Golden Ratio Based Partitions of the Integers

Weiru Chen, Jared Krandel, Junxian Li (Graduate Student), Kenneth Stolarsky (Advisor) **ILLINOIS** University of Illinois at Urbana-Champaign **Illinois** Geometry Lab

Introduction

- Let $\mathbb{Z}^+ = \{1, 2, 3, 4, 5 \dots\}.$
- A partition of \mathbb{Z}^+ is a way of breaking \mathbb{Z}^+ into non-overlapping groups.
- The even and odd integers are a two set partition of \mathbb{Z}^+ . $\{1, 2, 3, 4, 5, 6, \ldots\} = \{1, 3, 5, 7, \ldots\} \cup \{2, 4, 6, 8, \ldots\}.$

Arithmetic Progressions

• A simple way of creating partitions is to take distinct arithmetic progressions in the integers.

Definition

Let $s, r \in \mathbb{Z}^+$. An arithmetic progression is a sequence of the form

f(k) = sk + r,

where $0 \le r < s$.

- The even integers are given by E(k) = 2k while the odd integers are O(k) = 2k + 1.
- More complex sets of progressions give more complex partitions. For instance, we can construct a 2 and 3 set case by dividing \mathbb{Z}^+ into the groups below

C_1		C_2		C_3		B_1	B_2
7m + 1	7r	n +	2 '	7m + 4	•	3m + 1	3m+2
7m + 3	7r	n +	6	i	•	3m + 3	1
7m + 5		i		i		I	I
7m + 7		ł		:		:	1
						_	I
(\mathcal{I}_1	$ C_2 $	C_3	_		B_1	B_2
	1	2	4			1	2
	3	6	11			3	5
	5	9	18			4	8
	7	13	25			6	11
	8	16	32			7	14
	:	I	ŧ			I	1

- The first integers of the sets of the 3 part case are $C_1 = \{1, 3, 5, 7, 8, 10, 12, 14, 15, 17, 19, 21, \dots\},\$ $C_2 = \{2, 6, 9, 13, 16, 20, 23, 27, 30, 34, 37, 41, \dots \},\$ $C_3 = \{4, 11, 18, 25, 32, 39, 46, 53, 60, 67, 74, \cdots \},\$ while the first in the sets of the 2 part case are $B_1 = \{1, 3, 4, 6, 7, 9, 10, 12, 13, 15, 16, 18, 19, \ldots\},\$ $B_2 = \{2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, \ldots\}.$
- If we classify the rows of the 3 part partition by whether the elements fall into the first or second column of the 2 part partition, we only get 5 out of 8 possibilities. Moreover, this classification has period of 12 together with reflection symmetry.
- Arithmetic progressions are easy to study because they are **periodic**. Their partitioning structure is simple. We study partitions composed of **semi-periodic** sequences.

University of Illinois Undergraduate Research Symposium, April 19, 2018

- Let $a(k) = \lfloor k\phi \rfloor$ and $b(k) = \lfloor k\phi^2 \rfloor$. Then $\{a(k)\phi\} + \phi\{b(k)\phi\} = 1$.
- Let $d(k) = 3|k\phi| + k$ and $c(k) = |k\phi| + 2k 1$ as above. Then

$$\{c(k)\phi\} + \phi\{d(k)\phi\} = \begin{cases} 1, \\ 2, \end{cases}$$

• $\{s(k)\phi\} = \frac{\sqrt{5}}{2\phi}\{k\phi\} + b$, where b takes on one of 8 values:

 $\{-1/2, 0, 1/2, \frac{1-\sqrt{5}}{4}, \frac{3-\sqrt{5}}{4}, \frac{5-\sqrt{5}}{4}, 1-\frac{\sqrt{5}}{2}, 2-\frac{\sqrt{5}}{2}\}.$

Almost Beatty Partition

Beatty's Theorem does not hold for three (or more) sequences. That is, if α , β and γ are arbitrary positive numbers, then $|k\alpha|$, $|k\beta|$ and $|k\gamma|$ do **not** partition the positive integers.

Our work concerns constructions we have created which extend the A, B partition. The following construction is in 3 parts.

$$\begin{split} d(k) &= 3\lfloor k\phi \rfloor + k, \\ c(k) &= \lfloor k\phi \rfloor + 2k - 1 \\ s(k) &= \lceil c(k)/2 \rceil. \end{split}$$

3-Column ϕ Partition

S	C	D	
1	2	4	
3	6	11	
5	9	15	
7	13	22	
8	17	29	
10	20	33	
i	i	i	

	Grid of 3-Column Partition										
1	2	3	4	5	6	7	8	9	10		
1	12	13	14	15	16	17	18	19	20		
21	22	23	24	25	26	27	28	29	30		
31	32	33	34	35	36	37	38	39	40		
11	42	43	44	45	46	47	48	49	50		

 ϕ -Partition of Integers in 3 Columns

if $\{k\phi\} > \frac{1}{\sqrt{5}}$, if $\{k\phi\} < \frac{1}{\sqrt{5}}$.

		•	•	•				_
		•	•	•				
		•	•	•				_
		•	•	•				
		•	•	•				_
		•	•	•				
		•	•	•				_
		•	•	•				
٩	TI riç	ni gł	รา	s c tn	co nc	n: S	str t t	V
٩	d(c(${k \choose k}$,	n n) :) =		(2) $a($	
٩	Т	പ		0	o		m	r
	id	e	n	nti	tie	en e	Σ	
	id ar	e	- n :r	nti nn	tie ne	eti) C	p
	id ar		n :h	nti nn	tie ne	esti eti		þ
Hov	id ar A 1 3 4 6 8 9 i	e rit dc			tie ne	e 2		
	id ar A 1 3 4 6 8 9 • • • • • • • •				tie ne ne ar ar ty D	es eti i P ei	$\sum_{n=1}^{n}$	
	id ar A 1 3 4 6 8 9 1 3 4 6 8 9 1 3 4 6 8 9 1 3 4 6 8 9 1 3 4 6 8				tie ne ne ne	esetion estimation ir v Peol	$\sum_{n=1}^{n}$	

516-521.

ruction partitions the integers into n groups with the wo sequences having a closed form in terms of a(k).

 $(a^{n-1}-1)a(k) + k$ and $(k) + (2^{n-1} - 2)k - (2^{n-2} - 1).$

n densities in \mathbb{Z}^+ give an interpolation of the $\sum_{k=1}^{\infty} \frac{1}{2^k} = 1$ and $\frac{1}{\phi} + \frac{1}{\phi^2} = 1$ with convergence to an progression partition as $n \to \infty$.

Column Densities

and 3 column ϕ partitions overlap with one another?

$S \mid$	C	D	• For a given integer $a(k)$ or $b(k)$,
1	$\frac{c}{2}$	4	can we figure out whether it lies
3	- 6	11	in D, C , or S ?
5	9	15	• If we mark the rows of D, C, S
7	13	22	with A and B dependent on
8	17	29	whether the integers in that row
10	20	$\left \begin{array}{c} -3 \\ 33 \end{array} \right $	lie in A or B , only 5 of 8
			possibilities occur. What are the
•	-	-	frequencies and why?

stead mark the A, B integer pairs by how they D, C, and S. Numerical data suggests the following Jes:

ir	SC	CS	DS	CD	SS	DC	SS	CC	DD
sity	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{\phi-1}{5}$	$\frac{3-\phi}{5}$	0	0	0	0

References

muel (1926). Problem 3173. American cal Monthly. 33 (3): 159. doi:10.2307/2300153 • Uspensky, J. V. (1927). On a problem arising out of the theory of a certain game. Amer. Math. Monthly 34 (1927), pp.