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Abstract

There had been tremendous growth in the field of Integrated circuits (ICs) in

the past fifty years. Scaling laws mandated both lateral and vertical dimensions

to be reduced and a steady increase in doping densities. Most of the modern

semiconductor devices have invariably heavily doped regions where Fermi-Dirac

Integrals are required. Several attempts have been devoted to developing ana-

lytical approximations for Fermi-Dirac Integrals since numerical computations

of Fermi-Dirac Integrals are difficult to use in semiconductor devices, although

there are several highly accurate tabulated functions available. Most of these

analytical expressions are not sufficiently suitable to be employed in semicon-

ductor device applications due to their poor accuracy, the requirement of com-

plicated calculations, and difficulties in differentiating and integrating. A new

approximation has been developed for the Fermi-Dirac integrals of the order

1/2 by using Prony′s method and discussed in this paper. The approximation

is accurate enough (Mean Absolute Error (MAE) = 0.38%) and easy enough to

be used in semiconductor device equations. The new approximation of Fermi-

Dirac Integrals is applied to a more generalized Einstein Relation which is an

important relation in semiconductor devices.
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1. Introduction

One of the most important fundamental set of quantities needed to study

semiconductor devices is the density of electrons and holes. The thermal equi-

librium electron density in the Conduction band is obtained by knowing the

density of available states and the Fermi-Dirac Distribution Law as follows:5

n = 2(
2πm∗nkT

h2
)3/2

∫ ∞
0

t1/2

1 + exp(t− η)
dt (1)

where m∗n is the effective mass of an electron, k is the Boltzmann′s constant, h

is the Planck’s constant, T is the temperature and the integral is called Fermi-

Dirac integral of order 1/2, F 1
2
(η) [1].

The constant η in this case is equal to
Ef−Ec

kT , which is the normalized Fermi

level referenced to the Conduction band edge EC . The Fermi-Dirac Integrals10

have a general form [1], which is expressed as follows for any order j:

Fj(x) =

∫ ∞
0

tj

1 + exp(t− x)
dt (2)

1.1. Boltzmann′s Approximation of FDI

Instead of the direct use of Fermi-Dirac Integrals often, an exponential func-

tion, which is the result of Boltzmann′s approximation, is used to express the

electron density as follows:15

n = NC exp(
Ef − Ec
kT

(3)

where NC = 2(
2πm∗

nkT
h2 )3/2 is the effective density of states in the conduction

band.

Boltzmann′s approximation is an excellent one when the Fermi-level is more

than 3kT away from the majority carrier band. However, when the Fermi level is

less than 3kT away from the majority carrier band, serious errors result in carrier20

densities. For degenerate semiconductors, the Boltzmann′s approximation is

not adequate [2]. Thus, we are required to use F 1
2
(η), and it has an important

role in determining other significant quantities in semiconductor devices along

with the electron density, hole density, and the Einstein relation. Despite such

2
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requirements, FDIs are at present either numerically evaluated or analytically25

approximated.

1.2. Numerical Evaluations

While the FDI does not have a closed form solution, there have been many

attempts made to compute the FDI. Numerical evaluations have been typically

developed with high accuracies by using different numerical integration methods30

or programming approaches. To obtain accurate values of FDI, there have been

many numerical evaluations performed by using numerical integration of the

general form of FDI [3, 4], using a pair of extrapolation procedures [5], or with

quadratures of the integrand [6, 7, 8, 9], FDI has been numerically evaluated

by applying Chebyshev approximations for different ranges [10] and different35

orders [11].

Fig. 1: The Numerical Evaluations of FDI by Mohankumar and Natarajan compared to

Blakemor′s Tabulated Values.

A few of the recent numerical evaluations with high accuracies have been

proposed by Fukushima [12, 13, 14, 15]. The four papers of Fukushima between

2014 and 2015 have aimed to accomplish numerical evaluations of FDI that can

achieve high precisions (16 to 20 digits) with different orders. Mohankumar40

and Natarajan [16] proposed one of the highest precision numerical evaluations,

using an algorithm which uses Double Exponential, Trapezoidal and GaussLe-

gendre quadratures. Unlike these numerical evaluations, a few of the earlier

3
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computations of FDI have been tabulated to be used as reference values for

analytical expressions [17, 18, 19]. A set of computations of FDI, proposed and45

tabulated by Blakemore [20], are the ones employed in this paper as a reference.

Fig. 1 shows the FDI values tabulated by Blakemore and compared with the

values of FDI by Mohankumar and Natarajan.

1.3. Analytical Approximations

The numerical evaluations, although they offer very high accuracies, they50

do not have a convenient and insightful form to be employed in semiconductor

device calculations. Thus there have been a few attempts devoted to developing

an analytical approximation that holds good accuracy [21, 22, 23, 24]. However

those expressions are not sufficiently useful for implementation in semiconduc-

tor device equations because they have complicated forms and are not easy to55

differentiate or to integrate. In order to avoid the numerical evaluations of FDI,

a few researchers have developed analytical approximations of the normalized

Fermi-Level instead of FDI [25, 26]. Seeking a simple approximation to be im-

plemented in semiconductor device analyses, a few researchers have developed

analytical expressions of FDI [27, 28, 29, 30, 31, 32, 33, 34]. Most of these ap-60

proximations cannot be easily differentiated or integrated and further they are

not sufficiently accurate.

We are presenting in this paper a closed-form analytical approximation of

FDI that is accurate enough and simple enough to be used in semiconductor

device calculations. The form we are trying to approach is similar to Boltzmanns65

approximation which is an exponential function. We develop a summation of

exponential functions as an approximation for FDI.

In order to compare the approximations, a suitable error estimation measure

is to be chosen. Two of the common methods used in evaluating the accuracies

of the models in these studies are Relative Root Mean Square Error (RMSE)70

and Mean Absolute Error (MAE). Since the number of the tried points is large,

Mean Absolute Error gives smaller error than Relative Root Mean Square Error

(RMSE) [35]. The two ways of determining the error are shown in Eg.(4) and

4
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Eq.(5).

MAE =
1

m

m∑
i=1

| (Actual)i − (Approximated)i
(Actual)i

| (4)

75

RMSE =

√√√√ 1

m

m∑
i=1

(
(Actual)i − (Approximated)i

(Actual)i
)2 (5)

2. Prony′s Method

The Prony′s method is a systematic way to approximate a function with a

sum of a series of exponential functions [36]. The Prony′s method lends itself

to approximate certain functions in the field of semiconductor such as the Two-

Step Diffusion Profiles [37] and in the digital communication field for the average80

probability of transmission error instead of Fourier series [38].

The symbols that are used in Prony′s method are now defined before intro-

ducing the steps in the Prony′s method [39]. N is the number of equally spaced

chosen points. The quantity n is the number of terms in Prony′s approxima-

tion. The quantity C is the coefficient multiplying the exponential term in the85

function, and a is an exponent. Secondly, the general form of Prony′s function

is:

f(xk) =

n∑
i=1

Ci exp(aixk) (6)

where k = 1, 2, ..., N and i = 1, 2, ..., n

In order to simplify the form during computations, the general form of

Prony′s function can be written as:90

f(xk) =

n∑
i=1

Ciµ
xk
i (7)

where µi = exp(−ai)

The first step towards finding the coefficients Cs is forming the N equations

using the actual values of f(xk) in the following order:

C1 + C2 + ...+ Cn = F0 (8a)

5
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C1µ1 + C2µ2 + ...+ Cnµn = F1 (8b)

95

C1µ
2
1 + C2µ

2
2 + ...+ Cnµ

2
n = F2 (8c)

...

C1µ
N−1
1 + C2µ

N−1
2 + ...+ Cnµ

N−1
n = FN−1 (8.N)

After forming the N equations, the next step is letting µ1,...,µn to be the

roots of an algebraic equation as follows:

µn + α1µ
n−1 + α2µ

n−2 + ...+ αn−1µ+ αn = 0 (9)

so that it can be expressed as follows: (µ− µ1)(µ− µ2)...(µ− µn)

In order to determine α1,...,αn , the first actual value F0 should be multiplied100

by αn, second actual value F1 should be multiplied by αn−1, and nth actual

value should be multiplied by 1. Thus, the result is seen to be of the form:

Fn + α1Fn−1 + α2Fn−2 + ...+ αnF0 = 0 (10)

Then, a set of N -n-1 additional equations of similar type is obtained in the

same way by starting instead successively with the second, third, ..., (N -n)th

equations. Therefore, Eq.(9) and Eq.(10) imply a set of N -n linear equations.105

Fn + α1Fn−1 + α2Fn−2 + ...+ αnF0 = 0 (11a)

Fn+1 + α1Fn + α2Fn−1 + ...+ αnF1 = 0 (11b)

...

FN−1 + α1FN−2 + α2FN−3 + ...+ αnFN−n−1 = 0 (11.N-n)

Since the Prony′s method is based on a series of exponential terms in the

main case or cosine and sine terms in the particular case, it can be easily dif-

ferentiated and integrated. As a result, Prony′s method can be used to ap-110

proximate certain functions in electronic devices which need to be differentiated

6
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or integrated. This method is sometimes required in the computation of some

quantities such as the use of the half integer Fermi-Dirac function in the charge

density equation [2]. The first and second derivation forms of Prony′s general

form can be expressed as:115

dF (xk)

dxk
=

n∑
i=1

Ci ∗ ai exp(aixk) (12)

d2f(xk)

dx2k
=

n∑
i=1

Ci ∗ a2i exp(aixk) (13)

In addition, the Prony′s approximation can be integrated as shown below:

Fs(xk) =

∫
f(xk)dx =

n∑
i=1

Ci
ai

exp(aixk) +K1 (14)

Fss(xk) =

∫
Fs(xk)dx =

n∑
i=1

Ci
a2i

exp(aixk) +K1 ∗ xk +K2 (15)

Furthermore, the steps of the Prony′s method can be easily followed as

described in [39], and the coefficients of the Pronys method can be determined120

in few steps [39].

3. The Results and Discussions

3.1. The Proposed Approximation of FDI

The components of the approximation (the number of the chosen points and

the number of exponential terms) are selected, as Pronys method requires. The125

number of tested points (N) is 61 points since the exact values for the range of

η values from -2 to +4 is 61 values as tabulated in [20]. We chose the range of η

values from negative two to four because the Boltzmanns approximation offers

less error than the proposed approximation for the values of η from negative

three to negative two. The exact values that are used in Pronys method steps are130

taken from Blakemores tabulated values [20]. The number of chosen terms of the

exponentials is four. Even though a large number of terms might imply a better

approximation, by using a different number of terms for this approximation (n=

7
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6, 8, and 10) we have found that the accuracy of the approximation turns out

to be similar and not significantly improved. The general form of the proposed135

approximation can be expressed in the following manner:

F 1
2
(η) =

4∑
i=1

Ci exp(aiη) = C1 exp(a1η)+C2 exp(a2η)+C3 exp(a3η)+C4 exp(a4η)

(16)

F 1
2
(η) =

4∑
i=1

Ciµ
η
i = C1µ

η
1) + C2µ

η
2 + C3µ

η
3 + C4µ

η
4 (17)

where µi = exp(ai).

The first step towards approximating the Fermi-Dirac Integral is forming

61 equations similar to equations (8) where the actual values of FDI are used.140

Then, the µ’s can be roots of the algebraic equation:

µ4 + α1µ
3 + α2µ

2 + α3µ+ α4 = 0 (18)

so, the left-hand side of this equation is identified with:

(µ− µ1)(µ− µ2)(µ− µ3)(µ− µ4)

To find α1, α2, α3, α4, we multiply α4 by F0, α3 by F1, α2 by F2, and α1 by F3,

so the first equation will be formed as:145

F4 + α1F3 + α2F2 + α3F1 + α4F0 = 0 (19)

By applying the same condition on the rest of the equations, 57 equations,

which is the difference between the number of chosen points and the number

of terms (N-n), are formed, and the final form can be expressed as shown in

Eq.(20):

α4

56∑
i=0

Fi + α3

56∑
i=0

Fi+1 + α2

56∑
i=0

Fi+2 + α1

56∑
i=0

Fi+3 +
56∑
i=0

Fi+4 = 0 (20)

By differentiating previous equation with respect α1, α2, α3, and α4, four150

equations are being formulated as shown in Eq.(21a):

α4

56∑
i=0

F 2
i +α3

56∑
i=0

Fi∗Fi+1+α2

56∑
i=0

Fi∗Fi+2+α1

56∑
i=0

Fi∗Fi+3+
56∑
i=0

Fi∗Fi+4 = 0

(21a)

8
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α4

56∑
i=0

Fi+1∗Fi+α3

56∑
i=0

F 2
i+1+α2

56∑
i=0

Fi+1∗Fi+2+α1

56∑
i=0

Fi+1∗Fi+3+
56∑
i=0

Fi+1∗Fi+4 = 0

(21b)

α4

56∑
i=0

Fi+2∗Fi+α3

56∑
i=0

Fi+2∗Fi+1+α2

56∑
i=0

F 2
i+2+α1

56∑
i=0

Fi+2∗Fi+3+
56∑
i=0

Fi+2∗Fi+4 = 0

(21c)

α4

56∑
i=0

Fi+3∗Fi+α3

56∑
i=0

Fi+3∗Fi+1+α2

56∑
i=0

Fi+3∗Fi+2+α1

56∑
i=0

F 2
i+3+

56∑
i=0

Fi+3∗Fi+4 = 0

(21d)

Now, coefficients of Eq.(21a) can be solved directly to be used to determine155

µ’s in Eq.(18). Next step is using µ’s in determining C’s and a’s. Finally, the

approximated form of Fermi-Dirac Integrals of positive half order can be written

as follows:

F 1
2
(η) =

4∑
i=1

Ci exp(aiη) (22)

where C1 = 5.7955 ∗ 103, a1 = −0.0992

C2 = −8.3584 ∗ 103, a2 = −0.111160

C3 = 7.0383 ∗ 103, a3 = −0.1599

C4 = −4.4747 ∗ 103, a4 = −0.1728

As shown in Fig.2, the approximated values are very close to the actual

values; the Mean Absolute Error defined as MAE has been calculated to be

MAE = 0.0038165

Our goal is not focused on exclusively achieving the smallest error but much

more about achieving the simplest approximation of Fermi-Dirac Integrals with

as good an accuracy as possible which can be used effectively in calculations,

represented in textbooks with convenient forms and used in software programs.

The accuracy of the proposed approximation and other analytical approxima-170

tions have been evaluated and depicted in Fig.3

9
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Fig. 2: Approximated and Actual Values of Fermi-Dirac Positive Half-Integral.

Fig. 3: The Relative Error of the Proposed Approximation and other Analytical Approxima-

tions as a function of Fermi-Level Position.

3.2. The lower and higher orders of FDI

We can obtain high and low orders of FDI family by integrating and differ-

entiating the proposed approximation. By using the Prony′s method we obtain

the approximation in the form of a series of exponential functions. Hence it175

can be easily differentiated and integrated to obtain higher and lower orders of

FDI. The quality of the approximation of FDI regarding absolute values can be

seen from Fig.2, however what is observed is that the slope and the trend of the

curve are very well approximated as well. The quality of this approximation

can be assessed when the differentiated and integrated values are also compared180

with the actual values.

10
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3.2.1. The Differentiation

To get lower orders of FDI such as F−1
2

(η) and F−3
2

(η), the expression of

F 1
2
(η)needs to be differentiated successively twice. Then the evaluation of the

differentiated functions are compared to the actual tabulated values based on185

the following equation:

Fj−1(η) =
dFj
dη

(23)

The first differentiated function of the approximation is F−1
2

(η) =
dF 1

2

dη and can

be expressed as shown in the following equation:

F−1
2

(η) =
4∑
i=1

Di exp(di ∗ η) (24)

where D1 = −1.1253 ∗ 103, d1 = −0.0992

D2 = 773.2507, d2 = −0.111190

D3 = 927.5932, d3 = −0.1599

D4 = −574.9186, d4 = −0.1728

Fig. 4: The First Derivative Function and the Actual Values of Fermi-Dirac Negative Half-

Integral (−1
2

).

The results of using Eq.(24) is then compared to another tabulated function

given by Blakemore, F−1
2

(η), as seen in Fig.4. It can be noticed that the differ-

entiated function has very small errors except for the values of η around negative195

two, which also has occurred for the original approximation for F 1
2
(η). It should

11
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be stated that the Mean Absolute Error of differentiated function is still good

but somewhat larger than the relative mean absolute error of the original F 1
2
(η)

approximation because of differentiation. The Mean Absolute Error (MAE) is

0.0215

Fig. 5: The Twice Differentiated Approximation and the Actual Values of Fermi-Dirac Neg-

ative One and Half-Integral (−3
2

).

200

The second derivative function can be analytically derived and calculated by

differentiating the approximation of the F 1
2
(η) twice (F−3

2
(xk) =

d2F 1
2

dη2 ). The

results can be compared to tabulated F−3
2

(η) as shown graphically in Fig.5. The

twice-differentiated function can be written as follows:

F−3
2

(η) =

4∑
i=1

Bi exp(bi ∗ η) (25)

where B1 = 179.9299, b1 = −0.0992205

B2 = −1.336301, b2 = −0.111

B3 = −102.9464, b3 = −0.1599

B4 = 57.0347, b4 = −0.1728

The values of the twice-differentiated function compared to the actual tabu-

lated values for the whole range have the Mean Absolute Error to be (MAE) =210

0.1019 Fig.4 and Fig.5 show the limitations of the differentiation of the proposed

approximation for the values of η from -2 to -1

12
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3.2.2. The Integration

In order to obtain higher order FDI, we can integrate the expression for

F 1
2
(η). By integrating the expression twice successively we can obtain F 3

2
(η)215

and F 5
2
(η). The integration of the approximation can be done based on the

following equation: ∫
Fj(η)dη = Fj+1(η) (26)

Thus, the first integrated function can be compared to tabulated F 3
2
(η) as

shown in Fig.6, and the resulting expression is:

F 3
2
(η) =

4∑
i=1

Mi exp(mi ∗ η) +K1 (27)

where M1 = −4.4017 ∗ 104, m1 = −0.0992220

M2 = 2.5891 ∗ 104, m2 = −0.111

M3 = 7.5310 ∗ 104, m3 = −0.1599

M4 = −5.8417 ∗ 104, m4 = −0.1728

K1 is the constant of the integration

Fig. 6: The First Integrated and Actual Values of Fermi-Dirac Positive One and Half-Integral

(+3
2

).

The appearance of the constant is normal since it appears in the general225

form of the integration, so the values of the integration without counting the

constant were compared to the actual values in order to determine the best

choice of the constant. Thus, the constant is the median of the sum of the

13
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differences between the actual values and the integrated values which is equal to

1233.8648 Additionally, the Mean Absolute Error of the first integrated function230

MAE = 9.5425 ∗ 10−4.

Fig. 7: The Second Integrated Function of the Approximation and the Actual Values of the

Fermi-Dirac Positive Two and Half-Integral (+5
2

).

By twice integrating the approximate function for F 1
2
(η), one can assess how

good the original approximation is. The twice second integrated function can

be expressed as follows:

F 5
2
(η) =

4∑
i=1

Gi exp(gi ∗ η) +K1 ∗ η +K2 (28)

where G1 = 2.7529 ∗ 105, g1 = −0.0992235

G2 = −1.4982 ∗ 105, g2 = −0.111

G3 = −6.7857 ∗ 105, g3 = −0.1599

G4 = 5.8885 ∗ 105, g4 = −0.1728

K1 = 1233.8648

K2 is the constant of the integration240

By using the same criteria which were used with the first integrated function,

the constant can be determined as equal to -35748.68618 Fig.6 depicts how close

the twice integrated function is to the tabulated F 5
2
(η). The Mean Absolute

Error is being calculated to be MAE = 9.3129 ∗ 10−4

14
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4. Applications245

The new approximation can have a significant impact on semiconductor de-

vice calculations where the degeneracy plays a key role. One of the fundamental

quantities in semiconductor devices is Einstein Relation which is the ratio of dif-

fusivity to the mobility and one can write it as follows:

Dn,p

µn,p
=

1

q

n, p
dn,p

dEf

(29)

where D is the Diffusion Coefficient, µ is the mobility, q is the electron charge,250

n is the electron carrier density, p is the hole carrier density, and Ef is the

Fermi-Level.

Eq.(29) is the general form of diffusivity-mobility ratio and can be rewritten

based on the Fermi-Dirac Integrals as shown in equation (30) [40]:

Dn,p

µn,p
=
kT

q

F 1
2
(η)

F−1
2

(η)
(30)

One of the most common approaches uses Boltzmanns distribution to cal-255

culate the Einstein relation. The form of the relation can be written as:

Dn,p

µn,p
=
kT

q
(31)

Fig. 8: Einstein Relation Calculated by the New Proposed Approximation and Actual Values.
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Fig. 9: Relative Error of Einstein Relation Calculated by the Proposed Approximation com-

pared to the Actual Values as a Function of Fermi-Level Position.

With Boltzmann approximation, Eq.(31) shows that the ratio is indepen-

dent of doping. However the doping concentrations have a significant effect on

Einstein relation, and thus Eq.(31) is not useful in heavily doped regions. The260

accuracy of Einstein Relation by using Eq.(31) will be poorer as we increase

the doping and the Fermi-Level comes closer to the conduction band. With-

out considering bandgap narrowing, an accurate and simple approximation of

diffusivity-mobility ratio is required. Therefore, the proposed approximation of

Fermi-Dirac Integrals and its first derivative function will be used to calculate265

the diffusivity-mobility ratio. Using the equation of Li and Lindholm [40], the

diffusion-mobility ratio can be computed as shown in Fig.8.

As seen in Fig.8, the Einstein Relation using the new approximation closely

matches Li and Lindholms results except for around η values of negative two.

The Mean Absolute Error of the Einstein relation calculated by the new approx-270

imation is 0.0194. Fig.9 shows the relative error of each normalized Fermi-level

position.

5. Conclusion

In summary, in this paper, we have presented a new approximation of Fermi-

Dirac Integrals which has an excellent accuracy (MAE = 0.38%) and is simple275

enough to be used in simulations of semiconductor devices. The nature of the
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approximation is such that it can be easily differentiated and integrated retain-

ing good accuracy. Apart from testing the accuracy of the differentiated and

the integrated functions, they have been employed for the more accurate evalu-

ation of Einstein Relation, especially for degenerate regions. The attractiveness280

of the approximation is its simplicity and accuracy. It can be applied to many

degenerate regions of several modern semiconductor devices. Other semicon-

ductor device quantities such as current density and Qusai-Fermi levels would

be impacted by using the new approximation of FDI.
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