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Abstract 11 

The medial olivocochlear reflex (MOCR) modifies cochlear amplifier function to improve 12 

encoding of signals in static noise, but conflicting results have been reported regarding how the 13 

MOCR responds to dynamic, temporally-complex noises. The current study utilized three 14 

MOCR elicitors with identical spectral content but different temporal properties: broadband 15 

noise, amplitude-modulated noise, and speech envelope-modulated noise. MOCR activity was 16 

assessed using contralateral inhibition of transient-evoked otoacoustic emissions in 27 normal-17 

hearing young adults. Elicitors were presented contralaterally at two intensities of 50 and 18 

60 dB SPL. Magnitude and growth of contralateral inhibition with increasing elicitor intensity 19 

were compared across the three elicitor types. Results revealed that contralateral inhibition was 20 

significantly larger at the elicitor intensity of 60 dB SPL than at 50 dB SPL, but there were no 21 

significant differences in the magnitude and growth of inhibition across the three elicitors, 22 

contrary to hypothesis. These results suggest that the MOCR responds similarly to both static 23 

and dynamic noise. 24 

 25 

Keywords 26 

medial olivocochlear reflex; auditory efferent system; otoacoustic emissions; contralateral 27 

suppression; amplitude modulation; multi-talker babble 28 

 29 

Abbreviations 30 

AM, amplitude-modulated; BBN, broadband noise; CAS, contralateral acoustic stimulation; EM, 31 

envelope-modulated; MEMR, middle-ear muscle reflex; MOC, medial olivocochlear; MOCR, 32 

medial olivocochlear reflex; OAE, otoacoustic emission; pSPL, peak sound pressure level; 33 
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SSOAE, synchronized spontaneous otoacoustic emission; TEOAE, transient-evoked otoacoustic 34 

emission  35 
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1. Introduction 36 

 The medial olivocochlear (MOC) efferent system modulates cochlear amplifier function 37 

through descending fibers that project from the brainstem to the outer hair cells (reviewed in 38 

Guinan, 2006). Afferent stimulation of the MOC triggers a reflex (MOC reflex, or MOCR) 39 

which improves auditory nerve encoding of transient sounds in background noise by reducing 40 

the neural response to the noise (Winslow and Sachs, 1987; Kawase et al., 1993). The MOCR 41 

appears to contribute to normal-hearing listeners’ ability to understand speech in noisy situations 42 

(e.g., Giraud et al., 1997; Mertes et al., 2017). The MOCR is typically assessed non-invasively in 43 

humans using transient-evoked otoacoustic emissions (TEOAEs), which are measurable sounds 44 

generated in response to brief stimuli that are a byproduct of the cochlear amplification process 45 

(Kemp, 1978; Brownell, 1990). When measuring TEOAEs in one ear, presentation of 46 

contralateral sound activates the contralateral MOC pathway, decreasing cochlear amplifier gain 47 

and reducing TEOAE amplitude (Collet et al., 1990; Berlin et al., 1993). This process is referred 48 

to as contralateral inhibition, and larger inhibition is interpreted as a stronger MOCR (Backus 49 

and Guinan, 2007). 50 

 The MOCR is responsive to a variety of sounds, including pure tones, clicks, tone bursts, 51 

and noise (e.g., Veuillet et al., 1991; Berlin et al., 1993; Guinan et al., 2003). The magnitude of 52 

contralateral inhibition increases with increasing level and bandwidth of the contralateral 53 

stimulus, with static white noise yielding the largest inhibition (Maison et al., 2000; Velenovsky 54 

and Glattke, 2002; Guinan et al., 2003; Lilaonitkul and Guinan, 2009). Static white noise 55 

therefore has been used as the contralateral stimulus in nearly all studies of contralateral 56 

inhibition in humans. Despite the usefulness of using static white noise to study contralateral 57 

inhibition in laboratory settings, it is unclear how more dynamic, temporally-complex sounds 58 
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activate the MOCR. If the MOCR responds differently to dynamic versus static noises, then 59 

measurements of contralateral inhibition using static white noise may not reflect the behavior of 60 

the MOCR in the presence of background noises that humans often encounter, such as multi-61 

talker babble. 62 

A small number of studies have examined contralateral inhibition using dynamic 63 

contralateral sounds, but results have been equivocal.  One group found that amplitude-64 

modulated (AM) sinusoids and AM broadband noise (BBN) yielded larger contralateral 65 

inhibition relative to unmodulated sinusoids and unmodulated BBN (Maison et al., 1997; 1999; 66 

2001), consistent with the modulation transfer function measured in individual MOC neurons of 67 

the guinea pig (Gummer et al., 1988). However, Boothalingam et al. (2014) found a trend of 68 

reduced contralateral inhibition of otoacoustic emissions (OAEs) elicited with single-tone stimuli 69 

(stimulus frequency OAEs) when the tones were AM versus unmodulated. No significant 70 

differences were seen in contralateral inhibition when elicited by a babble noise relative to white 71 

noise (Timpe-Syverson and Decker, 1999; Papsin et al., 2014), but these studies did not report 72 

sufficient controls for middle-ear muscle reflex activation which could interfere with the 73 

interpretation of results (Goodman et al., 2013) and the click stimulus rate of 50/s may have 74 

elicited the ipsilateral MOCR (Boothalingam and Purcell, 2015). A recent paper examined the 75 

effect of a variety of contralateral noises on contralateral inhibition (Kalaiah et al., 2017). The 76 

noises included BBN, AM noise (4, 50, and 100 Hz modulation frequencies), multi-talker babble 77 

(two, four, and six talkers), and environmental (traffic and cafeteria) noises. Results showed that 78 

the multi-talker babble and traffic noises elicited significantly lower contralateral inhibition than 79 

BBN. The authors concluded that multi-talker babble noise is a less efficient activator of the 80 

MOCR than other noises, which could have implications for how the MOCR is activated in real-81 
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world listening situations. However, there were differences in the spectral content of the noises 82 

(see their Fig. 2), so it cannot be determined if the differences in MOCR activation were due to 83 

differences in the spectral and/or temporal content of the noises.  84 

The primary purpose of the current study was to compare the magnitude of contralateral 85 

inhibition elicited by three contralateral noises that varied in their temporal characteristics while 86 

holding the spectral content the same. Static BBN and two dynamic noises (AM BBN and BBN 87 

modulated by the envelope of multi-talker babble) were utilized. It was hypothesized that BBN 88 

would elicit significantly larger contralateral inhibition than the dynamic noises because the lack 89 

of low-amplitude dips in the static noise would ensure sustained activation of the MOCR 90 

(Boothalingam et al., 2014). The growth of contralateral inhibition for the three noise elicitors 91 

was also explored to determine if the MOCR responds differentially across elicitor intensity level 92 

depending upon the temporal characteristics of the elicitor. 93 

 94 

2. Material and methods 95 

2.1. Participants 96 

A total of 27 participants (20 females) participated. Participant ages ranged from 18 to 40 97 

years [mean = 23.5 years, standard deviation (SD) = 5.9]. Screening procedures included a case 98 

history and audiologic screening. Eligible participants were required to have a self-reported 99 

negative history of the following: hearing difficulties, significant noise exposure within the past 100 

6 months, tinnitus of a severe and/or bothersome nature, use of ototoxic medication, vertigo, and 101 

chronic middle ear pathology. Participants were also required to be right handed to avoid 102 

confounds of handedness effects on contralateral inhibition (Khalfa et al., 1998).  103 
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Audiologic inclusion criteria consisted of the following: an unremarkable otoscopic 104 

examination bilaterally, normal 226-Hz tympanograms bilaterally (tympanometric peak pressure 105 

between -100 to +50 daPa, static acoustic admittance between 0.2 to 1.8 mmho, and equivalent 106 

ear canal volume from 0.6 to 2.5 cc), pure-tone air-conduction thresholds ≤20 dB HL at octave 107 

frequencies from 250 to 8000 Hz bilaterally, and measurable TEOAEs in the right ear. The 108 

TEOAE screening measurement consisted of collecting 1250 sweeps in response to 40.96-µs 109 

clicks presented at 65 dB peak sound pressure level (pSPL) at a rate of 19.53/s using equipment 110 

described in Sec. 2.2. Mean TEOAE waveforms were bandpass filtered from 1000 to 2000 Hz. 111 

Participants passed the TEOAE screening if the time-domain signal-to-noise ratio (SNR) was >6 112 

dB and the whole-waveform reproducibility (Kemp et al., 1990) was >70%. 113 

The study protocol was approved by the Institutional Review Board of the University of 114 

Illinois at Urbana-Champaign. Written informed consent was obtained by all participants prior to 115 

their enrollment in the study. All participants received monetary compensation for their 116 

participation. 117 

 118 

2.2. Equipment 119 

 Participants were seated in a comfortable recliner inside a 200 sq. ft. single-walled sound-120 

treated booth with 8-in thick walls (Tracoustics, Inc., Austin, TX). To further reduce external 121 

noise from entering the sound booth, the experimenters were situated in a separate room with the 122 

door closed. The experimenters monitored participants during the experiment via a camcorder 123 

and intercom. 124 

Audiometric screenings were conducted using an AudioStar Pro audiometer (Grason-125 

Stadler, Inc., Eden Prarie, MN) and a Titan tympanometer (Interacoustics, Middelfart, Denmark). 126 
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Contralateral inhibition testing was conducted using a WS-4 workstation [Tucker-Davis 127 

Technologies (TDT), Alachua, FL] and an RZ6 auditory processor (TDT) running custom 128 

software written in MATLAB (ver. R2017a, The Mathworks, Inc., Natick, MA) and RPvdsEx 129 

(TDT). Stimuli were routed from the RZ6 to two resistors (1/8 W, 22 Ω) that were placed in 130 

series with a pair of ER-2 insert earphones (Etymōtic Research, Elk Grove Village, IL). The 131 

acoustic tubing of the right insert earphone was connected to an ER-10B+ probe microphone 132 

system (Etymōtic Research) with the preamplifier gain set to +40 dB. The signal recorded by the 133 

microphone was routed to the input of the RZ6, sampled at 24414.06 Hz (the default sampling 134 

rate of the processor), and streamed to the workstation hard disk.  135 

Offline analyses of TEOAE waveforms were performed using a combination of custom 136 

MATLAB code and the MATLAB Signal Processing Toolbox (ver. 11.1, The Mathworks, Inc.). 137 

Statistical analyses were conducted using SPSS Statistics (version 24.0.0.0, IBM Corp., Armonk, 138 

NY). 139 

 140 

2.3. Contralateral inhibition measurement 141 

Stimulus and recording parameters were adapted from those described in Mertes et al. 142 

(2017). Contralateral inhibition measurement consisted of obtaining TEOAEs with and without 143 

the three contralateral elicitors described in this section. TEOAEs were elicited using clicks 144 

generated by the RZ6 processor at the default sampling rate of 24414.06 Hz. Click stimuli were 145 

40.96 µs in duration and were presented at a level of 65 dB pSPL and at a rate of 19.53/s. The 146 

stimulus level was selected to ensure robust elicitation of TEOAEs in all participants (Mertes et 147 

al., 2017), while the rate was selected to reduce potential elicitation of both the ipsilateral MOCR 148 

and the middle-ear muscle reflex (MEMR) by the click stimuli (Boothalingam and Purcell, 149 
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2015). The activation of either of these reflexes can confound the interpretation of the 150 

contralateral inhibition results and are thus desirable to avoid (Guinan et al., 2003; Boothalingam 151 

and Purcell, 2015).  152 

Three noise stimuli served as contralateral elicitors of the MOCR (referred to hereafter as 153 

elicitor types): 1) broadband noise (BBN) consisting of Gaussian noise generated by the RZ6 154 

processor with a nominal bandwidth of 0 to 12207 Hz; 2) amplitude-modulated (AM) BBN, 155 

consisting of the BBN from elicitor 1 that was amplitude-modulated at a rate of 100 Hz and at a 156 

modulation depth of 100%; 3) envelope-modulated (EM) BBN, consisting of the BBN from 157 

elicitor 1 that was modulated by the envelope of a four-talker babble stimulus (Lilly et al., 2011), 158 

where the envelope was obtained by convolving the absolute value of the babble stimulus with a 159 

7.2-ms rectangular window (Brungart et al., 2001). The AM elicitor was utilized to determine the 160 

replicability of the results of Maison et al. (1999). EM noise was utilized to determine if the 161 

MOCR is responsive to the aperiodic amplitude fluctuations that are present in multi-talker 162 

babble. The first 1000 ms of each elicitor waveform are shown in Figure 1.  Waveforms were 163 

ramped on and off with 50-ms cosine-squared ramps. Elicitor waveforms were scaled to have an 164 

equal root-mean-square (RMS) amplitude and the SPLs were calibrated in a 2-cc coupler. 165 

Contralateral inhibition was assessed by interleaving measurements of TEOAEs without 166 

and with contralateral acoustic stimulation (referred to hereafter as CAS- and CAS+, 167 

respectively). A single interleave consisted of 8 s in CAS- (clicks only), followed by 500 ms of 168 

elicitor presentation to allow for the onset of the MOCR (Backus and Guinan, 2006), followed 169 

by 8 s in CAS+ (clicks and elicitor), and finally 500 ms of silence to allow for the offset of the 170 

MOCR prior to the next presentation of CAS- (Backus and Guinan, 2006). Each elicitor 171 

waveform was 4.8 min in duration. To avoid presenting frozen noise, each interleave in CAS+ 172 
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involved presenting a random 8-s segment drawn from the total elicitor waveform. The 173 

waveforms were then ramped on and off with a 10-ms cosine-squared window. A total of 1250 174 

sweeps in each of the CAS- and CAS+ conditions (i.e., eight interleaves of CAS- and CAS+ 175 

conditions) were obtained for a single measurement of contralateral inhibition. Recorded 176 

waveforms were high pass filtered with a second-order Butterworth filter with a cutoff frequency 177 

of 500 Hz via the RPvdsEx software, then streamed to disk for offline analysis. 178 

For each contralateral noise stimulus, a measurement of contralateral inhibition was 179 

obtained by presenting the noise at 50 or 60 dB SPL (A-weighted RMS) (hereafter referred to as 180 

elicitor intensity). Therefore, there were a total of six conditions (3 elicitor types × 2 elicitor 181 

intensities) for each participant. The presentation order of conditions was randomized for each 182 

participant.1 Prior to the recording at each condition, the click stimulus levels were calibrated in-183 

situ and were adjusted until the pSPL of the click was within ±0.25 dB of the target level. 184 

Participants were instructed to remain as still and quiet as possible during the 185 

contralateral inhibition measurements. Participants watched a closed-captioned silent video of 186 

their choice on an iPad Air 2 tablet (Apple, Cupertino, CA). After each measurement, there was a 187 

brief intermission while the experimenter prepared the software for the next recording. 188 

Participants were provided with a short break between measurements as needed. The earphones 189 

were kept inserted between measurements. 190 

 191 

2.4. MEMR analysis 192 

 Prior to analyzing the contralateral inhibition results, it was critical to assess the presence 193 

of MEMR activation. We implemented a check for the presence of MEMR based on recent 194 

reports (Abdala et al., 2013; Boothalingam and Purcell, 2015; Mertes and Leek, 2016), where 195 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

  11 
 

changes in stimulus amplitude measured in the ear canal were compared between CAS- and 196 

CAS+. The rationale for this method is that activation of the MEMR can alter middle ear 197 

impedance and thus alter the stimulus amplitude measured in the ear canal. The stimulus 198 

waveforms recorded in the ear canal were time-windowed to isolate the stimulus peak. Probable 199 

activation of the MEMR was considered present when the mean peak amplitude in CAS+ was 200 

≥0.12 dB larger relative to CAS-. The presence of MEMR was assessed in all elicitor type × 201 

elicitor intensity conditions. However, no participants demonstrated probable MEMR activation. 202 

 203 

2.5. Contralateral inhibition analysis 204 

For each contralateral inhibition measurement, the waveforms were split into two 205 

matrices comprising TEOAEs obtained in CAS- and CAS+. Both matrices were reshaped into 206 

1250 sweeps, where time zero was set to the time location corresponding to the stimulus peak. 207 

TEOAE waveforms were time windowed from 8 to 18 ms (Hood et al., 1996) and ramped on and 208 

off with 1-ms cosine-squared ramps so that the waveforms were at full amplitude from 8 to 209 

18 ms. Waveforms were then bandpass filtered with a Hann window-based filter (passband = 210 

891 to 2245 Hz, filter order = 128). Artifacts were rejected post hoc by excluding any sweep 211 

having an RMS amplitude that fall outside 1.5 times the interquartile range of the distribution of 212 

RMS amplitudes across all sweeps (Goodman et al., 2009). 213 

Quantification of contralateral inhibition was performed using methods based on Mertes 214 

and Leek (2016). Estimates of the TEOAE signal and noise floor amplitudes were first computed 215 

by putting odd- and even-numbered sweeps into sub-buffers A and B, respectively. The TEOAE 216 

signal waveform was obtained as 
(���)

�
 and the TEOAE noise floor waveform was computed as 217 

(���)

�
 (Prieve et al., 1993). A mean signal waveform and mean noise floor waveform were 218 
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obtained for both CAS- and CAS+. When measured in an IEC711 coupler, the RMS SNR was 219 

<6 dB, indicating sufficiently low system distortion. Figure 2 shows an example of mean 220 

TEOAE waveforms in CAS- and CAS+ for one representative participant. The SNR of the mean 221 

waveform in CAS- was required to be >6 dB to be included in the contralateral inhibition 222 

analysis. Contralateral inhibition was computed as the difference in RMS amplitude between the 223 

mean TEOAE waveforms in CAS+ and CAS-, expressed in decibels. Positive values indicated 224 

that TEOAE magnitude decreased in CAS+, which was the expected effect. Larger positive 225 

values were interpreted as stronger MOCR activity (Backus and Guinan, 2007). 226 

We also examined contralateral inhibition within 2-ms time windows to examine 227 

differences in contralateral inhibition across different times among the three elicitor types and 228 

two elicitor intensities. Due to the frequency dispersion of TEOAEs across time, later analysis 229 

windows represent MOCR effects on lower frequencies (Berlin et al., 1993). Velenovsky and 230 

Glattke (2002) found that when comparing different contralateral MOCR elicitors, significant 231 

differences were seen in the amount of contralateral inhibition across these time windows. 232 

Therefore, it was of interest to determine if a similar result would be seen across the different 233 

noise elicitors used in the current study. Contralateral inhibition was calculated in the same way 234 

as described above in Sec. 2.5, except rather than computing across the duration 8 to 18 ms, five 235 

non-overlapping analysis windows were utilized: 8–10, 10–12, 12–14, 14–16, and 16–18 ms.  236 

 237 

3. Results 238 

3.1 Magnitude of contralateral inhibition 239 

TEOAE signal and noise floor amplitudes across elicitor type × elicitor intensity 240 

conditions are shown in Fig. 3. As expected, TEOAE amplitudes in CAS- appeared stable and 241 
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TEOAE amplitudes decreased in CAS+ across all conditions. Additionally, noise floors appeared 242 

stable across conditions and were comparable between CAS- and CAS+. Mean SNRs for the 50 243 

dB SPL elicitor intensity were 19.34 dB for CAS- and 17.30 dB for CAS+ (collapsed across 244 

elicitor). Mean SNRs for the 60 dB SPL elicitor intensity were 19.38 dB for CAS- and 15.59 dB 245 

for CAS+ (collapsed across elicitor). TEOAE signal amplitudes were not normally distributed at 246 

all elicitor type × elicitor intensity conditions as assessed by Shapiro-Wilk tests of normality (p < 247 

0.05), therefore the mean TEOAE signal amplitudes across conditions were not analyzed with 248 

repeated measures analyses of variance (ANOVA). 249 

However, the primary outcome of interest was contralateral inhibition (i.e., the difference 250 

in TEOAE amplitude between CAS- and CAS+). Mean contralateral inhibition values are shown 251 

in Fig. 4. A two-way repeated measures ANOVA was run to determine the effect of the factors 252 

of elicitor type (BBN, AM, and EM) and elicitor intensity (50 and 60 dB SPL) on contralateral 253 

inhibition. Outlier detection was utilized by examining the studentized residuals, which are 254 

residuals divided by an estimate of the standard error. No outliers were present, as evidenced by 255 

studentized residuals that did not exceed ±3 standard deviations. Contralateral inhibition was 256 

normally distributed as assessed by a Shapiro-Wilk test of normality on the studentized residuals 257 

(p > 0.05). Mauchly’s test of sphericity indicated that the assumption of sphericity was met for 258 

the interaction between elicitor type and elicitor intensity, the main effect of elicitor type, and the 259 

main effect of elicitor intensity (p > 0.05 in all cases). There was no significant interaction 260 

between elicitor type and elicitor intensity, F(2,52) = 1.560, p = 0.220., χ2(2) = 3.155, p = 0.207. 261 

The main effect of elicitor type was not statistically significant, F(2,52) = 2.940, p = 0.062. The 262 

main effect of elicitor intensity showed that there was a statistically significant difference in 263 

contralateral inhibition between elicitor intensities, F(1,26) = 34.925, p < 0.0005, partial η2 = 264 
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0.573. Post hoc analysis revealed that contralateral inhibition significantly increased from an 265 

elicitor intensity of 50 dB SPL to 60 dB SPL (1.477 dB, 95% CI = 0.963 to 1.990, p < 0.0005). 266 

Mean results of the analysis in 2-ms time windows are plotted in Fig. 5. The left and right 267 

panels display the results obtained for elicitor intensities of 50 and 60 dB SPL, respectively. Two 268 

outliers were present, as evidenced by studentized residuals that exceeded +3 standard 269 

deviations. Additionally, contralateral inhibition was not normally distributed at all analysis 270 

window × elicitor type × elicitor intensity conditions, as assessed by Shapiro-Wilk tests of 271 

normality on the studentized residuals (p < 0.05). Therefore, a three-way repeated measures 272 

ANOVA was not performed. Rather, the data were analyzed qualitatively.  273 

At a given analysis window, mean contralateral inhibition was larger for an elicitor 274 

intensity of 60 dB SPL compared to 50 dB SPL, which was expected given the results shown in 275 

Fig. 4. At both elicitor intensities, contralateral inhibition was smallest at 8–10 ms. For a given 276 

elicitor type, fluctuations in contralateral inhibition can be seen  with increasing analysis 277 

window. Across analysis windows, differences in contralateral inhibition among the three elicitor 278 

types can be seen – no clear pattern emerged for an elicitor intensity of 50 dB SPL but BBN 279 

tended to exhibit larger contralateral inhibition relative to the other elicitor types at 60 dB SPL.  280 

 281 

3.2 Inhibition versus enhancement of TEOAE amplitude  282 

It was also of interest to examine the distribution of contralateral inhibition values at each 283 

elicitor type × elicitor intensity condition. Box and whisker plots of contralateral inhibition are 284 

displayed in Fig. 6. The majority of contralateral inhibition values were positive, indicating that 285 

TEOAE amplitude decreased in CAS+ as expected. However, there were instances of negative 286 

inhibition values at each elicitor type × elicitor intensity condition (ranging from 6 to 7 instances 287 
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at 50 dB SPL and from 3 to 4 instances at 60 dB SPL). These enhancements in TEOAE 288 

amplitude could not be explained by MEMR activation.  289 

We examined the potential contribution of synchronized spontaneous OAEs (SSOAEs) to 290 

these enhancements. SSOAEs are outer hair cell responses that become entrained to click stimuli 291 

and persist for longer than TEOAEs (Prieve and Falter, 1995). Participants with SSOAEs may 292 

exhibit phase cancellations between SSOAEs and TEOAEs in the absence of MOCR activation. 293 

If the MOCR differentially inhibited SSOAEs versus TEOAEs, there may be an increase in the 294 

measured TEOAE amplitude (S. Boothalingam, personal communication). Such an effect would 295 

be similar to the well-established differential impact of MOCR activation on the distortion versus 296 

reflection components of distortion-product otoacoustic emissions, which can result in increases 297 

in OAE amplitude when the MOCR is activated (e.g., Abdala et al., 2009). 298 

SSOAEs were extracted using the same methods described in Sec. 2.5 but using a time 299 

window from 36 to 44 ms post-stimulus onset, where no TEOAEs were expected to occur. To 300 

detect the presence of SSOAEs, a 1024-point FFT was computed on the mean waveform in the 301 

SSOAE window and was compared to the FFT computed on the mean waveform in the TEOAE 302 

window (8 to 18 ms). SSOAEs were considered present if the SNR in the SSOAE window was 303 

>6 dB. Two case examples of participants with SSOAEs are shown in Fig. 7. Results are shown 304 

for AM noise presented at 50 dB SPL, in which 7 participants showed enhancements with CAS+. 305 

The top row shows results from a participant with enhancements and the bottom row shows 306 

results from a participant with inhibition. The participant shown in the top row demonstrated 307 

enhancements in both TEOAE and SSOAE amplitude in CAS+. Visual inspection of data 308 

showed that of the seven participants demonstrating enhancements in TEOAE amplitude, four of 309 

them also demonstrated SSOAEs that also were enhanced with CAS+ (the remaining three did 310 
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not have SSOAEs). The participant in the bottom row of Fig. 7 demonstrated inhibition in both 311 

TEOAE and SSOAE amplitudes in CAS+. The remaining 11 participants with SSOAEs and 312 

inhibition also demonstrated this same trend. Results suggest that SSOAEs are not always 313 

associated with enhancements. 314 

 315 

3.3 Growth of contralateral inhibition 316 

The growth in contralateral inhibition across elicitor intensities of 50 to 60 dB SPL was 317 

compared for the three elicitors. For each participant, the slope for each elicitor was computed in 318 

dB/dB as the difference in contralateral inhibition at 60 dB SPL minus contralateral inhibition at 319 

50 dB SPL, divided by 10 dB. Box and whisker plots of growth across elicitor are shown in Fig. 320 

8. Median growth of contralateral inhibition with increasing elicitor intensity was 0.11, 0.13, and 321 

0.12 dB/dB for BBN, AM, and EM, respectively. At each elicitor type, three to four growth 322 

values were negative, indicating that contralateral inhibition decreased as elicitor intensity 323 

increased. 324 

It was of interest to compare the growth in contralateral inhibition magnitude across the 325 

two elicitor intensities; however, growth did not meet the assumptions of a one-way repeated 326 

measures ANOVA. One outlier was present for AM growth, as evidenced by a studentized 327 

residual that exceeded +3 standard deviations. Additionally, BBN growth was not normally 328 

distributed as assessed by a Shapiro-Wilk test of normality on the studentized residuals (p < 329 

0.05). Therefore, a Friedman nonparametric test was performed to compare median growth 330 

across elicitors. The results revealed that there was no statistically significant difference in 331 

growth across the three elicitor types, χ
2(2) = 3.630, p = 0.163. 332 

 333 
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4. Discussion 334 

4.1 Impact of static versus dynamic noises on contralateral inhibition 335 

The purpose of the current study was to determine the impact of temporal characteristics 336 

of noise elicitors on the magnitude and growth of contralateral inhibition of TEOAEs. The noise 337 

elicitors all had the same long-term average spectrum and RMS amplitude to isolate the temporal 338 

effects of 100-Hz amplitude modulation and the envelope of a four-talker babble noise. Contrary 339 

to our hypothesis that BBN would elicit larger inhibition, there was no significant difference in 340 

the magnitude of contralateral inhibition across elicitors at 50 or 60 dB SPL. Additionally, there 341 

was no significant difference in the growth of inhibition across elicitors. The only statistically 342 

significant finding was that the magnitude of inhibition increased from 50 to 60 dB SPL, which 343 

was expected and has been demonstrated previously for BBN (Veuillet et al., 1991; Hood et al., 344 

1996).  345 

Our results are inconsistent with the findings of Maison and colleagues, who 346 

systematically investigated the impact of the frequency and depth of amplitude modulation of 347 

BBN (Maison et al., 1999; 2001) presented contralaterally during measurement of OAEs. Their 348 

work found that a modulation frequency of 100 Hz and modulation depth of 100% evoked the 349 

largest inhibition relative to other modulated and unmodulated stimuli. It is also of note that 350 

Maison et al. (1997) found similar results when using amplitude-modulated sinusoids as 351 

contralateral elicitors. The authors discussed that the results were consistent with physiologic 352 

data that includes the modulation transfer function of single MOC neuron fibers (Gummer et al., 353 

1988) and encoding of amplitude modulation by chopper cells in the ventral cochlear nucleus 354 

(Frisina et al., 1990). 355 
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More recent work, including the current study, suggests that MOCR activation is similar 356 

whether the stimuli are unmodulated or amplitude modulated. Boothalingam et al. (2014) found 357 

no statistically significant difference in contralateral inhibition of stimulus frequency OAEs and 358 

tone-burst OAEs for BBN that was either unmodulated or amplitude modulated at 100 Hz and 359 

presented at 60 dB SPL. The authors observed a trend of decreased inhibition in response to AM 360 

stimuli relative to unmodulated stimuli and speculated that the silent periods or “dips” in the AM 361 

stimuli may reduce sustained activation of the MOCR given its onset time course of 362 

approximately 275 ms (Backus and Guinan, 2006). Our results showed a similar trend (see Fig. 363 

4). Our random selection of 8-s segments of the noise waveforms upon each presentation, 364 

combined with a click rate of 19.53/s that would not synchronize with the AM or EM noise, 365 

likely caused some TEOAEs to be recorded in the presence of modulations dips and some in the 366 

presence of modulation peaks, which may have\ reduced the contralateral inhibition of TEOAEs 367 

in response to AM and EM noise, relative to BBN. However, it is important to note that 368 

Boothalingam et al. (2014) found no significant difference in contralateral inhibition when the 369 

modulation frequency of the AM noise elicitor was synchronized versus unsynchronized to the 370 

click presentation rate. The results of Kalaiah et al. (2017) also demonstrated no significant 371 

difference in inhibition for unmodulated BBN and BBN that was amplitude-modulated at 4, 50, 372 

and 100 Hz when presented at 60 dB SPL. 373 

It is unclear why Maison and colleagues consistently found increased inhibition for 100-374 

Hz AM elicitors whereas more recent studies did not. All studies utilized low OAE-eliciting 375 

stimulus levels (ranging from 55 to 65 dB peak SPL), so cochlear amplifier gain was presumably 376 

adequate to allow for an MOCR-induced change in gain (Hood et al., 1996; Guinan, 2006). 377 

Boothalingam et al. (2014) verified that the OAE-eliciting stimulus rate used by Maison’s group 378 
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did not explain the increased inhibition for 100-Hz AM. All studies presented the contralateral 379 

noises at 60 dB SPL, which likely ensured that the MEMR was not activated and allowed for 380 

across-study comparisons. We added the 50 dB SPL condition to see if the difference in 381 

inhibition across elicitor type was dependent upon elicitor intensity, but we found no significant 382 

elicitor type × elicitor intensity interaction. Additionally, we found that contralateral inhibition 383 

grew by 0.11 to 0.13 dB per 1-dB increase in elicitor intensity, which is broadly consistent with 384 

previous work on BBN (Veuillet et al., 1991; Hood et al., 1996). It may be possible that subtle 385 

differences related to the participants, OAE measurement, and/or OAE analysis may have 386 

contributed to the discrepant findings regarding the impact of modulated noises on the MOCR. 387 

 388 

4.2 Implications for listening in noise 389 

Our results, combined with those of Boothalingam et al. (2014) and Kalaiah et al. (2017), 390 

may suggest a real-world benefit of the MOCR for listening in background noise. MOCR 391 

function is associated with reduced neural adaptation in response to BBN (Kawase et al., 1993) 392 

and with the ability to understand speech in the presence of static BBN (Giraud et al., 1997; 393 

Kumar and Vanaja, 2004; Mertes et al., 2017). If modulated noises encountered in typical 394 

listening situations (e.g., multi-talker babble) also activate the MOCR, then benefits for speech-395 

in-noise understanding may be conferred. However, experimental examination of such benefits 396 

would need to consider the confounding (although beneficial) effect of listening in the “dips” of 397 

modulated noises, which have been shown to improve speech-in-noise abilities relative to 398 

unmodulated noises (e.g., Festen and Plomp, 1990). Additionally, the contralateral inhibition 399 

reported in the current study and related studies only represents the overall MOCR effect 400 

computed across tens of seconds or more.  401 
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When examined in 2-ms portions, contralateral inhibition tended to be smaller from 8–10 402 

ms relative to later time windows for all noise elicitors and noise intensities (Fig. 8). The 403 

difference in contralateral inhibition across the elicitor types appeared to be minimal. 404 

Velenovsky and Glattke (2002) found a considerable difference in contralateral inhibition across 405 

elicitor types using a similar time analysis method, but the elicitors varied in their bandwidth, 406 

whereas the bandwidth of elicitor types in the current study were identical. The finding of less 407 

contralateral inhibition from 8–10 ms is consistent with a recent study which also showed a 408 

plateau in contralateral inhibition after the 8–10 ms window (Kalaiah et al., 2017). It should be 409 

noted that we did not analyze the time course of the MOCR in a systematic way, so we may have 410 

missed important differences in how the MOCR is activated by the elicitors across shorter time 411 

periods relevant to perceiving individual speech sounds during running speech (Backus and 412 

Guinan, 2006). Measuring OAEs that are elicited with continuous stimuli, such as stimulus-413 

frequency and distortion-product OAEs, may be preferable to measuring TEOAEs for examining 414 

such changes (e.g., Backus and Guinan, 2006; Harrison et al., 2008). 415 

As noted in Sec. 4.1, the noise elicitors in the current study had the same long-term 416 

spectrum. Kalaiah et al. (2017) included actual multi-talker babble stimuli (2, 4, and 6 talkers) as 417 

contralateral elicitors, which substantially reduced the high-frequency energy relative to the 418 

BBN. They found that the multi-talker babble only elicited mean inhibition values of ≤0.5 dB, 419 

significantly lower than their mean inhibition of 1.5 dB for BBN. This may suggest that multi-420 

talker babble is a weak activator of the MOCR due to its low pass nature. However, multi-talker 421 

babble may contain discernible speech that can draw the listener’s attention and thus increase or 422 

decrease MOCR activation (reviewed in Meric and Collet, 1994). Such an attentional effect 423 

might be minimized by utilizing time-reversed multi-talker babble or through explicit 424 
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instructions to participants regarding how they should direct their attention during the 425 

contralateral inhibition measurements. 426 

 427 

4.3 Inhibition versus enhancement of TEOAE amplitude 428 

Figure 6 demonstrates that a minority of participants exhibited enhancement, rather than 429 

inhibition, of TEOAE amplitude with MOCR activation. Although these enhancements have 430 

been found in other OAE-based studies of the MOCR (Hood et al., 1996; Goodman et al., 2013), 431 

the enhancements are inconsistent with physiologic work demonstrating that the MOCR 432 

decreases cochlear amplifier gain (Murugasu and Russell, 1996; Cooper and Guinan, 2006). One 433 

potential cause of these enhancements is activation of the MEMR, which can decrease middle 434 

ear impedance above 1 kHz and may serve to increase TEOAE amplitudes (Boothalingam and 435 

Purcell, 2015). We found no evidence of MEMR activation as assessed by examining changes in 436 

the stimulus amplitude measured in the ear canal, although we cannot rule out subtle impedance 437 

changes not detected by our methodology. We also qualitatively investigated the contribution of 438 

SSOAEs to these enhancements (Fig. 7). As described in Sec. 3.2, the MOCR may differentially 439 

impact SSOAEs and TEOAEs and result in amplitude enhancements. All participants who 440 

exhibited enhancements had SSOAEs in the 1000 to 2000 Hz region. However, some 441 

participants who exhibited inhibition also had SSOAEs. It appears that SSOAEs may be 442 

necessary, but not sufficient, for MOCR enhancements. Recent in work in guinea pigs has found 443 

that MOCR enhancements in OAE amplitude may be caused by the MOCR increasing cochlear 444 

roughness (and thus increased levels of reflection-source OAEs), at least when the MOCR is 445 

elicited by electrical shocks (Berezina-Greene and Guinan, 2017). More work is needed to 446 
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understand the cause of MOCR enhancements in humans and their relevance to assessing MOCR 447 

activity. 448 

 449 

4.4 Future directions 450 

More work is needed to better understand how the MOCR responds to a variety of noise 451 

sources that vary in both spectral and temporal properties, and how the resulting efferent 452 

response influences auditory perception. The methodology used in the current study was limited 453 

to a contralateral presentation of the MOCR elicitors. Forward masking paradigms allow for 454 

bilateral presentation of MOCR elicitors (Berlin et al., 1995) and would therefore provide insight 455 

into the MOCR as it would behave in real-world binaural listening, although it does not allow for 456 

an examination of simultaneous masking. We examined the change in TEOAE amplitude to 457 

compare with previous studies but characterizing the change in both TEOAE amplitude and 458 

phase may reveal subtle differences in how the MOCR responds to different temporal and 459 

spectral characteristics of stimuli. Additionally, we only used one stimulus level to evoke 460 

TEOAEs; it is possible that use of lower stimulus levels may provide more sensitive 461 

measurement of contralateral inhibition that could reveal larger differences in MOCR activation 462 

across elicitors. Using a more stringent SNR criterion (e.g., 20 dB; Goodman et al., 2013) would 463 

reduce the impact of physiologic and instrumentation noise on measurements of contralateral 464 

inhibition. However, this would reduce the number of participants included in the current study 465 

and thus reduce statistical power. SNR could be increased by increasing the number of sweeps. 466 

However, there may be a risk of introducing variability in attentional state between elicitor type 467 

× elicitor intensity conditions by increasing the duration of measurements. Finally, experiments 468 

that allow for concurrent measurements of the MOCR during perceptual tasks (e.g., Zhao et al., 469 
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2014) will serve to bridge the gap between physiologic measurements of MOCR activity and the 470 

functional relevance of the MOCR when listening to speech in background noise.  471 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

  24 
 

Acknowledgments 472 

This work was supported by the American Speech-Language-Hearing Foundation (2017 New 473 

Investigators Research Grant) and the Campus Research Board of the University of Illinois at 474 

Urbana-Champaign (Arnold O. Beckman Award). The funding agencies had no involvement in 475 

the study design, data collection, analysis, or dissemination of this work.  Portions of this work 476 

were presented at the 41st Annual MidWinter Meeting of the Association for Research in 477 

Otolaryngology (ARO), February 9–14, 2018, San Diego, CA. The author thanks the participants 478 

for their time, Kristin M. Johnson and Zoë A. Dinger for assistance with data collection, Dr. 479 

Marjorie R. Leek and attendees of the 2018 ARO Meeting for helpful discussions regarding this 480 

research, and Dr. David J. Lilly and the National Center for Rehabilitative Auditory Research for 481 

providing the multi-talker babble digital sound file (Lilly et al., 2011) used to generate the EM 482 

elicitor stimulus.  483 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

  25 
 

References 484 

Abdala, C., Mishra, S., Garinis, A., 2013. Maturation of the human medial efferent reflex 485 

revisited. J. Acoust. Soc. Am. 133, 938–950. https://doi.org/10.1121/1.4773265 486 

Abdala, C., Mishra, S.K., Williams, T.L., 2009. Considering distortion product otoacoustic 487 

emission fine structure in measurements of the medial olivocochlear reflex. J. Acoust. 488 

Soc. Am. 125, 1584–1594. https://doi.org/10.1121/1.3068442 489 

Backus, B.C., Guinan Jr., J.J., 2006. Time-course of the human medial olivocochlear reflex. J. 490 

Acoust. Soc. Am. 119, 2889–2904. https://doi.org/10.1121/1.2169918 491 

Backus, B.C., Guinan Jr., J.J., 2007. Measurement of the distribution of medial olivocochlear 492 

acoustic reflex strengths across normal-hearing individuals via otoacoustic emissions. J. 493 

Assoc. Res. Otolaryngol. 8, 484–496. https://doi.org/10.1007/s10162-007-0100-0 494 

Berezina-Greene, M.A., Guinan Jr., J.J., 2017. Electrically evoked medial olivocochlear efferent 495 

effects on stimulus frequency otoacoustic emissions in guinea pigs. J. Assoc. Res. 496 

Otolaryngol. 18, 153–163. https://doi.org/10.1007/s10162-016-0593-5 497 

Berlin, C.I., Hood, L.J., Hurley, A.E., Wen, H., Kemp, D.T., 1995. Binaural noise suppresses 498 

linear click-evoked otoacoustic emissions more than ipsilateral or contralateral noise. 499 

Hear. Res.  87, 96–103. https://doi.org/10.1016/0378-5955(95)00082-F 500 

Berlin, C.I., Hood, L.J., Wen, H., Szabo, P., Cecola, R.P., Rigby, P., Jackson, D.F., 1993. 501 

Contralateral suppression of non-linear click-evoked otoacoustic emissions. Hear. Res. 502 

71, 1-11. https://doi.org/10.1016/0378-5955(93)90015-s 503 

Boothalingam, S., Purcell, D., Scollie, S., 2014. Influence of 100 Hz amplitude modulation on 504 

the human medial olivocochlear reflex. Neurosci. Lett. 580, 56–61. 505 

https://doi.org/10.1016/j.neulet.2014.07.048 506 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

  26 
 

Boothalingam, S., Purcell, D.W., 2015. Influence of the stimulus presentation rate on medial 507 

olivocochlear system assays. J. Acoust. Soc. Am. 137, 724–732. 508 

https://doi.org/10.1121/1.4906250 509 

Brownell, W.E., 1990. Outer hair cell electromotility and otoacoustic emissions. Ear Hear. 11, 510 

82–92. https://doi.org/10.1097/00003446-199004000-00003 511 

Brungart, D.S., Simpson, B.D., Ericson, M.A., Scott, K.R., 2001. Informational and energetic 512 

masking effects in the perception of multiple simultaneous talkers. J. Acoust. Soc. Am. 513 

110, 2527–2538. https://doi.org/10.1121/1.1408946 514 

Collet, L., Kemp, D.T., Veuillet, E., Duclaux, R., Moulin, A., Morgon, A., 1990. Effect of 515 

contralateral auditory stimuli on active cochlear micro-mechanical properties in human 516 

subjects. Hear. Res. 43, 251–261. https://doi.org/10.1016/0378-5955(90)90232-E 517 

Cooper, N.P., Guinan Jr., J.J., 2006. Efferent-mediated control of basilar membrane motion. J 518 

Physiol. 49–54. https://doi.org/10.1113/jphysiol.2006.114991 519 

Festen, J.M., Plomp, R., 1990. Effects of fluctuating noise and interfering speech on the speech-520 

reception threshold for impaired and normal hearing. J. Acoust. Soc. Am. 88, 1725–1736. 521 

https://doi.org/10.1121/1.400247 522 

Frisina, R.D., Smith, R.L., Chamberlain, S.C., 1990. Encoding of amplitude modulation in the 523 

gerbil cochlear nucleus: I. A hierarchy of enhancement. Hear. Res. 44, 99–122. 524 

https://doi.org/10.1016/0378-5955(90)90074-Y 525 

Giraud, A.L., Garnier, S., Micheyl, C., Lina, G., Chays, A., Chéry-Croze, S., 1997. Auditory 526 

efferents involved in speech-in-noise intelligibility. Neuroreport 8, 1779–1783. 527 

https://doi.org/10.1097/00001756-199705060-00042 528 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

  27 
 

Goodman, S.S., Fitzpatrick, D.F., Ellison, J.C., Jesteadt, W., Keefe, D.H., 2009. High-frequency 529 

click-evoked otoacoustic emissions and behavioral thresholds in humans. J. Acoust. Soc. 530 

Am. 125, 1014–1032. https://doi.org/10.1121/1.3056566 531 

Goodman, S.S., Mertes, I.B., Lewis, J.D., Weissbeck, D.K., 2013. Medial olivocochlear-induced 532 

transient-evoked otoacoustic emission amplitude shifts in individual subjects. J. Assoc. 533 

Res. Otolaryngol. 14, 829–842. https://doi.org/10.1007/s10162-013-0409-9 534 

Guinan Jr., J.J., 2006. Olivocochlear efferents: anatomy, physiology, function, and the 535 

measurement of efferent effects in humans. Ear Hear. 27, 589–607. 536 

https://doi.org/10.1097/01.aud.0000240507.83072.e7 537 

Guinan Jr., J.J., Backus, B.C., Lilaonitkul, W., Aharonson, V., 2003. Medial olivocochlear 538 

efferent reflex in humans: otoacoustic emission (OAE) measurement issues and the 539 

advantages of stimulus frequency OAEs. J. Assoc. Res. Otolaryngol. 4, 521–540. 540 

https://doi.org/10.1007/s10162-002-3037-3 541 

Gummer, M., Yates, G.K., Johnstone, B.M., 1988. Modulation transfer function of efferent 542 

neurones in the guinea pig cochlea. Hear. Res. 36, 41–52. https://doi.org/10.1016/0378-543 

5955(88)90136-0 544 

Harrison, R.V., Sharma, A., Brown, T., Jiwani, S., James, A. L., 2008. Amplitude modulation of 545 

DPOAEs by acoustic stimulation of the contralateral ear. Acta Otolaryngol. 128, 404–546 

407. https://doi.org/10.1080/00016480701784965 547 

Hood, L.J., Berlin, C.I., Hurley, A., Cecola, R.P., Bell, B., 1996. Contralateral suppression of 548 

transient-evoked otoacoustic emissions in humans: intensity effects. Hear. Res. 101, 113–549 

118. https://doi.org/10.1016/s0378-5955(96)00138-4 550 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

  28 
 

Kalaiah, M.K., Nanchirakal, J.F., Kharmawphlang, L., Noronah, S.C., 2017. Contralateral 551 

suppression of transient evoked otoacoustic emissions for various noise signals. Hearing 552 

Balance Commun., 15, 84–90. https://doi.org/10.1080/21695717.2017.1311504 553 

Kawase, T., Delgutte, B., Liberman, M.C., 1993. Antimasking effects of the olivocochlear reflex. 554 

II. Enhancement of auditory-nerve responses to masked tones. J. Neurophysiol. 70, 2533–555 

2549. https://doi.org/10.1152/jn.1993.70.6.2533 556 

Kemp, D.T., 1978. Stimulated acoustic emissions from within the human auditory system. J. 557 

Acoust. Soc. Am. 64, 1386–1391. https://doi.org/10.1121/1.382104 558 

Kemp, D.T., Ryan, S., Bray, P., 1990. A guide to the effective use of otoacoustic emissions. Ear 559 

Hear. 11, 93–105. https://doi.org/10.1097/00003446-199004000-00004 560 

Khalfa, S., Veuillet, E., Collet, L., 1998. Influence of handedness on peripheral auditory 561 

asymmetry. Eur. J. Neurosci. 10, 2731–2737. https://doi.org/10.1046/j.1460-562 

9568.1998.00286.x 563 

Kumar, U.A., Vanaja, C.S., 2004. Functioning of olivocochlear bundle and speech perception in 564 

noise. Ear Hear. 25, 142–146. https://doi.org/10.1097/01.AUD.0000120363.56591.E6 565 

Lilaonitkul, W., Guinan Jr., J.J., 2009. Human medial olivocochlear reflex: effects as functions 566 

of contralateral, ipsilateral, and bilateral elicitor bandwidths. J. Assoc. Res. Otolaryngol. 567 

10, 459–470. https://doi.org/10.1007/s10162-009-0163-1 568 

Lilly, D.J., Hutter, M.M., Lewis, M.S., Folmer, R., Shannon, J., 2011. Development of a “virtual 569 

cocktail party” for the measurement of speech intelligibility in a sound field. J. Am. 570 

Acad. Audiol. 22, 294–305. https://doi.org/10.3766/jaaa.22.5.6 571 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

  29 
 

Maison, S., Durrant, J., Gallineau, C., Micheyl, C., Collet, L., 2001. Delay and temporal 572 

integration in medial olivocochlear bundle activation in humans. Ear Hear. 22, 65–74. 573 

https://doi.org/10.1097/00003446-200102000-00007 574 

Maison, S., Micheyl, C., Andéol, G., Gallégo, S., Collet, L., 2000. Activation of medial 575 

olivocochlear efferent system in humans: influence of stimulus bandwidth. Hear. Res. 576 

140, 111–125. https://doi.org/10.1016/s0378-5955(99)00196-3 577 

Maison, S., Micheyl, C., Collet, C., 1997. Medial olivocochlear efferent system in humans 578 

studied with amplitude-modulated tones. J. Neurophysiol. 77, 1759–1768. 579 

https://doi.org/10.1152/jn.1997.77.4.1759 580 

Maison, S., Micheyl, C., Collet, C., 1999. Sinusoidal amplitude modulation alters contralateral 581 

noise suppression of evoked otoacoustic emissions in humans. Neuroscience 91, 133–582 

138.         https://doi.org/10.1016/S0306-4522(98)00608-3 583 

Meric, C., Collet, L., 1994. Attention and otoacoustic emissions: a review. Neurosci. Biobehav. 584 

Rev. 18, 215–222. https://doi.org/10.1016/0149-7634(94)90026-4 585 

Mertes, I.B., Leek, M.R., 2016. Concurrent measures of contralateral suppression of transient-586 

evoked otoacoustic emissions and of auditory steady-state responses. J. Acoust. Soc. Am. 587 

140, 2027–2038. https://doi.org/10.1121/1.4962666 588 

Mertes, I.B., Wilbanks, E.C., Leek, M.R., 2017. Olivocochlear efferent activity is associated 589 

with the slope of the psychometric function of speech recognition in noise. Ear Hear. 590 

[Epub ahead of print]. https://doi.org/10.1097/AUD.0000000000000514 591 

Murugasu, E., Russell, I.J., 1996. The effect of efferent stimulation on basilar membrane 592 

displacement in the basal turn of the guinea pig cochlea. J. Neurosci. 16, 325–332.  593 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

  30 
 

Papsin, E., Harrison, A.L., Carraro, M., Harrison, R.V., 2014. Contralateral ear occlusion for 594 

improving the reliability of otoacoustic emission screening tests. Int. J. Otolaryngol. 595 

2014, 1–8. https://doi.org/10.1155/2014/248187 596 

Prieve, B.A., Falter, S.R., 1995. COAEs and SSOAEs in adults with increased age. Ear Hear. 16, 597 

521–528. http://doi.org/10.1097/00003446-199510000-00009 598 

Prieve, B.A., Gorga, M.P., Schmidt, A., Neely, S., Peters, J., Schultes, L., Jesteadt, W., 1993. 599 

Analysis of transient-evoked otoacoustic emissions in normal-hearing and hearing-600 

impaired ears. J. Acoust. Soc. Am. 93, 3308–3319. https://doi.org/10.1121/1.405715 601 

Timpe-Syverson, G.K., Decker, T.N., 1999. Attention effects on distortion-product otoacoustic 602 

emissions with contralateral speech stimuli. J. Am. Acad. Audiol. 10, 371–378. 603 

Velenovsky, D.S., Glattke, T.J., 2002. The effect of noise bandwidth on the contralateral 604 

suppression of transient evoked otoacoustic emissions. Hear. Res. 164, 39–48. 605 

https://doi.org/10.1016/s0378-5955(01)00393-8 606 

Veuillet, E., Collet, L., Duclaux, R., 1991. Effect of contralateral acoustic stimulation on active 607 

cochlear micromechanical properties in human subjects: dependence on stimulus 608 

variables. J. Neurophysiol. 65, 724–735. https://doi.org/10.1152/jn.1991.65.3.724 609 

Winslow, R.L., Sachs, M.B., 1987. Effect of electrical stimulation of the crossed olivocochlear 610 

bundle on auditory nerve response to tones in noise. J. Neurophysiol. 57, 1002–1021. 611 

https://doi.org/10.1152/jn.1987.57.4.1002 612 

Zhao, W., Strickland, E., Guinan, J., 2014. Measurement of medial olivocochlear efferent 613 

activity during psychophysical overshoot. Assoc. Res. Otolaryngol. Abs. 37, 78–79. 614 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

  31 
 

Figure captions 615 

Fig. 1. Waveforms of the three contralateral elicitors. Each panel displays the first 1000 ms. 616 

 617 

Fig. 2. Example mean TEOAE waveforms obtained in CAS- and CAS+. Data are shown for a 618 

representative participant in response to BBN at 60 dB SPL. Time is shown relative to the 619 

stimulus peak location. TEOAE RMS amplitude decreased in CAS+ as expected. 620 

 621 

Fig. 3. Mean TEOAE signal and noise floor amplitudes across elicitor type × elicitor intensity 622 

conditions. The vertical dashed line separates results for intensities of 50 dB SPL (left) and 60 623 

dB SPL (right). Error bars represent +1 SEM. 624 

 625 

Fig. 4. Mean contralateral inhibition across elicitor type × elicitor intensity conditions. Error bars 626 

represent +1 SEM. 627 

 628 

Fig. 5. Analysis of contralateral inhibition in 2-ms time windows. The left and right panels 629 

represent results obtained at elicitor intensities of 50 and 60 dB SPL, respectively. Bars represent 630 

mean values. Error bars represent +1 SEM. 631 

 632 

Fig. 6. Distribution of contralateral inhibition at each elicitor type × elicitor intensity condition. 633 

Boxes encompass the middle 50% of the data. Thick horizontal lines within each box are the 634 

medians. The whiskers extend to the largest and smallest values not considered outliers. Crosses 635 

represent outliers. The gray horizontal line is used to separate inhibition (positive values) from 636 
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enhancement (negative values). The vertical dashed line separates results for elicitor intensities 637 

of 50 dB SPL (left) and 60 dB SPL (right). 638 

 639 

Fig. 7. Comparison of a participant with contralateral enhancement (top row) versus contralateral 640 

inhibition (bottom row). Panels on the left show FFTs computed on the analysis window from 8 641 

to 18 ms. Panels on the right show FFTs computed on the analysis window from 34 to 42 ms. 642 

Thin dashed lines represent the recording noise floors in the CAS- (black) and CAS+ (gray) 643 

conditions. Results were obtained for AM noise presented at 50 dB SPL. 644 

 645 

Fig. 8. Distribution of growth in contralateral inhibition with increasing elicitor intensity. Boxes 646 

encompass the middle 50% of the data. Thick horizontal lines within each box are the medians. 647 

The whiskers extend to the largest and smallest values not considered outliers. Crosses represent 648 

outliers. The gray horizontal line is used to visually separate positive from negative growth. 649 
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Footnotes 650 

1 Due to a programming error in the randomization sequence, the first two participants were 651 

inadvertently presented with the same order of contralateral noise conditions (elicitor × 652 

intensity). This error was subsequently corrected and did not affect the remaining participants. 653 
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Highlights 1 

• MOCR responded similarly to dynamic and static noise elicitors 2 

• MOCR enhanced rather than inhibited TEOAE amplitudes in minority of subjects 3 

• Median MOCR growth was 0.11 – 0.13 dB per 1 dB increase in MOCR elicitor intensity 4 


