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A Low-Complexity Mosaicing Algorithm for Stock
Assessment of Seabed-Burrowing Species

David Corrigan, Ken Sooknanan, Jennifer Doyle, Colm Lordan, and Anil Kokaram

Abstract—This paper proposes an algorithm for mosaicing
videos generated during stock assessment of seabed-burrowing
species. In these surveys, video transects of the seabed are captured
and the population is estimated by counting the number of bur-
rows in the video. The mosaicing algorithm is designed to process
a large amount of video data and summarize the relevant features
for the survey in a single image. Hence, the algorithm is designed
to be computationally inexpensive while maintaining a high degree
of robustness. We adopt a registration algorithm that employs a
simple translational motion model and generates a mapping to the
mosaic coordinate system using a concatenation of frame-by-frame
homographies. A temporal smoothness prior is used in a maximum
a posteriori homography estimation algorithm to reduce noise in
the motion parameters in images with small amounts of texture
detail. A multiband blending scheme renders the mosaic and is
optimized for the application requirements. Tests on a large data
set show that the algorithm is robust enough to allow the use of
mosaics as a medium for burrow counting. This will increase the
verifiability of the stock assessments as well as generate a ground
truth data set for the learning of an automated burrow counting
algorithm.

Index Terms—Feature-based image registration, Nephrops
surveys, underwater mosaicing, underwater television (UWTV).

I. INTRODUCTION

S TOCK assessment of commercially viable marine species
is an essential part of fishery management and is man-

dated in many international jurisdictions. The methodology for
these assessments varies widely and includes analysis of catch
rates and sampling of landings and discards from trawls as well
as sonar and video-based surveys [1]. Seabed-burrowing crea-
tures pose a challenge for stock assessment. Nephrops Norvegi-
cus (referred to from now on by its genus Nephrops) is an
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example of such a species that forms a commercially significant
fishery. The annual catch for Nephrops is approximately 50 000 t
with a first catch value of €300 million per annum [2]. Due to
variations in growth and burrow emergence of Nephrops, tradi-
tional assessment techniques such as trawl catch rates and sam-
pling are not considered to be a reliable estimator of population
abundance. In recent years, marine scientists have developed a
video-based population survey technique known as underwater
television (UWTV) [3], [4] to overcome these limitations.

In an UWTV survey, a sledge with mounted cameras and
lights is towed by a trawler, capturing a video along a transect
of the seafloor. Subsequently, marine scientists review the video
and manually tally the number of observed Nephrops burrows
for each minute of video. The burrow density estimates at a
number of sites are used to obtain an overall population estimate
for each of the Nephrops fishing grounds.

Although UWTV has become a widely adopted standard for
Nephrops stock assessment, there is a desire within the com-
munity to further improve counting methodologies. Manual
counting is a labor-intensive task.1 It is also a largely subjective
task and can be adversely affected by the quality of underwater
videos and presence of burrows of other marine species, even
though standard procedures and methodologies are in place to
train counters and monitor their consistency. As the information
gleaned from the surveys is limited to per-minute count totals,
there is no record of which objects have been counted. Further-
more, the surveys do not quantify other useful information such
as burrow sizes that could be used to monitor the dynamics of
the population.

In recent years, image processing and computer vision tech-
niques have been developed to assist these surveys. The goal
is to automate as much of the counting procedure as possible
and supervised learning based algorithms have been developed
to detect burrows automatically [6]–[8]. Content summariza-
tion in the form of mosaics of the seabed transect is another
useful technique. In [7], we showed how mosaics can be used
in an automated burrow detection pipeline to convert a video
object detection problem into a simpler image object recogni-
tion problem. Mosaics are also a potentially useful medium for
manual burrow counting as they allow for easy annotation and
nonsequential counting of burrows.

In this paper, we describe a mosaicing algorithm specifically
developed for UWTV surveys and is an extension of the work

1Up to 4 000 min of video are counted each year in Ireland which has roughly
18% of the annual catch in the European Union (EU) [2], [5]. Each minute is
counted by at least two marine scientists.
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Fig. 1. FUs for Nephrops management (adapted from [10]). The figure shows
a representation of the division of the nephrops fishing grounds into FUs for
ICES area 7. A similar division into FUs is performed in other ICES areas with
significant Nephrops fisheries. The gray circles represent the burrow density
estimates for each of the stations of the 2014 UWTV surveys.

presented in [9]. Due to the large area of seabed to be processed,
computational efficiency and robustness of the algorithm are key
design considerations. Therefore, we employ a simpler motion
model to ensure robustness and use a temporal smoothness prior
on the motion parameters instead of more computationally in-
tensive global registration approaches. The algorithm is also
adapted to deal with the poor quality of underwater video and
video compression. We tested the performance of the algorithm
by processing an entire annual UWTV survey of all Nephrops
grounds in Irish territorial waters consisting of 366 videos, each
of 10 min duration. We show how these mosaics can be used
to annotate Nephrops burrows and, for the first time, show how
using the mosaics has allowed experts to compare their perfor-
mance at a burrow-by-burrow level.

The rest of this paper is organized as follows. In Section II,
we present a brief description of the video capture methodology
for UWTV surveys. This is followed by a discussion on the
state of the art in mosaicing including techniques specifically
targeted at underwater videos (see Section III). A description
of the algorithm is given in Section IV. Section V presents an
analysis of the performance of the algorithm and is followed by
a discussion of the potential impact of the algorithm on burrow
counting in Section VI. Final remarks are given in Section VII.

II. UNDERWATER TELEVISION VIDEO SURVEYS

UWTV surveys are performed annually to estimate the
Nephrops population. Nephrops fishing grounds are broken
down into functional units (FUs) and separate annual assess-
ments and catch advice are produced for each. The FUs for the
International Council for the Exploration of the Sea (ICES) area
7 are shown in Fig. 1. For a given FU, a survey is performed by
estimating the burrow density using a video-based methodol-
ogy at a number of sampled locations spread across the known
Nephrops habitat.

Fig. 2. Camera sledge used in UWTV surveys (adapted from [4]). The camera
is highlighted by the red circle and the two artificial lights on the sledge are
shown by the green circles.

At each survey location, known as a station, a camera mounted
on a sledge with artificial lights (see Fig. 2) is dropped off the
back of a vessel and towed in a straight line along the seafloor.
Once the sledge is stable on the seafloor, a 10-min video cov-
ering approximately 200 m is captured and stored in a com-
pressed video format [3], [4]. Video resolution and video formats
vary for each national fishery management agency. Examples of
frames taken from a station video are shown in Fig. 3.

Fig. 4 gives an overview of the visual characteristics of
Nephrops burrows [11]. A nephrops burrow can have one or
more typically crescent-shaped entrances arranged in a radial
pattern around a raised center. Each 10-min station video is
counted independently by two expert counters, generally when
on-board the vessel. As the video is played back, the counters
log observed nephrops burrows using a mechanical counter. The
counters also record the number of nephrops observed within
burrow entrances and on the seafloor. Only burrows which pass
through the bottom of the video frame are counted. For each
minute of video, the count totals are recorded along with sub-
jective classifications of other relevant information such as visi-
bility, sediment type, and the amount of time for which counting
was possible [12], [13]. This information is then used to esti-
mate a burrow density for the station which is in turn used to
estimate the total population for each FU.

Given the economic importance of the estimated count totals,
quality assurance of UWTV is a key concern. At the present
time, quality control is performed by comparing intercounter
variability between the two expert counters [12], [13]. Further-
more, before each counter performs the count for a particular
FU, they are required to count a standard video sequence with
a known count total (as recommended in [4]). This allows the
counters to retrain themselves to the particular visual character-
istics of burrows for that unit, which can vary in appearance due
to population density, size, or the abundance of other burrowing
species. However, without a record of which burrows have been
counted, the effectiveness of quality control measures is limited.

The use of mosaics has the potential to improve the quality of
the UWTV surveys. As annotating objects of interest in a mosaic
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Fig. 3. Frames extracted from four stations from different FUs. From left to right: FU 15 (western Irish sea), FU 17 (Galway Bay), FU 19 (Galley Grounds),
and FU 22 (Smalls fishing ground). These frames show the range of video quality and burrow distribution across the different fishing grounds. The burrow density
in the western Irish Sea is much greater than that on the Porcupine Bank but the nephrops are also generally smaller in size. The sets of red dots are generated by
lasers mounted on the sledge that are used to measure the horizontal field of view and are 75 cm apart.

Fig. 4. Visual features experts use to classify nephrop burrows (adapted from [11]). The primary characteristics are crescent-shaped entrances arranged in a
radial pattern around a common center (marked with the black lines in the left image). Experts also look for ejected sediment in the area around burrow openings
(see the lighter area of sediment to the left of the large opening in the middle image) and the presence of nephrops in openings (two are partially visible in the right
image).

is easier than in a video, mosaics allow the generation of a record
of counted burrows for relatively little additional effort. In ad-
dition, mosaics can be used as a medium for further automation
of the counting effort. In [7], we showed how burrow open-
ings could be detected from mosaics of station videos. It would
also be possible to use the burrow annotations to determine ad-
ditional scientifically relevant information on the composition
and size of burrows. The mosaicing algorithm we developed for
this application is described in Section IV.

III. BRIEF OVERVIEW OF MOSAICING

Mosaicing of sets of images has long been a topic of inter-
est in the computer vision community [14]–[16]. Although the
primary interest in mosaicing has been the creation of wide-
angle panoramas from pictures taken by hand-held cameras
[16], mosaics have been used in a variety of applications in-
cluding seabed mapping [17]–[21]. At a basic level, mosaicing
can be defined as the process of summarizing the content of a
set of images of the same scene into a single image. Therefore,
the key tasks in mosaicing are image registration, to establish
the correspondences between images, and image rendering, to
ensure that the transitions between images that form the mosaic
are imperceptible.

A. Image Registration

Robustness and accuracy of image registration is critical for
mosaicing algorithms. As image-to-image homographies have

to be chained together to establish the positions of each frame
in the mosaics, even small errors in the individual homogra-
phies can significantly impact the mosaic. The choice of model
for the homographies describing these correspondences is a key
choice in registration. These homographies range from simple
two-parameter translation-only models to eight-parameter pro-
jective homographies capable of modeling perspective effects.2

Furthermore, it is possible to use knowledge of the camera or the
scene to reduce the number of degrees of freedom in a projective
homography, for example, assuming the camera remains fixed
and only rotates about its center [14], [16]. Although more elab-
orate models can describe a wider range of camera movement,
reducing the number of degrees of freedom generally makes
registration more robust.

Given the success of feature transforms such as SIFT [23]
and SURF [24] at establishing point correspondences between
images in challenging conditions, their use in image registration
algorithms has become predominant. The homography parame-
ters can be estimated by minimizing an energy function defined
on the point correspondences using robust least squares ap-
proaches such as the Random Sampling Consenus (RANSAC)
algorithm [16], [20], [25] or least median of squares [18], [26].
To further enforce global consistency of homography estimates,
many mosaicing algorithms jointly optimize the homography
parameters for all frames [14]–[16], [20], [21], [27], [28].

2A detailed description of different types of homographies relevant to mo-
saicing is given in [22, ch. 2, 13, and A.7].
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B. Image Rendering

Once all of the images have been registered to a common
coordinate system, a decision must be made on how to render
parts of the mosaic where data are available from multiple im-
ages. Due to differences in illumination, movement of objects
and misregistration of images, simply overwriting existing data
in the mosaic as each frame is added will create visible seams
along image boundaries. In [29], Prados et al. outline the key
three stages in image fusion: minimizing the effects of illumina-
tion differences; finding the transition paths between the images;
and blending of images across the transition paths.

1) Illumination correction: Illumination differences consist
of both global and local illumination differences caused
by different exposure times for each image and image
vignetting or nonuniform lighting [16], [30].

2) Transition path selection: A simple solution to this prob-
lem is to choose the transition paths based on the distance
of a point to the center of each frame. However, where
the paths cross locations with registration misalignments
or moving objects, this approach can lead to blurring or
ghosting artefacts in the mosaic. To eliminate these dif-
ferences, mosaicing algorithms sometimes employ an op-
timal seam finding technique (e.g., using graph cuts [29],
[31]) to place the transition path in areas where there is
minimal color differences between the images.

3) Image blending: Blending is used to avoid visible transi-
tion boundaries in the mosaic. Two broad approaches to
blending have been employed in the literature. The first,
referred to here as multiband blending, uses an invertible
multiscale image decomposition such as Laplacian pyra-
mids [32] or discrete wavelet transforms [33]. The idea is
to adjust the width of the transition band at each scale so
that high-frequency detail is not blurred by the blending.
The second approach, known as gradient-domain blend-
ing, performs blending on image gradients and subse-
quently recovers image colors by solving a sparse system
of linear equations [29], [31], [34].

C. Mosaicing of Underwater Video

Mosaicing has long been a popular topic of research in the un-
derwater vision community for the mapping of the seafloor from
cameras mounted on remotely operated vehicles or autonomous
underwater vehicles (AUVs). However, in recent years, under-
water mosaics have been used to monitor the condition of the
seafloor and the health of benthic flora and fauna [9], [35]–[38].

There are a number of factors that necessitate a difference
in approach when mosaicing underwater videos compared with
generating panoramas from photographs taken by hand-held
cameras. First, capturing video underwater poses many chal-
lenges for image quality. Attenuation, absorption, and scatter-
ing of light mean that underwater video has a limited range of
view before features become blurred and have poor color con-
trast [29], [39]. As artificial lighting is necessary, nonuniform
illumination across a video frame is also common [19], [20].

Unlike panorama generation, where it is usually assumed
that cameras are only rotating, in the underwater environment,
the camera motion is also translational. In general, this means

that a full 3-D reconstruction is necessary to faithfully map the
seabed [40]. However, under the assumption that the surface
being mapped is planar, camera motion can also be modeled us-
ing a 2-D planar projective homography [22, ch. 13]. Although
some of the earlier approaches to underwater mosaicing esti-
mate full eight-parameter homographies [18], [20], [41], most
state-of-the-art approaches try to use domain-specific knowl-
edge to minimize the number of degrees of freedom to en-
sure better registration robustness. Assuming camera rotation
and translation and that the seabed is a plane, a homography
with 6 DOF can be employed [27], [28]. If camera motion
is translational only and the direction of translation is par-
allel to the seabed, then the homography is an elation with
4 DOF [22, ch. 13 and A.7]. For cameras that are downward
facing, a four-parameter similarity transform can be used [19],
[21], [39].

In general, underwater mosaics are composed of many more
images than a camera panorama. It is possible for an underwa-
ter mosaic to be composed from thousands or tens of thousands
of images. This poses an increased premium on robustness due
to the accumulation of errors in homographies. Furthermore,
an increased computational cost is implied. Where navigation
data are available, it can be incorporated into registration to im-
prove robustness [28], [42] As an exhaustive search for pairs of
frames for homography estimation is quadratic in the number of
frames, sate-of-the-art techniques use domain-specific knowl-
edge to make this process more efficient. As image data are
generally captured by video cameras, homography estimation
between successive frames can be used to estimate an initial
camera trajectory than can be used to detect additional overlap-
ping pairs of frames [20], [27], [28]. In [21], Elibol et al. outline
a fast tentative initial trajectory estimation for unordered sets of
images. More recently, researchers [43], [44] have also started to
explore hierarchical mosaic generation from shorter submosaics
as a means of improving robustness.

IV. MOSAICING ALGORITHM

A. Motivation

Fig. 5 shows frames from two different survey stations and
demonstrate many of the visual aspects of the entire set. First of
all, due to the artificial light source, a vignetting-like artefact is
present. This is more pronounced at the top of the frame as these
points are further away due to the forward and downward facing
camera. Another consequence of the forward facing camera is
the perspective effects induced by the forward camera motion.
These sequences are captured in an underwater environment
with a fair degree of turbidity. Hence, features at the top of the
frame are noticeably more blurred in appearance than those at
the bottom. Finally, the videos are stored in a compressed format
and are often interlaced. Compression artefacts such as blocking
artefacts and banding are also visible in the video frames.

Besides quality related issues, computation time is a crucial
consideration. Given that station videos are typically 10-min
long, a video at 30 frames/s will have 15 000 frames. Approx-
imately ten stations are performed per day. Although real-time
estimation of the mosaics is not a requirement, the algorithm
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Fig. 5. Each row shows two frames from separate test sequences. The first
sequence (top row) has a higher opening density and also better image sharpness
than the second. Therefore, the second sequence is a more difficult sequence to
register.

must be capable of generating the mosaics overnight to ensure
that counting can take place on the boat.

For all of these reasons, the mosaics produced by general
purpose mosaicing algorithms are insufficient for this applica-
tion. Fig. 6 shows mosaics for the first test sequence from Fig. 5
generated by the Autostitch software [45] based on the work
of Brown and Lowe [16] and the Microsoft Image Compos-
ite Editor (ICE) [46]. Even without examining the mosaics in
fine detail, it can be seen that there are problems with both ap-
proaches. Examining the autostitch mosaic, it can be seen that
there are a number of points where the perspective effects of the
homographies are not estimated correctly, as one would expect
even perspective over the sequence given the camera motion.
Furthermore, the burrow openings are blurred in appearance.
On the other hand, ICE shows a nonexistent camera rotation in
the mosaic and exhibits an exaggerated color shift between the
bottom and top of the mosaic. Furthermore, neither software
is able to mosaic all the frames of the second test sequence
correctly due to the lack of detail in the sequence.

Another issue with existing techniques is their large execution
times. For example, both ICE and Autostitch take a long time3

to mosaic the 900 frame sequences shown in Fig. 5. Therefore,
it would not be feasible to mosaic 10 stations of 10 min duration
in the required overnight time period. The main reasons for the
high execution times of these methods are the global optimiza-
tion of the registration parameters and the techniques for finding
overlapping frames which has a complexity of O(n2). Although
underwater mosaicing algorithms [21], [28] propose optimiza-
tions of these processes, further improvements are required in
this case given the exceptionally large number of frames and
computational requirements.

Therefore, a new approach to mosaicing is needed. The key
requirements are that the algorithm must be fast, robust, and

3Microsoft ICE takes about 1 h and Autostitch approximately 3 h to process
the sequence on a PC with an 3.5-GHz Intel Xeon processor and 16 GB of
RAM.

Fig. 6. Result of mosaicing the first test sequence shown in Fig. 5 with Mi-
crosoft ICE (left) and Autostitch (right).

must preserve all features relevant to the detection of burrows.
To allow for robust estimation of motion parameters over a
large number of frames, a translational motion model is used.
Although it is not a sufficient model for a geometrically ac-
curate rendering of the seabed, it preserves well the size and
spatial relationships between openings from the video. Since
the camera moves in a uniform direction, we find that homogra-
phy estimation is only necessary between consecutive frames.
Global optimization of frame-to-frame homographies is not per-
formed to reduce computation. However, to improve robustness
of the motion parameters to noise, we employ a maximum a
posteriori (MAP) estimation framework which incorporates a
temporal smoothness prior on the parameters. This prior acts like
an adaptive autoregressive (AR) filter with increased smooth-
ing when the number of feature matches is small. We adopt a
multiband image blending scheme inspired by Burt and Adel-
son [32] to resolve overlap regions. However, we modify the
weighting between frames to take account of the fact that most
of the increased sharpness is at the bottom of frames. This im-
plies that the mosaic is built from narrow horizontal strips from
each frame. This also satisfies the counting protocols used by
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marine biologists who count burrows that pass a horizontal line
toward the bottom of the video frame [4], [13].

B. Registration

The problem of registration is that of estimating a homogra-
phy between each frame and the mosaic. Given the position in
frame i of a point k, pk,i , this mapping can be described using
homogenous coordinates by

pk,i = Hi,M × pk,M (1)

where Hi,M is the 3 × 3 homography matrix mapping the
position of point k on the mosaic, pk,M, to its position in
frame i.

A standard way solving this problem is to choose a refer-
ence frame from the video and map all other frames to the
reference. Choosing frame 1 as the reference implies that H1,M

is the identity matrix. Instead of using bundle adjustment to
jointly optimize the set of mosaic-to-frame homographies, we
concatenate frame-to-frame homographies. Given Hb,a is the
homography mapping a point in frame a to a point in frame b

Hi,M = Hi,1 =
i−1∏

j=1

Hi−j+1,i−j . (2)

As the accuracy of the estimate for Hi,M depends on the ac-
curacy of the frame-to-frame homographies for the preceding
video frames, robustness of the frame-to-frame homographies
is critical. Therefore, we adopt a feature-based approach and
perform a MAP estimation of the homographies from a set of
inlying feature matches. This allows us to robustly estimate
homographies in variable illumination conditions and gives a
degree of robustness to frames where there are relatively few
feature matches.

1) Feature Selection and Matching: Feature-based ap-
proaches attempt to establish a set of point correspondences,
{(p1,j ,p1,i , ), (p2,j ,p2,i), . . .} ∈ Pj,i , between two frames i
and j. We use both the SIFT [23] and SURF [24] algorithms
to generate a set of features in each frame and the features are
matched by comparing their respective descriptors using the
technique described in [47]. Both algorithms are widely used
in the state of the art for both general purpose and underwater
mosaicing (e.g., [14], [16], [21], [28], and [44]) due to their
excellent robustness to variations in illumination, scale, and ori-
entation. Thus, two sets of key-point matches (one from each
feature transform) are generated for each pair of frames.

It is important to consider whether the video is interlaced
before forming feature extraction as most frame extraction tools
will create images containing both fields in the even and odd
rows of the frame images. This introduces jagged edge artefacts
during camera motion which would lead to many erroneous
keypoint detections. Therefore, for interlaced video, we only
use the odd lines of the image for feature detection (i.e., an
image that has full horizontal but only half vertical resolution).
The y coordinates of the extracted keypoints are represented in
the coordinate system of the original full-resolution image.

Another source of erroneous keypoint detections is the pres-
ence of banding artefacts. Banding artefacts manifest as a

staircase intensity profile in areas with slowly changing gradi-
ents and are caused by quantization of the low-frequency bands
of the discrete cosine transform during video compression. This
results in a number of erroneous feature matches in the top-left
and top-right corners of the frames where the banding artefacts
are most noticeable. Generally, the positions of these keypoints
are quite stable from frame to frame. This can cause a failure
of robust homography estimation when there are relatively few
genuine feature matches between frames. There are a number
of approaches in the literature for suppressing banding artefacts
through debanding [48] or dithering [49]. However, since tur-
bidity of the water causes seabed features to be often severely
blurred at the top of the frame (see Fig. 5), feature matching is
instead suppressed in a horizontal band spanning the top portion
of each image.

2) Homography Estimation: The homography between con-
secutive frames i and i + 1 is now estimated using the set of
keypoint matches between the frames. Given the set of key-
point matches Pi+1,i and the previous homography estimate
Hi,i−1 , the task is to find the homography Ĥi+1,i that maximizes
p(Hi+1,i |Pi+1,i , Hi,i−1). Using Bayes’ theorem, and dropping
the subscripts for brevity, the posterior can be factorized into a
data likelihood pl(.) and a temporal smoothness prior ps(.) as
follows:

p(H|P,H0) ∝ pl(P|H,H0) × ps(H|H0) (3)

where H0 = Hi,i−1 .
For a full-planar projective homography, H is a 3 × 3 matrix

with 8 DOF. As explained in Section IV-A, our algorithm uses
a translational-motion-only model, and for usability purposes it
is restricted further to vertical translation only. Therefore, Hj,i

is of the form

Hi+1,i =

⎛

⎜⎝

⎡

⎢⎣

0 0 0

0 0 ty

0 0 1

⎤

⎥⎦

⎞

⎟⎠ (4)

where ty is the vertical translation parameter.
a) Likelihood: Under the assumption that the set of key-

point matches P is independent of H0 , a general form of the
likelihood is given by a Gaussian distribution as

pl(P|H,H0) ∝ exp
(
−f(P,H)

2σ2
l

)
(5)

where f(P,H) is a nonnegative cost function and σ2
l is some

variance. A good overview of the various cost functions for a
planar projective homography is given in [22, ch. 4]. Given a
vertical translation motion model, we choose a cost function
based on the geometric distance between the inhomogeneous
coordinate of the point pk,i+1 and its predicted position given
the homography Hpk,i . Using d(p,q) to represent the distance
between the inhomogeneous form of generic points p and q, the
cost function is given by

f(P,H) =
∑

k

d(pk,i+1 ,Hpk,i)2 . (6)
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b) Prior: The aim of temporal smoothness prior is to force
H to be similar to H0 . However, since both H and H0 are redun-
dant up to a scale, their values must be normalized before the
similarity between them can be calculated. We normalize both
matrices by scaling them such that their bottom right elements
are equal to 1. Rearranging the normalized matrices as column
vectors h̃ and h̃0 , the prior distribution is expressed using a
Gaussian distribution as

ps(H|H0) ∝ exp

⎛

⎜⎝−

∥∥∥h̃ − h̃0

∥∥∥
2

2σ2
h

⎞

⎟⎠ . (7)

c) Optimization: Taking negative log likelihoods of both
sides of (3) and incorporating the variances σ2

l and σ2
h into

a single nonnegative smoothness parameter Λs (Λs = σ2
l /σ2

h ),
the MAP problem is transformed into an energy minimization
problem where the energy is

E(H) = f(P,H) + Λs ×
∥∥∥h̃ − h̃0

∥∥∥
2
. (8)

For the expression of f(P,H) in (6), E(H) is a quadratic
equation H and hence can be minimized using standard linear
least squares techniques. For a vertical translation model, the
least squares estimate of ty in (4) is given by

t̂y =
∑

k (yk,i+1 − yk,i) + Λs × ty,0∑
k 1 + Λs

(9)

where y∗ is the vertical coordinate of p∗ and ty,0 is the verti-
cal translation parameter for the previous pair of frames. The
RANSAC [25] algorithm is used to ensure that outliers are
removed from the feature matches before the optimization de-
scribed in (9) is carried out.

A property of this solution for ty is that the amount of smooth-
ness provided by the prior is dependent on the number of feature
matches between the pair of frames. More weight will be placed
on the smoothness prior when the number of feature matches are
low. This is a desirable property as it matches our intuition that
we have more confidence in the homography estimate gained
solely from the feature matches when the number of matches is
greater. The solution in (9) can be thought of as an adaptive AR
filter on the time series of homography parameters calculated
solely on the feature matches. This property also holds for mo-
tion models with more degrees of freedom as long as f(P,H)
is not normalized by the number of feature matches between
frames.

C. Rendering

Our blending framework is based on the multiband blending
framework proposed in [32]. It consists of selecting the opti-
mum regions from each frame and multiband blending itself.
A key difference of our method is how the blending weights of
each frame are selected. Of the techniques employing multiband
blending, typically a center-weighting technique is applied [14,
ch. 9]. This assumes that the best detail is located at the center
of the frame. Center-weighting is an effective means of dealing
with vignetting as only the well-lit central regions are kept in

the mosaic [16]. Many underwater mosaicing algorithms [20],
[27], [42] also use forms center-weighting as underwater mo-
saics are typically built from downward facing cameras and so
the illumination pattern caused by artificial lighting resembles
a vignetting artefact. However, cameras in UWTV surveys are
typically slightly forward-facing and so the illumination pattern
in video frames is not symmetric and turbidity of the water can
cause blurring of texture in the top portion of the frame. Further-
more, counting protocols [4], [13] require burrows to be counted
as they pass through a horizontal line toward the bottom of the
frame.4

Therefore, it is desirable to use the bottom portion of each
frame in the mosaic. To meet these requirements, we introduce
a center-weighting scheme that uses an arbitrary center location
which is chosen toward the bottom of the frame. Like the center-
weighting scheme in [16], the center pixel is given a weight of
1 which drops to 0 at the boundaries of the frame.

In our framework, the mosaic is built up one frame at a time
with the current frame being blended with the existing mosaic.
The first stage is the computation of the color values of the
registered frame according to the computed homographies. This
can be achieved using an interpolation scheme (e.g., bilinear or
bicubic interpolation) to retrieve color values at noninteger pixel
locations. Again, special consideration is required for interlaced
frames and interpolation is performed on the same interlaced
field (odd or even) used for feature selection.

Given the intensity of a color channel of the mosaic M(x)
and a registered frame F (x), the updated mosaic M ′(x) is ob-
tained by multiband blending of Laplacian decompositions of
M(x) and F (x). The Laplacian decomposition of F (x) con-
sists of N bandpass subbands FL,0(x), FL,1(x), . . ., FL,N −1(x)
and a lowpass subband FL,N (x). The Laplacian decomposi-
tion is calculated by first computing a similar sized Gaus-
sian decomposition. The Laplacian subband at level n is then
given by

FL,n (x)=

{
FG,n+1(x) − FG,n (x), n = 0, . . . , N − 1

FG,N (x), n = N
(10)

where the nth-level subband of the Gaussian decomposition is

FG,n (x) = FG,n−1(x) ∗ g(x) (11)

with FG,0(x) = F (x) and where g(x) is a zero-phase lowpass
FIR filter. A similar Laplacian decomposition is constructed
for M(x).

The updated color channel of the mosaic after multiband
blending is defined by

M ′(x) =
N∑

n=0

(wn (x) FL,n (x) + (1 − wn (x)) ML,n (x)) .

(12)

This requires the definition of blending weights wn (x) for each
level of the decomposition. The multiband blending weights for

4Burrows that pass through the left or right boundaries of the frame are not
counted.
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each frame are initialized from the center-weighting maps for
the frame cF(x) and the mosaic cM(x) as follows:

w(x) =

{
1, cF(x) > cM(x)

0, otherwise.
(13)

As noted in [32], the strength of multiband blending is the
use of different transition widths in the blending weights at each
level. Transition widths for high-frequency image detail are low
while those for low-frequency content are larger. This ensures
that seams caused by a step change in intensity across a tran-
sition boundary are removed with minimal perceived blurring.
Therefore, following [16], we define the blending weights for
level 0 as

w0(x) = w(x) ∗ g(x) (14)

and the blending weights for level n as

wn (x) = wn−1(x) ∗ g(x). (15)

Finally, the center-weights for the mosaic are updated according
to

c′M(x) =

{
cF(x), cF(x) > cM(x)

cM(x), otherwise.
(16)

V. RESULTS

A. Initial Testing

The mosaicing algorithm was initially trained and tested on
20 test sequences taken from UWTV surveys off the west coast
of Ireland and in the Irish Sea. The videos vary in length from
30 s to 3 min. The videos are captured by a PAL SD camera
and are encoded as H.264 video at a bit rate of approximately
500 kb/s. The videos are all interlaced and vary in frame rate
from 10 up to 29.97 frames/s. All the video frames contain a
small black border and so the frames are cropped by 20 pixels
on all 4 sides before they are mosaiced.

1) Implementation Details: The prototype of the algorithm
to conduct the experiments outlined in this paper is implemented
in MATLAB [50]. The inbuilt functions detectSURFFeatures
and extractFeatures are used to generate SURF keypoints and
their descriptors, respectively. The implementation of SIFT al-
gorithm developed by Vedaldi [51] is used to detect the SIFT
keypoints and descriptors. As turbidity of the water means that
image detail is often blurred and poorly contrasted, both feature
detectors are biased to encourage more keypoint detections. The
value of the MetricTheshold parameter is set to 5 and the region
of interest (ROI) is set to exclude a horizontal band spanning the
top 100 rows of each image.5 For the SIFT features, the Thresh-
old parameter is reduced from its default to 0.002 and we set
the NumOctaves parameter to 4 and the NumLevels parameter
to 3. Again features are not detected in the top 100 rows of the
image. All other parameters in both detectors are set to their
default values. SURF features from pairs of frames are matched

5This corresponds to the 18.7% of the vertical resolution of the frames in our
test set. If the frame is interlaced, only the top 50 rows of the odd or even fields
are excluded.

Fig. 7. Mosaics for the two test videos shown in Fig. 5. The left image shows
the mosaic for the first test sequence which is 36 s long. For visualization
purposes, the mosaic for the second test sequence (1 min long) has been split
into two halves in the middle (bottom half) and right (top half) images.
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Fig. 8. Plots of number of feature detections (red), feature matches (blue)
and inliers after RANSAC (black) against frame number for test sequences 1
(left) and 2 (right). Overall, there are few fewer feature detections, matches, and
inliers for the second test sequence than the first test sequence.

Fig. 9. Plots of translation parameter ty against frame number for test se-
quences 1 (left) and 2 (right). The blue plots represent the result with the default
value of Λs = 15 and the red plot represents the case where the smoothness
prior is turned OFF (Λs = 0). The effective smoothing in sequence 2 is much
greater than for sequence 1.

using the MatchFeatures function of MATLAB and SIFT fea-
tures use the siftmatch function provided in [51]. Both feature
matching functions use their default values.

In the robust homography estimation algorithm, 200 trials of
RANSAC are performed. In each trial, three feature matches are
randomly sampled and a least squares estimate of the vertical
translation motion model is found. If there are fewer than three
feature matches, then the homography parameters are set to
those of the previous frame and the homography estimation
stops. The inliers according to this translation are determined
by finding the subset of matches that are located within 2 pixels
of their predicted positions. The chosen set of inliers is the
largest subset of inliers across all trials or the first trial where
the number of inliers exceeds 75% of the total number of feature
matches. From this set of inliers, a final homography is estimated
according to (9).

For the multiband blending, the center chosen for the center-
weighting is the midpoint of the row 50 rows up from the bottom
of the frame.6 A Gaussian filter is chosen for g(x) that has a size
of 30 × 30 taps and has a σ value of 30/6.4. The coefficients of
the filter are normalized so that they sum up to 1. A value of 2
is chosen for N in the Laplacian decompositions.

2) Experimental Results: The mosaics for two of these test
sequences (shown in Fig. 5) are shown in Fig. 7. The first test se-
quence is 30 s long at 29.97 frames/s while the second is 2.5 min
long at 10 frames/s. The first sequence contains many burrow
openings while the second is much more sparsely populated.
Both sequences show moderate turbidity with the top of each
frame noticeably more blurred than the bottom. As can be seen

6This corresponds to 9.4% of the vertical image resolution.

Fig. 10. Mosaics generated for test sequence 1 using a planar projective ho-
mography with 8 DOF (left) and an elation with 4 DOF (right). The perspective
present in the mosaic could be compensated for by using the appropriate mosaic
coordinate system.

Fig. 11. Plots of the vertical translation parameter against frame number for
test sequence 2 for both a full-planar projective (left) and elation (right) motion
models. In these plots the temporal smoothness prior has been turned off. For
each frame the homography matrix has been normalized so that the bottom
right element is equal to 1. At this scale, well behaved homography parameters
are close to 0 (as in Fig. 9) and values visibly deviating from zero constitute
significant noise in the parameters. Note the high level of noise corresponding
to frames with low numbers of features matches (see Fig. 8).

from Fig. 7, both sequences have been mosaiced successfully as
all countable burrow openings in the sequences are preserved in
the mosaic. Furthermore, the multiband blending algorithm has
ensured that there are no visible seams in the mosaics.

A key property of the algorithm is the robustness of the reg-
istration algorithm when the number of feature matches is low
and this strength is derived from the temporal smoothness prior.
This is shown in Figs. 8 and 9. Fig. 8 shows the number of
feature detections, matches, and inliers per frame for both of the
highlighted test sequences. The lack of burrow openings and
image detail generally in test sequence 2 results in significantly
fewer inlying feature matches per frame (an average of 8.3 for
sequence 2 compared to 129.2 for sequence 1). For a stan-
dard maximum likelihood homography estimation algorithm,
this would lead to noisy estimates for the translation parameter
(see Fig. 9). However, the action of temporal smoothness prior
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Fig. 12. Partial mosaics for the station videos depicted in Fig. 3. The trail of red dots in the mosaics on the right are caused by the lasers mounted on the sledges
use to calibrate horizontal scale.

significantly reduces this noise as its strength is greater given
the smaller numbers of inliers. In comparison, the prior has lit-
tle effect on test sequence 1 as the number of inliers is much
greater.

Computation time is much reduced when compared with of-
the-shelf options such as Microsoft ICE or Autostitch. A MAT-
LAB prototype of the algorithm takes approximately 12 min
to process the 900-frame first test sequence, whereas Microsoft
ICE took around an 1 h and Autostitch 3 h on the same PC. With
a more efficient multithreaded implementation of our algorithm,
the computation times of our algorithm could be reduced suffi-
ciently for use on Nephrops Surveys.

A drawback of using the vertical translation motion model
is that vertical scale is not the same as horizontal scale due to
the perspective induced by the camera orientation. This distor-

tion could be corrected by using a motion model that accounts
for perspective. To assess the feasibility of using such trans-
forms, we computed homographies for the test sequences using
a full-planar projective homography as well as an 4 DOF ela-
tion, which is valid for a camera undergoing translation parallel
to a planar surface. The Sampson error is used for f(P,H) in
(8) and nonlinear least squares optimization is used to estimate
the motion parameters. When a large number of feature matches
are present, plausible homographies are estimated. This can be
seen from the mosaics for test sequence 1 shown in Fig. 10.
However, the difference in apparent perspective between both
models indicates the presence of significant noise in the pa-
rameters of the full-planar projective homographies. The noise
increases dramatically when the number of feature matches is
low. This is evident in the values of the vertical translation
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Fig. 13. (Left) A portion of a mosaic with an artefact introduced by wave
motion periodically pulling the camera sledge off the seabed. (Right) A portion
of a mosaic where the disturbed sediment has fully occluded the field of view
of the camera.

Fig. 14. (Left) A graph showing the count totals for the three counters using
the existing video-based techniques. (Right) A graph depicting the total number
of the annotated burrows in each mosaic. The counter represented by the black
plots only returned counts for sequences 1 to 10. The purple plot on the right
graph represents the total number of burrows that were common to each of the
counters for that sequence.

parameters of the homographies estimated for test sequence 2
shown in Fig. 11. The temporal smoothness prior cannot sup-
press large levels of noise in these parameters without signifi-
cant oversmoothing of the homography parameters. Due to the
poor performance of projective homographies with low num-
bers of feature matches, we consider them unsuitable for this
application.

B. Processing of 2014 Underwater Television Survey

The algorithm was tested on the video data set generated by
the 2014 UWTV annual survey of the major Nephrop fishing
grounds in Irish coastal waters. These surveys were conducted
over 30 days on board the RV Celtic Voyager in FUs 15, 16,

17, 19, 20/21, and 22 (see Fig. 1). The video data were gathered
from an analog PAL camera mounted on a sledge. The video
is digitally captured in real time on the research vessel onto
DVDs and is compressed using the MPEG2 codec at a bit rate
of approximately 10 Mb/s. The spatial resolution of the captured
videos is 720 × 576 and has a frame rate of 25 frames/s. All of
the videos were interlaced.

Mosaics were generated for 365 different station videos.
Most station videos are 10-min long with approximately 15 000
frames. As the DVD format meant that station videos did not
align with the encoded video files, the start frame and end frame
of each station video was recorded manually. A sample of
mosaics generated from this data set are shown in Fig. 12.
More videos and corresponding mosaicing results are shown
online at http://www.mee.tcd.ie/~corrigad/?page_id=240. Re-
sults over the entire data set show that the algorithm performs
well over terrain with varying densities of burrow openings and
levels of turbidity. The same settings described in Section V-A1
are used for all sequences in the survey data.

A number of challenges arise on this data set that did not exist
in the original test set. The most significant of these is the effect
of wave action on the camera motion. As the camera sledge is
attached directly to the research vessel, wave motion can cause
the camera position to move up and down and to tilt. This camera
motion induces changes in scale and perspective that cannot be
modeled by the motion model used in the algorithm. However,
the simplicity of the motion model ensures that wave motion
does not significantly distort the visual structure of the mosaics
and the impact is limited to localized distortions in vertical scale
and discontinuities in illumination and sharpness (see Fig. 13).
Most importantly, counting is not performed when such motion
occurs. Another challenge is the presence of disturbed sediment,
often caused by contact of the sledge with the seabed, which
can cause the partial or total occlusion of the seabed in the
video frames. However, the simplicity of the motion model
along with the use of RANSAC and the smoothness prior mean
that reasonable homography parameters can still be obtained
(see Fig. 13).

VI. DISCUSSION

The generation of mosaics has a large potential benefit to
the efficiency and scientific value of UWTV surveys for stock
assessment benthic species including Nephrops. In the short
term, they have the potential to change the manual counting
procedure currently employed. Using mosaics allows burrows to
be annotated and, thus, can create a record of counted objects that
is not currently possible with existing techniques. This, in turn,
can be used to improve the quality and consistency of counts.
Furthermore, the annotations could be used to quantify other
useful information that could be used to monitor population
dynamics.

To gain an insight as to the potential impact of counting from
mosaics instead of the videos, we asked three expert counters
from three different organizations to independently count the
number of burrows in the 20 sequences in the initial test set
discussed above. Counts were initially performed on the videos
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Fig. 15. Different annotations for the three counters for a common portion of one of the test sequences. Individual Nephrops burrow openings are circled in
yellow while the burrows themselves are highlighted in red.

using the existing technique and then, after a short break, from
the mosaics using Microsoft Paint to add the annotations. Two
of the counters returned totals from all 20 sequences, while the
third returned counts from the first 10 only. The results from the
count are summarized in Fig. 14.

From the graphs in Fig. 14, it is immediately apparent that
the count totals are higher for the mosaics than the videos (20%
higher on average). It is possible that this is largely due to coun-
ters spending more time counting on the mosaics than the videos
but it is also likely that burrows are being counted that would
not have been counted using the existing technique. Although
count totals are largely consistent between counters using both
the mosaics and videos, when examined on a burrow-by-burrow
basis our analysis shows that there is a significant discrepancy
between counters. Of the approximately 26 burrows counted on
average from the mosaics, only 14.5 of them are common to all
of the counters. A visual example of this is shown in Fig. 15 for
the labeling of the three counters for one of the test sequences.
This shows the subjective nature of the existing counting pro-
tocols in a way not possible before. It also demonstrates the

potential role of the mosaics in improving consistency amongst
counters.

Of course the ideal scenario would be to have an automated
population count based on machine learning. This applies to
Nephrops but also other burrowing species and shellfish such as
scallops. To date, automated counting of Nephrop burrows has
achieved most interest [6]–[8] due to the commercial value of
the Nephrops fishery. By summarizing the content of a video in a
single image, the video object detection problem is transformed
into a more tractable image object detection problem since there
is no need to employ explicit tracking of objects of interest from
frame to frame [6]. In [7], we showed how mosaics could be
used in conjunction with simple supervised learning schemes to
detect and count burrow openings.

Automatic counting of nephrop burrows remains an unsolved
problem. Due to the complex appearance and relationships be-
tween openings of nephrop burrows, it is difficult to construct
handcrafted feature sets to distinguish nephrop burrows from
those of other burrowing species. Deep learning approaches
have the ability to model complex visual characteristics of ob-
jects without the need for handcrafted features and clearly could
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be used to count both nephrop burrow openings and entire
burrows themselves. The biggest impediment to automated
counting is the lack of a suitable ground truth for training. How-
ever, if counting from mosaics becomes the standard technique
then large data sets will be generated for training as the man-
ual annotations from counters could be used to create ground
truth.

A. Role of Enhancement

As our goal was to design a robust mosaicing algorithm
in difficult underwater environments, significant enhancement
was not considered as part of the mosaicing pipeline. Apply-
ing enhancement as a preprocess to our algorithm could be
used to improve the visual quality of the mosaics and possibly
improve the performance of the mosaicing through the elim-
ination of spurious feature matches. Enhancement could also
improve the performance of subsequent automated burrow
counting. In underwater video surveys, the main impacts on
quality are related to the challenging imaging environment and
also the compression applied to the videos. Perhaps water tur-
bidity has the most significant impact on the appearance of
the video particularly toward the top of the frame but can also
vary depending on the local conditions at the survey site. There
are a number of contrast enhancement techniques for underwa-
ter images to improve the loss of contrast caused by turbidity
(see [52]–[54]) that could be used. Illumination correction (e.g.,
[55]) may also be of benefit but proper illumination can avoid se-
rious uneven illumination. From our analysis, artefacts in video
compression have an impact on the performance of mosaic-
ing by causing spurious feature matches. These artefacts are
related to blocking and banding introduced by quantization in
the video codec and could be by applying deblocking or de-
banding filters (see [48] and [56]) to the frames before mo-
saicing. Therefore, enhancement should be considered as an
important part of the overall mosaicing and burrow counting
pipeline.

VII. FINAL REMARKS

This paper presents an algorithm for mosaicing videos of the
seabed used for UWTV surveys. It uses a vertical translational
motion model to robustly register each frame to a common co-
ordinate system using a simple concatenation of frame-to-frame
homographies. A MAP framework is used for homography es-
timation which uses a temporal smoothness prior on the motion
parameters that acts as an adaptive autoregressive lowpass filter
on the homography parameters. This prior reduces noise in the
parameter estimates, in particular, where the numbers of feature
matches between frames are low. Rendering is performed using
multiband blending scheme using a modified center-weighting
that takes account of the burrow counting protocols and opti-
mizes the visibility of the mosaic. The algorithm was tested on
a data set from an annual UWTV survey and shows that the
algorithm is sufficient for use in stock assessment of Nephrops.
Developing an automated counting algorithm based on deep
learning techniques is the research direction we are pursuing.
The first stage of this will be to develop a counting solution

based on the mosaicing algorithm that can be used on-board
during the surveys. This will allow more verifiable and detailed
manual counts as well as the creation of ground truth data sets
for learning.
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