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Abstract

We present a simple new criterion for classification, based on principles from
lossy data compression. The criterion assigns a test sample to the class that uses
the minimum number of additional bits to code the test sample, subject to an al-
lowable distortion. We rigorously prove asymptotic optimality of this criterion for
Gaussian data and analyze its relationships to classical classifiers. The theoreti-
cal results provide new insights into the relationships among a variety of popular
classifiers such as MAP, RDA, k-NN, and SVM. Our formulation induces several
good effects on the resulting classifier. First, minimizing the lossy coding length
induces a regularization effect which stabilizes the (implicit) density estimate in a
small sample setting. Second, compression provides a uniform means of handling
classes of varying dimension. The new criterion and its kernel and local versions
perform competitively on synthetic examples, as well as on real imagery data such
as handwritten digits and face images. On these problems, the performance of
our simple classifier approaches the best reported results, without using domain-
specific information. All MATLAB code and classification results will be made
publicly available for peer evaluation.

1 Introduction

The quintessential problem in statistical learning [9,20] is to construct a classifier from
.. iid " - .
labeled training data (x;, ;) ~ px,y(x,y). Here, &; € R" is the observation, and

y; € {1,..., K} its associated class label. The goal is to construct a classifier g :
R™ — {1,..., K} which minimizes the expected risk (or probability of error):
g = argmin E[I,(x)2y], €))

where the expectation is taken with respect to px y. When the conditional class distri-
butions p x|y (z|y) and the class priors py (y) are known, then the maximum a posterior



(MAP) assignment

g =argmax__Inpxy(zly) + Inpy(y) 2)
ye{l,...,.K}
gives the optimal classifier.

In the typical classification setting, the distributions px |y (x|y) and py (y) need to
be learned in advance from a set of training data whose class labels are given. Con-
ventional approaches to model estimation (implicitly) assume that the distributions are
nondegenerate and the samples are sufficiently dense. However, these assumptions
fail in many classification problems which are vital for applications in computer vi-
sion [11-13,21]. For instance, in the case of face recognition, the set of images of a
person’s face taken from different angles and under different lighting conditions often
lie in a low-dimensional subspace or submanifold of the ambient space [10]. As a re-
sult, the associated distributions are degenerate or nearly degenerate. Moreover, due to
the high dimensionality of imagery data, the set of training images is typically sparse.

Inferring the generating probability distribution px,y from a sparse set of samples
is an inherently ill-conditioned problem [20]. Furthermore, in the case of degenerate
distributions, the classical likelihood function (2) does not have a well-defined maxi-
mum [20]. Thus, to infer the distribution from the training data or to use it to classify
new observations, the distribution or its likelihood function needs to be properly “reg-
ularized.” Typically, this is accomplished either explicitly via smoothness constraints,
or implicitly via parametric assumptions on the distribution. However, even if the dis-
tributions are assumed to be generic Gaussians, explicit regularization is still necessary
to achieve good small-sample performance [5].

In many real problems in computer vision the distributions associated with differ-
ent classes of data have different model complexity. For instance, when detecting a
face in an image, features associated with the face often have a low-dimensional struc-
ture which is “embedded” as a submanifold in a cloud of essentially random features
from the background. Model selection criteria such as the minimum description length
(MDL) [17] serve as important modifications to MAP for estimating a model across
classes of different complexity. However, MDL does not specify how the model com-
plexity should be properly accounted for when classifying new data among models that
have different dimensions.'

In model estimation, MDL selects the optimal model as the one that minimizes the
overall coding length of the given (training) data, hence the name “minimum descrip-
tion length” or “minimum coding length” [2]. In this paper, we formulate classification
as a data compression problem. The idea is to measure how efficiently a new observa-
tion can be encoded by each class of the training data, and to assign the new observation
to the class that requires the minimum number of additional bits. We dub this criterion
“minimum incremental coding length” (MICL) for classification, as a counterpart of the
MDL principle for model estimation.

We will see that the proposed criterion naturally addresses the issues of regular-
ization and model complexity. Regularization is introduced through the use of lossy

Note that model estimation is about inferring a model from the training data whereas classification is
about inferring a decision on a new test sample given the models.



coding?, that is, coding the data only upto an allowable distortion. The coding length
naturally accounts for model complexity by directly measuring the difference in the
volume (hence dimension) of the training data with and without the new observation.

Relationships to Existing Classifiers. While MICL and MDL both operate by min-
imizing a coding-theoretic objective, MICL differs strongly from traditional MDL ap-
proaches to classification [7]. Rather than using minimal coding length to select a de-
cision boundary from a set of allowable decision boundaries, we use coding length as a
direct measure of how well the training data represent the new sample. MICL therefore
has more in common with the classical ML/MAP decision criteria, since maximizing
the likelihood also minimizes the number of bits needed to code the sample accord-
ing to Shannon’s optimal lossless coding scheme. However, the use of lossy coding
distinguishes MICL from these approaches. Within the lossy data coding framework,
we establish in this paper that the MICL criterion leads to a family of classifiers that
generalize the conventional MAP classifier (2). We rigorously show that for Gaussian
distributions, the MICL criterion asymptotically converges to a regularized version of
MAP? (see Theorem 1) and we also gives a precise estimate on the convergence rate
(see Theorem 2). In the Gaussian case, one effect of lossy coding is to induce a regu-
larization effect similar to Friedman’s Regularized Discriminant Analysis (RDA) [5]*,
with similar gains in finite sample performance with respect to MAP/QDA.

When the distributions involved are not Gaussian, the MICL criterion can be eas-
ily extended via a nonlinear kernel or can be applied in a local neighborhood of the
test sample, similar to the popular k-Nearest Neighbor (k-NN) classifier [4, 16]. How-
ever, the local MICL classifier significantly improves the k-NN classifier as it accounts
for both the number of samples and the distribution of the samples within the neigh-
borhood. When dealing with almost degenerate distributions or sparse samples, the
distribution of the neighboring samples typically contains more information than the
majority label about the correct class of the new observation (see Figure 4 for a com-
parison).

Work on Support Vector Machines (SVM) [20] has shown that not all samples in
the training data are equally important for the resulting classifier. In this framework, the
final decision hypersurface is represented in terms of a small portion of nearby samples,
called “support vectors.” Thus, for generic distributions, the SVM may significantly
compress the training data for classification purposes. However, if the training data
have degenerate structure such that most samples lie on low-dimensional subspaces or
submanifolds, almost all the samples help determine the global shape of the optimal
separating hyperplane or hypersurface. In this case, learning the separating hyperplane
or hypersurface via SVM may no longer be more generalizable than directly harnessing
the low-dimensional structures of the training data via MICL for classification (see
Figure 4 for a comparison). Moreover, the kernelized version of MICL provides a

2This contrasts with the Shannon source coding scheme traditionally used in MDL [14, 17], placing our
approach more along the lines of lossy MDL [15].

3MAP subject to a Gaussian assumption is also known in the learning literature as Quadratic Discriminant
Analysis (QDA) [9].

4Throughout this paper, we only consider the version of RDA which regularizes the covariance by a
multiple of the identity: Y =S+al. Regularizing by the pooled data covariance as in [5] is less appropriate
if we wish to consider groups with significantly different and anisotropic covariances.



simpler alternative to the SVM approach of constructing a linear decision boundary
in the embedded (kernel) space, potentially exploiting details of the structure of the
embedded data (see Figure 5 for an example).

Contributions of this Paper. The main contribution of this paper is to establish for
the first time a formal and rigorous connection between classification and lossy data
compression. The theoretical results provide new insights into the relationships among
a variety of popular classifiers such as MAP, RDA, k-NN, and SVM, as well as unite
many important statistical concepts associated with classification such as regulariza-
tion, model complexity, and rate distortion. As a result, the proposed MICL classifier,
though very simple, is guaranteed to perform competitively under a wider range of
conditions than many conventional classifiers. Extensive simulations and experiments
on real imagery data show that MICL often approaches the best reported results from
more sophisticated classifiers or systems, without using any domain-specific informa-
tion (Section 3).

2 Classification Criteria and Analysis

2.1 Minimum Incremental Coding Length

We formulate the problem of classification from the perspective of lossy data coding
and compression [3]. A lossy coding scheme maps vectors X = (x1,...,L,;) €
R™ ™ to a sequence of binary bits, from which the original vectors can be recovered
upto an allowable distortion E[||# — z||?] < 2. The length of the bit sequence is then
a function: L.(X) : R"*™ — Z,. Given a lossy coding scheme and its associated
coding length function L.(-), we can encode each class of training data X; = {x; :
y; = j} using L. (X;) bits. The entire training dataset can be represented by a two-part

code using
K

Length(X, ) =Y Le(X;) — |X;|log, py (j) (bits). 3)
j=1
Here, the second term is the minimum number of bits needed to (losslessly) code the
class labels y;.
Now, suppose we are given a new (test) sample @ € R”, whose associated class
label is y(x) = j. If we code x jointly with the training data X; of the jth class, the
number of additional bits needed to code the pair (x, y) is:

0L.(x,j) = L (X; U{x}) — L (X;) + L(j). 4)

Here, the first two terms measure the excess bits needed to code (z, X;) upto distortion
€2, while the final term L(3) is the cost of losslessly coding the label y(x) = j.

In the classification setting, the class label y associated with test sample x is un-
known, and must be inferred via some classification criterion. From the perspective of
data compression, an intuitive criterion is the following:



Criterion 1 (Minimum Incremental Coding Length). Assign x fo the class which min-
imizes the number of additional bits needed to code (x,):

g(x) = argmin 0L (x,j). Q)
1=1,...,.K

The above criterion (5) can be taken as a general principle for classification, in the
sense that it can be applied using any lossy coding scheme and its associated coding
length function. Nevertheless, in order for the classification to be effective, the coding
scheme should be such that the associated coding length is the shortest possible for the
given data. More specifically, if the data are from some family of distributions, the
asymptotically optimal coding length is given by the rate-distortion of the distribution’
[3]; Or if we consider the data as a discrete set of points, the coding length should be
approximately® the minimum among all possible coding schemes subject to the given
distortion. For the rest of this subsection, we discuss how to choose the function L.(+)
for the data  and L(-) for the label y () in the formula (4) of § L..

2.1.1 Lossy Coding Length of Gaussian Data

We will first consider a coding length function L. which is approximately (asymptoti-
cally) optimal for Gaussian distributions. The (implicit) use of a coding scheme which
is optimal for Gaussian sources is equivalent to assume that the conditional class distri-
butions px |y are unimodal, and can be well-approximated by Gaussians.” We will rig-
orously analyze the performance of the MICL in this (admittedly restrictive) scenario,
and demonstrate its relationships with classical classifiers such as MAP and RDA. In
Section C we will show using the same L. function, how the MICL can be extended to
arbitrary, multimodal distributions via an effective local Gaussian approximation.

For a multivariate Gaussian source A/ (u, ¥), the average number of bits needed to
code a vector subject to a distortion €2 is approximately:

R.(Y) = %logQ det (I + E%E) (bits/vector). 6)

Then given the data X = (x1,...,@,,) with sample mean g = L 3" x;, we
can represent them upto expected distortion 2 using on average Rs(f)) bits, where

(X)) = 25 3 (i — 1) (x; — u)7 is the sample covariance, and so the number of

bits needed for the m vectors is ng(f]). Since the optimal codebook is adaptive to the

data, we need additional nR.(X) bits to represent the principal axes of the covariance

AT A
matrix. In addition, we need an extra % log, (1 + "62“) bits to code the mean vector

>The construction of optimal coding schemes (achieving the lower bound given by the rate-distortion
of the data distribution) is a difficult problem, even in the Gaussian case (see e.g. [8]). Note however, that
for the purposes of classification, it is only necessary for there to exist in principle a coding scheme whose
length function is Le.

6 Approximation is necessary even if the given data are binary numbers instead of real-valued vectors,
since the universal minimum coding length, or Kolmogorov complexity, of the data is non-computable [3].

7This assumption can be significantly relaxed. The same analysis and results can be easily generalized to
a mixture of Gaussians.



ft. Thus, the total number of bits required to code X becomes:

. m+n n & n T
Le() = ™" log, det (1 + gz(x)) + 2 log, (1+ ”62“). %)

The first term, therefore, gives the number of bits needed to code the distribution of the
vectors x; about their mean, [, while the second gives the number of bits needed to
code the mean.

In addition to well-approximating the optimal coding length for Gaussian data, one
can show that this function gives a good upper bound on the number of bits needed to
code finitely many samples lying on a linear subspace (or equivalently, a degenerate
Gaussian distribution).

2.1.2 Coding of the Class Label

Since the label Y is discrete, it can be coded losslessly. The form of the final term L(j)
in (4) depends on one’s prior assumptions about the nature of the test data. If the test
class labels Y are known to have the marginal distribution P[Y" = j] = m;, then the
optimal coding lengths are (within one bit):

L(j) = —logy ;. ®)

If the testing data are also iid samples from the same distribution px y as the training

data, then we may estimate 7; = % Conversely, if we have no prior knowledge
regarding the distribution of the class labels, it may be more appropriate to set 7; = %,
in which case the excess coding length depends only on the number of additional bits
needed to encode x. Similar to the MAP classifier (2), the choice of 7; effectively
gives a prior on class labels.

2.1.3 The Overall Algorithm

Given the coding length function (7) for the observations and the coding length (8) for
the class label, we summarize the MICL criterion (5) as Algorithm 1 below.

Algorithm 1 (The MICL Classifier).
1: input: a set of m training samples partitioned into K classes X, &>, ..., Xk and
a test sample x.
2: compute prior distribution of class labels m; = |X;|/m;
3: compute incremental coding length of x for each class:
SLe(w,j) = Lo(X; U{a}) - L.(X;) — log, ),

where R 0T i
Le(é\.’)imT—'—nlog2 det ([+ E%E(X)) + glog2 (1 + NEQM);
4: let §(x) = argmin;—1 g 6L.(x, j);

5: output: §(x).

Figure 1 shows the performance of the MICL classifier on two simple but informa-
tive toy problems in R2. In both cases, the MICL criterion harnesses the covariance



Figure 1: MICL harnesses the covariance structure of the data to interpolate (left) and
extrapolate (right) in regions where the training samples are sparse.

structure of the data to achieve good classification results, even in sparsely sampled re-
gions. In the left example, the criterion interpolates the data structure to achieve correct
classification, even near the origin where the samples are sparse. In the right example,
the criterion extrapolates the horizontal line to the other side of the plane. In both
cases, methods such as k-NN and support vector machine (SVM) fail to give correct
classification in these regions (see Figure 4 for a comparison). The astute reader may
notice, however, that these decision boundaries are very similar to what MAP/QDA
would give. This raises an important question: what is the precise relationship between
MICL and MAP, and under what circumstances is MICL superior?

2.2 Asymptotic Behavior and Relationship to MAP

In this section, we analyze the asymptotic behavior of the MICL criterion (5) using
coding length function (7), as the number of training samples, m, goes to infinity. We
will see that asymptotically, classification based on the incremental coding length is
equivalent to a regularized version of MAP (or ML), subject to a reward on the di-
mension of the classes. The precise correspondence is given by the following theorem,
proven in [1]:

Theorem 1 (Asymptotic MICL). Let the training samples {(x;, y;) } 7, % px.y(z,y),
with® p; = E[X|Y = j], ¥; = Cou(X|Y = j). Then as m — oo, the MICL criterion
coincides (asymptotically, with probability one) with the decision rule

N g2 1
i(x) = argmax Lo (w Ly, 55+ ;I) +Inm; + = De(S)), )

21,
where Lg(-| 1, X) is the log-likelihood function for a N (p,Y) distribution®, and
D.(X;) = tr [Ej(Ej + %I)_l} is the effective dimension of the j-th model, rela-

tive to the distortion £2.

8We assume that the first and second moments of the conditional distributions exist.

Notice that although the form of the criterion involves a Gaussian log-likelihood, the result holds for
arbitrary second-order px y, and makes no Gaussian assumption. However, directly applying the MICL
with coding length (7) to complicated multimodal distributions will often result in poor classification perfor-
mance, and is therefore not advisable. Section C discusses how MICL can be modified to handle arbitrary
data distributions.



This result shows that asymptotically, MICL generates a family of MAP-like clas-
sifiers parametrized by the distortion 2. Notice that if all of the distributions are

non-degenerate (i.e.their covariance matrices X; are nonsingular), then lim._,o (Z j+

2 .
%I) =13%;, and lim. 9 D.(X;) = n, a constant across the various classes. Thus,

for nondegenerate data, the family of classifiers induced by MICL contains the conven-
tional MAP classifier (2) at ¢ = 0. Any reasonable rule for choosing the distortion €2
given a finite number, m, of samples should therefore ensure that ¢ — 0 as m — oo.
This guarantees that for non-degenerate distributions, MICL converges to the asymp-
totically optimal MAP criterion.

Simulations (e.g.Figure 1) suggest that the limiting behavior does provide useful
information about the performance of the classifier on finite training data. Yet Theorem
1 is only strictly valid as m — oo, giving no indication as to whether one should
expect to observe such behavior in practical scenarios. The following result, proven
in [1] shows that the MICL discriminant functions, 0 L. (i, j) converge quickly to their
limiting form, § L2° (z, j):

Theorem 2 (MICL Convergence Rate). As the number of samples, m — oo, the MICL
criterion (5) converges to its asymptotic form, (23) at a rate of m~z. More specifi-
cally'®, with probability at least 1 — o, |6L.(2,j) — (5L§O(z,j)| < ¢(a) - m=z for
some constant c¢(a) > 0.

From the proof of the theorem (see supplementary material), one may further no-
tice that the constant ¢ becomes smaller when the covariance tends to singular, which
suggests that the convergence speed is higher when the distributions are closer to being
degenerate.

2.3 Improvements over MAP

In the above, we have established the fact that asymptotically, the MICL criterion (23)
is just as good as the MAP criterion. Nevertheless, in the cases of finite samples or
degenerate distributions, the MICL criterion makes several important modifications to
the MAP criterion, which may significantly improve its performance.

2.3.1 Regularization and Finite-Sample Behavior

Notice that the first two terms of the asymptotic MICL criterion (23) have the form
of a MAP criterion, based on an N/ (uj, X+ %I ) distribution, with prior m;. This

is in some sense equivalent to softening or regularizing the distribution by % along
each dimension, and has two important effects. First, it renders the associated MAP
decision rule well-defined, even when the true data distribution might be (almost) de-
generate. Even for non-degenerate distributions, there is empirical evidence showing
that for appropriately chosen ¢, S+ %I gives a more stable finite-sample estimate of
the covariance [5], leading to lower misclassification rates.

10 Assuming that the fourth moments E[||z — p||4] of the conditional distributions exist.
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Figure 2: Excess misclassification risk incurred by using MAP rather than MICL, as a
function of € and m. MICL outperforms MAP in most settings, with the largest gain
when m is relatively small. Left: two isotropic Gaussians in R?. Right: anisotropic
Gaussians in R

Figure 2 demonstrates this effect on two simple examples in R?. In each ex-
ample, we vary the number of training samples, m, and the distortion €. For each
(m, ) combination, we draw m training samples from two Gaussian distributions
N(p;,2i),% = 1,2, and estimate the Bayes risk of the resulting MICL and MAP
classifiers. This procedure is repeated 500 times, to estimate the overall Bayes risk
with respect to variations in the training data. In Figure 2 we visualize the (estimated)
difference in risks, Ry;ap — Ryrrcr. Positive values, then, indicate that MICL is
outperforming MAP. The red line approximates the zero level-set of the difference in
risks, where the two methods perform equally well.

The generating distributions are parameterized as (at left) p; = [—%, 0], ppy =
[1,0], £1 = 55 = I, and (atright) p; = [—2,0], py = [2,0], Ty = diag(1,4), Zo =
diag(4,1). At left, in the isotropic case, MICL outperforms MAP for all sufficiently
large €. with a larger performance gain when the number of samples is small. In the
anisotropic case (right), for a good range of ¢, MICL dramatically outperforms MAP
for small sample sizes. We will see in the next example that this effect becomes more
pronounced as the dimension, n, increases.

2.3.2 Dimension Reward

The effective dimension term D.(X;) in the asymptotic MICL criterion (23) can be
rewritten as D, (X;) = >0, ﬁ, where ); is the ith eigenvalue of ¥;. Notice that

if the data distribution lies on a perfect subspace of dimension d (i.e.. Ay,...,A\g >
% and Agy1,..., 0 < %), D+ will be exactly d, the dimension of the subspace.
In general, D can be viewed as “softened” estimate of the dimension, relative to the
distortion 2. This quantity has been dubbed the “effective number of parameters”
in the context of ridge regression [9]. Thus, minimizing the MICL criterion rewards
distributions that have relatively higher dimension.!! Note however, that this effect is
somewhat countered by the regularization induced by €, which has a larger “reward”

"Notice that here dimension assumes an “opposite” role to that in model estimation where we typically
penalize models with higher dimension.
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Figure 3: Excess risk incurred by using MAP and RDA rather than MICL, as a function
of number of samples m and dimension n.

effect on lower dimensional distributions.

Figure 3 empirically compares MICL to the conventional MAP and the regularized
MAP (or RDA [5]). In this example, we draw m samples from three nested Gaussian
distributions: one has a full rank n, one has rank n/2, and one has rank 1. All sam-
ples are corrupted by 4% Gaussian noise. We estimate the Bayes risk for each (m,n)
combination by averaging over 500 independent trials. For fairness of comparision, the
regularization parameter in RDA, and the distortion ¢ for MICL are chosen indepen-
dently for each trial to minimize the cross-validation error over the training data. Plot-
ted are the (estimated) differences inrisk, Ry ap — Ryrorn (left)yand Rrpa — Ryrcor
(right). The red lines again correspond to the zero level-set of the difference. Notice
that with little surprise, MICL outperforms MAP for most (m,n), and that the effect
is most pronounced when n is large and m is small. Interestingly, when m is much
smaller than n (e.g.the bottom row of Figure 3 right), MICL demonstrates a significant
performance gain with respect to RDA. As the number of samples increases, though,
there is a region where RDA is slightly better. However, for most (m,n) considered
here, MICL and RDA have rather close perforrnance.12

2.4 Implementation Issues

The rigorous analysis of the Gaussian case in the previous subsections reveals many
good properties of the proposed MICL criterion. In reality, the distribution(s) of the
data of interest may not be Gaussian. If the rate-distortion function of such distribu-
tion(s) is known, one could, in principle, carry out similar analysis as for the Gaussian
case. Nevertheless, in this subsection, we discuss some practical ways of modifying
the MICL criterion that are applicable to arbitrary distributions, without losing some
of the desirable properties of MICL.

12Note that RDA [5] is designed to be nearly optimal for finite samples of Gaussians.

10



2.4.1 Kernel MICL Criterion

Since XXT and XT X have the same non-zero eigenvalues, we have the following
identity
n Ty _ "N oyT
log, det(I+52—mXX ) = log, det(1+€2—mx X). (10)

From this identity, we notice that to evaluate the coding length function (7), we only
need to compute the inner products between the data points. Thus, if the data x (of each
class) are not Gaussian but there exists a nonlinear map ¢ such that the transformed data
¢(x) are (approximately) Gaussian, we can replace the inner product 27 5 with a new
one k(xy,z2) = ¢(x1)T ¢(x2). The so-defined function k(xy,x2) is a symmetric
positive (semi-)definite function, known in statistical learning as a “kernel function.”
Thus, by a proper choice of the kernel function, one may achieve better classifica-
tion performance for certain classes of non-Gaussian distributions. In practice, some
popular choices of the kernel functions include the polynomial kernel k(x1,x2) =
(T2 + 1)?, the radial basis function kernel k(x1, x2) = exp(—v||x1 — =2||?) and
their variants.

2.4.2 Local MICL Criterion

For data drawn from complicated multi-modal distributions, it may be difficult or im-
possible to find a kernel function that converts the data into Gaussians. In this case,
we can apply the MICL criterion locally, in a neighborhood of the test sample x. For
instance, we may consider the k-nearest'? neighbors of z in the training set X', which
we denote as N*(zx). Training data in this neighborhood that belong to each class are
Nj(x) = X; N N*(x),j = 1,..., K. Then in the MICL classifier (Algorithm 1), we
replace the incremental coding length § L. (, j) by its local version:

SLe(x,j) = Le (N} () U {z}) — Le(Nf (2)) + L(j), (1
o o i IN(@)]
where L(j) is replaced with its local version: L(j) = — log, MR-

The local MICL criterion gives a universal classifier that is applicable to arbitrary
distributions. As a corollary to Theorem 1, we have

Corollary 3 (Asymptotic Local MICL). If the probabilistic density function p;(x) =
p(xly = j) of each class is non-degenerate, as k and m go to co the local MICL
criterion converges to the MAP criterion:

g(x) = argmax Inp;(x) + In7;.
1=1,...,.K

Proof (sketch). For any fixed k, when the sample size m goes to infinity, the radius of
the neighborhood goes to zero. Hence p; — @ and ¥; — 0 and the first term in the
asymptotic MICL (23) is the same for all classes. Also the third term D goes to n as

€ goes to zero. The only remaining effective term in the classifier is the coding length

k €T
L(4) for the class label. Since % — m;-pj(x) as k — oo, we have the conclusion

of the corollary. O

13In terms of the Euclidean distance.

11



Thus, when the sample size is large or more precisely when the density of samples
around the query point is high, the local MICL criterion behaves more like a k-Nearest
Neighbor (k-NN) criterion since the effect of the first and third term in (23) diminishes.
The criterion, just like the k-NN criterion, approximates the MAP criterion when the
sample size goes to infinity and k is large.

However, the finite-sample behavior of the local MICL criterion can be drastically
different from that of k-NN, especially when the samples are sparse and the distribu-
tions involved are almost degenerate because in those cases, the first and third term in
(23) become significant. The first term approximates the local shape of the distribution
p; () from the handful neighboring samples N J’? (x) by a (regularized) Gaussian;'* and
the third term accounts for the dimension of the subspace spanned by these samples in
case p;(x) is close to degenerate around . These two terms together provide a more
comprehensive measure of how well the test sample x can be interpolated or extrapo-
lated by its neighboring training samples. As we will demonstrate in the next section
with extensive simulations and experiments, the local MICL criterion consistently has
superior finite-sample performance over the conventional k-NN criterion.

3 Simulations and Experiments

In this Section, we conduct extensive simulations and experiments on real imagery
data. Our results show that MICL and its kernel and local variants approach the
best reported results from more sophisticated classifiers or systems, without using
any domain-specific information. In our implementation, the complexity of the global
MICL (Algorithm 1) is quadratic in the dimension of the data; the complexity of the
local MICL is similar to that of k-NN.

3.1 Simulations on Synthetic Data

Extrapolation of Data Structure. We compare the decision boundary given by MICL
in Figure 1 (right) to that of k-NN and SVM. For MICL we choose € = 1, for k-NN
k = 5, and SVM is run with a Radial Basis kernel with v = % All three methods give
plausible decision boundaries on the right side of the vertical line. However, both k-
NN and SVM assign everything on the left side of the vertical line to that line, whereas
MICL extrapolates the data structure to this side. Note that while MICL is certainly
not the only classifier capable of such extrapolation, it does provide a very simple and
effective means of harnessing data structure that is ignored by methods such as k-NN
and SVM-RBF.

Local MICL and Kernel MICL. Figure 5 compares the nonlinear extensions to
MICL discussed in Section C on a two-spiral decision problem. Here we choose K =
5, € = 2.5 for local MICL (LMICL), k£ = 5 for k-NN, an RBF kernel with v = 1000
and € = 1 for kernel MICL (KMICL), and the same kernel for SVM. The local version
of MICL exploits the approximately-locally-linear structure of the data to produce a

14In the same spirit as using a Gaussian kernel in the Parzen’s density estimator [20].
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(a) MICL (b) k-NN (c) SVM

Figure 4: Extrapolation of data structure. Left: MICL. Center: 5-NN. Right SVM-
RBF.

(@LMICL (b)) 5NN (c)KMICL  (d) SVM

Figure 5: Comparison of nonlinear extensions to MICL against SVM and k-NN. Notice that
local MICL improves upon k-NN, producing a smoother and more intuitive decision boundary.
Kernel MICL and SVM produce similar boundaries, that are smoother and better respect the data
structure than those given by either of the local methods.

smoother decision boundary than k-NN. Also, notice that both kernel MICL and kernel
SVM produce smooth decision boundaries that extrapolate the spiral structure of the
data in the upper left corner. However, the improved performance of these kernelized
methods comes at the price of having to select a proper kernel, a non-trivial problem
for this dataset, since certain popular kernels (e.g. polynomial) do not work for this
dataset.

3.2 Tests on Real Imagery Data

Handwritten Digit Recognition. We first test the MICL classifier on two standard
datasets for handwritten digit recognition (Table 1 top). The MNIST handwritten digit
dataset [12] consists of 60,000 training images and 10,000 test images. We achieved
better results using the local version of MICL, due to non-Gaussian distribution of
the data. With £k = 20 and ¢ = 150, local MICL achieves a test error 1.59%, out-
performing simple methods such as k-NN as well as many more complicated neural
network approaches (e.g.LeNet-1 [12]). MICL’s error rate approaches the best result
for a generic learning machine (1.1% error for SVM with a degree-4 polynomial ker-
nel). Problem specific approaches, such as generating synthetic training samples, have
resulted in lower error rates, however, with the best reported result achieved using a
specially engineered neural network [19].

We also test on the challenging USPS digits database (Table 1 bottom). Here,
even humans have considerable difficulties (about 2.5% error). With £ = 35 and ¢ =
0.03, local MICL achieves an error rate of 4.88%, again outperforming k-NN (best
error rate achieved with £ = 4), and close to the best results from a generic learning

13



machine (4.1% for SVM with a degree 3 polynomial kernel [20]). Using domain-
specific information, one can achieve better results. For instance [18] (best reported
in [20]) achieves 2.7% error using tangent distance to a large number of prototypes.
Such information can be readily incorperated into our framework.

Method Error (%) || Method Error (%)
LMICL 1.59 k-NN 3.09
SVM-Poly [20] 1.1 Best [19] 04
Method Error (%) || Method Error (%)
LMICL 4.88 k-NN 5.28
SVM-Poly [20] 4.1 Best [18] 2.7

Table 1: Results for handwritten digit recognition on two standard datasets. Top: MNIST
dataset. Bottom: USPS dataset.

Face Recognition. We further verify MICL’s appropriateness for vision problems by
testing its performance on the Yale Face Database B [6]'3, which tests illumination- and
pose-sensitivity of face recognition algorithms. The dataset is divided into four subsets,
corresponding to different illumination angles. Following [6, 13], we use subsets 1 and
2 for training, and report the average test error across the four subsets. We apply
Algorithm 1, not the local or kernel version, directly to the raw imagery data, with
€ = 75. Table 2 shows the comparison with popular face recognition techniques such as
Eigenfaces. We see that MICL significantly outperforms classical subspace techniques
on this problem, with error 0.88% near the best reported results given in [6, 13] that
were obtained using a domain-specific model of illumination for face images. We
suggest that the source of this improved performance is precisely the regularization
induced by lossy coding. In this problem the number of training vectors per class,
19, is very small compared to the dimension, n = 32,256.'® Our simulations (e.g.the
lower right corner of Figure 3) show that this is exactly the circumstance in which
MICL is superior to MAP and even RDA. Interestingly, this suggests that if we have a
criterion that directly exploits the degenerate or low-dimensional structures of the data,
performing dimensionality reduction before classifying becomes unnecessary or even
undesirable.!”

Method Error (%) || Method Error (%)
MICL 0.88 Eigenface [6] 25.8
Subspace [6] 4.6 Best [13] 0

Table 2: Face recognition under widely varying illumination. MICL outperforms a variety of
classical face recognition methods such as Eigenfaces on Yale Face Database B [6].

15We use the normalized and cropped version of this dataset, as in [13].

16We apply our method to the raw 168 x 192 images without additional preprocessing.

"Working directly in the high-dimensional space is computationally feasible thanks to the kernel property
(10), and can be further accelerated via block determinant identites (see [1] for details).
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4 Conclusion

In this paper, we propose and study a new classification criterion based on the principle
of lossy data compression, called the minimum incremental coding length (MICL)
criterion. We formally establish its theoretical optimality. It generates a family of
classifiers which unify classical techniques such as MAP, RDA, and k-NN. This family
of classifiers extends the working conditions of these classical techniques to situations
where the sample set is sparse or degenerate in a high-dimensional space.

On real vision problems, the MICL criterion and its kernel and local versions
perform competitively (almost optimally for the face recognition problem) without
domain-specific engineering. We believe that MICL provides a powerful means of
exploiting low-dimensional structure in high-dimensional imagery data for classifica-
tion.
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In this appendix, we provide some of the mathematical and implementation de-
tails which were omitted due to space limitations. In section A, we prove Theorem 1,
regarding the asymptotic behavior of the MICL criterion. In section B, we prove Theo-
rem 2, regarding its convergence rate. Section C discusses an efficient implementation
for high-dimensional data. The final version of the paper will refer to a technical report
containing these results.

A Proof of Theorem 1

In this section, we prove Theorem 1 of Section 2.2. We will require the following
two lemmas, the first of which is useful for computing higher order derivatives of the
coding length function:

Lemma 4. Let 5,?[ be the matrix whose k,l entry is one and whose other entries are
all zero. Let A(m) = I + %%, and ¥ = (A(m) +T)~7. Then for k > 1,

€2 m41

0% Indet(A(m) +T) b1 sy
=(-1) + v 8% i v , (12)
8Fi17jlari2,j2 s arilmjk oESym;f—l) ;Ell: [ Je@ta® ]

ikJk

where Sym(p) is the symmetric group on p letters. Thus, the k-th partials of log, det(A(m)+
') are all ©(1) with respect to increasing m.

Proof. Induction on k. For k = 1, the standard result that % =w-T gives

dlndet(A(m) +T)
aril-jl

() =@ 0

11,51

Suppose that (12) holds for 1...%, — 1. Then

=1 In det (A r i
At @D (S e T [, Y]
21,J1 12,92 * tk—15Jk—1 o€Sym(k—2) 1=1 i
(14)
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and so the k-th partial is given by

0

k ij ij —
(_1) T, e 6‘70‘(1)10‘(1)\11 T Jo(k—2)lo(k—2) -
koJk 5 eSym(k—2) ir ikt
7,] 17
( 8sz n ]a(l)iau) v \]:j(s]o(k 2)lo(k—2) v+
ov
17 17
+ le(s]a(l)Z (1)le \Ilcsjcr(k 2)1a(k 2) 81"1 g ) (15)
kot 1k—1Jk—1
Notice that ar?jj (5;1 i, ¥. Plugging this quantity into (15), changing the order
of the partials wrt I';, ;, and I';, | 5, |, and recognizing that the sum is now over all
permutations of {1 ... k—1} gives the desired formula. O

Our main use of this Lemma is to establish that partials of Indet(A(m) + I") are all
O(1).

Now, let R.(Q) = 3 log, det(I + %3(Q)) denote the coding rate associated with
a set of samples Q, and let dR.(Q,z) = R.(Q U {z}) — R-(Q) denote the change
in rate due to introducing a new sample, z. The following lemma shows that 0 R is
asymptotically quadratic in z:

Lemma 5. Letq, ... q,, .. “d po(q), and let E[Q] = p and Cov(Q) = X. Let
QM =1qy,...,q,,] € R™™. ThenVz € R",

2 \ ! 2
lim  2mIn2 §R.(Q™, 2) = (z—p)T (2+21) (z—,u,)—tr[E(E—i—%I)_l] a.s.

(16)
Proof. LetI' = 2 i (z— f1)(z — fv)T. Then,
_ s om) _ s om)
2102 OR. In det <I+ 22(@ u{z})) In det (I+ %50 ))
— M solm) _ M svom)
lndet( + +1Z(Q )+F) In det (1+ 55 )).

Since Indet(A) is analytic in the entries of the matrix A, we may Taylor expand the
first term in I', about I' = 0. The above becomes

lndet<I+ >+Z ( 2m+12)

1
- —oy n e
.F” +0(m™%) — Indet (I + = E) .
ij

a7
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Here, we have used that algAﬂ = (A~T);;. The fact that the higher order terms go
i

as m~2 follows from Lemma 4. Applying the definition of I" and rearranging gives

-1

1 € +1 . det(I + - Z
-(z=i)" (mI + 2) (2—f1) — In ( )
m+ nom det([ + & 2 m+1

+ O(m™?).

%)
So, lim,, o 2mIn2 §R.(Q™), 2) is equal to

e2m+1

n m

—1 N N
The first term goes to (z — )7 (E + %I) (z — p) almost surely. Let Ay ... A\, be

the eigenvalues of the sample covariance, 3. Then the limit of the middle term is:

A ~ m
det(I + 23 14+ 25
lim 1o | U+ ED) = W]J lim o teEhi (20)
mee | det(! + iy Y) Rl R Rl
= lnﬁexp Ai @21
i=1 % +Ai
82
= a[2(EZ+—=D"". (22)
n

a+ m _ Jé] . . .
T mﬁlﬁ} = exp(m), in conjunction

Here, in (20) we have used that lim,,_, [

with the almost sure convergence of the sample eigenvalues \; to the true covariance’s
eigenvalues )\;. This establishes the lemma. O

Theorem 1, restated below, is a straightforward consequence of this analysis.

itd

Theorem 1 (Asymptotic MICL) Let the training samples {(x;,y:)}72q ~ pxyv (2, y),
with'® p; = E[X|Y = j], %; = Cou(X|Y = j). Then as m — oo, the MICL
criterion coincides (eventually, with probability one) with the decision rule

N g2 1
g(x) = arjg:I%z.i.).(’K L (ac | By, X5+ ZI> +Inm; + iDg(Ej), (23)
where Lg(-| p, X) is the log-likelihood function for a N (w, X)) distribution, and
. e? 1
Do(%)) = tr [25(3;+ =) 24)

is the effective codimension of the j-th model, relative to .

18We assume that the first and second moments of the conditional distributions exist.
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Proof. We first consider the decision boundary between two classes whose means and
covariances are ft;, 21 and fi4, 2o respectively. Let x(m) = [®1,...,¢,] € RY™

be the first m training vectors, Xj(m) = {x; € X" . y; = j} the subset of the
first m training vectors belonging to the j-th class, and m; = |Xj(m) . Let M.(X) =

5 logy(1 + ”“(57”?”2) be the number of bits needed to code the mean, and 0 M, (X, z)
the change due to introducing sample z. Applying the definition of L. and rearranging,
we have that §L.(2,1) < dL.(z,2) iff

(my +n) R (X", 2) + B2 U{2}) + SM(X(™,2) — logy 71

< (ma —i—n)éRs(XQ(m),z) + RE(Xém) U {z}) 4 OM(XS™, 2) — log, 7,
(25)

Now, w.p.1.,Vz € R", R5<Xj(m) u {z}) — R.(%)), 6M5(Xj(m), z) — 0and 7; —
.

Let us multiply (25) by In 2 and let m — oo. Using Lemma 5 to evaluate the limit of
the first term, we have that w.p.1., §(z) = 1 iff

1 " e2 \ 1 1 n

5(2—’1;1) 214—;] (Z—Nl) — §D5(21) + §lndet(1+€f221) — 1117'('1
1 2\ 1 1 n

< i(z—,uz)T (Eg + nI) (z2—py) — §DE(22) + §lndet(1+5—222) — Inm,.

(26)
Notice that the first and third terms on each side sum to —Lq(z|p;, X; + %I ). Multi-
plying by —1 converts the minimization to a maximization, and extending to K classes

by considering the decision boundaries between each pair of classes establishes the
result, (23). O

19



B Proof of Theorem 2

In this section, we analyze the convergence rate of the MICL discriminant functions to
their limiting form (23), proving Theorem 2 of the paper. Throughout this section we
consider the discriminant function § L. (z, j) associated with a single group with mean
t; and covariance Y;, and so for compactness of notation we will drop the subscript
j. In the course of proving Theorem 1, we showed that the incremental coding length
can be written as

0L(z) = (m+n)dR(X,2z) + R(XU{z}) + dM.(X,2z) — logy 7
1

27)

2 -1 e
= (z— )" (i+€m1) (z— ) — 1 [ det(/ + %)

21n2 nom+ 1 T 2m2
+ RA(XU{z}) + 6M.(X,2) — logy7 + O(m™")
with limiting form

1 2 \ 7! D.(%
SL(2z) = 2ln2(z—u)T (Z+ Eﬂ[) (z—p) — 21512) + Re(X) — logy 7. (29)

We will analyze, term by term, the convergence of (28) to (29), proving the following
theorem:

Theorem 2 (MICL Convergence Rate) Suppose the fourth moment, E[|x — p|*]

exists. As m — oo, the MICL discriminant functions converge to their asymptotic form
1 . . oy

at a rate of m™ 2. More specifically, with probability at least 1 — a,

|6Le(2) = 0L (2)] < g(m) (107" (z = )| + ¢S | p + 0207 F)

1 tr[X] 4 1 j1—-=m 1
+m WH\I’ (Z*/II)”‘FE ma +0(m 2). (30)
where
.1 JE[llz = ulf] = IE01% : £
g(m) 21112\/ mao + n (D

Proof. We apply Chebyschev’s inequality to bound || —3||. Let & = vec( (& — ) (x—
w)T). Then E[¢] = vec(X) and cov(¢) = E[¢€T] — vec(Z)vec(X)T. Then,

E[|S - 2 7] B tr [cov(vec(f]))}
v 7

21 _ 2 _ 41 _ 2
BlIEIR) - lvee()I? _ Ellz = ol 191
mry mry

PIE 2l 2 7]

IN

(32)

Setting the left hand side of (33) equal to « and solving for the upper bound ~y gives

B[z — p*] — 12113
mao '

wp.>1—a, |[|E—=3%|F< \/ (34)

20

m

det([ + E% m+1

5

(28)



Similarly, for /i,

E[flit — pl|? )
Plllis— pllr > ) < A zuH ] _tr [COZ(M)] _ tr[Q]’ (35
U U ma

tr[3]

givesthat w.p. > 1 —a, |oo—pf <

For compactness of notation, let ~ W(m) = 3 + emtly

Quadratic term. We first analyze the difference between the quadratic term in (28)
and its limiting form:

(2 — )T Bm) (5~ ) — (2 — @)Uz — ) (36)
Writing z — ft = (2 — p) + (0 — fr) and expanding gives
- ¥m) (z-p) = (z-p ¥ (m) " (z-p)
+2(z = )T (¥ (m) " =W+ U (e~ 1) + o(m”A37)
(2= Nz —p)+ (z - )T T HE -2)¥ (2 — p)
+2(z = w)TU (i — o) + o(m™%). (38)

In (37) we have used that ||z — 2|2 = o(m~2), and in (38) that U(m)~1 = ¢! +
U-HE -2)ut + o(m_%). Thus, with probability at least 1 — «, (36) is bounded
above by

10 (2 = w15 = Slle + 2010 (2 = )| I = all + o(m™2) (39)

< B IR g 2y [ B sy o) )

- mao

Dimension term. We next consider the convergence of the dimension term, D,:

det(I + 2% 2
n et( + )A ftr[E(EJrg—I)*l} (41)
det( + % ;4% n
Let B =Y — 3. Then
n ~ N
Indet( + ————3) —Indet(] + =3 42
ne(+52m+1) ne(+62) “42)
1 ~
= 1 V-B—— )1 U —
ndet( B erlE) n det( B) (43)
1 ~
_ w1 - o g1
= Indet(/ — ¥ (B+m+12)) Indet(I — ¥~ B) 44)
1 ~
= Indet(/— (I -9 By~ lyg-l— ¥ 45
ndet( — ( ) T ) (45)
1 3
= Indet(/—-(I4+9¢ By 1— % ~z 46
ndet(! — (I + ) T +o(m™2)) (46)

1 1
= Indet(I — \rlmz) +Indet(I — xIrlB\Irlmz + o(m™%))Y47)
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where in (46) we have used that (1 — U~1B)~1 = I + U1 B + o(m™2).
Let the (; be the eigenvalues of U™'Y, and w; the eigenvalues of ¥~ B¥ 13,
Then,

det(I + &
mIn In ™ +1n )™ 48
[det([ + &y 1 H m + 1 H @
_ —Ci i -1 —wi wi -1
lnHe (1+ 2+ o(m ))+lnHe (1+ = +o(m™)) (49)

_ -1 Gi -1 -1 - Wi -1
- Z+Zln1+ +o(m™)) + tr [T BV E}+;1n(1+m+o(m )
(50)
2
—a[ZE+ =D+ & (07130 (- 5)| +o(m ). (51)

Thus with probability at least 1 — «, (41) is bounded above by

tr (9IS N(S = D) [+ o(m ™) < OIS p S - Sle +o(m ™) (52)

_ _ 2
< Iyt 4 ot

- mao

Rate, mean and class label. We now consider the convergence of R.(X U {z}) to
R.(Y). LetI' = ﬁ(z —)(z— )T

2

1 2 m -~
|[R.(XU{z}) — R(2)| = llodeet(nI+m+12+F) logzdet( I+E)'

_ 1 -1 b

- 21og2det(1+\p {(2 %) m+12+FD‘ (54)
n - 1

< G logy(L+ [T~ %) +o(m™ %)) (55)
n

< Sl ez - llp+o(m™?). (56)

which with probability at least 1 — « is bounded above by

n JE[l|le— |4 =122
mo
Next, consider the excess cost to code the sample mean, and let v = mLH, U=
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—L_ Then

m+1
n viv+ vz|? n MIE:
M) = | Brogy(1 4+ PEEPED) T IED) (s

n v+ 2] — | )

< glom 1+ - 59

< som R (59
n J—

= Glomll +O(m ) )

= o(m_%). 61)

Finally, we consider the convergence of the cost of coding the class label, Y.

Chebyschev’s inequality gives that w.p. atleast 1 — o, |7 — 7| < 4/ % Now,

. |77 — 1 /1—-7 1
_ < = — 2),
|logy T—log, | < log, (1 + - ) / - +o(m™2). (62)

Combining (40), (53), (57), (61) and (62) gives the result, (30). O
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C Efficient Implementation in High Dimensional Spaces

Given training samples X € R™*™ and a test sample z € R", the MICL decision rule
requires us to compute the following discriminant function:

0Le(x,j) = Le(X; U {x}) — Le (X)) — logy m; (63)
where -
L.(X)= mn ;_ nlogz det (I + E%f](?()) + glog2 (1+ H€2ﬂ) (64)

In high dimensional spaces, i.e. when n > m, it is generally advantageous to
work with the kernelized version of the rate function, in which the sample covariance
Sis replaced by the mean-centered matrix of inner products ﬁd)m XTX®,,, where
b, =1— %11T is the mean-centering matrix. Notice that the second and third
terms of (63) can be precomputed offline, during the training stage. However, the
first term depends on the new sample, z, and requires computing the log-determinant
of an X n or m X m matrix. Straightforward numerically stable implementations
require ©(m3) time (computing log det either via Cholesky decomposition or singular
value decomposition). In this section we show how the online computation required
to evaluate (63) can be reduced to ©(m?), with a corresponding practical speedup of
several orders of magnitude for the datasets considered in this paper.

We will work with the kernelized version of the rate function:

1 1 oy o 1 1
R.(X) = 3 log, det (I + ;XTX) =3 log, det (I + :2m_1<I>mXTX<I>m> ,

m—1
(65)
where ®,,, =1 — 11,17 € R™*™,
The quantity of interest, then, is the coding rate when test sample z is introduced:

1 n K b
R.(XU{z}) = 3 log, det (I + %fbm_ﬂ { o7 . } <I>m+1> . (66)

Here K;; = (x;, x;), b; = (x;, z) and ¢ = (2, z), where the inner product (-, -) can be
the standard Euclidean inner product (global MICL), or some nonlinear kernel function
(kernel MICL). (66) can be written as

q’ ¢ (67)

1,,1% denote the upper left block of the mean-centering

1 T T T
210g2det[1+Q+1p +pl" 4+ 211 q],

where, letting T = [,,, — ﬁﬂ

matrix, ®,,1,
n n 1 n c

= —TKTY =—————7b = —=—-

@ e?m ’ P e2mm+1" " e2m (m+1)%’

n

= 1+ ————(1TK1-2m170b 2
¢ +52m(m+1)2( m —l—cm)
n 1 17p me
= — — | -TK1 Tb 1-— 1). 68
g {—:2mm+1( tm +m+1 m+1 ) (68)
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Here, () is constant for each class, and can be precomputed during the training phase.
Notice that the total time to compute p, g, A, £ is quadratic in the dimension n.

We will apply the following identities regarding small-rank-adujstments of ma-
trix quantites (the third of which is the Sherman-Woodbury-Morrison matrix inversion
lemma):

det { zj; lc’ } = det(A)(c — b A 1b). (69)
det(A + BCBT) = det(A) det(C) det(C~' + BTA™!B). (70)
(A+BCBT) ' =A"' —A7'B(C '+ BTA'B)"'BTA (71)

T
LetI = [+Q+1pT+plT+ X117 = [+Q+[ 1 p |A { :;T } . The determinant

in (67) becomes

1]

qr ¢ (detD) (€ —q" T 'q)

det(I + Q) det(A) det (A-l + [ 11; } I+Q)7'[1 p }) (€ —q"Tq).

Here, the first follows from (69), and the second from (70). det(I + Q) and (I +Q)~*
can be precomputed offline. A straightforward application of (71) gives that

B _ B _ 17 B rar _
r =t - 7 (1 e ) (a0 e [ar @ 1 p]) | B e
Then, for u,v € R™, let 840 = uT(I + Q)*lv. We can write the above in terms of

quadratic products involving 1, g and p:

det { qFT ? :| = det(I + Q) det(A) det (A—l + { S$11  Sip ]) y

Sip  Spp
s r s s I
et ] ([0 ]) []) o
< e Sqp Sip Spp Sqp

The s, ., can be computed in quadratic time, and given these the remaining operations
are constant time.
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