex ends
within the fluid. This violates the theorem stipulating that all vortices must either connect
with each other or terminate at a boundary [71]. Although Helmholtz’s vortex theorems
do not strictly hold for real flows due to the effect of viscosity, they are used to predict the
vortex dislocations at the wake transition. Following the third theorem that a vortex tube
cannot end within a fluid, it is postulated that the positive trailing vortex tube bends sig-
nificantly, looping back upstream, to form a connection with the positively signed leading
vortex tube. The postulated vortex connections are illustrated in Fig. 5.25. Such a bend
occurs at approximately z/D ≈ 14 and is not captured in the 3D wake reconstruction due
to the limitations of 2D PIV but is evidenced in the spanwise circulation. The strength
of the positive trailing vortex is weaker at higher z/D. This is partly attributed to the
viscous cross annihilation of vorticity [66] with the negatively signed vortex downstream
and partly a result of the spanwise vorticity reorienting into the streamwise direction as a
connection is formed between the positive trailing and leading vortex tubes. Furthermore,
the positive leading and trailing vortices must reconnect since the cumulative negative and
positive circulation is similar along the span. It should be noted that since the 2D wake
measurements do not provide the spanwise component of velocity for calculation of vor-
ticity in the streamwise and transverse directions, interpretation of the vortex connections
requires some degree of prediction.

Figure 5.25: Conceptual diagram of the vortex dislocations in the hybrid wake for U∗ =
5.48.
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Figure 5.26 depicts vortex position, circulation, and cumulative like-signed circulation
for the VIV case at U∗ = 7.08. The results are based on GMM-based vortex identifica-
tion and characterization of the LOM constructed from the first 10 POD modes and are
presented for two phases with a separation of π, in which all identified vortex tubes are
entirely shed from the cylinder. Vortices in the region of 2S shedding are located at similar
streamwise locations, whereas their position is notably different in the P+S region because
an additional vortex is shed each period. The P+S pattern results from a split in the
positive vortex tube to form trailing and leading vortices with similar strengths. Consid-
ered in terms of the cumulative negatively and positively signed circulation generated in
each cycle of shedding the strengths agree within the methodological uncertainty over the
investigated span, similar to the stationary case.

For the stationary cylinder, the strength of vortices is relatively uniform along the span;
whereas, for the VIV cases, vortices have a greater circulation at higher spanwise locations.
This is a consequence of the spanwise variation of amplitude, where larger structural os-

Figure 5.26: Spanwise variation of vortex (a) streamwise position, (b) circulation, and
(c) cumulative like-signed circulation computed using the GMM based vortex identification
algorithm for the VIV case at U∗ = 7.08. Red and blue markers indicate positively and
negatively signed vortices at the phases θ = π/2 and 3π/2, respectively.
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cillations generate more vorticity in the boundary layers [66], which then advects via the
separated shear layers and rolls up to form stronger vortices. Such a spanwise variation
in circulation has previously been observed by Flemming and Williamson [47] and Techet
et al. [87]. Conservation of circulation along the length of the vortex tube would necessitate
small vortex filaments that branch off from the main vortex tube. These are not evidenced
in the wake reconstruction because there is likely a high degree of cycle to cycle variation
in their spatial location, which causes the structure to be smeared in the phase averaging
process.

5.6 Proper Orthogonal Decomposition Analysis
A Proper Orthogonal Decomposition (POD) analysis was performed on the vertical and
horizontal planes for the three cases. The POD analysis extracts the dynamics of the most
energetic coherent structures for use in producing phase averaged and low order model
reconstructions of the wake. The goal is to identify the dominant coherent structures
and expound on their spanwise deformation with emphasis on elucidating the transition
between vortex shedding patterns and frequencies for a hybrid wake. Appendix F shows
the temporal coefficients and corresponding spatial modes at select planes for the three
investigated cases.

5.6.1 Modal Energy
For the first ten modes, the relative energy of each POD mode is shown in Figs. 5.27a,
5.27c, and 5.27e, and the cumulative energy is shown in Figs. 5.27b, 5.27d, and 5.27f for
the stationary, U∗ = 5.48, and U∗ = 7.08 cases, respectively. Periodic coherent structures
advected in the fluid are generally represented by a pair of POD modes since a single mode
cannot describe their advection [142]. This mode pairing is evident for the first two modes
in all three cases, which capture 44-76% of the total fluctuating energy content and exhibit
nearly equivalent relative energies. Inspection of their temporal coefficients and spatial
modes in Appendix F reveals similar temporal signals and spatial mode topologies that
are offset by a phase shift of approximately π/2. In the regions of P+S shedding, the VIV
cases exhibit pairing of modes 3 and 4. This second pair corresponds to the shedding of
weaker trailing vortices in the P+S pairs. A comparison with the results of a POD analysis
on 2P vortex shedding in Appendix F.4 indicates that energy content of the second pair is
greater for 2P shedding than for P+S shedding, which is likely attributed to the additional
trailing vortex in the 2P pattern. Higher modes are associated with turbulent motion and
contain notably less energy than the first few modes for all cases.
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Figure 5.27: Relative turbulent kinetic energy for (a & b) stationary cylinder, (c & d)
U∗ = 5.48, and (e & f) U∗ = 7.08; (a, c, e) energy distribution over POD modes and (b, d,
f) cumulative mode energy.

Spanwise variation of the cumulative relative turbulent kinetic energy for modes 1 and
2, and modes 1 to 4 is depicted in Figs. 5.28a and 5.28b, respectively. Inspection of the
stationary case reveals the energy is distributed over a wider range of modes towards the
base of the cylinder, where the first two modes capture less of the total energy. This is a
result of the turbulence intensity in the tunnel, since the flow is more turbulent towards
the floor of the tunnel, Appendix C. The cumulative energy of the first four modes for
the VIV case at U∗ = 7.08 exhibits a similar decrease towards the base of the cylinder;
however, the difference in energy between the highest and lowest planes is more significant
compared to that for the stationary cylinder. The energy content of the first four modes
is greater at higher z/D because the structure’s spanwise linear variation of amplitude
causes greater velocity fluctuations in the dominant coherent structures at higher z/D.
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Figure 5.28: Cumulative relative turbulent kinetic energy of (a) POD modes 1 and 2,
and (b) POD modes 1 to 4, for each of the investigated horizontal planes.

The VIV case at U∗ = 5.48 does not exhibit the same decrease in cumulative energy of the
first four modes towards the base of the cylinder. Instead, the energy content is relatively
constant below z/D ≈ 12, decreases along the span in the region 12 . z/D . 15, and
increases above z/D ≈ 15. These regions coincide with the wake transition from P+S
to 2S observed at z/D ≈ 13.5, whereby the wake velocity fluctuations associated with
the coherent structures in P+S shedding are generally more energetic than 2S shedding
because of the additional trailing vortex shed each cycle of cylinder oscillation. Similar to
the spanwise analysis of the time averaged wake characteristics, the decrease in cumulative
energy between shedding modes occurs over a range instead of one specific height. The
gradual decrease in energy is a result of variations in vortex shedding from cycle-to-cycle,
which causes the spanwise location of the connection between P+S and 2S vortices to
fluctuate. Above z/D ≈ 15, the energy content increases with higher z/D, similar to the
other VIV case.
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5.6.2 Temporal Coefficients
Figure 5.29 shows spectra of the temporal coefficients for the four most energetic modes.
Spectra are shown for every second horizontal plane in the investigated spanwise region
and are offset by 20 dB for clarity. For the stationary case, pairing of the first two modes is
further evidenced by the similar spectra in Fig. 5.29a, which exhibit a dominant peak near
fs. Spectra of the third and fourth temporal coefficients in Fig. 5.29b are different and do
not indicate mode pairing. Spectra of a4 exhibits a broad peak centered near fs, while the
spectral energy for a3 is more concentrated at a lower frequency. A 3D cross plot of the
first three temporal coefficients in Fig. 5.30c reveals that fluctuations of a3 are correlated
with the amplitudes of a1 and a2. The third POD mode is the “slow drift mode” [143] and
represents the base-flow variations for the stationary cylinder [144–146].

Spectra of the first two temporal coefficients for the VIV case at U∗ = 5.48 exhibit a
dominant peak at the natural frequency of the structure, fn, (Fig. 5.29c). Compared to
the stationary case, the spectral energy associated with the dominant peak is more con-
centrated because vortex shedding is locked onto the structural oscillations. Examination
of Fig. 5.29d reveals that the spectra of a3 and a4 are similar below z/D ≈ 13.5 and form
a second mode pair with a dominant peak at 2fn. This mode pair captures the energy
associated with the shedding of P+S pairs in this spanwise region. Above the wake tran-
sition from P+S to 2S (z/D ≈ 13.5), spectral energy shifts from the dominant peak at
2fn to the more broadband peak at fn. The shift in spectral energy is gradual because of
the cycle-to-cycle variations of the spanwise location of the P+S to 2S vortex dislocation,
similar to the gradual decrease in cumulative modal energy content of the first four POD
modes in Fig. 5.28b.

Vortex shedding at both fn and fs for the VIV case at U∗ = 7.08 was observed in
the frequency analysis of the wake velocity in Section 5.4 and is further exemplified by
spectral analysis of the POD temporal coefficients. Spectra of a1 and a2 in Fig. 5.29e
exhibit a dominant peak at the natural frequency and smaller peaks at its harmonics at
higher z/D. In the same spanwise region, the dominant spectral peak for a3 and a4 in
Fig. 5.29f occurs at 2fn, which is expected for the P+S shedding observed in this region.
Towards the base of the cylinder, shedding of coherent structures at fs produces spectral
peaks marked by the dashed line for both mode pairs. Spectral energy at this frequency
increases and becomes more concentrated towards the base of the cylinder. At the lowest
plane of investigation z/D ≈ 5, both mode pairs exhibit a peak at fn and fs, associated
with their intermittent switching. It is speculated that below z/D ≈ 5, vortex shedding
primarily occurs at fs since the cylinder is nearly stationary. The dominant spectral peak
in the first pair of modes would shift to the fs, while that of the second pair would shift
to fn.
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Figure 5.29: Power spectral density of the temporal coefficients for (a & b) stationary
cylinder, (c & d) U∗ = 5.48, and (e & f) U∗ = 7.08. The dashed black line corresponds to
the vortex shedding frequency of a stationary cylinder, fs. Note that spectra are offset by
20 dB and every second plane is shown for clarity.
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Figure 5.30: Temporal coefficients (a) a1 and a2, and (b) a3 and a4 from the POD analysis
of the flow around a stationary cylinder at z/D ≈ 10. A three dimensional cross plot is
shown for the first three temporal coefficients.

The findings from this results Chapter indicate that linear amplitude variation along
the span of a cylinder undergoing VIV can significantly impact the wake development,
causing hybrid vortex shedding. Specifically, this Chapter investigates two VIV cases at
U∗ = 5.48 and 7.08, which were found to exhibit vortex shedding transitions from 2S to
P+S to 2S, and 2S to P+S, respectively. The transitions occur over a spanwise range
because the location of the vortex dislocation between the shedding patterns varies from
cycle-to-cycle. In general, the observed wake topology does not agree with the predictions
from the Morse and Williamson [1] shedding map, developed from forced 1DOF-transverse
vibrations of an elastically mounted cylinder. However, the observed 2S to P+S transition
near the boundary between 2P shedding and the desynchronized regime agrees with the
observations of Kheirkhah et al. [49] and the analysis elucidates the vortex dislocation
between these shedding patterns.

99



Chapter 6

Conclusions

Vortex Induced Vibrations (VIV) of a pivoted cylinder with a moderate mass ratio were
investigated experimentally at a fixed Reynolds number of 3100 using simultaneous cylinder
displacement measurements and time-resolved PIV. The study is focused on investigating
the development of spanwise coherent structures and characterizing the wake dynamics
and attendant fluid-structure interaction for VIV with elliptic cylinder trajectories. In
addition, a method is developed to identify and characterize vortices in the wake.

6.1 Structural Response and the Associated Vortex
Dynamics

The structural response and associated wake topology in the horizontal plane positioned
near the cylinder mid-span were examined for a reduced velocity range of 4.42 ≤ U∗ ≤ 9.05.
Within the lock-in region, the cylinder traces an elliptic trajectory with the frequency of
both streamwise and transverse oscillations locking onto the structure’s natural frequency.
Three of the four possible elliptic orientations reported by Kheirkhah et al. [45] were
observed and are distinguishable based on orbiting direction and tilt with respect to
the cross-flow direction. Phase-averaged wake velocity measurements show that vortex
shedding conforms to 2S, 2P0, and 2P shedding patterns. The relation between these
shedding regimes and the branches of amplitude response agree with the map of Morse
and Williamson [1] for 1DOF forced VIV, except for 2P shedding observed in the zone of
predicted desynchronization.

Quantitative analysis of wake velocity measurements was performed to enable a statistics-
based vortex identification and characterization of both vortex kinematics and circulation.
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It is shown that the moment of vortex shedding can be identified based on the peak circu-
lation or maximum acceleration of the vortex core. For 2S shedding, the vortices are shed
near the cylinder’s streamwise equilibrium of oscillation. For 2P shedding, leading vortices
shed immediately after the transverse peak and trailing vortices shed near the transverse
equilibrium. Thus, the shift from the 2S to 2P shedding between the initial and lower
response branches is associated with a phase jump in vortex shedding of approximately π.

The direction of cylinder orbiting is found to have no substantial effect on the wake
topology for the 2S regime. In contrast, distinct differences in vortex shedding timing occur
for different orbiting directions in the 2P regime. Consequently, the subsequent arrange-
ment and relative strength of the shed vortices is affected. The uneven streamwise spacing
between the two vortex pairs shed in each cycle, referred to as streamwise staggering, leads
to significant deviation in the absolute trajectory of the leading vortices in the wake. For
the case of clockwise cylinder motion, the positive leading vortex advects further from the
wake centerline than the negative leading vortex, with the reversed trend seen when the or-
biting direction is switched. Such deviations from the classically defined 2P shedding mode
are a consequence of the differences in the streamwise motion of the cylinder undergoing
elliptic orbiting, which cannot be predicted by 1DOF-transverse studies. Furthermore, this
also gives rise to vortex staggering in the wake that has not been observed for the cases of
figure-eight trajectory VIV.

6.2 Spanwise Wake Development
The wake development for a stationary cylinder and VIV cases at U∗ = 5.48 and 7.08
was investigated experimentally. The cylinder trajectory for the VIV cases exhibits two
different elliptic orientations, both with a clockwise rotation. Time-resolved, planar, two-
component PIV measurements were performed in two different configurations to analyze
both the streamwise and spanwise flow development. Three dimensional reconstructions
of the phase averaged wake velocity measurements reveal 2S shedding along the span of
the stationary cylinder and hybrid shedding for the VIV cases. Within the spanwise region
of investigation, the wake topology transitions from 2S to P+S to 2S, and 2S to P+S for
the VIV cases at U∗ = 5.48 and 7.08, respectively. In both cases, the positively signed
vortex tube splits to form the vortex pair associated with P+S shedding. The observed
wake topology for 2DOF VIV with variable amplitude shows significant deviation from
predictions based on the Morse and Williamson [1] shedding map for 1DOF forced VIV.
In addition to introducing the streamwise amplitude as a third dimension [47], a separate
map should be generated for each type of elliptic orientation since the direction and tilt
can impact the wake topology.
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Examination of the time averaged wake characteristics shows the recirculation region,
formation length, wake half-width, and maximum velocity deficit are relatively consistent
along the span for the stationary cylinder. Linear variation of amplitude for the VIV
cases causes a gradual reduction along the span in the formation length and maximum
velocity deficit, and increase in the wake width. For the VIV case at U∗ = 5.48, there
is a shift in the wake characteristics in the region near hybrid transition from P+S to 2S
vortex shedding. The 2S pattern is associated with a thinner wake with a higher maximum
velocity deficit than the P+S pattern. A comparison amongst cases reveals similar spanwise
trends in wake half-width and maximum velocity deficit for spanwise regions with the same
shedding patterns.

Proper Orthogonal Decomposition (POD) is shown to have utility to identify the domi-
nant shedding modes. The first two POD modes capture the dominant coherent structures
in the wake for the 2S regime. However, for the P+S regime, four POD modes are required
to describe the salient features of the dominant structures. For all cases, the modes re-
quired to capture the dominant structures are paired, as indicated by the similar relative
modal energy content, dominant frequency of temporal coefficients, and the spatial modes
offset by approximately π/2. Analysis of the spanwise variation of modal energy shows a
marginal decrease in the cumulative energy of the modes capturing the dominant struc-
tures lower along the span, consistent with the greater turbulence intensity observed near
the floor of the tunnel. Furthermore, the first four modes for the VIV case at U∗ = 5.48
capture less of the total turbulent kinetic energy near the wake transition from P+S to 2S
because of the complex vortex dislocations between shedding patterns.

Spectral analysis of the temporal coefficients and the wake velocity reveal cycle-to-
cycle variations of the vortex shedding frequency near the floor of the water tunnel for
the VIV case at U∗ = 7.08 and the wake topology near the P+S to 2S hybrid transition
for the VIV case at U∗ = 5.48. Spectra for the stationary case did not indicate any
cycle-to-cycle variations in vortex shedding. For the VIV case at U∗ = 5.48, variation of
the spanwise location of hybrid transition from P+S to 2S is evidenced by the gradual
shift of the the dominant peak in the spectra of the temporal coefficients as well as their
transient amplitude fluctuations. For the VIV case at U∗ = 7.08, the frequency of vortex
shedding closer to the pivot point intermittently switches between the natural frequency of
the structure and the frequency of shedding from a stationary cylinder. Towards the base
of the cylinder, vortex shedding at the frequency of shedding from a stationary cylinder
becomes increasingly pervasive because of the small amplitude of oscillation.
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Chapter 7

Recommendations

From the results of the present work and experience gathered throughout the course of this
study, the following recommendations for continued research are made:

1. Raise the pivot point of the cylinder above the tunnel floor. In the present study, the
cylinder pivots on the tunnel floor due to the limited water depth in the experimental
facility. Wall effects of the water tunnel floor result in a lower free stream velocity
near the floor and consequently affect the frequency of vortex shedding from the
cylinder in this region. Allowing the cylinder to pivot on an elevated end plate would
improve the free stream uniformity in the spanwise region of investigation.

2. The mechanism for adjusting the natural frequency of the structure should be im-
proved. The apparatus in the present study uses individual components to connect
each spring to a threaded rod. The present study ensured repeatability between
tests through careful positioning and monitoring of these four components. Replac-
ing these components with a single plate would improve consistency between tests.

3. A low mass ratio pivoted cylinder undergoing VIV with elliptic trajectories should
be investigated. The VIV studies with figure-eight trajectories by Jauvtis and
Williamson [34] and Flemming and Williamson [47] observed massive amplitudes
of oscillation in the upper response branch of a low mass ratio systems as a re-
sult of the 2T and 2C shedding patterns, respectively. The structural response and
wake topology in the upper branch remain to be investigated for VIV with elliptic
trajectories.

4. The GMM based vortex identification algorithm should be improved. The present
study requires the user to define the number of subpopulations and to provide an
estimate of their spatial mean to initialize the iterative GMM refinement. Automa-
tion and objectivity can be improved by using an additional algorithm to select the
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initial means, such as the k-means++ algorithm, and an evaluation criteria to assess
the relative quality of the refined statistical model, such as the Akaike information
criterion (AIC) or Bayesian information criterion (BIC). Application of the evalua-
tion criteria would treat the trade-off between goodness of fit and complexity of the
model, thus providing an objective solution to the drawback of the GMM algorithm
where the model suffers from overfitting.

5. The GMM based vortex identification algorithm should be revised to treat vortices
that are partially cut off by the field of view. The present study avoids the identifi-
cation of such vortices by confining the algorithm to a limited region in the field of
view. Automation of this feature would generalize the algorithm to all flows.

6. The Morse and Williamson [1] shedding map should be updated to a multidimen-
sional map to account for the effect of the second degree of freedom in the streamwise
direction. Not all shedding patterns observed in the present study and other 2DOF
studies [34, 47, 49] coincide with predictions from the map for 1DOF cylindrical struc-
tures.

7. The present study reveals the presence of highly three dimensional structures in
the wake, especially at the transition between shedding patterns in a hybrid wake.
Insight into the vortex dynamics at these transitions would benefit greatly from three-
dimensional measurements. The planar measurements of the current investigation
are insightful but measurements with stereo or tomographic PIV would enable for
complete characterization of the hybrid wake topology.

8. Fluid induced structural loading along the span of a cylinder with linear variation of
amplitude remains to be investigated. Methods discussed by Rival and Oudheusden
[147] can be employed to extract the overall force on the structure from the velocity
fields to describe the fluid-structure interaction throughout the cylinder’s trajectory
for each of the four common types of elliptical orientation [45].
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Appendix A

Displacement Sensor Calibration

The displacement sensors were calibrated using a Velmex BiSlide MN10-0500-M02-21 tra-
verse with a displacement resolution of 5 µm. Figures A.1a and A.1b depict the output
voltage for the streamwise and transverse sensors, respectively. The least squares method
was used to fit a line (V0 = mx + b) to the data and obtain the associated calibration co-
efficients. The linearity of the streamwise and transverse sensors was 180 µm and 200 µm,
respectively, which corresponds to ±0.0093D and ±0.0103D, respectively.

Figure A.1: Displacement sensor calibration.
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Appendix B

Uncertainty Analysis

Uncertainty analysis is an essential component of any experimental investigation. This
Appendix outlines the methods for calculating the uncertainty of measured and derived
quantities presented throughout this thesis. Following the methodology of Moffat [148–
150], the total uncertainty, εβ, for a particular quantity β is estimated as the root-square-
sum of the n sources of error, εi, over a 95% confidence interval:

εβ = ±
(

n∑
i=1

ε2
i

)1/2

(B.1)

It is impossible to account for all n sources of error, therefore it is the investigator’s
responsibility to assess the major contributors to the total uncertainty in the analysis.

When a quantity cannot be measured directly, investigations often calculate the desired
quantity from measured quantities. The uncertainty of a derived quantity, β, that is
related to the independent measured quantities, αi, through a known relationship β =
f(α1, α2, ..., αn), can be estimated using the root-sum-square approach:

εβ = ±
( δβ

δα1
εα1

)2

+
(
δβ

δα2
εα2

)2

+ ...+
(
δβ

δαn
εαn

)2
1/2

(B.2)

where the partial derivatives are the sensitivity coefficients for the desired quantity with
respect to the measured quantities. Application of Eq. B.2 is straightforward when the
function f is known; however, some quantities are obtained from complex analytical pro-
cesses that cannot be described by a single function. In the present study, the discrete
nature of the data requires numerical approximations to derive some of the desired quanti-
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ties. In such instances, a sequential perturbation method [150] is required to estimate the
total uncertainty. In general, the uncertainty in measured quantities, αi, is propagated to
the derived quantity, β, according to the following procedure [149]:

1. Derive the quantity β0 from the quantities αi without accounting for uncertainty.
2. For i = 1 to n, sequentially perturb each input by increasing the value of αi by its

uncertainty interval, then calculate the derived quantity, β+
i . Repeat by decreasing

αi by its uncertainty and calculating β−i . The n differences β+
i − β0 and β−i − β0 are

the contribution to the total uncertainty of β for each αi.
3. Calculate the uncertainty of β using Eq. B.1.
Table B.1 summarizes the experimental uncertainties with details of the calculations

provided in the following sections.

B.1 Experimental Conditions
The experimental conditions consist of the Reynolds number, Re, and the cylinder aspect
ratio, AR, mass ratio, m∗, and moment of inertia ratio, I∗.

The cylinder aspect ratio is calculated from its diameter, D, and length, L. The
diameter was measured at two locations along the span using a digital caliper with a
resolution of 0.01 mm, while the length was measured using a tape measure with a resolution
of 1 mm. The associated relative uncertainty of the diameter and length are εD = ± 0.1%
and εL = ± 0.2%, respectively. Combining these estimates using Eq. B.2 results in εAR =
± 0.2% for the cylinder aspect ratio.

The mass ratio of the cylinder is calculated from the mass of the cylinder, m, and
the mass of the displaced fluid, md. The mass of the cylinder is measured using a digital
scale with a resolution of 0.001 kg, resulting in a relative uncertainty of εm = ± 0.2%. In
the calculation of the mass of the displaced fluid, it was assumed that the contribution
due to the displaced air was negligible in comparison to that of the displaced water, i.e.
md a � md w. The mass of the displaced water is calculated from the water density, ρ,
cylinder diameter, D, and wetted length of the cylinder, L0. The density was measured
indirectly via measurement of the water temperature using a thermometer with a resolution
of ±1 ◦C, resulting in a small relative uncertainty of ερ = ± 0.0002%. The wetted length
of the cylinder was measured using a tape measure with a resolution of 1 mm, resulting in
a relative uncertainty of εL0 = ± 0.5%. Using Eq. B.2, the total uncertainty of the mass
of the displaced fluid is εmd

= ± 0.5% and the overall uncertainty for the mass ratio is
εm∗ = ± 0.4%.

The moment of inertia ratio of the cylinder is calculated from the moment of inertia of
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Table B.1: Measurement uncertainty estimates.

Parameter Uncertainty* Applies to
AR ±0.2%
A∗x ≤ ±2.6% Figs. 4.3 and 5.1

A∗y ≤ ±0.4% Figs. 4.3, 4.4, 5.1,
and 5.2

f ∗x , f
∗
y ±1.7% Fig. 4.2

I∗ ±1.5%
m∗ ±0.4%
Re ±4.9%
U∗ ≤ ±8.3%
D ±0.1%

dwake ±0.029D Figs. 5.9b, 5.10,
and 5.11

fn, fx, fy ±1.2%

fs, fu, fv ±3.9% Figs. 5.13, 5.14,
and 5.29

L ±0.2%
Lf ±0.037D Fig. 5.9a

||~U ||/U0 ≤ ±14.2% Figs. 5.3 and 5.4
uRMS ≤ ±9.8% of max uRMS Figs. 5.5–7
ud ±0.040U0 Fig. 5.9c

vRMS ≤ ±7.3% of max vRMS Figs. 5.5–7
δ ≤ ±0.4% Fig. 4.1
ν ±2.5%

vortex core position

x ±0.04D
Figs. 3.7b, 4.6, 4.7a,
4.8a, 4.8d, 5.23a,
and 5.24a and ??

y ±0.03D Figs. 3.7b and 4.6
* All uncertainty estimates are associated with a 95% confidence interval.
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the cylinder, I, and the moment of inertia of the displaced fluid, Id, about the pivot point.
The moment of inertia of the cylinder is calculated from the cylinder mass, m, and length,
L, while the moment of inertia of the displaced fluid is calculated from the water density, ρ,
cylinder diameter, D, and wetted length of the cylinder, L0. Their associated uncertainties,
calculated using Eq. B.2, are εI = ±0.3% and εId

= ±1.4%. The total uncertainty of the
moment of inertia ratio is calculated using Eq. B.2, resulting in εI∗ = ±1.5%.

The diameter based Reynolds number is calculated from the free stream velocity, U0,
cylinder diameter, D, and fluid kinematic viscosity, ν. The kinematic viscosity was mea-
sured indirectly via measurement of the temperature using a thermometer with a resolution
of ±1 ◦C. As such, the relative uncertainty of the kinematic viscosity is εν = ± 2.5%. The
free stream velocity was determined from PIV measurements of the wake velocity as out-
lined in Appendix C. From the floor of the water tunnel to the surface, there is a gradual
increase in the free stream velocity with z, thus there is a change in the local Reynolds
number. Within the region of primary investigation the change in U0 along the span is
1.18%. Additionally, the uncertainty estimate of the random error in PIV for measure-
ment of the free stream velocity is less than 3%. Uncertainty from PIV measurements is
discussed in Appendix B.3. Combining these estimates results in εU0 = ±4.2%. Finally,
the uncertainty on the Reynolds number is calculated using Eq. B.2, with the uncertainty
estimates for the free stream velocity, cylinder diameter, and kinematic viscosity as inputs,
resulting in εRe = ±4.9%.

B.2 Displacement Sensor Measurements
The quantities obtained from displacement sensor measurements consist of the normalized
amplitude, A∗x and A∗y, and normalized frequency, f ∗x and f ∗y , of structural vibrations in
the streamwise and transverse directions, respectively, and the maximum deflection angle
of the structure, δ.

The normalized amplitude of vibration is calculated from the cylinder diameter, D,
and the amplitude of cylinder vibration. Streamwise and transverse cylinder position were
measured using two Hoskin CP24MHT80 laser-based displacement sensors operating in
“resolution mode” with a resolution of 20 µm and a linearity of 0.1%. The uncertainty of A∗x
and A∗y is calculated using Eq. B.2, with the uncertainty estimates for the cylinder diameter
and position as inputs, resulting in εA∗

x
≤ ±2.6% and εA∗

y
≤ ±0.4%. The maximum

deflection is calculated from the cylinder length, L, and the amplitude of cylinder vibration.
Using Eq. B.2, the resultant relative uncertainty is εδ ≤ ±0.4%.

Spectral analysis of the cylinder displacement signal was employed to identify dom-
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inant disturbance frequencies associated with the structure’s natural frequency, fn, and
the normalized frequency of structural vibration in the streamwise, f ∗x , and transverse,
f ∗y , directions. The one-dimensional spectra were computed using Welch’s method [151].
The displacement signal was divided into equal windows of 213 points with 50% overlap,
resulting in a frequency resolution of 0.0122 Hz. Therefore, the uncertainty in determining
a particular frequency is half the resolution, εfn = εfx = εfy = ±1.2%. Using Eq. B.2, the
relative uncertainty of the normalized frequency of vibration is εf∗

x
= εf∗

y
= ±1.7%.

B.3 PIV Measurements
Uncertainty estimation in PIV measurements is challenging due to the multitude of error
sources originating from calibration, image acquisition, and image processing [101]. Error
associated with image acquisition includes the uncertainty in: particle seeding density,
laser/camera alignment, and camera focus and aperture. Aspects contributing to error
in image processing include: interrogation window selection, removal and replacement of
erroneous data, and cross-correlation for displacement computation. Due to the numerous
sources of error, there remains to be a consensus in the research community as to how
PIV uncertainty should be quantified [99, 101, 152–154]. The present investigation uses the
particle disparity method [152, 155] to estimate the uncertainty associated with random
errors in PIV. This method is a posteriori in that the computed velocity field is input to
determine the local random error. The particle disparity method is advantageous because
it provides uncertainty in the instantaneous, mean and RMS velocity fields.

Figure B.1 presents the random errors in the mean (first column), streamwise RMS
(second column), and transverse RMS (third column) velocity fields for the PIV config-
uration in the x − y plane. The top, middle, and bottom row of Fig. B.1 correspond to
the stationary cylinder and VIV at U∗ = 5.48 and 7.08, respectively. The mean fields
show that the highest error (ε||~U ||/U0

= ±14.2%) occurs near the formation length where
vortices roll up at the end of the separated shear layers. The uncertainty is lower further
downstream in the wake (ε||~U ||/U0

≤ ±8.1%) and much lower in the free stream at the
transverse extent of measurement (ε||~U ||/U0

≤ ±3.3%) because there is less swirling motion
in the fluid. Uncertainty is highest for U∗ = 5.48 (Fig. B.1d) because vorticity is reoriented
from the spanwise direction to the streamwise and transverse directions as the vortex tubes
bend, see discussion in Section 5.5. This makes cross-correlation of the windowed seeding
particles between images more difficult because of the increased out of plane motion. The
random error in the RMS fields is normalized with their respective maximum values and
is generally less than the random error in the mean fields. The error in the RMS fields
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Figure B.1: PIV random error estimates in the x− y plane for (a-c) stationary cylinder,
(d-f) U∗ = 5.48, and (g-i) U∗ = 7.08. The first column shows the uncertainty in the velocity
magnitude normalized by the free stream velocity, center column shows the uncertainty in
the streamwise RMS velocity field, and right column shows the uncertainty in the transverse
RMS velocity field. The RMS velocity uncertainties are normalized by the maximum RMS
value of the corresponding component.

has a maximum of εuRMS
= ±9.8% and εvRMS

= ±7.3% with spatial distributions that are
similar to their respective RMS fields (Figs. 5.5–7).

Figures B.2a–d present the random errors in the mean velocity field in the x− z plane
for the free stream, stationary cylinder, U∗ = 5.48, and U∗ = 7.08 cases, respectively. The
maximum error in the free stream (ε||~U ||/U0

= ±3.0%) is lower than the other three cases
(ε||~U ||/U0

= ±5.4%) because the absence of vortex formation and advection in the wake of
the cylinder reduces the out of plane motion of the seeding particles. For the stationary
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Figure B.2: PIV random error estimates in the x− z plane for (a) free stream, (b) sta-
tionary cylinder, (c) U∗ = 5.48, and (d) U∗ = 7.08. Uncertainty in the velocity magnitude
is normalized by the free stream velocity.

cylinder and VIV cases, the error is relatively low upstream of x/D ≈ 2 because the
measurement plane in this region is positioned far enough from the cylinder that it does
not intersect the separated shear layer or the near wake. At x/D ≈ 2 the error increases
in the streamwise direction because this is approximately the streamwise location where
spanwise structures in the wake initially intersect the measurement plane (Fig. 5.3). The
effect of using two cameras is apparent in the error of the free stream as there is a notable
spatial gradient in the spanwise direction at z/D ≈ 11 where the two measured fields
overlap. Factors such as laser illumination, camera/laser alignment, and camera focus
contribute to the general difference in uncertainty above and below z/D ≈ 11.
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B.4 Derived Quantities
Quantities derived from PIV measurements consist of the vortex shedding frequency, wake
half-width, dwake, velocity deficit, ud, and formation length, Lf . The reduced velocity, U∗,
is derived from both PIV and displacement sensor measurements.

Spectral analysis of the velocity signal and POD temporal coefficients was employed
to identify dominant disturbance frequencies associated with the shedding of coherent
structures. The one-dimensional spectra were computed using Welch’s method [151]. The
displacement signal was divided into equal windows of 210 points with 50% overlap, re-
sulting in a frequency resolution of 0.0196 Hz. Therefore, the uncertainty in determining a
particular frequency is half the resolution, εfs = εfu = εfv = ±3.9%.

Figure 4.13 investigates and compares various definitions of the formation length, Lf ,
Uncertainty in the location of the maximum value in the RMS fields was assessed by
applying the RMS uncertainties to their respective fields and then propagating it to the
estimated parameters. Similarly, uncertainty in the streamwise extent of the recirculation
region was assessed by applying the mean streamwise uncertainty to the mean streamwise
velocity field and then propagating it through to the estimated parameter. The resul-
tant uncertainties for the streamwise location of vRMS Max, uRMS Max, and U/U0 = 0 are
±0.037D, ±0.051D, and ±0.072D, respectively. The results in Chapter 5 consider the
formation length as the streamwise location of vRMS Max, as such the uncertainty in the
formation length is εLf

= ±0.037D.
Uncertainties in the maximum velocity deficit, ud Max, and the wake half-width, dwake,

were assessed by applying the uncertainty in the mean streamwise field to the respec-
tive field and then propagating it to the estimated parameters. In such a manner, the
uncertainties were determined to be εud Max

= ±0.040U0 and εdwake
= ±0.029D.

The reduced velocity, U∗, is calculated from the cylinder diameter, D, natural frequency
of the structure, fn, and free stream velocity, U0. As previously mentioned the error
associated with each of these three parameters is εD = ±0.1%, εfn = ±1.2%, and εU0 =
±4.2%. Using Eq. B.2, the total uncertainty of the reduced velocity is εU∗ = ±8.3%.

B.5 GMM Vortex Identification
Uncertainty estimation in vortex identification is challenging because there remains to
be an accepted definition of a vortex in turbulent flow [116]. The present investigation
employs a novel vortex identification method using the statistical GMM and EM algorithms
in combination with the Q-criterion. Figures B.3a and B.4a present the variation of the
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streamwise and transverse vortex core position, respectively, with respect to the phase angle
as per GMM based vortex identification using the Q-criterion for a stationary cylinder.
Similarly, Figs. B.3b and B.4b present variation of the streamwise and transverse vortex
core position, respectively, but use the λ2-criterion as input to the algorithm. The absolute
difference in vortex core locations computed using the Q and λ2-criteria is depicted in
Figs. B.3c and B.4c for the streamwise and transverse locations, respectively. Error in the
vortex location is estimated as two standard deviations of the difference to provide a 95%
confidence interval. The resultant uncertainties of the streamwise and transverse vortex
core locations are estimated as εx = ±0.04D and εy = ±0.03D, respectively.

Figure B.3: Variation of streamwise vortex core position with respect to phase angle
as per GMM based vortex identification using the (a) Q-criterion and (b) λ2-criterion for
a stationary cylinder. (c) Absolute difference between streamwise vortex core positions
computed using the Q and λ2-criteria.

128



Figure B.4: Variation of transverse vortex core position with respect to phase angle as
per GMM based vortex identification using the (a) Q-criterion and (b) λ2-criterion for
a stationary cylinder. (c) Absolute difference between transverse vortex core positions
computed using the Q and λ2-criteria.
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Appendix C

Free Stream Characterization

The flow conditioning for the closed-loop water tunnel at the University of Calgary is shown
in Fig. C.1. An axial pump, controlled with a variable frequency drive, supplies water to
the plenum. A cylindrical conditioner mounted on the floor of the plenum prevents large
recirculating flow from developing as the water enters the plenum. The flow passes through
a honeycomb conditioning unit and three fine screens to reduce the turbulence intensity.
A contraction with a six-to-one ratio accelerates the flow into the first test section.

Figure C.1: Water tunnel conditioning elements.
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The water tunnel free stream characteristics were extracted from planar PIV measure-
ments in the xz plane at y = 0 with the model removed from the test section. Water
depth in the test section under quiescent conditions was maintained at L0 = 429mm.
These measurements were taken at a water density, ρwater = 997.6kg m−3, and viscos-
ity, µwater = 0.9622 × 10−3N s m−2, for a measured water temperature of 22 ◦C. Careful
monitoring and control of the water depth and cleanliness of the water tunnel throughout
the experimental campaign minimized deviation from the characteristics reported in this
section.

The mean streamwise and spanwise velocity fields obtained from time resolved PIV
measurements are shown in Figs. C.2a and C.2b, respectively, with a field of view that
extends from 2.32 ≤ z/D ≤ 20.54 in the spanwise direction and from 0.19 ≤ x/D ≤ 6.19
in the streamwise direction. The mean fields were calculated from 2044 velocity fields
acquired at 20 Hz over the span of 102 s. The free stream velocity used in this study,
U0 = 0.1606m s−1, is the spatial mean of the streamwise velocity in the xz plane. This is
2.4 % greater than the predicted free stream velocity, U0predicted

= 0.1568m s−1, obtained
from ultrasonic measurements near the entrance of the first test section. The ultrasonic
measurements at the center-line of the first test section were previously calibrated against
LDV measurements, where the linear fit U0predicted

= 1.0966U0ultrasonic
provides the predicted

free stream velocity for R2 = 0.99926. It should be noted that, throughout the experimental
campaigns, U0ultrasonic

was held constant to within ±0.001m s−1 by maintaining the variable
frequency drive at 24.7 Hz and the depth of the flowing water in the first test section at
L0 = 428mm.

Figure C.2c depicts contours of the turbulence intensity in the xz plane, with a mean
value of 1.32 %. Within the spanwise region 5 < z/D < 19.5, the turbulence intensity is
low, the streamwise velocity is within 1 % of U0 and the normalized spanwise velocity is
within 1 % of zero. Below this region, z/D < 5, there is moderate turbulence and the flow
has a notable spanwise component. Such an effect may be attributed to flow disruptions
at the tunnel floor as the water exits the plenum and enters the first test section. This is
not of concern in the present study because the primary investigation of the wake occurs
within the range 5.2 ≤ z/D ≤ 19.1.

Spanwise profiles of the mean velocity (Fig. C.3a) and turbulence intensity (Fig. C.3b)
clearly distinguish these two regions. The overall min-max flow uniformity is 3.64 %, while
that within the region of primary investigation is 1.18 %. At z/D ≈ 11.5, a slight dis-
continuity in both profiles is a result of stitching the vector fields calculated from images
acquired from the two high speed cameras mounted in spanwise succession.
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Figure C.2: Contours of the (a) streamwise mean velocity, (b) spanwise mean velocity,
and (c) turbulence intensity in the xz plane acquired from PIV measurement.
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Figure C.3: Profiles of the (a) streamwise free-stream velocity and (b) turbulence inten-
sity in the spanwise direction acquired from PIV measurement.
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Appendix D

Assessment of Water Depth Effects

Vortex induced vibrations are caused by the periodic fluid induced loads along the span of
the cylinder. The present study maintains a water depth of L0 = 428mm between tests to
ensure a consistent spanwise region of fluid structure interaction. Figure D.1 presents the
amplitude of transverse and streamwise oscillations near the end of the lock-in region for
various water depths. The results indicate that greater transverse and smaller streamwise
responses occurs for deeper flows. Specifically, increasing the water depth by 20 mm from
L0 = 425 to 445mm generally causes A∗y to increase by approximately 0.1D and A∗x to
decrease by approximately 0.02D. Given that the uncertainty of measuring the water
depth is ±1mm in the present study, variability of the water depth is not expected to
significantly impact the observed structural response.
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Figure D.1: Amplitude response in the (a) transverse and (b) streamwise directions for
quiescent water depths L0 = 425, 435, and 445mm. Free stream velocity is varied to obtain
the reduced velocity range for a constant natural frequency of the structure, fn = 1.72Hz.
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Appendix E

Assessment of Initial Condition
Effects

In the present study, all VIV tests were performed with identical initial conditions. The
cylinder tip was released from rest at (x/D, y/D) = (0, 0) and structural oscillations were
permitted to develop for a period of 10 min before acquiring displacement and/or wake
velocity measurements. This Appendix section investigates sensitivity of the structural
response to the prescribed initial condition. Table E.1 outlines the five cases exam-
ined for VIV at U∗ = 6.70. The first three cases release the cylinder tip from rest at
(x/D, y/D) = (0, 0), (0,−1.5), and (−1.5, 0), respectively. The fourth and fifth cases re-
lease the cylinder tip from (x/D, y/D) = (0,−1.5) and provide an initial motion such
that the cylinder trajectory is approximately circular with counter-clockwise and clockwise
directions, respectively. The structural oscillations are permitted to develop for a period
of 5 min before acquiring displacement measurements at 100 Hz for 15 min. Figures E.1a–
e present the cylinder tip trajectory for the five cases, respectively. Examination of the

Table E.1: VIV initial conditions for U∗ = 6.70.

Case x(t = 0)/D y(t = 0)/D Motion at t = 0
1 0 0 rest
2 0 -1.5 rest
3 -1.5 0 rest
4 0 -1.5 CCW
5 0 -1.5 CW
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trajectories reveals identical elliptic orientations, distinguished based on orbiting direction
and tilt with respect to the cross-flow direction. Furthermore, spectra of the streamwise
and transverse oscillations in Figs. E.2a and E.2b, respectively, reveal similar dominant
peaks at the structure’s natural frequency for all cases. Consequently, the prescribed ini-
tial condition does not impact the steady state structural response.

Figure E.1: Cylinder tip trajectories for the five cases listed in Table E.1; (a-e) cases 1-5,
respectively. A red arrow in each image denotes the orbiting direction.

Figure E.2: Spectra of the (a) streamwise and (b) transverse vibrations for the five cases
listed in Table E.1. Note, spectra are plotted with a consistent offset for clarity.
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Appendix F

Supplementary Results - Proper
Orthogonal Decomposition

The discussion of the Proper Orthogonal Decomposition results in Chapter 5 was limited
to the horizontal planes and focused on the modal energy and spectra of the temporal
coefficients. This Appendix presents results of the POD analysis on the PIV measurements
in the vertical and horizontal planes. Appendices F.1–F.3 depict the temporal coefficients
and spatial modes for the stationary, U∗ = 5.48, and U∗ = 7.08 cases, respectively. These
results were omitted from the previous chapters for conciseness and are presented here for
completeness of the data sets presented.

Figure F.1a presents the relative turbulent kinetic energy of each POD mode and
Fig. F.1b presents the cumulative turbulent kinetic energy from the POD analysis in the
vertical plane. All three cases exhibit three mode pairs with comparable energy con-
tent. Closer examination of the temporal coefficients and spatial modes in Figs. F.4, F.6,
and F.10 reveals that mode pairs have similar temporal signals and wake topologies that
are offset by a phase shift of approximately π/2. Figure F.2 presents the frequencies of the
dominant peaks in the spectra of the temporal coefficients.

Examination of POD results from the vertical plane for the stationary case indicates
there is cellular shedding near the base of the cylinder in agreement with observation of the
sequential instantaneous streamwise velocity snapshots in the vertical plane in Section 5.2.
The first mode pair captures the shedding of coherent structures at fD/U0 ≈ 0.205 in the
region z/D & 8. Similarly the third mode captures shedding at this frequency, except in
the region 12 . z/D . 16 where the first mode pair is dominant. The second mode pair
captures shedding at a lower frequency, fD/U0 ≈ 0.190, near the base of the cylinder in
the region z/D . 8. Structures near the base of the cylinder are shed at a lower frequency

138



Figure F.1: Relative turbulent kinetic energy from POD analysis of the vertical, x − z,
plane; (a) mode energy distribution (b) cumulative mode energy.

Figure F.2: Dominant peak in the power spectral density of the temporal coefficients
from POD analysis of the vertical, x− z, plane.

because the free stream velocity is lower in this region as a result of the effects of the
tunnel floor, Appendix C. It is important to note that the cellular shedding occurs below
the spanwise investigation of the wake (8.5 . z/D . 16) and the results of the POD
analysis are similar between horizontal planes.

For the VIV case at U∗ = 5.48, Fig. F.2 reveals that spectra of the temporal coefficients
for the six most energetic modes all exhibit dominant peaks at the structure’s natural
frequency. Examination of the spatial modes and temporal coefficients from the POD
analysis in the vertical plane in Fig. F.6 reveals that the first mode pair captures coherent
structures that exist along the entire span except near the hybrid wake transition from
P+S to 2S at z/D ≈ 15. The second mode pair captures the coherent structures near this
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transition in the region 13.5 . z/D . 17.5. The temporal coefficients of the second mode
pair indicate there are significant cycle-to-cycle variations, which may be attributed to the
variation of the spanwise location of dislocation between the P+S and 2S wake vortices.
Similarly, the third mode pair captures coherent structures at the base of the cylinder
near the hybrid transition between 2S and P+S shedding. The temporal coefficients of the
third mode also indicate cycle-to-cycle variations that may be a result of variation of the
spanwise location of vortex dislocation.

Results of the POD analysis in the vertical plane for the VIV case at U∗ = 7.08 indicate
the first and second mode pairs capture the shedding of coherent structures associated
with the vortex pairs in P+S shedding. Spectral analysis of the temporal coefficients
reveals dominant peaks at fn and 2fn for the first and second mode pairs, respectively,
see Fig. F.2. Examination of the third and fourth spatial modes in Figs. F.10f and F.10g,
respectively, reveals that the coherent structures captured by the second mode pair are
more energetic higher along the span where there is greater contrast in the contours along
the streamwise direction. This may be indicative of the 2P shedding pattern predicted
based on the Morse and Williamson [1] shedding map, which was not observed in the wake
reconstruction due to its limited spanwise range. Existence of the 2P shedding regime
higher along the span would necessitate an additional wake transition between P+S and
2P shedding. Lower along the span, the third mode pair captures coherent structures
shed at the frequency of vortex shedding from a stationary cylinder, fs, in agreement
with the spectral analysis of the wake velocity in Section 5.4 and the POD analysis in
the horizontal plane in Section 5.6. Temporal coefficients of the third mode pair reveal
cycle-to-cycle variations that are indicative of the intermittent shedding of vortices at fn
and fs, as was found in Chapter 5.

The goal of the POD analysis was to extract the dynamics of the most energetic coherent
structures for use in producing phase averaged reconstructions of the wake. The reference
signal for POD based phase averaging was obtained from the cross plot of the first two
temporal coefficients as outlined in Section 3.3.2. Figures F.3a and F.3b depict the cross
plots obtained from POD analysis in the horizontal plane at z/D ≈ 6.5 for the VIV cases
U∗ = 5.48 and U∗ = 7.08, respectively. The data points in the cross plot for U∗ = 5.48 fall
closer to the ellipse given by

a2
1

2λ1
+ a2

2
2λ2

= 1 (F.1)

than the data points in the cross plot for U∗ = 7.08. Physically, deviation from the
ellipse means that the coherent structures captured by the first mode pair vary slightly
from cycle-to-cycle. For the VIV case U∗ = 7.08 at the plane z/D ≈ 6.5, this coincides
with the intermittent switching of vortex shedding at fn and fs. Figures F.3c–e show the
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spanwise variation of data distribution about the ellipse for the stationary, U∗ = 5.48,
and U∗ = 7.08 cases, respectively, with error bars indicating one standard deviation. The
wider distribution is relatively consistent along the span for the stationary cylinder since
the frequency of vortex shedding cannot lock onto the motion of the cylinder and varies
slightly throughout time, see Section 5.4. For the VIV case at U∗ = 5.48, the data points
fall very close to the ellipse in the spanwise region of P+S shedding, while there is a slight
increase in their distribution in the region of 2S shedding. Similarly, the spanwise region of
P+S shedding for the VIV case at U∗ = 7.08 exhibits a concentrated distribution. However,
there is significant variability closer to the base where the intermittent switching in the
frequency of vortex shedding is observed.

Figure F.3: Cross plots of temporal coefficients a1 and a2 for (a) U∗ = 5.48 and (b)
U∗ = 7.08 at z/D ≈ 6.5. Distribution of the cross plot for the investigated horizontal
planes is shown for (c) stationary cylinder, (d) U∗ = 5.48, and (e) U∗ = 7.08 with error
bars indicating one standard deviation.
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F.1 Stationary Cylinder

Figure F.4: POD analysis in the x− z plane for a stationary cylinder. Temporal coeffi-
cients normalized with respective energy content for (a) modes 1 and 2, (b) modes 3 and
4, and (c) modes 5 and 6. Streamwise spatial modes for (d-i) POD modes 1 to 6.
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Figure F.5: POD analysis in the x − y plane at z/D ≈ 10 for a stationary cylinder.
Temporal coefficients normalized with respective energy content for (a) modes 1 and 2,
and (b) modes 3 and 4. Transverse spatial modes for (c-f) POD modes 1 to 4.

143



F.2 Reduced Velocity 5.48

Figure F.6: POD analysis in the x−z plane for the case U∗ = 5.48. Temporal coefficients
normalized with respective energy content for (a) modes 1 and 2, (b) modes 3 and 4, and
(c) modes 5 and 6. Streamwise spatial modes for (d-i) POD modes 1 to 6.
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Figure F.7: POD analysis in the x − y plane at z/D ≈ 6.5 for the case U∗ = 5.48.
Temporal coefficients normalized with respective energy content for (a) modes 1 and 2,
and (b) modes 3 and 4. Transverse spatial modes for (c-f) POD modes 1 to 4.
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Figure F.8: POD analysis in the x − y plane at z/D ≈ 13.5 for the case U∗ = 5.48.
Temporal coefficients normalized with respective energy content for (a) modes 1 and 2,
and (b) modes 3 and 4. Transverse spatial modes for (c-f) POD modes 1 to 4.
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Figure F.9: POD analysis in the x − y plane at z/D ≈ 18 for the case U∗ = 5.48.
Temporal coefficients normalized with respective energy content for (a) modes 1 and 2,
and (b) modes 3 and 4. Transverse spatial modes for (c-f) POD modes 1 to 4.
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F.3 Reduced Velocity 7.08

Figure F.10: POD analysis in the x−z plane for the case U∗ = 7.08. Temporal coefficients
normalized with respective energy content for (a) modes 1 and 2, (b) modes 3 and 4, and
(c) modes 5 and 6. Streamwise spatial modes for (d-i) POD modes 1 to 6.
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Figure F.11: POD analysis in the x − y plane at z/D ≈ 5 for the case U∗ = 7.08.
Temporal coefficients normalized with respective energy content for (a) modes 1 and 2,
and (b) modes 3 and 4. Transverse spatial modes for (c-f) POD modes 1 to 4.
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Figure F.12: POD analysis in the x − y plane at z/D ≈ 12.5 for the case U∗ = 7.08.
Temporal coefficients normalized with respective energy content for (a) modes 1 and 2,
and (b) modes 3 and 4. Transverse spatial modes for (c-f) POD modes 1 to 4.

150



F.4 POD 2P Shedding
This Appendix section presents results of the POD analysis on the PIV measurements in
the x − y plane at z/D ≈ 18 for 2P shedding at U∗ = 7.19. Figure F.13a presents the
relative turbulent kinetic energy of each POD mode and Fig. F.13b presents the cumulative
turbulent kinetic energy. The first four modes form two mode pairs. Examination of
the temporal coefficients and spatial modes in Fig. F.14 reveals that mode pairs have
similar temporal signals and spatial mode topologies that are offset by a phase shift of
approximately π/2.

Compared to the POD analysis on the PIV measurements in the x − y plane for the
P+S vortex shedding mode in Appendices F.2 and F.3. The energy associated with the
second mode pair is greater, there are fewer transient fluctuations in a3 and a4, and the
topology of the transverse spatial modes is spread out in the transverse direction. Such
differences are attributed to both the larger amplitude of structural vibration, due to the
measurement plane at a higher z/D, and the additional trailing vortex shed each cycle of
cylinder oscillation. It should also be noted that the skewed topology of the spatial modes
is dependent upon the elliptic orientation as observed in Chapter 4.

Figure F.13: Relative turbulent kinetic energy from POD analysis in the x − y plane
at z/D ≈ 18 for 2P shedding at U∗ = 7.19; (a) mode energy distribution (b) cumulative
mode energy.
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Figure F.14: POD analysis in the x−y plane at z/D ≈ 18 for 2P shedding at U∗ = 7.19.
Temporal coefficients normalized with respective energy content for (a) modes 1 and 2,
and (b) modes 3 and 4. Transverse spatial modes for (c-f) POD modes 1 to 4.
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Appendix G

GMM Vortex Identification Criterion
Comparison

Numerous vortex identification methods have been developed with the goal of objectively
defining a vortex to study the vortex dynamics in the formation and evolution of coher-
ent structures in a fluid [116]. None of these methods have been universally accepted as
optimal. The present study employs the Q-criterion for the statistical GMM vortex identi-
fication due to its relatively easy implementation and widespread use in vortex dominated
flows [65, 118, 119]. Another method, the λ2-criterion, has also been shown to accurately
define vortex cores [116]. This Appendix compares results from the GMM algorithm and
the circulation based estimated timing of vortex shedding for both the Q and λ2-criteria.

Figures G.1a and G.1b show the Q-criterion and λ2-criterion, respectively, computed
from phase averaged velocity fields for a stationary cylinder. The Q-criterion is normalized
by its maximum since a positive value indicates a vortex core, while the λ2-criterion is
normalized by its minimum since a negative value indicates a core. It can be seen that
both criteria reveal a 2S shedding pattern evidenced by five vortices within the field of view,
two of which are rolling up at the end of the shear layer. Examination of the separated
shear layer regions reveals that the Q-criterion better distinguishes the rotational vorticity
from the shear vorticity compared to the λ2-criterion. Furthermore, the Q-criterion is more
restrictive in identifying the regions pertaining to a vortex core in the wake.

Figures G.1c and G.1d depict the results of the GMM vortex identification algorithm
using the Q-criterion and λ2-criterion, respectively, on top of the vorticity contours. Vortex
centroids, located by the spatial mean of each GMM subpopulation, are indicated by
plus symbols and their area by the surrounding ellipse, which is computed by the region
encompassed within three standard deviations around the centroid. The results illustrate
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Figure G.1: Vortex shedding from a stationary cylinder. Vortex identification (a)
Q-criterion and (b) λ2-criterion computed from phase averaged velocity fields. Non-
dimensionalized phase-averaged vorticity fields with vortex centroids and boundaries, in-
dicated by plus symbols and surrounding ellipses, computed from GMM based vortex
identification using the (c) Q-criterion and (d) λ2-criterion. Note, flow is from left to right
and the cylinder is represented by the black circle at (x/D, y/D) = (0, 0).
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that the algorithm correctly identifies the five vortices, distinguishing rotational from shear
regions, and captures their skewed shape. The location of vortex centroids are similar for
the two criteria, however their area is slightly different. In the near wake, x/D . 5,
the vortex area computed from the Q-criterion is slightly smaller than that from the λ2-
criterion due to the vortex core identification being more restrictive. Beyond x/D ≈ 5,
the vortex area computed from the two criteria are nearly identical.

Variation of vortex circulation with phase angle is presented in Figs. G.2a and G.2b for
the Q-criterion and λ2-criterion, respectively, in order to elucidate the shedding process.
The circulation is computed by integrating the vorticity within the area defined by GMM
vortex identification, with error bars showing the methodological uncertainty associated
with phase averaging based on a 99% confidence interval. The criteria and phase averaged
velocity fields in Fig. G.1 depict the 2S shedding process at θ = 7π/8. The dashed line,
identifies the estimated phase angle of vortex shedding and is obtained from the intersection
of two linear fits to the data before and after the expected instant of shedding. The line
prior to shedding is automatically fit using the first five data points, then extended by
iteratively adding points one by one as long as their deviation from the linear fit is less than
two standard deviation of the error between each of the points and the corresponding fit.
The line subsequent to shedding is similarly generated starting with the point excluded from
the first linear fit based on the aforementioned procedure. The timing of vortex shedding
is generally similar for both criteria, with methodological uncertainty limits identified by
shaded regions. However, the λ2-criterion estimates that shedding occurs approximately
π/32 later than the Q-criterion. This may be a result of the uncertainty or the GMM
algorithm computing a slightly larger vortex area for the λ2-criterion.
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Figure G.2: Variation of vortex strength with respect to phase angle as per GMM based
vortex identification computed using the (a)Q-criterion and (b) λ2-criterion for a stationary
cylinder. Dashed lines indicate the estimated timing of vortex shedding, with shaded
regions representing methodological uncertainty.
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Appendix H

Free Stream Variation

The present study adjusts fn to manipulate U∗ so as to maintain a constant Re throughout
tests. Figure H.1 presents the peak deflection angle in the y − z plane over a range of
U∗ obtained from variation of either fn or U0. Both cases generally exhibit a similar
response; however, in the range 5.8 ≤ U∗ ≤ 7.5, the response obtained from variation
of fn is approximately δyz ≈ 0.1◦ smaller than that from variation of U0. This may be
attributed to differences in the inertia ratio, damping coefficient, and/or Reynolds number.
Examination of the response due to variation of U0 reveals there is no hysteresis in the
amplitude response. This finding should be verified with an additional test measuring the
response for increasing and decreasing U0 at the same U∗ values with finer resolution.

Figure H.1: Peak deflection angle in the y − z plane measured in degrees. Variation of
U∗ with fn: 89.0 ≤ I∗ ≤ 115.9, 0.0034 ≤ ζ ≤ 0.0041, and Re = 3100. Variation of
U∗ with U0: I∗ = 107.0, ζ = 0.0039, and 1840 ≤ Re ≤ 6580.
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