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Abstract

Pharmacokinetics (PK) attempts to model the progression and time evolution of a
drug in the human body from administration to the elimination stage. It is the primary
quantitative approach used in drug discovery/development (in the pharma industry). The
overwhelming majority of PK models are based on equilibrium kinetics with all the reaction
kinetics occurring in a well mixed, homogeneous environment. Of course as is well known,
the human body is comprised of heterogeneous media with non equilibrium chemical ki-
netics. As a result, the transport processes and reaction mechanisms are often atypical. In
this thesis, we apply ideas from stochastic processes and fractal kinetics in order to better
capture the time course of a drug through the body when there is spatial and temporal
heterogeneity. We discuss the limitations of the Langevin equation and Bourret’s approx-
imation and apply Van Kampen’s approach to the random differential equations arising
from the stochastic formulation of standard one compartmental extra vascular model. Al-
though one compartment models can produce good fits if a drug dispersed rapidly so that
equilibrium is achieved (in all tissues) swiftly, in general they are oversimplification of a
complex process . Thus we also extend the two compartmental model Kearns et al., to
incorporate fractal Michaelis Menten kinetics and compare with experimental data from
the literature for paclitaxel. Finally, we conclude with a discussion and appraisal of the
contribution in the thesis to the field of pharmacokinetics.
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Chapter 1

Introduction

1.1 What is pharmacokinetics (PK)

The word Pharmacokinetics means the application of kinetics to a pharmakon (a Greek
word, means drugs and poisons [83]). Knowledge about the change of one or more variables
as a function of time is known as kinetics. The objective of Pharmacokinetics is to study the
time course of drug and metabolite concentrations in biological fluids, tissues and excreta,
and also of pharmacological response, and to construct suitable models to interpret such
data. The data are analyzed using a mathematical representation of a part or the whole
of an organism. Broadly speaking then, the purpose of pharmacokinetics is to reduce data
to a number of meaningful parameter values, and to use the reduced data to predict either
the results of future experiments or the results of a host of studies which would be too
costly and time-consuming to complete.

A similar definition has been given by other authors (Gibaldi and Levy, 1976, page 129)
as follows:

’Pharmaco-kinetics is concerned with the study and characterization of the time
course of drug absorption, distribution, metabolism and excretion, and with the
relationship of these processes to the intensity and time course of therapeutic
and adverse effects of drugs. The ultimate role or purpose of PK methods is to
predict tools that characterize the drug behavior over time with the ultimate
objective of optimizing drugs efficacy (whilst simultaneously becoming toxic
side effects to a minimum). It involves the application of mathematical and
biochemical techniques in a physiologic and pharmacological context.’
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The effects and the duration of action of the drug are also taken into account. By
using experimental PK data from humans or animals which are typically a discrete time
sequence of drug concentrations obtained from a fixed volume. The data obtained from
such studies are useful for the design and execution of subsequent clinical trials, also for
the important goals of drug development by the pharmaceutical industry. Clinical phar-
macokinetics is the application of pharmacokinetic studies to clinical practice and to the
safe and effective therapeutic management of the individual patient. There are diverse
means of drug administration ranging from subcutaneous, intramuscular, oral, bolus, in-
travenous and infusion. In the last two cases, the drugs are introduced directly into the
blood plasma and so no absorption phase has to be taken into consideration. Typically,
as a drug dissipates through the body and is eliminated this gives rise to a prototypical
concentration/time curve that rises to a maximum concentration as the absorption phase
of the drug predominates and then decreases asymptotically to zero with time.
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Figure 1.1: Typical time concentration profile for one compartmental absorption pk model

This descent may be very rapid or could stretch over several days depending on the
elimination rate of the drug from the individual (see the figure 1.1).

1.2 Processes of PK

Absorption, Distribution, Metabolism and Excretion are four basic processes of pharma-
cokinetic studies and for this reason it is commonly known by the acronym ADME. We
now briefly describe these four processes with the corresponding PK parameters. PK
parameters are distinguished as primary, secondary and tertiary parameters. The parame-
ters which are directly related to the physiology are known as primary parameters, such as
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volume of distribution, clearance, absorption rate constant and dose. By using primary pa-
rameters we can calculate the secondary parameters, such as the elimination rate constant,
area under the plasma concentration time data curve (AUC) and by using the secondary
parameters we can calculate the tertiary parameters such as Cmax (the maximum concen-
tration), tmax (the time taken to reach at maximum concentration), t1/2 (time taken for C
max to drop its value to half). For details the reader is referred to reference [36].

Absorption is the process by which a drug moves from the administration site to the
systemic circulation and this is fully dependent on the routes of drug administration,
mainly oral, dermal, topical, subcutaneous, intravenous. Absorption is defined by a rate
which is the amount of drug per unit time and an extent which is the total amount of
drug. The parameter absorption rate constant usually is a first order rate constant for
drug absorption from the site of administration to the systemic circulation and can be
estimated using the curve stripping method (also known as the method of residuals) [36],
[29], [86].The absorption rate is influenced by some factors such as, types of transport, the
physicochemical properties of the drug, protein binding, dosage form, circulation at the site
of absorption, concentration of the drug etc. Unless the administration is IV (intravenous),
there is an absorption phase. Bioavailability is another important parameter related to the
absorption process, which defines the fraction (F ) of the administered drug that reaches the
systemic circulation and it’s value varies from 0 to 1. If F is less than 10 percent then the
drug is classified as “low bioavailable” and if it is greater than 90 percent then it is said to
be “high bioavailable”. Absorption kinetics are the basis of classification of bioequivalence
of generic drugs. If absorption profiles are identical for both the test formulation and
reference formulation, then the two formulations are said to be bioequivalent.

Distribution is the process by which a drug moves from the systemic circulation to other
tissues in the body. The process is largely determined by the physicochemical characteristic
of the drug molecules. Distribution occurs throughout the drug time course in the body
and it is very difficult to quantify the distribution with a PK parameter. There are two
main factors that affect distribution, one is the rate of distribution (i.e., how fast the drug
is distributed) and this is dependent on membrane permeability and blood perfusion [36],
[29], [86]. and another is the extent of distribution (i.e., how far the drug is distributed)
and this depends on the drug lipid (fat) solubility, pH-pKa, protein binding [36], [29], [86].
Distribution occurs in two different phases. In the first phase the heart, liver, kidney and
brain receive most of the drug during the first few minutes of absorption. The second
phase involves the muscles, most viscera, skin and adipose tissue.

To determine the appropriate drug dose regimen, the main PK parameter associated
with the distribution process is, the volume of distribution or apparent volume of distribu-
tion. Volume of distribution does not have any true physiological significance but by this
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parameter it is possible to identify the extent of drug distribution which help to determine
dosage requirements. Typically, dosing and volume of distribution are proportional to each
other. For instance, if the volume of distribution is large then the dosage should be pro-
portionally large to obtain a desired target concentration [14]. The (apparent) volume of
distribution can be calculated using the following equation:

volume of distribution=[amount of drug administered (dose)]/[initial drug concentration]

=⇒ Vd(l) = D(mg)
C0(mg/l)

C0 is the initial concentration, which is usually evaluated by direct measurement or can be
estimated by back-extrapolation from concentrations time data which has been collected
after the dose administered [14].

Metabolism or biotransformation refers to the chemical or enzymatic transformation of
a parent drug to another chemical form (metabolite). Metabolites tend to be more polar
which promotes excretion via the urine. The liver is primarily responsible for metabolism,
but the kidneys, intestines and lungs also contribute to metabolism [36].

Metabolism is influenced by some factors such as:

Age: Older people have less efficient metabolism

Sex: Hormonal differences linked with the metabolic processes

Heredity: Genetic differences can influence the amounts and efficiency of metabolic
enzymes

Disease state: The state of the liver, Kidney, cardiac disease also have impact on the
metabolism

Enzyme induction and Enzyme inhibition have some effect on the metabolism.

Excretion is the process by which drugs (and metabolites) are removed from the body.
Primarily excretion occurs through the kidney (urinary excretion), but it also occurs
through the lungs (volatile compounds), saliva, breast milk, sweat and bile (fecal excre-
tion).

Clearance is another important parameter in PK studies and quantifies the removal
of a drug from a volume of plasma in a given unit of time (drug loss from the body).
Clearance does not indicate the amount of drug being removed, it indicates the volume of
plasma (or blood) from which the drug is completely removed [14]. A drug can be cleared
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from the body by many different mechanisms, pathways, or organs, including hepatic
biotransformation and renal and biliary excretion. Total body clearance of a drug is the
sum of all the clearances by various mechanisms.

Another way of defining clearance is by using the relationship between drug dose and
AUC. Since AUC is a secondary parameter, it can be exactly calculated from concentration-
time data (or can be estimated). Some common AUC estimates are: exact AUC, AUC0−t
or AUC0−last, AUCall, AUC0−∞ [86].

Exact calculation of AUC for IV administration:

AUC =

∫ ∞
0

C(t)dt (1.1)

and for IV we have

C(t) =
D

Vd
e−(CL/Vd)t (1.2)

Now by substituting this in the AUC definition we have

AUC =

∫ ∞
0

D

Vd
e−(CL/Vd)tdt (1.3)

AUC =
D

CL
(1.4)

that mean

CL =
Dose

AUC
(1.5)

and if the administration is not IV, then this will be

CL =
S × F ×Dose

AUC
(1.6)

where S is the salt fraction which is used when the dose amount refers to the drug in
salt form and F is the absolute bioavailability for the specific route. In cases where the
bioavailability is unknown, the apparent clearance can be calculated as

CL

F
=
S ×Dose
AUC

(1.7)

Another PK parameter corresponding to elimination is rate of elimination and is given
by: Rate of elimination (mg/hr)=Clearance CL (l/hr)× Concentration C(mg/l). Even
though the clearance may be constant, the rate of drug elimination (mg/hr) can vary with
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concentration. Again, for details the reader is referred to standard text books such as [36],
[29], [86].

It takes on average 10 to 12 years for a drug to be approved and reach the clinical
consumer market. Within this period of time it has to pass the four different phases. All
these phases serve different purposes. Here is a brief description of these trial classifications
(from the U. S. Food and Drug website) [21]:

Phase I trial: In this trial the investigating drug is applied to a small group of
healthy volunteers for the first time, to assess treatment safety, determine the safe
dose regimen and related side effects [21].

Phase II trial: After successful execution of a phase I trial, the drug is administered
to a large group of people to determine the efficacy and safety on a larger scale [21].

Phase III trial: In this, the trial drug is given to a large population over a six to
twelve month period to assess efficacy more closely than Phase I and Phase II [21].

Phase IV trial: This trial is based on the post marketing strategy and is done after
the approval of FDA. Some additional information: drug’s benefit, risk and best use
are also deternined through this trial [21].

All these trials are very costly and time consuming. To resolve these issues drug companies
take initiatives to expedite these processes for the betterment of the patients without
approving harmful drugs. Mathematical and statistical modeling plays a vital role in this
context, by providing insights and quantitative predictions that provide rational guidence
for clinical trials [60].

1.3 PK models

Pharmacokinetic models are generally classified as either individual-based or population-
based. For individual-based models, PK parameters must be calculated based solely on
each individual patient’s characteristics (i.e., from data specific to a particular patient).
For population-based models, however, parameters are determined from data gathered
from many individuals. Hence the latter models, capture (in a sense) the average behavior
of individuals in a particular population and take into account random and fixed effects,
which give rise to variability between individuals in a population and within individuals.
However, careful consideration must be taken (when using population-based PK models) of
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the underlying assumptions made when combining different patient data from a particular
study as well as patient data from different studies. In particular careful thought must be
given to the choice of sampling distributions of population estimates. The most common
and widespread approach in pharmacokinetics is the use of compartmental models. Here
the body, is considered to be an interconnected system of compartments where, ideally
each compartment can be given some physiological interpretation. Each compartment
is assumed to be homogeneous and well mixed. The interchange and transfer of drug
molecules between compartments is determined by the kinetic rate constants. The law of
mass action is widely applied in classical pharmacokinetic compartmental models. Thus
a chemical reaction rate is assumed to be directly proportional to the product of the
concentrations of m reactants each raised to a power ni(i = 1, 2, ....,m). For a general PK
model with n− compartments, the governing system of DE’s can be written as :

dC(t)

dt
= KC(t) (1.8)

where CT (t) = (C1(t), C2(t), .....Cn(t)) and K is the matrix of kinetic rate coefficients
K = kij, where the kij are non-zero if compartments i and j are coupled in the model.
The solution to the system (1.8) can be written down as:

Ci(t) =
m∑
j=1

aij

(mj−1∑
k=0

bijkt
k
)
exp(−λjt) (1.9)

where aij and bijk are constants and the matrix K has m distinct eigenvalues λj with
multiplicity mj [53]

Compartmental models are widely applicable and have the advantage of being able to
be interpreted in terms of physiological processes or body organs/components. There are,
of course, limitations to the classical compartmental models; the major objections relate
to the assumption of homogeneity of each compartment and the assumption that each
compartment is well mixed. However, a compartmental model might be assessed suitable
if the relative mixing rates within the compartments is on a much faster time scale than
the transfer rate between compartments.

1.3.1 Non-compartmental models

Non-compartmental models were developed to overcome some of the limitations of com-
partmental models. Approaches include linear Systems Analysis, Mean Residence Time
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Theory and the Method of Moments amongst others. They have the distinct advantage
that fewer assumptions are made, and many of these assumptions are based on experi-
mental observations rather than on assumptions about the underlying mechanisms. The
methodology is also applicable to a wide range of date.

There are clearly drawbacks and limitations to compartmental models, and to circum-
vent some of these problems, several non- compartmental models have been proposed in
the literature. For example [85] uses the method of moments and quantifies such as mean
residence time, and area under the moment curve to analyze and extract information from
a data set. Another approach is taken by [61], where linear system analysis (convolution,
deconvolution, disposition decomposition analysis) is applied to deduce information from
a data set. The attraction of this approach is that fewer assumptions are usually made
(compared to compartmental models), and even these are based generally on observed
outcomes or behaviors rather than on the underlying mechanisms or state of the system.
However [45] shows how a non-compartmental circulation model is equivalent to a multi
compartmental model, where the compartments are connected in series. So it is apparent
that in many cases “non-compartmental” models can be framed in terms of a corresponding
compartmental model. In both contexts, the models can be formulated in terms of deter-
ministic or random variables. Stochastic effects can be captured in the models by using
either random inputs/random initial conditions, or by making the kinetic rate coefficients
matrix K a random matrix, or by using the random walk formalism.

1.3.2 Linearity and Non-linearity

If the output of a system is directly proportional to input then a system is generally
classified as linear. Systems are governed by zeroth order or first order kinetics guarantee
this property and are described, for one compartmental models, by the linear differential
equation

dC

dt
= kC (1.10)

Solutions to linear differential equations satisfy the linear superposition principle. Thus
if the drug concentration C is a linear function of the dosage d, then for any arbitrary
constants a1 and a2, the concentration C for a dosage d = a1d1 + a2d2, is given by:
C = a1C1 + a2C2. Linear superposition indicates that the drug molecules interact in a
stochastically independent fashion [82]. In contrast, for a molecular system the action of
a drug molecule is altered and changed by the behavior of other drug molecules [13]. For
example, assuming stochasticity of drug absorption and elimination, if random components
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are added to the kinetic rate coefficient k then the system is still considered to be linear
with a stochastic input, e. g., consider the one compartmental model

dC

dt
= k∗C + i(t) (1.11)

where k∗ = k + r, and k represents the deterministic rate and r represents the stochastic
contribution to the kinetic rate coefficient k∗, then equation (1.11) can be written as:

dC

dt
= kC + [rC + i(t)] (1.12)

where [rC + i(t)] can be considered to be the stochastic input. However if the random
effects are considered to be actually in the concentration C, then the effects are nonlinear.

The nonlinear dependence of the drug concentration on dosage and other factors, clearly
adds a further complication for clinicians when trying to design effective dosage schedules,
and in trying to predict a drug’s efficacy and toxicity. Broadly speaking, nonlinearity in
PK is split into dose-dependent and time-dependent. In phase I clinical trials, the concept
of dose proportionality is commonly used when carrying out dose escalation experiments.
Here, patient response to varying drug dosage is measured. If PK parameters remain
constant with variation of dosage, the system PK is classified as dose independent (over
the therapeutic range of interest). If increase in dosage of a drug produces a proportional
increase in the PK parameters (AUC (area under the curve) or Cmax), the system is
classified as linear and dose dependent. If the variations in parameter values are not directly
proportional to the variation in drug dosage, the system is classified as non-linear and dose
dependent. PK parameters may also vary in time due to physiological change in the body or
through drug induced changes in the body. Clearly, the PK parameters can be both dose-
dependent and time-dependent. The proposed reasons and sources for this dependency
appear to be similar in both cases. Lin [49], suggests that non-linear dose dependence is
rooted in the absorption process, drug distribution variation in tissue and in the elimination
process. [47] proposes that non-linear time-dependence arises from variations in absorption
and elimination parameters, enzyme activity, plasma protein binding and the elimination
processes.

1.3.3 Enzyme kinetics

Biological and biochemical processes are common characteristic features present in all ani-
mals and living organisms. There are complex biochemical reactions catalyzed by proteins
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(known as enzymes) which react with certain compounds (substrates). In 1913, Michaeles
and Menten proposed a characterization of one of the most basic of enzymatic reactions,
which has been used as a standard formalism, since then for describing such reactions.
This is represented schematically by;

S + E
k1

�
k−1

(ES)
k2→ E + P...(∗)

where a substrate S reacts with an enzyme E to produce a complex (ES) which produces
a product P and the enzyme E. k1, k−1 and k2 are reaction rate constants associated with
particular reactions

Figure 1.2: Michaelis Menten Kinetics: where we have taken reaction rates. k1 = 0.5e− 3,
k2 = 0.5 and k−1 = 0.5e− 4 and initial substrate S(0) = 1000, initial enzyme E(0) = 500
, initial product P (0) = 0.

Let [S], [E], [SE] and [P] denote the concentrations of reactants in the relation (*).
Applying the law of mass action results in differential equation for each reactant, can be
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described as following:

d[S]

dt
= −k1[S][E] + k−1[ES], (1.13)

d[E]

dt
= −k1[S][E] + (k−1 + k2)[ES],

d[ES]

dt
= k1[S][E]− (k−1 + k2)[ES],

dP

dt
= vp = k2[ES].

The mathematical formulation is completed by a set of initial conditions, corresponding to
the start of the whole process of conversion of S to P:

S(0)=[S]0, E(0)=[E]0, ES(0)=0, P(0)=0.

On adding the second and third DEs, we obtain

[dE]

dt
+
d[ES]

dt
= 0, (1.14)

i.e., E(t)+ES(t)=E0 and by using this and substituting for [E] in the third DE (for the
enzyme substrate complex), we obtain

d[ES]

dt
= k1(E0 − [ES])[S]− (k−1 + k2)[ES]. (1.15)

Assuming that the initial formation of the complex [ES] is very rapid (after which it is, for
all intents and purposes, at equilibrium), we have

k1(E0 − [ES])[S]− (k−1 + k2)[ES] ≈ 0, (1.16)

from which we can evaluate:

[ES] =
k1[S]E0

k−1 + k2 + k1[S]
,

or

[ES] =
E0[S]

kM + [S]
,

where

kM =
k−1 + k2

k1
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is the Michaeles Menten constant. Since the velocity of the reaction is given by: v = k2[ES],
this implies

v =
k2E0[S]

kM + [S]
=

vmax[S]

kM + [S]
,

where vmax = k2E0 is the maximum velocity of the reaction and kM (the Michaelis-Menten
constant) gives substrate concentration at 1

2
vmax
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Chapter 2

The relevance of Stochasticity in PK
models

2.1 Introduction

The traditional approach to the study of Pharmacokinetics (PK) is to imagine the human
body as subdivided into various communicating compartments, in each of which a drug
(administered in various forms) enters and exits at certain constant rates which must be
determined from experimental data.

The translation of this hypothesis into a mathematical model leads to a set of coupled
ordinary differential equations (ODEs), and the procedure and its uses are given in great
detail in classic text books, such as Gibaldi and Perrier’s “Pharmacokinetics” [29]

Although used successfully in many instances, this approach is not free of serious diffi-
culties. For, on the one hand, to be physiologically accurate the number of compartments
must be large in order to reflect the different ways in which organs process the drug; but,
on the other hand, the larger the number of compartments the more unknown rates ap-
pear in the system of ODEs. As the aim of PK is to describe the total concentration of
the drug in the body, the solution of the mathematical model would require many more
concentration measurements than actually possible. Furthermore, the assumption that the
rates are constant is also on shaky grounds, as the effects of (unknown) fluctuations from
compartment to compartment suggest a time dependence of the rates.

In order to illustrate some of these difficulties, consider the problem of determining the
rate of drug absorption and its related bioavailability. This has long been recognized as a
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difficult problem. In fact, in the words of Gibaldi and Perrier(p.129) [29]

“We must state at the outset that assessments of the rate of availability is one
of the most difficult problems encountered in developing a pharmacokinetic
profile of a drug since these assessments are always model-dependent and must
frequently be attempted with the most shocking paucity of data”.

Normally, one assumes that drug absorption after oral or intramuscular administration
occurs by an apparent first order process, which leads to the introduction of an absorption
constant ka (or of an absorption half-life, that is, ln 2

ka
), which in turn is commonly estimated

using one of three methods from plasma concentration data and occasionally, from urinary
excretion data:

• The method of residuals (sometimes called “curve stripping”);

• The employment of plots of percent unabsorbed versus time;

• The method of nonlinear least squares regression analysis.

These methods have been in use for a long time, and have been critically discussed in
the literature. The method of residuals is mathematically flawed, so that the estimated
values of the rates of absorption must be considered (at best) as rough initial values. The
second method has severe difficulties when a drug confers upon the body the characteristics
of a multi compartment model; and regardless of what one sees often oral administration
“virtually all drugs confer multi compartment characteristics on the body” (Gibaldi and
Perrier, p.144) [29]. In that case, even the method of nonlinear least squares regression
analysis, which is usually considered as the method of choice, has serious limitation. Firstly,
one may not know whether the rate constants so determined represent ka or the disposition
rate constants α and β. Secondly, the method systematically overestimates the rate of
absorption when there is a process that competes for the drug at the absorption site, such
as first-order degradation.

In recognition of the above-mentioned difficulties, researchers have introduced a differ-
ent approach over the last couple of decades. It basically consists of the assumption that
any rate (of interest) in PK is a function of time that cannot be calculated determinis-
tically; rather the rate fluctuates in time around a mean value, and the fluctuations are
modeled as random functions whose statistical properties are assumed given.

This apparently simple assumption has a drastic effect on the mathematical status
of the compartmental ODEs. As is well known, in the classical theory of ODEs (see,
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e.g., Ince “Ordinary Differential Equations”, [35]), once the coefficients and appropriate
initial conditions are specified one can then prove fundamental theorems of existence and
uniqueness, and then develop techniques for finding exact or approximate solutions. But if
the coefficients are random variables, or random functions, no part of the classical theory
applies and the resulting Stochastic Differential Equations (SDEs) require new concepts,
starting with the meaning of “solutions” for them.

There is a vast literature on SDEs in mathematics and physics (going back to the
beginning of the 20th century) which is impossible to review here. Suffice it to say that the
interested reader can find excellent text books, such as “Stochastic Differential Equations:
Theory and Applications” [3], whose focus is on rigorous mathematics. For those readers
who are more interested in the applications of SDEs to physical and chemical phenomena
the book by Van Kampen, “Stochastic Process in Physics and Chemistry” [79] is highly
recommended. Also useful in this regard is the book by Gardiner, “Handbook of Stochastic
Methods” [25], which contains many worked-out examples, including a thorough discussion
of the most famous of all stochastic processes, namely Brownian motion, which we shall
review momentarily.

The role played by stochastic processes in biological and pharmacological phenomena
is not as well understood as in older areas of science. There have been early attempts at
describing the drug’s molecules as a discrete population of N particles whose steady state
motion among m components is described probabilistically [58].

In the next section, we present some mathematical details relevant to the application
of stochastic processes to PK.

2.2 Stochastic PK models and additive noise

Deterministic models are not capable of taking into account the uncertainties, which may
rise either from the measurement errors or from the intrinsic fluctuations of the biological
system itself. This has been recognized for a long time, and many stochastic models have
been proposed where the fluctuations have been represented by random functions of time.
Some of these studies we are going to discuss here. Limic [48] studied the stochastic
nature of the compartment models due to randomness of the parameters. The focus of
the study was to evaluate the statistical average of the model by considering transition
rates as constant and fluctuations are described by Gaussian process. D’Argenio and Park
[15], reviewed design, estimation, and control of uncertain PK/PD systems. The focus
of this work was the study of biological systems for which measurement of some process
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variables occurs infrequently and at irregular intervals that is, the analysis of sparse data
system. The authors assumed that the model under consideration can be written as a
linear continuous dynamical systems with uncertainty due to both system (biological)
noise and to measurement error. Kalman filter formulation [38], used to compute the
maximum likelihood function which determines the estimates of the unknown parameters.
An important point in this paper is the assumption that the model parameters are constant,
and therefore the noise is additive. Ramanathan [66], provided an introduction to Ito’s
calculus [25], for researchers in pharmaceutics. Ito’s lemma is applied to the simplest
case of PK (first order PK process with elimination rate constant ke) and to the standard
Michaelis-Menten effect E (E = EmaxC

E50+C
) of PD. As already mentioned, the noise is supposed

to be white and additive. In the following study, Ramanathan[67], attempted to use ito’s
lemma to model and estimate the PK risks associated with drug interactions in populations.
Unfortunately neither “drug interaction” nor the “risk” are clearly defined, thus making
any objective assessment next to impossible. Ferrante et al., [20], demonstrated their
study with a reminder of the deterministic description of a linear compartment model by
the ODE

dx

dt
= −kex(t) + f(t) (2.1)

where x(t) is the variable of interest (usually a concentration), ke > 0 is the (constant)
rate of elimination, and f(t) is the input (infusion function) over an interval [0, T ]. Study
claimed that the input function may be subject to unpredictable fluctuation from many
sources, which makes it reasonable to assume that f(t) can be modeled as

f(t) = r + bη(t) (2.2)

where r and b are constant and η(t) is a Gaussian white noise. After a short review of
SDE’s defined by ito’s calculus for Gaussian white noise, Ditlevsen et al., [16], studied
random effects incorporating diffusion models for a simple PK case of the metabolism of
a compound by first-order kinetics following a bolus injection, and were able to calculate
the maximum likelihood estimators of the parameters, while simulation studies are done to
check the estimators. Once again the stochastic aspects are treated by additive Gaussian
white noise.

In the next section some basic definitions and assumptions will be discussed, by con-
sidering an example of a simple one compartmental model, which are necessary to solve a
random process.
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2.3 Some basic concepts before solving a random sys-

tem

The basic assumptions of compartmental PK models have already been discussed in the
previous chapter. We now focus on the basic (deterministic) one compartmental model,
its extension to a random differential equation, and the concepts and methods used in the
formulation and approximation of such random differential equations.

Suppose a drug is administered intravenously and the initial amount of the drug is A0,
we can now define the rate of drug loss from the body as:

dA

dt
= −kelA; (2.3)

where the initial condition A(0) = A0 is the dose administered initially. Here A(t) is the
amount of drug in the body after time t, kel is the first order elimination rate constant.
The solution to equation (2.3) is:

A(t) = A0e
−kelt. (2.4)

Now dividing by the volume of distribution V we can write equation (2.4) as:

C(t) = C0e
−kelt, (2.5)

where C = A
V

is the drug concentration in plasma. The unknown constants C0 and kel can
be determined by fitting:

lnC(t) = lnC0 − kelt, (2.6)

to the measured drug concentration in the plasma, commonly carried out by using the
“least squares” method. It should be mentioned that our bodies can eliminate drugs via
several pathways, and the elimination rate constant kel is an effective rate constant that
combines several rate constants of several individual processes,

kel = ke (renal elimination/excretion) +km (metabolism elimination)+....

as the elimination of a drug from the body can occur through several pathways. In standard
textbooks on PK (e.g., Gibaldi and Perrier, chapter 1 [29]; Welling, Chapter 10 [86]),
attempts to derive values for ke, kabsorption and km from same data, are described. These
methods are related to the “method of residuals”.
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Let us examine this simple model from a different perspective. As we have mentioned
in chapter 1 that, the one compartment open model treats the body as a homogeneous
system but in reality, concentration of drugs are different in different organs and other
tissues as well as in the plasma. So we can say that the elimination rate constants are not
the same for different organs and also that the measurement of plasma concentration is
relatively simpler than for other organ and tissues. By considering this situation we can
modify our model. Let us assume that the main elimination pathway has the rate constant
k0 and thus appropriately we can write our deterministic differential equation as:

dA

dt
= −k0A (2.7)

with A(0) = A0 = dose (as mentioned earlier), A(t) is the amount of drug in the plasma at
time t and A0 is the initial dose injected instantaneously at time t = 0. It seems clear that
this measured amount will fluctuate in time since not all the drug is eliminated through
the same pathways. In order to take these fluctuations into account we assume that the
contributions from all other pathways are represented by a random function of time k1L(t),
here k1 is a constant (which has the same dimensions as a rate) and L(t) is the fluctuating
extra amount of drug. Then we can rewrite the model as:

dA

dt
= −k0A− k1L(t)

with A(0) = A0 which we notice is a Langevin like random differential equation [25]. By the
same procedure as before, we can divide the whole equation by the volume of distribution
and can get RDE for the concentration C(t) in the plasma as:

dC

dt
= −k0C − k1l(t) (2.8)

with C(0) = C0 is the initial concentration and l(t) = L(t)
V

.

Remark: The random function l(t) in equation (2.8) is not known, and so we have
one RDE for two unknown functions, C(t) and l(t). Furthermore, l(t) fluctuates rapidly
in time, which makes C(t) a random function as well. If equation (2.8) were an ODE then
we could complete the model by deriving another ODE for the extra unknown l(t). But
(2.8) is not a deterministic equation, that it is not a differential equation since dC

dt
doesn’t

exist [19]. Therefore we first of all decide what “solving a RDE” means.

Some preliminary notions are necessary. When we consider a random variable, we
consider everyone of its possible outcomes associated with an associated probability for
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that event to occur. And if the random variable X is continuous as our C is, then there
are two probability distributions associated with it:

• a probability density function (pdf) of a continuous random variable X can be defined
as prob (x ≤ X ≤ x+ dx) = p(x)dx, which satisfies two conditions:

1. p(x) ≥ 0,

2.
∫∞
−∞ p(x)dx = 1,

• a cumulative distribution function (cdf) P (x) is such that prob P (X ≤ x) =
∫ x
−∞ p(x)dx,

so that p(x) = dP
dx

.

We can define the average concentration of C of a random variable X as its expectation
over the pdf, i.e.,

〈C(X)〉 = E{C(X)} =

∫ X

0

C(X ′)p(X ′)dX ′. (2.9)

Physically, the concentration

C = lim
∆V→0

A

∆V

In practice it is the number of drug molecules per unit volume when the volume is in-
finitesimally small. But our instruments can not count molecules; hence, what we actually
measure is an average concentration at that instant. So we give up the idea of measuring
the instantaneous concentration, and focus our attention on trying to calculate 〈C(t)〉 from
the RDE (2.8).

A major concern is how the pdf p(x) will be presented. From our knowledge about
ODEs we know that to obtain a unique solution we require an initial condition, how-
ever the uniqueness theorem doesn’t apply for RDEs. To handle this situation we look
for possible initial conditions, and not taking just one condition but the probability distri-
bution of all the possible initial conditions p(x), which we can define as the initial ensemble.

Solving the RDE (2.8): By considering the above remarks, we start out considering
the possibility of transforming equation (2.8) into an ODE for 〈C(t)〉. Therefore we take
the expectation of each term of equation (2.8) and get:

〈dC
dt
〉 = −〈k0C(t)〉 − 〈k1l(t)〉
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where k0 and k1 are constants. Now as we saw above the average 〈...〉 is an integral over
the initial ensemble, and so 〈...〉 and d

dt
〈...〉 commute. Therefore we may rewrite the above

equation as:

d

dt
〈C〉 = −k0〈C(t)〉 − k1〈l(t)〉.

From here we assign a statistical property to the random function l(t) so that it has
zero mean i.e., 〈l(t)〉 = 0, which will give us a closed equation for 〈C〉. Now using this
assumption, equation (2.8) becomes:

d

dt
〈C〉 = −k0〈C〉 (2.10)

with the initial condition 〈C(0)〉 = C0.

Comparing this result with equation (2.7) divided by V i.e, dC
dt

= k0C, we see that
the two are formally the same but are in reality different. The phenomenological equation
(2.7) involves the instantaneous concentration C(t), while( 2.10) involves the average con-
centration 〈C(t)〉. This make sense, because the concept of instantaneous concentration
is unrealistic due to the fact that it takes some time to measure C, so our instantaneous
concentration really measures an average value.

Problem: our equation (2.10) contains no reference to the fluctuations in C(t). Now
to handle the situation we make the following observation. Instead of calculating 〈C(t)〉
by equation (2.10), we can find it directly from the RDE (2.8). In fact, by formally solving
(2.8) we get:

C(t) = C0e
−k0t − k1e

−k0t

∫ t

0

ek0t′l(t′)dt′ (2.11)

and taking averages over the initial ensemble this leads to

〈C(t)〉 = C0e
−k0t − k1e

−k0t

∫ t

0

ek0t′〈l(t′)〉dt′. (2.12)

Hence, if we require as before that 〈l(t)〉 = 0, then we get 〈C(t)〉 = C0e
−k0t, which is just

the solution of the ODE (2.10).

Remark: Here we notice that equation (2.11) makes more sense than the original
RDE (2.8), because while derivatives of random functions are ill-defined their integrals are
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perfectly respectable at least in the mean square sense.

Remark: Another important concept in the analysis of random processes deals with
the moments. If we have a random function X taking (continuous) values x over the
interval (−∞,∞), its moments are given by the integral:

mn =

∫ −∞
−∞

xnf(x)dx. (2.13)

The first moment m1 which is usually denoted by µ is the average (usually called the
mean).

〈x〉 = µ =

∫ −∞
−∞

xf(x)dx, (2.14)

the second moment m2 is given by

〈x2〉 = m2 =

∫ −∞
−∞

x2f(x)dx (2.15)

and so on. Another important measure is the variance which can be defined as;
σ2 = 〈x2〉 − 〈x〉2 and the positive square root of the variance is known as the standard
deviation, σ, which describes the effect of the fluctuations.

Now we have already calculated the average concentration 〈C(t)〉 = C0e
−k0t. So we can

calculate the second moment by squaring the equation (2.11) and then taking the average
we get the equation:

〈C2(t)〉

= (C0e
−k0t)2 − 2C0k1e

−2k0t

∫ t

0

ek0t′〈l(t′)〉dt′

+ k2
1e
−2k0t

∫ t

0

∫ t

0

ek0(t+t′′)〈l(t′)l(t′′)〉dt′dt′′ (2.16)

and since we have already assumed in equation (2.12) that 〈l(t)〉 = 0, it follows that the
second term on the right hand side vanishes. However we don’t know the value of the last
term.

In order to find a specific value for the second moment of the concentration we must
specify more statistical properties of the random function l(t), since specifying the mean is
not enough. In other words, we must specify the auto-correlation function of l(t) which is:
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〈l(t)l(t′′)〉. Now we can take l(t) to be delta-correlated, as is done in the Langevin theory
of Brownian motion, i.e; 〈l(t)l(t′′)〉 = δ(t− t′′), which is the simplest assumption and using
this relation we can write equation (2.16) as

〈C2(t)〉 = (C0e
−k0t)2 + k2

1e
−2k0t

∫ t

0

e2k0t′dt′ (2.17)

= 〈C(t)〉2 +
k2

1

2k0

(1− e−2k0t)

and therefore variance is given by;

〈C2(t)〉 − 〈C(t)〉2 =
k2

1

2k0

(1− e−2k0t), (2.18)

which reflects the effect of fluctuations around the average.

The Auto-Correlation function: as shown by equation (2.18) above, the effect of
the uncertainty produced by the noise term in C(t) i.e. the effect of the fluctuations
can be estimated from the variance. However, a more interesting way of calculating the
fluctuations is found by studying the auto-correlation function of the random variable.

First we will go back to the RDE (2.8) and multiply each term by C(t′), where t′ > t:

C(t′)
d

dt
C(t) = k0C(t′)C(t)− k1C(t′)l(t).

Since C(t′) does not depend on t i.e., C(t′) d
dt
C(t) = d

dt
C(t′)C(t), and now by taking the

average we get:
d

dt
〈C(t′)C(t)〉 = k0〈C(t′)C(t)〉 − k1〈C(t′)l(t)〉 (2.19)

The last term is known as the cross-correlation of C and l (which is related to the covari-
ance) and by the assumptions we have made, it vanishes. Thus equation (2.19) becomes:

d

dt
〈C(t′)C(t)〉 = k0〈C(t′)C(t)〉 (2.20)

which shows that the auto-correlation function obeys the same (deterministic) ODE as the
average C(t) (comparing with the equation (2.10))

Remark: But this is true in general for additive noise only [25].
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The calculation of the fluctuations from the auto-correlation function is similar to
our previous calculation of the variance. Starting from the formal expression (2.11) and
remembering that, 〈C(t)〉 = C0e

−k0t, we set

Γ(t, t′) = 〈∆C(t)∆C(t′)〉,

where ∆C(t) = C(t)− C0e
−k0t and similarly for ∆C(t′). Then equation (2.11) gives:

Γ(t, t′) =
〈(
− k1e

−k0t

∫ t

0

ek0 t̄l(t̄)dt̄
)(
− k1e

−K0t′
∫ t′

0

ek0 t̂l(t̂)dt̂
)〉

= k2
1e
−k0(t+t′)

∫ t

0

∫ t′

0

ek0(t̄+t̂)〈l(t̄)l(t̂)〉dt̄dt̂

= k2
1e
−k0(t+t′)

∫ t

0

∫ t′

0

ek0(t̄+t̂)δ(t̂− t̄)dt̄dt̂

= k2
1e
−k0(t+t′)

∫ t

0

e2k0 t̂dt̂

=
k2

1

2k0

e−k0(t+t′)(e2k0t − 1) (2.21)

From this we can immediately get the variance by setting t = t′:

Var C(t) = Γ(t, t) =
k2

1

2k0
(1 − e−2k0t), which is just equation (2.18). Furthermore, the

auto-correlation function becomes simpler if we normalize to 1, i.e.

Γ(t, t′)

Γ(t, t)
= ek0(t−t′) = k(t− t′)

=
e−k0(t+t′)(e2k0t − 1)

e−2k0t(e2k0t − 1)

= e−k0(t+t′−2t)

= e−k0(t′−t)

= K(t′ − t) (2.22)

which shows that the Stochastic process described by the Langevin-like equation (2.8) is
stationary i.e., it is only dependent on the time difference t− t′

Now since t and t′ are arbitrary, it is convenient to set t′ = t + τ , after which the
auto-correlation function (2.22) becomes:

K(τ) = ek0τ , (0 ≤<∞) (2.23)
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Remark: The simple exponential form of the auto-correlation function implies that the
Stochastic process under study is stationary and Markovian, as proved by Doob [19]. In
fact Doob proved that K obeys the functional equation K(t3 − t1) = K(t3 − t2).K(2−t1),
(t3 > t2 > t1) whose only non-singular solution is (2.23).

So far we are discussing the situation when a random function is added to the system,
i.e., additive noise or in other words Gaussian white noise. When a random function
is added to an ODE its statistical properties must be given. That is why when equation
(2.8) was written down it was specified that the statistical properties of l(t) are those of
Gaussian white noise. These properties are easily expressed in terms of moments of l(t);
specifically they are the following:

• (a) 〈l(t)〉 = 0 i.e., l(t) has zero mean.

• (b) 〈l(t1)l(t2)〉 = δ(t1− t2), i.e., the process is stationary and its correlation function
is a “delta function”.

• (c) Higher moments are zero when they are odd e.g., 〈l(t1)l(t2)l(t3)〉 = 0; even mo-
ments are the sum of terms obtained by breaking them up is all possible ways into
product of pairs and applying (b) to each pair e.g.,

〈l(t1)l(t2)l(t3)l(t4)〉 = δ(t1 − t2)δ(t3 − t4) + δ(t1 − t3)δ(t2 − t4) + δ(t1 − t4)δ(t2 − t3)

It is very important to understand the physical implications of these properties, for no
properly defined stochastic process with these properties exists. “Gaussian white noise is
a singular object, just as the delta function is a singular function” [80].

2.4 Limitations of the Langevin process

The example discussed in the preceding section illustrates the general philosophy behind
the use of the Langevin equation. For simplicity, we consider again a one-compartmental
model, but the method can be generalized to the multi-compartment one. In the linear
case one knows the macroscopic (deterministic) ODE for a quantity of interest x(t) of the
form

dx

dt
= −kx (2.24)
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where k is some rate constant. Then one notices that, for whatever reason, this equation
is not correct because x(t) fluctuates in time around the values given by it. These fluc-
tuations are produced by the system itself, are not related to the measurement noise, are
usually small, and vary very rapidly in time.

In order to take these fluctuations into account, one then supplement equation (2.24)
with a random function of time added to the right hand side (as done in the original
Langevin equation [79]) and having the statistical properties of Gaussian white noise,

dx

dt
= −kx+ bl(t), (2.25)

which in turn is rewritten as an Ito equation, and solved by means of Ito’s calculus [25].
Physically one can think of l(t) as an infinite series of “pulses” which add or subtract from
x(t) completely at random, thus making it plausible to assume that l(t) has zero mean.
Hence, on taking the expectation of each term in Eq. (2.25)

d

dt
〈x〉 = −k〈x〉, (2.26)

one sees that the mean of x(t) obeys the same equation as the macroscopic ODE (2.24).
This procedure no longer applies when the compartmental parameters that is, the coeffi-
cients of the macroscopic ODEs are fluctuating. For example, if one assumes that the rate
constant k in Eq. (2.24) is a random function of time fluctuating about a mean k̄, such as

k(t) = k̄ + αξ(t) (2.27)

where α is a measure of the size of the fluctuations and ξ(t) represents the noise, then Eq.
(2.24) reads as

dx

dt
= −(k̄ + αξ(t))x. (2.28)

On taking the average of this equation one gets

d

dt
〈x〉 = −k̄〈x〉 − α〈ξx〉, (2.29)

which is not the same as the macroscopic equation (2.26) unless ξx = 0; that is, unless ξ(t)
and x(t) are uncorrelated. Now that is true only for white noise [80], in which case ξ(t) is
the Wiener process and equation (2.28) may be written as the Ito equation

dx = −k̄xdt− αxdW. (2.30)
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These facts explain why most of the literature in this area consists of stochastic PK/PD
models assuming that the noise is white, and the reader can find many examples in the
recent review by Donnet and Samson [18].

Another way of characterizing white noise is by means of the parameter tc, the cor-
relation time of the noise. As white noise is delta-function correlated we have tc = 0; in
contrast, non-white noise (also known as “colored noise”) has a finite tc 6= 0. Therefore,
the question arises: Can Eq. (2.28) be “solved” in some sense when ξ(t) is colored noise
and 〈ξ(t)ξ(t′)〉 6= δ(t− t′)? No exact method of solution is known in this case, but approx-
imation methods have been developed and applied successfully in the physical sciences, at
least in the case of realistic noise whose correlation time is short, but not infinitely short .
Therefore the purpose of this thesis is to investigate whether these approximation tech-
niques can also be successful in the study of stochastic PK/PD models. For the convenience
of the reader these new methods will be reviewed in the next two sections. Furthermore,
in order to avoid confusion with the terminology used in the literature when the noise is
assumed to be white, it will be useful to refer to differential equations whose coefficients
are random functions as Random Differential Equations (RDE’) to remind ourselves that
we are dealing with non-white noise.

2.5 The Bourret integral equation for the mean

In a series of papers starting in 1961, Bourret was the first to propose a systematic approx-
imation method to deal with RDE’s [6], [7], [8]. He borrowed mathematical techniques
developed by physicists in Quantum field theory, and so his papers are very difficult to
understand. Fortunately, however, Van Kampen [79] showed a decade later how to obtain
Bourret’s approximation by a much simpler heuristic method. Therefore, we shall follow
Van Kampen’s approach systematically.

We have already seen in Eq. (2.28) the structure of the RDE’s one has to deal with
in the study of stochastic PK models. That example pertained to a one-dimensional (one
compartment) model, but it can be easily generalized to a multi-compartment model with
random coefficients. Thus we shall consider the RDE

du

dt
= (A0 + αA1(t))u (2.31)

with the initial condition u(0) = u0, where u is an n-component vector, A0 is constant n×n
matrix, α is a parameter determining the size of the fluctuations and is usually small, and
A1 is an n× n random matrix with zero mean, i.e., 〈A1〉 = 0.

27



The goal here is to find deterministic equation for the moments of u by choosing a
proper mathematical model, for small α. Now by simply averaging equation (2.31) we get:

d〈u〉
dt

= A0〈u〉+ α〈A1(t)u〉. (2.32)

To approximate cross correlation 〈A1(t)u〉 following assumptions are commonly used in
the literature:

1. 〈A1(t)〉 = 0

2. A1(t) has a finite (nonzero) correlation time say τc
=⇒ for any two times t1 and t2, |t1 − t2| >> τc,
A1(t1) and A1(t2) are statistically independent.

Following Van Kampen [81], we first perform a change of variables in (2.31) by setting an
interaction expression:

u(t) = eA0tv(t) (2.33)

obtaining in a straight forward way the new RDE

dv

dt
= αV (t)v(t)

v(0) = u(0) = u0 (2.34)

where V (t) is a new random matrix given by

V (t) = e−A0tA1(t)eA0t (2.35)

Since α is small the obvious method seems to be perturbation series in α:

v(t) = v0(t) + αv1(t) + α2v2(t) + .... (2.36)

where

u0 = v0(0) + αv1(0) + α2v2(0) + ....

=⇒ v0(0) = u0; vi(0) = 0 ∀i ≥ 0

Substituting these into equation (2.34) we get:

dv0

dt
+ α

dv1

dt
+ α2dv2

dt
+ .... = αV v0 + α2V v1 + α3V v2 + .... (2.37)
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Equating α on both sides

dv0

dt
= 0

dv1

dt
= V v0

dv2

dt
= V v1

and so on. Now by solving the above relations we can get:

v0 = constant = u0

v1 = u0

∫ t

0

V (t′)dt′

v2 = u0

∫ t

0

∫ t′

0

V (t′)V (t′′)dt′dt′′

Now using all these values equation (2.36) becomes:

v(t) = u0 + α
(∫ t

0

V (t′)dt′
)
u0 (2.38)

+ α2
(∫ t

0

∫ t′

0

V (t′)V (t′′)dt′dt′′
)
u0 + .....

Upon taking average with fixed u0, one can get:

〈v(t)〉 = u0 + α
(∫ t

0

〈V (t′)〉dt′
)
u0 (2.39)

+ α2
(∫ t

0

∫ t′

0

〈V (t′)V (t′′)〉dt′dt′′
)
u0 + .....

=⇒ 〈v(t)〉 = u0 + α2
(∫ t

0

∫ t′

0

〈V (t′)V (t′′)〉dt′dt′′
)
u0 + ..... (2.40)

since V (t) = e−tA0A1(t)etA0 and we assumed 〈A1(t)〉 = 0 =⇒ 〈V (t)〉 = 0

From the perturbation, one can claim the previous expression of 〈v〉 is an approximation
up to 2nd order in α but this is not a suitable perturbation as it is increasing not only in
α but also in αt and is therefore valid only αt << 1

29



To overcome the situation Bourret demonstrated a heuristic approach for which equa-
tion (2.34) is strictly equivalent to the integral equation

v(t) = a+ α

∫ t

0

V (t′)v(t′)dt′. (2.41)

Equation (2.41), after one iteration can be written as:

v(t) = u0 + α

∫ t

0

V (t′)
(
u0 + α

∫ t′

0

V (t′′)v(t′′)dt′′
)
dt′

= u0 + u0α

∫ t

0

V (t′)dt′ + α2

∫ t

0

∫ t′

0

V (t′)V (t′′)v(t′′)dt′′dt′

and by taking average we can get (recall that 〈V (t′)〉 = 0):

〈v(t)〉 = u0 + α2

∫ t

0

∫ t′

0

〈V (t′)V (t′′)v(t′′)〉dt′′dt′. (2.42)

This equation is exact but no help in finding 〈v(t)〉, as it contains higher order corre-
lation 〈V (t′)V (t′′)v(t′′)〉 [81].

In order to make progress Bourret assumed that the integrand in (2.42) can be approx-
imated as

〈V (t′)V (t′′)v(t′′)〉 ≈ 〈V (t′)V (t′′)〉〈v(t′′)〉, (2.43)

after which (2.42) becomes a closed integral equation for 〈v(t)〉 as

〈v(t)〉 = u0 + α2

∫ t

0

∫ t′

0

〈V (t′)V (t′′)〉〈v(t′′)〉dt′′dt′, (2.44)

or equivalently
d

dt
〈v(t)〉 = α2

∫ t

0

〈V (t)V (t′′)〉〈v(t′′)〉dt′′, (2.45)

which in terms of the original variables read as

d

dt
〈u(t)〉 = A0〈u(t)〉+ α2

∫ t

0

〈A1(t)e(t−t′)A0A1(t′)〉〈u(t′)〉dt′. (2.46)

Equation (2.46) is known as Bourret’s integral equation and is a very impressive form to
evaluate the mean of u(t) as it is a closed equation. It is possible to find 〈u(t)〉 without
knowing the higher moments and also without solving RDE: du

dt
= A(t;ω)u

Of course it remains to find out the region of validity of the approximation [81], and
this in turn will depend on the region of validity of the basic approximation (2.43). This
will be discussed in the next section.
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2.6 Van Kampen differential equation for the mean

Van Kampen [81],[79], starts out by observing that Bourret’s fundamental assumption
(2.43) is unsatisfactory, because it is in general not true that the average of a product
equals the product of the averages. He notices, however, that this assumption has been used
successfully in the physics literature for a very long period of time, and therefore he sets
out to determine under what condition the assumption represents a good approximation.
The equation (2.34) determines two important time scales. The first one is the scale on
which v(t) varies, and is measured by α−1; the second scale is represented by the correlation
time tc of V (t), which is the time scale on which the random nature of V (t) becomes
appreciable. If we call 4t a time interval large enough that its relation to the two time
scales is given by

tc << 4t << α−1

or equivalently (since α > 0)
αtc << α4t << 1 (2.47)

then at a time t > tc the autocorrelation of the noise has vanished, which means that
by the time 4t is reached the random function V (t) has “forgotten its past”, and the
stochastic process is approximately Markovian [81]. The same argument can be used in
the next interval from4t to 24t, and so on. Thus Van Kampen’s argument shows that the
Bourret integral equation (2.46) is simply the first step in a perturbation theory solution
of Eq. (2.31) in powers of αtc in which powers of the order (αtc)

3 have been neglected [79].

Next Van Kampen notices that Eq. (2.46) still contains the initial time, and therefore
are restricted to solutions that are uncorrelated with A1(t) at that time. however this
problem can simply be solved by the change of variables t′′ = t− t′ in Eq. (2.45) to given

d

dt
〈v(t)〉 = α2

∫ t

0

〈V (t)V (t− t′)〉〈v(t− t′)〉dt′, (2.48)

and then by observing that as soon as t > tc the autocorrelation of V (t) vanishes, so that
no appreciable error is made by extending the integral to ∞. Hence, on the macroscopic
time scale, Eq. (2.48) may be rewritten as

d〈v(t)〉
dt

= α2

∫ ∞
0

〈V (t)V (t− t′)〉〈v(t− t′)〉dt′, (2.49)

where the initial time has disappeared so that this equation applies to all solutions of Eq.
(2.31), regardless of the time instant at which the initial value is imposed. The final step
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in van Kampen’s argument is to show that (2.49) is equivalent to the ODE obtained by
replacing v(t− t′) in the integral with 〈v(t)〉 namely

d

dt
〈v(t)〉 = α2

[ ∫ ∞
0

〈V (t)V (t− t′)〉dt′
]
〈v(t)〉. (2.50)

In fact, since the integral is only different from zero over a time tc, the relative error made
by this replacement is of order

〈4v〉
〈v〉

∼
tc
〈4v〉
4t

〈v〉
.

Moreover, according to the equation itself, we have

〈4v〉
4t

∼ α2tc〈v〉

and so the relative error is of the order

〈4v〉
〈v〉

∼ α2t2c . (2.51)

But in the derivation of the perturbation solution terms of relative order (αtc) were already
neglected; therefore, the error (2.51) is of no consequence [79].

The conclusion is that the ODE for the average derived by Van Kampen (2.50) can be
rewritten in the original variables as

d

dt
〈u(t)〉 =

[
A0 + α2

∫ ∞
0

〈A1(t)eA0t′A1(t− t′)〉e−A0t′dt′
]
〈u(t)〉 (2.52)

and in the next section it will be applied to study the example of random harmonic oscil-
lator. This ODE is also the basic equation of the study of stochastic models of PK in the
following chapters.

2.7 The Random Harmonic Oscillator

2.7.1 Van Kampen approach

Here we are going to consider the harmonic oscillator and will solve them by using both
the Van Kampen random differential equation and Bourret integral equation. We know
the simple harmonic oscillator is described by the following equation:

ẍ+ ω2x = 0 (2.53)
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with x(0) = a, ẋ(0) = 0. If ω is a constant, then the solution is trivially given by
x(t) = a sinωt. But if ω = ω(t), then no analytical solution can be found. Suppose ω(t) is
a random function of time, such as

ω2(t) = ω2
0(1 + αξ(t)),

where ω0=constant. Then the differential equation can be written as

ẍ+ ω2
0(1 + αξ(t))x = 0, (2.54)

which is a Random Differential Equation (RDE), physically the frequency of the oscillator
varies in time in a random way i.e., unpredictable way, and we can interpret this as the
result of an external perturbation of size α (the size of the fluctuation is ω), which usually
is a small parameter. On the other hand, the random function ξ(t) is not known except
for some statistical properties such as, for example,

〈ξ(t)〉 = 0 (2.55)

where 〈.〉 denotes the expectation (average) value. Rewrite the equation (2.54) in matrix
form:

dx

dt
= ẋ,

dẋ

dt
= −ω2

0(1 + αξ(t))x,

where x(0) = a, ẋ = 0, and so

d

dt

(
x
ẋ

)(
0 1

−ω2
0(1 + αξ(t)) 0

)(
x
ẋ

)
. (2.56)

Furthermore, since the product αξ is dimensionless, we can eliminate the constant ω2
0 by

making the whole problem dimensionless. Accordingly, we let y = x
a
; τ = ω0t. Now we

have the equation (2.54) in dimensionless form as

ÿ(τ) = −(1 + αξ(τ))y(τ), (2.57)

where y(0) = 1, ẏ(0) = 0 and in matrix form which can be written as:

d

dτ

(
y
ẏ

)
=

[ (
0 1
−1 0

)
+ αξ(τ)

(
0 0
−1 0

) ](
y
ẏ

)
. (2.58)
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Hence using the notation introduced by Van Kampen [81] we have:

A0 =

(
0 1
−1 0

)
, (2.59)

A1 = ξ(t)B = ξ(t)

(
0 0
−1 0

)
, (2.60)

and introducing the vector

u =

(
y
ẏ

)
,

the RDE (2.58) becomes:
du

dt
= (A0 + αξ(t)B)u, (2.61)

to which we can apply Van Kampen’s argument that, as long as α is small and the correla-
tion time τc is short, we may neglect terms of order (ατc)

3 in the perturbation expansion to
conclude that under these conditions the first moment 〈u(t)〉 i.e., the mean obeys a closed
ODE, given by equation (10.4) of Van Kampen [81], viz:

d

dt
〈u(t)〉 = [A0 + α2

∫ ∞
0

〈A1(t)eA0τA1(t− τ)〉e−A0τdτ ]〈u(t)〉 (2.62)

using the definition (2.59) and (2.60) as well as dimensionless time τ

d

dτ
〈u(τ)〉 = [A0 + α2

∫ ∞
0

〈ξ(τ)ξ(τ − τ ′)〉BeA0τ ′Be−A0τ ′dτ ′]〈u〉. (2.63)

First we compute

eA0τ ′ = 1 + A0τ
′ +

1

2
(A0τ

′)2 + ....

=

(
1 0
0 1

)
+

(
0 τ ′

−τ ′ 0

)
+

1

2
τ ′2
(

0 1
−1 0

)(
0 1
−1 0

)
+ .....

=

(
1 0
0 1

)
+

1

2
τ ′2
(
−1 0
0 −1

)
+ τ ′

(
0 1
−1 0

)
+ .....

=

(
1 0
0 1

)
{1− 1

2
τ ′2 +

1

4!
τ ′4 − ....}+

(
0 1
−1 0

)
{τ ′ − 1

3!
τ ′3 + ...}

= I cos τ ′ + A0 sin τ ′. (2.64)
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Next we compute the complete non-random term in the integrand in (2.63), namely
the matrix products BeA0τ ′Be−A0τ ′ where A0 and B are defined in (2.59) and (2.60). We
have;

BeA0τ ′ =

(
0 0
−1 0

)[(
1 0
0 1

)
cos τ ′ +

(
0 1
−1 0

)
sin τ ′

]
=

(
0 0
−1 0

)
cos τ ′ +

(
0 0
0 −1

)
sin τ ′

Be−A0τ ′ =

(
0 0
−1 0

)[(
1 0
0 1

)
cos τ ′ −

(
0 1
−1 0

)
sin τ ′

]
=

(
0 0
−1 0

)
cos τ ′ −

(
0 0
0 −1

)
sin τ ′

BeA0τ ′Be−A0τ ′ =

[(
0 0
−1 0

)
cos τ ′ +

(
0 0
0 −1

)
sin τ ′

] [(
0 0
−1 0

)
cos τ ′ −

(
0 0
0 −1

)
sin τ ′

]
=

(
0 0
−1 0

)(
0 0
−1 0

)
cos2 τ ′ −

(
0 0
−1 0

)(
0 0
0 −1

)
sin τ ′ cos τ ′ +(

0 0
0 −1

)(
0 0
−1 0

)
sin τ ′ cos τ ′ −

(
0 0
0 −1

)(
0 0
0 −1

)
sin2 τ ′

=

(
0 0
0 0

)
cos2 τ ′ −

(
0 0
0 0

)
cos τ ′ sin τ ′ +

(
0 0
1 0

)
sin τ ′ cos τ ′ −

(
0 0
0 1

)
sin2 τ ′

=

(
0 0

sin τ ′ cos τ ′ 0

)
+

(
0 0
0 − sin2 τ ′

)
=

(
0 0

sin τ ′ cos τ ′ − sin2 τ ′

)
, (2.65)

which agrees with Van kampen’s equation (14.3) [81]. Substituting (2.65) into (2.63) and
switching back to the explicit matrix format gives us:

d

dτ

(
〈y〉
〈ẏ〉

)
=

(
0 1
−1 0

)(
〈y〉
〈ẏ〉

)
+ α2

∫ ∞
0

〈ξ(τ)ξ(τ − τ ′)〉
(

0 0
sin τ ′ cos τ ′ − sin2 τ ′

)
dτ ′
(
〈y〉
〈ẏ〉

)
. (2.66)
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Next we are going to use the half-angle formula

sin τ ′ cos τ ′ =
1

2
sin 2τ ′,

− sin2 τ ′ = −
(1− cos 2τ ′

2

)
,

and define the two coefficients

c1 =

∫ ∞
0

〈ξ(τ)ξ(τ − τ ′)〉 sin 2τ ′ dτ ′, (2.67)

c2 =

∫ ∞
0

〈ξ(τ)ξ(τ − τ ′)〉(cos 2τ ′ − 1) dτ ′, (2.68)

in order to rewrite equation (2.66) in the simple form

d

dt

(
〈y〉
〈ẏ〉

)
=

(
0 1
−1 0

)(
〈y〉
〈ẏ〉

)
+
α2

2

(
0 0
c1 c2

)(
〈y〉
〈ẏ〉

)
(2.69)

or as a single ODE;
d2

dτ 2
〈y〉 =

α2

2
c2〈ẏ〉 −

(
1− α2

2
c1

)
, (2.70)

and in dimensional form will be:

d2

dt2
〈x〉 =

1

2
α2ω0c2

d

dt
〈x〉 − ω2

0

(
1− 1

2
α2c1

)
〈x〉 (2.71)

This coincides with Van kampen’s equation (14.7) [81] for the special case ω0 = 1.

Remarks:

(a) On comparing our equation (2.71) with the non-random oscillator equation (2.53)
that is:

d2

dt2
x = −ω2x

we see that RDE (2.54) introduces two important physical effects in the ODE for the first
moment (the mean) of the oscillator’s displacement:

• It’s frequency is shifted by the quantity 1
2
α2c1 and

• Damping of the average 〈x〉 in the form 1
2
α2ω0c2 is produced by the small fluctuations

of the oscillator’s frequency.
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(b) Van Kampen (1976, p. 201) [81] noticed that if there is resonance between the
fluctuations and the double frequency of the oscillator, then the coefficient c2 in (2.68) can
become positive, in which case the mean 〈x〉 would grow exponentially.

To proceed further we need to specify the auto correlation function, in order to compute
the coefficients c1 and c2. This means that we describe the statistical properties of ξ(t) by
prescribing

〈ξ(t)〉 = 0,

〈ξ(t)ξ(t− τ)〉 = a(τ),

where a(τ) is a given function of τ . Note that specifying the auto-correlation function for
a stationary stochastic process means that the variance is also specified. In fact, since

Γ(t, t′) = 〈ξ(t)ξ(t+ t′)〉 − 〈ξ(t)〉〈ξ(t+ t′)〉,

and since Γ(t, t′) = Γ(t− t′), due to stationary, we have

Γ(t′) = 〈ξ(0)ξ(t′)〉 − 〈ξ(0)〉〈ξ(t′)〉,

and, for t′ = 0,
Γ(0) = 〈ξ2(0)〉 − 〈ξ(0)〉2,

which is just the variance.

The simplest assumption is to assume that the (normalized) auto-correlation function
decays exponentially according to (recall that 〈ξ〉 = 0)

B(τ) = 〈ξ(0)ξ(τ)〉 = e−γτ , γ > 0 (2.72)

so that γ−1 = τc is the correlation time, which was assumed to be short both in Bourret
and Van kampen approximations. In other words, we assume that the auto-correlation
function is exponentially small after a duration of a few correlation times.

Now we can compute c1 and c2 from (2.67) and (2.68):

c1 =

∫ ∞
0

e−γτ sin 2τdτ

=
2τ 2
c

1 + 4τ 2
c

, (2.73)
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c2 =

∫ ∞
0

e−γτ
(

cos 2τ − 1
)
dτ

= − 4τ 3
c

1 + 4τ 2
c

. (2.74)

Substituting these expressions into (2.71) gives:

d2

dt2
〈x〉 = 2α2

0ω0
τ 3
c

1 + 4τ 2
c

d

dt
〈x〉 − ω2

0

(
1− α2τ 2

c

1 + 4τ 2
c

)
〈x〉 (2.75)

and we see that the damping (1st term on the right hand side) has the proper negative
sign that guarantees the stability of the motion. In other words, for a correlation function
decaying exponentially (as in (2.72) above) the resonance mentioned by Van Kampen
(Remark (b)) does not occur.

Now we are going to solve for this average using maple (code is in appendix C) and also
by the observations we have made when we are taking the values of the parameter. The
assumption is that the correlation time τc << 1 that mean γ >> 1 we get the following
solution:

〈x(τ)〉 = e(−9.62×10−6 τ) cos(1.00 τ)

+ (9.62× 10−6e(−9.62×10−6 τ) sin(1.00 τ). (2.76)

From figure 2.1, it is clear that the effects of the correlation time vanish for long times
although for short times the solution is seem to be highly oscillatory.
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Figure 2.1: An illustration of the solution of random harmonic oscillator using Van Kampen
differential equation of mean for α = .1 and τc = .1
.

2.7.2 Bourret’s approach

Now we are going to solve equation (2.54) using Bourret’s integral equation:

d

dτ
〈u(τ)〉 = A0〈u(τ)〉+ α2

∫ τ

0

〈A1(τ)eA0(τ−τ ′)A1(τ ′)〉〈u(τ ′)〉dτ ′, (2.77)

where A0 and A1 are as in (2.59) and (2.60). Using the previous results, we can write

eA0(τ−τ ′)A1(τ ′) =
(
I cos(τ − τ ′) + A0 sin(τ − τ ′)

)
Bξ(τ ′)

= Bξ(τ ′) cos(τ − τ ′) + A0Bξ(τ
′) sin(τ − τ ′)

=

(
0 0
−1 0

)
ξ(τ ′) cos(τ − τ ′) +

(
−1 0
0 0

)
ξ(τ ′) sin(τ − τ ′), (2.78)
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and so the kernel of the integral (2.77) is given by

〈A1(τ)eA0(τ−τ ′)A1(τ ′)〉 =

〈(
0 0
−1 0

)
ξ(τ)

[(
0 0
−1 0

)
ξ(τ ′) cos(τ − τ ′)

+

(
−1 0
0 0

)
ξ(τ ′) sin(τ − τ ′)

]〉

=
〈(0 0

1 0

)
ξ(τ)ξ(τ ′) sin(τ − τ ′)

〉
=

(
0 0
1 0

)
sin(τ − τ ′)〈ξ(τ)ξ(τ ′)〉, (2.79)

which reduces to (2.77) to

d

dτ
〈u(τ)〉 = A0〈u(τ)〉+ α2

(
0 0
1 0

)∫ τ

0

< ξ(τ)ξ(τ ′) > sin(τ − τ ′)〈u(τ ′)〉dτ ′. (2.80)

Recalling that

u =

(
y
ẏ

)
.

The equation in vector form gives:

d

dτ

(
〈y〉
〈ẏ〉

)
=

(
0 1
−1 0

)(
〈y〉
〈ẏ〉

)
+ α2

(
0 0
1 0

)∫ τ

0

f(τ − τ ′)
(
〈y〉
〈ẏ〉

)
dτ ′, (2.81)

where f(τ − τ ′) = 〈ξ(τ)ξ(τ ′)〉 sin(τ − τ ′) and in component form

d

dτ
〈y(τ)〉 = 〈ẏ〉, (2.82)

d

dτ
〈ẏ(τ)〉 = −〈y(τ)〉+ α2

∫ τ

0

f(τ − τ ′)〈y(τ ′)〉dτ ′, (2.83)

with initial conditions 〈y(0)〉 = 1 and 〈ẏ(0)〉 = 0. Now by taking Laplace transform we
get:

s〈Y (s)〉 − 1 = 〈Ẏ (s)〉, (2.84)

s〈Ẏ (s)〉 = −〈Y (s)〉+ α2F (s)〈Y (s)〉. (2.85)
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By eliminating 〈Ẏ (s)〉 we get

〈Y (s)〉 =
s

s2 − α2F (s) + 1
. (2.86)

To calculate F (s) we assume the same correlation function as for the Van kampen case,
i.e., 〈ξ(τ)ξ(τ ′)〉 = e−γ(τ−τ ′) is a stationary Markov process. This gives:

F (s) = L{〈ξ(τ)ξ(τ ′)〉 sin(τ − τ ′)}
= L{e−γ(τ−τ ′) sin(τ − τ ′)}

=
1

(s+ γ)2 + 1
. (2.87)

Therefore

〈Y (s)〉 =
s

s2 − α2

(s+γ)2 + 1

=
[(s+ γ)2 + 1]s

s2[(s+ γ)2 + 1] + [(s+ γ)2 + 1]− α2

=
s[s2 + 2γs+ (γ2 + 1)]

(s− z1)(s− z2)(s− z3)(s− z3)
, (2.88)

where z1 z2, z3 and z4 are the roots of the denominator. Calculating the inverse laplace
transform directly involves finding the roots of a quartic which is extremely unwieldy, so
we are going to solve it by using Maple (code is in appendix C) and also observe that
correlation time τc << 1 implies γ >> 1, and this obtain the following solution:

〈y(τ)〉 = −(1.02× 10−5)e−5.00 τ cos(.50 τ)

− (3.5× 10−5) e−5.00 τ sin(.50 τ)

+ (cos(1.00 τ)− (1.54× 10−5) sin(1.00 τ)) e−1.82×10−5 τ , (2.89)

which is almost the same answer as that obtained by using Van kampen’s random differ-
ential equation approach and the figures 2.2 and 2.2 are almost indistinguishable.
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Figure 2.2: An illustration of the solution of random harmonic oscillator using Bourret
integral equation of mean for α = .1 and τc = .1 where γ = 1/τc
.

2.8 Some similar examples

We now examine the ideas of Van Kampen’s approach in more detail through two specific
examples.

2.8.1 Example:1

If we consider a decaying auto-correlation function fluctuating according toB(τ) = e−γτ cos βτ ,
then we can evaluate c1 and c2 using (2.67) and (2.68) as following:

c1 =

∫ ∞
0

e−γτ cos βτ sin 2τdτ

=
1

2

[ β + 2

(β + 2)2 + γ2
− β − 2

(β − 2)2 + γ2

]
, (2.90)

42



c2 =

∫ ∞
0

e−γτ cos βτ
(

cos 2τ − 1
)
dτ

=
γ

2

[ 1

(β − 2)2 + γ2
+

1

(β + 2)2 + γ2
− 1

β2 + γ2

]
. (2.91)

Substituting c1 and c2 in (2.70), we get

d2

dτ 2
〈x〉 =

γ

4
α2ω0

[ 1

(β − 2)2 + γ2
+

1

(β + 2)2 + γ2
− 1

β2 + γ2

] d
dτ
〈x〉

− ω2
0

[
1− α2

4

( β + 2

(β + 2)2 + γ2
− β − 2

(β − 2)2 + γ2

)]
〈x〉. (2.92)

2.8.2 Example: 2

We now consider the following problem

ẍ = −δẋ− ω2x (2.93)

with x(0) = a, ẋ(0) = 0. Suppose ω(t) is a random function of time, such that

ω2(t) = ω2
0(1 + αξ(t)) (2.94)

where ω0=constant. Then the differential equation can be written as

ẍ = −δẋ− ω2
0(1 + αξ(t))x (2.95)

where ξ(t) is an external perturbation of size α and the size of the fluctuation is ω. The
random function ξ(t) is unknown except for some statistical properties such as, for example,

〈ξ(t)〉 = 0. (2.96)

Rewriting the equation (2.95):

dx

dt
= ẋ

dẋ

dt
= −δdx

dt
− ω2

0(1 + αξ(t))x

where x(0) = a, ẋ = 0, and so in matrix form, we have
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d

dt

(
x
ẋ

)(
0 1

−ω2
0(1 + αξ(t)) −δ

)(
x
ẋ

)
. (2.97)

Since the product αξ is dimensionless, we can eliminate the constant ω2
0 by making the

whole problem dimensionless. Accordingly, we let y = x
a
; τ = t

√
ω0. Now equation (2.95)

in dimensionless form becomes

ÿ(τ) = −kẏ − (1 + αξ(τ))y(τ), (2.98)

where y(0) = 1, k = − δ√
ω0

and in matrix form this equation can be written as:

d

dτ

(
y
ẏ

)
=

[ (
0 1
−1 k

)
+ αξ(τ)

(
0 0
−1 0

) ](
y
ẏ

)
. (2.99)

Using the notation introduced by Van Kampen (1976) [81] we have:

A0 =

(
0 1
−1 k

)
, (2.100)

A1 = ξ(t)B = ξ(t)

(
0 0
−1 0

)
, (2.101)

and introducing the vector

u =

(
y
ẏ

)
,

RDE (2.95) becomes:
du

dt
= (A0 + αξ(t)B)u, (2.102)

to which we can apply Van Kampen’s argument that, as long as α is small and the correla-
tion time τc is short, we may neglect terms of order (ατc)

3 in the perturbation expansion to
conclude that under these conditions the first moment 〈u(t)〉 i.e., the mean obeys a closed
ODE, given by equation (10.4) of Van Kampen [81], viz:

d

dt
〈u(t)〉 = [A0 + α2

∫ ∞
0

〈A1(t)eA0τA1(t− τ)〉e−A0τdτ ]〈u(t)〉, (2.103)
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using the definition (2.59) and (2.60) as well as dimensionless time τ , equation (2.103)
becomes

d

dτ
〈u(τ)〉 = [A0 + α2

∫ ∞
0

〈ξ(τ)ξ(τ − τ ′)〉BeA0τ ′Be−A0τ ′dτ ′]〈u〉. (2.104)

We now evaluate the matrix exponential eA0τ by using the Cayley-Hamilton theorem,
which is eA0τ = a0I + a1A0, where the coefficients a0 and a1 must be found.

Eigenvalues of A0 are λ = k±
√
k2−4
2

.

let λ1 = k+
√
k2−4
2

and λ2 = k−
√
k2−4
2

.

By using the relation eA0τ = a0I + a1A0 we get the following:

eλ1τ = a0 + a1λ1 and eλ2τ = a0 + a1λ2,

from which we get the values of a0 and a1 as following:

a0 = λ2eλ1τ−λ1eλ2τ

λ2−λ1
and a1 = eλ1τ−eλ2τ

λ1−λ2

Now

BeA0τ ′ = a0

(
0 0
−1 0

)[(
1 0
0 1

)
+ a1

(
0 1
−1 0

)]
= a0

(
0 0
−1 0

)
+ a1

(
0 0
0 −1

)
and

BeA0τ ′Be−A0τ ′ =

[
a0

(
0 0
−1 0

)
+ a1

(
0 0
0 −1

)][
a0

(
0 0
−1 0

)
− a1

(
0 0
0 −1

)]
=

(
0 0

a0a1 a2
1

)
. (2.105)

45



Substituting the above expression into the equation (2.104) and switching back to the
explicit matrix format we get:

d

dτ

(
〈y〉
〈ẏ〉

)
=

(
0 1
−1 k

)(
〈y〉
〈ẏ〉

)
+ α2

∫ ∞
0

〈ξ(τ)ξ(τ − τ ′)〉
(

0 0
a0a1 −a2

1

)
dτ ′
(
〈y〉
〈ẏ〉

)
. (2.106)

If we define the two coefficients

c1 =

∫ ∞
0

〈ξ(τ)ξ(τ − τ ′)〉a0a1 dτ ′, (2.107)

c2 = −
∫ ∞

0

〈ξ(τ)ξ(τ − τ ′)〉a2
1 dτ ′, (2.108)

we can rewrite equation (2.106) in the simple form

d

dτ

(
〈y〉
〈ẏ〉

)
=

(
0 1
−1 k

)(
〈y〉
〈ẏ〉

)
+
α2

2

(
0 0
c1 c2

)(
〈y〉
〈ẏ〉

)
, (2.109)

or as a single ODE

d2

dτ 2
〈y〉 = (1 + k + α2c2)〈ẏ〉 − (1− α2c1)〈y〉, (2.110)

and in dimensional form as:

d2

dt2
〈x〉 =

√
ω0

(
1− δ
√
ω0

+ α2c2

) d
dt
〈x〉 − ω0

(
1− α2c1

)
〈x〉. (2.111)
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Chapter 3

Application of Van Kampen’s theory
to Pharmacokinetics

3.1 Deterministic formulation of the model

To model this situation deterministically, we proceed as follows. Let X(t) be the amount
of drug at the absorption site at time t, and let ka be the apparent first-order absorption
rate constant; then

dX

dt
= −kaX (3.1)

is the rate of drug loss from the absorption site. Next let A(t) be the amount of drug in
the body at time t; then

dA

dt
= kaX − keA (3.2)

is the rate of change of the amount of drug in the body, with the elimination rate constant
ke and the initial conditions

X(0) = X0, A(0) = 0 (3.3)

where X0 is the dose administered at time t = 0 orally or intramuscularly, the solution of
the system (3.1) to (3.3) is given by

X = X0e
−kat, (3.4)

A =
kaX0

ka− ke
(e−ket − e−kat).
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The volume of distribution is often referred to as the apparent volume of distribution
and can aid in the determination of dosage requirements. Generally, dosing is assumed to
be proportional to the volume of distribution [14]. For example, the larger the volume of
distribution, the larger the dose must be to achieve a desire target concentration. Now
dividing by the volume of distribution V we can write A in concentration form as (where

C(t) = A(t)
V

and V is the apparent volume of distribution [14]):

C(t) =
kaX0

V (ka − ke)
(e−ket − e−kat). (3.5)

Now from the plasma concentration curve, we can extract the parameters ka and ke and
the methods of extracting the parameter values from the concentration versus time curve
have been discussed in chapter 2, along with their characteristics.

In the next section the stochastic version of this PK model will be introduced.

3.2 Stochastic formulation of the model

Drug absorption kinetics for oral or intramuscular administration is a complex phenomenon.
The loss of a drug from the absorption site is due, in large part, to intrinsic absorption,
that is to the passage of the drug directly into the circulation. However, a (usually) small
fraction of the loss may be due to other phenomena, such as degradation of the drug at
intramuscular sites or due to drug precipitation. The result is that there is uncertainty as
to the meaning of the absorption rate constant ka, used in the traditional deterministic
model (3.1)-(3.3).

On the other hand, one can take the uncertainty into account in a statistical sense,
by assuming that the absorption rate is not constant, but fluctuates in time around some
average value ka. Therefore, one can write that the full absorption rate ka(t) is given by

ka(t) = ka(1 + αξ(t)); ke = ke, (3.6)

where ξ(t) is a random function and α is a (small) constant coupling the average absorption
rate to the random fluctuations.

The random function ξ is not known, of course, but reasonable statistical assumptions
about it can be made. Thus, since by definition 〈ka(t)〉 = ka it follows from equation (3.6)
that the expectation of ξ(t) must vanish; i.e.,

〈ξ(t)〉 = 0, (3.7)
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A further statistical property of ξ(t) can be prescribed by specifying its auto-correlation
function, viz.

Γ(t, t′) = 〈ξ(t)ξ(t′)〉 (3.8)

which will be discussed in detail in a later section.

The result of these stipulations is that the system of deterministic ODE’s (3.1)-(3.3)
become a stochastic system of RDE’s, namely

dX

dt
= −ka(1 + αξ(t))X (3.9)

dA

dt
= ka(1 + αξ(t))X − keA (3.10)

3.3 The Van Kampen approximation of the model

In this section we are going to apply the Van Kampen approximation to solve our RDEs
(3.9) and (3.10). For convenience we simplify these equations by making them dimen-
sionless, for which proper scales need to be used. For both the amount of drug at the
absorption site X and the amount of drug in the circulation A there is an obvious scale
namely the initial dose X0 so that their dimensionless version are simply

x =
X

X0

y =
A

X0

(3.11)

However, there is no obvious time scale t . Hence, as done in these cases in ordinary
perturbation theory, one can introduce a dimensionless time

τ =
t

T0

(3.12)

and determine T0 by choosing the value that makes the RDE’s take the simplest possible
form. Using the definitions (3.11)-(3.12) reduces the system of RDE’s (3.9)-(3.10) to the
following form:

dx(τ)

dτ
= −kaT0(1 + αξ)x(τ) (3.13)

dy(τ)

dτ
= kaT0(1 + αξ)x(τ)− keT0y(τ) (3.14)
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and it is now obvious that the simplest form of these equations is obtained with the choice

T0 = (ka)
−1; ρ = ke(ka)

−1 (3.15)

after which the final form of the model can be written in the form useful for the application
of van kampen’s theory, namely

du

dτ
= (A0 + αA1(τ))u(τ), (3.16)

u(0) =

(
1
0

)
, (3.17)

where

u =

(
x
y

)
; A0 =

(
−1 0
1 −ρ

)
; A1(τ) = ξ(τ)B = ξ(τ)

(
−1 0
1 0

)
. (3.18)

When these quantities are substituted into van Kampen’s general differential equation
for the mean (reviewed in section 2.5), the result is:

d

dτ
〈u(τ)〉 =

[
A0 + α2

∫ ∞
0

〈ξ(τ)ξ(τ − τ ′)〉BeA0τ ′Be−A0τ ′dτ ′

]
〈u(τ)〉, (3.19)

which shows explicitly the importance of the noise auto-correlation function.

Now we are going to solve (3.19) for A0 and A1. First we are evaluating eA0τ :

A0 =

(
−1 0
1 −ρ

)

Eigen values are: λ = −1,−ρ and the corresponding Eigen vectors are :

(
1
1
ρ−1

)
and(

0
1

)
. So the fundamental matrix for φ(τ) for A0 is:

φ(τ) =

[
e−τ

(
ρ− 1

1

)
e−ρτ

(
0
1

) ]
=

[
e−τ (ρ− 1) 0

e−τ e−ρτ

]
,
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φ−(τ) =
1

e−τe−ρτ (ρ− 1)

[
e−ρτ 0
−e−τ e−τ (ρ− 1)

]
,

φ−(0) =
1

(ρ− 1)

[
1 0
−1 ρ− 1

]
,

eA0τ = φ(τ)φ−(0) =

[
e−τ 0

e−τ−e−ρτ
ρ−1

e−ρτ

]
,

e−A0τ =

[
eτ 0

eτ−eρτ
ρ−1

eρτ

]
,

BeA0τ =

(
−1 0
1 0

)(
e−τ 0

e−τ−e−ρτ
ρ−1

e−ρτ

)
=

[
−e−τ 0
e−τ 0

]
,

Be−A0τ =

[
−eτ 0
eτ 0

]
.

Now

BeA0τBe−A0τ =

[
1 0
−1 0

]
(3.20)

Substitute the equation (3.20) into equation (3.19), we get

d

dτ
〈u(τ)〉 =

[
A0 + α2

∫ ∞
0

〈ξ(τ)ξ(τ − τ ′)〉
[

1 0
−1 0

]
dτ ′

]
〈u(τ)〉,

in matrix form:

d

dτ

(
〈x〉
〈y〉

)
=

(
−1 0
1 −ρ

)(
〈x〉
〈y〉

)
+ α2

∫ ∞
0

〈ξ(τ)ξ(τ − τ ′)〉
(

1 0
−1 0

)
dτ ′
(
〈x〉
〈y〉

)
.
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In practice, often, Orstein-Uhlenbeck process with mean zero and 〈ξ(τ)ξ(τ − τ ′)〉 =
e−|τ

′|/τc with a correlation time τc, used to describe colored noise. In our model we also
considered ξ(t) as an Orstein-Uhlenbeck process, with mean zero and auto-correlation
function e−|τ

′|/τc ( i.e.,
∫∞

0
〈ξ(τ)ξ(τ − τ ′)〉dτ ′ =

∫∞
0
e−|τ

′|/τcdτ ′ = τc) and using this we will
be able to get:

d

dτ

(
〈x〉
〈y〉

)
=

(
−1 0
1 −ρ

)(
〈x〉
〈y〉

)
+ α2

(
τc
−τc

)(
〈x〉
〈y〉

)
. (3.21)

Now it is possible to write our stochastic DE as following form:

d

dτ
〈x〉 = −(1− α2τc)〈x〉, (3.22)

d

dτ
〈y〉 = (1− α2τc)〈x〉 − ρ〈y〉, (3.23)

and the dimensional form will be (for simplicity we use ka and ke instead of k̄a and k̄e):

d

dt
〈X〉 = −ka(1− α2τc)〈X〉, (3.24)

d

dt
〈A〉 = ka(1− α2τc)〈X〉 − ke〈A〉. (3.25)

Equations (3.22) and (3.23) are the representation of the RDE’s using Van Kampen ap-
proximation.

3.3.1 Calculation of the second moment using Van Kampen’s
method

We have calculated the mean equation using Van Kampen’s method for both X and A. Our
next step is to calculate the second moments which we will be able to use to capture the
variability of the random effects, induced by the random variations in the absorption rate.
We compare Van Kampen’s approximation to the model with the full numerical solution by
evaluating the variance. In this section we describe how we calculate the second moments
of X and A using Van Kampen method.

The non dimensional form of the Van Kampen approximation to our model, i.e., (3.16)
can be written as:

dX

dτ
= −(1 + αξ(τ))X, (3.26)
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dA

dτ
= (1 + αξ(τ))X − ρA. (3.27)

Using the Einstein summation convention, it is convenient to write the linear system
in indicial notation:

dui
dt

= Aijuj (3.28)

d

dt
uiuk = u̇iuk + uiu̇k = ukAijuj + uiAkjuj (3.29)

Now using (3.29) for our model we can write the system as:

d

dτ
(AX) = (−(1 + αξ(τ))− ρ)AX + (1 + αξ(τ))X2,

d

dτ
(A2) = 2A((1 + αξ(τ))X − ρA),

d

dτ
(X2) = 2X(−(1 + αξ(τ))X). (3.30)

In matrix form (3.30) can be written as:

d

dτ

 AX
A2

X2

 =

 −1− ρ 0 1
2 −2ρ 0
0 0 −2

 AX
A2

X2


+ αξ(τ)

 −1 0 1
2 0 0
0 0 −2

 AX
A2

X2

 .
=⇒ dU

dτ
= (A0 + αξ(τ)B)U

where

U =

 AX
A2

X2

 ,

A0 =

 −1− ρ 0 1
2 −2ρ 0
0 0 −2

 ,
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B =

 −1 0 1
2 0 0
0 0 −2

 .
Following the method we have used to evaluate the mean by using Van Kampen’s approx-
imation equation (3.19), also can be calculate the evolution equations for 〈AX〉, 〈A2〉 and
〈X2〉 as:

d

dτ

 〈AX〉〈A2〉
〈X2〉

 =

 −1− ρ 0 1
2 −2ρ 0
0 0 −2

 〈AX〉〈A2〉
〈X2〉



+ α2τc

 1 0 −
(2ρ−3)+ ρ

1+τc(ρ−1)

ρ−1

−2 0 −
2− 2ρ

1+τc(ρ−1)

ρ−1

0 0 4

 ,
 〈AX〉〈A2〉
〈X2〉

 (3.31)

where we have considered as before < ξ(τ)ξ(τ − τ ′) >= e−|τ
′|/τc , with a correlation time τc

3.4 Numerical solution of the model

3.4.1 To solve RDE’s ( 3.9) and (3.10)

In this section we describe the method used to solve the model numerically. We have used
the modified Euler’s method to solve the system of DE, where the noise term is treated
with the algorithm described by Gillespie [30] in his 1996 paper. The noise we consider is
assumed to be an Ornstein-Uhlenbeck process [78], which is often used to model colored
noise. Gillespie [30] developed an algorithm for any exact time step ∆t > 0 for the Ornstein-
Uhlenbeck process and its time integral. Detailed evaluation of the Ornstein Uhlenbeck
process from Newton’s second law is in the appendix B.

A Langevin equation governed by a Ornstein Uhlenbeck process can be written as:

dy

dt
= G(y, t) + c(y, t)F (t), (3.32)

where F (t) is an Ornstein Uhlenbeck process and can be defined as:

dF (t)

dt
= − 1

τc
F (t) +

1

τc
η(t) (3.33)
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where η(t) represents the Gaussian white noise with mean zero and variance 1 and τc is
the correlation time of the colored noise F (t) [71].
Remark: The steady-state auto-correlation function of F (t) can be written as :

〈F (t)F (t− τ)〉 =
1

2τc
e−|τ |/τc

τc→0−−−→ δ(τ), (3.34)

which shows that, if auto-correlation time approaches to 0, then the colored noise will be
white noise, i.e, the noise will be δ correlated.

The simulation algorithm of a system of random differential equations of the form
(3.32)-(3.33) consists of following steps [71]:

• Step 1: Initialize: t = t0, y = y0 and F = F0;

• Step 2: We have to choose a suitable small ∆t > 0 (according to the assumption
(2.47));

• Step 3: Next we are going to draw a sample value n of the unit normal random
variable N(0, 1);

• Step 4: In this step the process will advance as following:
•y(t+ ∆t) = y(t) + nc(y, t)[∆t]1/2 +G(y, t)∆t,

• F (t+ ∆t) = F (t)e−∆t/τc + n

[
( 1

2τc
)(1− e−2∆t/τc)

]1/2

,

• t = t+ ∆t,
where n is the unit normal random variable chosen in step 3;

• Step 5: In this step we are going to record y(t) = y and can use it for sample plotting
and to continue the process further we have to return to step 3, otherwise stop.

The RDE system of our model has been solved following steps 1-5 above:

dX

dt
= −ka(1 + αξ(t))X,

dA

dt
= ka(1 + αξ(t))X − keA, (3.35)

dξ(t)

dt
= − 1

τc
ξ(t) +

1

τc
η(t),
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where η(t) again represents Gaussian white noise with mean zero and variance 1 and τc is
the correlation time [71].

Matlab 9.1 R2016b has been used to solve the RDE’s (3.35). Following the steps
described above for the random process (3.32), where in this particular case:

y(t) =

(
y1(t)
y2(t)

)
=

(
X(t)
A(t)

)
.

Now, comparing with equation (3.32), our system can be written as:

G(y, t) =

(
−kaX(t)

kaX(t)− keA(t)

)
,

c(y, t) =

(
−kaαX(t)
kaαX(t)

)
,

and F (t) = ξ(t).

At the initial time t = 0, we have considered the initial conditions X(0) = X0 = Dose
and A(0) = 0 (as there is no drug in the system at initial time) and iterate until the final
time t=tfinal. We run a large number of simulations to obtain individual trajectories (say
10000 or so) to get the ensemble mean and use the Matlab built in command “std” to get
the standard deviation of the trajectories around the mean. (Detailed codes have been
included in appendix B).

3.4.2 To solve Van Kampen’s form of the model

We have used the Runge Kutta method to solve the Van Kampen form of the model (code
is in the appendix B) for both the moments. Here we have a system of two decoupled equa-
tions: two equations for the mean and three for the second moments ( i.e., the variance).
The following relation has been used to evaluate the variances for both X and A:

• variance of X=(〈XX〉 − 〈X〉2);

• variance of A= (〈AA〉 − 〈(A)〉2).
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Now before solving the system of DE (for mean and variance), we need to consider
the conditions which will assure us to get the stable solutions, i.e, criterion for linear,
homogeneous differential equations which will converge to zero. We are going to use the
Routh-Hurwitz criterion for this purpose, which states that: the necessary and sufficient
conditions for the roots of characteristic polynomial (with real coefficients) is to lie in the
left half of the complex plane [23]. According to this criterion, a polynomial is stable
if all the roots of the polynomial have strictly negative real parts, if and only if all the
leading principal minors of a square matrix are positive. Using Matlab for equation(3.31) to
evaluate the characteristic polynomial by neglecting τ 2

c and τ 3
c terms (as we are considering

very small correlation time), we calculated the following cubic equation for eigenvalues λ:

λ3+(−5τcα
2+3ρ+3)λ2+(−α2τc(14ρ+6)+(2ρ2+8ρ+2))λ+(−α2ρτc(8ρ+12)+4ρ(ρ+1)) = 0

(3.36)
Now using the Routh-Hurwitz criterion [23], for this cubic polynomial we can compare the
coefficients of (3.36) to evaluate the conditions to get the stable solutions.

α2τc <
3(ρ+ 1)

5
(3.37)

and

α2τc <
3ρ3 + 13ρ2 + 13ρ+ 3

22ρ2 + 44ρ+ 14
. (3.38)

From, conditions (3.37) and (3.38) we should choose the right hand side that is smaller (in
order to satisfy both the conditions). Now, say (3.37)<(3.38) we obtain the following:

51ρ3 + 133ρ2 + 109ρ+ 27 < 0 (3.39)

which is a contradiction as ρ > 0, so we can conclude the condition should be (3.38).

By applying the same criterion in the relation (3.21), we can calculate the stability for
the mean is:

ατc < 1 (3.40)

which is satisfied under the assumption only α is small enough.

3.4.3 Parameters choice and initial conditions

Example 1.

For the numerical simulation we use data and information from some practical applications
(i.e., some regularly used drugs with their common dosage). Acetaminophen is a very
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popular and common drug which has been used for a long time as a pain reliever and
also to reduce fever. There are various other conditions which have also been treated
with acetaminophen and these include head aches, muscle aches, arthritis, back aches,
tooth aches, colds, and fevers. Acetaminophen is a major ingredient in most cold and flu
medications which can be bought over the counter and is also present in some prescription
medications.

A pharmaceutical window (or popularly known as therapeutic window) of a drug is a
region of the drug dosage, where a disease can be effectively treated without showing no-
ticeable evidence of toxic side effects. Drugs, which have a narrow or very small therapeutic
window must be administered with extreme care and control, by measuring concentrations
of the drug in the body, in order to minimize any harmful side effects. Acetaminophen has
a narrow therapeutic window and due to its availability and wide range of use, there are
clear possibilities for accidental or deliberate overdose. Overdose may create hepatoxicity,
which can lead major problems, such as abnormalities in liver function, acute liver failure
and even death [37].

According to the FDA, the standard dose of acetaminophen for adults (for 12 years
and older) is 4000 mg per day [77].

The values of the parameters, we consider are taken from the study [60]. The half life
of acetaminophen is 2.5 hours, so ke can be calculated using the relation:

ke =
ln(2)

half life
=

ln(2)

2.5
= .28/hour (3.41)

Volume of distribution is .60 L/kg, which will be .60L/kg × 70kg = 42L for an average
70 kg adult. The absorption rate constant ka = 1.80/hour and the bioavailability F=.89
(fraction of amount absorbed by the stomach) [60]. In this case we see that there is no
possibility to get the “flip-flop” kinetics ( i.e., ke will not be greater than ka).

For the choice of α and τc, we considered the conditions of mean and mean-squared
stability to get the stable solutions, which is described in (3.38), where ρ = ke

ka
.

To consider the initial conditions for meanX (amount of drug in the absorption site) and
A (amount of drug in the systemic circulation), we chose X(0) = X0 = Dose = 1000 mg
and A0 = 0 as there is no drug initially in the blood plasma. As we are considering multiple
dosages, so we add a dose every six hours by dividing our total time (24 hours) into four
sub intervals and adding a dose instantaneously at the beginning of each interval. For this
reason, X has a jump discontinuity when ever the dose is added to the system, figure 3.1.

Now for the initial conditions to evaluate 〈X2〉, 〈AX〉 and 〈A2〉 we assume the following:
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• X = the amount of drug before adding a dose at time t1 and Y= amount of drug
instantaneously after adding a dose at time t1;

• then we can say Y = X + Dose and can write 〈Y 〉 = 〈X〉+ Dose;

• 〈Y Y 〉 = 〈(X +Dose)2〉 = 〈X2 + 2XDose + Dose2〉 = 〈XX〉+ 2〈X〉Dose + Dose2;

• 〈AY 〉 = 〈A(X + Dose)〉 = 〈AX + ADose〉 = 〈AX〉+ 〈A〉Dose.

For the time step to solve the system we chose ∆t by taking into consideration the constraint
αtc << α∆t << 1, from the assumption of theorem (2.47).

Example 2.

For this example we consider the drug Theophylline, which is a methylxanthine drug used
in therapy for respiratory diseases, for example: chronic asthma, Chronic Obstructive Pul-
monary Disease (COPD) or chronic bronchitis. The oral dose of the drug is well absorbed
as tablet or as liquid solution [64]. Data is taken from Lixoft - Modeling and simulation
software for drug development [50]. In this study, 12 subjects were chosen to administer
the drug orally and the concentration of blood serum were collected at 11 times over the
next 25 hours.

We use the method of residuals (describe below) to evaluate ka and ke for the drug
Theophyline from the data provided by the study [50]. This data set is for 12 patients, we
consider patient#1, a male of weight 79.6 kg, the amount of drug given is 4.02/kg. As we
know from the equation (3.5) concentration can be represented as:

C(t) =
kaFX0

V (ka − ke)
(e−ket − e−kat). (3.42)

Now if we assume ka > ke, then the term e−kat will approach zero faster than e−ket, and so
equation (3.42) can be approximated by:

C(t) =
kaFX0

V (ka − ke)
e−ket. (3.43)

By taking logarithm of both sides of the above equation we get:

log(C(t)) = log
kaFX0

V (ka − ke)
− ket

2.303
. (3.44)
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Equation (3.44) can be used to evaluate ke and also by extrapolating this line for t = 0 we
can get the intercept= kaFX0

V (ka−ke) . Subtracting (3.42) from (3.43) obtain the residual plasma
concentration equation:

Cr(t) =
kaFX0

V (ka − ke)
e−kat (3.45)

In terms of logarithm which will be:

log(Cr(t)) = log
kaFX0

V (ka − ke)
− kat

2.303
(3.46)

Hence we can calculate ka from the equation (3.46). For our example we are considering

Table 3.1: Concentration of Theophyline in serum for subject #1 [50]

Time Cnc log(Cnc) ECnc log(ECnc) RCnc log(RCnc)
0 0 11.51 1.06 10.77 1.03
0.25 2.84 0.45 11.30 1.05 8.46 0.93
0.57 6.57 0.82 10.94 1.04 4.37 0.64
1.12 10.5 1.02 10.38 1.02 -0.12 NAN
2.02 9.66 0.98 9.35 0.97 -0.31 NAN
3.82 8.58 0.93 8.67 0.94 0.09 -1.023
5.1 8.36 0.92 7.75 0.89 -0.61 NAN
7.03 7.47 0.87 6.89 0.84 -0.58 NAN
9.05 6.89 0.84 5.76 0.76 -1.13 NAN
12.12 5.94 0.77 2.82 0.45 -3.12 NAN
24.37 3.28 0.52 11.68 1.07 8.40 0.92

subject # 1, who is a male of weight 79.06 kg. The amount of drug for this person was
4.02 mg/kg. Here are the PK parameters for subject # 1:

slope of ke = .87−.92
7.03−5.1

= −0.03 (highlighted in red)

ke = 0.03× 2.30 = 0.06

Intercept=log(Cnc)− slope ∗ t = .84− (−.03)× 9.05 = 1.07 (highlighted in blue)

ECnc== 10(slope∗t+Intercept) (extrapolated concentration, column 4 of 3.4.3)

RCnc=ECnc-Cnc (residual concentration, column 6 of 3.4.3)
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AI= 10(Intercept)

Amount= 4.02 (given); Weight= 79.6,

Dose=(Amount)× (Weight)

Slope residual = .64−.93
.57−.25

= −0.89 (highlighted in green)

ka=-slope Residual ×2.303 = 2.062927706

V = (ka ∗Dose ∗ F )/(AI ∗ (ka− ke)) = 28.19

Where we have considered the bio-avalability of theophyline to be on average 96% ≈ 1 [64]

All these parameter values are used to solve the deterministic form, numerical form and
Van Kampen form of the model and also to compare with the experimental data (Code is
in the appendix C)

3.5 Results

3.5.1 Test case 1.

Fig. 3.1 is the comparison of the mean for all three forms of the model while drug is in
the absorption site, i.e., for X(t). Stochastic form of the model is the 10,000 iteration
of the simulation to get the ensemble mean which is plotted along with the deterministic
(evaluated using deterministic form of the model) and Van Kampen’s form of the model
to investigate whether all three coincide or not. From the figure 3.1, we can say that
all these mean almost perfectly coincide with each other and we see a jump in every six
hours as we administer a dose every six hours. Parameters for figure 3.1 are chosen:
α = .2, ∆ = .25 hour, τc = .001 hour, ρ = ke/ka = .17 which satisfies our constraints
ατc = 4× 10−5 << α∆t = .01 << 1 (2.47).
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Figure 3.1: Comparing the deterministic solution with the mean of Stochastic and Van
Kampen’s form of the model, for α = .2, ∆t = .25 hour and τc = .001 hour while drug in
the absorption site
.
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Figure 3.2: Comparison of stochastic standard deviation of the mean and approximate
variance using Van Kampen method for α = .3, ∆t = .3 hour and τc = .01 hour while drug
in the blood plasma.

Figure 3.2 is a comparison of the standard deviation of the mean for both stochastic and
Van Kampen’s form of the model. To evaluate the standard deviation of the stochastic form
of the model we have run the simulations 10,000 times and bounded the variability using
error bars about the mean. For the case of Van Kampen’s approximation the standard
deviation is calculated by solving the system of ODE’s for the second moments (which
gives the variance). Parameters for figure 3.2 are: α = .3, ∆t = .3 hour and τc = .01 hour.
Although Van Kampen’s form of the model is a first order approximation, it seems from
figure 3.2 that, it is able to capture the stochastic standard deviation fairly well.
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Figure 3.3: Comparison of a few stochastic simulations with the mean and variance of the
Van Kampen approximation, for α = .1, ∆t = .25 hour and τc = .01 hour.

Figure 3.3 is a numerical investigation of the standard deviation using Van kampen’s
approximation, to see how well this captures the stochastic variations for just 5 iteration.
Parameters used to generate figure 3.3 are: α = .1, ∆t = .25 hour and τc = .01 hour. Figure
3.3 suggests that the Van Kampen approximation ± standard deviation gives reasonable
bounds on the stochastic variations that arise in a full numerical solution.

3.5.2 Test case 2.

Test case 2 is a comparison of experimental data, deterministic results and the stochastic
mean with Van Kampen’s approximation. Figure 3.4 illustrates that our approximation
method for mean appears to merge well with the stochastic, deterministic and experimental
data. The parameter values used for figure 3.4 are: α = .2, ∆t = .25 hour and τc = .01
hour.
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Figure 3.4: Comparison of the stochastic and Van Kampen means for α = .2, ∆t = .25
hour and τc = .01 hour along with deterministic solution using the experimental data for
subject # 1.
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Figure 3.5: An illustration of the possible stochastic variability using Van Kampen’s ap-
proximation mean ± standard deviation of the mean for α = .2, ∆t = .25 hour and τc = .01
hour among the experimental data for subject # 1.

Figure 3.5, is a comparison between our approximation method along with the stochas-
tic and deterministic method and shows the possible variability of the absorption from
a single data set, although our approximation method under estimates the variability at
the absorption phase when compared with the stochastic simulations. Parameters for the
figure 3.5 are α = .2, ∆t = .25 hour and τc = .01 hour. In this data set there are 12
individuals, and each of them has different absorption and elimination rates (not shown
here), which explains the large variability, specially during the absorption phase.
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3.6 Conclusion

Absorption is a physiological process that results in the uptake of a drug into the systemic
circulation from the site of administration. It is clear that drug efficacy depends crucially on
maintaining critical drug concentration levels during the therapeutic window. At the same
time, this has to be balanced judiciously against the toxic side effects of a therapeutic drug.
We have presented in this chapter an approximate model (based on Van Kampen’s method)
together with error bounds that delimit the stochastic variability of drug concentration
levels in the body. Simulations of drug concentration that bound stochastic variability
give us some confidence that an individual’s plasma drug concentration levels are being
maintained at appropriate levels for drug efficacy. In addition, the error bounds provide
salutary warning of the possibility of exceeding toxic concentration levels which may have
adverse effects on a patient and hence on therapeutic efficacy.

Biological systems are inherently stochastic, and hence it is not possible to develop
a deterministic model with perfect predictive power. As in all of Applied Mathematics,
perfection is unattainable, but through judicious application of Okham’s razor and in-
corporating refinements guided by experiments, we may hope to arrive at a model that
provides insight and rational guidance for clinicians and experimentalists.
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Chapter 4

Saturable and fractal kinetics

4.1 Introduction

Identifying appropriate drugs and determining the right dosages are two prerequisites for
successful treatment of cancer using chemotherapy. Searching for effective new drugs and
evaluating their performance on various tumors is the main focus of pre-clinical and clini-
cal studies [33]. Furthermore, the correct or optimum dose with minimum toxicity is also
a crucial requirement for any effective therapy [33]. This in turn requires extensive ex-
perimental and empirical studies (both in vitro and in vivo). In this chapter we develop
a mathematical model to study a well known chemotherapeutic cancer drug paclitaxel,
in order to facilitate the design of dose administration strategies along with combination
schedules. Paclitaxel was the first taxane to gain widespread clinical acceptance and is
used now as a chemotherapeutic agent to treat a wide spectrum of tumors. Although pa-
clitaxel was initially thought to display linear pharmacokientics, but Sonnichsen et al,[75],
highlighted the fact that the pharmacokineticss is nonlinear by showing that a two com-
partmental model that incorporated saturable transport and saturable elimination best
captured pediatric PK data. A three compartmental model that incorporated saturable
transport from the central compartment to peripheral compartments, as well as saturable
elimination was used by [27] to capture the concentration/time behavior of paclitaxel, in
the case of adults. The data from Giani et al., [27], and Sonnichsen et al., [75] clearly
demonstrated that drug distribution saturated and it was also clear from the data that
saturation of transport processes occurred at lower plasma concentrations than for elimi-
nation. It is often the case that several PK models of varying complexity may be able to
capture the behavior of any given data set. The choice of an appropriate model is often

68



guided by physiological considerations and the use of Ockham’s Razor (or the law of par-
simony). For drugs that are governed by underlying linear processes, compartmental PK
models have provided excellent characterizations for a variety of pharmaceuticals. Sim-
ilarly the incorporation of saturable elimination (based on the Michaelis Menten theory
of bi-molecular chemical interaction between substrates and enzyme) has led to an even
better characterization of the PK of these pharmaceuticals. Although saturable binding
and transport are based on sound physiological principles, the processes by which pacli-
taxel is distributed through tissue suggest that saturable binding is the dominant process,
not saturable transport. Thus a possible fruitful future direction of research might be the
investigation of PK models that incorporate saturable binding compared with those that
incorporate saturable transport (these latter have tended to predominate PK studies of
paclitaxel.) From experimental studies it is well established that the time concentration
profile of paclitaxel shows nonlinear dose dependence [40, 27, 56].

Various models have been developed based on linear and non-linear time-concentration
profile of paclitaxel, using saturable distribution and elimination for two, three or more
compartments [40, 27, 56, 57, 34, 59]. For example, Giani et al.,[27] developed a multi-
compartmental model which includes a metabolite component. Sonnichsen et al., [75]
developed a two compartmental model for children with solid tumors. Both models have
assumed two saturable processes, one during the distribution phase and the other during
the elimination phase. These saturable processes have been incorporated in the models by
assuming Michaelis Menten kinetics [40].

The derivation of Michaelis Menten kinetics is based on traditional mass action kinetics.
If the reaction occurs in dimensionally restricted environments (which occurs specially in
vivo), then traditional mass action kinetics fail to capture well the underlying mechanism
[69] and resulting behavior of drug concentration levels. Thus to better capture the chem-
ical kinetics, the Michaelis Menten formalism has to be extended to (what is known in the
literature) as fractal Michaelis Menten kinetics [69].

We extend the existing mathematical model in the literature of Kearns et., al [40],
by incorporating fractal kinetics to better capture the saturable distribution process and
elimination for the time concentration profile of the drug paclitaxel.

In section 4.2, we describe the mathematical formulation of the model along with a
description of how the numerical simulations are carried out. In section 4.4, we briefly
discuss the three experimental studies from which we have drawn data in order to validate
our model. In section 4.5, we present the choice of parameter values for our study and
compare these with those by Kearns et al., [40] in their model. In section 4.6, we discuss
and appraise our findings.
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4.2 Description of the Mathematical and Computa-

tional models

Classical compartmental Pk models treat the body as a combination of a number of com-
partments. This is a popular approach to describe biological systems transport of materials
through the body. The usual practice is to consider the kinetic rates as constants. How-
ever the measurement of biological systems present unique challenges where drug molecules
interact with membrane interfaces, metabolic enzymes and have to navigate through re-
stricted and crowded micro-environments, where the system is clearly unstirred, heteroge-
neous and geometrically fractal [63]. Kopelman [41] first pointed out that, classical kinetics
are unsatisfactory, especially if the microscopic environment of the reactants are spatially
constrained. Fractal order of elementary reactions, rate coefficients with temporal mem-
ories, self ordering and self non-mixing criteria have a great impact on the heterogeneous
reaction kinetics [41]. A number of publications on diffusion in fractal spaces using fractal
calculus, have appeared in the literature. These studies show that all classical pharma-
cokinetics modeling are essentially a subset of fractal pharmacokinetics. Fuite et al., [22]
discussed the fractal nature of the liver for the drug miberfradil, which is used to reduce
ventricular fibrillation [73].

In this chapter, we focus on the anti cancer drug Paclitaxel. It is derived from the
Pacific or European Yew tree [68]. In 1962 US National Cancer Institute studied the toxic
effects of paclitaxel for the first time. Phase I trials were carried out in 1983, subsequently
Phase II trials began 1988 [11]. Paclitaxel blocks the G2/M phase of the cell cycle and as
a result, such cells can’t go through normal mitosis [11]. Microtubules are responsible for
cell shape, motility of cells, intracellular transport and mitosis and Paclitaxel is now well
known as a mitotic inhibitor as it binds to microtubules [57]. It is now accepted as a most
effective anticancer drug and has been used for solid tumors; such as breast, ovarian, lung,
head and neck etc. Usually this drug is administered via intravenous infusion at a high
dose [40]. It has a long residence time in the body and is capable of staying in cancer cells
for over a week [59].

The characterization of drug transport and absorption has attracted much interest
over the last several decades, and remains arguably the central focus of much PK research.
Drugs interact with target organs by crossing epithelial membranes either by passive dif-
fusion, pinocytosis or via carrier-mediated transport. Carrier mediated transport of drugs
is the primary means of delivering drugs to a variety of tissues ranging from organs such
as the kidney, gut and the choroid plexus in the central nervous system. The mathemat-
ical modeling and analysis of this process has been based on classical reaction kinetics
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(with time independent rate constants). This has, however, been known to be far from
satisfactory for media composed of heterogeneous micro environments, and especially for
reactions that are spatially constrained. Fractal reaction kinetics have been proposed as a
better approach to modeling the pharmacokinetics of drug transport in the human body.
Work of Mandelbrot [52] and West et al., [87] have shown that organs such as the lungs,
kidneys and anatomical structures such as the circulatory system have a fractal geometry.
Other time dependent processes (leading to limit cycle oscillations) have been implicated
as leading to nonlinear pharmacokinetics. This suggests that the extension of the Michaelis
Menten formalism, incorporating fractal kinetics may be a better approach to study the
time course of a drug in the body.

4.3 fractal Michaelis Menten kinetics

4.3.1 Batch/Transient case

The underlying assumptions of homogenity and well-stirred environments lead to time-
independent constant reaction rates in classical chemical kinetics. However in the real case
scenarios, reactions often occur in restricted geometries where the kinetics can be affected
by fluctuations in concentration levels [31]. This situation can be captured mathematically
by taking the rates time dependent [39]. If we want to consider the simplest applicable
bimolecular elementary reaction:

A+B → Products. (4.1)

By the law of mass action this has the macroscopic description [41]

dC

dt
= −kCACB, (4.2)

where C(t) is the reactant concentration and k is the “rate constant” which does not
depend on time or concentration.

Another underlying mechanism influencing this reaction is diffusion, which arises from
differences in drug concentration in different parts of the body. In this case the system can
be described by two fundamental time scales: one is the diffusion time, time the particles
require before meeting each other to react and the time particles will take to react with
each other [4]. The process is known as reaction limited, when the reaction time is larger
than the diffusion time and laws of mass actions are used to define the kinetic rates. On
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the other hand law of mass action is not applicable when the diffusion time is larger than
the reaction time and the process is known as diffusion limited. As a result reaction rates
are not time independent any more [17]. Now to understand this time dependence for a
long time, i.e, the asymptotic reaction situation (t → ∞), studies are done to derive a
relation between the microscopic diffusion constant D and the macroscopic rate constant
k by stochastic approach [41, 74, 12], which is:

k ∼ D t→∞. (4.3)

At first the reactant molecules A considered by Smoluchowski and other researchers, as a
random walker (drug molecules) and the reactant molecules of B as a sitter (traps), which
idea was later expanded by considering both A and B as random walkers along with the
“relative diffusion” (DA + DB) approach, precisely for different molecules. There are two
different methods regarding this idea; one is stochastic, which says that the mean square
displacement for the homogeneous system is linear in time where D is a proportionality
constant [41]. The other method, is based on the first passage time (the time which is taken
by a state variable to reach at specified target) and on the mean number of distinct sites
S(t) visited on the fractal at some resolution [41]. Havlin and Ben-Avraham introduced a
scaling hypothesis between the quantity S(t) and the spectral dimension ds as [22]:

S(t) ∝ tds/2, (4.4)

which means that the random walk steps are proportional to the time [22]. For transient
reactions, in both homogeneous and heterogeneous media, the time derivative of quantity
S(t) is proportional to the macroscopic constant k, i.e, [41]:

k(t) ∝ dS(t)

dt
∝ t−(1−ds/2), (4.5)

or
k ∝ t−h (4.6)

where

h = 1− ds
2
, 0 ≤ h ≤ 1. (4.7)

Now we can write the time dependent rate constant k(t) as:

k = k′t−h (4.8)

where k′ is the time independent constant and within the reaction medium and the spectral
dimension of the path of the random walker is represented ds [41]. If ds = 2 then, by using
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the above relation the value of h is 0, which means that k = k′ and we will be getting time
independent rate constants.

In PK, both compartmental and non-compartmental studies include equation (4.8).
For example, [51] has incorporated the equation (4.8) for the homogeneous heterogeneous
model where they have calculated the overall quality of blood flow. Fuite et al., [22] has
studied the fractal compartmental model for liver using the relation (4.8). In their study
they have used the following relation for the rate of elimination via the liver:

ν = k′t−hC. (4.9)

and reported that h has a significant impact on the shape of the concentration time profile.

One of the several attempts to incorporate equation 4.8 was carried out by Berry [5],
using Monte Carlo simulations in low dimensional media to model enzyme kinetics and
have used the equation the Michaelis Menten formalism to obtain the formula

ν =
vmaxC

kM0t
h + C

(4.10)

4.3.2 Steady State/Steady Source

As a special case of (4.1), the reaction of A and A can be written as:

A+ A = 2A→ Products, (4.11)

with the reaction rate equation
dCA
dt

= −kC2
A. (4.12)

In the steady state case (4.12) can be substituted for the steady state rate R as following:

R = kC2
A (4.13)

where k is the time independent constant [41]. Anacker and Kopelman [2] have shown
that, (4.13) should be replaced by

R = k0C
X
A , (4.14)

where

X ≡ 1 +
2

ds
=

2− h
2 + h

(4.15)
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which is the new interpretation of the reaction order X i. e.:

X =

{
1 + 2

ds
for A+ A reaction

1 + 4
ds

for A+B reaction

Quintela et al., [65] proposed a new approach to Michaelis Menten kinetics replacing the
kinetic rates constants by the effective kinetic rate constants incorporating the observation
scaling factor:

keffi = Ai[S]1−D, (4.16)

where D is the fractal dimension of the space. By using these in the reaction equations:

S + E
keff

1

�
keff
−1

(ES)eff
k2

eff

→ E + P, (4.17)

and relationship between the macroscopic constant keff and the quantity S(t) proposed
by Quintela et al., [65]:

keff ' dS(t)

dt
. (4.18)

One can obtain the following relation:

ν =
V eff
max[S]2−D

keffM + [S]
, (4.19)

where the new constants V eff
max and keffM are defined in terms of keff1 , keff2 and keff−1 . From

(4.19), we can see that if D = 1 then it will be the form of classical Michaelis Menten
kinetics (the fractal dimension D is less than 1 and greater than 0; i.e; 0 ≤ D ≤ 1). The
resulting kinetics will be more and more complex as D deviates from unity [65].

Another approach proposed by Savageau [69] using power law and fractal concentration
dependent kinetics for a multi-compartment reaction is given by:

dCi
dt

=
r∑

k=1

αik

n∏
j=1

C
gijk
j −

r∑
k=1

βik

n∏
j=1

C
hijk
j , (4.20)

where Cj is the concentraton of the specis j, α and β are the kinetic rate coefficients
and g and h are the orders of kinetic rates related with each reactant [54]. Rate laws
are linearised in terms of concentration or reaction affinities by using the power-law [70].
Although it is possible to model a number of essential properties using these concepts,
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it is not applicable for other important biochemical effects like saturation [70]. Savageau
[69] argues that although the power law formalism may have complex mathematical form,
it nevertheless has significant benefits, as it is capable of capturing fractal phenomena
mathematically. Marsh et al., [54] state that the equation proposed by Savageau [69] can
be derived by summing over several Michaelis Menten reactions.

4.3.3 Dose dependent fractal Michaelis Menten kinetics

Kopleman [41] mentions that, for the transient state, reactants follow random distributions
and reactants/walkers (drug molecules), gradually loose their efficiency while they are
traversing the fractal space (which has dimension ds). As a result of this, anomalous
kinetics is observed in this state [54]. Where as in steady state, there is an inflow of the
molecules, which can be treated as well stirred in Euclidean geometry, [41]. However, in
the fractal case, as self stirring is unlikely, then it can be a result of extensive fluctuations
in the regional concentration along with the growing isolation of molecules, which is known
as reaction-diffusion phenomena and as a result of these, at the steady state, distribution
molecules can be taken as partially ordered with a reduced reaction rate [54].

Marsh et al., [54] proposed an alternative formulation of fractal kinetics which depends
on the dose concentration under steady state conditions. If we consider a single compart-
ment model in the steady state, this implies that the drug concentration is constant as
a function of time. Even though physiologically, there may be considerable variations in
drug concentrations from one location to another, it may still be possible to achieve a
steady state scenario if the drug concentration is far higher than enzyme concentration
levels. Although drug molecules are lost through the elimination, the heterogeneity of the
environment, can give rise to re-circulation of released drug molecules trapped long time
at various locations. Thus modifying the DEs (1.15) appropriately, we can rewrite it for a
heterogeneous environment as follows [54]:

d[ES]

dt
= k1(E0 − [ES])[S]X − (k−1 + k2)[ES] (4.21)

dP

dt
= k2[ES]

where X is the fractal reaction order and using this relation in (1.17), we obtain the
following form for the fractal Michaelis-Menten function:

v0 =
vmaxS

X
0

km + SX0
, (4.22)
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where vmax is the maximum velocity of the reaction, km is the Micaelis Menten constant
and S0 is the initial concentration of S.

Using this functional formula in a one-compartmental model with an intravenous infu-
sion Marsh et al., [54] proposed the following model for the drug Miberfradil:

dS0

dt
=

vmaxS
X
0

km + SX0
+
i(t)

vd
, (4.23)

where i(t) is the infusion rate which has the unit mass/time and vd is the volume of
distribution which has the unit of volume.

In terms of the drug concentration C which can be written as:

dC

dt
=

vmaxC
X

km + CX
+
i(t)

vd
. (4.24)

Following Marsh et al., [55], we want to use this dose dependent steady state frac-
tal Michaelis Menten kinetics to model the infusion of the drug Paclitaxel for the two
compartmental case.

In the following compartmental model, the blood plasma is taken to be the central
compartment where the drug enters through infusion. Elimination is assumed to be a sat-
urable process, the central compartment is connected to a second compartment which could
be a tumor, an organ, or a mathematical construct encompassing a number of anatomi-
cal structures and physiological processes of interaction, with saturable distribution. The
third (peripheral) compartment encompasses other regions and structures (not of direct
interest), but where nevertheless linear binding (with the drug in the central compartment)
may occur. Kearns et al., [40] used a three compartment model with Michaelis Menten
kinetics (with saturable distribution and elimination) to capture the long tail behavior of
paclitaxel’s time concentration profile. In this chapter, we extend the Michaelis Menten
kinetics to fractal Michaelis Menten kinetics for both distribution and elimination for two
compartments (we do not consider the peripheral compartment) instead of three (as is
done by Kearns et al., [40]) and compare the performance of our model with the model
presented by Kearns et al., [40].

Figure 4.1 is a schematic presentation of the three compartmental model with frac-
tal saturable kinetics for Paclitaxel. The model is described by the following system of
equations:

Ċ1 = − vdmaxC
p
1

kdM + Cp
1

+ k21C2 − k13C1 + k31C3 −
vemaxC

q
1

keM + Cq
1

+
i(t)

Vd
, (4.25)
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Figure 4.1: Schematic diagram of three compartmental model with both saturable distri-
bution and elimination from the central plasma compartment
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Ċ2 =
vdmaxC

p
1

kdM + Cp
1

− k21C2, (4.26)

Ċ3 = k13C1 − k31C3. (4.27)

Here superscripts d and e denote distribution and elimination respectively, i(t) is the
infusion rate and Vd is the volume of distribution. In this model, we consider two different
fractal powers p and q, one is for the distribution (p) and the other is for elimination (q),
since these two processes occur in two different organs. In the model described by Kearns
et al., [40] p = q = 1 (fractal powers are not considered). In contrast, we consider two
compartment model (i.e., k13 = k31 = 0) with fractal kinetics.

To solve the problem numerically and illustrate the results graphically, we have used
Matlab 2017b. Subroutine ode45 has been used to solve the system of equations for both
the fractal and non fractal models by setting initial concentrations zero at time t = 0
in all three compartments. We consider appropriate time points from the relevant data,
for both models. To determine the optimal parameter values, we have used the Matlab
built in optimization algorithm, which uses a genetic algorithm. It is an adaptive heuristic
random search, algorithm which is based on the evolutionary ideas of natural selection
and genetics and is capable of solving both constrained and unconstrained optimization
problems (a brief overview of this algorithm is given in appendix B). The ideas underlying
this optimization algorithm are derived from evolutionary concepts (from Charles Darwin’s
principle of “survival of the fittest”). A population of individual solutions is repeatedly
modified by the algorithm. From a current population, GA randomly chooses a set of
individuals at each time step and uses those individuals as parents to produce the offspring
for the next generation and by repeating the procedure successively, the algorithm is able
to find the population for the optimal solution. The simulation gives the opportunity to
search for the parameters over a larger space and so avoid being trapped at local extrema.
From Kearns et al., [40], we know that all these parameter values should be positive and
we have used this as a constraint when running simulations, i.e., we have constrained the
search domain from 0 to∞. In order to run the simulations the genetic algorithm requires
an objective function which can be used to optimize the target parameter values. The
goal of the optimization is to minimize the distance between the observed concentration
values and the predicted concentration values. We have the plasma concentration values
at different time points from the data set, these represent the true values. From our model,
we can predict concentrations at the same time points and these represent our predicted
values. We use the Weighted Residual Sum Square (WRSS) as the objective function,
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which will minimize the differences between the true and predicted values:

WRSS =
n∑
i=1

[
(ConDatai − ̂ConPredi)

2

̂ConPred2
i

]
(4.28)

where ConDatai are the concentration values from the data set and ̂ConPredi are the
predicted concentration values using the model and i represents the discrete time points
at which the concentration values have been collected in the experiments.

The Matlab optimization tool box includes a function, Fmincon, which is used to mini-
mize a scalar function of several variables, with linear constrains and specific bounds. Fmin-
con uses a gradient-based framework with five algorithm options: ‘interior-point’(default),
‘trust-region-reflective’, ‘sqp’, ‘sqp-legacy’ and ‘active-set’, to find local optimum values.
After obtaining the optimum parameter values from the GA simulation, we have some idea
about the values as well as the range of the parameters. We now run the Fmincon function
with the default algorithm (interior-point) and set the initial conditions very close to the
parameter values (obtained from GA). This gives us greater confidence that our parameter
values are indeed the locally optimum values.

To compare the goodness-of-fit of our model with that of Kearns et al., [40] we use the
Akaike Information Criterion (AIC) (a brief discussion of AIC is presented in appendixB),
which can be expressed as follows:

AIC = Nobsln(WRSS) + 2Npar, (4.29)

where Nobs represents the number of data points, Npar represents the number of parameters
of the model. We know from the definition of AIC that the lower the value of the AIC, the
better the fit (according to this criterion).

4.4 Experimental data

Paclitaxel is used to treat a variety of cancers ranging from ovarian, lung, breast, bladder,
melanoma, esophageal, prostate, and many other solid tumor cancers. It has also been used
for a different type of cancer known as Kaposi’s sarcoma. It is poorly water soluble, but can
be dissolved in organic solvents. To administer the drug to patients, the usual formulation
of this drug is: 1:1 blend of Cremophor EL (polyethoxylated castor oil commonly known
as CrEL) and ethanol which is diluted with 520-fold in normal saline or dextrose solution
(5%) [72]. The PK nature of CrEL does not depend on dose, but the infusion time has a
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great impact on the clearance of the drug [26]. In order to handle some of these side effects
clinically, pre-medications are frequently administered.

Marsh et al., [56] carried out an analysis to demonstrate the power law behavior of
paclitaxel. They utilized 41 sets of data from 20 published papers, and digitized the data
in order to study the long time residence (in the body) of paclitaxel. They reported that
there was power law behavior in the tail region using time-concentration profile data for
paclitaxel.

Following Marsh et al., [56], we digitized data from three different studies and compared
the predictions of our model with that of Kearns et al., [40]. A brief description of the
studies (from which our data was drawn) is given below.

Brown et al.

Brown et al., [9] designed their phase I study for 31 patients of melanoma, lung, colon,
head and neck, prostate, kidney and unknown cancers. Mean age of the patients was 58
years. Taxol was administered for 6 hour IV infusion and repeated every 21 days. Blood
serum samples were collected before infusion at 5, 15, 30, 60, 90 minutes, and 2, 3, 4, 6, 8,
12, 24 and 48 hours after infusion. Their study focused on the previously reported toxic
effects, which depended on the drug vehicle CrEL and duration of infusion time. As such
they were trying to observe the situation by infusing at a rate of 43 cc/h, for the first 30
minutes, and if there were no major side effects by infusing at a higher rate of 180 cc/h
for the next 5.5 hour. The doses used in their study were 175 mg/l, 250 mg/l and 275
mg/l. Their conclusions were that pre-medication does not necessarily reduce the toxic side
effects. For the PK parameters, nonlinear regression analysis (NONLIN) was used with a
weighting of 1/y2 (where y is the true value from the data). From their investigation, a
dose of 225 mg/l was suggested for Phase II study.

We extracted plasma concentration data from this study at 11, 13 and 14 time points
for a dose 175 mg/l, 250 mg/l and 275 mg/l, respectively.

Kearns et al. and Giani et al.

Giani et al., [27] studied PK characteristics and toxicity of Paclitaxel and 6α hydroxylpacli-
taxel in humans, using a four compartmental model. This was carried out for 30 patients.
Half of these patients had advanced ovarian cancer, and the other half had advanced breast
cancer. The median age of the patients was 54 years. The administered dose for ovarian
cancer was 135mg/m2, 175mg/m2 and for the breast cancer dose was 225mg/m2 by either
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3 or 24 hours infusion. Blood plasma were collected at 1, 2 and 3 hours before infusion and
at 5 minutes, 15 minutes, 30 minutes, 1 hour, 2 hours, 3 hours, 6 hours, 12 hours during
infusion and 21 hours post infusion. PK software package ADAPT II was used to fit the
time concentration data for the compartmental analysis and regression models were used
to evaluate the pharmacodynamic correlation. Study claimed, the nonlinear disposition of
the drug in human specially in the short infusion period and a mathematical model can be
a powerful tool in predicting paclitaxel disposition, regardless of the dose and schedule.

Using the data from Giani et al., [27], Kearns et al., [40] investigated pharmacokinetics
and pharmacodynamics behavior of paclitaxel using three compartmental model. They
concluded that hypersensitivity occurred due to the mixing vehicle CrEL and suggested
pre-medication to alleviate this situation. The correlation between the neurotoxicity and
the pharmacokinetics of the pacliteaxel was presented through the study and the recom-
mendation was to use three hour infusion periods, with pre-medications to reduce neuro-
toxicity.

We extracted the concentration data at 11, 11 and 12 time points for doses of 135mg/m2,
175mg/m2 and 225mg/m2 respectively.

Zuylen et al.

Zuylen et al., [89] studied the effects of CrEL micelles on the disposition of paclitaxel.
Seven solid tumor patients were treated for 3 hours infusion on a 3 week consecutive cycle
of administration with doses of 135mg/m2, 175mg/m2 and 225mg/m2. Patients were 18
years or older with 3 months life expectancy without any previous taxane treatment. Blood
plasma samples were collected at the following times before and after the infusion: 1, 2, 3,
3.08, 3.25, 3.5, 3.75, 4, 5, 7, 9, 11, 15 and 24 hours. The Siphar package (version 4; SIMED,
Creteil, France) was used to evaluate the PK parameters, using a non compartmental
model. The study claimed that the encapsulation of CrEl is one of the reasons that
paclitaxel shows non-linear behavior as it is capable of altering blood distribution.

Based on this, they proposed a new pharmacokinetic model for whole blood and also
for blood plasma analysis. The model was able to transform nonlinear time concentration
profiles to linear ones by changing the formulation with the CrEl from the whole blood
sample, but not from the blood plasma samples.

We extracted the concentration data at 11, 11 and 9 time points for doses of 135mg/m2,
175mg/m2 and 225mg/m2 respectively from the study, which was reported for the blood
plasma samples.

81



Whatever the underlying mechanism for the non-linearity of the paclitaxel time -
concentration profiles, our interest is in developing a model capable of capturing this non-
linearity as a function of dose and infusion time, whether it is possible to minimize the
toxic side-effects of paclitaxel (either via varying the CrEL vehicle mixing proportionality,
or via change in the schedule of infusion time) is beyond the scope of our present study.
We hope to demonstrate that the model recapitulates the behavior of the experimental
data to within acceptable margins of error, and that the model can be utilized as a tool in
further experimental investigations.

4.5 Parameter values and model simulation

In this section, we present simulations of both our fractal model and the Kearns model
and compare both with the experimental data. We also compare the parameter values of
both models (in tabular form) using a weighted Residual Sum Square (WRSS) statistical
measure, as well as the Akaike Information Criterion (AIC), in order to assess the goodness
of fit of both models.

For figure 4.2, data is taken from Kearns et al., [40]. Parameter values for the Kearns
model are taken from Kearns et al., [40] and the parameter values for our fractal model
are calculated using the Matlab Genetic Algorithm. Table 4.1 represents the parameter
values for both models.

For the figure 4.3, data is taken from Van Zuylen et al [89]. There are no reported
parameter values for this data set. The Matlab built in Genetic Algorithm has been used
to evaluate the parameter values for both the models. Table 4.2 describes the values for
both models.

As mentioned earlier, we wanted to apply our model for a different infusion time other
than 3 hours and for that we chose another data set. Brown et al, [9], applied six hour
infusion times for the doses of 175 mg/l, 250 mg/l and 275 mg/l in their phase I study.
Figure 4.4, data is taken from Brown et al., [9]. Again there are no reported parameter
values for this data set and so again the Matlab built in genetic algorithm was used to
evaluate the parameter values for both models. Table 4.3 provides the values for both the
models along with the WRSS and the AIC.
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Table 4.1: Optimum parameter values reported by Kearns et al. [40] and the optimum
values for the fractal model evaluated by a genetic algorithm (Matlab).

Parameters Kearns Model Fractal Model
K21 (/h) .68 1.97
V max
d (M/h) 10.20 12.32
V max
e (M/h) 18.80 13.41
KM
d (M) .32 1.67

KM
e (M) 5.50 6.39

Vd (L) 4 4.92
K13 (/h) 2.20 0.0
K31 (/h) .65 0.0
p 1 1.20
q 1 1.70
WRSS 1.50 .83
AIC 20.35 12.89

Table 4.2: Optimum parameter values evaluated by using Genetic Algorithm (Matlab) for
both Kearns et al. [40] model and the proposed fractal model (data digitized from Zuylen
et al., [89]).

Parameters Kearns Model Fractal Model
K21 (/h) 0.47 0.20
V max
d (M/h) 8.30 9.36
V max
e (M/h) 22.50 17.33
KM
d (M) 6.16 3.78

KM
e (M) 14.59 11.84

Vd (L) 9.53 9.48
K13 (/h) 1.44 0.0
K31 (/h) 16.63 0.0
p 1 0.90
q 1 0.65
WRSS 1.45 0.52
AIC 19.41 9.10
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Figure 4.2: Comparing Kearns et al., three compartmental model with the proposed fractal
two compartmental model (data from kearns et al., [40]).
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Figure 4.3: Comparing Kearns et al., three compartmental model with the proposed fractal
two compartmental model (data from Zuylen et al., [89]).
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Figure 4.4: Comparing Kearns et al., three compartmental model with the proposed fractal
two compartmental model for six hour infusion (data from Brown et al., [9]).
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Table 4.3: Optimum parameters values evaluated by using Genetic Algorithm (Matlab) for
both Kearns et al. [40] model and the proposed fractal model (data digitized from Brown
et al., [9]).

Parameters Kearns Model Fractal Model
K21 (/h) 1.30 2.72
V max
d (M/h) 14.72 15.39
V max
e (M/h) 14.47 3.38
KM
d (M) 7.68 2.23

KM
e (M) 7.77 0.29

Vd (L) 7.16 8.45
K13 (/h) 10.24 0.0
K31 (/h) 13.19 0.0
p 1 2.05
q 1 2.79
WRSS 6.77 1.69
AIC 36.39 20.96

4.6 Discussion

Figure 4.2 shows that the fractal model appears to fit the experimental data much better
than the Kearns model. We also observe this from table 4.1 based on the WRSS and AIC
values. The WRSS value of .833 for the fractal model is less than the value of 1.5 for the
Kearns model, with a corresponding AIC value of 12.8 for the fractal model compared with
an AIC value of 20.34 for the Kearns model. From figure 4.3, it is difficult to distinguish
which of the models fits the experimental data better; however, an examination of the
WRSS and AIC values for this case (see table 4.2) gives a WRSS value of .51 for the
fractal model compared with a value of 1.45 for the Kearns model. Similarly we obtain an
AIC value of 9.18 for the fractal model compared to 19.41 for the Kearns model. Hence
both WRSS and AIC measures, confirm that the fractal model gives a better fit to the
data than the Kearns model. Note that the parameter values in this case for both the
models have been calculated using GA.

Figure 4.4 shows that the fractal model fits the experimental data better than the
Kearns model except for the dose 175mg/m2, for which both models fail to capture peak
plasma concentration, although they are not too different from the experimental data.
However, form table 4.3, the WRSS value of 1.69 compared to 6.77 and AIC values of
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20.69 compared to 36.39 again confirm that the fractal model provided a better fit to the
data than the Kearns model.

4.7 Conclusion

We extended an existing model (that used Michalis Menten formalism to model the non-
linear behavior of the chemotherapeutic drug paclitaxel) by incorporating fractal Michaelis
Menten kinetics, to better capture the effects of two competitive saturable processes. We
have compared our model with the existing model on three different data sets from three
different studies. Although it might appear that one shortcoming of our fractal model
and that of Kearns et al., is that a different set of parameter values have to be used in
both models for each of the three data sets, a closer examination reveals why it may be,
unreasonable to expect that one set of parameter values should be sufficient to predict the
three different scenarios. Firstly, the three data sets have been obtained for patients with
very different cancers. Secondly, the age groups of the patients, vary significantly for the
three data sets. Thirdly, the pre-medication used on the patients are very different for
each of the three data sets. Taking into consideration all of these different factors, it is
clear that the three data sets obtained are for three very different clinical situations and
so clearly we should expect that the parameter values calculated for one data set will not
necessarily give the best fit for a data set from a different clinical situation. Naturally,
given patients of similar age groups, with the same type of cancer (who received a similar
therapeutic drugs), one would expect that parameter values extracted previously from a
different patient cohort would still give an effective predictive model, which could be used
to evaluate the impact of different infusion times and different doses on a new patient
cohort. However, it is clear that the model needs to be validated on a broader range of
data before it can be evaluated in a clinical setting. Despite all these challenges, we believe
that well validated mathematical compartmental models of this nature are indispensable
tools in preclinical studies and play a crucial role in the eventual development of effective
clinical therapies.

88



Chapter 5

Conclusion

Sixty five years have elapsed since F. H. Dost introduced the term pharmacokinetics
(PK) in his 1953 paper, Der BliitspiegeI-Kinetic der Konzentrationsablaiife in der Kries-
laufJ ssigkeit [83]. By 1979, the number of published articles in clinical pharmacokinetics
had exceeded 400 to 500 articles per year, and PK is now an entrenched and integral part
of the clinical drug development pipeline. PK is based on four basic processes: absorption,
distribution, metabolism and excretion. All these processes are quantified by the various
PK parameters. As discussed earlier in chapter 2, there are several frequently used methods
to calculate the absorption rate constant, these are the Wagner-Nelson or Loo-Riegelman
method, nonlinear least-squares regression analysis and method of residuals. Perrier and
Gibaldi [62] stated in their study that these methods can overestimate the absorption rate
constant as they do not take into account the variations in absorption rate over time and
bioavailability [62].

In Chapter 1 of this thesis, we presented a summary of basic concepts of pharmacoki-
netics. In general, it is unreasonable to expect that drug concentration as a function of
time (for a specific patient) follows a deterministic ODE model. There may be variations as
a result of incorrect or inaccurate model specification, as well as due to physiological varia-
tions or uncertainty in the distribution, absorption and elimination processes. A means of
describing such errors is to develop random differential equation (or stochastic differential
equation) models. The simplest one compartmental elimination model:

dx

dt
= −kex, (5.1)

(where x is the drug concentration and ke is the first order elimination rate constant) can
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be extended to a random differential equation by writing:

dx = −kexdt+ σwdw (5.2)

where dw is an infinitesimal increment of the Wiener process, and so the model can be
described simply as a deterministic ODE perturbed by a normally distributed noise (or
random differential equation). The solution of (5.2) is :

x(t) = x0e
−ket +

∫ t

0

σwe
−ke(t−s)dw. (5.3)

Clearly there are some obvious problems with the model (5.2), primarily, it appears that
there is no limitation on the drug concentration, and so (even though the model describes a
simple drug elimination process) the drug concentration can increase when the increments
of the Wiener process are positive. Further more, the model will fluctuate around the mean
zero, even after the initial drug dose has been eliminated, and so the model will predict
nonphysical negative concentrations. A more realistic model is obtained by adding noise
to the rate constant, in this case in the elimination rate constant ke. Now if we want to
make the elimination rate as a random function of t with mean ke such that:

ke(t) = ke + αξ(t), (5.4)

where α is the amplitude of the fluctuation and ξ(t) represents the noise.

In this case (5.1) can be written as:

dx

dt
= −(ke + αξ(t))x. (5.5)

In the case that ξ(t) is a Wiener process (i.e. in the case of white noise), equation (5.4)
can be written as the Ito equation

dx = −kexdt− αxdw (5.6)

In our work, by taking into account randomness in the absorption rate our deterministic
model becomes a random differential equation and we make some statistical assumptions
concerning the nature of the noise. We consider the noise, to be an Ornstein Uhlenbeck
process [78]. It is a Gaussian process, with bounded variance which admits a stationary
probability distribution. The stochastic DE of an Ornstein-Uhlenbek process is often writ-
ten as a Langevin equation. The random differential equation is solved numerically using
the Gillespie algorithm [30].
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However, in this thesis we consider the more physically realistic case of “colored noise”,
where the correlation time of the noise is not a delta function. In this case the Ito calculus
is not applicable and no exact solution method is available. However, approximation meth-
ods have been developed in the physical science for realistic noise (with short correlation
times), and in chapters 2 and 3, we examined these approaches and showed that they can
be successfully applied to PK models. We started by considering the Bourret approxima-
tion to handle random differential equations and then the more amenable Van Kampen
approximation applied to the random harmonic oscillations and a one compartment model.

In chapter 3, we examined a stochastic model of a simple compartment model with
both absorption and elimination and applied Van Kampen’s approximation method to the
model, to obtain first and second moments. We also compared Van Kampen’s approxima-
tion for the first moments to full stochastic simulations for the mean, and the solution of
the deterministic equation for small amplitude noise and short correlation times. Our re-
sults give us some degree of confidence that Van Kampen’s method allows us to determine
realistic error bounds on the mean drug concentration levels that allow us to bound the
stochastic variability of drug concentration in the body.

In chapter 4, we use the theory of fractal kinetics in the context of pharmacokinetics
where saturable reactions may occur in heterogeneous micro environments. Although one
compartment models are often oversimplifications, they are able to produce accurate, good
fits if drug distribution occurs on a fast time scale and equilibrium is reached rapidly in
all tissues. We extended a standard two-compartment PK model to include steady-state
fractal Michaelis-Menten kinetics. Transient fractal kinetics is to be expected in well-
mixed heterogeneous environments, where as steady-state fractal kinetics is characteristic
in poorly mixed heterogeneous environments [54]. Klymko and Kopelman [42] suggest that
non-integer values of p and q appearing in equations (4.25) and (4.26), are characteristics of
these heterogeneous media which are essentially an assemblage of kinetically independent
bundles. In this case, the kinetic rate coefficients are averages taken over regions of varying
sizes and varying local concentrations. We applied our two compartmental PK model,
incorporating fractal steady-state Micahelis-Menten kinetics to paclitaxel data from the
literature. Paclitaxel is a long studied chemotherapeutic drug which has proved effective
in the treatment of solid tumors (for example lung, breast, ovarian etc). The plasma
concentration time profile of this drug is nonlinear [40], [27], [89]. Our results show that
our model best captured the absorption and elimination of paclitaxel, for three different
digitized data sets (compared to the Kearns et al., [40] model).

In the thesis we have explored the use of random differential equations as well as frac-
tal kinetics to characterize the PK of therapeutic drugs. In particular, in the latter case
(compartmental model of fractal kinetics) the models are deterministic and essentially
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characterize macroscopic behavior. It would be fruitful, and a possible future direction of
research to investigate the connections and relationship between individual drug molecules,
macroscopic drug behavior and the mean, using the theory of stochastic processes. In this
context, the incorporation of the idea of Levy flights in PK modeling appears promising.
The theory of random walks has been extended to a continuous time random walk for-
malism, and thus could be used incorporating Levy trapping times to develop a stochastic
PK model which includes saturable and fractal kinetics elimination effects with Levy time
temporary trapping. These types of models could then be used to infer target doses, using
plasma data, as well as to predict the response to different dosing strategies. The approach
may avoid assumptions about underlying reasons (e.g., fractal kinetics, heterogeneous cell
populations, different cell death mechanism) leading to dispersion in molecule residence
times. It might also be possible to understand and explain (using this approach) clinical
observations such as delayed reactions in some patients (in terms of this dispersion).
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Appendix A

Application of Van Kampen’s theory
to Pharmacokinetics

A.0.1 Numerical method to evaluate mean and variance for ran-
dom DE

From Langevin to Ornstein-Uhlenbeck process

A particle of mass M , changes its velocity V (t) along the rate follows Newton’s second law
of motion, which is described as net force F (t). Again the velocity V (t) describes the rate
of changes of its position X(t). All these mathematically can be written as:

dV (t)

dt
=
F (t)

M
(A.1)

and
dX(t)

dt
= V (t) (A.2)

If we consider V (t) and X(t) are random, the idea of Newton’s second law is also applicable
and can be written in differential form:

V (t+ dt)− V (t) =

[
F (t)

M

]
dt (A.3)

and
X(t+ dt)−X(t) = V (t)dt (A.4)
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We can think of that X(t) is a process variable which can be describes by its probability
density p(x, t), it means, X(t) can vary in time t and in value x at each time. More precisely
speaking, X(t) and X(t + dt) are two distinct random variables and they are presenting
different piece of Markov process and are associate with the following dynamical form [46].

X(t+ dt)−X(t) = G[X(t), dt] (A.5)

where G[X(t), dt] is known as a Markov propagator function and it is also a random
variable.Equation A.5 is the Einstein’s way of defining randomness. The random variable
G[X(t), dt] probabilistically determines the other random variables X(t+dt) from X(t) via
the relation (A.5). The assumption here is that the time domain and the process variable
are continuous, i.e., G[X(t), dt]→ 0 as dt→ 0, where smoothness is not mandatory [46] .
The Markov propagator is described by Wiener as following:

G[X(t), dt] =
√
δ2dtN t+dt

t (0, 1) (A.6)

where N t+dt
t (0, 1) unit normal random variable with mean 0 , variance 1 and connected

clearly with the time interval (t, t+ dt). δ2 is a process characterizing parameter. Now the
dynamical equation of the process variable X(t) can be written as by substituting A.6 into
A.5 and will be of the form:

X(t+ dt)−X(t) =
√
δ2dtN t+dt

t (0, 1) (A.7)

The meaning of the A.7 is that the Wiener process variable X(t) when realizes the sure
value x(t) at any time t then the variableX(t+dt) is a normally distributed random variable
with mean x(t) and variance δ2dt or we can write the variable as X(t+dt) = N(x(t), δ2dt).

French physicist Paul Langevin (1872-1946) modeled introduced the randomness in

Newtons second law A.3, by specifying impulse

[
F (t)
M

]
dt as a viscous drag −γV (t)dt plus

the random fluctuation
√
β2dtZt [46]. Langevin stated that the random variable Zt has

mean 0 and variance 1 and is uncorrelated with the position X(t). If we want to define
this random variable as Zt = N t+dt

t (0, 1), then we can write the equation A.3 as following:

V (t+ dt)− V (t) = −γV (t)dt+
√
β2dtN t+dt

t (0, 1) (A.8)

L. S. Ornstein and G. E. Uhlenbeck [78] are the two who formalized the properties of
this continuous Markov process and is known as Langevin equation governed by Ornstein-
Uhlenbeck or simply O-U process [46]. The O-U process V (t) ( equation A.8)and its time
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integral X(t) ( equation A.4), together characterize Langevin’s Brownian motion.

From the theory of statistics we know that a linear combination of independent normal
random variables will also be normal. We are going to use this logic in our evaluation.
Here in the sequence of random variables V (dt), V (2dt), ....V (t), each variable is a linear
combination of independent normal variables Ndt

0 (0, 1), Ndt
2dt(0, 1), .....N t

t−dt(0, 1). From
which we can say that V (t) is itself normal and can be written as [46]:

V (t) = N t
0(mean[V (t), var[V (t)]]) (A.9)

now, we just have to find the mean and variance of the sure function V (t) and then have
to substitute into the equation A.9.
Taking the mean on both sides of equation A.8 we will get:

< V (t+ dt)− V (t) > = < −γV (t) +
√
β2dtN t+dt

t (0, 1) > (A.10)

=⇒ < V (t+ dt) > − < V (t) > = −γ < V (t) > +
√
β2dt < N t+dt

t (0, 1) > (A.11)

=⇒ d < V (t) >

dt
= −γ < V (t) > (A.12)

where we have used the condition that the mean of < N t+dt
t (0, 1) > is 0 and also have

used the linearity property for the operator <>. Now we can see the A.12 is an ordinary
differential equation and we can solve this to get following expression of mean V (t):

mean[V (t)] =< V (t) >= v0e
−γ(t−t0) (A.13)

where the initial condition V (0) = v0 at time t = t0 has been used.

To evaluate the variance of V (t) we can use the definition of variance < V (t)2 >
− < V (t) >2, from where we have < V (t) >2= v2

0e
−2γ(t−t0) and we just have to evaluate

< V (t)2 >. We can use the definition as following:

d[V (t)2] = [V (t+ dt)]2 − [V (t)]2 (A.14)

Now using equation A.8 we can get the following:

V (t+ dt) = V (t)− γV (t) +
√
β2dtN t+dt

t (0, 1) (A.15)

=⇒ V (t+ dt) = V (t)(1− γdt) +
√
β2dtN t+dt

t (0, 1)

=⇒ [V (t+ dt)]2 = [V (t)(1− γdt) +
√
β2dtN t+dt

t (0, 1)]2 squaring both sides

(A.16)
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Now using this relation into the right hand side of the equation A.14 we get:

d[V (t)2] = [V (t+ dt)]2 − [V (t)]2

= [V (t)(1− γdt) +
√
β2dtN t+dt

t (0, 1)]2 − [V (t)]2

= V (t)2(1− γdt)2 + 2V (t)(1− γdt)
√
β2dtN t+dt

t (0, 1) + β2dt[N t+dt
t (0, 1)]2 − V (t)2

= −2V (t)2γdt+ 2V (t)
√
β2dtN t+dt

t (0, 1) + β2dt[N t+dt
t (0, 1)]2 (A.17)

where we have dropped the terms of order dt2 and dt3/2 who are very small comparing to
dt. Taking the mean on the both side of equation A.17 we get:

d < V (t)2 > = −2 < V (t)2 > γdt+ 2 < V (t)N t+dt
t (0, 1) >

√
β2dt

+ β2dt < [N t+dt
t (0, 1)]2 >

= −2 < V (t)2 > γdt+ 2 < V (t)N t+dt
t (0, 1) >

√
β2dt+ β2dt (A.18)

From the statistical condition we have defined before; we can say that V (t) is the linear
combination of Ndt

0 (0, 1), Ndt
2dt(0, 1), .....N t

t−dt(0, 1) but not of N t+dt
t (t), which means V (t)

and N t+dt
t (t) are statistically independent and we can have:

< V (t)N t+dt
t (0, 1) >=< V (t) >< N t+dt

t (0, 1) >= 0 (A.19)

By using this equation A.18 becomes:

d < V (t)2 > = −2 < V (t)2 > γdt+ β2dt

=⇒ d

dt
< V (t)2 > = −2 < V (t)2 > γ + β2 (A.20)

Now solving the differential equation A.20 with the initial condition V (0) = v0 at time
t = t0, we will get:

< V (t)2 >= v2
0e
−2γ(t−t0) +

(
β2

2γ

)
(1− e−2γ(t−t0)) (A.21)

Now using the definition of variance together with the equations A.21 and A.13 we can get
the expression for variance of V (t)

var[V (t)] = < V (t)2 > − < V (t) >2

=

(
β2

2γ

)
(1− e−2γ(t−t0)) (A.22)
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Now using the mean and variance from equations A.13 and A.22 we can have the O-U
process as:

V (t) = N t
0

(
v0e
−γ(t−t0),

(β2

2γ

)
(1− e−2γ(t−t0))

)
(A.23)

From the characteristics of the random variables we know that, two random variables can
be determined by their mean, variance and covariance. As we have evaluated the mean
and variance for V (t), our next attempt is to evaluate the mean and variance for the time
integral of the process, i. e., X(t). Taking the average on A.4 we will get:

d < X(t) >

dt
= < V (t) >

= v0e
−γ(t−t0) using equation A.13 (A.24)

Now solving the differential equation A.24 using the initial condition X(t0) = x0 we will
get:

< X(t) >= x0 + v0/γ(1− e−(t−t0)γ) (A.25)

Now we are going to multiply equation A.8 with the equation A.4 to evaluate the relation
of the covariance between V (t) and X(t) as following:

V (t+ dt)X(t+ dt) = V (t)X(t)− γV (t)X(t)dt+
√
β2dtN t+dt

t (0, 1)X(t) + V 2(t)dt+ o(dt)
(A.26)

Here o(dt) stands for the order of dt for > 1 in dt. Now taking the average on A.26
and also by using the condition that N(t) and X(t) are two independent random variables
means < N(t)X(t) >=< N(t) >< X(t) >= 0 < X(t) >= 0 we will get:

d < V (t)X(t) >

dt
= −γ < V (t)X(t) > + < V 2(t) > (A.27)

Now using the relation A.22 and A.13 we can solve solve the DE A.27 using the initial
condition < V (t0)X(t0) >= v0x0 and also using the equations A.13 and A.22 we can find
the result as following:

< V (t)X(t) >=
β2

2γ2
+ (v0x0 + v2

0/γ − β2/γ2)e−(t−t0)γ +

(
β2

2γ2
− v2

0

γ

)
e−2γ(t−t0) (A.28)

The definition of the covariance for V (t) and X(t) can be written as:

cov(V (t)X(t)) ≡< V (t)X(t) > − < V (t) >< X(t) > (A.29)
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and using all these result we can get the relation of the covariance of V (t) and X(t) as
following:

cov(V (t)X(t)) =
β2

2γ2
(1− 2e−(t−t0)γ + e−2(t−t0)γ) (A.30)

Now to evaluate the variance of X(t), we will square the equation A.4 and neglecting the
terms of order of dt > 1 we will get:

< X2(t+ dt) > − < X2(t) > = 2 < V (t)X(t) > dt

=⇒ d < X2(t) >

dt
= 2 < V (t)X(t) >

=⇒ < X2(t) >= x2
0 + 2

∫ t

t0

< V (t′)X(t′) > dt′ (A.31)

Now using the result of A.28 in the above A.31 we can solve the equation and then we can
use the definition of variance to get the following:

var(X(t)) =
β2

γ3

[
γ(t− t0)− 2(1− e−γ(t−t0)) +

1

2
(1− e−2γ(t−t0))

]
(A.32)

Exact Updating formula

From the above section we can say that we have a complete solution of the Onrstein
Uhlenbeck process of V (t) and its time integral X(t). Now we are going use all of these
information to evaluate exact updating formulas for random variables V (t) and X(t). Here
we are assumed that the values of V (t) and X(t) are given which will be used to evaluate
the random variables V (t + ∆t) and X(t + ∆t) for any ∆t > 0 and also we are going to
substitute t0 to t and t to t+ ∆t in the expression of the means, variances and covariance,
which will give us the new expressions are as following:

mean(V (t+ ∆t)) = V (t)e−γ∆t (A.33)

mean(X(t+ ∆t)) = X(t) + V (t)/γ(1− e−γ∆t) (A.34)

var(V (t+ ∆t)) ≡ σ2
V = (β2/2γ)(1− e−2γ∆t) (A.35)

var(X(t+ ∆t)) ≡ σ2
X =

β2

γ3

[
γ∆t− 2(1− e−γ(∆t) +

1

2
(1− e−2γ∆t)

]
(A.36)

cov ≡ kV X =
β2

2γ2
(1− 2e−γ∆t + e−2γ∆t) (A.37)
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Now we are going to use the theory of the random variable, which stated that if N1 and
N2 are statistically independent unit normal random variables, then two random variables
X1 and X2 which have the mean: m1, m2; variances σ2

1, σ2
2, and covariance k12, can be

determined [30]:
X1 = m1 + σ1N1 (A.38)

X2 = m2 +

(
σ2

2 −
k2

12

σ2
1

)1/2

N2 +
k12

σ1

N1 (A.39)

Now using A.38 and also using the condition that a random variable with mean m and
variance σ2 can be written as:

α + βN(m,σ2) = N(α + βm, β2σ2) (A.40)

it is possible to get expressions for X1, X2 and cov(X1, X2) as following [30]:

X1 = m1 + σN(0, 1) = N(m1, σ
2
1) (A.41)

X2 = m2 +

(
σ2

2 −
k2

12

σ2
1

)1/2

N(0, 1) +
k12

σ1

N(0, 1)

= N

(
m2,

(
σ2

2 −
k2

12

σ2
1

))
+N(0,

k2
12

σ2
1

)

= N

(
m2 + 0, σ2

2 −
k2

12

σ2
1

k2
12

σ2
1

)

= N

(
m2, σ

2
2

)
(A.42)

cov(X1, X2) ≡ < (X1− < X1 >)(X2− < X2 >) >

= < (X1 −m1)(X2 −m2) >

=

〈
[σ1N1]

[(
σ2

2 −
k2

12

σ2
1

)1/2

N2 +
k12

σ1

N1

]〉

= σ1

(
σ2

2 −
k2

12

σ2
1

)1/2

< N1N2 > +k12 < N2
1 > (A.43)
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By using A.38 and A.39, it is possible to express the dependent normals V (t + ∆t) and
X(t + ∆t) as a linear combination of independent unit normals. Now by substituting
µ ≡ e−γ∆t into the moment equations A.33 we will get:

σ2
V = (

β2

2γ
)(1− µ2) (A.44)

σ2
X =

β2

γ3
[γ∆t− 2(1− µ) + (1/2)(1− µ2)] (A.45)

kV X = (
β2

2γ2
)(1− µ)2 (A.46)

Using all these information and relation it is possible to get the exact updating formula
for the Ornstein Uhlenbeck process V and its time integral X as [30]:

V (t+ ∆t) = V (t)µ+ σV n1 (A.47)

X(t+ ∆t) = X(t) +
1

γ
V (t)(1− µ) +

(
σ2
x −

k2
V X

σ2
V

)
n2 +

kV X
σV

n1 (A.48)

where n1 and n2 are independent normal numbers, µ, σV , σX and kV X are characterize by
the time step ∆t, relaxation time γ and the diffusion constant β
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Appendix B

Saturable and fractal kinetics

B.1 Genetic Algorithm

To find an optimal or best solution, optimization techniques have been used in different
areas of science and engineering. These techniques are considering the following factors
[24]:

• An objective function: the function we want to minimize or maximize, for example
we want to minimize the cost and maximize the profit in manufacturing.

• A set of unknown variables: the variables by which the objective function can
be effected.

• A set of constraints: which can be used to include certain conditions while evalu-
ating values of the unknown parameters.

So, an optimization technique is a technique which can be used to find the variables that
maximize or minimize the objective function while satisfying the constraints. Genetic Al-
gorithm (GA) is a heuristic search algorithm to optimize a problem, inspired by Darwins
evolution theory, which uses random search process. The basics of GA can be stated as
follows:

• It starts by generating a random population of n chromosome which can be think of
the solution of the problem.
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• Calculate f(x), the fitness function of x (chromosome) in the population.

• Creates new population by repeating the following processes:

– (a) Two different parent chromosomes are selected from the population which we
can think as Selection by comparing with evolution process (when the fitness
is better, then the chance to be selected is bigger).

– (b) Perform a Crossover probability. The offspring (children) will be exact
same copy of the parents if there is no crossover (but this does not mean that
the new generation is same) and the offspring will be made from parts of parents
chromosome then crossover probability performed.

– (c) How often the parts of the chromosome mutated is measured by the Muta-
tion probability and offspring can be taken as is after the crossover if there is
no mutation.

– (d) Place the new offspring in the new population which is known as Accepting
the new population.

• The new generated population is replaced for the next run of the algorithm.

• By testing the constraint conditions it will stop and return the best solution of the
current population.

• And it will go to the step 2 to continue the loop as long as the tolerance is achieved.

B.2 Akaike Information Criterion (AIC)

In statistical study we are engaging ourselves to estimate the effects for a given variable
using certain parameters. While doing this we certainly may include parameters for which
we might loose the physical information we are trying to predict via a mathematical model.
And we may also over fit the available data. Form the Occam’s razor philosophical principle
we know that, if we can describe something with a simple model or with also a more
complicated model then we should choose the simple one. Which indicates to rely on the
simpler model than to the complicated model. Now when we are fitting some observation
how do we know that we are including less or more parameters? In 1973, Akaike H., a
Japanese Statistician came with a theory which will compare with the models and that
comparison will give the idea which model we should choose among the models are available
to choose. By doing so, it restricts us from under or over fit the model. Since this is a

111



comparison with the available models we have, it will not tell us that this is the best
model rather give us the information that this a better one among the models we have.
In statistics this means that a model with less parameters is preferable than a model with
more parameters. Again a model with too less parameters will be biased and a model with
too many parameters will have low precision [10]
The theory is from the information field theory and named as Akaike Information Criterion
or AIC. Good model would be the one which will minimize the loss of information. Akaike
in 1973 proposed an information criterion as follows:
AIC=-2(log-likely hood)+2K
where K is the number of estimated parameters used in the model. For a given sets of data
log-likelihood can be calculated and from there one can tell about the model, is that it is
over or under fit or not (smaller value means worse fit) [10]. If the models are based on
conventional least squares regression then the assumption is that the error obeys Gaussian
distribution. And we can compute the AIC formula as following:

AIC = Nobs + ln(WRSS) + 2Npar;

where Nobs, is the number of observed data point, Npar is the number of model parame-
ters, WRSS is the weighted residual sum squares [88]. WRSS can be calculated from the
following relation:

WRSS = Σn
i=1

(Ci − Ĉi)2

Ĉi
2

where Ĉi is the predicted value and Ci is the true value. A lower AIC value indicate a
better fit. Idea about the weighted factor is, if at high concentration i.e., at the beginning
of the time plasma profile, data are showing more accuracy than the tail, then the data
can be weighted with WRSS ∼ 1; [88]. On the other hand if the tail end of the profile

showing more accuracy then the data might be weighted with 1/Ĉ2 [88]. Following this
idea in our model we have used the weighted factor for WRSS is 1/Ĉi.
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Appendix C

Matlab Code for the figures

C.1 Maple Code for chapter 2

Code for Fig. 2.1

with(DEtools);

c_1 := 2*tau_c^2/(4*tau_c^2+1);

c_2 := -4*tau_c^3/(4*tau_c^2+1);

coef1 := (1/2)*alpha^2*c_2;

coef2 := 1-(1/2)*alpha^2*c_1;

soln := dsolve({diff(y(tau), tau, tau)

-coef1*(diff(y(tau), tau))+coef2*y(tau) = 0,

y(0) = 1, (D(y))(0) = 0}, y(tau));

tau_c := .1;

alpha := .1;
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p1 := soln;

p2 := evalc(p1);

p3:=1.000000000*exp(-9.615384615*10^(-6)*tau)*cos(.9999519221*tau)

+9.615846928*10^(-6)*exp(-9.615384615*10^(-6)*tau)*sin(.9999519221*tau);

plot(p3, tau = 0 .. 300000, labels = ["tau;", "x(tau;)"]);

Code for Fig. 2.2

with(DEtools);

eqn1 := (4s^3+4s^2g+s(g^2+1))/(4s^4+4s^3g+s^2(g^2+5)+4sg+g^2+1-a^2);

g := 10; % here g is for gamma

a := .1; % a is for alpha

% tau_c = 1/gamma; relation between tau_c and gamma

eqn2 := convert(eqn1, parfrac, s, complex);

simplify(eqn2);

with(inttrans);

eqn3 := invlaplace(eqn2, s, tau);

simplify(eqn3);

evalc(eqn3)=-0.1022861100e-4*exp(-4.999981833*tau)*cos(4999064302*tau)

-0.3506132442e-4*exp(-4.999981833*tau)*sin(.4999064302*tau)

+(1.000010228*cos(.9999559436*tau)-0.1544872248e

-4*sin(.9999559436*tau))*exp(-0.1816725994e-4*tau)
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+I*(3.801992999*10^(-17)*cos(.9999559436*tau)

-1.*10^(-31)*sin(.9999559436*tau))*exp(-0.1816725994e-4*tau)

eqn4:=-0.1022861100e-4*exp(-4.999981833*tau)*cos(4999064302*tau)

-0.3506132442e-4*exp(-4.999981833*tau)*sin(.4999064302*tau)

+(1.000010228*cos(.9999559436*tau)

-0.1544872248e-4*sin(.9999559436*tau))*exp(-0.1816725994e-4*tau)

plot(eqn4, tau = 0 .. 200000, labels = ["tau;", "y(tau;)"]);

C.2 Matlab Code for chapter 3

Matlab files for test case 1:

% This is the script file to run the numerical form of the model

% Time set-up for Acetaminophen for maximum dose 4000 mg

% We are checking the simulation by giving the maximum dose

% in every six hours time interval

dt=0.3; % dt=delta_t=time step

t=0:dt:6;% First Dose

tfull=[t,t+6,t+12,t+18];

iteration=5;%100000;

x_mat=zeros(length(tfull),iteration);

A_mat=zeros(length(tfull),iteration);

global tauC D

D = .2;

tauC = .01;

%Initial condition

dose=1000; % dose=x(0)=X_0

y0=[dose;0;0]; % A(0)=0, noise xi(0)=0

for i=1:iteration

[x1,xi1,A1]=Acetaminophen(t,y0);
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[x2,xi2,A2]=Acetaminophen(t+6,[x1(end)+dose,xi1(end),A1(end)]);

[x3,xi3,A3]=Acetaminophen(t+12,[x2(end)+dose,xi2(end),A2(end)]);

[x4,xi4,A4]=Acetaminophen(t+18,[x3(end)+dose,xi3(end),A3(end)]);

x_mat(:,i)=[x1’;x2’;x3’;x4’];

A_mat(:,i)=[A1’;A2’;A3’;A4’];

disp (i)

end

figure(1); hold on; plot(tfull,x_mat)

figure(2); hold on; plot(tfull,A_mat)

figure(3); hold on; plot(tfull,mean(x_mat,2)’,’Linewidth’,2)

figure(4); hold on; plot(tfull,mean(A_mat,2)’,’Linewidth’,2)

figure(5); hold on; e1 = errorbar(tfull,mean(x_mat,2)’,std(x_mat’)’);

figure(6); hold on; e2 = errorbar(tfull,mean(A_mat,2)’,std(A_mat’)’);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% The basic idea of the codes are taken from

% Dr. Mathew Scott’s lecture note AMATH 777

% http://www.math.uwaterloo.ca/~mscott/

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [x, xi, A]=Acetaminophen(tdom, y0)

% The syntax for this function is 777_jenny([tauC, D],

% [t_start, t_end])

% where tauC is the correlation time of the colored noise,

% D is the standard

% deviation of the noise, t_start is the initial time

% and t_end is the end time

global tauC

x=zeros(1,length(tdom));

xi=zeros(1,length(tdom));

A=zeros(1,length(tdom));
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[t,y] = Eulers(@PKFun, [tdom(1),tdom(end)], y0, min(.01,tauC/10));

x = x+interp1(t,y(:,1),tdom);

xi = xi+interp1(t,y(:,2),tdom);

A = A+interp1(t,y(:,3),tdom);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function dy=PKFun(~,y,h)

% The vector right-hand sides of the differential equations

% dy(1) is the trajectory of the drug in the absorption site,

% dy(2) is the noise,

% and dy(3) is the drug in the systemic circulation

global tauC D

rho=exp(-h/tauC);

ke=.28; F=.89; ka=1.80*F; p=ke/ka;

% Random form of the model

dy(1)=-(1+y(2))*y(1);

dy(2)=1/h*((rho-1)*y(2)+(1-rho^2)^(1/2)*(D/(2*tauC))^(1/2)*randn);

dy(3)=(1+y(2))*y(1)-p*y(3);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [tout, yout] = Eulers(FunFcn, tspan, y0, ssize)

% This function will integrate a system of ordinary

% differential equations using Euler’s method.

% INPUT:

% F - String containing name of user-supplied

% problem description.

% Call: yprime = fun(t,y) where F = ’fun’.

% t - Time (scalar).

% y - Solution vector.

% yprime - Returned derivative vector; yprime(i) = dy (i)/dt.

% tspan = [t0, tfinal], where t0 is the initial value of t,

% and tfinal is the final value of t.
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% y0 - Initial value vector.

% ssize - The step size to be used.

%(Default: ssize = (tfinal - t0)/100).

%

% OUTPUT:

% t - Returned integration time points (column-vector).

% y - Returned solution, one solution row-vector per tout-value.

% Initialization

t0=tspan(1);

tfinal=tspan(2);

pm = sign(tfinal - t0); % Which way are we computing?

if (nargin < 4), ssize = abs (tfinal - t0)/1000; end

if ssize < 0, ssize = -ssize; end

h = pm*ssize;

t = t0;

y = y0(:);

% To compute the number of steps.

dt = abs(tfinal - t0);

N = floor(dt/ssize) + 1;

if (N-1)*ssize < dt

N = N + 1;

end

% Initialize the output.

tout = zeros(N,1);

tout(1) = t;

yout = zeros(N,size(y,1));

yout(1,:) = y.’;

k = 1;

% The main loop

while k < N

if pm*(t + h - tfinal) > 0

h = tfinal - t;

tout(k+1) = tfinal;

else
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tout(k+1) = t0 +k*h;

end

k = k+1;

% Compute the slope

s1 = feval(FunFcn, t, y,ssize); s1 = s1(:); % s1=f(t(k),y(k))

y = y + h*s1; % y(k+1) = y(k) + h*f(t(k),y(k))

t = tout(k);

yout(k,:) = y.’;

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% This is the script file is to evaluate Van Kampen’s

% mean and Variance along with the deterministic solution

%%

% Constants

DoseInterval = 6; tfinal= DoseInterval*4; h =.3;

t=0:h:6;% First Dose

t=[t,t+6,t+12,t+18];

dose = 1e3;

ke=.28; F=.89; ka=1.80*F; p=ke/ka; % p is rho in the writing

alpha=.3; tauc=.01;

Cond0 = alpha^2*tauc

Cond1 = 3*(p + 1)/5

Cond2 = (3*p^3+13*p^2+13*p+3)/(22*p^2 + 44*p + 14)

Cond0 < Cond1

Cond0 < Cond2

%% First portion is the solution of the coupled DE

% Deterministic form of the model

fx=@(t,x) (-x);

fA=@(t,x,A)(x-p*A);

%%%Set initial conditions

N = length(t);

A = zeros(N,1);

x = zeros(N,1); x(1)=dose;

for i=2:N
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if(t(i) == t(i-1))

x(i) = x(i-1) + dose;

A(i) = A(i-1);

else

% Update x, A

K1x=fx(t(i-1), x(i-1) );

K1A=fA(t(i-1) ,x(i-1) ,A(i-1));

K2x=fx(t(i-1)+h/2 ,x(i-1)+h/2*K1x);

K2A=fA(t(i-1)+h/2 ,x(i-1)+h/2*K1x ,A(i-1)+h/2*K1A);

K3x=fx(t(i-1)+h/2 , x(i-1)+h/2*K2x);

K3A=fA(t(i-1)+h/2 ,x(i-1)+h/2*K2x ,A(i-1)+h/2*K2A);

K4x=fx(t(i-1)+h , x(i-1)+h*K3x);

K4A=fA(t(i-1)+h ,x(i-1)+h*K3x ,A(i-1)+h*K3A);

%

x(i)=x(i-1)+(h/6)*(K1x +2*K2x +2*K3x +K4x);

A(i)=A(i-1)+(h/6)*(K1A +2*K2A +2*K3A +K4A);

end

end

% Deterministic solution

figure (3); hold on ; plot(t,x,’b:’,’LineWidth’,2)

figure (4); hold on; plot(t,A,’b:’,’LineWidth’,2)

%% Script file to evaluate <x>, <A>, <AX>, <AA> and <XX>

x = zeros(N,1); x(1) = dose;

A = zeros(N,1); A(1) = 0;

Ax = zeros(N,1); Ax(1) = A(1)*dose;

xx = zeros(N,1); xx(1) = dose^2;

AA = zeros(N,1); AA(1) = 0;

%Function handle for mean

fx=@(t,x) (-(1-alpha^2*tauc)*x);

fA=@(t,x,A) ((1-alpha^2*tauc)*x-p*A);

% These are the coefficients for the second moment

coef1=tauc*alpha^2 - p - 1;

coef2=2*tauc*alpha^2 + 2;

=((3*tauc - 2*p*tauc + (p*tauc)/(tauc*(p - 1) ...

+ 1))*alpha^2)/(p - 1) + 1;

coef4=-(alpha^2*(2*tauc - (2*p*tauc)/(tauc*(p - 1) ...
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+ 1)))/(p - 1);

coef5=4*tauc*alpha^2 - 2;

%Function Handle for second moemnt

fAx=@(t,Ax,xx)(coef1*Ax+coef3*xx);

fAA=@(t,Ax,AA,xx) (coef2*Ax-2*p*AA+coef4*xx);

fxx=@(t, xx) (coef5*xx);

% Loop to use for multiple dosage

for i=2:N

if(t(i) == t(i-1))

x(i) = x(i-1) + dose;

xx(i) = xx(i-1) + dose^2 + 2*(x(i-1))*dose;

Ax(i) = Ax(i-1) + A(i-1)*dose;

A(i) = A(i-1);

AA(i) = AA(i-1);

else

% Update x, A, Ax, AA, xx

K1x=fx(t(i-1), x(i-1));

K1A=fA(t(i-1), x(i-1), A(i-1));

K1Ax=fAx(t(i-1), Ax(i-1), xx(i-1));

K1AA=fAA(t(i-1), Ax(i-1), AA(i-1), xx(i-1));

K1xx=fxx(t(i-1), xx(i-1));

K2x=fx(t(i-1)+h/2, x(i-1)+h/2*K1x);

K2A=fA(t(i-1)+h/2, x(i-1)+h/2*K1x, A(i-1)+h/2*K1A);

K2Ax=fAx(t(i-1)+h/2, Ax(i-1)+h/2*K1Ax, xx(i-1)+h/2*K1xx);

K2AA=fAA(t(i-1)+h/2, Ax(i-1)+h/2*K1Ax, AA(i-1)+h/2*K1AA, ...

xx(i-1)+h/2*K1xx);

K2xx=fxx(t(i-1)+h/2, xx(i-1)+h/2*K1xx);

K3x=fx(t(i-1)+h/2, x(i-1)+h/2*K2x);

K3A=fA(t(i-1)+h/2, x(i-1)+h/2*K2x, A(i-1)+h/2*K2A);

K3Ax=fAx(t(i-1)+h/2, Ax(i-1)+h/2*K2Ax, xx(i-1)+h/2*K2xx);

K3AA=fAA(t(i-1)+h/2, Ax(i-1)+h/2*K2Ax, AA(i-1)+h/2*K2AA, ...

xx(i-1)+h/2*K2xx);

K3xx=fxx(t(i-1)+h/2, xx(i-1)+h/2*K2xx);

K4x=fx(t(i-1)+h, x(i-1)+h*K3x);

K4A=fA(t(i-1)+h, x(i-1)+h*K3x , A(i-1)+h*K3A);

K4Ax=fAx(t(i-1)+h, Ax(i-1)+h*K3Ax, xx(i-1)+h*K3xx);
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K4AA=fAA(t(i-1)+h, Ax(i-1)+h*K3Ax, AA(i-1)+h*K3AA, ...

xx(i-1)+h*K3xx);

K4xx=fxx(t(i-1)+h, xx(i-1)+h*K3xx);

x(i)=x(i-1)+(h/6)*(K1x +2*K2x +2*K3x +K4x);

A(i)=A(i-1)+(h/6)*(K1A +2*K2A +2*K3A +K4A);

Ax(i)=Ax(i-1)+(h/6)*(K1Ax +2*K2Ax +2*K3Ax +K4Ax);

AA(i)=AA(i-1)+(h/6)*(K1AA +2*K2AA +2*K3AA +K4AA);

xx(i)=xx(i-1)+(h/6)*(K1xx +2*K2xx +2*K3xx +K4xx);

end

end

varx=(xx-(x).^2);

varA=(AA-(A).^2);

EnvelopxPlus = x+sqrt(varx);

EnvelopxMinus = x-sqrt(varx);

EnvelopAPlus = A+sqrt(varA);

EnvelopAMinus = A-sqrt(varA);

figure(5);hold on

plot(t,x,’k--’,’LineWidth’,2)

plot(t,EnvelopxPlus ,’m--’,’LineWidth’,2)

plot(t,EnvelopxMinus ,’m--’,’LineWidth’,2)

figure(6);hold on

plot(t,A’,’k--’,’LineWidth’,2)

plot(t,EnvelopAPlus ,’m--’,’LineWidth’,2)

plot(t,EnvelopAMinus,’m--’, ’LineWidth’,2 )

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Matlab files for test case 2:

% This code is to solve the Random form of the model

% for the data of subject # 1 of the drug Theophyline
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ka=2.062927706; dt=0.25; t=0:dt:24*ka;

x_mat=zeros(length(t),iteration);

A_mat=zeros(length(t),iteration);

%Initial condition

Amount=4.02; Weight=79.6; dose=Amount*Weight;

y0=[dose;0;0];

global tauC D

D = .2;

tauC = .01;

% How many times I want to run the simulation

iteration=10000;

for i=1:iteration

[x,xi,A]=Theophyline(t,y0);

A_mat(:,i)=A’;

disp (i)

end

figure(1); hold on;

plot(t,A_mat’/dose,’Linewidth’,2)

figure(1); hold on;

plot(t,mean(A_mat’)’/dose,’k:’,’Linewidth’,2)

figure(1); hold on;

e2 = errorbar(t,mean(A_mat’)’/dose,std(A_mat’)’/dose);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [x, xi, A]=Theophyline(tdom, y0)

% tauC is the correlation time of the colored noise,

% D is the standard deviation of the noise,

% tdom(1) is the initial time and tdom(2) is the end time

global tauC

x=zeros(1,length(tdom));

xi=zeros(1,length(tdom));

A=zeros(1,length(tdom));

[t,y] = Euler(@TheoFun, [tdom(1),tdom(end)], ...

y0, min(.01,tauC/10));

x = x+interp1(t,y(:,1),tdom);

123



xi = xi+interp1(t,y(:,2),tdom);

A = A+interp1(t,y(:,3),tdom);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function dy=TheoFun(~,y,h)

global tauC D

rho=exp(-h/tauC);

ke= 0.058333529; ka=2.062927706; p=ke/ka;

dy(1)=-(1+y(2))*y(1);

dy(2)=1/h*((rho-1)*y(2)+(1-rho^2)^(1/2)*(D/(2*tauC))^(1/2)*randn);

dy(3)=(1+y(2))*y(1)-p*y(3);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%

% This is the script file for comapre the theophyline

% Subject # 1 data with the deterministic equation,

% Van Kampan Mean and Variance

ke= 0.058333529; Intercept=1.067449981;

AI=10^(Intercept); ka=2.062927706; p=ke/ka;

Amount=4.02;% mg/kg

Weight=79.6; %kg

dose=Amount*Weight; %mg

F=1;% Bioavalability aproximately 1

V=(ka*F*dose)/(AI*(ka-ke));

alpha=.2; tc=.01; tauc=.01;

%%

% Data for Subject # 1

t_exp1=[0 0.25 0.57 1.12 2.02 3.82 5.1 7.03 9.05 12.12 24.37 ];

C_exp1=[0.74 2.84 6.57 10.5 9.66 8.58 8.36 7.47 6.89 5.94 3.28 ];

figure (1)% FOr the data

plot(t_exp1*ka,C_exp1.*V/dose,’r*’,’linewidth’,2)

hold on

%%
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% Time steps and initial conditions

x(1)=dose; A(1)=0; tfinal=24*ka; h = .25; t =0:h:tfinal;

xx(1)=dose^2; AA(1)=0; Ax(1)=0;

N=ceil(tfinal/h);

%% Deterministic form

fx=@(t,x) (-x);

fA=@(t,x,A) (x-p*A);

for i=1:N

% update time

t(i+1)=t(i)+h;

% Update x, A

K1x=fx(t(i), x(i) );

K1A=fA(t(i) ,x(i) ,A(i));

K2x=fx(t(i)+h/2 ,x(i)+h/2*K1x);

K2A=fA(t(i)+h/2 ,x(i)+h/2*K1x ,A(i)+h/2*K1A);

K3x=fx(t(i)+h/2 , x(i)+h/2*K2x);

K3A=fA(t(i)+h/2 ,x(i)+h/2*K2x ,A(i)+h/2*K2A);

K4x=fx(t(i)+h , x(i)+h*K3x);

K4A=fA(t(i)+h ,x(i)+h*K3x ,A(i)+h*K3A);

x(i+1)=x(i)+(h/6)*(K1x +2*K2x +2*K3x +K4x);

A(i+1)=A(i)+(h/6)*(K1A +2*K2A +2*K3A +K4A);

end

figure (1)

plot(t,A/dose,’y:’,’LineWidth’,2)

hold on

%%

% Van Kampen equations for first and second moments:

% By using Runge Kutta method

% Function handle for the mean

fx=@(t,x) (-(1-alpha^2*tc)*x);

fA=@(t,x,A) ((1-alpha^2*tc)*x-p*A);

% These are the coefficients for the second moment
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coef1=tauc*alpha^2 - p - 1;

coef2=2*tauc*alpha^2 + 2;

coef3=((3*tauc - 2*p*tauc + (p*tauc)/(tauc*(p - 1) + 1)) ...

*alpha^2)/(p - 1) + 1;

coef4=-(alpha^2*(2*tauc - (2*p*tauc)/(tauc*(p - 1) ...

+ 1)))/(p - 1);

coef5=4*tauc*alpha^2 - 2;

%Function Handle for second moemnt

fAx=@(t,Ax,xx)(coef1*Ax+coef3*xx);

fAA=@(t,Ax,AA,xx) (coef2*Ax-2*p*AA+coef4*xx);

fxx=@(t, xx) (coef5*xx);

for i=1:N

% update time

t(i+1)=t(i)+h;

% Update x, A, Ax, AA, xx

K1x=fx(t(i), x(i) );

K1A=fA(t(i) ,x(i) ,A(i));

K1Ax=fAx(t(i), Ax(i), xx(i) );

K1AA=fAA(t(i) ,Ax(i) ,AA(i), xx(i));

K1xx=fxx(t(i), xx(i));

%

K2x=fx(t(i)+h/2 ,x(i)+h/2*K1x);

K2A=fA(t(i)+h/2 ,x(i)+h/2*K1x ,A(i)+h/2*K1A);

K2Ax=fAx(t(i)+h/2 ,Ax(i)+h/2*K1Ax, xx(i)+h/2*K1xx);

K2AA=fAA(t(i)+h/2 ,Ax(i)+h/2*K1Ax, ...

AA(i)+h/2*K1AA, xx(i)+h/2*K1xx);

K2xx=fxx(t(i)+h/2, xx(i)+h/2*K1xx);

%

K3x=fx(t(i)+h/2 , x(i)+h/2*K2x);

K3A=fA(t(i)+h/2 ,x(i)+h/2*K2x ,A(i)+h/2*K2A);

K3Ax=fAx(t(i)+h/2 ,Ax(i)+h/2*K2Ax, xx(i)+h/2*K2xx);

K3AA=fAA(t(i)+h/2 ,Ax(i)+h/2*K2Ax ,AA(i)+h/2*K2AA, ...

xx(i)+h/2*K2xx);

K3xx=fxx(t(i)+h/2, xx(i)+h/2*K2xx);

%

K4x=fx(t(i)+h , x(i)+h*K3x);

K4A=fA(t(i)+h ,x(i)+h*K3x , A(i)+h*K3A);
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K4Ax=fAx(t(i)+h ,Ax(i)+h*K3Ax, xx(i)+h*K3xx);

K4AA=fAA(t(i)+h ,Ax(i)+h*K3Ax , AA(i)+h*K3AA, ...

xx(i)+h*K3xx);

K4xx=fxx(t(i)+h, xx(i)+h*K3xx);

%

x(i+1)=x(i)+(h/6)*(K1x +2*K2x +2*K3x +K4x);

A(i+1)=A(i)+(h/6)*(K1A +2*K2A +2*K3A +K4A);

Ax(i+1)=Ax(i)+(h/6)*(K1Ax +2*K2Ax +2*K3Ax +K4Ax);

AA(i+1)=AA(i)+(h/6)*(K1AA +2*K2AA +2*K3AA +K4AA);

xx(i+1)=xx(i)+(h/6)*(K1xx +2*K2xx +2*K3xx +K4xx);

end

figure (1)% for plot the mean

plot(t,A/dose,’b:’,’LineWidth’,2)

hold on

% Definition of the variance

varA=(AA-(A).^2);

EnvelopAPlus = A+sqrt(varA);

EnvelopAMinus =A-sqrt(varA);

figure(1); %To plot the standard deviation of the mean

plot(t,EnvelopAPlus/dose,’m’,’LineWidth’,2)

plot(t,EnvelopAMinus/dose,’m’, ’LineWidth’,2 )

hold on

C.3 Mtalb code for Chapter 4

Matlab script file for figure 4.2

% These data are dizitized from Kearns et.al

Time_135=[0.909 1.939 2.848 3.333 3.636 4.061 5.03 6 8.97

15.091 24.182 ];

Cnc_135=[1.814 2.95 3.762 1.528 1.199 0.805 0.56 0.396 0.205

0.081 0.037];
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Time_175=[1.152 1.939 2.091 3.091 3.333 3.576 4.061 5.03 6.061

9.152 14.97 24.061 ];

Cnc_175=[3.052 4.876 5.23 7.022 3.763 2.398 1.638 0.991 0.666

0.333 0.141 0.083 ];

Time_225=[0.97 1.939 3.091 3.333 3.576 3.636 3.939 5.273 6.061

9.152 14.97 24.061 ];

Cnc_225=[4.626 8.061 11.811 8.952 6.441 4.966 3.277 1.697 1.243

0.523 0.213 0.103 ];

% Plot for experimental data

figure (1)

subplot(3,1,1)

plot(Time_135,Cnc_135,’go:’,’LineWidth’,2)

hold on

figure (1)

subplot(3,1,2)

plot(Time_175,Cnc_175,’go:’,’LineWidth’,2)

hold on

figure (1)

subplot(3,1,3)

plot(Time_225,Cnc_225,’go:’,’LineWidth’,2)

hold on

%% kearns Three compartmental model for dose 135

infusion=3; dose=135;

% Optimum Parameters reported by Kearns et., al., for Kearns model

k21=.68; vdmax = 10.20;

vemax = 18.80; kdm=.32;

kem=5.50; vd=4;

k13=2.20; k31=.65;

gr = @(t,x)[(-vdmax*x(1))/(kdm+x(1)) ...

-(vemax*x(1))/(kem+x(1)) ...

-k13*x(1)+k31*x(3)+k21*x(2) ...

+(t<=infusion)*dose/(infusion*vd); ...

(vdmax*x(1))/(kdm+x(1))-k21*x(2); ...

k13*x(1)-k31*x(3)];

[t,yr] = ode45(@(t,x) gr(t,x),[0,Time_135],[0 0 0]);

figure (1)
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subplot(3,1,1)

plot(t, yr(:,1),’r:’,’LineWidth’,2)

hold on

% Calculation for AIC and WRSS

WRSS_yr_135=sum((Cnc_135’-yr(2:end,1)).^2./Cnc_135’.^2);

Number_Of_obs_135=11;

Number_Of_par_MR=8;

AIC_MR_135=(Number_Of_obs_135)*(log(WRSS_yr_135)) ...

+(2*Number_Of_par_MR);

%% kearns Three compartmental model for dose 175

dose=175;

gr = @(t,x)[(-vdmax*x(1))/(kdm+x(1)) ...

-(vemax*x(1))/(kem+x(1))-k13*x(1) ...

+k31*x(3)+k21*x(2)+(t<=infusion)*dose/(infusion*vd); ...

(vdmax*x(1))/(kdm+x(1))-k21*x(2); ...

k13*x(1)-k31*x(3)];

[t,yr] = ode45(@(t,x) gr(t,x),[0,Time_175],[0 0 0]);

figure (1)

subplot(3,1,2)

plot(t, yr(:,1),’r:’,’LineWidth’,2)

hold on

% Calculation for AIC and WRSS

WRSS_yr_175=sum((Cnc_175’-yr(2:end,1)).^2./Cnc_175’.^2);

Number_Of_obs_175=12;

Number_Of_par_MR=8;

AIC_MR_175=(Number_Of_obs_175)*(log(WRSS_yr_175)) ...

+(2*Number_Of_par_MR);

%% kearns Three compartmental model for dose 225

dose = 225;

gr = @(t,x)[(-vdmax*x(1))/(kdm+x(1)) ...

-(vemax*x(1))/(kem+x(1)) ...

-k13*x(1)+k31*x(3)+k21*x(2) ...

+(t<=infusion)*dose/(infusion*vd); ...

(vdmax*x(1))/(kdm+x(1))-k21*x(2); ...

k13*x(1)-k31*x(3)];

[t,yr] = ode45(@(t,x) gr(t,x),[0,Time_225],[0 0 0]);
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figure (1)

subplot(3,1,3)

plot(t, yr(:,1),’r:’,’LineWidth’,2)

hold on

% Calculation for AIC and WRSS

WRSS_yr_225=sum((Cnc_225’-yr(2:end,1)).^2./Cnc_225’.^2);

Number_Of_obs_225=12;

Number_Of_par_MR=8;

AIC_MR_225=(Number_Of_obs_225)*(log(WRSS_yr_225)) ...

+(2*Number_Of_par_MR);

%% Fractal Two Compartmental model for dose 135

dose=135;

% Optimum Parameters evaluated by GA for Fractal model

k21= 1.9727 ; vdmax = 12.3198 ;

vemax = 13.4051; kdm= 1.6703;

kem=6.3906; vd= 4.9185;

p=1.2019 ; q=1.7010;

k13=0; k31=0;

gf = @(t,x)[(-vdmax*(x(1).^p))/(kdm+(x(1).^p))- ...

(vemax*(x(1).^q))/(kem+(x(1).^q)) ...

-k13*x(1)+k31*x(3)+k21*x(2) ...

+(t<=infusion)*dose/(infusion*vd); ...

(vdmax*(x(1).^p))/(kdm+(x(1).^p))-k21*x(2); ...

k13*x(1)-k31*x(3)];

[t,yf] = ode45(@(t,x) gf(t,x),[0,Time_135],[0 0 0]);

figure (1)

subplot(3,1,1)

plot(t, yf(:,1),’b:’,’LineWidth’,2)

hold on

% Calculation for AIC and WRSS

WRSS_yf_135=sum((Cnc_135’-yf(2:end,1)).^2./Cnc_135’.^2);

Number_Of_obs_135=11;

Number_Of_par_MF=8;
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AIC_MF_135=Number_Of_obs_135*log(WRSS_yf_135) ...

+2*Number_Of_par_MF;

%% Fractal Two Compartmental model for dose 175

dose=175;

gf = @(t,x)[(-vdmax*(x(1).^p))/(kdm+(x(1).^p)) ...

-(vemax*(x(1).^q))/(kem+(x(1).^q)) ...

-k13*x(1)+k31*x(3)+k21*x(2)...

+(t<=infusion)*dose/(infusion*vd); ...

(vdmax*(x(1).^p))/(kdm+(x(1).^p))-k21*x(2); ...

k13*x(1)-k31*x(3)];

[t,yf] = ode45(@(t,x) gf(t,x),[0,Time_175],[0 0 0]);

figure (1)

subplot(3,1,2)

plot(t, yf(:,1),’b:’,’LineWidth’,2)

hold on

% Calculation for AIC and WRSS

WRSS_yf_175=sum((Cnc_175’-yf(2:end,1)).^2./Cnc_175’.^2);

Number_Of_obs_175=12;

Number_Of_par_MF=8;

AIC_MF_175=(Number_Of_obs_175)*(log(WRSS_yf_175))...

+(2*Number_Of_par_MF);

%% Fractal Two Compartmental model for dose 225

dose=225;

gf = @(t,x)[(-vdmax*(x(1).^p))/(kdm+(x(1).^p)) ...

-(vemax*(x(1).^q))/(kem+(x(1).^q)) ...

-k13*x(1)+k31*x(3)+k21*x(2) ...

+(t<=infusion)*dose/(infusion*vd); ...

(vdmax*(x(1).^p))/(kdm+(x(1).^p))-k21*x(2); ...

k13*x(1)-k31*x(3)];

[t,yf] = ode45(@(t,x) gf(t,x),[0,Time_225],[0 0 0]);

figure (1)

subplot(3,1,3)

plot(t, yf(:,1),’b:’,’LineWidth’,2)

hold on

% Calculation for AIC and WRSS

WRSS_yf_225=sum((Cnc_225’-yf(2:end,1)).^2./Cnc_225’.^2);
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Number_Of_obs_225=12;

Number_Of_par_MF=8;

AIC_MF_225=(Number_Of_obs_225)*(log(WRSS_yf_225)) ...

+(2*Number_Of_par_MF);

Matlab script file for figure 4.3

% These are digitized directly from VZ

Time_135=[0.85 2.065 2.854 3.279 3.522 4.008 4.858 6.984 10.87

12.996 22.955 ];

Cnc_135=[1.338 2.015 2.931 1.59 0.923 0.594 0.328 0.194 0.095

0.078 0.032 ];

Time_175=[0.85 1.943 2.794 3.158 3.401 4.008 4.98 6.923 11.053

12.996 22.955 ];

Cnc_175=[2.012 3.298 4.638 3.982 2.018 1.213 0.807 0.396 0.195

0.141 0.054 ];

Time_225=[0.85 1.943 3.097 3.887 5.04 6.923 11.053 13.057

22.955 ];

Cnc_225=[2.732 4.713 7.096 1.762 1.256 0.66 0.298 0.22

0.084 ];

% Plot for experimental data

figure (2)

subplot(3,1,1)

plot(Time_135,Cnc_135,’ko:’,’LineWidth’,2)

hold on

figure (2)

subplot(3,1,2)

plot(Time_175,Cnc_175,’ko:’,’LineWidth’,2)

hold on

figure (2)

subplot(3,1,3)

plot(Time_225,Cnc_225,’ko:’,’LineWidth’,2)

hold on

%% kearns Three compartmental model for dose 135

dose =135; infusion=3;

% Optimum Parameters evaluated by GA for Kearns model
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k21=0.474533333; vdmax=8.297633333;

vemax=22.49566667; kdm=6.160566667;

kem=14.5877; vd=9.526266667;

k13=1.4423; k31=16.63193333;

gr = @(t,x)[(-vdmax*x(1))/(kdm+x(1)) ...

-(vemax*x(1))/(kem+x(1))-k13*x(1)+k31*x(3) ...

+k21*x(2)+(t<=infusion)*dose/(infusion*vd); ...

(vdmax*x(1))/(kdm+x(1))-k21*x(2); ...

k13*x(1)-k31*x(3)];

[t,yr] = ode45(@(t,x) gr(t,x),[0,Time_135],[0 0 0]);

figure (2)

subplot(3,1,1)

plot(t, yr(:,1),’r:’,’LineWidth’,2)

hold on

% Calculation for WRSS and AIC

WRSS_yr_135=sum((Cnc_135’-yr(2:end,1)).^2./Cnc_135’.^2);

Number_Of_obs_135=11;

Number_Of_par_MR=8;

AIC_MR_135=(Number_Of_obs_135)*(log(WRSS_yr_135))...

+(2*Number_Of_par_MR);

%% kearns Three compartmental model for dose 175

dose=175;

gr = @(t,x)[(-vdmax*x(1))/(kdm+x(1)) ...

-(vemax*x(1))/(kem+x(1))-k13*x(1)+k31*x(3) ...

+k21*x(2)+(t<=infusion)*dose/(infusion*vd); ...

(vdmax*x(1))/(kdm+x(1))-k21*x(2); ...

k13*x(1)-k31*x(3)];

[t,yr] = ode45(@(t,x) gr(t,x),[0,Time_175],[0 0 0]);

figure (2)

subplot(3,1,2)

plot(t, yr(:,1),’r:’,’LineWidth’,2)

hold on

% Calculation for WRSS and AIC

WRSS_yr_175=sum((Cnc_175’-yr(2:end,1)).^2./Cnc_175’.^2);

Number_Of_obs_175=11;

Number_Of_par_MR=8;
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AIC_MR_175=(Number_Of_obs_175)*(log(WRSS_yr_175)) ...

+(2*Number_Of_par_MR);

%% kearns Three compartmental model for dose 225

dose=225;

gr = @(t,x)[(-vdmax*x(1))/(kdm+x(1)) ...

-(vemax*x(1))/(kem+x(1))-k13*x(1) ...

+k31*x(3)+k21*x(2)+(t<=infusion)*dose/(infusion*vd); ...

(vdmax*x(1))/(kdm+x(1))-k21*x(2); ...

k13*x(1)-k31*x(3)];

[t,yr] = ode45(@(t,x) gr(t,x),[0,Time_225],[0 0 0]);

figure (2)

subplot(3,1,3)

plot(t, yr(:,1),’r:’,’LineWidth’,2)

hold on

% Calculation for WRSS and AIC

WRSS_yr_225=sum((Cnc_225’-yr(2:end,1)).^2./Cnc_225’.^2);

Number_Of_obs_225=9;

Number_Of_par_MR=8;

AIC_MR_225=(Number_Of_obs_225)*(log(WRSS_yr_225)) ...

+(2*Number_Of_par_MR);

%% Fractal Two Compartmental model for dose 135

dose=135;

k21=0.2043 ; vdmax=9.3617;

vemax=17.3286; kdm=3.7843;

kem=11.8432 ; vd= 9.4833 ;

p=0.8972 ; q=0.6474;

gf = @(t,x)[(-vdmax*(x(1).^p))/(kdm+(x(1).^p)) ...

-(vemax*(x(1).^q))/(kem+(x(1).^q))-k13*x(1) ...

+k31*x(3)+k21*x(2)+(t<=infusion)*dose/(infusion*vd); ...

(vdmax*(x(1).^p))/(kdm+(x(1).^p))-k21*x(2); ...

k13*x(1)-k31*x(3)];

[t,yf] = ode45(@(t,x) gf(t,x),[0,Time_135],[0 0 0]);

figure (2)

subplot(3,1,1)

plot(t, yf(:,1),’b:’,’LineWidth’,2)
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hold on

% Calculation for WRSS and AIC

WRSS_yf_135=sum((Cnc_135’-yf(2:end,1)).^2./Cnc_135’.^2);

Number_Of_obs_135=11;

Number_Of_par_MF=8;

AIC_MF_135=Number_Of_obs_135*log(WRSS_yf_135) ...

+2*Number_Of_par_MF;

%% Fractal Two Compartmental model for dose 175

dose=175;

gf = @(t,x)[(-vdmax*(x(1).^p))/(kdm+(x(1).^p)) ...

-(vemax*(x(1).^q))/(kem+(x(1).^q)) ...

-k13*x(1)+k31*x(3)+k21*x(2) ...

+(t<=infusion)*dose/(infusion*vd); ...

(vdmax*(x(1).^p))/(kdm+(x(1).^p))-k21*x(2); ...

k13*x(1)-k31*x(3)];

[t,yf] = ode45(@(t,x) gf(t,x),[0 Time_175],[0 0 0]);

figure (2)

subplot(3,1,2)

plot(t, yf(:,1),’b:’,’LineWidth’,2)

hold on

% Calculation for WRSS and AIC

WRSS_yf_175=sum((Cnc_175’-yf(2:end,1)).^2./Cnc_175’.^2);

Number_Of_obs_175=11;

Number_Of_par_MF=8;

AIC_MF_175=(Number_Of_obs_175)*(log(WRSS_yf_175)) ...

+(2*Number_Of_par_MF);

%% Fractal Two Compartmental model for dose 225

dose=225;

gf = @(t,x)[(-vdmax*(x(1).^p))/(kdm+(x(1).^p)) ...

-(vemax*(x(1).^q))/(kem+(x(1).^q)) ...

-k13*x(1)+k31*x(3)+k21*x(2) ...

+(t<=infusion)*dose/(infusion*vd); ...

(vdmax*(x(1).^p))/(kdm+(x(1).^p))-k21*x(2); ...

k13*x(1)-k31*x(3)];

[t,yf] = ode45(@(t,x) gf(t,x),[0 Time_225],[0 0 0]);
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figure (2)

subplot(3,1,3)

plot(t, yf(:,1),’b:’,’LineWidth’,2)

hold on

% Calculation for WRSS and AIC

WRSS_yf_225=sum((Cnc_225’-yf(2:end,1)).^2./Cnc_225’.^2);

Number_Of_obs_225=9;

Number_Of_par_MF=8;

AIC_MF_225=(Number_Of_obs_225)*(log(WRSS_yf_225)) ...

+(2*Number_Of_par_MF);

Matlab script file for figure 4.4:

% This data are dizitized from Brown et.al

Time_175=[3.11 6.31 6.32 6.66 7.14 7.54 8.22 9.09 10.2

12.3 14.3 ];

Cnc_175=[1.45 2.24 1.14 0.729 0.53 0.37 0.318 0.222 0.13

0.0964 0.0629 ];

Time_250=[3.1 6.3 6.57 6.84 7.11 7.52 7.92 8.46 9.81 10.7

12.6 15.2 18.9 ];

Cnc_250=[2.46 3.97 3.43 3.01 1.85 1.47 1.18 0.808 0.506 0.409

0.303 0.174 0.0913 ];

Time_275=[3.168 6.41 6.464 6.468 6.924 7.44 7.968 8.491 9.287

10.352 12.338 14.595 18.315 30.026 ];

Cnc_275=[3.398 8.747 6.217 6.916 5.122 3.197 2.69 2.034 1.746

1.596 0.99 0.697 0.411 0.129 ];

% Plot for experimental data

figure (3)

subplot(3,1,1)

plot(Time_175,Cnc_175,’mo:’,’LineWidth’,2)

hold on

136



figure (3)

subplot(3,1,2)

plot(Time_250,Cnc_250,’mo:’,’LineWidth’,2)

hold on

figure (3)

subplot(3,1,3)

plot(Time_275,Cnc_275,’mo:’,’LineWidth’,2)

hold on

%% kearns Three compartmental model for dose 175

infusion=6; dose=175;

% Optimum Parameters evaluated by GA for Kearns model

k21=1.295266; vdmax = 14.72393;

vemax =14.465566; kdm=7.67703;

kem=7.7655; vd=7.157733;

k13=10.235866; k31=13.187833;

gr = @(t,x)[(-vdmax*x(1))/(kdm+x(1)) ...

-(vemax*x(1))/(kem+x(1))-k13*x(1) ...

+k31*x(3)+k21*x(2) ...

+(t<=infusion)*dose/(infusion*vd); ...

(vdmax*x(1))/(kdm+x(1))-k21*x(2); ...

k13*x(1)-k31*x(3)];

[t,yr] = ode45(@(t,x) gr(t,x),[0,Time_175],[0 0 0]);

figure (3)

subplot(3,1,1)

plot(t, yr(:,1),’r:’,’LineWidth’,2)

hold on

% Calculation for WRSS and AIC

WRSS_yr_175=sum((Cnc_175’-yr(2:end,1)).^2./Cnc_175’.^2);

Number_Of_obs_175=11;

Number_Of_par_MR=8;

AIC_MR_175=(Number_Of_obs_175)*(log(WRSS_yr_175))...

+(2*Number_Of_par_MR);

%% kearns Three compartmental model for dose 250

dose=250;
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gr = @(t,x)[(-vdmax*x(1))/(kdm+x(1)) ...

-(vemax*x(1))/(kem+x(1))-k13*x(1)+k31*x(3) ...

+k21*x(2)+(t<=infusion)*dose/(infusion*vd); ...

(vdmax*x(1))/(kdm+x(1))-k21*x(2); ...

k13*x(1)-k31*x(3)];

[t,yr] = ode45(@(t,x) gr(t,x),[0,Time_250],[0 0 0]);

figure (3)

subplot(3,1,2)

plot(t, yr(:,1),’r:’,’LineWidth’,2)

hold on

% Calculation for WRSS and AIC

WRSS_yr_250=sum((Cnc_250’-yr(2:end,1)).^2./Cnc_250’.^2);

Number_Of_obs_250=13;

Number_Of_par_MR=8;

AIC_MR_250=(Number_Of_obs_250)*(log(WRSS_yr_250))...

+(2*Number_Of_par_MR);

%% kearns Three compartmental model for dose 275

dose=275;

gr = @(t,x)[(-vdmax*x(1))/(kdm+x(1)) ...

-(vemax*x(1))/(kem+x(1)) ...

-k13*x(1)+k31*x(3)+k21*x(2) ...

+(t<=infusion)*dose/(infusion*vd); ...

(vdmax*x(1))/(kdm+x(1))-k21*x(2); ...

k13*x(1)-k31*x(3)];

[t,yr] = ode45(@(t,x) gr(t,x),[0,Time_275],[0 0 0]);

figure (3)

subplot(3,1,3)

plot(t, yr(:,1),’r:’,’LineWidth’,2)

hold on

% Calculation for WRSS and AIC

WRSS_yr_275=sum((Cnc_275’-yr(2:end,1)).^2./Cnc_275’.^2);

Number_Of_obs_275=14;

Number_Of_par_MR=8;

AIC_MR_275=(Number_Of_obs_275)*(log(WRSS_yr_275)) ...

+(2*Number_Of_par_MR);

%% Fractal Two Compartmental model for dose 175
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dose=175;

% Optimum Parameters evaluated by GA for Fractal model

k21=2.7243; vdmax = 15.3931;

vemax = 3.3773; kdm=2.2279 ;

kem=0.2860; vd=8.4541;

p=2.0532; q=2.7943;

k13=0; k31=0;

gf = @(t,x)[(-vdmax*(x(1).^p))/(kdm+(x(1).^p)) ...

-(vemax*(x(1).^q))/(kem+(x(1).^q)) ...

-k13*x(1)+k31*x(3)+k21*x(2) ...

+(t<=infusion)*dose/(infusion*vd); ...

(vdmax*(x(1).^p))/(kdm+(x(1).^p))-k21*x(2); ...

k13*x(1)-k31*x(3)];

[t,yf] = ode45(@(t,x) gf(t,x),[0,Time_175],[0 0 0]);

figure (3)

subplot(3,1,1)

plot(t, yf(:,1),’b:’,’LineWidth’,2)

hold on

% Calculation for WRSS and AIC

WRSS_yf_175=sum(((Cnc_175’-yf(2:end,1)).^2)./Cnc_175’.^2);

Number_Of_obs_175=11;

Number_Of_par_MF=8;

AIC_MF_175=(Number_Of_obs_175)*(log(WRSS_yf_175)) ...

+(2*Number_Of_par_MF);

%% Fractal Two Compartmental model for dose 250

dose=250;

gf = @(t,x)[(-vdmax*(x(1).^p))/(kdm+(x(1).^p)) ...

-(vemax*(x(1).^q))/(kem+(x(1).^q)) ...

-k13*x(1)+k31*x(3)+k21*x(2) ...

+(t<=infusion)*dose/(infusion*vd); ...

(vdmax*(x(1).^p))/(kdm+(x(1).^p))-k21*x(2); ...

k13*x(1)-k31*x(3)];

[t,yf] = ode45(@(t,x) gf(t,x),[0,Time_250],[0 0 0]);

figure (3)

subplot(3,1,2)

plot(t, yf(:,1),’b:’,’LineWidth’,2)

hold on
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% Calculation for WRSS and AIC

WRSS_yf_250=sum((Cnc_250’-yf(2:end,1)).^2./Cnc_250’.^2);

Number_Of_obs_250=12;

Number_Of_par_MF=8;

AIC_MF_250=(Number_Of_obs_250)*(log(WRSS_yf_250)) ...

+(2*Number_Of_par_MF);

%% Fractal Two Compartmental model for dose 275

dose=275;

gf = @(t,x)[(-vdmax*(x(1).^p))/(kdm+(x(1).^p)) ...

-(vemax*(x(1).^q))/(kem+(x(1).^q)) ...

-k13*x(1)+k31*x(3) ...

+k21*x(2)+(t<=infusion)*dose/(infusion*vd); ...

(vdmax*(x(1).^p))/(kdm+(x(1).^p))-k21*x(2); ...

k13*x(1)-k31*x(3)];

[t,yf] = ode45(@(t,x) gf(t,x),[0,Time_275],[0 0 0]);

figure (3)

subplot(3,1,3)

plot(t, yf(:,1),’b:’,’LineWidth’,2)

hold on

% Calculation for WRSS and AIC

WRSS_yf_275=sum((Cnc_275’-yf(2:end,1)).^2./Cnc_275’.^2);

Number_Of_obs_275=14;

Number_Of_par_MF=8;

AIC_MF_275=(Number_Of_obs_275)*(log(WRSS_yf_275)) ...

+(2*Number_Of_par_MF);

Matlab script file to evaluate the optimum parameter values using Van Zuylen data for
both Kearns and Fractal model:

% Optimization parameter evaluation using VZ data For Fractal Model

function f= OptForDose135VZ_fn(y )

Time_135=[0.85 2.065 2.854 3.279 3.522 4.008 4.858 6.984 10.87

12.996 22.955 ];

Cnc_135=[1.338 2.015 2.931 1.59 0.923 0.594 0.328 0.194 0.095

0.078 0.032 ];

infusion=3; dose =135;

% The parametrs name assigned here to call this function
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% from mainfem.m

%k21=y(1) vdmax =y(2) vemax =y(3) kdm=y(4) kem=y(5)

%vd=y(6) p=y(7) q=y(8);

%k13=y(9) k31=y(10);

%For Two compartment Fractal model:

k13=0; k31=0;

gf = @(t,x)[(-y(2)*(x(1).^y(7)))/(y(4)+(x(1).^y(7))) ...

-(y(3)*(x(1).^y(8)))/(y(5)+(x(1).^y(8))) ...

-k13*x(1)+k31*x(3)+y(1)*x(2) ...

+(t<=infusion)*dose/(infusion*y(6)); ...

(y(2)*(x(1).^y(7)))/(y(4)+(x(1).^y(7)))-y(1)*x(2); ...

k13*x(1)-k31*x(3)];

[~,yf] = ode45(@(t,x) gf(t,x),[0 Time_135],[0 0 0]);

f=sum((Cnc_135’-yf(2:end,1)).^2./Cnc_135’.^2);

end

%%

function f= OptForDose175VZ_fn(y )

Time_175=[0.85 1.943 2.794 3.158 3.401 4.008 4.98 6.923 11.053

12.996 22.955 ];

Cnc_175=[2.012 3.298 4.638 3.982 2.018 1.213 0.807 0.396 0.195

0.141 0.054 ];

infusion=3; dose=175;

%For Two compartment Fractal model

k13=0; k31=0;

gf = @(t,x)[(-y(2)*(x(1).^y(7)))/(y(4)+(x(1).^y(7))) ...

-(y(3)*(x(1).^y(8)))/(y(5)+(x(1).^y(8))) ...

-k13*x(1)+k31*x(3) ...

+y(1)*x(2)+(t<=infusion)*dose/(infusion*y(6)); ...

(y(2)*(x(1).^y(7)))/(y(4)+(x(1).^y(7)))-y(1)*x(2); ...

k13*x(1)-k31*x(3)];

[~,yf] = ode45(@(t,x) gf(t,x),[0 Time_175],[0 0 0]);

f=sum((Cnc_175’-yf(2:end,1)).^2./Cnc_175’.^2);

end

%%

function f= OptForDose225VZ_fn(y )
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Time_225=[0.85 1.943 3.097 3.887 5.04 6.923 11.053

13.057 22.955 ];

Cnc_225=[2.732 4.713 7.096 1.762 1.256 0.66 0.298

0.22 0.084 ];

infusion=3; dose=225;

% For Two compartment Fractal mdeol

k13=0; k31=0;

gf = @(t,x)[(-y(2)*(x(1).^y(7)))/(y(4) ...

+(x(1).^y(7)))-(y(3)*(x(1).^y(8)))/(y(5) ...

+(x(1).^y(8)))-k13*x(1) ...

+k31*x(3)+y(1)*x(2)+(t<=infusion)*dose/(infusion*y(6)); ...

(y(2)*(x(1).^y(7)))/(y(4)+(x(1).^y(7)))-y(1)*x(2); ...

k13*x(1)-k31*x(3)];

[~,yf] = ode45(@(t,x) gf(t,x),[0 Time_225],[0 0 0]);

f=sum((Cnc_225’-yf(2:end,1)).^2./Cnc_225’.^2);

end

%%

function f= optwrssVZ_Fractal(y )

f1 = OptForDose135VZ_fn(y);

f2 = OptForDose175VZ_fn(y);

f3 = OptForDose225VZ_fn(y);

f = (f1+f2+f3)/3;

end

%% calling the functions using GA and fmincon

LB=[0 0 0 0 0 0 0 0 ];

x0=[ 0.3537 9.4241 17.2961 3.7221 11.8402

9.4698 0.8386 0.8880];

UB=[ 100 100 100 100 100 100 100 100];

[x,fval] = fmincon(@optwrssVZ_Fractal,x0,[],[],[],[],lb,ub);

[x,fval] = ga(@optwrssVZ_Fractal,8,[],[],[],[],LB,UB,[],[]);

%% Optimize parameters evaluation using VZ data for Kearns model

function f= OptForDose135VZ_M_fn(y )

Time_135=[0.85 2.065 2.854 3.279 3.522 4.008 4.858 6.984 10.87

12.996 22.955 ];

Cnc_135=[1.338 2.015 2.931 1.59 0.923 0.594 0.328 0.194 0.095

0.078 0.032 ];
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infusion=3; dose =135;

% The parametrs name assigned here to call this function

from mainfem.m

%k21=y(1); vdmax =y(2); vemax =y(3); kdm=y(4); kem=y(5); vd=y(6);

%k13=y(7); k31=y(8);

%For three compartment Kearns model

gf = @(t,x)[(-y(2)*(x(1)))/(y(4)+(x(1))) ...

-(y(3)*(x(1)))/(y(5) ...

+(x(1)))-y(7)*x(1) ...

+y(8)*x(3)+y(1)*x(2)+(t<=infusion)*dose/(infusion*y(6)); ...

(y(2)*(x(1)))/(y(4)+(x(1)))-y(1)*x(2); ...

y(7)*x(1)-y(8)*x(3)];

[t,yf] = ode45(@(t,x) gf(t,x),[0 Time_135],[0 0 0]);

f=sum((Cnc_135’-yf(2:end,1)).^2./Cnc_135’.^2);

end

%%

function f= OptForDose175VZ_M_fn(y )

Time_175=[0.85 1.943 2.794 3.158 3.401 4.008 4.98 6.923

11.053 12.996 22.955 ];

Cnc_175=[2.012 3.298 4.638 3.982 2.018 1.213 0.807 0.396

0.195 0.141 0.054 ];

infusion=3; dose=175;

%For three compartment Kearns Model

gf = @(t,x)[(-y(2)*(x(1)))/(y(4)+(x(1))) ...

-(y(3)*(x(1)))/(y(5)+(x(1)))-y(7)*x(1) ...

+y(8)*x(3)+y(1)*x(2)+(t<=infusion)*dose/(infusion*y(6)); ...

(y(2)*(x(1)))/(y(4)+(x(1)))-y(1)*x(2); ...

y(7)*x(1)-y(8)*x(3)];

[t,yf] = ode45(@(t,x) gf(t,x),[0 Time_175],[0 0 0]);

f=sum((Cnc_175’-yf(2:end,1)).^2./Cnc_175’.^2);

end

%%

function f= OptForDose225VZ_M_fn(y )

Time_225=[0.85 1.943 3.097 3.887 5.04 6.923 11.053

13.057 22.955 ];

Cnc_225=[2.732 4.713 7.096 1.762 1.256 0.66 0.298

0.22 0.084 ];
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infusion=3; dose=225;

%For three compartment Kearns Model

gf = @(t,x)[(-y(2)*(x(1)))/(y(4)+(x(1))) ...

-(y(3)*(x(1)))/(y(5)+(x(1)))-y(7)*x(1) ...

+y(8)*x(3)+y(1)*x(2)+(t<=infusion)*dose/(infusion*y(6)); ...

(y(2)*(x(1)))/(y(4)+(x(1)))-y(1)*x(2); ...

y(7)*x(1)-y(8)*x(3)];

[t,yf] = ode45(@(t,x) gf(t,x),[0 Time_225],[0 0 0]);

f=sum((Cnc_225’-yf(2:end,1)).^2./Cnc_225’.^2);

end

%%

function f= optwrssVZ_M(y )

f1 = OptForDose135VZ_M_fn(y);

f2 = OptForDose175VZ_M_fn(y);

f3 = OptForDose225VZ_M_fn(y);

f = (f1+f2+f3)/3;

end

%%

lb=[0 0 0 0 0 0 0 0 ];

ub=[ 100 100 100 100 100 100 100 100]; ];

x0 = [1E-1, 1E-1, 1E-1, 1E-1, 1E-1, 1E-1 1E-1, 1E-1];

[x,fval] = fmincon(@optwrssBrown,x0,[],[],[],[],lb,ub);

[x,fval] = ga(@optwrssVZ_M,8,[],[],[],[],LB,UB,[],[])
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