Golden Ratio Based Partitions of the Integers

Weiru Chen, Jared Krandel, Junxian Li (Graduate Student), Kenneth Stolarsky (Advisor)
 ILLINOIS University of Illinois at Urbana-Champaign ir Illinois Geometry Lab
 University of Illinois Undergraduate Research Symposium, April 19, 2018

Introduction

Let $\mathbb{Z}^{+}=\{1,2,3,4,5 \ldots\}$.

- A partition of \mathbb{Z}^{+}is a way of breaking \mathbb{Z}^{+}into non-overlapping groups.
- The even and odd integers are a two set partition of \mathbb{Z}^{+} $\{1,2,3,4,5,6, \ldots\}=\{1,3,5,7, \ldots\} \cup\{2,4,6,8, \ldots\}$

Arithmetic Progressions

- A simple way of creating partitions is to take distinct arithmetic progressions in the integers.

Let $s, r \in \mathbb{Z}^{+}$. An arithmetic progression is a sequence of the form $f(k)=s k+r$,

The even integers are given by $E(k)=2 k$ while the odd integers are $O(k)=2 k+1$.

- More complex sets of progressions give more complex partitions. For instance, we can construct a 2 and 3 set case by dividing \mathbb{Z}^{+}into the groups below

\section*{| B_{1} | B_{2} |
| :---: | :---: |
| $3 m+1$ | $3 m+2$ | $3 m+3:$}

$\begin{array}{ccc}C_{1} & C_{2} & C_{3} \\ 7 m+1 & 7 m+2 & 7 m+4\end{array}$
$7 m+37 m+6$
$7 m+5$
$7 m+7$

C_{1}	C_{2}	C_{3}		
1	2	4	B_{1}	B_{2}
3	6	11	1	2
5	9	18	3	5
7	13	25	4	8
8	16	32	6	11
$:$	$:$	$:$	7	14
			$:$	

- The first integers of the sets of the 3 part case are
$C_{1}=\{1,3,5,7,8,10,12,14,15,17,19,21, \cdots\}$, $C_{2}=\{2,6,9,13,16,20,23,27,30,34,37,41, \cdots\}$, $C_{3}=\{4,11,18,25,32,39,46,53,60,67,74, \cdots\}$ while the first in the sets of the 2 part case are $B_{1}=\{1,3,4,6,7,9,10,12,13,15,16,18,19$, $B_{2}=\{2,5,8,11,14,17,20,23,26,29,32,35, \ldots\}$
- If we classify the rows of the 3 part partition by whether the elements fall into the first or second column of the 2 part partition, we only get 5 out of 8 possibilities. Moreover, this classification has period of 12 together with reflection symmetry.
- Arithmetic progressions are easy to study because they are periodic. Their partitioning structure is simple. We study partitions composed of semi-periodic sequences.

Beatty Type Partitions

Beatty Sequences

Almost Beatty Partition

- The floor function of a number a, denoted by $\lfloor a\rfloor$, is the integer part of a.
- $\phi=\frac{1+\sqrt{5}}{2}=1.6810 \ldots$ is called the Golden Ratio. We have $\phi\rfloor=\lfloor 1.6810 \ldots\rfloor=1$.
Let α, β be two positive irrational numbers. Let A and B be two sequences such that $g(k)=\lfloor k \alpha\rfloor$ and $h(k)=\lfloor k \beta\rfloor$. Then $g(k)$ and $h(k)$ partition \mathbb{Z}^{+}if and only if
$\frac{1}{\alpha}+\frac{1}{\beta}=1$.
- The special property of ϕ is that
$\frac{1}{\phi}+\frac{1}{\phi^{2}}=1$
so, $a(k)=\lfloor k \phi\rfloor$ and $b(k)=\left\lfloor k \phi^{2}\right\rfloor$ partition \mathbb{Z}^{+}.

- Define the sets A and B as
- The sequences $a(k)$ and $b(k)$ give a partition of \mathbb{Z}^{+}with semi-periodic structure

A	B
1	2
3	5
4	7
6	10
8	13
9	15

Grid of 2-Column Partition

Theorem (Uspensky's Theorem)
Beatty's Theorem does not hold for three (or more) sequences. That is, if α, β and γ are arbitrary positive numbers, then $\lfloor k \alpha$, $\lfloor k \beta\rfloor$ and $\lfloor k \gamma\rfloor$ do not partition the positive integers.
Our work concerns constructions we have created which extend the A, B partition. The following construction is in 3 parts.

| $d(k)-3$
 $d(k)-1$ $d(k)-2$
 $d(k)+1$ $d(k)$ | $d(k)=3\lfloor k \phi\rfloor+k$,
 $c(k)=\lfloor k \phi\rfloor+2 k-1$, |
| :---: | :---: | :---: | :---: |
| $s(k)=\lceil c(k) / 2\rceil$. | |

3-Column ϕ Partition

- Define the sets S, C, D as | S | C | D |
| :--- | :--- | :--- |
| 1 | 2 | 4 |

\[
$$
\begin{aligned}
& A=\{a(k)\}_{k=1}^{\infty}, \\
& B=\{h(k)\} \infty
\end{aligned}
$$

\] $D=\{d(k)\}_{k=1}^{\infty}$ | 1 | 2 | 4 |
| :--- | :--- | :--- |
| 3 | 6 | 11 |

$$
\begin{aligned}
B & =\{b(k)\}_{k=1}^{\infty} .
\end{aligned}
$$

$S=\{s(k)\}_{k=1}^{\infty}, C=\{c(k)\}_{k=1}^{\infty}$

- The sequences $d(k), c(k)$, and $s(k)$ give a partition of \mathbb{Z}^{+}with \begin{tabular}{l|l|l}
3 \& 6 \& 11

5 \& 9 \& 15

7 \& 15

 similar structure to the A, B

8 \& 1729

10 \& 20

\hline
\end{tabular} partition.

Grid of 3-Column Partition

Results: Properties of the 3-Column ϕ Partition

Let $\{x\}$ denote the fractional part of x.

- Let $a(k)=\lfloor k \phi\rfloor$ and $b(k)=\left\lfloor k \phi^{2}\right\rfloor$. Then $\{a(k) \phi\}+\phi\{b(k) \phi\}=$
- Let $d(k)=3|k \phi|+k$ and $c(k)=|k \phi|+2 k-1$ as above. Then

$$
\{c(k) \phi\}+\phi\{d(k) \phi\}=\left\{\begin{array}{l}
1, \text { if }\{k \phi\}>\frac{1}{\sqrt{\sqrt{1}}}, \\
2, \text { if }\{k \phi\}<\frac{1}{\sqrt{5}} .
\end{array}\right.
$$

- $\{s(k) \phi\}=\frac{\sqrt{5}}{2 \phi}\{k \phi\}+b$, where b takes on one of 8 values:

$$
\left\{-1 / 2,0,1 / 2, \frac{1-\sqrt{5}}{4}, \frac{3-\sqrt{5}}{4}, \frac{5-\sqrt{5}}{4}, 1-\frac{\sqrt{5}}{2}, 2-\frac{\sqrt{5}}{2}\right\} .
$$

n-Column ϕ Partition

$d(k, n)-2^{n-2}$
$d(k, n)+2^{n-2}$

- This construction partitions the integers into n groups with the rightmost two sequences having a closed form in terms of $a(k)$.
$d(k, n)=\left(2^{n-1}-1\right) a(k)+k$ and
$c(k, n)=a(k)+\left(2^{n-1}-2\right) k-\left(2^{n-2}-1\right)$.
- The column densities in \mathbb{Z}^{+}give an interpolation of the identities $\sum_{k=1}^{\infty} \frac{1}{2^{k}}=1$ and $\frac{1}{\phi}+\frac{1}{\delta^{2}}=1$ with convergence to an arithmetic progression partition as $n \rightarrow \infty$.

Column Densities

How do the 2 and 3 column ϕ partitions overlap with one another?
$S \mid D$ - For a given integer $a(k)$ or $b(k)$ can we figure out whether it lies in D, C, or S ?

- If we mark the rows of D, C, S with A and B dependent on whether the integers in th possibilities occur. What are the frequencies and why?
We can instead mark the A, B integer pairs by how they appear in D, C, and S. Numerical data suggests the following density values:

References

[^0]
[^0]: Beatty, Samuel (1926). Problem 3173. American
 Beatty, Samuel (1926). Problem 3173. American
 Mathematical Monthly. 33 (3): 159. doi:10.2307/2300153

 - Uspensky, J. V. (1927). On a problem arising out of the theory of a certain game. Amer. Math. Monthly 34 (1927), pp 516-521.

