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Exploiting wireless broadcast by opportunistic packet
splaying

Vivek Raghunathan, Min Cao, and P. R. Kumar

Abstract

The IEEE 802.11 random access MAC suffers from expensive channel acquisition costs which are exacerbated

by the use of TCP.This floor acquisition mechanism is primarily a way to fashion unicast “links” out of what is

fundamentally a broadcast medium. The main thesis of this paper is that such unicast usage of the wireless channel is

unnecessary, and that once the floor has been acquired, we caninstead “splay” packets to as many potential receivers as

possible using the fact that wireless is a broadcast medium.Splay is placed between the IP and MAC layers and reduces

the expensive cost of channel acquisition by opportunistically combining packets intended for different receivers. Splay

allows for the use of sophisticated coding approaches to augment the IEEE 802.11 stop-and-go ARQ. This also helps

prevent IEEE 802.11 from incorrectly backing off exponentially in response to fading losses on intermediate quality

links, which are quite common in practice. We are currently implementing Splay as a Linux kernel module.

Index Terms

IEEE 802.11, floor acquisition, packet combining, wirelessbroadcast, TCP.

I. INTRODUCTION

The IEEE 802.11 random access MAC uses four-way handshakingmechanism to mediate access to the wireless

channel. Every node maintains a contention window (CW) to estimate the channel interference level. When a node

has a packet to send, it waits for a random backoff interval in[0, CW] slottimes and then attempts floor acquisition

using a RTS frame to silence all nodes in the transmitter’s neighborhood. If the intended receiver successfully decodes

the RTS, it responds with a CTS silencing all nodes in the receiver’s neighborhood. On receiving the CTS, the sender

proceeds with a DATA frame containing the unicast payload packet, and the receiver replies with an ACK to complete

the handshake. If the handshake fails, it is assumed that theloss was due to interference and the sender retries, with

CW doubled to resolve contention for the channel.

Vivek Raghunathan, Min Cao and P. R. Kumar are with the Dept. of Electrical and Computer Engineering, and the CoordinatedScience

Laboratory, University of Illinois, Urbana-Champaign.Email: vivek, mincao, prkumar@control.csl.uiuc.edu
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DARPA/AFOSR under Contract No. F49620-02-1-0325, DARPA under Contact Nos. N00014-0-1-1-0576. Vivek Raghunathan is also supported

by a Vodafone Graduate Fellowship.
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The four-way handshake originated as a technique to fashiona reliable unicast link from what is essentially a

broadcast channel, albeit one that is very expensive in terms of floor acquisition overhead. This is specially true at

the higher data rates in IEEE 802.11b/g because of the high relative cost of PLCP and control frame headers that

are sent out at the lowest data rates, and on intermediate quality links, where the exponential backoff mechanism’s

proclivity to mistake fading for interference is quite costly. These inefficiencies in fashioning unicast “links” from

a broadcast medium are further exacerbated with asymmetricTCP connections, where small reverse direction TCP

ACKs compete with forward direction TCP segmentsof the same flow.

Our fundamental argument is that the primary role of four-way handshaking is not in the construction of unicast

links. Four-way handshaking often acquires the floor to other neighbors as a by-product. It can thus be merely thought

of as a mechanism to acquire the floor to different receivers with different probabilities.Thus, a more advantageous

exploitation of four-way handshaking is in providing a probabilistic multi-receiver floor acquisition mechanism that

simultaneously acquires the wireless floor to different receivers in as reliable a fashion as possible.

Once four-way handshaking has acquired the floor, packets todifferent receivers can be simultaneously “splayed”

over the wireless channel, thus taking advantage of the broadcast nature of wireless communication whenever possible.

We present the design of such a packet splaying protocol called Splay. Splay is layered between IP and the MAC,

and provides a tunneling mechanism toopportunistically combine packets for different intendedreceivers. Such

jumbo Splay packets are sent to a particular receiver (called the “primary”) by triggering the four-way handshaking

mechanism. The Splay tunnel endpoint at each intended receiver processes the received packet burst to recover

individual data packets. Splay only silences the neighborhood of the “primary receiver” using the four-way handshaking

mechanism. The wireless channels to other intended receivers may still be lossy, although a good choice of “secondary

receivers” will make the probability of this event small. Splay thereby allows for the use of erasure codes to improve

the robustness of packet delivery to these “secondary” receivers. Since it incorporates built-in forward error correction,

Splay can be configured to completely bypass link layer retransmissions and thus, provides performance benefits when

used over lossy intermediate quality links where the proclivity of IEEE 802.11 to mistake fading for interference results

in expensive random backoffs.

The Splay protocol can be completely implemented in software without requiring any changes to the IEEE 802.11

MAC. Its biggest advantage lies in the simple and rich flexibilityit provides for the exploration of multi-receiver

floor acquisition policies. The Splay packet combining policy at the sender can be configured from anioctl-based

user-space interface by specifying a list of(matchrule, reward) two-tuples. A packet combination is assigned a

score equal to the sum ofrewards for eachmatchrule Boolean condition that it satisfies. Splay attempts to choose a

packet combination that maximizes this score among all setsof packet combinations. It can be shown that the general

problem of opportunistically combining packets in an optimal manner is computationally intractable. Instead, Splay

uses a greedy online algorithm to combine packets accordingto the list of (matchrule, reward) two tuples.

We are currently implementing Splay as a Linux kernel module. The rest of this paper is organized as follows: in

Section II, we describe the expensive nature of IEEE 802.11’s floor acquisition mechanism, specially when used with
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TABLE I

FOUR WAY HANDSHAKE COSTS

Control overhead/Data transmit time

Data Rate (Mbps) Data = 100 byte Data = 1500 byte

1 127.5 % 8.5 %

2 255 % 17 %

5.5 701.25 % 46.75 %

11 1402.5 % 93.5 %

TCP. We describe Splay and its implementation design in Sections III, IV, V and VI. Finally, we discuss interactions

with TCP, related work and conclude in Sections VII, VIII andIX respectively.

II. M OTIVATION

IEEE 802.11 uses a four-way RTS-CTS-DATA-ACK handshake to do floor acquisition and contention resolution.

This mechanism results in two sources of heavy overhead:

1. The IEEE 802.11 specification [1] requires all control frames to be sent at one of the basic rates (1 Mbps in IEEE

802.11b) so that all potential interferers can decode the control frames. The resulting control overhead can be quite

high compared to the time needed to transmit a packet, specially at the higher rates in IEEE 802.11b/g, (11/54 Mbps).

For example, a20 byte control frame at1 Mbps looks like220 bytes of overhead when the data rate is11 Mbps.

2. IEEE 802.11 uses random backoff to resolve multiple nodescontending for the medium. Every node maintains a

contention window (CW), initialized to CWmin = 31 slottimes, to estimate the channel interference level. A node

must wait for a random interval chosen uniformly in[0, CW] slottimes before initiating a four-way handshake. If the

four-way handshake fails, the value of CW is doubled before initiating the next attempt.

We now discuss some typical scenarios where this inefficiency destroys performance in a big way. Consider first

the scenario shown in Figure 1, withN co-located nodes and a base-station serving Voice over IP (VoIP) traffic. The

performance in this scenario suffers because IEEE 802.11 isnot very efficient at sending small packets, specially at

higher data rates. In Table I, the overhead of four-way handshaking is compared to the cost of data transmission at

different data rates and different packet sizes, assuming long preamble mode and ignoring random backoff periods.
AP

21 ..... N

Fig. 1. AP servingN VoIP connections.

Consider next the scenario in Figure 2 withN nodes in a single line, and a TCP flow traversing this line from

node1 to nodeN . To successfully deliver packetp from 1 to N , IEEE 802.11 needs to successfully forwardp along

k − 1 hops, and then successfully forwardACK(p) alongk − 1 hops in the reverse direction1. The ACK packets in

the reverse direction contend with the DATA packets in the forward direction for access to the wireless medium. The

small size of TCP ACK packets exacerbates the inefficienciesof the four-way handshake in IEEE 802.11.

1Assuming delayed ACKs are disabled
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.....1 N2TCP
TX

TCP
RX

Fig. 2. Multi-hop TCP flow.
TABLE II

RANDOM BACKOFF COSTS

Control overhead/Data transmit time

ETX Data = 100 byte Data = 1500 byte

1.0 426 % 28 %

1.5 1183 % 79 %

2.0 2612 % 174 %

3.0 6059 % 404 %

Finally, consider Figure 3, where a source is transmitting to a destination over a single lossy link. Lossy fading

links cause the four-way handshake to fail multiple times before finally succeeding. The IEEE 802.11 channel access

mechanism implicitly assumes failure of the four-way handshake is due to interference from other transmitters, and

does a binary exponential backoff before attempting to transmit again. This can result in expensive random backoffs

when IEEE 802.11 is used over lossy links.

In Table II, we compare the cost of random backoff to the cost of data transmission at11 Mbps at different link

loss rates and packet sizes, ignoring four-way handshakingcost and inter-frame spacings. (ETX is related to forward

and reverse link loss ratespf
l andpb

l asETX , 1
(1−p

f

l )(1−pb
l )

.) When losses are due to fading, and not interference,

this expensive random backoff is not always necessary.

RX1 2TX

Fig. 3. Lossy link.

These inefficiencies of four-way handshaking primarily result from the attempt to fashion a unicast link from what

is essentially a broadcast channel. In other words, the expensive cost of floor acquisition is a failure to take advantage

of the broadcast nature of wireless communication. An alternative paradigm that takes better advantage of wireless

broadcast is a transmitter-centric floor acquisition mechanism which acquires the channel simultaneously to multiple

receivers in a probabilistic manner. This intuition is grounded by three observations:

1) Suppose that a transmitter T has acquired the floor to a particular receiver P (called “primary”) using a RTS-CTS

handshake. Observe that the channel to some other secondaryreceivers may also get acquired as a consequence.

This could happen, for example, if all of a secondary receiver’s neighbors have also been silenced by the

RTS/CTS frames to/from the primary receiver. This is shown in Figure 4, where the secondary receiver S has

neighbors T, P, A and B. A is silenced by RTS(T-P) and B is silenced by RTS(P-T) and thus, a transmission

from T to S can safely proceed after acquiring the floor from T to P.

2) This could also happen if none of the secondary receiver’sunsilenced neighbors has a packet to send. For

example, in Figure 5, the secondary receiver S has an additional neighbor C which is neither silenced by

RTS(T-P) nor CTS(P-T). However, the transmit queue at C is empty, and thus the transmission from T to S can
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T P

SA B

CTS(P−T)

receiver
Secondary

RTS(T−P)

Primary
receiver

Fig. 4. All of the secondary receiver’s neighbors are silenced by the RTS-CTS to the primary receiver.

safely proceed after acquiring the floor from T to P.

T P

SA B

C

    is empty
transmit FIFO

Secondary
receiver

Primary
receiverRTS(T−P)

CTS(P−T)

Fig. 5. Secondary receiver’s unsilenced neighbors do not have a packet to send.

3) A third scenario is which the transmission from T to S can safely proceed after acquiring the floor from T to

P is when all the unsilenced neighbors of S can sense carrier for the transmission from T to P, and will defer

from interfering with this transmission. This is shown in Figure 6, where S has an additional neighbor C that

is not silenced by RTS(T-P) or CTS(P-T), but can sense the carrier tone when T transmits to P.

T P

SA B

C

Carrier sense(T−P)

RTS(T−P)

CTS(P−T)

Primary
receiver

receiver
Secondary

Fig. 6. Secondary receiver’s unsilenced neighbors can sense the carrier of the node’s transmission.

III. PROPOSEDPROTOCOL

We now describe the design of Splay. Splay is an attempt to address the inefficiencies of IEEE 802.11 floor

acquisition by taking advantage of the fact that wireless isa broadcast medium. The observations in Section II suggest

a natural solution to the inefficiency of the IEEE 802.11 four-way handshake:

1. Every node puts its wireless interface in “promiscuous” mode. When a node has a packet to transmit to a primary

receiver, it runs through its neighbor list and identifies secondary receivers to which it can safely transmit a packet.



6

These neighbors are chosen so that the probability of the secondary receiver successfully decoding the packet is

maximized.

2. The node then opportunistically combines packets to “good” secondary receivers with a packet to the primary

receiver, adding appropriate Splay headers. This combinedpacket is placed in a packet with the primary receiver’s

address as the destination address.

3. The combined packet is passed to the MAC, which sends the packet to the primary receiver using a four-way

RTS-CTS-DATA-ACK handshake.

4. Since wireless is a broadcast medium, the secondary receiver also decodes the packet with some probability.

When this combining mechanism is employed, the transmitteronly gets MAC ACK feedback from the primary

receiver. On the other hand, the floor to the secondary receiver has not been completely reliably acquired using a

RTS-CTS handshake and thus, may suffer packet loss if the reception at the secondary receiver happened to get

destroyed because of interference/fading. By appropriately choosing the secondary receiver, the probability of this

event can be reduced. However, we still need to incorporate ahigher layer mechanism in Splay to guarantee reliable

delivery for secondary transmissions. This could be a simple ARQ mechanism like that used by IEEE 802.11, or more

sophisticated techniques like forward error correction.

Splay’s reliable delivery mechanism disables IEEE 802.11 retransmissions. The IEEE 802.11 32-bit CRC provides

a bit-level reliability check and effectively converts thewireless channel between sender and receiver into a packet

erasure channel. In the language of coding theory, the CRC isan inner code. To augment this inner code, Splay uses

an outer codeto deliver packets reliably over the erasure channel. Packet erasure codes can deal with bursty losses

and are good candidate outer codes. This outer code operatesover blocks of packets from the same transmitter to the

same receiver. The receiver uses a block ACK to indicate successfully decoding of the block, and allow the transmitter

to proceed with the next block.

A. Architecture

Y

A

L

P

S

http ftp

UDPTCP

IP

Y

A

L

P

S

RECEIVER

Decoder

Splitter

http ftp

UDPTCP

IP

Combiner

Encoder

 Framer

TRANSMITTER

Splay−in−IP tunnel
encapsulator

Splay−in−IP tunnel
decapsulator

 Deframer

MAC MAC

WIRELESS MEDIUM

Fig. 7. Splay architecture.
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The Splay architecture is shown in Figure 7. Packets are passed down to the Splay layer from the network layer after

the next hop has been determined and may or may not be Ethernetencapsulated. Splay can carry either IP packets or

Ethernet frames, or a combination of the two in its payload. Splay first queues the packets in a per next-hop queue

and adds a frame header shown in Fig. 8 before passing “frames” to the encoder. This header is used to distinguish

between IP and Ethernet frames at the deframing module. The framer optionally ensures that all frames have the

same size. This is required if sophisticated erasure encoding schemes are used for reliability. In this mode, the framer

may combine multiple packets of the same type (IP/Ethernet)into one frame to equalize frame sizes before adding

the frame header. This operation does not preserve packet boundaries. The framing and encoding process can also be

selectively disabled on a per-socket basis for applications that generate real-time packets and need expedited access

to the channel without requiring reliability.

IP/Ethernet payload packettypelengthFrame Header

2 byte 2 byte

EncodAlgoFrameLenIP Header Receiver−
BlockState

EncodingAlgo−
payload

OutputFrame
 Specific

20 byte 2 byte 1 byte 1 byte variablelen

Encoding Header

20 byte 2 byte 2 byte

length 1 IP/Ether pkt 2type 1 IP/Ether pkt 1 length 2 type 2

2 byte 2 byte

IP HeaderCombining Header
...

Fig. 8. Splay header formats.

The encoder operates on a per receiver basis and successively converts “input frames” received from the framer

into “output frames”, adding a header shown in Fig. 8. The encoder design can incorporate different erasure coding

strategies and is not tied down to a particular strategy. It can also completely avoid the use of erasure codes, and

work purely as a block ACK mechanism. We use a block encoding strategy, with all encoding algorithms operate on

blocks of eight input frames, and use a block stop-and-wait ARQ. The first four bytes of the header contains three

fields:FrameLen, EncodAlgo andReceiverBlockState. FrameLen the length of each input frame arriving from

the framer in bytes.EncodAlgo specifies the erasure code algorithm used. TheReceiverBlockState byte is used to

piggyback decoding information for the reverse direction,with each bit indicating whether the corresponding frame

has been successfully decoded or not. When the need arises, the encoder can also generate a dummy output frame with

the EncodAlgo andFrameLen set to zero. Such an output frame is used whenReceiverBlockState information

from the decoder needs to be sent out in the reverse directionimmediately. The format of the remaining part of the

encoding transport header is variable and depends on the value of theEncodAlgo field.

As an example, consider a digital fountain code like an LT code [2] 2. The encoder for this code works by randomly

picking a valued from a fixed degree distribution, and randomly combiningd input symbols by XORing them together.

In this case, the variable lengthEncodingAlgoSpecific is a one byte field that is used to indicate which input frames

are being XORed together in that particular output frame, with each bit indicating whether the corresponding frame is

included in the addition or not. Another example of an encoder is theNull encoder, which uses this one byte format of

EncodingAlgoSpecific to indicate the specific frame being transmitted.Null does not do any encoding/decoding,

2LT codes work best with long block lengths and may not be ideally suited for Splay
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and instead merely does retransmissions based on the information in ReceiverBlockState block ACK field. We

emphasize that the encoder module only provides a mechanismto incorporate erasure coding, and thus, different

erasure codes can be used in this framework.The only abstraction that an encoding algorithm must followis that it

should accept input frames, and produce an output frame in the format shown in Fig. 8, packetized in an IP broadcast

packet, with protocol numberSplayEncoderNum. This output frame is then passed to the combiner.3

The combiner module of Splay opportunistically combines multiple packets destined for different next hops to

reduce the cost of channel acquisition in IEEE 802.11. The combiner can be used to either do subnet layer splaying,

in which the payload is Ethernet frames, or network layer splaying, in which payload is IP packets. When a transmit

complete interrupt is received from the physical device, the combiner traverses the device transmit queue and evaluates

different packet combinations, selecting the “best possible” one for transmission. (Alternatively, the combiner canbe

configured to pace packets into the network based on interference level. This is a soft scheduling mechanism similar

to Overlay MAC [3].)

The combining mechanism consists of a list of(matchrule, reward) two tuples. Eachmatchrule represents a

Boolean condition that may or may not be met by a packet combination, while thereward represents the score

obtained if thematchrule is matched. The score assigned to a packet combination is thesum ofrewards for each

matchrule that the combination matches. Once a combination of packetshas been selected from transmission, a

Splay packet containing this packet combination is formed and encapsulated in an IP broadcast packet with TTL

1 and protocol numberSplayCombinerNum, as shown in Fig. 8. This packet is encapsulated in an Ethernet header

destined to the “primary receiver” of the combination, and sent over the wireless channel.4

We note here that the key to reducing the cost of floor acquisition is intelligent packet combination. For instance,

if the conditions described in Figures 4, 5 and 6 are met, the combined packet will have a high probability of being

decoded successfully by the primary and secondary receivers.We emphasize that the combiner module merely provides

a mechanism to combine packets, and leaves the exact combining policy unspecified.

At the receiver end, the wireless interface receives all overheard packets in promiscuous mode. Splay superpackets

with IP protocol numberSplayCombinerNumare demultiplexed by IP to the Splay splitter. The Splay splitter extracts

packets destined for the receiver from the combined Splay superpacket and passes them to the appropriate (Ethernet/IP)

input routine. (This is subtle if the payload is IP; see Section III-C for a discussion.) Packets that were injected into

the combiner by the framing+encoding process are IP packetswith protocol numberSplayEncoderNum, and are

demultiplexed to the Splay decoder, which feeds them to to the corresponding decoding algorithm to recover the

original input frames.ReceiverBlockState is updated to reflect successfully decoded frames. If theNull encoder

was specified, this process reduces to simply providing a block ACK. As the decoder successfully retrieves frames,

it passes them in-order to the deframer which parses them to extract individual packets and deliver them to the

appropriate (IP/Ethernet) input routing for processing.

3The use of IP broadcast enables the IP input routine at potential receivers to successfully demultiplex received packets to the Splay decoder.
4The unicasting of the Ethernet frame enables the four-way handshaking to the primary receiver; the use of IP broadcast enables the IP input

routine at potential receivers to successfully demultiplex to the Splay splitter.
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B. Layering

Splay resides between IP and MAC in the stack, and is avirtual MAC layer on top of IEEE 802.11 with two

differences:

1. It takes advantage of the broadcast nature of wireless to reduce IEEE 802.11 floor acquisition cost by splaying

packets.

2. The use of erasure codes provides a more sophisticated mechanism for reliability to “secondary receivers”.

The Splay framer/encoder and combiner produce two levels oftunneling, and the receiver consists of two successive

demultiplexers above IP to decapsulate each of the encapsulations. This double tunnel separates erasure coding from

the combining mechanism and allows them to be independentlyused.

C. Discussion

1. Subnet layer splaying versus network layer splaying: Splay can carry Ethernet or IP packets as payload. When

subnet layer splaying is used, a receiver uses destination Ethernet address in individual frames contained in a Splay

superpacket to filter out packets that are not addressed to it. On the other hand, when network layer splaying is used,

all receivers that successfully decode a superpacket will receive all its constituent IP packets. This brings up a tricky

question - which of these receivers should forward the IP packet to its destination? One simple way is to use a reverse

path check - the only receiver that forwards it is the one for whom the sender is the next hop on the reverse path

back to the source. On the other hand, these multiple receivers can collaboratively forward the packet by mediating

the order in which each of them attempts to forward. For example, each receiver could wait for a time proportional

to its ETX to the destination before forwarding. This takes us into the realm of protocol design for receiver oriented

forwarding, of which the ExOR protocol [4] is an excellent example.

2. Coding versus combining: There is a natural architectural tension between erasure coding and combining. Erasure

coding techniques codes work better when operating on a hugenumber of blocks at a time. To do this while keeping

the delay bounded, frame sizes need to shrink. On the other hand, splaying aggregates packets in order to do multi-

receiver floor acquisition to as many neighbors as possible.This necessitates large packet sizes to provide maximal

amortization of floor acquisition overhead.

3. Disabling of link layer retransmissions: Disabling of link layer retransmissions also disables exponential contention

window backoff in IEEE 802.11. One might argue that this is incompatible with IEEE 802.11, and is akin to what

an “unpoliced selfish node” (and for that matter, Cisco Aironet cards) would do. We believe that this is reasonable

provided the operating environment is limited by multipathfading effects (and high link ETX values) as opposed

to interference. A backup contention resolution mechanismis provided to deal with high interference regimes by

conservatively setting CWmin, and slowly adapting it linearly with the number of neighbors.

IV. COMBINER MODULE

We now describe the combining mechanism and combination policies in greater detail.
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TABLE III

RULE SPECIFICATION FORR(< p >)

Attribute Description Allowed operators Allowed values Reward type

len Pkt length of< p > ≤ ≥ = integer fixed/scale

ack Does< p > contain = true/false fixed

TCP DATA and ACK of

the same connection?

numpkt Number of aggregated ≤ ≥ = integer fixed/scale

pkts in < p >

fair Jain’s fairness index ≤ ≥ = (0,1) fixed/scale

of < p >

age Sum of queuing delays of ≤ ≥ = real fixed/scale

pkts in < p >

dst Does< p > contain = dst IP addrd fixed

pkt to dstd?

fadingsuccess Total success probabilities ≤ ≥ = real fixed/scale

of pkts in < p >

intersuccess Total success probabilities of ≤ ≥ = real fixed/scale

pkts in < p >, except primary

metric Total metric of pkts ≤ ≥ = real fixed/scale

in < p >

A. Combination Mechanism

Let Ω = {p1, ..., pN} be the packets in the queue at nodei. For each packet combination< p >∈ 2Ω, we associate

attributes describing various properties of the packet combination. For each attribute, we associate a set of permitted

values and relational operators. A preliminary list of these attributes, operators and values is summarized in Table

III. The fadingsuccess, intersuccess andmetric attributes are obtained by looking up the kernel forwardingand

neighbor tables.

A rule R(< p >) is a Boolean expression on the attributes of a packet combination < p >. Associated with each

rule R is a rewardRw(R,< p >) that is assigned to the packet combination< p > if R(< p >) = 1. The reward

Rw can either be “fixed”, i.e., a constant, or the special value “scale”. When “scale” is used, the value of the attribute

is scaled by the amount specified in the reward field to obtainRw. The combiner is configured by specifying a list

L of (R,Rw) two tuples. For each packet combination< p >, this list is traversed and therules which the packet

combination successfully matches are determined. The sum of rewards for thesematchrules is the score for this

packet combination. We would like to find a subset< p∗ >⊂ Ω that maximizes the net reward:

< p∗ >= argmax<p>∈2Ω

|L|
∑

l=1

R(< p >).Rw(R,< p)

B. Combination Policy

This mechanism allows us to implement and experiment with a variety of multi-receiver floor acquisition policies

to enhance performance:
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1. MTU : selects any combination of packets that satisfies the IEEE 802.11MTU requirements. This is a necessary

condition for successful packet combination, otherwise MAC fragmentation will destroy the reduced floor acquisition

costs. It must be used in conjunction with other rules.

2. MaxComb: combines as many packets as possible.MaxComb provides the maximum amortization of floor

acquisition cost and thus provides the maximum throughput benefit. It has two problems. Firstly, it treats the links to

different neighbors identically, even though the underlying wireless channel to these neighbors may be different. (For

example, the link to one of the receivers may temporarily be very bad due to small scale fading. An intelligent policy

would avoid this link till it becomes good again.) Secondly,it might exacerbate IEEE 802.11 short-term unfairness if

the packet length distribution to different neighbors is asymmetric. This can be avoided by adding additional rules to

select specific sub-components of the aggregated packet in a“fair” manner.

3. MaxFadingSuccessComb: combines packets to maximize the sum probability of success (or equivalently, the

sum throughput). For each neighborj, let pf (j) denote the measured probability of failure for a packet fromnode

i to destinationj (pf is related to the ETX of the link aspf = 1 − 1
ETX

). Let us assume that all packet failures

are due to multi-path fading effects, and that interferenceeffects are negligible. Thus,pf (j) is independent of which

receiver we select as the primary receiver. ThenMaxFadingSuccessComb selects the packet combination< p >

that maximizes the sum of1−pf over all packets in that packet combination. SinceMaxFadingSuccessComb uses

the sum probability of success as the metric, it is similar toMaxComb in the sense that it favors packet combinations

with as many packets as possible. Further, it weights links with greater chance of success higher and thus, it exploits

wireless multi-user channel diversity at the time scale ofETX adaptation.

4. MaxInterferenceSuccessComb: combines packets to maximize the aggregated packet’s chance of being suc-

cessfully decoded by as many receivers as possible. This rule is designed for environments where interference effects

dominate the performance of IEEE 802.11. For each secondaryreceivers of an aggregated packet, we assign a value

vs which is equal to the fraction of its neighbors that are in theone hop neighborhood of the transmitter or the primary

receiver. The scorev assigned to the aggregated packet is equal to the sum of thesevaluesvs over all secondary

receivers in the aggregated packet.MaxInterferenceSuccessComb then attempts to maximizev over all packet

combinations and choices of primary receiver.

We note thatMaxInterferenceSuccessComb could have been designed to minimizew =
∑

s ws, wherews is

equal to the fraction of neighbors that are not in the one hop neighborhood of the transmitter of the primary receiver.

This rule, which we callMinInterferenceFailureComb, appears superficially similar toMaxInterferenceSuccessComb

on first sight. To see that this is not the case, observe that the optimum solution toMinInterferenceFailureComb

is to simply not combine any packets, sincew = 0 in that case. On the other hand, the strategy of no combining is

never optimal forMaxInterferenceSuccessComb.

5. LongTermFairness: works by measuring the long term average throughput to eachof a node’s neighbors, and

adjusting the reward values to favor neighbors which have received a lower share of the channel bandwidth. The

fairness timescale depends on the timescale of throughput averaging.
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6. QueueingDelay: works by measuring the time spent by a packet in the queue, and adjusting the reward values

to favor packet combinations with older packets in them. This is similar to aging in CPU process scheduling, and

prevents packets from being queued indefinitely.

C. Combination Algorithm

The rich space of packet combination policies makes the problem of finding an efficient generic combination

algorithm quite difficult. In fact, even algorithms for simple policies likeMaxFadingSuccessComb can be intractable.

Theorem 1:MaxFadingSuccessComb is NP-complete.

Proof: Consider the integer bin-packing problem where there areN objects, with objecti having a sizeci and

rewardri. We would like to find the combination of objects to place in a bin of size C that maximizes the reward

payoff without overflowing the bin. This is the following integer linear program:

IBP(ci, ri, C) :

maxni

N
∑

i=0

niri

s.t.
N

∑

i=0

nici ≤ C

ni = 0, 1

It is well known that integer bin-packing is NP-complete. Suppose at the instant of packet combination, there areN

packets in the queue with packeti having lengthli and destinationd(i). We can transformMaxFadingSuccessComb

into integer bin-packing by settingri = pf (d(i)) andci = li ∀ i, and settingC to theMTU of IEEE 802.11. This can

be used to establish thatMaxFadingSuccessComb is NP-complete. More precisely, we can establish a polynomial

time transformation between any instance ofIBP and a corresponding instance ofMaxFadingSuccessComb, thus

proving the NP-completeness.

D. Heuristic algorithm

We use a simple heuristic algorithm to solve the generic packet combination algorithm by trying to identify “good”

packet combinations. The approach consists of using a greedy algorithm to solve an (off-line) bin packing problem.

We assign each packetp a scoresp that evaluates the marginal reward obtained by including the packet in the

combination, and then try to find a packet combination that maximizes the sum of packet scores subject to MTU

constraints. Remember that rules are of two types: rules that assign a fixed reward based on whether a Boolean

expression evaluates to true or false, and rules that assigna reward proportional to a computed metric. For the former

rules, if the inclusion of the packet in a combination causesthe expression to evaluate to true, the reward for the

corresponding rule is added to the packet score. If the inclusion of the packet will cause the expression to evaluate

to false, the reward for the corresponding rule is subtracted from the packet score. For the latter rules, a marginal
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TABLE IV

MARGINAL REWARD COMPUTATION

Attribute Packet Metric

len length of packet

numpkt one

age queuing delay of packet

fadingsuccess success probability of packet

intersuccess success probability of packet

metric metric of packet

reward proportional to the metric computed on the packet is added to the packet score, with the individual metrics as

shown in Table IV.

Now, we consider the problem of maximizing the total packet score in a packet combination subject to linkMTU

requirements. This is the problem:

maxni

N
∑

i=0

nisi

s.t.
N

∑

i=0

nili ≤ MTU

ni = 0, 1

and as in the case ofMaxFadingSuccessComb, is intractable.5. While dynamic programming can be used to

efficiently solve this problem, there is an alternative greedy algorithm to solve the problem that is much easier to

implement:

1. Sort the packets in decreasing order of the packet score per byte of the packet,si

li
.

2. Greedily add packets to the combination according to thisordering.

3. Stop if adding an additional packet to the combination will violate the MTU requirements.

This heuristic algorithm is not optimal, and has the following limitations:

1. It ignores scale rules likefair whose marginal impact on a single packet cannot be computed.

2. It ignores fixed Boolean rules whose expression cannot be evaluated based on the presence or absence of a packet.

3. It ignores rules likeintersuccess, where the total score depends on the permutation of packetsin a combination.

Indeed, it is rules like the above ones that make the solutionof the general problem difficult.

V. ENCODER AND DECODERMODULES

We now describe the implementation of an encoding algorithmin our encoding framework. We emphasize that the

framework allows for the implementation of a variety of encoding strategies, and this section just provides guidelines

for a candidate encoder. There are two encoding algorithms we are considering for an initial implementation:

1. Block stop-and-go ARQ (theNull algorithm)

2. LT codes [2]

5It is equivalent to the 0-1 knapsack
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A. LT codes

Luby Transform (LT) codes, invented by Michael Luby, were the first realization of the “digital fountain” concept

introduced in [5]. These codes are rateless in the sense thatthe number of encoding frames that can be generated

from the input data is potentially limitless. The decoder only needs to receive a number of encoded frames slightly

greater than the number of input frames to be able to successfully decode the input data. In other words, LT codes are

near optimal with respect to any erasure channel [2]. LT codes are non systematic in the sense that the set of input

symbols are not necessarily part of the codebook generated at the transmitter.

The LT encoder works by randomly choosing a degreed from a degree distribution function. The encoder then

combinesd randomly chosen input frames by XORing the bits together to produce the output frame. In order to

decode the frames correctly, the decoder needs to know, for each received output frame, the degree and the input

frames which were combined to produce it. This information is carried in theEncodingAlgoSpecific part of the

encoding transport header as an extra byte. The single byte of EncodingAlgoSpecific is used as a bit field to indicate

which of the eight input frames were used to produce the output frame.

At the decoder, a belief propagation algorithm is used to decode the input frames. Suppose the receiver has a set

O of output frames, along with the graph representing which input frames that were used to combine these output

frames. For each output framef , we maintain a variabledf representing the number of input frames that were used

to produce this output frame and have not yet been decoded correctly. We also maintain a setI of input frames that

have been decoded, initialized toφ. Then, the decoding algorithm is as follows:

1. Check if an output framef has been received. If yes, run through through the setI and XOR the value of each

input frame inI with the output framef . The value off is the result of this XORing operation.f is then added to

the setO. df is set to the number of neighbors of that frame, minus the number of elements in the setI. This reflects

the fact that the value off represents the XOR of the undecoded input frames that are notin I.

2. Run through the listO and check for an output frame with degreedf = 1. If such a framef exists, then it is a copy

of the corresponding input frame, and the input frame can be recovered exactly. Add this input frame to the setI. The

value of each of the output framesf ′ in O is replaced by XORing with the recovered frame, and setdf ′ := df ′ − 1.

3. Remove all framesf such thatdf = 0 from O.

4. Check ifI is equal to the set of all input frames. If yes, STOP. Else, go back to step (1).

The key to the design of the LT code is the choice of the degree distribution function{ρ(1), ρ(2), ...ρ(k)}. The

seminal paper by Luby [2] demonstrated that the robust soliton distribution, described below, is a good choice of

distribution.

Definition 1: (Ideal soliton distribution): The ideal soliton distribution is {ρ(1), ρ(2), ..., ρ(k)}, where

• ρ(1) = 1
k
.

• For i = 2, ..., k, ρ(i) = 1
i(i−1) .

Let δ be the allowable failure probability of the decoder to recover the data for a given numberk of encoding

symbols.
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Fig. 9. Splay implementation architecture.

Definition 2: (Robust soliton distribution): LetR = c ln k
δ

for somec > 0. Define

τ(i) =



















R/ik for i = 1, ..., k/R - 1

R ln (R/δ)/k for i = k/R

0 for i = k/R + 1, ..., k



















Add τ(.) to the ideal soliton distributionρ(.) and re-normalize to obtain the robust soliton distributionµ(.)6.

VI. I MPLEMENTATION ARCHITECTURE

We are currently in the process of implementing the Splay protocol as a Linux kernel module. The implementation

architecture is shown in Figure 9, with dashed arrows indicating receiver data flow, solid arrows indicating the

transmitter data flow and dotted double arrows indicating information exchange between modules.

A. Receiver design

1) Splitter: The splitter is implemented as a new transport demultiplexer above the IP layer. When the IP input

module gets a broadcast “combined” IP packet with protocol field = SplayCombinerNum, it demultiplexes it to the

Splitter transport. The “combined” packet has an IP header,and contains one or more packets. The4 byte header

before each of these packets enables the splitter to identify whether the packet is IP/Ethernet. The splitter simply runs

through the jumbo packet, and extracts the constituent packets one by one. Ethernet frames destined for the node are

delivered to the Ethernet input routine. All Ethernet frames not destined to the node are discarded. IP packets are sent

back to the IP layer receive module for processing.

6In our implementation,k = 8
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2) Decoder: The decoder is also implemented as a new transport demultiplexer above the IP layer. It receives IP

broadcast packets with transport field set toSplayEncoderNum from the IP layer receive module. The local encoder’s

transmit state information is stored in a hash table, keyed by destination address. TheReceiverBlockState field in

the received packet is used to update the local encoder’s transmit state information of the corresponding destination

by indexing into the hash table. If all the transmit packets in a block have been ACKed in theReceiverBlockState

field, the transmitteris blocked flag for that next hop is cleared, and the local encoder is notified by calling en-

codertransmitterunblockednotify(). TheEncodAlgo field in the packet is then used as a selector to pass the packet

to the corresponding decoding algorithm.

3) Decoding algorithm interface:A decoding algorithm accepts packets whoseEncodAlgo field are set to the

corresponding encoding algorithm. It processes the received packet according to the semantics of the decoding

algorithm. If it successfully decodes any frame, it should set the corresponding bit in the node’sReceiverBlockState

for that destination. This information will be piggybackedto the destination in reverse direction packets. After

successfully decoding a frame, the decoding algorithm places it in a receiver frame queue for that destination.

It then runs through this queue successively, passing all possible in-order frames for that destination up to the

deframer module for deframing. If theNull encoding algorithm are used, the decoding algorithm is not invoked

and received frames are passed directly to the deframer after appropriately updating theReceiverBlockState from

the EncodingAlgoSpecific field. Since frames are delivered in-order, the deframer design is considerably simplified

and there is no need for sequence numbers.

4) Deframer: The deframer receives frames in-order from the decoding algorithm, and successively reconstructs

IP/Ethernet packets out of the frames by parsing the framingheader and extracting bytes across frames till the end

of the packet is reached. The deframer also needs to take careof padded frames, and boundary conditions that arise

from the splitting of the IP header across frames. After extracting the individual IP packets, it passes them to the

appropriate (IP/Ethernet) input function for processing.

B. Transmitter architecture

We are implementing the framer and combiner as master-slavevirtual devices which accept packets, process them in

some way and then pass them to a slave device. We use the Linuxtc utility to configure the slave device through user

space. Suppose we wish to disable the framer and only use the combiner, we point the default route at the combiner

device and configure the wireless interface as a slave to the combiner. To use both the combiner and framer, we point

the default route at the framer, configure the combiner as a slave to the framer, and the wireless interface as a slave

to the combiner.

1) Framer: A socket option is added to control framing on a socket, and the framingenable flag is copied onto all

packets generated on that socket. When the framer receives apacket, it checks the framingenable flag on the packet.

If the flag is clear, the packet is simply passed down to the slave device.

If the flag is set, the packet is then enqueued in a FIFO queue. If the queue fills up, the device’s busy flag is raised

to prevent higher layers from sending more packets. (Our implementation does not use a per receiver queue and thus,
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there could be head of line blocking and other artifacts associated with a single queue.) The queue size is set to the

approximate number of neighbors x 8 to ensure that all the neighbors’ encoder queues can be kept full. The framer

then runs through the list of all next hops, and calls framertransmitterunblocknotify() for all next hops with the

transmitteris blocked flag set to clear.

The framertransmitterunblocknotify() function is called whenever the transmitteris blocked flag is clear for a

next hop. It calls createframe() to generate a frame and if successful, sends the frame down to the encoder. The

framer transmitterblock notify() function is called whenever the transmitteris blocked flag is set for a next hop. As

of now, this function does nothing.

The createframe() function checks the framer queue to see if a frame canbe generated from the available data.

If the Null algorithm is to be used, this is a trivial operation. On the other hand, if the encoding algorithm requires

equal length frames, the test used is as follows:

1. If total packet length for that next hop in the queue is greater than the frame length, or

2. If total packet length for that destination in the queue isless than the frame length and (frame length - total packet

len for destination) is less than IP version field length, or

3. If total packet len for that destination in the queue is less than the frame length and time elapsed since last frame

is greater than sysctlmax time elapsed, or

4. If total packet len for that destination in the queue is less than frame length and sysctlalwaysgenerateon invocation

is set,

then a new frame is generated, padding with zeros at the end ofthe frame if necessary. Creating the frame simply

involves removing upto a maximum of frame length unused bytes for the destination from the queue, and placing

them in a frame data structure.

Finally, createframe() adds a framing header (Fig. 8) to the new frame beforepassing it down to the encoder.

2) Encoder: When the encoder receives an input frame, it enqueues the frame in a per destination queue. The

encoding algorithm is invoked to generate an IP packet containing the output frame if possible. If an output frame is

generated, it is passed down to the slave device. When the alleight input frames of the block for that destination are

received, the transmitteris blocked flag is set for that destination, and the encodertransmitterblock notify() is called.

The encodertransmitterblock notify() function invokes the encoding algorithm to generate additional frames to

pass down to the slave device. The number of frames generatedat this stage depends on the nature of the code used.

For example, with systematic codes, each of the input framesis also an output frame. With theNull encoder, the input

frames are the only frames used as output frames. Thus, when encodertransmitterblock notify() invokes the encoding

algorithm, eight output frames have already been generated, and the new invocation of the encoding algorithm need

only generate extra frames if necessary. On the other hand, some encoding algorithms can only generate valid output

frames after the entire block of eight input frames has been received. For these codes, the invocation of the encoder

through encodertransmitterblock notify() to generate all the output frames.
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3) Encoding algorithm interface:Whenever the encoding algorithm is invoked, it goes throughthe list of input

frames and generates an output frame if possible. Systematic codes can generate output frames even if the entire

list of input frames are not available. The encoding algorithm must append an IP header and an encoding transport

header at the head of each output frame, with the format as specified in Section III-A and the EncodAlgo field set

appropriately.

4) Combiner: The combiner is configured with the wireless interface as a slave device. It accepts IP packets from

higher layers, which are queued on receipt in a combiner queue. Whenever the wireless device becomes available, the

combiner invokes the combination algorithm to decide whichsubset of queued packets to combine. This subset of IP

packets is concatenated into a single packet, and a unicast IP header directed to the primary receiver is appended. The

combined IP packet is then passed down to the wireless device. The combining mechanism inside the kernel consists

of a (rule, reward) list of two tuples, configured using netlink sockets through thetc user space application.

VII. D ISCUSSION: EXPECTED PERFORMANCE IMPROVEMENTS WITHTCP

One of the primary motivations of Splay is to reduce the channel acquisition costs of 40 byte TCP ACKs. This

can be effected by adding the Splay rule ‘ack = true’ with a very high reward. (In fact, by making its rewardgreater

than the sum of rewards of other rules, we can in effect prioritize this rule.)

Without the implementation on hand yet, we resort to quantifying the performance improvement due to Splay by

simulating an idealized example withn + 1 nodes in a line using ns-2. We first measure the performance ofa single

TCP flow carrying1400 byte payload from the leftmost node to the rightmost node. Next, we investigate a flow

pattern consisting ofn+1 UDP flows in total. The firstn flows are single hop UDP flows between nearest neighbors

in the forward direction, and then + 1th flow is a one hop flow in the backward direction at the end of the line, as

shown in Fig. 10. The first forward flow uses a1412 byte CBR payload, while the othern − 1 forward flows use a

1452 byte CBR payload. The single reverse UDP flow originates fromthe destination and uses12 byte payload. By

adjusting the (common) input packet rate of each flow, we can determine the saturation throughput. This simulates the

situation when Splay combining is used to combine the ACK packets in the reverse direction with the data packets

in the forward direction. (This calculation ignores the reverse direction traffic generated by FTP.) The performance

difference between the two scenarios provides an upper bound on the performance boost we can expect when TCP

is used over the Splay combiner (some of this improvement is due to our use of UDP in the second scenario instead

of TCP.) This throughput comparison is shown in Fig. 11 as a function of n. (The throughput number shown is the

total network layer goodput.) It seems like the best possible expected performance boost from Splay combining can

be expected to increase from 15% to 130% asn increases from2 to 11.

VIII. R ELATED WORK

Point-to-point MAC layer techniques to mitigate high floor acquisition costs in IEEE 802.11 like frame bursting

and block ACKs have been included in the IEEE 802.11e standard [6]. The idea of using wireless broadcast natively

has recently received a lot of interest. Receiver oriented forwarding [4] intelligently chooses the next hop for a packet
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after it has been broadcast on the air. This opportunistically takes advantage of “lucky events”, where a packet makes

a lot of progress towards its destination in one step. Such delayed next hop binding has also been explored in the

MAC [7]. There is a growing interest in innovative ARQ techniques to replace IEEE 802.11 stop-and-go ARQ. Frame

combining techniques aim to salvage a packet from successive, possibly erroneous, retransmissions [8], [9]. Hybrid

ARQ uses a mixture frame combining and forward error correction for reliability [10]. There is a growing interest in

using innovative coding approaches like network codes [11], [12].

IX. CONCLUSION

The traditional floor acquisition mechanism in IEEE 802.11 is very expensive in terms of overhead. This four-

way handshaking is primarily a way to create a unicast communication link from what is fundamentally a broadcast

medium. Our main thesis is that such unicast usage of the wireless channel is wasteful. Instead, we describe the design

of Splay, a packet splaying protocol that attempts to acquire the floor and simultaneously transmit packets to as many

potential receivers as possible. The design of Splay allowsfor the use of sophisticated erasure codes to replace the

IEEE 802.11 ARQ for reliability. Splay is layered between IPand MAC and can be completely built in software. It

is in the process of being implemented as a Linux kernel module.
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