
March 2008          UILU-ENG-08-2204 
         DC-234 
          
 
 
 
DELAYED STATE ESTIMATION IN 
DISCRETE EVENT SYSTEMS AND 
APPLICATIONS TO SECURITY 
PROBLEMS 
 
 
 
Anooshiravan Saboori and Christoforos N. Hadjicostis 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Coordinated Science Laboratory 
1308 West Main Street, Urbana, IL 61801 
University of Illinois at Urbana-Champaign 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/158324362?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


NSN 7540-01-280-5500  Standard Form 298 (Rev. 2-89) 
  Prescribed by ANSI Std. 239-18 
  298-102 

REPORT DOCUMENTATION PAGE    Form Approved 
   OMB NO. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, 
gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comment regarding this burden estimate or any other aspect of this 
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services.  Directorate for information Operations and Reports, 1215 Jefferson 
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. 

1.  AGENCY USE ONLY (Leave blank) 
 

2.  REPORT DATE 
March 2008 

3.  REPORT TYPE AND DATES COVERED 
 
 

 4.  TITLE AND SUBTITLE 
Delayed State Estimation in Discrete Event Systems and Applications to Security 
Problems 

5.  FUNDING NUMBERS 
NSF ECS 04-26831 
 
 
 
 

6.  AUTHOR(S) 
Anooshiravan Saboori and Christoforos N. Hadjicostis  

7.  PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Coordinated Science Laboratory 
University of Illinois at Urbana-Champaign 
1308 West Main Street 
Urbana, Illinois 61801-2307 

8.  PERFORMING RGANIZATION 
     REPORT NUMBER 
UILU-ENG-08-2204 
DC-234 
 
 

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
National Science Foundation 
4201 Wilson Blvd 
Arlington, VA 22203 
 

10.  SPONSORING/MONITORING 
       AGENCY REPORT NUMBER 
 
 
 
 

11.  SUPPLEMENTARY NOTES 
    The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official 
position, policy, or decision, unless so designated by other documentation 
 
 12a. DISTRIBUTION/AVAILABILITY STATEMENT 
 
 
Approved for public release; distribution unlimited. 
 
 

12b.  DISTRIBUTION CODE 
 
 
 
 
 
 13.  ABSTRACT (Maximum 200 words) 

Application of discrete event systems in modeling and analyzing security problems has given rise to applications that require keeping 
track of (part of the) sequence of states that have been visited so far. Specifically, the notion of opacity requires that the truth of a 
certain predicate on the system state cannot be determined by an outside observer for the duration of a certain time window (or even at 
all times). Depending on the notion of opacity that is used, this predicate can be defined for states visited in the past (with no bound on 
how far into the past) or for states which have been visited a fixed number of observations in the past. In this report, motivated by such 
questions we introduce the problem of delayed estimation in discrete event systems modeled as a finite automaton with a finite 
number of states, unknown initial state, and partial event observation (but no state observation). Specifically, we consider two 
estimation problems: (i) initial state estimation which requires the estimate of the initial state following a sequence of observations 
and, (ii) K- delayed state estimation which requires the estimate of the  state the system was in when it  generated  the Kth to last 
output (i.e., the state of the system K observations ago). To solve these two problems we construct appropriate state estimators and 
show that these delay state estimators can be used to verify opacity notions of interest. 
 
 
 
 
 
 
 
14.  SUBJECT TERMS 
Discrete Event Systems, State Estimation, Automata, Security 
 
 

15.  NUMBER OF PAGES 
 45 

16.  PRICE CODE 
 

17.  SECURITY CLASSIFICATION 
       OF REPORT 

UNCLASSIFIED 
 

18.  SECURITY CLASSIFICATION  
       OF THIS PAGE 

UNCLASSIFIED 

19.  SECURITY CLASSIFICATION 
       OF ABSTRACT 

UNCLASSIFIED 
 

20.  LIMITATION OF ABSTRACT 
 

UL 
 



Delayed State Estimation in Discrete Event Systems and

Applications to Security Problems∗

Anooshiravan Saboori and Christoforos N. Hadjicostis†

March 4, 2008

∗This material is based upon work supported in part by the National Science Foundation under NSF Career
Award No 0092696 and NSF ITR Award No 0426831. Any opinions, findings, and conclusions or recommendations
expressed in this publication are those of the authors and do not necessarily reflect the views of NSF.

†The authors are with the Coordinated Science Laboratory, and the Department of Electrical and Computer Engi-
neering, University of Illinois at Urbana-Champaign, IL 61801–2307, USA. Corresponding author: C. N. Hadjicostis,
357 CSL, 1308 West Main Street, Urbana, IL 61801–2307, USA (e-mail: chadjic@uiuc.edu).

1



1 Introduction

The problem of state estimation in discrete event systems (DES) along with its applications to

fault diagnosis and control, has attracted significant research interest over the last two decades

[1]–[8]. This problem consists of reconstructing all possible states that a known system can be in

based on possibly limited knowledge of its initial state and partial knowledge of the sequence of

events that occur in the system. The state estimation problem has found applications in diverse

areas, including stabilizing supervisory control [7],[9], fault diagnosis [3],[8], interface design [5],

and discrete event system inversion [10]. In what follows, we briefly describe the role that state

estimation plays in these applications.

In the state-based supervisory control problem, the control objective requires that the sequence

of states visited satisfies one of the following: (i) it follows a certain trajectory (tracking problem)

[11], or (ii) it visits certain states frequently often (stabilizability problem) [9], or (iii) it avoids

visiting certain states (state avoidance problem) [12]. In all cases, the control objective is achieved

by enabling/disabling controllable events at appropriate times; depending on the control objective,

these problems transforms to different observability conditions that commonly require that the

current state can be uniquely determined at all times [7] or perhaps at times separated by a

bounded number of transitions [13]. In fault diagnosis applications, diagnosability requires that

the evolution of states to the faulty states be detected with a bounded delay. It is assumed that

once the system reaches those faulty states, it never leaves them. Diagnosability is verified using a

diagnoser which is a discrete structure that essentially acts as an estimator of the possible current

states of the given system, making sure that the fault status of the estimated states is propagated

appropriately [3][8]. In interface design, the goal is to design the interface so as to provide enough

information to represent a true abstraction of the system without overwhelming a human operator

with unnecessary information. This requirement is translated to immediate observability which

requires that the current state of the system can be uniquely determined from the output associated

with the current state and the last or next event [5]. Finally, a discrete event system is invertible

with delay if it is possible to reconstruct (with some fixed delay K) the full event sequence given the

observation sequence [10]. The state estimate is used (along with the plant model) to reconstruct

2



the executed sequence of events. Also note that, the notion of observability with delay and the

notion of a state estimator with delay which are introduced in [10] are used along with invertibility

with delay to characterize a sufficient condition for resilient invertibility with delay, a notion that

requires invertibility with delay even when observations may be corrupted.

In order to achieve the desired goal in all of the above applications, an estimate of the current

state is sufficient and thus past information about the sequence of states visited so far is discarded.

Therefore, the state estimator structure used, resembles the structure in [6] which captures the

estimate of the current state of the system (in terms of our notation here the structure in [6] is

a zero-delay state estimator). More recently, the use of discrete event system in modeling and

analyzing security problems has given rise to applications that require keeping track of (part of

the) sequence of states that have been visited so far [14],[15]. Specifically, the notion of opacity

requires that the truth of a certain predicate on the system state cannot be determined by an

outside observer for the duration of a certain time window (or even at all times). Depending on the

notion of opacity that is used, this predicate can be defined for states visited in the past (with no

bound on how far into the past) or for states which have been visited a fixed number of observations

in the past. In either case, existing state estimation techniques cannot verify these properties since

they are tracking the current state but not the trajectory of the states. In this report, motivated

by questions that arise frequently in security and privacy applications, we introduce the problem of

delayed estimation and construct delay state estimators which are capable of capturing additional

information about state estimates and can be used to verify opacity notions of interest.

The basic state estimation setting we consider is the following: We are given a finite automaton

with a finite number of states, unknown initial state, and partial event observation (but no state

observation). For this type of DES, we consider two estimation problems: initial state estimation

and K-delayed estimation. The former requires the estimate of the initial state following a sequence

of observations whereas the latter requires the estimate of the state the system was in when it

generated the Kth to last output (i.e., the state of the system K observations ago). To solve these

two problems we construct appropriate state estimators. Specifically, we construct (i) an initial-

state estimator (that can be used to capture all the information that is relevant to initial state

estimation and is contained in any sequence of observations of finite but arbitrary length); (ii) a K-

3



delay state estimator (that can be shown to contain, after observing any sequence of observations,

the information that is necessary to deduce the state the system was in K observations ago). Note

that the K-delay state estimator and the initial-state estimator are not comparable since they aim

to capture different information.

Our work is related to the inverter with delay that was introduced in [10]. Assuming that the

system is invertible with delay, the inverter in [10] acts as an online algorithm which, at any time,

stores the K future observations (where K is the fixed delay in the definition of the invertibility

with delay) in order to later be able to distinguish the states at the current time (using back

propagation). The refined state estimate that is obtained is used along with the plant model to

reconstruct the executed sequence of events. In this report, we propose a finite state structure that

can capture estimates with delay for a future observation sequence of any length. In other words,

what we do here can be seen as an offline approach for refining the current state estimate using all

possible sequences of K future observations.

This report is organized as follows: Section 2 covers the preliminaries and background. In

Section 3 we define three notions of opacity and provide a motivational example for delayed state

estimation. Section 4 formally defines delayed estimation and initial-state estimation problems, and

introduces the K-delay state estimator and the initial-state estimator as respective solutions to these

problems; this section also studies the structural relation between these two state estimators. In

Section 5, we provide verification methods for different notions of opacity using state estimators;

we also derive sufficient conditions under which these definitions become equivalent. Section 6

concludes the report and provides some directions for future research.

2 Preliminaries and Notation

Let Σ be an alphabet of symbols (also called elements or events) and denote by Σ∗ the set of all

finite-length strings of elements of Σ, including the empty string ǫ (of length zero). A language

L ⊆ Σ∗ is a subset of finite-length strings from Σ∗. For a string ω, ω denotes the prefix-closure of

ω and is defined as ω̄ = {t ∈ Σ∗| ∃s ∈ Σ∗ : ts = ω}. The post-string ω/s of ω after s is defined as

ω/s = {t ∈ Σ∗| st = ω}. Similarly, the pre-string of ω before s is defined as ω\s = {t ∈ Σ∗| ts = ω}.

4



For any string t, |t| denotes the length of t [16, 17].

A DES is modeled in this report as a finite automaton G = (X,Σ, δ), where X = {0, 1, . . . , N−1}

is the set of states, Σ is the set of events, and δ : X×Σ → X is the (possibly partial) state transition

function.1 Note that in our model the initial state of the DES G is not known and is taken to be

X. The function δ can be extended from the domain X × Σ to the domain X × Σ∗ in a (routine)

recursive manner

δ(i, ǫ) := i, i ∈ X

δ(i, ts) := δ(δ(i, t), s) for s ∈ Σ∗ and t ∈ Σ

(Note that δ(i, s) for s ∈ Σ∗ is undefined if any of the transitions in the recursion is undefined.)

The behavior of DES G is captured by

L(G) := {s ∈ Σ∗ | ∃i ∈ X, δ(i, s) is defined}.

We use L(G, i) to denote the set of all traces that originate from state i of G (so that L(G) =

⋃N−1

i=0 L(G, i)).

We assume that only a subset Σobs of the events in Σ can be observed and adopt the common

assumption that Σ can be partitioned into two sets, Σobs and Σuo. The natural projection PΣobs
:

Σ∗ → Σ∗
obs can be used to map any trace executed in the system to the sequence of observations

(observable transitions) associated with it. This projection is defined recursively as PΣobs
(σs) =

PΣobs
(σ)PΣobs

(s), σ ∈ Σ, s ∈ Σ∗, with

PΣobs
(σ) =















σ if σ ∈ Σobs,

ǫ if σ ∈ Σuo ∪ {ǫ},

where ǫ represents the empty string [16, 17]. In the sequel, the index Σobs in PΣobs
will be dropped

when it is clear from context.

1If the transition function is defined as δ : X × Σ → 2X (where 2X is the power set of X), then the DES is
nondeterministic.

5



Upon observing some string (sequence of observations) s, the state of the system might not

be identifiable uniquely due to the lack of knowledge of the initial state and the partial event

observation. We denote the set of states that the system might reside in given that s was observed as

the (current) state estimate. The zero-delay state estimator is an automaton G0,obs which captures

these estimates and can be constructed as follows [6]: each state of this automaton is associated

with a unique subset of states of the original DES G (so that there are at most 2|X| = 2N states).

The initial state X0 of G0,obs is X taken to be representing the fact that nothing is assumed about

the initial state (i.e., the initial state could be any state). At any state Z of the state estimator

(Z ⊆ X), the next state upon observing an event σ ∈ Σobs is the unique state of G0,obs associated

with the set of states that can be reached from the states in Z with a string of events that generates

the observation s. We denote this automaton by G0,obs = AC(2X ,Σobs, δobs,X0) where 2X (power

set of X) is the state set, Σobs is the set of observable events, δobs is the transition operator, X0

denotes the initial state (taken to be X0 ≡ X) and, AC denotes the part of the automaton that

is accessible from initial state X0. We also define Xobs ⊆ 2X to be the reachable states from X0

under δobs so that AC(2X ,Σobs, δobs,X0) = (Xobs,Σobs, δobs,X0). The following example clarifies

this construction.

Example 1. Consider the DES G in Figure 1-a. Assuming that Σobs = {α, β}, then the zero-delay

state estimator G0,obs is constructed as follows. The initial state is X0 = X. Next, starting from

the initial state X0 and observing α, the current state is any of the states in {2, 3, 4}; at this new

state, the set of possible transitions is the union of all possible transitions for each of the states in

{2, 3, 4}. Note that if instead of α, we observe β from the initial state X0, the set of possible states

is {1, 4}. Following this procedure, G0,obs can be constructed as in Figure 1-b. Clearly, Xobs in this

case is {{4}, {1, 4}, {2, 4}, {2, 3, 4}, {0, 1, 2, 3, 4}}.

Any m ∈ 2X2
is a subset of 2X2

and contains some pairs of states. In this report, m will be

viewed as a state mapping consisting of a starting state and an ending state. The set of states

included as the first (second) component in these pairs is called the set of starting (ending) states

of m. We denote the set of starting states for state mapping m by m(1) and the set of ending states

by m(0). Since we use the notion of state mapping frequently in this report, we provide some

6



4 β

0

2 3

1

β

β αβ

δuo α

X

(a)
α

(b)

α, β

{4}{2, 4}

{2, 3, 4}

α α

{1, 4}

α

α

β

Figure 1: (a) G; (b) G0,obs.

definitions related to it. We say that state mapping m1 refines m2 if the set of starting states of

m1 is a subset of the set of starting states of m2. Moreover, if mapping m1 refines m2 and mapping

m2 refines m1, then we say that mapping m1 is consistent with m2. We also define the composition

operator ◦ : 2X2
× 2X2

→ 2X2
for state mappings m1,m2 ∈ 2X2

as

m1 ◦ m2 := {(i1, i3)|∃i2 ∈ X, (i1, i2) ∈ m1, (i2, i3) ∈ m2}.

The composition operator takes as inputs two sets of 2-tuples and produces as output another set

of 2-tuples by including all 2-tuples with the first element borrowed from a 2-tuple in the first input

set and the second element borrowed from a 2-tuple in the second set, as long as these two 2-tuples

share the same remaining (second/first) element. Note that this operator is only defined for tuples

of size two.

We can map any observation of finite but arbitrary length in DES G to a state mapping by

using the mapping M : Σ∗
obs → 2X2

defined as

M(s) = {(i, j)|i, j ∈ X,∃t ∈ Σ∗, P (t) = s, δ(i, t) = j},

which we call the s-induced state mapping. If (i, j) ∈ M(s), then there exists a sequence of events

that starts from state i and ends in state j, and produces observation s. We also define the binary

relation R on Σ∗
obs × Σ∗

obs as sRt if and only if M(s) = M(t). Clearly R is an equivalence relation

and, thus, induces a partition on Σ∗
obs. The number of equivalence classes induced by R is at

most 2N2
where N denotes the number of states. Finally, for any Z ⊆ X, we define the operator

7



⊙ : 2X → 2X2
to represent Z ⊙ Z := {(i, i)|i ∈ Z}.

Given a finite automaton G = (X,Σ, δ), we define XK (K ≥ 2) as the set of K-tuples of states

of DES G, i.e.

XK : = X × X × . . . × X

= {(i1, . . . , iK)|ik ∈ X, 1 ≤ k ≤ K}

and

X∗ :=

∞
⋃

k=2

Xk.

A trellis is a graph whose nodes are ordered into vertical slices and each node at each time is

connected to (at least) one node at an earlier time and (at least) one node at a later time. Any

m ∈ 2XK

can be graphically represented by a trellis graph, hence we call m a trellis mapping of

length K. Note that a state mapping is a special case of trellis mapping for K = 2. As in the

case of state mappings, we can define the set of starting and ending states for a trellis mapping

m ∈ 2XK

. To keep the notation consistent with our earlier definition of state mappings, we use

m(K − 1) to denote the set of starting states and m(0) to denote the set of ending states. We also

denote by m(k), 1 < k < K − 1, the set of intermediate states in the K-tuple. The definitions of

refinement and consistency can be carried on in a manner similar to the manner used in the case

of state mappings. We define the shift operator ‖ : 2X∗
× 2X2

→ 2X∗
for trellis mapping m1 ∈ 2X∗

and m2 ∈ 2X2
as

m1‖m2 := {(i2, . . . , iK , iK+1)|∃i1 ∈ X, (i1, i2, . . . , iK) ∈ m1, (iK , iK+1) ∈ m2}.

Note that the shift operator takes as input two sets of tuples, the first set involves K-tuples

K ≥ 2, and the second involves tuples of size two; for each K-tuple of the first set, all 2-tuples

in the second set whose first element is the same as the last element of the K-tuple from the first

set are used to produce the output K-tuple by using: the 2nd, 3rd, . . ., Kth elements of the first

K-tuple and the second element of the second 2-tuple to create a new K-tuple as an output.

Generalizing the notion of the s-induced state-mapping, we map an observation s in DES G to

8



a trellis mapping via the mapping TK : Σ∗
obs → 2XK+1

TK(s) = {(i0, i1, . . . , iK)|(0 ≤ k ≤ K, 0 ≤ l ≤ K − 1) : ik ∈ X, tl ∈ Σ∗,

P (t0t1 . . . tK−1) = s, δ(il, tl) = il+1}, (1)

which we call the s-induced trellis mapping. Finally, for any Z ⊆ X and K ≥ 2, we define the

operator ⊙K : 2X → 2X(K+1)
product to represent Z ⊙K Z = {(i, i, . . . , i)|i ∈ Z} where the tuples

involve K +1 identical elements. The following example illustrates the concepts of state and trellis

mappings.

Example 2. In this example, we consider the DES G represented in Figure 1-a with Σobs = {α, β}

and X = {0, 1, 2, 3, 4}. First we construct the α-induced state mapping, i.e., M(α). Observe

that α can be observed only from states 0, 2 and 4; moreover, if the initial state was 0, the

current state can be any of the states in {2, 3} but if the initial state was 2, the current state

could only be {2}; similarly, if the initial state was 4, the current state would be 4. Hence

M(α) = {(0, 2), (0, 3), (2, 2), (4, 4)}. Following the same reasoning as in the case of M(α), we have

M(β) = {(0, 1), (1, 4), (3, 4)}. We can compose these two state mappings as

M(α) ◦ M(β) = {(0, 2), (0, 3), (2, 2), (4, 4)} ◦ {(0, 1), (1, 4), (3, 4)}

= {(0, 4)}. (2)

Next we consider the notion of induced trellis mapping. Upon observing α, the (3-tuple) induced

trellis mapping T2(α) becomes {(0, 0, 2), (0, 0, 3), (2, 2, 2), (4, 4, 4)} following the same approach

as in the state mapping case. We can shift T2(α) with the state mapping induced by β, i.e.,

{(0, 1), (1, 4), (3, 4)} to obtain another 3-tuple as T2(α)‖M(β) = {(0, 3, 4)}. �

3 Motivation

The exchange of vital information over shared cyber-infrastructures in many application areas

(ranging from defense and banking to health care and power distribution systems) has led to con-

9



cerns about the vulnerability of such systems to intruders and other malicious entities. As a result,

various notions of security have received considerable attention from researchers and work pursued

so far can be roughly classified into two main categories: the first approach focuses on carefully

characterizing the intruder’s capabilities whereas the second one focuses on the information flow

from the system to the intruder [18],[19]. Opacity is a security notion that falls in the second cate-

gory and aims to determine whether a given system’s secret behavior (i.e., a subset of the behavior

of the system that is considered critical and is usually represented by a predicate) is kept opaque

to outsiders [14]. More specifically, this requires that an intruder (modeled as an observer of the

system’s behavior) is never able to establish the truth of the predicate.

In this section, we define opacity with respect to predicates that are state-based. More specif-

ically, assuming that the system under consideration can be modeled as a finite automaton with

partial observation on its transitions, we define the secret behavior of the system as the evolution of

the system’s state to a set of secret states. The intruder’s ability to observe system activity is mod-

eled through a fixed (static) projection map and, as a result, (delayed) state estimation becomes

a crucial aspect for verifying these type of security/privacy properties. We first introduce these

different state-based notions of opacity in Section 3.1,3.2 and 3.3; and then discuss their practical

relevance in an example in Section 3.4.

3.1 Initial-State Opacity

The first notion of opacity considered in this section is initial-state opacity. In certain applications,

such as encryption, some vital initial iteration information (e.g., the key used for encryption) should

be kept secret from an outside observer for the whole length of the observation. We call this property

initial-state opacity and we define it formally as follows.

Definition 1 (Initial-State Opacity). Given a finite automaton G = (X,Σ, δ), a projection map P

with respect to the set of observable events Σobs, and a set of secret states S ⊆ X, automaton G is

initial-state opaque with respect to S and P (or (S,P,∞) initial-state opaque), if

∀i ∈ S,∀t ∈ L(G, i) : ∃j ∈ X − S,∃s ∈ L(G, j), P (s) = P (t).

10



S k

i′

t′′t′

t = t′t′′

s′
s′′

s = s′s′′

j

i

k′

j′

Figure 2: Graphical representation of the notation used in Definition 2 and in the proof of Theorem
4 (|P (t′′)| = |P (s′′)| ≤ K).

According to Definition 1, the system G is (S,P,∞) initial-state opaque if for every string t that

originates from a state in the secret set S there exists a string s that originates from a state outside

S and has the same projection as t. In other words, initial-state opacity requires that regardless of

the string that might be generated by the system (and which will result to a corresponding sequence

of observations) no information about the membership of the initial state of the system to the set

of secret states S can be inferred.

3.2 K-Step Opacity

The next notion of opacity we consider is K-step opacity [15]. This notion is suitable for cases when,

following a minimum of K observations, an outside observer is allowed to infer information about

the set of secret states (because the secret transaction has completed or because the intrusion will

be detected or because of other reasons). The following definition defines K-step opacity formally.

Please refer to Figure 2 for a graphical presentation of the definition.

Definition 2 (K-Step Opacity). Given a finite automaton G = (X,Σ, δ), a projection map P with

respect to the set of observable events Σobs, and a set of secret states S ⊆ X, DES G is K-step

opaque (for some K ≥ 0) with respect to S and P (or (S,P,K)-opaque), if for all t ∈ Σ∗, t′ ∈ t̄,

and i ∈ X,

δ(i, t′) ∈ S, δ(i, t) is defined, |P (t)/P (t′)| ≤ K ⇒ ∃s ∈ Σ∗,∃s′ ∈ s̄,∃i′ ∈ X,P (s) = P (t),

P (s′) = P (t′), δ(i′, s′) /∈ S, δ(i′, s) is defined.

11



According to Definition 2, DES G is (S,P,K)-opaque if for every string t in L(G) that passes

through S within the past K observations, there exists a string s in L(G) with P (s) = P (t) such

that when string t passes through S, string s does not. K-step opacity requires opacity for only K

observations since the last entrance of the system to the set of secret states S.

3.3 Infinite-Step Opacity

Note that (S,P,K)-opacity requires opacity for only K observations since the last entrance of the

system to the set of secret states. This notion is suitable for cases where there is a bounded delay,

after which one does not care if the outside observer can infer information about the behavior that

was considered previously secret. However, in many applications the existence of such bound might

not be true. For this reason, we extend the definition of (S,P,K)-opacity to cases where K → ∞.

In other words, we require that the opacity of membership of states to the set of secret states

remains valid for the whole length of the observation. Below, we first define infinite-step opacity

formally.

Definition 3 (Infinite-Step Opacity). Given a finite automaton G = (X,Σ, δ), a projection map

P with respect to the set of observable events Σobs, and a set of secret states S ⊆ X, DES G is

infinite-step opaque with respect to S and P (or (S,P,∞)-opaque), if all t ∈ Σ∗, t′ ∈ t̄, and i ∈ X,

δ(i, t′) ∈ S, δ(i, t) is defined ⇒ ∃s ∈ Σ∗,∃s′ ∈ s̄,∃i′ ∈ X,

P (s) = P (t), P (s′) = P (t′), δ(i′, s′) /∈ S, δ(i′, s) is defined.

According to Definition 3, DES G is (S,P,∞)-opaque if for every string t in L(G) that passes

through S, there exists a string s in L(G) with P (s) = P (t) such that when string t passes through

S, string s does not. In other words, infinite-step opacity requires that no string that can potentially

be generated by the system can provide explicit information regarding the entrance of the system

to the set of secret states at any point in time.

12



1 1 10 0 0 01

Least Significant Bit

Figure 3: A conventional 8-bit LFSR with tapped bits 0,1,7 and seed (initial state) 10010011.

3.4 Motivational Example

The aforementioned state-based notions of opacity have been shown to be useful in modeling se-

curity properties in encryption, communication and secure protocols [14]. The following is a moti-

vating example from the area of secure protocols for all of the above notions of opacity.

Example 3. In cryptography, a symmetric cipher combines plain text (original information) bits

with a pseudo-random bit stream (key-stream), typically using an XOR operation. For example,

message 1010 XOR-ed with key-stream 0100 results in the encrypted message 1110. Knowledge

of the encrypted message does not reveal the plain text unless the key-stream is compromised. To

create the key-stream, one often uses a linear feedback shift register (LFSR) as a pseudo-random

number generator (Figure 3). An LFSR is an autonomous shift register whose input (leftmost or

most significant) bit is obtained by XOR-ing some predefined combination of the bits that are stored

in the shift register. This implies that the input bit is a linear function of the LFSR’s previous

state. The initial state of the LFSR is called the seed, and the list of the bit positions that affect

the next state is called the tap sequence. The taps are XOR-ed sequentially and then fed back into

the register as the leftmost bit. Figure 3 shows an 8-bit LFSR with tapped bits 0,1,7, and seed

10010011. Because the operation of the register is deterministic, the sequence of values produced

by the register (which is used as the key-stream for the stream cipher) is completely determined by

its seed. For example, assuming that the seed (initial state) of the LFSR in Figure 3 is 10010011,

then the next output is 1 (i.e., the rightmost bit shifted out) and the next state of the LFSR becomes

01001001 (because the incoming leftmost bit is given by 1 ⊕ 0 ⊕ 1 = 0 and the rest of the bits are

the leftmost seven bits of 10010011 with the rightmost bit shifted out). Note that the register has a

finite number of possible states (28 states), so it must eventually enter a repeating cycle. An LFSR

13



with a well-chosen feedback function (taps) and initial state2 can have a very long cycle and can

produce a sequence of bits which appears random. Alternative structures to the conventional LFSR

do exist (see, for example, the idea of a clock mechanism in [20]).

A5/1 is a stream cypher that is used to encrypt messages in GSM mobile phone systems. It

is generated by a combination of three LFSRs with clocking mechanisms that was kept secret by

GSM companies for a long time. Anderson [21] first identified and published the general structure

of A5/1 and later, Briceno et. al. [22] reversed-engineered this protocol.

An intruder/observer can interact with this protocol by inserting some plain text and observing

the ciphered text in order to find the seed. Note that finding the seed is equivalent to finding the

stream of the keys that were used to encrypt all previous messages. Hence, if the intruder records all

of the (encrypted) conversation, after finding the seed, he/she can go back and decrypt them using

the key-stream. Clearly, many of the security concerns about this protocol can be recast in terms

of the opacity notions considered in this report: is there a seed for which there exists a sequence of

inputs that reveals that seed? We can obtain the answer to this question by formulating the problem

as an initial-state opacity problem. Note that if there is such a seed, one might be interested in how

long (in terms of input size) does it take for the intruder to detect it. An answer to this question can

be obtained in terms of a problem formulation that involves K-step opacity (see [15]). Similarly,

if there exists a sequence of inputs that reveals the state of the key-stream generator at some point

in time (but not necessarily the initial state) then communication after this point in time can be

compromised. An answer to this latter question can be obtained via the infinite-step opacity problem

formulation. �

3.5 Use of Delay State Estimators in Verifying Opacity Properties

The two state estimators that we construct in Section 4 of this report can be used for verifying

different notions of opacity. In Section 5, we show that K-step opacity (initial-state opacity) for a

discrete event system can be verified using an appropriately constructed K-delay state estimator

(initial-state estimator). For infinite-step opacity, we provide a verification method which involves a

combination of initial state and zero-delay state estimators. We also study the relationship between

2Clearly, initial state 00000000 would not be a good choice in this example regardless of the choice for tapped bits.

14



these notions of opacity and show that infinite-step opacity (not surprisingly) implies initial-state

opacity and K-step opacity. We also show (perhaps surprisingly) that there is a finite bound K∗

such that, for K > K∗, K-step opacity and infinite-step opacity are equivalent. We show this by

using our state estimator structure to prove that the information contained in the K-delay state

estimator about states visited K observations into the past is the same as that of K ′-delay state

estimator for K ′ > K ≥ K∗.

3.6 Related Work

There already exists some work on security in DES [23], [24], [25], and our work in this report is

certainly related to it. In particular, the authors of [23] consider finite state Petri nets and define

infinite-step opacity with respect to state-based predicates. Following a language-based approach,

the authors of [24] consider multiple observers with different observation capabilities (modeled

through different observable transitions); opacity in this setting requires that no observer is able

to determine whether the actual trajectory of the system belongs to the secret language that is

assigned to it. In both [23] and [24], for opacity to hold, the projection of secret trajectories needs to

be verified to be a subset of the projection of the remaining trajectories in the system. The authors

of [25] partition the event set into high level and low level events and consider the verification

problem of intransitive interference which captures the allowed information flow (e.g., occurrence

of certain events) from the high level events to the low level events through a downgrading process.

Our work in this report essentially extends the notion of opacity defined in [23] for Petri nets to

automata and also introduces the related notion of K-step opacity. Note that, in contrast to [24],

opacity in our framework assumes that the states of the system can be partitioned into secret and

non-secret ones; this state-based formulation is what enables us to use a state estimator to verify

opacity. Our model of the intruder’s capability (in terms of observability power) is different from

[25] which makes the two frameworks hard to compare.

15



4 Delayed Estimation

As mentioned earlier, the system under consideration is a finite automaton with (partial) event

observation and unknown initial state. In delayed estimation, we are interested in estimating the

state of the system with a fixed delay (measured in terms of observation steps). More specifically,

after observing a sequence of n labels, we are interested at the state of the system K labels ago;

this is equivalent to the state of the system after observing n − K labels refined by the knowledge

of the K labels that followed.

Definition 4. Given a finite automaton G = (X,Σ, δ) and a projection map P with respect to

the set of observable events Σobs, assume that the string s = α0 . . . αn is observed. Define the

(true) system’s state trajectory as the sequences of states that the system visits while generating

observation s. We denote this trajectory by

x0, . . . , xm,

where m ≥ n implies that there might be some state transitions due to unobservable events and hence

the number of states visited might be more than the number of observations. In (zero-delay) state

estimation, we are interested in obtaining all the possible system’s states along with the observation

of s. We denote the sequence of the state estimates by

X̃0, . . . , X̃|s|,

where X̃t is the set of states that system could be in after observing α0 . . . αt−1 with X̃0 = X.

In delayed estimation, we are interested in refining state estimates with post observations. De-

note the sequence of delayed estimates of the system’s initial state along the observation by

X̂0(ǫ), X̂0(α0), X̂0(α0α1), . . . , X̂0(s)

with X̂0(ǫ) = X̃0 = X. Here, X̂0(α0 . . . αt−1) is the set of states in X̃0 from which α0 . . . αt−1 can

16



be observed. Similarly, we use

X̂t(α0α1 . . . αt−1), X̂t(α0α1 . . . αt−1αt), . . . , X̂t(s)

with X̂t(α0α1 . . . αt−1) = X̃t to denote the sequence of delayed estimates of the state of the system

after observation αt, starting as soon as α0α1 . . . αt−1 is observed and continuing along the obser-

vation. In other words, X̂t(α0 . . . αt′−1) for t′ > t is the set of states in X̃t from which αt . . . αt′−1

can be observed. Finally, we can denote the sequence of delayed estimates of the system’s state

when s was observed by

X̂|s|(s),

which satisfies X̂|s|(s) = X̃|s|. Using these definitions, we can denote the estimate of the system’s

state trajectory by

X̂0(s) . . . X̂|s|(s).

Note that the system’s true state is always among the state estimates; also we necessarily have

X̂i(s) ⊆ X̃i, i = 1, . . . , |s|, i.e., X̂i(s) is essentially a refinement of X̃i that takes the post observations

into consideration. Also, since X̃s does not vary with its post observations, we have omitted the

argument s. The following example clarifies these definitions.

Example 4. Consider DES G in Figure 4 with Σobs = {α, β, θ}. Here G is a finite automaton

with initial state 0 and true state trajectory 0,1,0,2 (shown with a solid line in Figure 4-b) which

generates the observation sequence αβθ. We assume that the observer does not have any prior

information about the system true initial state (which was taken to be 0).

Next we construct the sequence of the state estimates and the estimate of the system’s state

trajectory. Before any observation occurs, the state estimates and the estimate of the system’s state

trajectory is X, i.e.,

X̂0(ǫ) = X̃0 = X.

Upon the first observation, α, this state estimate is updated as follows:

X̂1(α) = X̃1 = {0, 1, 2}.

17



0 1

1

1

2

0

1

2

0

1

2

0

1

2

2

3

3

(c)

α

0

(a)

θ
α, β

α, β

β

α

0

α

α

0

1

2

β

β

2

0

2

0

θ

θ

s

(b)

2

α

1

3 θ

β

δuob

β 3 2
δuob θ

3 3 3

Figure 4: Constructions discussed in Example 4: (a) Automaton G modeling the system with
Σobs = {α, β, θ}; (b) System’s state evolution (solid line) and sequences of states with identical
observation sequence (dashed lines); (c) Trellis graph corresponding to observation αβθ.

The explanation is straightforward: all states but state 3 in the system can be reached with this

observation. Note that this observation does not change X̂0(ǫ), since α can originate from all of

the states {0, 1, 2, 3}. Hence X̂0(α) = X̂0(ǫ).

Next consider what happens after observing β. Following a similar discussion as above, one can

justify the following

X̂2(αβ) = X̃2 = X.

However, β can only be observed from states 0 and 1. Therefore, we need to update X̂1(α) according

to this observation as

X̂1(αβ) = {0, 1}.

This update should be propagated back to update the initial state estimate as

X̂0(αβ) = {0, 1}.

18



Following a similar discussion, one can verify that upon observing αβθ, the estimate of the system’s

state trajectory X̂0(αβθ), . . . , X̂3(αβθ) is {0, 1}, {0, 1}, {0, 2, 3}, {0, 2}, and the sequence of the state

estimates X̃0, . . . , X̃3 is X, {0, 1, 2},X, {0, 2}. A trellis graph that captures this information is shown

in Figure 4-c. �

4.1 Initial State Estimation

Following this notation, we define the problem of initial state estimation as the problem of finding

X̂0(s) for any observation s.

Definition 5 (Initial-State Estimate). Given a finite automaton G = (X,Σ, δ) and a projection

map P with respect to the set of observable events Σobs, the initial state estimate after observing

string s is defined as

X̂0(s) = {i|i ∈ X,∃t ∈ Σ∗, P (t) = s, δ(i, t) is defined}.

The initial state estimation problem requires the initial state estimate after any sequence of

observations (in other words, estimation of all states from which the sequence of observations could

have been initiated). As Example 4 demonstrates, the first method that comes to mind is to use

the sequence of observations to back-propagate the trajectory, and hence to estimate the initial

state. Though straightforward, this method requires all of the observations to be sorted which

is not feasible since the system might generate a sequence of arbitrary length (e.g., in an online

application of this problem). Therefore, we need to find a way to map all possible sequences of

observations to a set with finite elements so that we can store them with finite memory; clearly,

the mapped elements need to contain the same amount of information regarding the initial state of

the system as the original sequence of observations. Equivalently, we need to find a finite structure

that allows us to process (perhaps online) information about the initial state as observations are

coming in.

Next we introduce an algorithm which generates the initial-state estimator G∞,obs using state

mappings as its states. This state estimator starts from a state in which nothing about the system’s

initial state is known (namely, the state mapping associated with the initial state is X0 ⊙X0 where

19



X0 is the set of initial states of the system — taken to be X0 = X in our case). When the first

observation is made, the induced state mapping corresponding to that observation is taken as the

next state of the state estimator. After that, any observation causes G∞,obs to transition to a state

mapping which can be considered as the composition of the previous state mapping (associated

with the state of G∞,obs) and the mapping induced by the new observation. The information

captured by this composed state mapping (and thus by each state of G∞,obs) is the following: we

know all pairs of one starting and one ending state such that we can reach the ending state from

the starting state via a sequence of events that generated the observed sequence of events. This

is all the information we need to keep as more labels are observed: at any given time, the state

mapping gives all necessary information about the current state and the initial state estimates

(and the connections between them) through its pairs of starting and ending states. Note that this

structure is guaranteed to be finite and has at most 2N2
states where N is the number of states of

the discrete event system G.

The initial-state estimator, when considered as a finite state machine, summarizes the effect

of the sequence of observations on the estimate of the initial state. This summary, along with

a summary of the effect of the observations on the estimate of current state and possible paths

between initial and current state estimates, is independent of the observation length; hence multiple

observations might be mapped to the same state in the initial-state estimator, demonstrating the

fact that they contain the same information regarding the initial-current state estimates and paths

between them. This emphasizes the importance of state mapping, as a tool for compressing the

information necessary and performing initial state estimation using finite memory. In other words,

we can think of the state mappings as a way to partition the set of all observations, of arbitrary but

finite length, into a finite number of equivalence classes. Two strings belong to the same equivalence

class if they induce the same state mapping. The following algorithm describes this construction

formally.

Definition 6 (Initial State Estimator (ISE)). Given a finite automaton G = (X,Σ, δ) and a

projection map P with respect to the set of observable events Σobs, we define the initial-state esti-

mator as the deterministic automaton G∞,obs = AC(2X×X ,Σobs, δ∞,obs,X∞,0) with state set 2X×X

20



(power set of X × X), event set Σobs, initial state X∞,0 = X ⊙ X, and state transition function

δ∞,obs : 2X×X × Σobs → 2X×X defined for α ∈ Σobs as

m′ = δ∞,obs(m,α) := m ◦ M(α),

where m,m′ ∈ 2X×X . Recall that M(α) denotes the state mapping that is induced by observing

α at the beginning of the observation. Also, δ∞,obs can be extended to include strings in the usual

manner. If we let X∞,obs ⊆ 2X×X be the reachable states from the initial state X∞,0 under δ∞,obs,

then G∞,obs = (X∞,obs,Σobs, δ∞,obs,X∞,0).

Note that G∞,obs is a deterministic structure with initial state X ⊙X. In the following Lemma,

we show that the starting and ending states associated with a state of the state estimator G∞,obs

that is reached via a string s are respectively the set of states from which the observation s could

have taken place and the set of states that can be reached from such initial states.

Theorem 1. If state m in G∞,obs (as constructed in Definition 6) is reachable from initial state

X∞,0 = X ⊙ X via string s, then m is associated with a state mapping that satisfies

m = {(i, j)|i, j ∈ X,∃t ∈ Σ∗, P (t) = s, δ(i, t) = j}.

Proof. Assume s = α0 . . . αn and denote the sequence of states visited in G∞,obs via s by m0, . . . ,mn+1.

We prove the result by induction: for s = α0, the statement is true by construction. Now assuming

that the lemma holds for s = α0α1 . . . αn−1, we prove it for s = α0 . . . αn. Recall that mn+1 is a

state in G∞,obs reachable from the initial state with string s (in the Lemma state mn+1 is denoted

21



by m). By construction, we have

mn+1 = mn ◦ M(αn)

= {(i, k)|∃j ∈ X, (i, j) ∈ mn, (j, k) ∈ M(αn)} (definition of ◦ operator)

= {(i, k)|∃j ∈ X, i, k ∈ X,∃tn ∈ Σ∗, P (tn−1) = α0α1 . . . αn−1, δ(i, t
n−1) = j,

∃(j, k) ∈ M(α)} (induction hypothesis)

= {(i, k)|∃j ∈ X, i, k ∈ X,∃tn ∈ Σ∗, P (tn−1) = α0α1 . . . αn−1, δ(i, t
n−1) = j,

∃tn ∈ L(G), P (tn) = αn, δ(j, tn) = k} (definition of M(α))

= {(i, k)|i, k ∈ X,∃tn ∈ Σ∗, P (tn) = α0α1 . . . αn, δ(i, tn) = k}.

Note that in the last line, we use tn = tn−1tn. If we rename k to j, tn to t, and replace α0α1 . . . αn

with s; the proof is completed.

Next we prove that the starting states in the state mapping associated with any state of G∞,obs

are the estimates of the initial state according to Definition 5.

Corollary 1. The initial state estimate after observing s, X̂0(s), can be captured using the ISE as

follows: suppose δ∞,obs(X∞,0, s) = m, then

X̂0(s) = m(1).

Proof. By Theorem 1, m = δ∞,obs(X∞,0, s) = {(i, j)|i, j ∈ X,∃t ∈ Σ∗, P (t) = s, δ(i, t) = j}.

Therefore,

m(1) = {i|(i, j) ∈ m}

= {i|i ∈ X,∃j ∈ X,∃t ∈ Σ∗, P (t) = s, δ(i, t) = j}

= {i|i ∈ X,∃t ∈ Σ∗, P (t) = s, δ(i, t) is defined}

= X̂0(s),

which completes the proof.

22



The following example clarifies the ISE construction.

Example 5. In this example, we consider the DES G represented in Figure 1-a with Σobs = {α, β}.

On the left of Figure 5, we show the initial-state estimator for this system. As mentioned earlier,

the initial uncertainty about the initial state is assumed to be equal to the state space and hence

m0 = X ⊙ X. Upon observing α (and following the notation of Definition 6), the next state of the

ISE becomes

m′ = δ∞(m0, α)

= m0 ◦ M(α)

= {(0, 0), (1, 1), (2, 2), (3, 3), (4, 4)} ◦ {(0, 2), (0, 3), (2, 2), (4, 4)}

= {(0, 2), (0, 3), (2, 2), (4, 4)}

= M(α)

≡ m1.

Example 2 explains how M(α) is synthesized. Note that on the right of Figure 5 we use a graphical

way to describe the pairs associated with the ISE. Next, assume that we observe β which (following

the same reasoning as in the case of M(α)) results in M(β) = {(1, 0), (1, 1), (1, 2), (3, 1), (3, 3)}.

Based on the notation in Definition 6, we have

m′ = δ∞(m1, β)

= m1 ◦ M(β)

= {(0, 2), (0, 3), (2, 2), (4, 4)} ◦ {(0, 1), (1, 4), (3, 4)}

= {(0, 4)}

≡ m4.

Using this approach for all possible observations (from each state), the ISE construction could be

completed as shown in Figure 5. �

Remark 1. In the above discussions, it is assumed that the initial uncertainty about the initial

23



4

1

2

3

1

2

3

4

0

4

0

1

2

3

1

2

3

4

0

0

1

2

3

1

2

3

4

0

4

0

1

2

3

1

2

3

4

00

1

2

3

1

2

3

4

0

0

1

2

3

1

2

3

4

0

m3

m1

m0

m2

m5

α, βα, β

αβα

m4

α, β

α β

β

m0 m1 m2

m3

4

m5

4

m4

4

0

Figure 5: Initial-state estimator in Example 5.

state equals to the state space X (i.e., X̂0(ǫ) = X). If this uncertainty can be reduced to a subset of

the state space (i.e., X̂0(ǫ) = X0 ⊂ X), then we can easily modify the ISE construction to account

for this extra information by changing the initial state to

X∞,0 = X0 ⊙ X0.

Remark 2. Note that all estimates of the initial state that are associated with a state (state

mapping) m′ that is reachable from a given state (state mapping) m in G∞,obs are refinements of

the estimates of the initial state associated with m. In other words, the initial state estimate, if

changed, can only get more accurate; this is a straightforward conclusion of the definition of the

initial state estimate and implies that observations that result in a traversal of a cycle in G∞,obs do

not yield extra information about the initial state. In other words, consider a cycle m1

α1−→ m2

α2−→

. . .
αn−−→ mn

αn+1
−−−→ m1 in G∞,obs (constructed as in Algorithm 1). Also suppose that m1 in the

aforementioned cycle is reached via ω in G∞,obs, i.e., δ∞,obs(X∞,0, ω) = m1. Then m1,m2, . . . ,mn

are consistent (refer to Section 2 for definition). Moreover observing ω, ωα1 . . . αn+1 (or, in general,

ω(α1 . . . αn+1)
∗) yields the same information about initial state. This implies that one only needs

to store s and to discard the other observations without loosing any information about the initial

state. The use of state mappings is a way to systematically accomplish such reductions and hence

provides us with a practical way to summarize observations (using finite storage).

24



Remark 3. In G∞,obs there are cycles of states such that, once reached, there are no traces outside

this cycle. We denote the states in these cycles as ergodic states. Ergodic states in ISE are associated

with possible estimate about initial state that cannot be further refined. For example, the self-loop

at state m4 in Figure 5 denotes one such cycle (consisting of a single state). Note that if a sequence

of observations reaches an ergodic state in ISE, the estimate of the initial state cannot be improved

with future observations. For example, if we reach state m4 via ββ(α+β)∗ (or αβ(α+β)∗) there is

no reason to wait for more observations. Note that in an automaton with n states, if we consider all

strings of length n, at least one is guaranteed to reach an ergodic state. Also, since the ISE has at

most 2N2
states, we can argue that the set of all strings of length smaller or equal to 2N2

− 1 reveal

the same information about the initial state as any other set with length K ′ > K (we elaborate on

this when we discuss K-delayed estimation).

4.2 K-Delayed Estimation

In the initial state estimation problem, we are interested in finding an estimate of the initial state

which can be considered as the state estimate of a fixed point in the system’s state trajectory.

Another version of delayed estimation is to find an estimate of states of the system with a fixed

delay with respect to the current observation. We denote this problem as K-delayed estimation

[15]. Using our earlier notation, given observation s = α0α1 . . . αn, n ≥ k, we are interested in

finding X̂|s|−K(s), which is called the K-delayed state estimate in [15]. The following definition

describes this estimate formally.

Definition 7 (K-Delayed State Estimate). Given a finite automaton G = (X,Σ, δ) and a projection

map P with respect to the set of observable events Σobs, the K-delayed state estimate after observing

string s = α0α1 . . . αn (n ≥ K) is defined as

X̂|s|−K(s) :=
{

i|i ∈ X,∃s′, s′′ ∈ Σ∗,∃j ∈ X : δ(j, s′) = i, δ(i, s′′) is defined, P (s′) = α0α1 . . . αn−K ,

P (s′′) = αn−K+1 . . . αn

}

.

Based on Definition 7, the K-delayed state estimate X̂|s|−K(s) after observing s = α0α1 . . . αn

25



(n ≥ K) is the set of all states that are reachable in G via a string s′ which has a projection equal

to the first n − K observable events in s (in the same order) and for which there exists at least

one continuation s′′ with projection equal to the last K observable events in s (in the same order).

Note that the set of states reachable in G via a string s′ with projection α0α1 . . . αn−K is the state

estimate that was obtained after observing α0α1 . . . αn−K but before observing αn−K+1 . . . αn (i.e.,

the state estimate presented by a zero-delay (standard) state estimator). Using our earlier notation,

this estimate is denoted by X̃|s|−K . A K-delayed state estimate can be considered as the subset of

these states from which the post K observations αn−K+1 . . . αn are possible. Note that Definition 7

is the same as the definition of the “trajectory of state estimates” in [1]. The authors of [1] argue

that the definition of always observability in [6] has shortcomings and use the “trajectory of state

estimates” to define the notion of always observability. In [1], the construction of the trajectory of

the state estimates is not considered.

We now discuss the construction of a finite automaton which is capable of constructing the K-

delayed state estimates. Each state of this structure stores the trellis diagram induced by the last

K observations (hence states can be considered as trellis mappings). Upon observing a new event,

the current trellis mapping is shifted using the state mapping induced by the new observation. This

procedure generates in general a new trellis mapping and hence a new state of the K-delay state

estimator. Following this method the K-delay state estimator can be synthesized as a finite state

machine. The finiteness of the state machine results from the finiteness of the trellis mappings

that summarize the effect of the last K observations on the estimation of the sequence of states

that have been visited. This summary is independent of the observation length and hence multiple

observations might be mapped to the same trellis mapping in the K-delay state estimator, capturing

the fact that they contain the same information about the K-delayed state estimate. As in the case

of state mappings, we can think of a trellis mapping as a way to partition the set of all observations,

of arbitrary but finite length, into a finite number of equivalence classes. Two strings belong to

the same equivalence class if they induce the same trellis mapping. In this way, we can compress

the information contained in the set of observations (which has infinitely many elements) using

a finite set of trellis mapping without loosing the information contained in these strings about

the K-delayed state estimate. In the following definition, we describe the construction of the K-

26



delay state estimator as the finite state machine which is capable of capturing the K-delayed state

estimates.

Definition 8 (K-Delay Estimator). Given a finite automaton G = (X,Σ, δ) and a projection map

P with respect to the set of observable events Σobs, we define the K-delay state estimator as the

deterministic automaton GK,obs = AC(2X(K+1)
,Σobs, δK,obs,XK,0) with state set 2X(K+1)

, event set

Σobs, initial state XK,0 = X ⊙K X, and state transition function δK,obs : 2X(K+1)
×Σobs → 2X(K+1)

defined for α ∈ Σobs as

m′ = δK,obs(m,α) := m‖M(α),

where m,m′ ∈ 2X(K+1)
. Recall that M(α) denotes the state mapping that is induced by observing

α at the beginning of the observation. Also, δK,obs can be extended to include strings in the usual

manner. If we let XK,obs ⊆ 2X(K+1)
be the reachable states from the initial state XK,0 under δK,obs,

then GK,obs = (XK,obs,Σobs, δK,obs,XK,0).

Note that GK,obs is a deterministic structure with initial state X ⊙K X which is essentially

the set of (K + 1)-tuples of the form (i, i, . . . , i) for i ∈ X. This corresponds to the fact that no

information is available about the initial state. Also, each state of this automaton is essentially a

trellis mapping of fixed size K + 1.

In the following Lemma, a state of GK,obs that is reached via a sequence of observations is

associated with a set of (K + 1)-tuples of states (i.e., a trellis mapping) such that the first |s| − K

observations would have taken the system to the starting states of the trellis mapping and in

addition, the last K observations could have taken place from these starting states and visit the

intermediate states in the tuple (in the order captured by the trellis mapping).

Lemma 1. Suppose state m in GK,obs (as constructed in Definition 8) is reachable from the initial

state XK,0 = X⊙K X via the string s = α0α1 . . . αn. Then, state m can be characterized as follows:

(i) |s| − K < 0: m = {(i0, i1, . . . , iK)|(0 ≤ k ≤ K, 0 ≤ l ≤ |s| − 1, 0 ≤ w ≤ K − |s| − 2) : ik ∈

X, iw = iw+1,∃tl ∈ Σ∗, P (tl) = αl, δ(iK−|s|+l, tl) = iK−|s|+l+1}.

(ii) |s| − K ≥ 0: m = {(i0, i1, . . . , iK)|(0 ≤ k ≤ K, 0 ≤ l ≤ K − 1) : ik ∈ X,∃tl ∈ Σ∗, P (tl) =

αn−K+1+l, δ(il, tl) = il+1,∃j ∈ X, t ∈ Σ∗, δ(j, t) = i0, P (t) = α0α1 . . . αn−K}.

27



Proof. (i) When |s| < K (before K observations are made), the states in the s-induced trellis

mapping (consisting of (|s| + 1)-tuples) replace the rightmost states in the current (K + 1)-tuple

and hence the first K − |s| leftmost states remain intact (and equal). This implies that

mn = mn−1‖M(αn)

= {(i0, i1, . . . , iK)|(0 ≤ k ≤ K, 0 ≤ w ≤ K − |s| − 2) : ik ∈ X, iw = iw+1,
(

iK−|s|, iK−|s|+1, . . . , iK

)

∈ M(αn)}

= {(i0, i1, . . . , iK)|(0 ≤ k ≤ K, 0 ≤ l ≤ |s| − 1, 0 ≤ w ≤ K − |s| − 2) : ik ∈ X, iw = iw+1,∃tl ∈ Σ∗,

P (tl) = αl, δ(iK−|s|+l, tl) = iK−|s|+l+1} (by (1)).

This completes the proof of part (i).

(ii) Denote the sequence of states visited in GK,obs via s by m0, . . . ,mn. We prove the result by

induction: for s = α0α1 . . . αK−1, (|s| = K), the statement is true by construction. Now assuming

that lemma holds for s = α0α1 . . . αn−1 (n > K), we prove it holds for s = α0α1 . . . αn. Recall

that mn is the state in GK,obs that is reachable with s (which in the Lemma is denoted by m). By

construction we have

mn = mn−1‖M(αn)

= {(i1, . . . , iK+1)|(i0, i1, . . . , iK) ∈ mn−1, (iK , iK+1) ∈ M(αn)} (Definition of ‖ operator)

= {(i1, . . . , iK+1)|(0 ≤ k ≤ K + 1, 0 ≤ l ≤ K − 1) : ik ∈ X,∃tl ∈ Σ∗, P (tl) = αn−K+l,

δ(il, tl) = il+1,∃j ∈ X, t ∈ Σ∗, δ(j, t) = i0, P (t) = α0α1 . . . αn−K−1,

(iK , iK+1) ∈ M(αn)} (by induction)

= {(i1, . . . , iK+1)|(0 ≤ k ≤ K + 1, 0 ≤ l ≤ K − 1) : ik ∈ X,∃tl ∈ Σ∗, P (tl) = αn−K+l,

δ(il, tl) = il+1,∃j ∈ X, t ∈ Σ∗, δ(j, t) = i0, P (t) = α0α1 . . . αn−K−1,∃tK ∈ Σ∗,

δ(iK , tK) = iK+1, P (tK) = αn} (by definition of M(αn))

= {(i1, . . . , iK+1)|(1 ≤ k ≤ K + 1, 1 ≤ l ≤ K) : ik ∈ X,∃tl ∈ Σ∗, P (tl) = αn−K+1+l, δ(il, tl) = il+1,

∃j ∈ X, t′ ∈ Σ∗, δ(j, t′) = i1, P (t′) = α0α1 . . . αn−K}

28



Note that in the last line, we define t′ = tt1 from the previous line. The proof is completed by

decreasing the indices by one.

Next we prove that the K-delay state estimator captures the K-delayed state estimates as the

starting state of the trellis mapping stored in its state (similar to Corollary 1).

Corollary 2. The K-delayed state estimate X̂|s|−K(s) after observing s can be captured using the

K-delay state estimator as follows: suppose δK,obs(XK,0, s) = m, then

X̂|s|−K(s) = m(K).

Proof. Since the K-delayed state estimate is only defined for |s| ≥ K, by Lemma 1 we have

m = δK,obs(XK,0, s)

= {(i0, i1, . . . , iK)|(0 ≤ k ≤ K, 0 ≤ l ≤ K − 1) : ik ∈ X,∃tl ∈ Σ∗, P (tl) = αn−K+l+1,

δ(il, tl) = il+1,∃j ∈ X, t ∈ Σ∗, δ(j, t) = i0, P (t) = α0α1 . . . αn−K}.

Moreover,

m(K) = {i0|(i0, i1, . . . , iK) ∈ m}

= {i0|(0 ≤ k ≤ K, 0 ≤ l ≤ K − 1) : ik ∈ X,∃tl ∈ Σ∗, P (tl) = αn−K+l+1, δ(il, tl) = il+1,

∃j ∈ X, t ∈ Σ∗, δ(j, t) = i0, P (t) = α0α1 . . . αn−K}

= {i0|∃s′, s′′ ∈ Σ∗,∃j ∈ X : δ(j, s′) = i0, δ(i0, s
′′) is defined,

P (s′) = α0α1 . . . αn−K , P (s′′) = αn−K+1 . . . αn}

= X̂|s|−K(s),

where the third equation follows from the second equation with s′′ = t0t1 . . . tK−1 and s′ = t. This

completes the proof.

We demonstrate the construction of the K-delay state estimator via the following example.

29



α

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

1

2

3

4

0

1

2

3

4

1

2

3

4

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

1

2

3

4

0

1

2

3

4

m3

m1

m0

m2α

α

β

m4 m5 m6

α

α α
m7 m8 m9m10

ααα

β

β

α α

m0 m1 m2 m3
0

1

2

3

4

0

m4
0 0

m6
00

1

2

3

4

1

2

3

4

m7
0 00

1

2

3

4

1

2

3

4

m9
00

1

2

3

4

1

2

3

4

m10m5
0 00

1

2

3

4

1

2

3

4

m8
0

1

Figure 6: 2-delay state estimator corresponding to DES G discussed in Example 6.

Example 6. Consider the DES G in Figure 1-a. For this system, the 2-delay state estimator is

represented in Figure 6 along with the trellis mappings m0,m1, . . . ,m10 needed in the construction.

The initial uncertainty is the whole state space and the initial state of the state estimator captures

this in m0 via a trellis mapping that maps each system state to itself as

X ⊙2 X = {(0, 0, 0), (1, 1, 1), (2, 2, 2), (3, 3, 3), (4, 4, 4)}

≡ m0.

Starting from the initial state and upon observing α, the next state in the 2-delay state estimator

m′ can be constructed following Definition 8 as

m′ = δK,obs(m0, α)

= m0‖M(α)

=
{

(0, 0, 0), (1, 1, 1), (2, 2, 2), (3, 3, 3), (4, 4, 4)
}

‖M(α)

=
{

(0, 0, 0), (1, 1, 1), (2, 2, 2), (3, 3, 3)
}

‖
{

(0, 2), (0, 3), (2, 2), (4, 4)
}

= {(0, 0, 2), (0, 0, 3), (2, 2, 2), (4, 4, 4)}

≡ m1.

Example 2 explains how M(α) is synthesized. Note that on the right of Figure 6 we use trellis

diagrams to describe the triples associated with the 2-delay state estimator. Next, assume that

30



we observe β which results in M(β) = {(1, 0), (1, 1), (1, 2), (3, 1), (3, 3)}. Based on the notation in

Definition 8, we have

m′ = δK,obs(m1, β)

= m1‖M(β)

= {(0, 0, 2), (0, 0, 3), (2, 2, 2), (4, 4, 4)}‖{(1, 0), (1, 1), (1, 2), (3, 1), (3, 3)}

= {(0, 3, 4)}

≡ m4.

This implies that αβ can only be observed if the system follows the state trajectory 0 → 3 → 4.

Using this approach for all possible observations (from each state), the 2-delay state estimator

construction can be completed as shown in Figure 6. �

Remark 4. Note that the K-delay state estimator captures the trellis mapping resulting from

the last K observations, i.e., the trellis mappings summarize a constant size moving window of

observations. On the other hand, in the ISE the state mappings summarize all the observations

made so far (i.e., the size of the window of the observations is increasing), but only keep information

about the starting and final states (and the connections between them).

5 Analysis of Opacity Notions in DES

In this section, we use the delayed state estimators we developed in Section 4 to address the problem

of verifying the opacity notions introduced in Section 3.

5.1 Verifying Initial-State Opacity

To verify initial-state opacity, we model the intruder as an initial-state estimator (ISE) for the

system and check whether, at any point during the observation sequence, the estimate of the initial

state falls completely within the secret set. We formalize this using the following theorem.

31



Theorem 2. Discrete event system G is (S,P,∞) initial-state opaque if and only if

∀m ∈ X∞,obs : m(1) ∩ 2S = ∅,

where X∞,obs is the set of states in G∞,obs that is reachable from the initial state X∞,0 = X ⊙ X.

Proof. The condition in the theorem is equivalent to

∀m ∈ X∞,obs : (j, k) ∈ m, j ∈ S ⇒ ∃(j′, k′) ∈ m, j′ ∈ X − S,

which implies that there is no point along the observation such that the estimate of the initial state

is entirely within secret state; in other words, the condition in the theorem is equivalent to the fact

that the system is (S,P,∞) initial-state opaque.

Example 7. In this example we show that DES G in Figure 1-a is not ({0}, P,∞) initial-state

opaque. Consider the initial-state estimator depicted in Figure 5. State m4 in the ISE, which

can be reached via sequences of the form αβα∗ violates ({0}, P,∞) initial-state opacity since its

set of starting states is {0} which is within the set of secret states S. In other words, observing

αβα∗ completely determines the initial state as state 0 which is within the set of secret states (and

hence violates initial-state opacity). This system, however, is ({3}, P,∞) initial-state opaque. State

mappings m2 and m5 contain state 3 in their set of starting states. This does not violate initial-

state opacity since the sets of starting states of both of these state mappings also contain some

states outside the set of secret states: m2(1) = {0, 1, 3} and m5(1) = {1, 3}. �

Remark 5. Note that if partial knowledge of the initial state is available, the notion of initial state

opacity and the construction of the ISE can be modified accordingly (refer to Remark 1).

5.2 Verifying K-Step Opacity

In Section 4 we proved that the set of starting states of the trellis mappings in the K-delay state

estimator capture the estimates of the system states K observations ago (i.e., after having an

opportunity to observe K events past the point when the system was at that particular state).

32



Using this fact, we show that the K-delay state estimator can be used for modeling the intruder

and hence for verifying K-step opacity. Specifically, a DES G is K-step opaque if and only if all

the starting states associated with the trellis mappings in the reachable states of the K-delay state

estimator contain at least one element outside S. The following theorem states this formally.

Theorem 3. Discrete event system G is (S,P,K)-opaque if and only if

∀m ∈ XK,obs, k ∈ {0, . . . ,K} : m(k) ∩ 2S = ∅,

where XK,obs is the set of states in GK,obs that is reachable from the initial state XK,0 = X ⊙K X.

Proof. (If) Proof by contradiction. Without loss of generality assume that there exists m ∈ XK,obs

reached via t = α0 . . . αn such that m(K) ∩ 2S 6= ∅. Using Corollary 2, we have

m(K) = X̂|t|−K(t)

= {i0|∃t′, t′′ ∈ Σ∗,∃j ∈ X : δ(j, t′) = i0, δ(i0, t
′′) is defined,

P (t′) = α0α1 . . . αn−K , P (t′′) = αn−K+1 . . . αn}.

Hence m(K) ∩ 2S 6= ∅ implies that

∃t ∈ Σ∗,∃t′ ∈ t̄, |P (t)/P (t′)| = K,∀j ∈ X, δ(j, t) is defined : δ(j, t′) ∈ S.

Hence, we find a string t such that it passes through the set of secret states exactly K observations

ago and such that there is no other sequence in the system that creates the same output and

passes through a non-secret state K observations ago. Therefore, the system is not K-step opaque.

Similarly, we can prove that m(k) ∩ 2S 6= ∅ for k ∈ {1, . . . ,K} implies that system is not K-step

opaque.

(Only if) Assume that system is not K-step opaque. Hence,

∃t ∈ Σ∗,∃t′ ∈ t̄, |P (t)/P (t′)| ≤ K,∀j ∈ X, δ(j, t) is defined :
(

δ(j, t′) ∈ S, ∄s ∈ Σ∗ :

∃i′ ∈ X,∃s′ ∈ s̄, P (s) = P (t), P (s′) = P (t′), δ(i′, s′) /∈ S, δ(i, s) is defined
)

. (3)

33



Assume that P (t) = α0α1 . . . αn and P (t′) = α0α1 . . . αn−k for some k < K. Now consider the state

m that is reached via P (t) in GK,obs. From Lemma 1 we have that

m = {(i0, i1, . . . , iK)|(0 ≤ k ≤ K, 0 ≤ l ≤ K − 1) : ik ∈ X,∃tl ∈ Σ∗, P (tl) = αn−K+1+l,

δ(il, tl) = il+1,∃j ∈ X,ω ∈ Σ∗, δ(j, ω) = i0, P (ω) = α0α1 . . . αn−K}.

Hence,

m(k) = {i|(K − k ≤ l ≤ K − 1) : i ∈ X,∃tl ∈ Σ∗, P (tl) = αn−K+1+l,

δ(il, tl) = il+1,∃j ∈ X, t′ ∈ Σ∗, δ(j, t′) = i, P (t′) = α0α1 . . . αn−k}.

Now since the system is not opaque, (3) implies that

∀i ∈ m(k) : i ∈ S.

Hence there exists 0 ≤ k ≤ K such that

m(k) ∩ 2s 6= ∅.

This completes the proof.

The following example clarifies the above points.

Example 8. In this example we show that DES G in Figure 1-a is ({0}, P, 0)-opaque and ({0}, P, 1)-

opaque but not ({0}, P, 2)-opaque. Consider the state estimator with zero delay for this system

depicted in Figure 1-b. The only state that contains the secret state is the initial state X which also

contains states outside the set of secret state {0}. Hence, DES G is ({0}, P, 0)-opaque. A similar

argument can be made for ({0}, P, 1)-opacity (by constructing the 1-delay state estimator). DES

G is not ({0}, P, 2)-opaque due to the existence of state m4 and m6 in the 2-delay state estimator

depicted in Figure 6. If the system generates the sequence of observations αβ or ββ, then (since

the only state from which βα or ββ can be observed is state 0) we can conclude with certainty that

the system was in state 0 two steps ago. This violates the 2-step opacity requirement since state 0

34



is a secret state. Note that this example demonstrates that K-step opacity does not imply K ′-step

opacity for K ′ > K. �

5.3 Verifying Infinite-Step Opacity

As mentioned earlier, infinite-step opacity can be considered as the limiting case of K-step opacity

as K → ∞. Note that in this case, the K-delay state estimator is not a finite structure anymore

(because K → ∞) and hence it is not useful in modeling the intruder or verifying infinite-step

opacity. In this section, we introduce a new method for verifying this property using both the ISE

and the zero-delay state estimator.

To verify that a system is infinite-step opaque, we need to verify that at any point along the

observation, knowing the observations that have been made before reaching that point in addition

to all possible future observations (from that point onward) does not (and/or will not) allow us to

determine whether the set of possible states at that point is a subset of the set of secret states.

Hence, the verification consists of two phases: (i) find all possible estimates of the system state

along any possible sequence of observations, and (ii) for each point in this trajectory (set of possible

system states), calculate all possible information that can be gained about that point from future

observations from that point onward. The first phase can be achieved via a standard zero-delay state

estimator which captures the estimate of the current state given a sequence of observations. The

second phase requires the construction of an ISE-like state estimator for each possible uncertainty

about the current state estimate which is now used as the initial state estimate for the ISE-like

state estimator. In other words, for each set of estimates Z ⊆ X provided in the first phase, we

construct an ISE whose initial state is associated with the state mapping {(z, z)|z ∈ Z}. Clearly,

if any of these ISEs contains one state mapping associated with an estimate of the initial state

whose set of starting state contains elements only in S, then DES G is not infinite-step opaque.

The following theorem formalizes this discussion.

Theorem 4. For every set of state estimates Zn associated with a state of G0,obs, construct Gn
∞,obs

by setting its initial state Xn
∞,0 to be {(z, z)|z ∈ Zn}. Then, DES G is (S,P,∞)-opaque if and only

35



if

∀n,∀m ∈ Xn
∞,obs : m(1) ∩ 2S = ∅, (4)

where Xn
∞,obs is the set of states in Gn

∞,obs that is reachable from initial state Xn
∞,0 = {(z, z)|z ∈ Zn}.

Proof. (If) We prove this by contradiction. Assume that DES G is not (S,P,∞)-opaque. Hence,

there exists a string t that passes through a secret state j such that every other string s with

P (s) = P (t) also passes through a secret state j′ when string t passes through the secret state

j. Without loss of generality assume that there is only one such string s. (Refer to Figure 2 for

graphical representation.) Suppose that string t (string s) originates from state i (state i′) and that

string t (string s) can be written as t = t′t′′ (s = s′s′′) such that state i (state i′) reaches state j

(state j′) via string t′ (string s′), and state j (state j′) reaches some state k (state k′) via string t′′

(string s′′). Note that string s visits state j′ when string t visits state j means that P (s′) = P (t′).

Since state j and state j′ can be reached from state i and state i′ via strings s′ and t′ with the

same projection (P (s′) = P (t′)), the properties of the zero-delay state estimator [6] imply that

{j, j′} ∈ Zn for some Zn associated with states of G0,obs. By construction of Gn
∞,obs, this implies

that (j, j), (j′ , j′) ∈ Xn
∞,0. Consider the state m that is reached in Gn

∞,obs from Xn
∞,0 via P (t′′)

(which equals P (s′′) since s = s′s′′, t = t′t′′, P (s) = P (t) and P (s′) = P (t′)). Since state j (state j′)

reaches state k (state k′) via string t′′ (string s′′), by Lemma 1, m = {(j, k), (j′ , k′)}. Moreover (4)

implies that {j, j′} ∩ 2S = ∅ which is a contradiction since we assumed {j, j′} ∈ S. This completes

the (If) part of the proof.

(Only if) Assume that DES G is (S,P,∞)-opaque. We need to prove that for all n and m ∈ Xn
∞,obs,

(j, k) ∈ m and j ∈ S implies that there exists (j′, k′) ∈ m such that j′ ∈ X − S. We prove this by

contradiction. Assume that there exists n and m ∈ Xn
∞,obs such that for all (j, k) ∈ m we have j ∈ S,

and m is reached via ω in Gn
∞,obs. Without loss of generality suppose that m = {(j, k), (j′ , k′)}.

Using Lemma 1 and following the notations used in Figure 2 we have for all t′′, s′′ ∈ Σ∗ such that

P (t′′) = P (s′′) = ω, δ(j, t′′) = k, and δ(j′, s′′) = k′, then {j, j′} ⊆ S. As mentioned before, the initial

state Xn
∞,0 of Gn

∞,obs is constructed using an estimate of the current state Z which is a reachable

state in G0,obs. Assume that Z is reachable in G0,obs via a string Ω from the initial state X0. By

construction of G0,obs, we know that there exists i, i′ ∈ X, and t′, s′ ∈ Σ∗ such that δ(i, t′) = j,

36



δ(i′, s′) = j′, and P (s′) = P (t′) = Ω. Define t = t′t′′ and s = s′s′′ (refer to Figure 2) and assume

that we observe Ωω. For this observation, there is a string t such that a prefix t′ of t passes through

the secret state j and every other string s that has the same projection as t, i.e., P (s) = P (t),

also passes through the set of secret states when t does (i.e., at the time P (t′) is observed). This

violates infinite-step opacity which is a contradiction and hence the proof is complete.

Remark 6. Note that in practice, since the set of initial state estimates can only decrease with

additional observations, we only need to consider Gn
∞,obs for Zn’s which have a nonzero intersection

with S.

Example 9. In this example, we verify that DES G in Figure 1-a is not ({3}, P,∞)-opaque. To

verify infinite-step opacity we need to first construct the zero-delay state estimator G0,obs as in

Figure 1-b. As mentioned in Example 6, this state estimator has five states {{4}, {1, 4}, {2, 4},

{2, 3, 4}, {0, 1, 2, 3, 4}} and hence we need to construct five ISEs with initial states {(4, 4)}, {(1, 1),

(4, 4)}, {(2, 2), (4, 4)}, {(2, 2), (3, 3), (4, 4)} and {(0, 0), (1, 1), (2, 2), (3, 3) , (4, 4)} respectively.

However, among these initial states (i.e., state mappings) only state mapping {(0, 0), (1, 1), (2, 2),

(3, 3), (4, 4)} which corresponds to Z1 = {0, 1, 2, 3, 4} and state mapping {(2, 2), (3, 3), (4, 4)} which

corresponds to state Z2 = {2, 3, 4} contain the secret state 3. By Remark 6, this implies that we

only need to construct two ISEs corresponding to these two state mappings. (i) The ISE G1
∞,obs

with initial state mapping corresponding to Z1 is indeed the initial-state estimator we considered

previously in Example 5 and is depicted in Figure 5. It can be easily verified that the set of starting

states of all state mappings associated with this ISE has states outside the set of secret state. (ii)

The ISE G2
∞,obs with initial state corresponding to Z2 is depicted in Figure 7. State m2 = {(3, 4)}

in G2
∞,obs violates ({3}, P,∞)-opacity since its set of starting states only contains state 3 which is a

secret state. State m2 is reachable in G2
∞,obs via β from m0. Moreover m0 in this ISE corresponds

to the state in G0,obs (in Figure 1-b) that was reached via observation α. Putting these two pieces

of information together, we conclude that observing αβ reveals that system has gone through state

3, which is a secret state; hence the system is not ({3}, P,∞)-opaque. �

37



α

1

2

3

1

2

3

4

0

1

2

3

4

0

1

2

3

1

2

3

4

0
m0 m1 m2

44

0 0

1

2

3

4

m1

m0

m2

α β

α

0

Figure 7: Initial-state estimator G2
∞,obs corresponding to state Z2 = {2, 3, 4} in the zero-delay state

estimator of the DES G in Figure 1.

5.4 Role of Delay in K-Step Opacity

In this section we show that for K ≥ 2N2
− 1, K-step opacity implies infinite-step opacity. Specif-

ically, we show that for K ′ > K ≥ 2N2
− 1, K-step opacity and K ′-step opacity are equivalent

and, since infinite-step opacity is the limiting case of K-step opacity as K → ∞, we can state

that K-step opacity for K ≥ 2N2
− 1 is equivalent to infinite-step opacity (the other direction is

obviously true: infinite-step opacity always implies K-step opacity). Note that K-step opacity does

not in general imply K ′-step opacity for K ′ > K (in fact, Example ?? is a demonstration of this).

The idea behind the proof is the following: fix a point in the system’s state trajectory. In the K-

step opacity problem we are interested in finding how much we can say regarding the membership

of the state, at that fixed point in time, within the set of secret states, even after we make K

additional observations. More precisely, we need to determine if at any point in time (at this fixed

point in time or in the future) we can unambiguously determine that the state at this fixed point

falls within the set of secret states. We can gain insight to this question by considering the estimate

of the state at that fixed point as the initial uncertainty for an ISE. Observe that since the ISE

has at most 2N2
states (because there are that many different state mappings), we are guaranteed

that each state in that ISE is reachable via a string that generates at most K observations as

long as K ≥ 2N2
− 1. Note that here we are concerned with the information conveyed by the set

of all sequences of observations of length at most K, and not a specific sequence of observations.

Observe that sequences that involve cycles in the ISE can be excluded because they do not lead to

new states; equivalently, each one of them behaves identically to a sequence without cycles which

has length at most K. For this reason, there would be no more information if observation sequences

of length more than K were included in this set.

38



We carry the formal proof of the above statement in two theorems. First, in Theorem 5, we prove

that for the aforementioned fixed point in the state trajectory, for K ≥ 2N2
− 1, the information

regarding the state (at the same point in time) for all K-delayed state estimates is equivalent.

Then, in Theorem 6, we show that this equivalence results in the equivalence of K-step opacity

and K ′-step opacity for K ′ > K ≥ 2N2
− 1.

Theorem 5. Assume that GK,obs and GK∗,obs with K > K∗ = 2N2
−1 are delayed state estimators

for a finite automaton G = (X,Σ, δ) and are constructed as described in Section 2. Then, for

any trellis mapping m reached in GK,obs via s = α0α1 . . . αn for |s| > 2N2
− 1 and for each m(k),

2N2
≤ k ≤ K, there exists a trellis mapping m′ associated with a state reached in GK∗,obs via some

s′ = α0α1 . . . αn−kα
′
n−k+1

. . . α′
n′ for some n′ ≤ n + 2N2

− 1 − k and with α′
n−p ∈ Σobs, k − 1 ≤ p ≤

n − n′, such that m(k) = m′(l), for l = k + n′ − n.

Proof. Recall that in any K-delay state estimator GK,obs, the k-delayed state estimate due to obser-

vation s is captured via the set m(k) where m is the trellis mapping associated with the state reached

in GK,obs via s (k satisfies 0 ≤ k ≤ K). Now consider the fixed point in time after the sequence of

observations α0α1 . . . αn−k has been observed. Assume that k more observations have been made

since the system passed through the state at that fixed point in time, i.e., αn−k+1αn−k+2 . . . αn are

observed. Then, the set m(k) denotes the k-delayed state estimate at that fixed point due to the se-

quence of observations s = α0α1 . . . αn−kαn−k+1 . . . αn. Similarly, m′(l) denotes the l-delayed state

estimates of that fixed point due to the sequence of observations s′ = α0α1 . . . αn−kα
′
n−k+1

. . . α′
n′

for n′ − l = n − k. In other words, m(k) represents the k-delayed state estimate, if after the

passage of the system through the state at that fixed point αn−k+1αn−k+2 . . . αn has been ob-

served, whereas m′(l) denotes the l-delayed state estimate at this same point if α′
n−k+1

. . . α′
n′

has been observed since the passage time. To prove Theorem 5, we need to show that assuming

k ≥ 2N2
, for the k-delayed state estimate of that fixed point due to the sequence of observations

s = α0α1 . . . αn−kαn−k+1 . . . αn, there is an l ≤ 2N2
− 1 such that the l-delayed state estimate of

that same fixed point due to a shorter sequence of observations s′ = α0α1 . . . αn−kα
′
n−k+1

. . . α′
n′

where n′ = l + n− k is the same. Denote the estimate of the system’s (current) state at that point

(i.e., the estimate after observing α0α1 . . . αn−k) by Z ⊆ X. The problem of k-delayed estimation of

39



the state of the system at the fixed point in time after observing s = α0α1 . . . αn can be considered

as an initial state estimation problem where (due to the observations α0α1 . . . αn−k that have been

made before reaching that fixed point) the initial uncertainty about the “initial state” is the set

Z. Hence, the set m(k) after observing s = α0α1 . . . αn is the same as the set of starting states of

the state mapping that is associated with the state that is reached via αn−k+1αn−k+2 . . . αn in the

ISE whose initial state is {(z, z)|z ∈ Z} (and, of course, Z is the set of state estimates given by

a zero-delay (standard) state estimator after observing α0α1 . . . αn−k). Note that this string has

length k > 2N2
− 1. Since the ISE has at most 2N2

states, strings of length at most 2N2
− 1 can

be chosen to visit any state of the ISE. This implies that the state reached in the modified ISE via

the string αn−k+1αn−k+2 . . . αn of length k can also be reached via a string of length less than or

equal to 2N2
− 1, which we denote by α′

n−k+1
α′

n−k+2
. . . α′

n′ for some n′ ≤ n + 2N2
− 1 − k. Since

the states reached via both of these strings in this ISE are the same, the k-delayed state estimate

due to s is the same as the (k− (n−n′))-delayed state estimate due to s′. Letting (k− (n−n′)) = l

completes the proof.

The above result can be used to show that K ′-step opacity is equivalent to K-step opacity for

K ′ > K ≥ 2N2
− 1. We prove this by showing that for K ≥ 2N2

, K-step opacity is equivalent to

K∗-step opacity with K∗ = 2N2
− 1.

Theorem 6. For a finite automaton G = (X,Σ, δ), K-step opacity is equivalent to K∗-step opacity

for K > K∗ = 2N2
− 1 where N = |X|.

Proof. (K-step opacity ⇒ K∗-step opacity) Recall that DES is K-step opaque if and only if

∀m ∈ XK,obs : m(k) ∩ 2S = ∅, 0 ≤ k ≤ K. (5)

Consider the trellis mappings m and m′ associated with the state reached in GK,obs and GK∗,obs via

s. Observe that m(k) = m′(k), 0 ≤ k ≤ 2N2
− 1; since both m(k) and m′(k) denote the k-delayed

state estimate due to observation s, they are identical set of states. Therefore, (5) implies that

∀m ∈ XK∗,obs : m(k) ∩ 2S = ∅, 0 ≤ k ≤ K∗, which implies that K∗-step opacity holds.

(K∗-step opacity ⇒ K-step opacity) We need to show (5). From Theorem 5 we have: for any

40



trellis mapping m associated with states of GK,obs reached via a string s with |s| ≥ 2N2
− 1 and

2N2
≤ k ≤ K, there is a trellis mapping m′ associated with states of GK∗,obs and some l satisfying

0 ≤ l ≤ 2N2
− 1 such that m(k) = m′(l). Now if DES G is K∗-step opaque then all sets of

intermediate states m′(l) of any trellis mapping m′ associated with states in GK∗,obs contain states

outside the set of secret states; following the previous discussion, for 2N2
≤ k ≤ K, all set of

intermediate states m′(k) of any trellis mapping m′ associated with states of GK,obs contain states

outside the set of secret states. This implies (5) for 2N2
≤ k ≤ K. Moreover, the discussion in part

(i) implies (5) for 0 ≤ k ≤ 2N2
− 1. Therefore (5) holds if m is reached in GK,obs via a string s with

|s| ≥ 2N2
− 1. If m is reached via a shorter string t with |t| < 2N2

− 1, then the discussion in part

(i) still implies (5) for 0 ≤ k < 2N2
− 1; moreover for 2N2

− 1 ≤ k ≤ K, we have m(k) ≡ X (since

we have yet to make enough observations) which trivially satisfies (5).

5.5 Remarks

We now consider how three notions of opacity are related. Initial-state opacity is different from

(S,P,K)-opacity since in initial-state opacity, we fix a point in time (initial point) and require

that the intruder cannot infer the membership of the state at that point to the set of secret states,

regardless of the length of the observation sequence. On the other hand, in (S,P,K)-opacity we

require this to be true for all the states covered in a window of size K around the current observation.

Initial-state opacity is similar to (S,P,∞)-opacity in the sense that both require opacity for the

whole length of the observation. However, they are different since in initial-state opacity, we only

require opacity of a fixed point in the state trajectory whereas in (S,P,∞), this is required for all

the states visited along the state trajectory. In other words, initial-state opacity is not violated

if, during the observation, the intruder can infer that the current state is within the set of secret

states as long as the intruder cannot locate the initial state within the secret state. As a result,

initial state-opacity does not imply infinite-step opacity. Note that infinite-step opacity implies the

other two opacities.

The final point is that, as mentioned in Theorem 6, K-step opacity implies K ′-step opacity for

K ′ > K ≥ 2N2
− 1 (where N is the number of states) and, since infinite-step opacity is the limiting

case of K-step opacity as K → ∞, we can use the same bound (2N2
− 1) to state that K-step

41



opacity for K ≥ 2N2
− 1 is equivalent to infinite-step opacity (since infinite-step opacity always

implies K-step opacity).

6 Conclusion

In this report, we addressed the problem of delayed estimation in discrete event systems that

are modeled by finite automata with partial observations of their transitions. Specifically, we

investigated the estimation of the initial state of the system and the estimation of the state of

the system at a fixed number of observations into the past: we provided two state estimators that

capture these estimates and showed that the information included in the delay state estimators

does not increase by increasing delay if the current delay is bigger than 2N2
− 1 where N is the

number of states.

We also demonstrated the application of delayed estimation in characterizing security properties

(and hence the application of delay state estimators in verifying these properties). For this, we

extended three notions of opacity: initial-state opacity, K-step opacity and infinite-step opacity.

These notions are state-based notions which require opacity of the membership of the system states

to a secret set of states. To show the relevance of the delay state estimator, we used our two state

estimators to model an intruder/observer of the given system, and used these state estimators to

obtain verification methods for these security notions. We also proved a delay K under which

infinite-step opacity and K-step opacity are equivalent.

In our future work we plan to use techniques from supervisory control [17] to design minimally

restrictive supervisors for a given discrete event system in a way that it ensures certain desirable

security properties.

References

[1] S. Bose, A. Patra, and S. Mukhopadhyay, “On observability with delay: antitheses and syn-

theses,” IEEE Transactions on Automatic Control, vol. 39, no. 4, pp. 803–806, April 1994.

42



[2] P. E. Caines, R. Greiner, and S. Wang, “Dynamical logic observers for finite automata,” in

Proc. of 27th IEEE Conference on Decision and Control (CDC 1988), vol. 1, December 1988,

pp. 226–233.

[3] S. Hashtrudi Zad, H. Kwong, and W. Wonham, “Fault diagnosis in discrete event systems:

Framework and model reduction,” IEEE Transactions on Automatic Control, vol. 48, no. 7,

pp. 1199–1212, July 2003.

[4] F. Lin and W. Wonham, “On observability of discrete event systems,” Information Sciences,

vol. 44, no. 3, pp. 173–198, April 1988.

[5] M. Oishi, I. Hwang, and C. Tomlin, “Immediate observability of discrete event systems with

application to user–interface design,” in Proc. of 42nd IEEE Conference on Decision and

Control (CDC 2003), vol. 3, December 2003, pp. 2665–2672.

[6] C. M. Özveren and A. S. Willsky, “Observability of discrete event dynamic systems,” IEEE

Transactions on Automatic Control, vol. 35, no. 7, pp. 797–806, July 1990.

[7] P. J. Ramadge and W. M. Wonham, “Supervisory control of a class of discrete event processes,”

SIAM Journal on Control and Optimization, vol. 25, no. 1, pp. 206–230, January 1987.

[8] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. C. Teneketzis, “Failure

diagnosis using discrete event models,” IEEE Transactions on Automatic Control, vol. 4, no. 2,

pp. 105–124, March 1996.

[9] C. M. Özveren, A. S. Willsky, and P. J. Antsaklis, “Stability and stabilizability of discrete

event dynamic systems,” Journal of the Association for Computing Machinery, vol. 38, no. 3,

pp. 729–751, July 1991.

[10] C. M. Özveren and A. S. Willsky, “Invertibility of discrete event dynamic systems,” Mathe-

matics of Control, Signals, and Systems, vol. 5, no. 4, pp. 365–390, July 1992.

[11] Y. Li and W. M. Wonham, “Control of vector discrete event systems (I): The base model,”

IEEE Transactions on Automatic Control, vol. 38, no. 8, pp. 1214–1227, August 1993.

43



[12] B. H. Krogh and L. E. Holloway, “Synthesis of feedback control logic for discrete manufacturing

systems,” Automatica, vol. 27, no. 4, pp. 641–651, July 1991.

[13] C. M. Özveren and A. S. Willsky, “Output stabilizability of discrete event dynamic systems,”

in Proc. of 28th IEEE Conference on Decision and Control (CDC 1989), vol. 3, September

1989, pp. 2719–2724.

[14] J. Bryans, M. Koutny, L. Mazare, and P. Ryan, “Opacity generalised to transition systems,” in

Proc. of the 3rd International Workshop on Formal Aspects in Security and Trust, July 2005,

pp. 81–95.

[15] A. Saboori and C. N. Hadjicostis, “Notions of security and opacity in discrete event systems,”

in Proc. of the 46th IEEE Conference on Decision and Control (CDC 2007), December 2007,

pp. 5056–5061.

[16] C. Cassandras and S. Lafortune, Introduction to Discrete Event Systems. Kluwer Academic

Publishers, 1999.

[17] W. Wonham, Supervisory Control of Discrete–Event Systems, Systems Control Group, De-

partment of Electrical and Computer Engineering, University of Toronto. Available at

www.utoronto.ca/DES, 2005.

[18] R. Focardi and R. Gorrieri, “A taxonomy of trace–based security properties for CCS,” in Proc.

of the 7th Workshop on Computer Security Foundations, June 1994, pp. 126–136.

[19] S. Schneider and A. Sidiropoulos, “CSP and anonymity,” in Proc. of the 4th European Sym-

posium on Research in Computer Security, September 1996, pp. 198–218.

[20] D. K. Pradhan and M. Chatterjee, “GLFSR — a new test pattern generator for built–in–

self–test,” IEEE Transactions on Computer–Aided Design of Integrated Circuits and Systems,

vol. 18, no. 2, pp. 238–247, February 1999.

[21] R. Anderson, “On Fibonacci keystream generators,” in Proc. of International Workshop on

Fast Software Encryption, December 1994, pp. 346–352.

44



[22] M. Briceno, I. Goldberg, and D. Wagner. A pedagogical implementation of the

GSM A5/1 and A5/2 voice privacy encryption algorithms. [Online]. Available:

http://www.scard.org/gsm/a51.html.

[23] J. W. Bryans, M. Koutny, and P. Y. A. Ryan, “Modelling opacity using Petri nets,” Electronic

Notes in Theoretical Computer Science, vol. 121, pp. 101–115, February 2005.

[24] E. Badouel, M. Bednarczyk, A. Borzyszkowski, B. Caillaud, and P. Darondeau, “Concurrent

secrets,” Discrete Event Dynamic Systems, vol. 17, no. 4, pp. 425–446, December 2007.

[25] N. Hadj-Alouane, S. Lafrance, L. Feng, J. Mullins, and M. Yeddes, “On the verification of

intransitive noninterference in multilevel security,” IEEE Transactions on Systems, Man and

Cybernetics, Part B (Cybernetics), vol. 35, no. 5, pp. 948–958, October 2005.

45


	08-2204 REPORT DOCUMENTATION PAGE.pdf
	   Form Approved
	   OMB NO. 0704-0188

	REPORT DOCUMENTATION PAGE
	Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comment regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services.  Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
	2.  REPORT DATE
	1.  AGENCY USE ONLY (Leave blank)
	5.  FUNDING NUMBERS
	 4.  TITLE AND SUBTITLE
	6.  AUTHOR(S)
	8.  PERFORMING RGANIZATION
	7.  PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
	     REPORT NUMBER
	10.  SPONSORING/MONITORING
	9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
	11.  SUPPLEMENTARY NOTES
	12b.  DISTRIBUTION CODE
	12a. DISTRIBUTION/AVAILABILITY STATEMENT
	13.  ABSTRACT (Maximum 200 words)
	15.  NUMBER OF PAGES
	14.  SUBJECT TERMS
	16.  PRICE CODE


