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ABSTRACT 

Anaerobic biological processes are a reliable alternative to the conventional activated 

sludge process for the treatment of high-strength industrial wastewater, offering various 

advantages. Such advantages include, for example, less sludge generation, less operational cost, 

greater energy recovery, and a smaller footprint. An anaerobic up-flow packed-bed reactor 

maximizes the advantages by retaining a high concentration of biomass in the system, providing 

sufficient sludge retention time to slow growing anaerobic microorganisms. The inherent 

configuration of the reactor, however, is prone to increasing soluble microbial products (SMP). 

SMP are soluble organic cellular components that are released from biomass metabolisms in 

mixed culture biotechnology, which often result in a hindrance to efficient performance, lower 

effluent quality, and toxicity and a precursor of disinfectant by-products in discharged water. 

Despite several attempts to reduce SMP through coagulation and adsorption, a long-term 

treatment of SMP has not been achieved.  

In this study, a combined process of anaerobic packed-bed reactors and a down-flow 

hanging sponge (DHS) reactor is proposed. As a matter of post-treatment, the DHS reactor 

further degraded SMP produced from the anaerobic methanogenic reactors, using selectively 

enriched microbial consortia-utilizing SMP. As such, the primary research aims of this project 

are as follows: (1) to understand the microbial community structure and ecology treating high-

strength organic wastewater in the anaerobic packed-bed reactors; (2) to investigate biological 

SMP degradation in the DHS reactor; and (3) to explore phylogenetic characteristics and the 

metabolic functionality of the enriched microbial community involved in SMP degradation.  

This study discussed the diversity and dynamics of microbial communities in anaerobic 

packed-bed reactors in the process of optimizing operational parameters. The communities were 

influenced by an increasing organic loading rate, which indicated a strong association with the 

abundance of Bacteroidetes and Chloroflexi among the dominant populations. These populations 

may take charge of initiating the degradation of organic compounds in the system. Next, the 

biological degradation of SMP, with respect to the selective enrichment of the microbial 

community in the DHS reactor, was demonstrated. SMP produced from the anaerobic reactors 

originated primarily from biomass metabolisms, exhibiting a bimodal MW distribution with 14-

20 kDa and <4 kDa. The sub-fractions of SMP indicated different degradation fates in the DHS 

reactor with an overall stable removal (>70%) of the total SMP. Spatial and temporal variability 
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of the DHS microbial communities was significantly influenced by operational parameters. In 

particular, Saprospiraceae was the most correlated population in the community for increasing 

SMP loading, which indicated positive co-occurrences with neighboring bacterial populations. 

Different microbial diversity, along with the vertical depth of the reactor, suggested that 

stratified microbial communities might participate in the SMP degradation. Lastly, the genetic 

functional potential and expression of the DHS microbial community, with regard to SMP 

degradation, were explored. Despite the disparate microbial communities with the increase of 

SMP loading, a functional convergence for the SMP degradation was observed. The gene 

expression of the dominant draft genomes, based on carbohydrate-active enzymes, indicated that 

Bacteroidetes-related draft genomes actively represented cell associated enzyme-related genes, 

which were specific to the polysaccharide components of peptidoglycan. This finding led to 

speculation that the majority of SMP herein may be composed of detrital cell structural 

components released from peptidoglycan. 

 Ultimately, the findings from this study suggest a possible application of the biological 

SMP degradation, using a DHS reactor, to improve treatment performance and efficiency in 

bioprocesses. It also broadens current understanding of SMP, which are produced from mixed 

culture biotechnology, and their microbial utilization.   
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CHAPTER 1: INTRODUCTION 

 

1.1 Background  

1.1.1 Biological anaerobic treatment of high strength organic wastewater  

Anaerobic biological treatment for wastewater treatment is a promising alternative 

method to conventional treatments that use an aerobic activated sludge (AS) process. It holds 

potential due to its high capacity to degrade concentrated and recalcitrant substrates,1-2 as well as 

low requirement of operational cost, small land requirements, and low excess sludge 

production.1, 3-4	Additionally, it minimizes the energy requirement by producing biogas as a 

renewable energy, which can compensate for the electricity required for the operation.5-8 The 

high-rate anaerobic treatment makes the process to be more appealing for high-strength organic 

wastewater treatment, such as food, soft drinks, and distillery industrial wastewater.1, 9-14	The up-

flow anaerobic sludge blanket (UASB) reactor was one of the robust anaerobic configurations in 

cases of organic overloads, providing favorable conditions for slow-growing anaerobic 

microorganisms to be well retained with a long sludge retention time (SRT).15-16 Further by 

maximizing the density of biomass in the system with immobilized supporting media, an 

anaerobic packed-bed reactor was reported to provide greater efficiency, stability, and resilience 

than a UASB reactor.17-18 Despite the advantages of the anaerobic treatment and the development 

of its configuration, the effluent of the anaerobic processes still contain residual organic matters 

and nutrients, which are not suitable to be discharged into the natural water body,19-21 suggesting 

the need for a post-treatment system to further polish the effluent.  

 

1.1.2 Application of a down-flow hanging sponge (DHS) reactor as a post treatment for 

anaerobic process 

A down-flow hanging sponge (DHS) reactor was recently developed as a post-treatment 

for UASB processes.22 The configuration of the DHS reactor is the same as a trickling filter 

reactor: wastewater is sprinkled over the tops of the filters, which trickles down to where 

biofilms are attached. Since air diffuses naturally through the highly porous polyurethane sponge 

filters, which are used as biofilm supporting media in the DHS reactor, high levels of dissolved 

oxygen throughout the reactor can be maintained without aeration.23-24 The practical application 

of the DHS reactor has been studied intensively, exhibiting various advantages in terms of cost 
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and treatment efficiency. There is no need for external controls, such as pH and temperature, and 

it achieves a large capacity for biomass growth and a long sludge retention time (SRT).22, 25-27 

The combined system of an up-flow anaerobic reactors and a DHS reactor is a promising 

technology for the treatment of high strength organic wastewater.  

 

1.1.3 Negative impacts of soluble microbial products on water and wastewater treatment 

systems 

The residual organic matters in the effluent of the anaerobic process, mentioned above, 

were derived from the metabolism of biomass, known as soluble microbial products (SMP). 

Anaerobic reactors operated under a long SRT condition, such as an up-flow packed bed reactor, 

is prone to generate a high content of SMP. With an application of membrane separation in the 

anaerobic process, although the system enables the achievement of high-sludge concentration by 

decoupling a hydraulic retention time (HRT) from a SRT,5, 28-29 SMP are also severely 

accumulated in the system, resulting in fouling on the membrane and deteriorating the quality of 

the effluent.5, 30-32 Besides causing fouling in the membrane-based processes, SMP comprise a 

large portion of the remaining soluble chemical oxygen demand (SCOD) in effluents from 

conventional biological wastewater treatment processes.33-34 SMP in discharge water from 

wastewater treatment systems alone cause toxicity as well as environmental hazards by acting as 

precursors of disinfection by-products.35-36 Their accumulation in the system hinders efficient 

respiration, flocculation, and the settling ability of AS by deforming the physical properties of 

the AS.37-38 In a nitrification process, SMP are one of the main causes inhibiting a nitrification 

efficiency.39 Consequently, understanding the property of SMP and finding methods to control 

SMP production as well as their removal remain important for improving the performance of the 

anaerobic processes and the effluent quality. Ultimately, this aids in the achievement of 

gradually stricter discharge standards.40 

 

1.1.4 Definition of SMP and their characteristics  

SMP are soluble organic cellular components that are released from cell metabolism and 

lysis in bioprocesses.41 Since SMP can be generated from any microbial activity, they are 

ubiquitous in bioprocesses and contain various complex mixtures of polysaccharides, proteins, 

lipids, humic and fulvic acids, extracellular enzymes, amino acids, DNA, and other cell structure 
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debris.41-42 According to the unified theory of SMP proposed by Laspidou and Rittmann,41 SMP 

are classified into two sub-groups: utilization-associated products (UAP) that are produced 

directly from substrate utilization, i.e., released metabolic intermediates, and biomass-associated 

products (BAP) that are formed from cell lysis and decay. Regarding the characterization of 

SMP, various extant studies measured the molecular weight (MW) distribution of SMP from 

various origins.33-34, 43-44 Despite a wide range of MW distribution from different kinds and 

amounts of SMP, researchers commonly found that a majority showed a bimodal distribution 

with small MW, less than 1 kDa, and large MW, greater than 10-100 kDa. Moreover, a minor 

portion of SMP exhibited MWs between the two clusters.33-34 In addition, Ni et al.45 reported that 

the bimodal distribution could be related to the sub-fractions of the SMP. UAP were found to 

have low MWs, and they were readily utilized by the AS as substrates; whereas, BAP tended to 

have high MWs and accumulated in the reactor.  

 

1.1.5 Parameters affecting SMP production 

The production and accumulation of SMP in anaerobic processes are affected by various 

operational factors and the biodegradability of their sub-fractions. It has been reported that any 

kind of stress conditions on microbial activity led to increased SMP production; nutrient 

deficiency and toxic compounds considerably increased SMP concentrations in anaerobic 

chemostats.46 Temporal organic shock loading, reduction of HRTs, and low pH also enhanced 

SMP formation. In particular, this includes accelerated cell lysis from shortened HRTs which 

increased the release of BAP.47  Biomass treating highly saline substrates (over 30 g NaCl l-1) 

produced more high-MW SMP that were difficult to degrade compared with those treating low-

salinity substrates.48 Decreasing temperature and a higher initial biomass concentration were 

reported as other factors enhancing SMP production in an anaerobic baffled reactor.49 In 

addition, the long SRTs and short HRTs inherent in membrane bioreactors (MBR) are the most 

significant factors in the production and accumulation of SMP. Although there were some 

controversial results in the effects of SRT and HRT on the SMP production,49-50 many previous 

studies have reported that SRTs longer than 10 days led to the accumulation of SMP, especially 

by increasing the BAP concentrations; whereas, the portion of UAP among the SMP 

decreased.29, 34, 45, 51-55  Regarding these simultaneous effects, Huang et al.51-52 concluded that 
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decreased HRTs and long SRTs in the submerged MBR, accelerated membrane fouling, causing 

a high SMP production.  

 

1.1.6 Biological degradation as an alternative strategy to reduce SMP  

Among SMP, the large BAP compounds tend to be accumulated as a semi-labile and 

refractory matter in a biological process.43 Structural groups, such as carboxylic or phenolic 

groups, make cross-links with polyvalent cations, like Ca2+ and Mg2+, through acid-metal 

complexation, resulting in the formation of foulants in MBRs.56-59 Various strategies were 

attempted in an effort to directly reduce SMP and to prevent formation of the foulants caused by 

SMP in bioprocesses, which included the adsorption and coagulation of SMP. It also included a 

chemical cleaning of polyvalent cations, using ion exchanges, salt cleaning, and metal chelating 

agents.5-6, 60-65	Regardless, these chemical and physical attempts to remove SMP may not be a 

suitable long-term solution, providing just weeks to months of limited applications. Instead, the 

biological removal of SMP was considered recently as an alternative strategy to control SMP. 

However, the very low biodegradability of SMP was reported for both aerobic and anaerobic 

treatments. Between the two sub-fractions of SMP, BAP exhibited a slow biodegradation rate of 

0.1 g COD/g VSS-d, whereas that of UAP reached to 1.8 g COD/g VSS-d, indicating that BAP 

tend to accumulate in the system while UAP might be readily degradable.54, 66-68	Despite the 

tendency of the slow degradation of SMP, Backer et al.49 suggested that SMP generated from 

anaerobic chemostats could be effectively removed in the following aerobically conditioned 

reactors. In their study, it was observed, specifically, that large MW SMP (> 10 kDa, >100 kDa, 

and >300 kDa), which were considered to be BAP, showed almost complete degradation (up to 

96%) under aerobic conditions with enriched sludge for SMP uptakes.  

 

1.1.7 Microorganisms involved in the degradation of SMP  

Despite the low biodegradability of SMP, previous research reported that biological 

degradation of SMP was possible even with general activated sludge which was not acclimatized 

to specifically utilize the SMP as a substrate. This implies that a more effective degradation of 

SMP can be achieved with microbial consortia, preferentially, by utilizing microbial products. 

To identify SMP-degrading microorganisms and their community-level groups and to understand 

how they are involved in the degradation remain to be characterized. Few previous studies are 
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limited to identifying phylogenetic groups of heterotrophic bacteria, utilizing SMP that were 

produced by nitrifying bacteria at the phylum and class levels.69-71 In particular, Okabe et al.69 

observed that Chloroflexi played an important role to utilize microbial products together with a 

Cytophaga-Flavobacterium cluster, α-Proteobacteria, and γ-Proteobacteira among the 

heterotrophs. These were coexisting with nitrifying autotrophs without an external carbon 

supply. As such, the Chloroflexi tended to uptake microbial products derived from biomass 

decay (BAP), rapidly degrading glucose and N-acetyl glucosamine (the main component of cell 

peptidoglycan layers), whereas the Cytophaga-Flavobacterium cluster gradually ingested both 

metabolic intermediates (UAP) and structural cell components (BAP) from the nitrifying 

bacteria. Okamura et al.57, 72 isolated Phialemonium curvatum from AS for removing the uronic 

acids, which formed a matrix-like layer on the membranes, and evaluated the efficiency of 

preventing membrane fouling. Further, the decrease of SMP in the system was speculated to 

have a correlation with the abundance of Klebsiella in a biological activated carbon reactor73 and 

Chloroflexi in a membrane bioreactor (MBR)74. Therefore, it is speculated that an abundance of 

SMP-degrading microbes might exist, a significant amount of which may not be usually found in 

the conventional bioprocesses of wastewater treatment. Information about them, such as their 

phylogenetic relationship and metabolic properties, remain to be revealed. 

 

1.1.8 Application of high throughput sequencing to explore SMP degrading 

microorganisms 

The gap of knowledge related to the microbial community structures and their metabolic 

functions involved in production and degradation of SMP may be addressed by using 16S 

ribosomal RNA (rRNA) gene, metagenomic, and metatranscriptomic sequencings, which are 

based on high throughput Next Generation Sequencing (NGS) (Figure 1.1).75-78 First, these high 

throughput sequencing techniques, which are culture-independent, allow us to characterize 

unknown microbiomes that might rely on complex symbioses, representing in situ conditions of 

biological samples.79-80 An amplicon sequencing of the 16S rRNA genes, which are highly 

conserved and used to differentiate among organisms of other species, enables us to reveal the 

phylogenetic microbial community composition of the complex microbiomes.81-82 Metagenomics 

provides complementary characteristics of the community composition and information about 

the metabolic potential of entire communities and individual genomes in the biological niche. 
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This is accomplished by analyzing the entire genetic materials of the samples.83-86 Further, 

metatranscriptomics enables a determination of the functional profile of the active populations in 

the microbial community.85-87 Given the merits of these techniques, a multi-pronged approach for 

profiling genomic and expressional diversity and dynamics have been applied to various 

environmental and engineered microbiomes from marine water,88-89 oil spill,90 soil,86, 91-93 and 

human94-95 and animal96-97 guts. Recently, the application of these integrated sequencing methods 

expanded to analyses of microbial communities found in biological wastewater treatment 

processes.78, 98-99 The in-depth resolution of the genetic information, using these integrated 

sequencing approaches, would be helpful to enlighten characteristics of the microbial 

communities involved in the degradation of SMP in this study. 

 
Figure 1.1 Schematic representation of metagenomic and metatranscriptomic approaches to 
analyze an uncultured microbial community. 
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1.2 Objectives 

Many previous studies concluded that despite various advantages of up-flow anaerobic 

packed-bed reactors to treat high strength wastewater, their inherent configurations, resulting in 

long SRT, are prone to the low efficiency of COD removal, which is mostly caused by 

accumulation of SMP. However, the SMP from anaerobic processes can be biologically 

degraded in a subsequent aerobic process. A more effective degradability of the SMP is expected 

when the microbial consortia have been acclimated to utilizing the SMP. Therefore, in this study, 

a combined system of anaerobic packed-bed reactors and a DHS reactor was applied in an effort 

to provide a long SRT for the anaerobic process. Also, it aimed to produce high quality effluent 

by reducing SMP in the effluent from the anaerobic reactors using the DHS reactor. This 

research expects to enhance the degradation of the SMP that are produced from the anaerobic 

reactors by enriching microbial consortia specifically utilizing the SMP. Significantly, the 

purpose of this study is to understand the anaerobic microbial communities treating high strength 

organic wastewater, characteristics of the SMP produced by them, the biological SMP 

degradation by the enriched microbial consortia in the DHS reactor, and their metabolic 

characteristics. To address this purpose, the specific objectives of the chapters are as follows: 

1. To understand the microbial community structure and ecology treating high-strength organic 

wastewater in the anaerobic packed-bed reactors by investigating their temporal changes 

during the operation through 16S rRNA gene pyrosequencing.  

2. To investigate the biological degradation of SMP produced from the anaerobic packed-bed 

reactors using selectively enriched microbial consortia in the DHS reactor. The spatial and 

temporal variability of the microbial community composition and structure was characterized 

using 16S rRNA gene pyrosequencing. The relationships between the microbial populations 

and the operational factors were identified and evaluated by applying network and 

redundancy analyses. 

3. To explore metabolic potential and expression of the microbial consortia involved in SMP 

degradation and to disclose the active roles of the key microbial populations by analyzing 

overrepresented metabolic genes.  
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1.3 Experimental approach 

A combined system of two up-flow anaerobic packed-bed reactors (an anaerobic packed-

bed (AP) reactor and a hybrid packed-bed (HP) reactor) and a DHS reactor was configured to 

treat synthetic soft-drink-production wastewater containing polyethylene glycol (PEG), fructose, 

and glucose as the primary constituents (SCOD 3000 mg/L) (Figure 1.2). The anaerobic packed-

bed reactors (7.6 L working volume) were filled with ceramic supporting media and operated at 

35 oC without regular discharge of biomass to provide a sufficient SRT for the mesophilic 

anaerobic microbiomes to proliferate. To optimize the operational factors, the organic loading 

rate (OLR) increased from 0.5 g SCOD/L/day to 2.0 g SCOD/L/day by decreasing the HRT, 

stepwise, for over 800 days. The DHS reactor (10L working volume), which was filled with 

polyurethane sponge media (porosity 0.985 vol./vol.), was fed with a combined effluent 

discharged from the anaerobic packed-bed reactors as the sole substrate. The OLR and HRT in 

the DHS reactor were adjusted as the HRT and the effluent organic concentration in the 

anaerobic reactors changed and divided into five phases. The reactor was maintained at room 

temperature without external adjustment, such as aeration and pH control. To determine the SMP 

contained in the effluent from the anaerobic reactors and degraded in the DHS reactor, SCOD 

removal and reduction propensity of SMP sub-fractions by analyzing the molecular weight 

(MW) distribution were investigated. Biomass samples for microbial community analysis were 

periodically collected from the anaerobic packed-bed reactors and the DHS reactor over the 

different operational phases. Separate biomass samplings from the DHS reactor at low and high 

OLR conditions were conducted for metabolic characterization involved in the SMP degradation.  
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Figure 1.2 Schematic diagram of the combined system of the anaerobic packed-bed reactors (AP 
and HP) and the DHS reactor used in this study. 

1.4 Dissertation organization 

In Chapter 2, titled “Microbial community analysis of anaerobic reactors treating soft drink 

wastewater,” the methanogenic microbial communities in the AP and HP reactors, achieving 

>95% SCOD removal efficiency, were studied using 16S rRNA gene pyrosequencing. The 

diversity and dynamics of the microbial communities were correlated with respect to the 

optimized operational parameters. The results indicated that both AP and HP communities were 

predominated by Bacteroidetes, Chloroflexi, Firmicutes, and candidate phylum KSB3, which 

may degrade organic compounds in wastewater treatment processes. The community 

compositions were influenced by the increasing OLR, indicating a strong association with an 

abundance of Bacteroidetes and Chloroflexi among the dominant populations.  
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In Chapter 3, titled “Enrichment and characterization of microbial consortia degrading 

soluble microbial products discharged from anaerobic methanogenic bioreactors,” biological 

degradation of SMP produced from the AP and HP reactors, using selectively enriched microbial 

community in the DHS reactor, were demonstrated. As the operational conditions were changed 

in the five phases for >800 days, a stable SMP removal between 68.9 to 87.5% was achieved. 

The size-exclusive chromatogram demonstrated that the SMP produced from the AP and HP 

reactors exhibited a bimodal MW distribution with 14-20 kDa and <4 kDa. The sub-fractions of 

SMP indicated different degradation fates in the DHS reactor. The enriched microbial 

communities were characterized using 16S rRNA gene pyrosequencing, and their spatial and 

temporal variability were correlated with operational parameters. The results indicated that a 

great shift in the dominant microbial populations was observed as increasing SMP loading. 

Saprospiraceae was the most correlated population to the loading increase, indicating positive 

co-occurrences with neighboring bacterial populations. Different microbial diversity at the 

different vertical depth of the reactor was observed, suggesting that stratified microbial 

communities might participate in the SMP degradation. 

In Chapter 4, titled “Phylogenetic and functional characterization of the microbial 

community degrading soluble microbial products in a DHS reactor using a metagenomic and 

metatranscriptomic approaches,” the genetic functional potential and expression of the microbial 

community in the DHS reactor, which were expected to be related to the mechanism of SMP 

degradation, were studied using metagenomic and metatranscriptomic sequencing analyses. The 

functional annotation based on SEED Subsystems exhibited that although the microbial 

community compositions became disparate as SMP loading, a functional convergence was 

observed for the SMP degradation, including amino acids and derivatives, carbohydrates, and 

protein metabolisms. The gene expression of the dominant draft genomes base on carbohydrate-

active enzymes (CAZy) indicated that Bacteroidetes-related draft genomes actively represented 

cell associated enzyme-related genes, which were specific to polysaccharide components of 

peptidoglycan. This finding implies that the microbial communities, degrading SMP in the DHS 

reactor, were selectively enriched for the utilization of detrital cell structural components, which 

were released from peptidoglycan.  
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Chapter 5 summarizes the main findings and contributions of this research, and it proposes 

future works. The research evidenced in Chapter 2 and 3 was published. Moreover, the recent 

work demonstrated in Chapter 4 will be submitted in the near future.  
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CHAPTER 2: MICROBIAL COMMUNITY ANALYSIS OF ANAEROBIC REACTORS 

TREATING SOFT DRINK WASTEWATER 

 

2.1 Abstract  

The AP and HP reactors containing methanogenic microbial consortia were applied to 

treat synthetic soft drink wastewater, which contains polyethylene glycol (PEG) and fructose as 

the primary constituents. The AP and HP reactors achieved high COD removal efficiency 

(>95%) after 80 and 33 days of the operation, respectively, and operated stably over 2 years. 16S 

rRNA gene pyrotag analyses on a total of 25 biofilm samples generated 98,057 reads, which 

were clustered into 2,882 operational taxonomic units (OTUs). Both AP and HP communities 

were predominated by Bacteroidetes, Chloroflexi, Firmicutes, and candidate phylum KSB3 that 

may degrade organic compound in wastewater treatment processes. Other OTUs related to 

uncharacterized Geobacter and Spirochaetes clades and candidate phylum GN04 were also 

detected at high abundance; however, their relationship to wastewater treatment has remained 

unclear. In particular, KSB3, GN04, Bacteroidetes, and Chloroflexi are consistently associated 

with the OLR increase to 1.5 g COD/L-d. Interestingly, KSB3 and GN04 dramatically decrease 

in both reactors after further OLR increase to 2.0 g COD/L-d. These results indicate that OLR 

strongly influences microbial community composition. This suggests that specific uncultivated 

taxa may take central roles in COD removal from soft drink wastewater depending on OLR.  

 

2.2 Introduction 

As the global consumption of soft drinks continues to grow, 687 billion liters in 2013, the 

global value reach 830 billion USD.1 However, this incurs copious production (up to 2.0 trillion 

liters per year) and discharge of wastewater2 containing high concentrations of sugar3-5 and 

polyethylene glycol (PEG; HO[CH2 CH2 O]n H), a detergent for bottle washing and equipment 

rinsing.6 As such, the wastewater stream is characterized by high organic content with the COD 

ranging from 1.2 to 8.0 g/L and BOD5  from 0.6 to 4.5 g/L,3  and required to be treated to reduce 

COD to prevent the occurrence of contamination in the natural environment. Previous studies 

report physicochemical treatment, including reverse osmosis,2 filtration,2, 7 ion-exchange,2, 7 and 

ozonation;8 however, such approaches are relatively ineffective for removing soluble compounds 

(e.g., PEG and fructose) compared with biological methods.5, 9-10 While aerobic biological 
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treatment systems have also been applied,11-12 long HRT, high aeration requirement, extensive 

land requirement, high sludge production, and poor biomass settling are significant drawbacks.13 

Anaerobic biological treatment is a promising alternative due to its high capacity to degrade 

concentrated and recalcitrant substrates.13-14 Several studies have successfully applied anaerobic 

bioprocesses to treat soft drink wastewater, including immobilized cell bioreactors,15-16 UASB 

reactors,13, 17 anaerobic filters,18 and up-flow anaerobic pack-bed reactors.19 Although these 

reactors achieved satisfactory COD removal, none of these studies report the microorganisms 

that facilitate degradation of the wastewater organic compounds. Without understanding of the 

microbial community structure and ecology, development of strategies to maintain and improve 

treatment efficiency and stability can be difficult. In the present study, we developed anaerobic 

bioreactors treating synthetic soft-drink-production wastewater and investigated the temporal 

change in microbial community structure during the operation through 16S rRNA gene 

pyrosequencing. Specifically, we identify organisms potentially related to reactor operational 

conditions. 

 

2.3 Material and methods 

2.3.1 Reactor operation 

Two anaerobic up-flow bioreactors (7.6 L working volume) were operated separately at 

35°C (Figure 2.1). The anaerobic packed-bed reactor (AP) and hybrid packed-bed reactor (HP) 

were filled with the Siporax ceramic media (LxDxH; 15x15x15mm) (Aquatic Eco Systems, 

Apopka, FL, USA) to fill 10.2% and 5.0% of their working volume, respectively. Seed sludge 

sample was taken from anaerobic digester at Urbana, IL, USA.  
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Figure 2.1 Cross-section illustration of the AP and HP reactors. The reactors were equipped with 
water jacket and heated by water heater to kept at 35°C. The numbers in italics indicate size 
(mm). 
 
The reactors were fed with 3,000 mg COD/L synthetic wastewater that mimicked the 

composition of wastewater discharged from soft drink-processing factory:3, 5, 7, 15, 17, 20 1,100 

mg/L of polyethylene glycol 200 (PEG200); 1,500 mg/L of Corn Sweet High Fructose 55 

(ADM, IL, USA); 30 mg/L of acetone; 30 mg/L of ethanol; 10 mg/L of silicone grease; 16 mg/L 

of K2HPO4; 19 mg/L of FeSO4•7H2O; 366 mg/L of NaHCO3; 2 mg/L of NaF; 2.5 mg/L of 

NaOCl; and 28 mg/L of NH4HCO3. These components were dissolved in tap water, and pH was 

adjusted to 9.5–10.0 with 5M KOH to maintain the pH at 7.3–7.8 in the AP and HP. The internal 

circulation rates were 300 mL/min for both reactors. The reactors were operated under different 

HRT and organic loading rates (OLR) ranging from 1.5 to 6 days and from 0.5 to 2.0 g 
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SCOD/L/day, respectively (Figure 2.2). To avoid overloading of the organic compounds on 

initial microbial consortia, two reactors were operated for 11 days with constant recirculation of 

synthetic wastewater and no fresh influent. After day 11, both AP and HP reactors were fed with 

influent at a HRT of 6 days and an OLR of 0.5 g SCOD /L/day. For AP reactor, the HRT was 

decreased to 5, 4, and 3 days and the OLR gradually increased to 0.6, 0.75, and 1.0 g SCOD 

/L/day at 77, 91, and 115 days of the operation, respectively. For HP reactor, the HRT was 

decreased to 3 days and the OLR increased to 1.0 g SCOD /L/day after 31 days. After day 655, 

the HRT was decreased to 2 days and the OLR increased to 1.5 g SCOD /L/day for both reactors. 

Furthermore, the HRT of both reactors was decreased to 1.5 days and the OLR increased to 2.0 g 

SCOD /L/day after 744 days of the operation. 

 
Figure 2.2 Closed circle, COD removal (%) in AP; open circle, COD removal (%) in HP; closed 
triangle, effluent COD concentration (g/L) in AP; open triangle, effluent COD concentration 
(g/L) in HP; black line, pH in AP; gray line, pH in HP; closed square, methane gas production 
(L/day) in AP; open square, methane gas production (L/day) in HP. The reactors were operated 
at different OLR ranging from 0.5 to 2.0 g SCOD/L/day. The COD concentration of influent 
synthetic wastewater was decreased due to absence of polyethylene glycol 200 (1,100 mg/L) 
during days 398–411. The triangles in the bottom indicate the periods for biomass sampling from 
the reactors. 
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AP

AP
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2.3.2 COD and methane gas measurements 

The soluble COD was measured with COD digestion kit (HACH, Loveland, CO, USA) and 

DR/4000 U Spectrophotometer (HACH) according to the Standard Method 5220D.21 Methane 

gas produced from the reactors was collected in gas sampling bag (Standard Tedlar PVF Bags, 

DuPont, DE, USA) and measured using a GC-2014 Gas Chromatograph (Shimadzu Scientific 

Instruments, Kyoto, Japan) equipped with a thermal conductivity detector (Shimadzu Scientific 

Instruments) and a Molecular Sieve 13X packed column (2,000xg 2 mm) (Restek, PA, USA). 

 

2.3.3 Biomass sampling 

Biomass samples for microbial community analysis were collected from AP and HP at 64, 

121, 181, 251, 321, 435, 462, 530, 600, 664, 722, and 772 days of the operation (Figure 2.2). The 

ceramic media (ca. 5 pieces) were collected from 16 cm depth from effluent outlet with 

autoclaved forceps and put into 50-mL tube. After 10 mL of 1Å~ PBS was added, the media was 

vortexed rigorously to remove the biofilm. After centrifugation (8,500 xg, 3 min), the biomass 

samples were collected and stored in − 80°C freezer until DNA extraction. 

 

2.3.4 DNA extraction, PCR, and pyrosequencing 

DNA extraction, PCR, and pyrosequencing were performed as previously described.22 

Briefly, DNA was extracted using the FastDNA SPIN Kit for Soil (MP Biomedicals, Carlsbad, 

CA, USA). The 16S rRNA gene was amplified with the U515F forward primer and U909R 

reverse primer.23 Pyrosequencing was performed using the GS-FLX Titanium platform 

(Roche/454 Life Sciences, Branford, CT, USA) at the Roy J. Carver Biotechnology Center at the 

University of Illinois at Urbana-Champaign (IL, USA). 

 

2.3.5 Pyrosequencing data analysis 

Raw 16S rRNA gene sequences were screened and trimmed with QIIME 1.8.024 using a 

sequence length (≥150 nt) and quality score (≥25) cut-off. The trimmed sequence data was 

clustered with the UCLUST algorithm using ≥97% sequence identity cut-off25. Representative 

sequences of each OTU were aligned using PyNAST26 and chimeric sequences were removed 

using ChimeraSlayer.27 The phylogenetic assignment of each OTU was carried out with a dataset 
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obtained from Greengenes_web_site (gg_13_5_otus; http://greengenes.secondgenome.com/ ).28 

The Chao1 index and rarefaction curve were calculated by EstimateS (version 9.1.0).29 The 

coverage values were calculated using equation [1 – (n/N )], where n  is the number of OTUs in a 

single read (singleton) and N  is the total number of reads analyzed.30 The weighted UniFrac 

distances were used for principal coordinate analysis (PCoA).31 Phylogenetic trees for 16S rRNA 

gene pytotags and previously reported sequences were constructed with the ARB program based 

on the neighbor-joining algorithm.32 Insertion of pyrotag sequences (ca. 370 bp) was performed 

with the parsimony insertion tool of the ARB program. The topology of the trees was estimated 

by 1,000 bootstrap replicates.33 

 

2.3.6 Statistical analysis 

In order to correlate microbial community profiles with reactor operational conditions 

(ORL, HRT and reactor type), statistical analysis including redundancy analysis (RDA) and 

correspondence analysis (CA) were performed using CANOCO software version 4.5 

(Microcomputer Power, Ithaca, NY, USA).34 According to the instruction of CANOCO, when 

the longest length lies between 3 and 4, it is reasonable to apply either linear method (RDA) or 

unimodal method (CA). All OTUs were used for calculation and major groups were picked out 

manually and plotted with operation conditions. 

 

2.3.7 Nucleotide sequences accession number 

The pyrosequencing data obtained in this study have been deposited under 

DDBJ/EMBL/GenBank accession no. DRA002423. 

 

2.4 Results and discussion 

2.4.1 Reactor operation 

The operational performance of anaerobic packed-bed (AP) and hybrid packed-bed (HP) 

reactors treating synthetic soft drink wastewater is shown in Figure 2.2 and Table 2.1. AP and 

HP were continuously operated for more than 800 days. The removal efficiency of COD 

consistently maintained at 93–97% with an effluent COD mostly below 100 mg/L after 77 and 

12 days of operation of AP and HP, respectively. After the days of operation, no apparent 

differences in performance were observed between AP and HP. The total volume of methane 
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increased gradually with an increase in OLR (Figure 2.2). The average values of pH were stable 

during the operation, implying no obvious acid accumulation in the reactors. These results 

indicated that enriched microbial consortia in AP and HP retain the stability against the feeding 

of synthetic soft drink wastewater at 2.0 g SCOD/L/day. Dark gray-black-colored biofilm was 

formed on the surface of ceramic media in both reactors. The biofilm samples were retrieved and 

used for microbial community analysis (Figure 2.2). 
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Table 2.1 Operational parameter of AP and HP reactors. 
Parameters AP HP 

Day 0-11 12-76 77-90 91-114 115-654 655-743 744-810 0-11 12-30 31-654 655-743 744-
810 

HRT (day) Batch 6 5 4 3 2 1.5 Batch 6 3 2 1.5 
OLR 

(g SCOD/L/d) Batch 0.5 0.6 0.75 1.0  1.5  2.0  Batch 0.5 1.0  1.5  2.0  

COD removal 
(%) 22.4±5.5 41.3± 

27.5 
95.9± 

0.6 
94.5± 

1.6 
97.4± 

2.3 
97.2± 

1.6 
96.4± 

1.0 
66.0± 
19.7 

93.5± 
0.9 

95.1± 
5.0 

96.2± 
1.4 

97.2± 
0.3 

Methane 
(L/day) N.D. N.D. 514.4± 

32.5 
793.6± 

53.9 
1216.1± 

242.8 
2657.1± 

424.6 
3642.2± 

218.4 N.D. N.D. 1402.5± 
237.3 

2478.1± 
391.7 

3352.2
± 

260.2 
pH 7.3±0.3 7.4±0.1 7.4±0.2 7.5±0.1 7.3±0.3 7.0±0.1 7.1±0.1 7.6±0.2 7.5±0.2 7.4±0.3 7.1±0.1 7.1±0.1 

 
AP, anaerobic packed-bed reactor; HP, hybrid packed-bed reactor; COD: chemical oxygen demand; HRT, hydraulic retention time; 
OLR, organic loading rate; N.D. not determine 
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2.4.2 Overview of 16S rRNA gene pyrosequencing 

16S rRNA gene pyrotag libraries were constructed for twelve AP and HP biofilm samples 

each and their seed sludge. A total of 98,057 16S rRNA gene pyrotag reads were retrieved and 

further classified into 2,882 OTUs using a 97% sequence identity cut-off (Table A.1). Although 

the rarefaction curves of most samples were insufficient to achieve the plateau (Figure A.1), the 

high Good’s coverage values (>93%) suggested that obtained OTUs adequately estimated the 

microbial diversity of the reactors. According to the Chao1 indexes, the biofilm may contain 

approximately 1.53– 2.23-fold more OTUs than detected. Comparing microbial community 

composition between samples, unweighted UniFrac-based PCoA clearly showed that the 

community composition varied with time (Figure 2.3). Specifically, the microbial constituents 

continuously change over 321 days and reached stable structure only after 462 days, based on 

Jackknife clustering analysis, weighted UniFrac-based PCoA and correspondence analysis (CA) 

(Figure A.2, A.3, and A.4). Despite the dynamic community structure, the steady COD removal 

indicates that the enriched microbial consortia at all stages were suitable for soft drink 

wastewater treatment at the respective operation conditions (Figure 2.2). Using OTU-level 

phylogenetic analyses, we identify dominant organisms (Figure 2.4) and discuss their potential 

ecological roles below. 
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Figure 2.3 PCoA based on the abundances of 16S rRNA gene OTUs (unweighted UniFrac). For 
this analysis, observed 16S rRNA gene OTUs were normalized to 1,400 reads per sample. A and 
H indicate the samples taken from the AP and HP reactors. The numbers following A and H 
indicate days of the operation for biomass sampling. 
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Figure 2.4 The numbers below AP and HP on top row indicate days of the operation for biomass 
sampling. 

 

 

2.4.3 Bacteroidetes, Chloroflexi, Firmicutes, and Spirochaetes 

Phyla thought to take part in the anaerobic digestion nexus,35-39 Bacteroidetes, Chloroflexi , 

Firmicutes, and Spirochaetes , were detected in all samples (Table A.2 and Figure 2.4). 
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Firmicutes family Clostridiaceae (OTU1253, 2383, and 2853) were found in seed sludge and 

consistently observed throughout operation. On the other hand, although only two abundant 

OTUs (349 and 2758) were found in seed sludge within the phylum Bacteroidetes, other seven 

major OTUs emerged during the operation and their abundances behaved differently over time: 

OTUs 245, 349, 630, 1452, and 1955 predominated before day 435 and decreased in the later 

stages while OTUs 131, 1295, and 1382 increased after 321 days. Despite no dominant 

Chloroflexi-related OTUs in seed sludge, the abundances of three Chloroflexi-type OTUs 

(OTU316, 2001, and 2352) were frequently detected at day 121-435 and decreased after day 530, 

while OTU3036 predominated in later stage. Based on redundancy analysis (RDA) to correlate 

the abundance of major OTUs with operational conditions (Figure A.5), HRT, OLR, and reactor 

type were the major explanatory variables; further, this RDA plot supported the fluctuation of the 

discussed Bacteroidetes, Chloroflexi, and Firmicutes OTUs (Figure A.5). The members of the 

phyla may be responsible for fermentative degradation of protein and, more importantly, sugar to 

VFAs, based on previous reports.40-42 In addition, Bacteroidetes  found in the reactor may 

perform PEG degradation as a Bacteroidetes  member, Bacteroides  sp. PG1, has been observed 

to degrade PEG1000 axenically or in co-culture with Methanobacterium  sp. DG1.43 While 

Spirochaetes is neither known to degrade sugars nor PEG, related OTUs (555, 704, 851, 1270, 

and 3238) were consistently observed after 121 days (Figure 2.4 and Figure A.5), indicating that 

relatively high OLR condition (> 1.0 g SCOD L/day) facilitated their proliferation in the 

reactors. Although studies have reported Spirochaetes populations performing syntrophic acetate 

oxidation44 and acetogenesis45 in methanogenic environments, their ecological function still 

remains unclear. 

 

2.4.4 Candidate phyla KSB3 and GN04 

Besides such phyla widely associated with anaerobic digestion, we also observed 

populations of candidate phyla KSB3 and GN04 during later stages of operation (Figure 2.4). 

After 600 days, KSB3 (OTU389) predominated up to 38.3% and 4.8% in AP and HP 

respectively. This KSB3 closely relates to a clone (99.2% similarity to clone SwB25fl, accession 

no. AB266941) associated with a mesophilic UASB reactors treating sugar-containing 

wastewater (Figure 2.5).35 Further, KSB3 was also previously observed to degrade carbohydrates 

(i.e., glucose and maltose), especially in association with increase in influent sugar 
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concentration.46-47 Thus, KSB3 likely participates in fructose degradation in both AP and HP 

reactors. The GN04-related OTU3172 was detected in the AP (2.6-5.6%) and HP (1.5-8.1%) 

reactors after 530 days operation (Figure 2.4). Like KSB3, this GN04 OTU is related to a lineage 

(specifically MSB-5A5) associated with mesophilic UASB reactors treating sugar-containing 

wastewater (e .g ., 99.5% identity with clone N2B95fl; accession no. AB266976) (Figure 2.6).35 

However, in both cases, their physiology and in situ functions remains largely unknown. The 

RDA plot indicated that GN04 and KSB3 populations are positioned close to the origin of the 

axes, indicating that their appearance could not be explained by the environmental factors tested. 

Further study on metagenomic and single-cell genomic analyses would provide more useful 

information to elucidate the ecophysiological traits of these functionally unknown microbes. 
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Figure 2.5 Distance matrix tree of 16S rRNA gene sequences assigned to the candidate phyla 
GN04 and KSB3 retrieved from anaerobic reactors based on the neighbor-joining method. 
Boldface indicates the sequences obtained in this study. The 16S rRNA gene sequences of 
Methanosaeta harundinacea 8Ac (AY817738), Methanosaeta pelagica 03d30q (AB679167), 
Methanosaeta concilii opfikon (X51423) were used as outgroup. The bar indicates 10% base 
substitution. Branching points supported probabilities >95%, >75%, and >50% by bootstrap 
analyses (based on 1,000 replicates) are indicated by solid circle, open circles, and open square, 
respectively. 
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Figure 2.6 Distance matrix tree of 16S rRNA gene sequences assigned to the Geobacter 
retrieved from anaerobic reactors based on the neighbor- joining method. Boldface indicates the 
sequences obtained in this study. The 16S rRNA gene sequences of Thermodesulfobacterium 
commune DSM 2178 (AF418169), Thermodesulfobacterium hveragerdense DSM 12571 
(NR_029311), and Thermodesulfobacterium hydrogeniphilum DSM 14290 (NR_025146) were 
used as outgroup. The bar indicates 10% base substitution. Branching points supported 
probabilities >95%, >75%, and >50% by bootstrap analyses (based on 1,000 replicates) are 
indicated by solid circle, open circles, and open square, respectively. 
 

2.4.5 Methanogens and syntrophs 

In order to accomplish complete conversion of sugar to CH4 and CO2, it is necessary to 

further degrade H2, acetate, and other volatile fatty acids (VFAs; e.g., propionate and butyrate) 

likely generated from sugar fermentation by the aforementioned organisms. Specific methanogen 
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clades are known to individually degrade H2 and acetate to CH4 and CO2. On the other hand, 

degradation of VFAs is thermodynamically limited in methanogenic environments,48-50 and 

syntrophs and methanogens are known to form obligate mutualistic metabolic interactions to 

accomplish such degradation. As expected, OTUs associated with known methanogens and 

syntrophs were consistently observed in AP and HP during operation (Figure 2.4). For 

methanogens, Methanobacterium (OTU143 and 908) was the dominant H2 -oxidizing 

methanogen throughout reactor operation. Similarly, aceticlastic Methanosaeta-related OTU649 

was found not only in all sludge samples (1.0– 27.1% of the total population) but also in seed 

sludge (3.1%), likely degrading acetate derived from fructose and/or PEG.51-52 An OTU (2892) 

related to Methanosarcina, capable of both acetate- and H2 -oxidation, was detected at relatively 

higher abundances at day 121 in AP (5.5%) and day 64 in HP (12.4%). RDA revealed that 

Methanosarcina- and Methanobacterium-related OTUs (OTU143, 908, and 2892) were 

represented by relatively short arrows in the direction of HRT, indicating their proliferation at 

higher HRT conditions. For Methanosaeta populations, OTU649 had no significant correlation 

with HRT and OLR. In contrast, the OTU661 was strongly correlated with OLR. For 

Methanosaeta populations, OTU649 had no significant correlation with HRT and OLR. It has 

been reported that the affinity for acetate could be relevant to the growth of aceticlastic 

methanogens, and under high acetate concentrations, Methanosarcina spp. often outcompete 

Methanosaeta spp.53-54 While the acetate concentration was not measured in the reactor, it was 

likely very low due to the dilution of substrate concentration from internal circulation and reactor 

volume right after entering the reactor. Even in such low acetate concentration, Methanosaeta 

related OTU661 might be affected by different OLR conditions. As for degradation of VFAs, in 

both reactors, we found known syntrophic populations, including Syntrophomonas (OTU1550), 

Syntrophobacter (OTU2866 and 3104), and Smithella (OTU544 and 584) (Figure 2.4). Among 

them, Syntrophomonas-related OTU1550 was found in seed sludge as a major syntrophic 

population (0,44%). Based on characteristics of these genera,48, 55 they are most likely involved 

in the degradation of butyrate (Syntrophomonas) and propionate (Syntrophobacter and Smithella) 

through with syntrophic partnership with methanogens (e.g., Methanobacterium). Such VFAs 

may be produced by butyrate- or propionate producing fermentative bacteria, such as the 

members of the phyla Firmicutes  and Bacteroidetes.56-60 The relatively low abundances of 

syntrophic bacteria (< 1.6% of the total populations) are in good accordance with the results of 
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quantitative analyses of anaerobic bioreactors with membrane hybridization61 and sequence-

specific 16S rRNA cleavage method.62 These results suggest that hydrogenotrophic methanogens 

and syntrophs observed here might play a supporting role in the VFA removal to maintain 

process stability. RDA plot of known syntrophs showed that the OTUs associated with 

propionate-oxidizing syntrophs (OTU544 and 584, 2866, and 3104) shared similar trend going 

along with OLR axis (Figure A.5A). Given that these microbes utilize propionate as major 

substrate for syntrophic metabolism,48 it is reasonable to conclude that propionate fermentation 

might be the dominant sugar degradation pathway as OLR increased. Syntrophomonas-related 

OTU1550 that primarily utilizes butyrate, showed opposite trending with propionate oxidizers, 

implying a major role of butyrate fermentation in lower OLR condition. 

 

2.4.6 Geobacter 

Unlike most other methanogenic environments, Geobacter-related organisms were 

frequently observed in the AP and HP reactor pyrotag libraries, although they were minor 

populations in seed sludge (< 0.31%) (Figure 2.4). OTU1431 closely related to G. chapelleii  

strain 172 (99.5% sequence identity; accession no. U41561), a non-fermentative, iron-reducing 

bacterium capable of oxidizing acetate, formate, ethanol, and lactate (Figure 2.5).63 RDA 

indicated that OLR correlated with the abundance of the OTU1431 (Figure A.5), suggesting that 

G. chapelleii-related organism might contribute to oxidizing acid (i .e ., formate, acetate, and 

lactate) or alcohol (i .e ., ethanol) possibly produced by fermentative degradation of sugar and 

PEG. Three other OTUs (278, 2675, and 2907) were distantly related to known Geobacter 

isolates (i.e., OTU278 has 98.0% identity with G. argillaceus strain G12; accession no. 

NR_043575, and OTU2675 and 2907 have 99.0% identity with G. daltonii strain FRC-32; 

accession no. NR_074916), and clustered with environmental clones that retrieved from 

mesophilic UASB reactors treating wastewater discharged from sugar- and amino acid-

processing factories (Figure 2.6).35 These observations suggested the importance of these 

Geobacter-related organisms in anaerobic processes treating food-processing wastewater. Within 

this poorly characterized Geobacter clade, 16S rRNA gene sequence of a syntrophic ethanol-

oxidizing bacterium NE23-3 (accession no. AB231802) was deposited. Albeit no report on its 

physiology has yet been published, such unidentified Geobacter may oxidize ethanol (and 

possibly other syntrophic substrates) in association with hydrogenotrophic methanogens. RDA 
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plot showed that these OTUs had no correlations with OLR/HRT. It is puzzling that Geobacter 

predominated the reactor community despite no substantial addition of oxidized metals (e .g ., 

Fe3+  and Mn4+ ). However, recent studies suggest that Geobacter may thrive under 

methanogenic conditions through interspecies electron transfer with methanogens.64-65 In short, 

while we suspect they ought play an important role in the treatment of soft drink wastewater 

based on their consistent presence, more studies are necessary to investigate their ecological 

contribution. 

 

2.5 Conclusions 

We successfully operated AP and HP reactors to treat synthetic soft drink wastewater. Based 

on the 16S rRNA gene pyrotag analyses, we identified core microbial constituents and assigned 

their possible function based on previously known physiological characteristics: Methanosaeta, 

Methanosarcia, and Methanobacterium as major methanogenic archaea; Bacteroidetes, 

Chloroflexi, Firmicutes, and KSB3 as fermentative bacteria; Bacteroidetes as PEG degrader. 

Syntrophs, Syntrophomonas, Syntrophobacter, and Smithella may support degradation of VFAs 

derived from sugar and PEG degradation by the fermenters. While we also identify Geobacter, 

Spirochaetes, and GN04 members prevalent in the reactor, their ecological role in soft drink 

wastewater treatment remains unclear. Interestingly, many of these organisms, especially KSB3 

and GN04, appear to be strongly influenced by operational conditions, indicating that specific 

organisms may be adapted to and responsible for sugar/PEG degradation under specific 

conditions. 
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CHAPTER 3: ENRICHMENT AND CHARACTERIZATION OF MICROBIAL 

CONSORTIA DEGRADING SOLUBLE MICROBIAL PRODUCTS DISCHARGED 

FROM ANAEROBIC METHANOGENIC BIOREACTORS 

 
3.1 Abstract 

SMP produced in bioprocesses have been known as a main cause to decrease 

treatment efficiency, lower effluent quality and promote membrane fouling in water 

reclamation plants. In this study, biological degradation of SMP using selectively enriched 

microbial consortia in a DHS reactor was introduced to remove SMP discharged from 

anaerobic methanogenic reactors. On average, 68.9 to 87.5% SMP removal was achieved by 

the enriched microbial consortia in the DHS reactor for >800 days. The influent SMP fed to 

the DHS reactor exhibited a bimodal MW distribution with 14-20 kDa and <4 kDa. Between 

these two types of SMP, the small MW SMP were biodegraded in the upper part of the 

reactor, together with most of the large MW SMP. Using 16S rRNA gene pyrosequencing 

technology, the microbial community composition and structure were characterized and 

correlated with operational factors, such as hydraulic retention time, organic loading rate, 

and removal of soluble COD at different depths of the reactor by performing network and 

redundancy analyses. The results revealed that Saprospiraceae was strongly correlated to 

the increasing SMP loading condition, indicating positive co-occurrences with neighboring 

bacterial populations. Different microbial diversity along with the depth of the reactor 

implies that stratified microbial communities could participate in the process of SMP 

degradation. Taken together, these observations indicate that the spatial and temporal 

variability of the enriched microbial community in the DHS reactor could effectively treat 

SMP with respect to changes in the operational factors. 

 

3.2 Introduction  

Biological treatment processes have been extensively used to treat wastewater 

containing dissolved organic materials. In these treatment processes, microbial cells are 

enriched to high concentrations (>1-2 g/L) to effectively degrade and mineralize organic 

matters to carbon dioxide.  Concurrently, energy is derived for the growth of microbial cells, 

and soluble microbial products (SMP) are secreted into the bulk solution. SMP generally 



 
	

45 

contain a wide range of soluble, complex, and heterogeneous compounds with a MW 

ranging from 0.5-1000 kDa.1-3 They are present in the effluent discharged from the treatment 

processes and are primary substances contributing to the increase in effluent COD.2, 4 They 

can be a cause of increasing toxicity of the effluent by themselves5 and an environmental 

hazard by acting as a precursor of disinfection by-products.5-7 Accumulation of SMP in AS 

processes not only decreases respiration rates but also reduces efficiencies in flocculation, 

settling ability, and dewaterbility of AS by affecting physical properties in the processes, 

such as sludge structure, turbidity, and viscosity8-9. Increase of SMP in tertiary treatments 

can also have inhibitory effects on nitrification.10   

The presence of SMP in discharged water can potentially have negative impacts to 

water reclamation processes. In membrane bioreactors and in membrane separation 

processes for water purification, SMP are reported to be responsible for membrane fouling 

by accumulating on the surface of membranes, blocking pores, and subsequently reducing 

the water flux through the membranes.11-13 To remove foulants deposited on the membrane 

surface and restore the water flux passing through the membrane, membrane backwashing or 

chemical cleaning is often used. In extreme cases, these foulants can no longer be removed 

from the membrane surface. As a result, replacement of new membrane modules is required, 

which can increase operation costs.  

 It is important to develop strategies to effectively control and remove SMP in 

membrane-based water treatment and reclamation processes.14-15 In these processes, 

adsorption and coagulation as pretreatments are often used to reduce SMP, and this can 

prevent or minimize the extent of fouling taking place on the membrane surface.16-20 The 

most commonly used adsorbent is activated carbon in a form of granules or powders,17-18, 20-

21 and its use prior to microfiltration and ultrafiltration is reported as the most effective 

pretreatment to control SMP in secondary effluent.22-23 However, the long-term application 

of activated carbon can be limited by its adsorption capacity.18, 20-21, 23  

 Alternatively, biologically degrading SMP has been suggested to control the amount 

of SMP in water treatment systems.24 Biodegradation of SMP is feasible but at a slow rate 

due to the large MW and complex chemical structures.25-26 However, when appropriate 

conditions are provided, effective degradation of SMP discharged from an anaerobic reactor 

can be achieved with efficiency up to 96% on high MW SMP (> 100 kDa); the degradation 
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efficiency of SMP is observed to be more effective under aerobic conditions than anaerobic 

conditions.27 Microbial community compositions related to anaerobic SMP degradation have 

not been characterized, but a few previous studies are limited to identifying phylogenetic 

groups of heterotrophic bacteria utilizing SMP produced by nitrifying bacteria at the phylum 

and class levels.28-30 The decrease of SMP in the system was just speculated to have a 

correlation with the abundance of Klebsiella in a biological activated carbon reactor31 and 

Chloroflexi in a membrane bioreactor (MBR).32  

Several reports have also described the use of a down-flow hanging sponge (DHS) 

reactor as a post-treatment to treat the effluent discharged from UASB processes treating 

domestic wastewater.33-37 Additional 70-80 % reduction in COD by the DHS reactor was 

reported. Although no measurement was performed to confirm the molecular size of the 

COD present in the UASB effluent, it is possible that the majority of the COD was primarily 

made of SMP, and a large fraction of the SMP was biodegraded by the microbial 

populations selectively enriched in the DHS reactors.   

 In this study, to understand biological degradation of SMP in a DHS reactor as a 

post-treatment process to the effluent of anaerobic methanogenic reactors, the spatial and 

temporal variability of the community composition and structure of the enriched microbial 

consortia was characterized using 16S rRNA-based pyrosequencing. In addition, the key 

microbial populations involved in SMP degradation and their relationships with the 

operational factors were identified and evaluated by applying network and redundancy 

analyses. 

 
3.3 Material and methods 

3.3.1 Experimental set up 

 Figure 1A illustrates the use of a DHS reactor to enrich microbial consortia that 

could degrade SMP present in the effluent of anaerobic bioreactors. To produce the required 

SMP-containing effluent, two anaerobic reactors, named an anaerobic packed-bed reactor 

(AP) and a hybrid packed-bed reactor (HP), were operated to treat synthetic wastewater that 

mimicked the wastewater composition discharged from soft drink production plants (Table 

B.1). The detailed information of the system performance of the AP and the HP reactors is 

described elsewhere.38 Briefly, the OLR increased from 0.5 g SCOD/L/day to 2.0 g 
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SCOD/L/day, and the removal efficiency of SCOD was 93-97% with consequent average 

effluent SCOD 121.9 ± 106.5 mg/L and 123.4 ± 74.9 mg/L in the AP and the HP reactors, 

respectively. The DHS reactor was fed with combined effluent discharged from the 

anaerobic reactors as the sole substrate. With a working volume of 10 L, the DHS reactor 

was filled with polyurethane sponge media (porosity 0.985 vol./vol.) covered by net 

cylinder-shape polyethylene cases (L34xD34xH34, unit mm). AS from the Urbana-

Champaign sanitary district at Urbana, Illinois was inoculated into fifteen pieces of sponge 

and randomly placed at the top, middle, and bottom parts of the DHS reactor. The HRT was 

decreased from 1.82 to 0.52 days stepwise with a consistent internal-circulation rate of 50 

ml/min (Table 3.1). In total, five phases based on HRT and OLR were defined for the 

operation conditions. The reactor was maintained at room temperature without additional 

aeration and pH adjustment.  

 
Table 3.1 Operational conditions and performance of the DHS reactors in the five phases. 

Phase Day 

Average 

influent SCOD 

(mg/L) 

HRT 

(Day) 

Influent  

SCOD  

(mg/L) 

OLR (mg 

SCOD/L/day) 

SCOD 

removal 

(%) 

SCOD 

removal  

(mg SCOD 

/L/day) 

I 

i 0-135 106.5 ± 9.6 1.82 106.5 ± 9.6 58.5 ± 5.3 65.8 ± 22.5 38.5 ± 5.1 

ii 136-230 66.9 ± 11.3 1.82 66.9 ± 11.3 36.8 ± 6.2 66.4 ± 5.3 24.4 ± 3.0 

iii 231-335 105.2 ± 13.8 1.82 105.2 ± 13.8 57.8 ± 7.6 76.8 ± 5.2 44.4 ± 3.7 

iv 336-461 55.9 ± 15.5 1.82 55.9 ± 15.5 30.7 ± 8.5 65.8 ± 7.0 20.2 ± 4.2 

II 462-603 48.7 ± 8.3 1.21 48.7 ± 8.3 40.2 ± 6.8 72.9 ± 5.5 29.3 ± 2.3 

III 604-691 112.8 ± 60.8 0.91 112.8 ± 60.8 124.0 ± 66.8 72.9 ± 6.3 90.4 ± 25.0 

IV 692-753 92.9 ± 23.8 0.67 92.9 ± 23.8 138.7 ± 35.5 73.9 ± 5.6 102.5 ± 32.7 

V 754-824 225.3 ± 65.3 0.52 225.3 ± 65.3 433.3 ± 125.6 87.5 ± 6.5 379.1 ± 142.4 

 
 
3.3.2 Analytical procedures 

Soluble COD (SCOD) in the samples was characterized using COD digestion kits 

(HACH, 2125815) with a UV/VIS spectrophotometer (DR/4000 U Spectrophotometer_115 

Vac, HACH Company, USA) after filtration with 0.22 µm filters (Millex-GP, Millipore, 

MA, USA). Dissolved organic carbon in the filtered sample was measured using an 

automated total organic carbon analyzer (TOC_Vcph, Shimadzu, Japan). The filtered 
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soluble samples were subjected to MW distribution of SMP, using a high performance liquid 

chromatography (HPLC) – size exclusion chromatography (SEC) (P680A LPG-2, Dionex, 

US) equipped with a Zorbax GF-250 column. SMP were detected with the UV detector at a 

wavelength of 254 nm. 0.01M phosphate solution filtered through 0.22 μm filters was used 

as the mobile phase at a flow rate of 1.0 mL/min. A standard curve was generated using a 

protein-based molecular weight marker kit (MWGF-200, MW ranges 12-200 kDa, Sigma) 

and Q-Dextran (MW 4 kDa, Sigma). The peak areas were calculated based on the peak 

intensity and the peak retention time in the chromatograms. 

 

3.3.3 Biomass sampling, DNA extraction, amplification of 16S rRNA genes, and 

pyrosequencing analysis  

To sample the biomass from the DHS reactor, a piece of sponge media was collected 

bimonthly from the upper (depth, 0.16 m) and lower (depth, 0.94 m) parts of the reactor. The 

biomass in the sponge was suspended in 25 ml of 1x phosphate buffered saline (PBS) 

solution by vortexing, pelleted by centrifugation (10000 rpm, 3 min), and stored in -80oC 

prior to DNA extraction. Biomass was taken at days 82 (only from the upper part), 136, 196, 

258, 373, and 454 in Phase I, days 528 and 602 in Phase II, day 648 in Phase III, day 723 in 

Phase IV, and day 798 in Phase V.  

DNA was extracted using a FastDNA spin kit for soil (MP Biomedicals, Carlsbad, 

CA, USA) and purified with the Promega Wizard DNA clean up system. A LIB-L kit (454, 

Roche, Basel) with a primer set targeting the 515F-909R region of 16S rRNA gene 

sequences39 was used for PCR amplification. PCR products were separated by 1.5% low 

melting gel electrophoresis and extracted with a Wizard SV Gel and PCR clean-up system 

(Promega, USA). A Qubit fluorometer (Invitrogen, USA) was used to quantify the PCR 

products. Equal amounts of the PCR products were combined and analyzed by a 454 

Genome Sequencer FLX Titanium platform (Roche/454 Life Sciences, Branford, CT, USA) 

at the Roy J. Carver Biotechnology Center at the University of Illinois at Urbana-

Champaign (IL, USA) for pyrosequencing. The pyrosequencing data have been deposited in 

NCBI-Sequence Read Archive (accession no. SRP056366). The Quantitative Insights Into 

Microbial Ecology (QIIME) pipeline was used to process the pyrosequencing data.40 
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Pyrosequencing results were processed using the Quantitative Insights Into Microbial 

Ecology (QIIME) pipeline40 with the default settings as follows: after the sequences were 

denoised, operational taxonomic units (OTUs) were assigned by the UCLUST algorithm (≥ 

97% pairwise identity). Representative sets of sequences from each OTU were then formed 

with identical sequences collapsing. Then, PyNAST41 was used to align the representative 

sequences of each OTU to the Greengenes imputed core reference sequences. Chimeric 

sequences were removed by Chimera Slayer.42 The PyNAST alignment was filtered to 

remove gaps and a phylogenetic tree was built using FastTree.43 The taxonomy of each OTU 

was assigned using the Ribosomal Database Project (RDP) classifier with a Greengenes-

based training dataset at a confidence threshold of 0.8. Chao1 richness estimator,44 Good’s 

coverage,45 Equitability, phylogenetic diversity (PD), and Shannon diversity indices were 

calculated in QIIME.  

 

3.3.4 Statistical methods  

A weighted UniFrac beta-diversity distance matrix was constructed from the 

phylogenetic tree and subjected to the non-metric multidimensional scaling (NMDS) 

analysis. Redundancy analysis (RDA) was used to evaluate the correlation of the operational 

factors, including HRT, OLR, SCOD removal and sampling locations with the temporal and 

spatial variability of the microbial community at the genus (Table 3.1). RDA was conducted 

using CANOCO v.4.5 (Microcomputer Power, Ithaca, NY). To determine statistically 

significant variables (P<0.05), the forward selection method was conducted using the Monte 

Carlo test (499 permutations).46  

 

3.3.5 Association network analysis 

Network analysis of operational taxonomic units (OTUs) with the operational factors 

was performed using CoNet.47 OTUs that had a relative abundance of at least 4% of the total 

in any community were considered (Table B.2). The association between i) the abundances 

of any two OTUs and ii) the abundance of an OTU and the value of an operational factor 

was calculated based on the Pearson correlation. The association network analysis was 

conducted with both operational factors, HRT and OLR, respectively and the respective two 

networks were subsequently merged.  
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3.3.6 Phylogenetic analysis  

In order to assess the phylogenetic affiliation of the OTUs that indicated a significant 

correlation with HRT and OLR in the network analysis, the aligned sequences of the OTUs 

were imported into ARB and then added to the Greengenes ARB database 

(Greengenes_16S_2011_1.arb) using ARB parsimony method. A phylogenetic tree for the 

aligned sequences with their neighboring sequences was built using the neighbor-joining 

algorithm with Jukes-Cantor correction. Bootstrap values were calculated based on 1000 

replications. 

 

3.3.7 Principal component analysis of 16S rRNA gene sequences data sets from DHS 

and other ecosystems 

The 16S rRNA gene sequences of AS, sewage, a pilot-scale DHS process, and soil 

were collected from the National Center for Biotechnology Information (NCBI) and 

GenBank nucleotide databases (Table B.3). QIIME pipeline was used for phylogenetic 

analysis of the 35 microbial communities with the default settings described previously. The 

principal component analysis (PCA) was carried out based on the relative abundance of 

phylogenetic groups at the family level in each sample using the Multibase program 

(Numerical Dynamics; www.numericaldynamics.com).   

 

3.4 Results and discussion  

3.4.1 Operational conditions and SCOD removal 

The DHS operation during the 824 days was divided into five phases according to 

the decrease in HRTs from 1.82 days to 0.52 days (Figure 3.1 and Table 3.1). Under an HRT 

of 1.82 days, Phase I was further divided into four different sub-phases based on OLRs. 

Despite fluctuation in the OLR, the effluent SCOD concentration was stabilized at 23.1 ± 

5.8 mg/L, and the average SCOD removal efficiency was 68.9 ± 10%. As the HRT was 

decreased, the OLR was increased almost 10 times from Phase I (46.3 ± 14.2 mg 

SCOD/L/day) to Phase V (433.3 ± 125.6 mg SCOD/L/day). Still, the effluent SCOD 

concentration remained around 23.9 ± 9.9 mg/L, and the SCOD removal efficiency 

increased from 68.9 ± 10.0% in Phase I to 87.5 ± 6.5% in Phase V. During the overall 
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operation, the performance of the DHS reactor in terms of SCOD removal was not seriously 

affected by the fluctuation or a sudden increase in influent organic loading, suggesting that 

DHS reactors could effectively polish the effluent quality and produce stable and low SCOD 

effluent under various organic loading conditions. During the 824 days of operation, either 

sloughing or detachment of biomass was not observed.  
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Figure 3.1 (A) Schematic diagram of the anaerobic packed-bed reactors the DHS reactor. 
(B) SCOD removal of the DHS reactor in five different phases. Phase I was divided into 
four different subphases based on OLRs. The arrows along with the time axis indicate the 
operational days when biomass in the supporting sponge media was collected for microbial 
community analysis. 
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3.4.2 SMP removal  

SCOD reduction in the DHS reactor suggested that SMP released from the anaerobic 

reactors could be effectively degraded. To analyze and compare changes in SMP profiles 

before and after the DHS treatment, samples from the effluent of the AP and HP reactors 

and the DHS reactors were collected in each phase. The MW distribution of the SMP 

showed a bimodal distribution with the major MW between 14-20 kDa, and the minor MW 

less than 4 kDa (Figure 3.2). Considering that the major constituents in the synthetic 

wastewater (Table B.1) were glucose, fructose, and polyethylene glycol (MW, 200 Da), of 

which the MWs were less than 200 Da, the observed SMP with a MW of 14-20 kDa in the 

anaerobic effluent were likely to be SMP-derived from metabolism of the anaerobic 

biomass.2, 48-49 Figure 3.2 further indicated the relative SMP removal of the large and small 

MW fractions in the DHS reactor, respectively. Although quantitative comparison of SMP 

reduction in the DHS reactor could not be made without standard compounds for 

quantification at each MW range, it was observed that the SMP associated with the peak 

areas (14-20 kDa) in the chromatogram in the AP and HP effluent were greatly reduced in 

the DHS effluent. Most of the SMP with an MW less than 4 kDa were degraded through the 

DHS in most of the phases. The pertinent chromatograms are shown in Figure B.1.  

The SMP degradation profile, after combined with the recirculation, along the 

reactor depth was further investigated (Figure 3.2). For the SMP with an MW of 14-20 kDa 

(n=4), 80.4% reductions in the chromatogram area was observed in the upper part of the 

reactor with a depth between 0.0 m and 0.32 m, and 8.6% reductions occurred in the lower 

part (0.65-1.14 m). For the small MW SMP (< 4 kDa), reduction was mainly observed in the 

upper part of the reactor. A SCOD profile for the degradation of the total organic 

compounds also indicated that 64.5% and 15.3% of influent SCOD were removed in the 

upper and lower part of the reactor, respectively (Figure B.2).  
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Figure 3.2 HPLC-SEC analyses of the effluent SMP from the AP and HP reactors, and the 
effluent from the DHS reactor in the five phases: (A) a chromatogram in Phase I at day 447, 
(B) degradation profiles of SMP sub-fractions along with the DHS reactor depth (n=4), (C) 
chromatogram peak areas corresponding to MW range of 14-20 kDa, and (D) chromatogram 
peak areas corresponding to MW range of <4 kDa. The peak areas were calculated based on 
the peak intensity and the peak retention time in the chromatograms. The number in 
parentheses indicates the days when the samples were collected. 
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3.4.3 Microbial community dynamics  

A NMDS plot based on weighted UniFrac distances (stress value = 0.046) indicated 

that samples collected from the DHS reactor tended to cluster together and were separated 

from the inoculated AS and the influent biomass (Figure 3.3). A significant shift in 

microbial composition for the samples collected from the upper part of the reactor was 

observed over time. Four of the six samples taken in Phase I were closely clustered, and this 

cluster could be differentiated from those taken in Phases II-III and Phases IV-V, which also 

formed individual distinct clusters. The samples collected from the lower part of the reactor 

clustered separately from the samples taken from the upper part, likely due to differences in 

substrate concentration at the upper and lower parts of the reactor. Among these samples, 

there is no clear shift in community structure along with the different phases (I-V).    
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Figure 3.3 Ordination diagrams of (A) non-metric multidimensional scaling and (B) 
redundancy analysis for the samples from the upper and lower parts of the DHS reactor. The 
upper part samples are indicated in black circles with the sampling days in black letters, and 
the lower part samples are indicated in gray circles with the sampling days in gray letters. 
‘AS’ stands for the inoculated activated sludge. HRT, OLR, and SCOD removal are 
indicated by red arrows due to their statistical significance (P < 0.05), and reactor depth is 
indicated by a red dotted arrow (P > 0.05).  
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To determine the factors affecting the spatial and temporal differences in the 

microbial communities observed above, RDA was applied with four explanatory variables 

(HRT, OLR, SCOD removal, and reactor depth). Results indicated that HRT, OLR, and 

SCOD removal were the statistically significant variables (P < 0.05) correlating with the 

microbial community compositions classified by genus (Figure 3.3). Due to the stable 

reactor performance in terms of SCOD removal (Table 3.1), OLR and SCOD removal 

indicated a high positive correlation with each other. The four samples (136, 196, 258, and 

373) collected in Phase I from the upper part of the reactor exhibited the strongest 

correlation with HRT but exhibited negative correlations with the rest of the variables, 

whereas the upper part samples in the later phases came to have positive correlations with 

OLR and SCOD removal but rather a negative correlation with HRT. Comparing the upper 

and lower part samples of the same sampling days, as expected the samples from the lower 

part of the reactor had stronger correlations with the reactor depth than the upper ones. In 

this comparison, the lower samples, projecting away from the increasing direction of OLR 

and SCOD removal in the ordination, were not immediately affected by changes in the 

organic loading. This is possibly because the microorganisms at the lower part were exposed 

to the partially degraded organics derived during the SMP degradation from the upper part 

of the reactor. However, in Phase V when the organic loading significantly increased, the 

lower part sample was also affected by OLR and SCOD removal the most, rather than the 

other variables. 

 

3.4.4 Microbial community composition  

The microbial community profile indicates clear shifts of dominant microbial 

populations in the individual samples at the genus level (relative abundance >3% of the total 

sequencing reads in any sample) with respect to the different phases and the sampling depth 

(Figure B.3). Gordonia (14.5-34.3%) and Ectothiorhodospiraceae (9.9-25.4%) were most 

abundant in both the upper and lower parts of the reactor in Phase I, and rapidly decreased to 

< 1% in Phases II-V. The genus Cytophaga (12.1-22.8%) also dominated in Phase I and was 

more abundant at the lower part than at the upper part. In Phases II-V, the abundances of 

Flavobacteria and Saprospiraceae in samples taken from the upper part increased from 

4.4% to 25.9% and from 12.1% to 30.1%, respectively. In addition, Bacteroidales-related 
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genus, Dechloromonas, and Geobacter, which were hardly detected in Phases I-III, 

increased up to 25.9%, 5.1%, and 8.7% in Phase IV-V, respectively. Unclassified 

Sphingobacteriales genus (2.7-12.5%) was found evenly in all samples collected at the 

different depths and the phases.  

We further compared the microbial composition in the DHS with that present in the 

anaerobic reactor effluent. Out of 4613 OTUs detected in the DHS community, 4328 were 

unique to the DHS (Figure B.5). Among the shared OTUs, three most-abundant OTUs 

detected in the anaerobic effluent were selected and their abundances plotted along with the 

DHS operation (Figure B.5). The abundance profiles of these three OTUs in the DHS did 

not exhibit the same trends as observed in the anaerobic reactor effluent. Similar 

observations could be made with all dominant OTUs found in DHS and the anaerobic 

effluent during the DHS operation (Table B.7). Thus, it could be concluded that microbial 

populations enriched in the reactor primarily represented the microbial community in the 

DHS reactor, and the microbial populations carried over from the anaerobic reactor effluent 

had insignificant impact on the microbial composition in the DHS. 

To investigate the correlation of the microbial population shifts with HRT and OLR 

at the different depths of the reactor, microbial association networks with respect to the 

operational factors were constructed based on relatively abundant OTUs (Table B.2). 

Twelve OTUs were determined to have direct significant correlations with either HRT or 

OLR (Figure 3.4). The detailed phylogenetic examination of the OTUs was performed by 

constructing a neighbor-joining tree with previously reported sequences (Figure B.4). OLR 

was positively associated with proliferation of Saprospiraceae-related OTUs (OTUs 1229, 

2194, and 588), Flavobacteriales-related OTU2195, Geobacter-related OTU6110, and 

Azobacter-related OTU3311. Of those, OTUs 1229, 2194, 2195, and 588 were negatively 

associated with HRT together with Phycisphaerae-related OTU2325. OTUs showing strong 

positive correlations with HRT were Ectothiorhodospiraceae-related OTU1933, Gordonia-

related OTU5208, Cytophaga-related OTUs 1661 and 3624, and Nitrospira-related OTU225. 

When the relative abundance of these OTUs between the upper and lower reactor was 

compared, OTUs 1229, 2194, 2195, and 6110 adapted to the increasing OLR faster in the 

upper part of the reactor than the lower part, whereas OTUs 3311 and 588 became 

proliferative in the lower part. Among the OTUs that were strongly correlated to the HRT, 
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OTUs 1993 and 5208 were abundant in the upper part of the reactor while OTUs 1661, 225, 

and 3624 were abundant in the lower part.  

 

 
 
Figure 3.4 Association network of OTUs with two operational factors (HRT and OLR). 
Each node represents an OTU (defined at 97% identity level). The size of the node 
represents the average relative abundance of the OTU across all communities. The node is 
color-coded (see key) by the mean fold change (logarithmic scale) of the average relative 
abundance at the upper parts compared to the lower parts. Each edge represents a positive or 
negative association with a correlation coefficient higher than 0.5 or less than -0.5 and P 
value of < 0.05. OTUs that were the first neighbors of either HRT or OLR are shown. The 
taxonomic classification of the OTU is provided in parentheses. 

 

Similar results to the network analysis were observed in the RDA ordination with the 

relatively abundant genera (Figure B.5). Dechloromonas, Geobacter, and genera in 

Bacteroidales, Flavobacteria, and Saprospiraceae were strongly correlated to OLR and 

SCOD removal, whereas Ectotiorhodospiraceae-related genus, Gordonia, and Cytophaga 

were closely correlated to HRT. The genera showing the most positive correlation with 

reactor depth included Nitrospira and Caldilineaceae-related genus. Sphingobacteriales-
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related genus (OTU1682) that was abundant throughout all phases did not show a strong 

correlation with any of the variables.  

 

3.4.5 Characteristics of SMP 

Carbohydrate and protein complexes are often identified as the main components of 

SMP.3, 50 These SMP were identified to contain long-chain alkenes, alkanes, aromatic 

compounds, esters, humic acids, uronic acids, and nucleic acids using advanced analytical 

methods such as gas chromatography-mass spectrometry (GC-MS) and matrix-assisted laser 

desorption/ionization (MALDI)-time of flight (TOF)/mass spectrometry (MS).2, 51-54 To 

describe how SMP originate, they are classified into utilization-associated products (UAP), 

which are produced directly from substrate utilization, and biomass-associated products 

(BAP), which are formed from cell lysis and decay.14 Furthermore, SMP can be 

characterized based on the MW distribution. A bimodal MW distribution was verified as a 

generic phenomenon in various studies, although the compositions and ranges of the MW 

greatly varied depending on feed water compositions, sludge mixtures, and operational and 

environmental conditions that a system was exposed to.1, 3, 25, 55-57 Several studies among 

them reported that most SMP found in a range of  <1 and >10 kDa as SMP < 4 kDa and 

between 14-20 kDa was observed in our study.3, 55-57 The skewed bimodal distribution to the 

large MW SMP can be observed in a system operated at a long solid retention time (SRT), 

as were the anaerobic reactors in this study.58 To correlate the MW of SMP and the origin, it 

was suggested that UAP were made of low MWs, and BAP tended to contain high MWs and 

accumulated in the bioreactor.58 Taking this into consideration, we surmise that SMP 

detected in the range of < 4 kDa MW could likely represent UAP, and those detected in the 

range of 14-20 kDa MW could likely represent BAP. The small MW SMP were almost 

completely removed, whereas the large MW ones were partially degraded. The difference in 

the degradability of the large and small MW fractions was likely due to the difference in the 

structure complexity of SMP; the biodegradability of the BAP fraction was relatively lower 

than that of the UAP fraction.59 Despite the low biodegradability of large MW SMP, Barker 

et al. (2000) reported that relatively high removal (74%) of large MW SMP (> 10 kDa) 

produced from an anaerobic reactor could be achieved in a following aerobic treatment. This 
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observation was relevant to our results that more than half of the peak areas of the 14-20 

kDa MW SMP in the chromatograms were reduced by the degradation in the DHS reactor. 

 

3.4.6 Uniqueness of SMP-degrading microbial community in DHS  

Based on the efficiency of SMP degradation obtained in this study, we conclude that 

SMP-degrading microbial community was successfully enriched in the DHS reactor. It is not 

clear how different the SMP-degrading microbial community is from those found in 

conventional wastewater treatment processes. To address this, PCA was used to compare the 

SMP-degrading microbial communities in the DHS reactor with those (Table B.3) observed 

in AS, integrated fixed-film AS (IFAS), a pilot-scale DHS reactor (PS-DHS) treating 

effluent discharged from a UASB reactor, raw sewage, and soil at the family level (Figure 

3.5).37, 60-63 The microbial communities in the DHS reactor were relatively close to the PS-

DHS, sewage, and IFAS, and distinctly distant from the AS and soil. Especially, the 

microbial communities in the upper part of the PS-DHS were the closest related ones to the 

DHS. This result is reasonable as the microorganisms in the upper part of the PS-DHS could 

effectively degrade organic matter in the UASB effluent that were likely made of mainly 

SMP 37. However, the detailed phylogenetic affiliation of the most abundant OTUs in the 

upper part of the PS-DHS showed a different observation from our study. In the PS-DHS, 

the majority of the sequences were related to Dechloromonas in the early phase and then to 

Firmicutes and Xanthomonas later, whereas these were generally minor in the DHS even 

though the abundance of Dechloromonas and Fusibacter in Firmicutes slightly increased in 

Phase V. Also, the methane-oxidizing family significantly found in the PS-DHS was nearly 

undetectable in the DHS. Microbial communities from the middle and lower parts of the PS-

DHS, where nitrifiers became abundant for ammonia and nitrite oxidation, formed a more 

distant cluster from the DHS than those in the upper part. The overall results suggest that the 

microbial consortia in the DHS were uniquely enriched for SMP degradation, which were 

apparently different from the other wastewater treatment processes.   
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Figure 3.5 Principal component analysis of the six different environmental samples using 
the relative abundance of bacterial 16S rRNA gene sequences at the family level. DHS 
stands for the samples collected in this study. AS, IFAS, and PS-DHS stand for activated 
sludge, integrated fixed-film activated sludge, and pilot-scale DHS, respectively. Among the 
samples from the PS-DHS, the samples collected from the upper part of the reactor are 
indicated by black squares, the samples collected from the middle part by gray squares, and 
the samples collected from the lower part by white squares.  
 
3.4.7 Microbial populations involved in SMP degradation  

The unique microbial community detected in the DHS reactor strongly suggested 

certain microbial populations were capable of directly or indirectly utilizing SMP. So far, 

there is very little information describing the composition and diversity of microbial 

populations degrading SMP prior to this study. Using microautoradiography combined with 

fluorescence in situ hybridization (MAR-FISH) analysis, it was revealed that several 
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bacterial groups, including Chloroflexi, Cytophaga-Flavobacterium cluster, α-

Proteobacteria, and γ-Proteobacteira, were able to take up 14C-labeled SMP released from 

nitrifiers in nitrification reactors.28 Specifically, it was suggested that Chloroflexi-related 

populations took up BAP, and the Cytophaga-Flavobacterium-related populations gradually 

ingested both UAP and BAP from the nitrifying bacteria. Miura et al.32, 64 further reported 

that the abundance of Chloroflexi was correlated to the decrease of microbial products 

accumulated in a MBR, suggesting that Chloroflexi could alleviate membrane fouling by 

utilizing SMP from other heterotrophs. Unlike the high abundance of Chloroflexi observed 

in SMP-degrading MBR reactors (14-26%),64 our study detected low abundance of 

Chloroflexi (0.02-9.2%) in the DHS reactor. This difference clearly suggests that microbial 

populations other than Chloroflexi could play an important role in the degradation of SMP in 

the DHS reactor.  

In this study, a rapid increase in the abundance of Flavobacteriales and 

Saprospiracea was observed to correlate with an increase in OLR (Figure 3.4). These 

populations were key active members in SMP degradation in the DHS reactor, in particular 

at the upper part. The family Saprospiraceae was reported as active protein hydrolyzers, 

showing epiphytic growth attached to filamentous bacteria, like the phylum Chloroflexi.65 

The most abundant Saprospiraceae-related OTU2194 (average relative abundance 2.5%) 

showed a 99% similarity to Candidatus Epiflobacter sp. (EF523446), constituting a deep 

branch with the sequences in this genus that specifically utilizes amino acids as energy and 

carbon sources rather than other types of macromolecules (Figure B.6).66 Co-occurrence of 

commensal Flavobacteria and Sphingobacteria with Saprospiraceae was observed in AS 

treating municipal wastewater, which leads to a speculation that the commensal bacteria rely 

on amino acids hydrolyzed from proteins by Saprospiraceae.67 Considering that members of 

Saprospiracea could behave like a micropredator to obtain nutrients under conditions where 

organic substrates are limited,68-69 the proliferation of Saprospiracea in the DHS reactor was 

likely due to the degradation of protein-like SMP released from biomass lysis, so that the 

neighboring Flavobacteriales, Geobacter, and Azobacter-related OTUs in the network were 

to be cross-fed on intermediates in the protein degradation. Enhancing abundance and 

activity of these key microbial populations, specifically responding to increase in the SMP 
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loading, in enriched consortia would be helpful to improve the removal efficiency of SMP in 

practical bioprocesses.  

Although, in previous studies, Cytophaga and Flavobacteria in Bacteroidetes as a 

cluster have been often targeted together for utilization of dissolved organic materials and 

microbial products,28, 70 Cytophaga-related OTUs (OTU1661 (average relative abundance 

3.2%) and OTU3624 (average relative abundance 1.3%)) in our study, unlike the 

Flavobacteriales, were observed to be most abundant at the lower part of the reactor in the 

early phases when 3 to 10 times less SMP were fed compared with Phase IV and Phase V. 

The OTUs were also positively associated with HRT that made a negative correlation with 

OTU2195 in the network (Figure 3.4). This suggests that Cytophaga might have higher 

substrate affinity than Flavobacteria when low SMP were available.  

The other OTUs strongly correlated with HRT were OTU5208 and OTU1933. 

OTU5208 is closely related to the Gordonia species (i.e., 99% similarity to G. hydrophobica 

(X87340)) that are capable of oxidizing various types of aliphatic and aromatic 

hydrocarbons including recalcitrant natural compounds (Figure B.4).71 Considering that 

various refractory alkenes, alkanes, and aromatic compounds were produced from anaerobic 

reactors fed with simply biodegradable substrates,51 it is speculated that the Gordonia sp. 

might contribute to the degradation of carbohydrate- and aromatic-like fractions of the SMP 

that were not preferably consumed by other bacteria under the long HRT condition. 

OTU1933 is distantly related to Ectothiorhodospiraceae-related genera, such as 

Thioalkalivibrio which is known as autotrophic halo-alkaliphilic sulfur-oxidizing bacteria72 

(Figure B.4). Since the abundance of OTU1933 was concordant with OTU5208 over all 

phases and both had strong association with each other in the network (Figure 3.4), 

Ectothiorhodospiraceae-related OTU5208 might be commensal to the Gordonia sp., relying 

on intermediates released from sulfur-containing aromatic compounds.  

 

3.4.8 Microbial diversity affected by the operational factors   

This study observed that the microbial community in the upper part of the reactor 

became less diverse than that in the lower part over phases. The phenomenon was 

pronounced in Phase IV-V, when the OLR substantially increased compared with the 

previous phases, as the microbial communities from the upper part had fewer observed and 
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estimated OTUs and lower evenness at similar coverage than those from the lower part 

(Table B.4). This difference in the microbial diversity was likely due to the stratification of 

SMP degradation developed along with the reactor depth. Small MW SMP tended to be 

readily degraded by the microbial community at the upper part of the reactor, whereas 

degradation of large MW SMP, which likely represents BAP, could still occur at the lower 

part and might require a complex microbial community (Figure 3.2). This is supported by 

the strong correlation of Caldilineaceae in the phylum Chloroflexi with the reactor depth in 

the RDA (Figure B.5), considering that Chloroflexi was known for preferential utilization of 

BAP.28 In addition, Nitrospira was more abundant in the lower part of the reactor than the 

upper part, which had a considerable correlation with reactor depth in the RDA analysis 

(Figure B.5). It indicates that nitrification occurred in this part of the reactor despite the lack 

of ammonia in the substrate and ammonia-oxidizing bacteria present in the microbial 

community. In consideration of the high transcription activity of ammonia-oxidizing 

bacteria at low abundance,73 we infer that the presence of more Nitrospira at the lower DHS 

was due to the  ammonia released from protein-like SMP degradation. A similar pattern of 

microbial diversities at different stratified layers was reported in the pilot-scale DHS reactor 

for oxidation of the organic matters and nitrification.37 Moreover, the difference in the 

microbial diversity along the depth could be resulted from the differences in oxygen, 

nutrients, and SMPs availability in individual sponges along the reactor. Since the dissolved 

oxygen of the trickling flow in the DHS reactor was observed to vary from zero to 6-8 mg/L, 

likely due to differences in biomass concentration in each sponge and air diffusion into it,74 

microaerophilic and anaerobic condition could take place in the upper part of the reactor 

toward to the later phases (IV and V) of the operation. This could contribute to the increase 

in the abundances of facultative and obligate anaerobes, like Dechloromonas and Geobacter, 

in the upper part. 

 

3.5 Conclusion 

The microbial community selected in the DHS reactor effectively utilized SMP 

produced from anaerobic methanogenic reactors. Microbial community analysis further 

indicated that unique microbial communities different from other wastewater treatment 

processes were developed. Microbial groups that were not previously reported for taking 
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SMP, such as Flavobacteriales-, Saprospiraceae-, and Gordonia-related microorganisms, 

could play important roles in SMP degradation together with the microorganisms known for 

SMP utilization, like Chloroflexi and Cytophaga. The abundance of these microbial groups 

was significantly affected by HRT, OLR, and SCOD removal, and the microbial diversity 

was influenced by reactor depth. Although the microbial community effectively degrading 

SMP was revealed in this study, it is still unclear how the individual microbial populations 

participated in the degradation of SMP. Future studies should focus on the mechanisms of 

SMP degradation and the role of individual microbial populations by applying function-

driven genomic approaches (e.g., metagenomics and metatranscriptomics). Meanwhile, 

these findings suggest that SMP reduction by enriched microbial consortia in a DHS reactor 

will be a useful post-treatment of anaerobic processes, in the aspect of improving effluent 

quality as well as treatment performance and efficiency in bioprocesses and preventing 

fouling from a following membrane process for water reclamation. 
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CHAPTER 4: PYLOGENETIC AND FUNCTIONAL CHARACTERIZATION OF 

THE MICROBIAL COMMUNITY DEGRADING SOLUBLE MICROBIAL 

PRODUCTS IN A DHS REACTOR USING METAGENOMIC AND 

METATRANSCRIPTOMIC APPROACHES 

 

4.1 Abstract  

Soluble microbial products (SMP), ubiquitously found in bioprocesses, have been 

identified as a main cause for the decreasing efficiency of water and wastewater treatment 

systems. Despite recent attempts for the biological removal of SMP to control the negative 

impacts of their accumulation, the mechanisms of SMP degradation and the roles of the 

microbial community remain unsolved. To gain a better understanding of biological SMP 

degradation in a down-flow hanging sponge reactor that treats SMP, and to profile the active 

functions of the microbial populations therein, the metabolically active microbial 

communities were assessed by comparative metagenomic and metatranscriptomic analyses. 

Taxonomic classification identified that the dominant microbial populations shifted from 

Sphingobacteriales, Flavobacteriaceae, and Cytophaga-relatives to Saprospiraceae, 

Dechloromonas, and Geobacter-relatives with increasing SMP loading. In the lower part of 

the reactor, other populations, besides Sphingobacteriales, Opitutus, and Nitrospira, 

contributed to a significant distribution. Global functionality and gene expression annotation 

based on SEED subsystems exhibited that, despite these phylogenetically disparate 

microbial communities with SMP loading, a functional convergence was observed for the 

stratified SMP degradation, including amino acids and derivatives, carbohydrates, and 

protein metabolisms. Further, functional gene expression analysis, focusing on 

carbohydrate-active enzymes with respect to assembled genome bins, revealed that cell 

associated enzyme-related genes, specific to polysaccharide components of peptidoglycan, 

were significantly represented by the dominant assembled genome bins in Bacteroidetes. 

The observations reflect that the microbial communities, degrading SMP in the down-flow 

hanging sponge (DHS) reactor, were selectively enriched for the utilization of detrital cell 

structural components, such as peptidoglycan and lipopolysaccharides, that contributed to 

biomass associated products (BAP). 
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4.2 Introduction 

Soluble microbial products (SMP) are ubiquitously present in water and wastewater 

treatment processes based on mixed culture biotechnology, contributing to predominant 

constituents of the organic fraction of discharged effluent.1 Since SMP are soluble organic 

compounds produced from microbial metabolism and decay, the predominant presence of 

them is inevitable in the bioprocesses. SMP primarily consist of polysaccharides and 

proteins 2. Depending on the mechanism of SMP formation, they are classified into two sub-

groups, utilization-associated products (UAP) produced from substrate utilization during 

biomass growth and biomass-associated products (BAP) derived from cell lysis and decay.1-

2 SMP were reported to be a cause of negative impacts to the treatment processes since they 

contributed to effluent chemical oxygen demand (COD),3-5 effluent toxicity,6 and a potential 

precursor of disinfection by-products.7-8 Their accumulation not only hinders efficient 

respiration, flocculation, and settling ability of activated sludge (AS) by deforming the 

physical properties of the AS, but it also inhibits nitrification efficiency. Last, but most 

importantly, SMP are a major obstacle impeding application of membrane bioreactors 

(MBRs) for water reclamation causing membrane fouling.9-11  

Numbers of studies were conducted to investigate the characteristics of SMP, their 

adsorption and coagulation properties, and effects by operational conditions in a way of 

developing strategies to reduce the accumulation of SMP in the bioprocesses and enhancing 

the understanding of them.12-17 Nevertheless, a strategy providing a long-term stable 

application for SMP removal has not been established likely because the composition and 

property of SMP vary depending on substrates, sludge mixtures, and operational 

conditions.2, 12, 18-21 

Several studies have confirmed that various microorganisms were capable of utilization 

of SMP as their sole energy and carbon source, suggesting biological removal of SMP as 

alternatives. First, it was reported that microbial products derived from nitrifiers without 

organic substrates could be used as carbon sources for the growth of heterotrophs, mainly 

Cytophaga-Flavobacterium-Bacteroides (CFB) cluster.22-25 Next, effective reduction of 

SMP released into the MBRs by inoculating either a specific microorganism or microbial 

consortium was reported.26-27 Miura and Okabe (2008) also showed that the population 

dynamics of Chloroflexi was inversely related to the SMP concentration in the MBR.28 
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Based on these findings, in our previous study, a long-term and stable removal of SMP were 

demonstrated in a DHS reactor using selectively enriched microbial consortia for SMP 

degradation.29 The temporal and spatial diversity and dynamics of the microbial community 

were characterized using 16S rRNA-based pyrosequencing, and revealed that highly 

specialized microbial community with predominant populations related to Bacteroidetes had 

been enriched. Despite these community-wise informative findings, the microbial functions 

essential for degrading SMP	remain to be elucidated. Metagenomic and metatranscriptomic 

sequencing based on Next Generation Sequencing (NGS) enables to fill the gaps of the 

ecological roles of microorganisms detected in the DHS reactor by providing microbial 

structure, functional potential, and identified gene expression.30-33 An in-depth resolution of 

the genetic information using coupled metagenomic and metatranscriptomic approaches 

would be not only helpful to unveil the unique characteristics of selectively enriched 

microbial communities in the DHS reactor, but beneficial to develop biological strategies to 

control the accumulation of SMP in the system. The aims of this study, therefore, were i) to 

determine the complementary phylogenetic characteristic of the microbial community 

structure to that of targeted 16S rRNA gene sequencing; ii) to explore microbial metabolic 

potential and expression; and iii) to disclose the active roles of various microbial populations 

involved in SMP degradation. 

 

4.3 Material and methods 

4.3.1 DHS microbial consortia 

Biomass was collected from the DHS reactor treating SMP generated from the 

anaerobic packed-bed bioreactors at day 648 in Phase III and day 798 in Phase V (Figure 

4.1). The detailed operational conditions and the system performance were described in 

elsewhere.29 The samples collected from the upper (depth, 0.16 m) and lower (depth, 0.94 

m) part of the DHS reactor at day 648 were named U648 and L648, respectively. The 

samples at day 798 were collected from the upper part of the reactor, named U798.  
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Figure 4.1 Sampling for metagenomic and metatranscriptomic analyses. (A) The 
operational factors in Phase II, III, IV, and V were shown with the performance of the DHS 
reactor. (B) sampling locations of the DHS reactor was indicated in the schematic diagram 
of the system.  
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4.3.2 DNA and RNA extraction  

The biomass in the sponge was suspended in 25 ml of 1x phosphate buffered saline 

(PBS) solution by vortexing, pelleted by centrifugation (10000 rpm, 3 min), and stored in -

80oC. Genomic DNA was extracted using the FastDNA SPIN kit for soil (MP biomedicals, 

USA) according to the manufacturer's instruction and resuspended in TE (10 mM Tris-HCl 

with 1 mM EDTA) buffer at the last step. The samples collected in Phase V was duplicated. 

DNA in one of them, U798_1, was extracted using the same kit as the previous samples 

were treated, and DNA in the other, U798_2, was extracted following the established 

protocol (Bacterial genomic DNA isolation using CTAB, http://my.jgi.doe.gov/general/). 

The concentration and the purity of DNA were assessed using a Nanodrop 1000 

spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA).  

Three sponges were collected for biological triplicates of RNA extraction at each 

sampling time and location. The biomass was suspended in 25ml of soluble reactor effluent 

filtered with 0.22 µm filters (Millex-GP, Millipore, MA, USA) by vortexing at 4 oC. Two 

volumes of RNAprotect bacterial reagent (Qiagen, CA) were added into 2ml of the 

suspended biomass, immediately mixed by vortexing, and incubated for 5 min at room 

temperature. The pellets were harvested by centrifugation (7000 rpm, 10 min) at 4 oC. For 

enzymatic lysis of the biomass, the pellets were resuspended with 200 µL TE (30 mM Tris-

Cl, 1 mM EDTA, pH 8.0) buffer containing lysozyme (15 mg/ml) and 20 µL Proteinase K 

(Qiagen, CA) by vortexing and incubated at room temperature for 15 min. RNA was 

extracted using the RNeasy Mini Kit (Qiagen, CA). Genomic DNA during the RNA 

preparation was excluded by using RNase-free DNase I (Qiagen, CA. The concentrations of 

RNA in the samples were measured, which were 103.7 ng/ml, 86.8 ng/ml, and 55.0 ng/ml 

for the triplicates of U648, 54.4 ng/ml, 58.5 ng/ml, and 49.8 ng/ml for L648, 49.8 ng/ml, 

221.3 ng/ml, and 165.5 ng/ml for U798 by a Nanodrop 1000 spectrophotometer. The 

integrity of the extracted DNA and RNA was verified by running 100ng of each sample with 

a DNA molecular weight marker (1kb DNA ladder, Promega) on a 1% denaturing 

formaldehyde agarose gel for electrophoresis prior to sequencing (Figure C.1).  
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4.3.3 DNA and cDNA library construction and sequencing 

The extracted DNA and RNA samples were submitted to the Roy J. Carver 

Biotechnology Center at the University of Illinois at Urbana-Champaign (IL, USA) for 

sequencing and DNA and cDNA library construction. The DNA libraries were constructed 

for each sample using the TruSeq DNA sample prep kit (Illumina Inc. San Diego, CA), and 

the pooled libraries were quantitated by qPCR and sequenced on one lane for 101 cycles 

from each end of the fragments on a HiSeq2000 sequencer (Illumina, San Diego, CA, USA) 

using a TruSeq SBS sequencing kit v3 (Illumina Inc. San Diego, CA). The genomic libraries 

were analyzed with Casava1.8.2. The triplicate RNA libraries, after removal of rRNA with 

the Ribo-Zero™ rRNA Removal Kit (Meta-Bacteria, Illumina, WI, USA), were prepared 

with the TruSeq Stranded RNA Sample Prep kit (Illumina Inc. San Diego, CA). The rest of 

the process was the same as described for the DNA library construction. 

 

4.3.4 Metagenomic and metatranscriptomics sequence analysis 

4.3.4.1 Quality control, rRNA subtraction, and 16S rRNA gene reconstruction 

The raw genomic and transcriptomic reads were trimmed using a Q 13 Phred quality 

score cutoff and screened with minimum length 50 bp cutoff using SolexaQA v3.1.234 for a 

quality control (QC) (Table C.1). The post-QC reads have been deposited in MG-RAST 

(http://metagenomics.anl.gov/?page=MetagenomeProject&project=9993, of which MG-

RAST projetc ID (mgp9993) and MG-RAST library IDs were listed in Table C.1. Sequences 

encoding rRNA genes in the genomic and transcriptomic datasets were separated from the 

coding-DNA sequences and non-rRNA sequences in the post-QC datasets by SortMeRNA 

v.2.035 with default settings against SILVA SSU and LSU databases (release 119).36 The 

post QC genomic datasets were used to reconstruct full length of 16S rRNA using 

EMIRGE37 with 0.99 OTU identity and default settings for the rest of conditions to reveal 

the microbial community compositions. The reconstructed genes for the three datasets were 

combined and subjected to an operational taxonomic units (OTUs) assignment by the 

UCLUST algorithm (≥ 97% pairwise identity) in Quantitative Insights Into Microbial 

Ecology (QIIME).38 The representative sets of the OTUs were formed and Chimeric 

sequences were removed by Chimera Slayer.39 PyNAST40 was used to align the 

representative sequences to the Greengenes imputed core dataset. The phylogenetic 
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affiliation of the representative sequences was classified in the Greengenes ARB database 

(Greengenes_16S_2011_1.arb) using ARB parsimony method. A phylogenetic tree for the 

aligned sequences with their neighboring sequences was built using the neighbor-joining 

algorithm with Jukes-Cantor correction. Bootstrap values were calculated based on 1000 

replications. The relative abundance of the representative sequences in each genomic dataset 

was expressed in percentage of the raw sequencing reads mapped to the representative 

sequences using Blastn with a cutoff of 95% identity and the parameters of X = 150, q = −1 

and F = F at default settings. 

 

4.3.4.2 Assembly of the metagenomic datasets 

The Velvet41, SOAPdenovo242, and IDBA-UD43 assemblers were used to preassemble 

Illumia short reads of each dataset into contigs using different k-mer sizes (49-65 for Velvet; 

49-83 for SOAPdenovo2; 45-95 for IDBA-UD). The k-value used for the preassemblies and 

their statistics were described in the Table C.2. The preassemblies for each dataset that 

provided longer maximum contig sizes and n50s were chosen and assembled in to one final 

assembly using Newbler v2.9.44 In the process of getting the final assembly, the U798_1 and 

U798_2 datasets were merged since separated preliminary analysis showed that the two 

datasets were proved to be exact replicates.  

 

4.3.4.3 Protein encoding gene prediction 

The assembled contigs longer than 300 bp were submitted to the MG-RAST 

pipeline45 and subjected to protein encoding genes (PEG) prediction (MG-RAST ID, 

4579439.3).46 Taxonomic annotation was performed against the SEED database using a Best 

Hit Classification approach with a maximum e-value cutoff of 1E-5, a similarity cutoff of 

60%, and a minimum alignment length of 15 measured in amino acids for protein and base 

pairs for RNA databases.  Functional annotation was conducted by comparison to the 

subsystems using a hierarchical classification algorithm with a maximum e-value cutoff of 

1E-5, a similarity cutoff of 60%, and a minimum alignment length of 15 amino acids. The 

PEGs longer than 300 bp were applied to the further expression analysis.  
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4.3.4.4 Normalization for expression analysis 

For gene expression analysis, the relative abundance of PEGs was estimated by 

following steps; the coding-DNA and non-rRNA sequences were mapped to the PEGs using 

Blastn with at least 95% identity and 50% query length coverage and the parameters of X = 

150, q = −1 and F = F at default settings. The length of the coding DNA and non-RNA 

sequences mapped to each PEG were summed and divided by the length of the PEG to 

calculate the genomic and transcriptomic coverage of each PEG. The coverage per 1Mb of 

sequences was computed to provide the genomic relative abundance and the transcriptional 

activity of a gene independent of the size of the datasets. The ratio of the transcriptional 

relative abundance to the genomic relative abundance was calculated to estimate the 

absolute transcriptional activity regardless of the genomic relative abundance in the 

microbial community.  

 

4.3.4.5 Assembled genome bins from the metagenomic datasets 

 Assembled contigs greater than 1000 bases were subjected to cluster into genome 

bins based on metagenomic read coverage, tetranucleotide frequency, and occurrence of 

essential single copy genes, using MaxBin (v 2.0)47 MetaBat,48 and MetaWatt (v 3.5.2).49 

The overlapped contigs among the clustered contigs using each binning tool were manually 

extracted to group into draft bins. CheckM (v 1.0.5)50 was used to estimate the completeness 

and contamination of the draft genomic bins based on number of single-copy marker genes 

identified in each bins. Bins with more than 10% contamination or less than 20% 

completeness were discarded from further analyses. The taxonomic affiliation of the 

assembled genome bins was carried out using AMPHORA2,51 and the resulted marker 

lineage was reported when 75% of the classifications reached a consensus taxonomic level.52 

A genome-wide phylogenetic analysis of the assembled genome bins was conducted using 

PhyloPhlAn.53 The predicted protein encoding genes for the assembled genome bins were 

identified and aligned on a subset of 400 conserved protein sequences. The assembled 

genome bins and reference genomes were integrated into the tree of life with 3,171 

microbial genomes. The bins were submitted under the MG-RAST project (ID: mgp9993). 

The annotated information of each assembled genome bin was retrieved from RAST54 and 

PATRIC.55 
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4.3.4.6 Carbohydrate-active enzyme annotation 

The clustered contigs for the major assembled genome bins were subjected to gene 

prediction using FragGeneScan v1.30.56 A carbohydrate-active enzyme (CAZy)-family 

specific hidden Markov model (HMMs) were downloaded from the dbCAN database 

(http://csbl.bmb.uga.edu/dbCAN/)57 and used in screening amino acid sequences of the 

predicted ORFs for similarity to 192 families (9 auxiliary activity (AA), 32 carbohydrate-

binding module (CBM), 16 carbohydrate esterase (CE), 79 glycoside hydrolase (GH), 42 

glycosyl transferase (GT), and 12 polysaccharide lyase (PL) families) in the CAZy 

database.58 The protein sequences were compared to the profile HMMs by employing 

hmmscan of the HMMER 3.1.b2 software package (hmmer.org). As instructed in the 

dbCAN database, the overlapping hits and the hits with a higher e-value and a coverage of 

less than 30% of the respective HMM were removed. The remaining hits were processed 

with an e-value cutoff of 1e–5 for alignments longer than 80 amino acids and 1e–3 for 

alignments shorter than 80 amino acids. Duplicated hits found in the CAZy-families were 

manually removed. The major assembled genome bins based on the hits of the CAZy genes 

and families were clustered, and the values of the hits were plotted using the heatmap.2 

function of the gplots package (v 3.0.1) in R. To compare the genomic encoding and 

transcriptional expression of the CAZymes in the assembled genome bins, the relative 

abundance of the CAZymes was normalized to 1Mb of sequences as described in the 

section, 4.2.4.4. 

 

4.4 Results and discussion 

4.4.1 Microbial phylogenetic community structure in the DHS reactor 

 Out of 820 days of the DHS reactor operation for SMP degradation, three biomass 

samples U648 and L648 in Phase III and U798 in Phase V were collected from the 

supporting media for metagenomic and metatranscriptomics analyses. Because of the 

decreasing HRT in the system, the organic loading rate (OLR) to the DHS reactor in Phase 

V, 433 mg SCOD/L/day, was almost four times higher than that in Phase III, 124 mg 

SCOD/L/day. Along with the OLR increase, the SCOD removal in the DHS reactor also 

increased about four times (Figure 4.1).  The detailed operational conditions and the system 



 
	
	

82 

performance were described in elsewhere.29 The analytical workflow of metagenomic and 

metatranscriptomic datasets was illustrated in Figure C.2. The Illumina sequencing of SMP 

degrading microbial community provided paired-end metagenomic reads (100 bp; a range of 

fragment size, 380bp to 640bp; 0.9 x 108 reads for U648, 1.1 x 108 reads for L 648, and 2.0 

x 108 reads for U798) and single-end metatranscriptomic reads (100 bp; a range of fragment 

size, 130bp to 480bp; average 1.5x107, 1.5x107, and 1.7x107 reads for U648, L648, and 

U798, respectively) (Table C.1). Approximately 0.2% of post QC genomic reads were 

sorted out as rRNA sequences in the genomic dataset (Table C.1)35 and blasted to the 

EMIRGE-based reconstructed 16S rRNA gene sequences37 and aligned to the reference 16S 

sequences in the SILVA database (release 119).59 A strong consistency between the 

community structures based on EMIRGE and SILVA was observed in all three datasets 

(Pearson correlation coefficient r > 0.9). The most abundant bacteria found at the phylum 

level were Bacteroidetes and Proteobacteria in all datasets (Figure C.3). At the class level, 

Sphingobacteria (EMIRGE, 25.0% and raw 16S rRNA reads, 19.3%) in U648, 

Alphaproteobacteria (EMIRGE, 19.9% and raw 16S rRNA reads, 19.4%) in L648, and 

Betaproteobacteria (EMIRGE, 31.8% and raw 16S rRNA reads, 26.5%) in U798 were the 

most dominant populations.  

 To see a consensus of the microbial community structures between 16S rRNA gene-

based PCR-dependent and independent assays, a phylogenetic tree was constructed with 

dominant EMIRGE-constructed sequences and representative operational taxonomic units 

(OTUs) of the amplified 16S rRNA genes by pyrosequencing in the previous study29 

(relative abundance >1% of the total number of bacterial 16s rRNA gene sequences in any 

sample) (Figure C.4). Most of the EMIRGE-constructed sequences constituted a deep 

branch together with paired OTUs. Similar distribution in the relative abundance of the 

paired EMIRGE-constructed sequences and OTUs was observed (correlation coefficient 

r=0.88 for U648, r=0.71 for L648, and r=0.72 for U798), suggesting that the microbial 

community structures derived from the metagenomes concurred with the results of 

pyrosequencing despite an inherent bias of 16S rRNA gene amplification. In U648, 

Sphingobacteriales-related members (DHS_OTU 1435, 7.5% and DHS_Emg 87, 8.2%) 

were most abundant followed by Flavobacteriaceae-related members (DHS_OTU 246, 

4.1%, DHS_Emg 78, 5.8%, DHS_OTU 567, 3.6%, and DHS_Emg 19, 4.3%) and 
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Cytophaga-related members (DHS_OTU 897, 5.6% and DHS_Emg 72, 3.6%). The 

abundance of these dominant members in Bacteroidetes decreased to be minor except for the 

Cytophaga relatives in U798. Shifts in the abundant members to Saprospiraceae-related 

members (DHS_OTU 660, 9.6% and DHS_Emg 21, 3.6%) and another Sphingobacteriales 

relatives (DHS_OTU 150, 9.4% and DHS_Emg 121, 4.3%) were observed. Furthermore, 

Dechloromonas-related members (DHS_OTU 1496, 4.6% and DHS_Emg 99, 5.8%) in 

Rhodocyclaceae and Geobacter-related members (DHS_OTU 331, 4.7% and DHS_Emg 12, 

3.2%) increased in U798. Unlike the microbial community in the upper part of the reactor, 

L648 indicated a more diverse community with relatively even distribution such as high 

abundances in Opitutus (DHS_OTU 666, 3.7% and DHS_Emg 117, 7.1%) and Nitrospira 

(DHS_OTU 248, 6.6% and DHS_Emg 51, 4.5%) besides Sphingobacteriales relatives. 

Microbial community composition from metagenomes is also assessed based on 

taxonomic homology of PEGs.60-61 In comparison with the community compositions derived 

from the 16S rRNA sequence based analyses, a consistent taxonomic composition was 

observed in U648 and U798 metagenomic datasets (Figure C.5). Spingobacteriales (11.9%), 

Flavobacteriales (7.1%), and Cytophagles (8.6%) were the most abundant order groups in 

U648, and the dominant orders shifted from these Bacteroidetes to Desulforomonadales 

(7.4%) and Rhodocyclales (14.1%), predominantly Geobacter and Dechloromonas in U798, 

respectively. In contrast, in L648 Burkholeriales (8.4%) and Rhizobiales (11.2%) were the 

most abundant members rather than Nitrospira and Opitutus. Meanwhile, we observed the 

taxonomic origins of the non-rRNA transcript sequences to display the transcriptional 

activity in the microbial community determined based on the metagenomes. In the two 

datasets form the upper part of the reactor, the taxonomic composition from the 

metatranscriptomes showed a similar distribution to those from the metagenomes. However, 

in L648 the highest transcriptional activity in Solibactrales, predominantly Candidatus 

Solibacter, was detected.   

 

4.4.2 Global functionality and expressions of the DHS microbial communities 

58.4%, 51.5% and 58.5% of the 67, 77, and 143 million reads of total metagenomic 

sequences in the three datasets (in order of U648, L648, and U798) were included in the de 

novo assembly integrated by MetaVelvet, SoupDenovo2, IDBA-UD, and Newbler (Table 
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C.2). The assembly generated a metagenome of 45,392 contigs with total sequences of 440.6 

Mb, N50 of 25,560 bp, and N90 of 3,186 bp. 45,037 assembled contigs longer than 300 bp 

were subjected to MG-RAST functional annotation, predicting 272,083 ORFs. Among these 

ORFs, 200,515 were annotated with putative protein functions and 166,555 were assigned to 

a functional classification. of them 57.0% of features were classified as SEED Subsystems-

based PEGs (Table C.4). Among the PEGs by Subsystems, 19.6-49.6% showed 

transcriptional activity with at least one aligned non-rRNA sequence (Table C.6). 

Highly encoded and expressed metabolic pathways of the DHS microbial 

communities at the SEED Subsystems level 1 were exhibited (Figure 4.2). Genomically, the 

two systems, Cluster-based Subsystems (11.8-12.2%) and Carbohydrates (9.3-10.5%) were 

most abundantly encoded in all three metagenomic datasets, followed by Amino acids and 

derivatives (8.0-8.3%) and Protein metabolism (7.6-7.9%). On the other hand, the 

transcriptional pattern indicated that the systems, Protein metabolism (17.1-22.4%), 

Clustering-based subsystems (9.5-10.5%), and Carbohydrates (7.4-8.2%) were highly 

expressed in the two dataset from the upper part of the reactor. In the metatranscriptomic 

dataset from the lower part of the reactor, the systems, Amino acids and derivatives (27.1%) 

and Protein metabolism (12.5%) were the most abundantly expressed systems. An 

interesting clustering observed in the pattern of SEED Subsystems level1 was that, among 

the metagenomes, the two libraries collected in Phase III were closely clustered than the 

other library in Phase V whereas, in the metatranscriptional analysis, the two triplicate 

datasets from the upper part of the reactor in Phase III and V were more closely clustered 

than the dataset collected from the lower part of the reactor at the same operational phase. 

This indicated that phylogenetically and genomically disparate microbial communities, 

U648 and U798, resulted in similar transcriptional consequences. The same clustering was 

observed in the detailed systemic categories of the metabolic pathway, SEED Subsystems at 

level 3 that were significantly abundant at the 98% confidence level (Figure C.6). 
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Figure 4.2 Global analysis of metabolic potential and functional activities in the DHS 
communities. Clustering of the three metagenomic and triplicated metatranscriptomic 
datasets based on normalized relative abundance of SEED Subsystems level 1. Hierarchical 
clustering of the metagenomic and the metatranscriptomic datasets were separately 
conducted with Euclidean distance using R package (Stats v3.2.0).  
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Among the most enriched systems in the metagenomic and metatranscriptomic 

libraries, the transcriptional activity profiles of the three systems that are related to SMP 

catabolism, Amino acid and derivatives, Carbohydrates, and Protein metabolism, were 

further presented at the Subsystems level 3 for each datasets and the ten most dominant 

orders (Figure C.7 and Table C.7). In the sub-level of the amino acids derivatives system, 

alanine biosynthesis, predominantly branched-chain amino acid aminotransferase (EC 

2.6.1.42), was the most actively expressed in L648 and more specifically by Solibacterales. 

Another function showing a substantial transcription was glutamate dehydrogenases 

(EC 1.4.1.2) by Sphingobacteriales especially in U648. Ornithine degradation was activated 

by Unclassified Opitutae in U648 and U798 and by Bacteroidales and Clostridiales in L648. 

Lysine utilization was found to be highly expressed by Desulfuromonadales and 

Cytophagales in U798. Threonine anaerobic utilization were activated by 

Desulfuromonadales mostly in L648.  

 In the subcategories of the Carbohydrates system, oligosaccharides and 

polysaccharides utilization transported from the outer membrane was overrepresented in 

U648; trehalose uptake and utilization that was mostly genes involved in glucose-specific 

phosphotransferase system (EC 2.7.1.69) showed high transcriptional activity together with 

fructose-bisphosphate aldolase (EC 4.1.2.13). An ABC transporter gene among N-

acetylglucosamine catabolic operon was also overrepresented. The activity of alanine 

dehydrogenase (EC 1.4.1.1) to convert alanine to pyruvate in the system, pyruvate alanine 

serine interconversions, was induced by various orders such as Flavobacteriales, 

Solibacterales, Desulfuromonadales, Cytophagales, and Bacteroidales. Cellulosome, more 

specifically SusC like outer membrane binding protein for extracellular polysaccharides, 

was highly expressed in all three datasets especially by Flavobacteriales, Rhizobiales, 

Cytophagales, and Bacteroidales. In U798, catabolism of these extracellular carbohydrates 

by fermentation was highly activated by Desulfuromonadales. Since the profile was for 

transcriptional activity of the most abundant orders, the biosynthesis and processing-related 

subgroups in Protein biosynthesis were activated by all of the top ten orders. In the protein 

degradation-related subgroups, bacteria-driven proteolysis and proteasome were highly 

expressed in all datasets. Dipeptidases and aminopeptidases were significantly expressed by 

Bacteroidales in U648.  
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4.4.3 Potential encoding and expression of CAZy families  

To further investigate the key metabolic features and physiology of the dominant 

microbial populations in the DHS reactor, a metagenomic binning was conducted to 

reconstruct assembled genome bins. Sixty nine high quality bins with less than 10% 

contamination and more than 20% completeness were observed.52 Of them, 28 bins, which 

contributed top 50% of relative abundance of PEG in the metagenomic and 

metatranscriptomic datasets, were listed in Figure 4.4. AMPHORA251 software with 31 

conserved bacterial phylogenetic protein marker genes were employed to identify a 

taxonomic affiliation of the major assembled genome bins; a total of 850 marker genes were 

assigned. 12 bins were affiliated with Proteobacteria, and the second most abundant 

taxonomic bin classification was Bacteroidetes with 7 bins. The rest of bins were classified 

into Verrucomicrobia (3), Planctomycetes (2), Acidobacteria (1), Firmicutes (1), 

Gemmatinomonadetes (1), and Nitrospira (1) (Figure 4.3 and Table C.8). The relative 

abundance of gene encoding and expression by the assembled genome bins basically 

reflected the population structure as observed in the phylogenetic analysis of the DHS 

microbial communities. The genome-wide phylogenetic analysis using PhyloPhlAn 

indicated that the four assembled genome bins (Bin87, Bin 55, Bin74, and Bin 09) in the 

Bacteroidetes, among the most assembled genome bins attributing PEG abundances with a 

high completeness, constituted a deep branch with Haliscomenobacter hydrossis DSM 1100 

(IMG taxon ID: 2504756004). Bin08 and Bin 55 in Bactroidetes constructed a branch with 

Chitinophaga pinensis UQM 2034 (IMG taxon ID: 644736340). In the betaproteobacteria, 

Dechloromonas aromatica RCB (IMG taxon ID: 637000088) was closely clustered with 

Bin78 and Bin80. In the gammaproteobacteria, Geobacter metallireducens GS-15 (IMG 

taxon ID: 637000119) was clustered with Bin79.  

  



 
	
	

88 

 
Figure 4.3 The genome-wide phylogenetic analysis and the abundance profile of the major 
bins contributing top 50% of protein encoding gene relative abundance for each dataset. The 
phylogenetic tree was generated by PhyloPhlAn and iTOL from predictied protein 
sequences of the major bins and 3,171 other reference genomes (bootstrap 1000: >90% 
black node, >70% gray node, and >50% white node; IMG taxon ID of the reference 
genomes in parenthesis). MG refers to a metagenomic dataset, and MT refers to an average 
of the triplicate metatranscriptomic datasets. The genome completeness was shown as black 
pie charts.   
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Intrigued by the findings in the carbohydrate related metabolisms of the entire 

microbial communities, we analyzed the major 28 assembled genome bins with respect to 

the genomic potential and transcriptomic expression of hydrolytic enzymes involved in 

polysaccharide and glycan degradation. The profile hidden Markov model specifying CAZy 

database was used, offering a sequence-based family classification of enzymes involved in 

degradation and cleavage of various types of polysaccharides.58 The total number of putative 

genes and the respective CAZy families from the assembled genome bins were listed, which 

the assembled genome bins were clustered for glycoside hydrolases based on (Figure C.8). 

The most genomically predicted enzymes belonged to CBM families 20, 32, 37, 40, 44, 50, 

61, GH families 13, 23, 33, 74, 109, PL families 9, 22, CE families 1, 4, 10, and AA family 

2, including the separate families of Cohesin and Dockerin (Figure 4.4). Among those, the 

affiliates of the Bacteroidetes were closely clustered and showed the highest expression in 

the families, Cohesin, Dockerin and CBMs. Among the Haliscomenobacter-related 

assembled genome bins (Bin09, Bin55, Bin 74, and Bin87), scaffolding and binding genes 

by Bin09 and Bin55 were highly expressed in U648 and L648 whereas the genes by Bin74 

and Bin87 became more abundantly expressed in U798. Chitinophaga-related assembled 

genomes bins (Bin08 and Bin56) were highly expressed in U648 except for the families of 

Cohesin and Dockerin. Bin24 in the Bacteroidetes encoded and actively expressed genes in 

the glucan specific CBM family (CBM44). Expression of peptidoglycan specific binding 

modules (CBM50) in U798 was also overrepresented by Geobacter and Dechloromonas-

related assembled genome bins, Bin78 and Bin79. The predicted glycoside hydrolytic GH 

families were mostly endoglucanase (GH74), GalNAc hydrolase (GH109), and 

peptidoglycan lyase (GH23). As the binding modules were expressed by the microbial 

population in the Bacteroidetes, the GH families were also covered by Bin08, Bin09, and 

Bin74 in U648 and L648. They were continuously covered by Bin74 and taken over by 

Bin87, Bin78 and Bin79 in U798. Thiopeptidoglycan lyses (PL9) was uniquely expressed by 

Deltaproteobacteria-related genome (Bin03) in L648. GlcNAc and MurNAc deacetylase 

(CE1, 4, and 10), enzymes released in the process of endo-utilization of peptidoglycan 

construction units, were also highly encoded and expressed by the Bacteroidetes-related 

assembled genome bins. Oligogalactouronate lyase (PL22) and peroxidase (AA2) in U798 

was again transcribed by Bin74 and Bin78.  
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Figure 4.4 Potential encoding and expression of carbohydrate-active enzymes (CAZy) by 
the dominant draft genomes. The genomic normalized abundance (closed circle) and the 
transcriptional normalized abundance (open circle) of the each CAZy family from the draft 
genomes were plotted, and the transcriptional activities of the CAZy families from the draft 
genomes in each dataset, which were significantly abundant at the 98% confidence level, 
were marked with a line pattern in the open circle.  
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4.4.4 Characteristics of predominant BAP of SMP from the AP and HP reactors 

Based on the performance of the DHS reactor and SMP degradation during the 

operation described in the previous study,29 the samples for the metagenomic and 

metatranscriptomic analyses were collected at the two time points; one was day 648 in Phase 

III, which was the last phase when the low and stable SMP loading in terms of SCOD 

concentration was provided to the DHS reactor, and the other was day 798 in Phase V when 

the four times higher SMP loading was given to the reactor than that in Phase III. The SMP 

produced from the AP and HP reactor were characterized as bimodal MW distribution with 

large compounds, 14-20 kDa, and small compounds, less than 4 kDa.29 Classified by the 

unified theory of SMP, the large compounds were contemplated as BAP and the small 

compounds were considered to represent UAP.1 In both phases when the samples for the 

meta-omic analyses were collected, very skewed SMP MW distributions to the large MW 

were detected, meaning that the majority of the SMP were likely associated with BAP, 

detritus released from cell lysis and decay. These skewed proportion of BAP between two 

types of SMP was generally observed in processes with a long SRT under which the AP and 

HP reactors were operated.12, 21, 62 The remaining BAP may be related to a low 

biodegradability caused by their intrinsic complex heteropolymeric structures compared to 

UAP. The accumulation and preservation of BAP in the system might be because relatively 

limited microbial organisms can utilize BAP whereas diverse microbial assemblages are 

able to preferentially uptake UAP as a form of substrates.25  

 

4.4.5 Degradation of carbohydrate components of SMP in the DHS reactor   

One of the most abundant metabolic category in the global functionality analysis of 

the DHS microbial communities was Carbohydrates. In the sub-categories of Carbohydrates, 

outer membrane binding proteins for extracellular polysaccharides in the Cellulosome sub-

category of the all three datasets were consistently activated together with transporting 

functions for mono- and di-saccharide uptakes, such as the glucose-specific PTS and the 

GlcNAc-specific ABC transporter. It led to the speculation that the microbial communities 

utilized extracellular polysaccharides composed of glucose and GlcNAc by confining the 

polysaccharides for glycoside hydrolases to cleave the bonds of targeted polymers. To 
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further investigate the genomic potential and transcriptional expression of the 

polysaccharide degrading gene families in individual organisms, the metagenomic and 

metatranscriptomic data were mapped on to the binned contigs that encoded the CAZy 

genes. As intrigued in the Carbohydrate metabolic gene activities, cohesin, dockerin, and 

binding module protein families were highly expressed by Haliscomenobacter-related 

assembled genome bins (Bin09, Bin55, Bin74, and Bin87) together with Bin24 in the all 

three datasets and the part of expression was taken over by Geobacter (Bin79) and 

Dechloromonas-related genomes (Bin78). Active gene expressions of these assembled 

genome bins also showed a similar pattern in the GH families such as endoglucanses, 

GalNAc hydrolases, and peptidoglycan lyases with expression of GlcNAc and MurNAc 

deacetylase in the CE families. When hydrolytic enzyme systems act on homogeneous and 

heterogeneous polysaccharide chains, including glucan, glycan, cellulose, hemicellulose, 

and pectin, extracellular hydrolases and lyases that are free or cell associated must be 

produced by microorganisms. Endo- and exo- hydrolases randomly cleave glycosidic bonds 

at an internal amorphous sites and an end of polysaccharide chains, respectively, into 

oligosaccharides. The freed oligosaccharides are further hydrolyzed into di- and mono-

saccharides by glycosidases.63 In this process, CBMs facilitate for the glycosidic hydrolases, 

which are anchored to the cell wall scaffold by the combined unit of cohesin and dockerin, 

to be close to the concentrated polysaccharides.63-64 Each CBM binds to its specific target 

saccharides.63 The most expressed four CBMs at the 98% confidence level, in this study, had 

a binding property to the peptidoglycan and its constituents such as GlcNAc. For instance, 

CBM44, which Bin09, Bin24, Bin55, Bin74, and Bin87 significantly expressed in, facilitates 

endo-(1,4)-beta-glucanase, which is able to cleave beta-(1,4)-glycosidic bond of a GlcNAc 

and MurNAc linkage. CBM 32, 37, and 50 bind to the GlcNAc residues in peptidoglycans to 

effect facilitated lysins, such as muramidase, N-acetylglucosaminidase, muropeptidase, and 

N-acetylmuramoyl-L-alanine amidase. Considering the recalcitrant property of the 

peptidoglycan and the outer membrane components among the detritus of microbial cell 

lysis,65-7172-73 the highly encoded and expressed binding modules may indicate that the major 

populations utilized the fragmented polysaccharide cell wall structures, initiating the binds 

to them. In addition, the facilitated GH families by the CBMs, endoglucanses, GalNAc 

hydrolase, and peptidoglycan lyases, were represented by the major assembled genome bins. 
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GlcNAc and MurNAc deacetylases (CE4), one of the enzymes to convert GlcNAc to 

fructose-6-phosphate entering into gluconeogenesis, were significantly activated by 

Haliscomenobacter-related assembled genome bins (Bin87) in U798.  

 

4.4.6 Degradation of protein derivatives of SMP in the DHS reactor 

Amino acid and derivatives and Protein metabolism in the global functionality 

contained by the DHS microbial communities were the most abundantly encoded and 

expressed functional categories related to utilization of SMP. It was observed that the DHS 

microbial communities were significantly involved in the degradation of detrital cell wall 

components including peptidoglycans as a form of SMP by the genes showing high 

expressional activities at the sub-levels of these categories. First, in the Protein categories 

ATP dependent proteolysis and proteasome were evenly activated among the three data sets 

and the major twelve homologs at the order level. Endopeptidase Clp, which hydrolyzes 

oligopeptidases shorter than five amino acids in the absence of ATP, in the sub-categories, 

proteolysis and proteasome, were highly activated, suggesting that the overall expression of 

the genes were to cleave interpeptide bridges crosslinking the peptidoglycan strands and 

stemmed amino acids.74 Bacteroidales relatives were observed to significantly express 

Dipeptidases. In the Amino acid derivatives category, metabolisms of amino acids 

composing the stemmed peptidoglycan-peptides, including alanine, glutamine, lysine, 

ornithine, and threonine showed outstanding expressions. The expression of 

aminotransferases converting alanine and glutamate to pyruvate and alpha-ketoglutarate, 

respectively, that are metabolites entering into the citric acid cycle, significantly activated in 

the upper and lower datasets in Phase III. Especially these expressions were predominated 

by Solibacterales, which also indicated high expression in proteasome for hydrolysis of 

oligopeptidases. Sphingobacteriales actively expressed glutamate dehydrogenases, 

deaminating glutamate to alpha-ketoglutarate in all three datasets followed by 

Flavobacteriales in U648, Bacteroidetes and Clostridiales in U798. Taken together, it was 

speculated that Solibacterales and Sphingobacteriales played important roles in 

fragmentation of peptide fragments released from cell membrane components to alanine and 

glutamate, as well as their catabolic processes.  
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4.4.7 Comparison of genes related to structural biomass detritus utilization in the 

major assembled genome bins  

Given from the genome-wide phylogenetic analysis, it was revealed that the most 

dominant assembled genome bins in the three meta-data sets were closely clustered with 

Haliscomenobacter hydrossis and Chitinophaga pinensis in the Bacteroidetes phylum. 

These gram negative filamentous bacteria have been detected worldwide in activated sludge, 

especially known as specialized feeders using a narrow range of substrate groups such as 

glucose and N-acetylglucosamine under strict aerobic conditions, not various fatty acids.75-78 

The property of these bacteria explained their dominant existence in an activated sludge 

process, since the specialization on sugar degradation allowed them to convert cell wall 

structural components, such as lipopolysaccharides and peptidoglycan, liberated by 

decaying cells in the process.76 To utilize the specialized substrates, these bacterial groups 

were known for presence of exo-enzyme activity, such as chitinase, glucuronidase, esterase, 

and  phosphatase. Furthermore, they were identified to be equipped with genes (hex, nagZ, 

nagK, murQ, nagA, and nagB), which were necessary to catabolize N-substituted 

polysaccharide components found in lipopolysaccharides and peptidoglycan, such as 

GlcNAc, GalNAc and MurNAc. Here, gene inventory of the six assembled genome bins 

(Bin08, Bin09, Bin55, Bin56, Bin74, and Bin87) in Bacteroidetes was compared with 

H.hydrossis DSM1100 and C.pinensis UQM2034 as references to found out whether genes 

for the specialized substrate utilization were equipped in those bins (Figure 4.5 and Table 

C.9).  Chitinase, targeting hydrolysis of N-acetylglucosamine polymers, lytic murein 

transglycosylase-related genes, and peptidoglycan binding lysine motifs were found the 

most of the assembled genome bins. Consecutive gene sets with TonB-dependent receptors, 

SusC, and SusD, which are transporters in outer membranes for the N-substituted 

oligosacchride derivatives from the exo-enzyme activities, were found in the all assembled 

genomes except for Bin09. Those assembled genome bins also contained nagX and nagP, 

which are specific transporters for N-acetylglucosamine in cytoplasmic membranes, 

together with nagA and nagB that are necessary deacetylase and deaminase to convert N-

acetylglucosamine to Fructose-6-phposphate to get into the glycolysis pathway. 

Furthermore, among glycosidases in the assembled genome bins, beta-galactosidase and 

beta-glucanase, which hydrolyze major components of lipopolysaccharides, found in the 
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most of the genome bins. Having these findings, it is contemplated that the abundant 

existence of the filamentous bacteria-related to Bacteroidetes in the DHS consortia, 

compared to the conventional activated sludge process, was caused by the limited carbon 

and energy source from the influent, and rather they specifically adjusted to rely on 

utilization of biomass structural detritus released from the decaying cells. Furthermore, the 

three assembled genome bins (Bin03, Bin78, and Bin79) in Proteobacteria, the abundance of 

which increased in Phase V, were added to the comparison together with Dechloromonas 

aromatica RCB and Geobacter metallireducens GS-15 as references (Figure 4.5 and Table 

C.9). The most of the outer membrane gene sets were found in these assembled genome 

bins, whereas the specific transporters for N-substituted oligosaccharides and the gene sets 

for their catabolic processes were absent in the genomic bins proliferating in Phase V.  
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Figure 4.5 Gene inventory analysis related to N-substitued biomass structural detritus utilization. (A) Related gene content of 
reference genomes and assembled genome bins. (B) Reconstruction of the N-substituted polysaccharide utilization pathway. 
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4.5 Conclusions 

In this study, we investigated how the DHS microbial communities were functionally 

involved in the degradation of SMP generated from the anaerobic methanogenic reactors 

using metagenomic and metatranscriptomic approaches. As an increase of the SMP loading, 

a shift of the dominant microbial populations from Sphingobacteriales, Flavobacteriaceae, 

and Cytophaga to Saprospiraceae, Dechloromonas, and Geobacter was observed, whereas 

global functionality of the microbial communities for the SMP degradation was converged 

into the amino acids and derivative, carbohydrate, and protein-related metabolisms. On the 

other hand, a different functionality was assessed with high expression of the oligopeptide 

metabolism by relatively diverse community in the lower part of reactor compared to the 

upper, indicating a stratified SMP degradation in the reactor. The gene expression of 

carbohydrate-active enzymes in the dominant assembled genome bins and related gene set 

comparison with the reference genomes in Bacteroidetes showed that Bacteroidetes-related 

assembled genome bins mainly played important roles to specifically bind and utilize 

polysaccharide fragments derived from lipopolysaccharide and peptidoglycan-like BAP. The 

findings from the function-driven metagenomic and metatranscriptomic approaches 

suggested that the microbial communities degrading SMP in the DHS reactor were enriched 

to metabolize detrital components originated from microbial cell wall structural components. 

This is considered to be a unique observation, compared to conventionally used activated 

sludge microbial communities generally representing more central carbohydrate 

metabolisms by the dominant Proteobacteria and Actinobacter-related populations.  
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CHAPTER 5: CONCLUSION 

 

5.1 Conclusion 

The AP and HP methanogenic reactors were successfully operated to treat high-

strength synthetic soft drink wastewater, providing stable and high SCOD removal 

efficiency (>95%) over 800 days. Based on 16S rRNA gene pyrosequencing analyses, the 

predominant microbial populations in the AP and HP reactors were identified. As regards 

the bacterial classification, Bacteroidetes, Chloroflexi, Firmicutes, and KSB3 were the most 

dominant populations, which may primarily degrade organic constituents, such as glucose, 

fructose, and PEG. Syntroph-related populations, such as Syntrophomonas, Syntrophobacter, 

and Smithella, may support the degradation of VFAs, which are derived from the organic 

compounds. As for the archaeal classification, Methanosaeta, Methanosarcia, and 

Methanobacterium were detected as major methanogenic populations, oxidizing H2 and 

acetate in the reactors. While the ecological role involved in the treatment of soft drink 

wastewater was not defined clearly, Geobacter, Spirochaetes, and GN04 were also detected 

as prevalent microbial groups in the anaeorbic reactors. The RDA analysis indicated that 

Bacteroidetes, Chloroflexi, KSB3, and GN04 were strongly influenced by changes in the 

OLR. This finding suggested that specific microorganisms in the microbial community, 

which are responsible for the sugar/PEG degradation, might be adapted to changes in the 

operational conditions.  

The effluent produced from the AP and HP reactors were further treated in the 

following DHS reactor to improve the effluent quality by reducing the SMP in it. During the 

long-term and stable operation, the microbial consortia in the DHS reactor were selectively 

enriched to utilize SMP. The SMP contained in the effluent from the AP and HP reactors 

exhibited a bimodal MW distribution with 14-20 kDa and <4 kDa. About 70% of SMP in 

terms of SCOD removed by the enriched microbial consortia in the DHS reactor. Using 16S 

rRNA gene pyrosequencing analyses, the microbial community structure was characterized, 

and the spatial and temporal variability was correlated with operational factors by 

performing network and redundancy analyses. The results revealed that Flavobacteriales, 

Saprospiraceae, Cytophaga, and Chloroflexi were the predominant bacterial populations and 

significantly involved in SMP degradation. In particular, the Saprospiraceae-related 
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population was strongly correlated to the increasing SMP loading condition, indicating 

positive co-occurrences with neighboring bacterial populations. The abundance of these 

microbial groups was significantly affected by HRT, ORL, and SCOD removal. Moreover, 

the microbial diversity was influenced by reactor depth, implying adaptation of the 

microbial communities for an increased SMP loading and stratified degradation in the DHS 

reactor.  

Besides an identification of the microbial communities, degrading SMP in the DHS 

reactor, in order to understand the functional mechanisms that are activated for the SMP 

degradation by the microbial community, it was important to address the role of individual 

populations and their interactions. Employing metagenomic and metatranscriptomic 

approaches, functional profiles, as well as the phylogenetic profiles of the DHS microbial 

communities, were assessed. The microbial composition was shifted, as with the increasing 

SMP loading; the dominant populations changed from Sphingobacteriales, 

Flavobacteriaceae, and Cytophaga to Saprospiraceae, Dechloromonas, and Geobacter. 

Nevertheless, the disparate microbial communities indicated a functional convergence in the 

annotation analyses of gene encodings and expressions based on a SEED subsystem. 

Composition and functionality of the microbial community in the lower part of the DHS 

reactor differed from those in the upper part, suggesting that stratified SMP degradation 

occurred. Results of the active gene expression in the global functionality, and the CAZy 

families, demonstrated that the microbial community significantly represented genes related 

to the metabolism of oligopeptides and polysaccharide constituents of peptidoglycan. 

Observations from the function-driven metagenomic and metatranscriptomic approaches 

reveal how microbial communities in the DHS reactor were to utilize detrital cell structural 

components released from peptidoglycan. These components may compose the majority of 

the SMP produced from the AP and HP reactors.  

 

5.2 Contribution 

This research demonstrated a promising alternative process, offering a combined 

process of anaerobic packed-bed reactors and a DHS reactor, to treat high-strength industrial 

wastewater. The process maximizes the advantages of an anaerobic reactor by retaining a 

high concentration of biomass in the system. Also, it successfully minimizes side effects 
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caused by the high concentration of biomass, such as increasing residual COD derived from 

SMP, by employing a DHS reactor as post-treatment. Biological SMP degradation, using a 

DHS reactor, herein, may resolve long-term application of SMP reduction, which remained 

limited by conventionally used chemical and physical methods. Additionally, this work 

studied an origin of the residual organic compounds in effluent from the anaerobic process 

and characterized their properties, which had been still unclear in previous reports that 

described the combined system of UASB and DHS reactors. The findings proved that the 

majority of SCOD in the anaerobic effluent originated from anaerobic biomass metabolisms, 

rather than yet-untreated raw wastewater. Upon verifying the feasibility of a long-term 

reduction of SMP, via selectively enriched microbial consortia in the DHS reactor, this study 

also scrutinized the phylogenetic characteristic and metabolic functionality of the DHS 

microbial community involved in the SMP degradation, using the NGS technology. The 

findings, which resulted from an observation of the overrepresented genes by the DHS 

microbial community, also led to the speculation that SMP might be derived from the 

detrital materials of the cell structures of the anaerobic biomass, such as peptidoglycan. 

These findings provide a possible application for the biological degradation of SMP using a 

DHS reactor, as well as broaden knowledge of SMP produced from mixed culture 

biotechnology.  

 

5.3 Future prospects 

Future research, in the context of the findings in this study, may take two directions: 

(1) the practical applications of biological SMP degradation; and (2) a fundamental 

understanding of commensal interactions among the microorganisms involved in the SMP 

degradation. SMP, ubiquitously present in bioprocesses, are often found to negatively 

impact the processes. Their compositions and properties vary, depending on system 

configurations, operational parameters, and substrates, among others. As regards a broad 

application of the biological process for SMP reduction, the utility of the SMP-reducing 

process needs to be investigated for improving the efficiency of conventional wastewater 

treatment systems and water reclamation. This study identified the microbial community 

involved in the SMP degradation and investigated their metabolic roles related to the de-

polymerization of SMP. Possible commensal interactions of the dominant microbial 
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populations were interpreted using statistic-networking analysis. In addition to these 

findings, genomic aspects of the commensalisms in the microbial community for the SMP 

degradation need to further studied further. 
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APPENDIX A: SUPPLEMENTAL MATERIALS IN CHAPTER 2 
 
 

 
 
Figure A.1 Rarefaction curves of 16S rRNA gene sequences of (A) anaerobic packed-bed (AP) 
and (B) hybrid packed-bed (HP) reactors. 
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Figure A.2 Jackknife clustering of 16S rRNA gene pyrotag libraries from anaerobic packed-bed 
(AP) and hybrid packed-bed (HP) reactors based on (A) unweighted and (B) weighted Uni- Frac 
normalized to 1,400 reads per sample. “Cluster” indicates the grouped samples showed in Fig. 3 
(unweighted) and S3 Fig. (weighted). 
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Figure A.3 PCoA based on the abundances of 16S rRNA gene OTUs (weighted UniFrac). For 
this analysis, observed 16S rRNA gene OTUs were normalized to 1,400 reads per sample. A and 
H indicate the samples taken from the anaerobic packed-bed (AP) and hybrid packed-bed (HP) 
reactors. The numbers following A and H indicate days of the operation for biomass sampling.  
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Figure A.4 Correspondence analysis (CA) based on the abundances of 16S rRNA gene OTUs. A 
an H indicate the samples taken from the anaerobic packed-bed (AP) and hybrid packed-bed 
(HP) reactors. The numbers following A and H indicate days of the operation for 
biomass sampling. 
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Figure A.5 Redundancy analysis (RDA) based on the abundances of 16S rRNA gene OTUs of 
(A) known methanogens, syntrophs and Geobacter populations and (B) the phyla Bacteroi- detes, 
Chloroflexi, Firmicutes, and Spirochaetes and candidate phyla KSB3 and GN04 popu- lations. 
 
  



	 114 

Table A.1 Pyrosequencing results of 16S rRNA genes amplicon reads from anaerobic packed-
bed (AP) and hybrid packed-bed (HP) reactors. 

  
seed 

Operation days at sampling on AP reactor 

  64 121 181 251 321 435 462 530 600 664 722 772 

Total 16S 
pyrotag reads 14,090  4,622  4,717  4,363  2,035  2,823  1,031  2,213  6,215  5,510  5,881  4,229  4,262  

Total OTU 
number  
(>97% identity) 

1,008  274  304  318  153  184  133  198  432  395  317  361  307  

Good's coverage 96.8  96.8  97.4  96.7  96.2  96.8  93.8  96.3  96.8  96.7  97.6  95.8  96.8  

Chao1 1,680  552  525  612  341  338  259  302  716  688  533  682  522  

 
  Operation days at sampling on HP reactor 

  64 121 181 251 321 435 462 530 600 664 722 772 

Total 16S 
pyrotag reads 1,955  3,737  7,336  3,478  2,637  1,105  2,045  3,458  3,415  3,069  2,147  1,684  

Total OTU 
number  
(>97% identity) 

235  318  232  189  182  135  189  311  292  249  209  196  

Good's coverage 93.3  96.4  99.9  97.2  96.7  93.9  95.3  95.8  96.3  96.0  95.0  93.7  

Chao1 485  506  232  401  332  220  355  622  487  429  392  505  

AP, anaerobic packed-bed reactor; HP, hybrid packed-bed reactor; OTU,operational taxonomic 
unit. 
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Table A.2 Microbial community composition of anaerobic packed-bed (AP) and hybrid packed-bed (HP) reactors. 
  

Seed 
Sampling date on AP reactor (population %) Sampling date on HP reactor (population %) 

Group 64 121 181 251 321 435 462 530 600 664 722 772 64 121 181 251 321 435 462 530 600 664 722 772 

Bacteria                          
Deltaproteobacteria 4.4 6.9 24.0 22.9 43.7 35.8 18.3 41.3 33.6 28.6 16.4 23.8 13.3 8.7 15.4 43.6 44.7 43.0 24.5 24.8 24.4 23.7 28.7 14.5 22.2 

Bacteroidetes 18.2 43.1 20.9 14.6 10.6 8.5 22.4 8.2 6.4 5.1 2.9 11.9 13.7 40.8 20.9 13.9 8.3 7.2 7.8 4.4 8.5 6.4 8.0 12.9 11.4 

Chloroflexi 8.6 5.0 10.7 12.0 10.7 19.4 9.6 10.8 9.2 7.0 3.9 6.2 13.4 3.7 10.2 7.3 11.5 12.5 18.5 11.2 10.3 12.4 12.4 12.8 10.9 

Firmicutes 35.6 9.0 12.5 15.4 9.7 11.2 9.2 5.9 4.9 3.5 2.4 3.5 12.8 16.6 13.0 8.5 6.6 7.4 3.9 4.6 5.1 3.6 5.2 3.9 8.7 

Spirochaetes 5.8 0.6 2.8 7.1 7.4 13.6 20.6 14.9 11.8 10.9 9.0 7.8 15.8 1.6 3.5 11.2 5.8 11.6 20.6 17.8 11.7 16.3 16.5 14.0 20.8 

Nitrospirae 0.0 0.0 0.0 0.5 1.8 2.7 1.9 2.7 3.9 2.5 1.0 2.2 1.8 0.0 0.0 1.7 1.0 1.1 2.0 0.9 1.6 1.4 2.1 1.4 2.0 

Planctomycetes 0.6 0.2 0.3 0.2 0.4 0.7 0.6 2.9 1.2 1.5 1.2 1.4 0.4 0.4 0.3 0.2 0.3 0.3 0.9 1.1 0.5 0.4 0.3 0.4 0.2 

Chlorobi 0.1 0.3 0.9 2.8 1.6 2.4 1.6 3.2 4.5 3.4 2.6 3.4 1.9 0.1 0.6 1.0 0.5 1.4 0.5 0.6 3.3 1.1 0.6 1.0 0.4 

Acidobacteria 0.1 0.1 0.0 0.1 0.1 0.6 0.9 0.6 0.4 0.6 0.2 0.9 0.2 0.1 0.3 0.2 0.1 0.4 1.5 0.5 0.4 0.3 0.2 0.3 0.5 

Alphaproteobacteria 2.9 0.2 0.4 0.5 0.0 0.3 0.7 0.7 0.2 0.3 0.1 0.1 1.1 0.3 1.0 0.1 0.2 0.4 0.5 0.1 0.1 0.2 0.0 0.3 0.0 

Caldiserica 0.2 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.2 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.0 

Verrucomicrobia 1.1 0.0 0.1 1.0 0.0 0.1 0.0 0.1 0.2 0.1 0.1 0.1 0.1 0.2 0.0 0.1 0.2 0.0 0.0 0.0 0.2 0.1 0.0 0.0 0.1 

Cyanobacteria 0.1 0.0 0.9 3.5 0.1 0.1 1.7 1.6 0.1 0.1 0.1 0.2 0.0 0.0 3.3 1.0 0.2 0.8 0.3 0.1 0.1 0.1 0.0 0.4 0.1 

Armatimonadetes 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.0 0.2 0.1 0.0 0.1 0.0 0.3 0.1 0.0 0.2 0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.0 

Gemmatimonadetes 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.4 0.1 0.2 0.1 0.2 0.1 0.0 0.1 0.1 0.0 0.0 0.1 0.4 0.1 0.0 0.0 0.0 0.0 

Betaproteobacteria 3.6 0.7 0.1 0.3 0.0 0.1 0.1 0.3 0.0 0.1 0.0 0.5 0.4 0.5 0.1 1.1 0.1 0.1 0.1 0.2 0.0 0.0 0.0 3.6 0.1 

Actinobacteria 3.2 0.1 0.2 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 

Synergistetes 2.4 0.6 1.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 3.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Gammaproteobacteria 0.9 0.1 0.2 0.0 0.0 0.4 0.1 0.4 0.2 0.1 0.1 0.0 0.2 0.2 0.1 0.0 0.1 0.3 0.6 0.1 0.1 0.0 0.0 0.4 0.2 

Thermotogae 0.6 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Tenericutes 0.4 0.2 0.7 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.5 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Fusobacteria 0.2 0.0 0.0 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Fibrobacteres 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Lentisphaerae 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Epsilonproteobacteria 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 

Chlamydiae 0.0 0.0 0.0 0.1 0.2 0.0 0.2 0.1 0.2 0.1 0.2 0.0 0.4 0.0 0.3 0.1 0.0 0.3 0.0 0.1 0.2 0.1 0.1 0.1 0.4 

Elusimicrobia 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Thermi 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
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Table A.2 (cont.) 

  Seed Sampling date on AP reactor (population %) Sampling date on HP reactor (population %) 

Group  64 121 181 251 321 435 462 530 600 664 722 772 64 121 181 251 321 435 462 530 600 664 722 772 
Candidate phyla                                                   

GN04 0.0 0.0 0.0 0.0 0.0 0.0 0.9 0.5 4.7 5.0 2.7 6.1 0.6 0.0 0.0 0.0 0.0 0.2 1.4 1.1 5.3 12.0 3.8 1.7 0.7 

KSB3 0.0 0.0 0.0 0.3 4.0 0.0 0.0 0.0 0.0 12.2 38.6 12.5 5.4 0.0 0.0 1.8 2.7 0.0 0.0 0.0 0.4 1.0 5.0 4.3 3.1 

FCPU426 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 2.0 0.6 0.2 0.1 0.0 0.0 0.0 0.0 0.0 1.8 4.1 2.8 1.0 1.1 0.6 0.2 

OP3 0.3 0.0 0.5 3.8 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.3 0.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 

WPS-2 0.0 0.0 0.1 0.1 0.2 1.2 0.0 0.1 0.0 0.0 0.1 0.1 0.3 0.1 0.2 0.0 0.0 0.3 0.1 0.0 0.0 0.0 0.1 0.2 0.2 

NKB19 0.4 0.1 0.0 0.1 0.0 0.0 0.1 0.3 0.1 0.0 0.1 0.0 0.0 0.3 0.1 0.2 0.0 0.0 0.1 0.5 0.2 0.1 0.0 0.0 0.0 

WSA2 0.3 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.4 0.1 0.0 0.0 0.0 0.2 0.0 0.0 0.1 0.0 0.0 0.1 

BRC1 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.5 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

OP11 0.0 0.0 0.7 1.4 0.2 0.1 0.0 0.2 0.2 0.0 0.1 0.0 0.1 0.1 0.3 0.0 0.2 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 

WWE1 2.9 0.6 1.4 0.9 0.0 0.3 0.0 0.6 0.0 0.0 0.0 0.0 0.0 2.1 2.5 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 

Hyd24-12 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

OP9 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

OD1 0.1 0.0 0.1 0.5 0.0 0.0 0.0 0.0 0.2 0.1 0.5 0.0 0.4 0.7 0.6 0.0 0.3 0.2 0.1 0.0 0.3 0.1 0.0 0.0 0.7 

WS1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 

OP8 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 

TM6 0.0 0.2 0.0 0.1 0.3 0.1 0.9 0.2 0.3 0.2 0.1 0.3 0.1 0.0 0.2 0.1 0.1 0.4 0.2 0.5 0.3 0.1 0.1 0.1 0.2 

SAR406 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

GN02 0.0 0.0 0.0 0.0 0.0 0.2 0.1 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 

WS4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

WS3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.2 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

TM7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

SR1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

TA18 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

NC10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 

LD1 0.0 0.0 0.0 0.6 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.3 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 

FBP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
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Table A.2 (cont.)    

  Seed Sampling date on AP reactor (population %) Sampling date on HP reactor (population %) 

Group  64 121 181 251 321 435 462 530 600 664 722 772 64 121 181 251 321 435 462 530 600 664 722 772 

Archaea                          

Methanosaeta 3.1 27.1 10.3 5.2 3.3 1.0 6.2 3.4 14.9 14.7 15.5 16.5 16.1 2.7 15.4 2.6 8.7 8.4 13.3 24.9 22.4 17.7 14.7 26.1 16.2 

Methanosarcina 0.0 0.0 5.5 1.2 0.0 0.1 1.3 0.1 0.1 0.1 0.1 0.0 0.0 12.4 0.0 0.0 0.4 0.8 0.1 0.2 0.0 0.0 0.0 0.0 0.1 

Methanospirillum 0.4 0.0 1.9 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.4 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Methanolinea 0.6 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.2 0.1 0.1 0.1 0.0 0.2 0.2 0.1 0.2 0.0 0.1 0.0 

Methanoculleus 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Other Methanomicrobiales 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Methanobacterium 0.0 1.3 1.4 1.3 4.2 0.0 1.1 0.0 0.2 0.1 0.0 0.2 0.1 1.0 3.2 2.7 6.5 2.2 0.0 0.0 0.5 0.4 0.1 0.2 0.1 

Methanobrevibacter 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Other Methanobacteriaceae 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Methanomassiliicoccaceae 0.0 0.2 0.0 0.0 0.0 0.1 0.5 0.1 0.2 0.1 0.0 0.1 0.0 0.4 0.1 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.1 0.0 0.1 

Crenarchaeota 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.0 0.0 0.2 0.3 0.2 0.3 0.1 0.1 0.0 

Parvarchaeota 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

                                                    

Unassigned 0.6 2.1 1.7 2.0 0.3 0.5 0.3 0.2 0.8 0.7 0.8 0.9 0.7 0.3 3.6 0.7 0.3 0.2 0.5 0.5 0.5 0.5 0.5 0.2 0.2 
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APPENDIX B: SUPPLEMENTAL MATERIALS IN CHAPTER 3 
 

 

 
Figure B.1 High performance liquid chromatography-size exclusion chromatography 
(HPLC-SEC) analyses of the effluent SMP from the AP and HP reactors and the effluent 
from the DHS reactor in Phases I-V: (A) the standard curve, (B) the chromatograms of the 
standards, (C) the chromatograms of a water sample, and (D-J) the chromatograms of the 
samples. The number in parentheses indicates the days when the samples were collected.  
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Figure B.2 SMP degradation profiles in terms of SCOD removal along with the DHS 
reactor depth (n=4). Eight samples in a depth between 0.0-1.2 m were collected from the 
supporting sponge media, and a sample in a depth between 1.2-1.4 m was collected from the 
water reservoir. 
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Figure B.3 Pyrosequencing profiles showing the relative abundance of the microbial 
communities in the DHS reactor at the genus level (abundance >3% in any sample). The 
roman numerals indicate the five phases. ‘AS’ stands for the inoculated activated sludge, 
‘Inf’ stands for influent, and the numbers indicate the days when the biomasses were 
collected. 
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Figure B.4 Phylogenetic tree based on the abundant OTUs (>4%) that had direct 
correlations with the operational factors in the network. Boldface indicates the sequences 
obtained in this study. The tree was constructed using the neighbor-joining algorithm with 
Jukes-Cantor correction and out-grouped with Thermotoga lettingae TMO strain 
(AF355615). The bar indicates 10% base substitution. Bootstrap values were calculated 
based on 1000 replications. >90%, >70%, and >50% of bootstrap values are indicated by 
black, gray, and white circles, respectively.  
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Figure B.5 RDA ordination of the microbial community by genus (A) and the samples from 
the DHS reactor (B). Correspondence of the 414 genera and the 23 samples with the 
operational variables, HRT, OLR, SCOD removal, influent SCOD and reactor depth, were 
analyzed. For (A), eleven dominant genera are selectively shown in the ordination by black 
triangles. HRT, OLR, SCOD removal, and influent SCOD are indicated by red arrows due 
to their statistical significance (P < 0.05), and reactor depth is indicated by a red dotted 
arrow (P > 0.05).   

(A) (B)

(A) (B)
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Figure B.6 Phylogenetic tree based on Saprospiraceae-related OTUs with Candidatus 
Epiflobacter spp. in the family Saprospiraceae. The tree was constructed using the 
neighbor-joining algorithm with Jukes-Cantor correction and out-grouped with 
Marinobacterium sp. strain. BSA01 (AY723744). The bar indicates 10% base substitution. 
Bootstrap values were calculated based on 1000 replications. >90%, >70%, and >50% of 
bootstrap values are indicated by black, gray, and white circles, respectively. 



 
	

124 

 
 
Figure B.7 Unique and shared OTUs between the microbial communities in the DHS reactor and the AP and HP reactors: (A) venn 
diagram of the shared and uniqeu OTUs and (B) abundance profiles of the three dominant OTUs that were commonly detected in the 
DHS reactor and the AP and HP reactors. 
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Table B.1 Synthetic wastewater composition and characteristics. 

Components Concentration 
(mg L-1) 

Synthetic wastewater composition 
High fructose corn syrup (CornSweet® High Fructose 55, ADM) 

Carbohydrate composition (dry weight basis) 
Fructose                                55% 
Glucose                               41% 
Polysaccharides                    4% 

1500.0 

Polyethylene glycol 200 1100.0 
Acetone 30.0 
Ethanol 30.0 
Potassium phosphate (K2HPO4) 16.0 
Ferrous sulfate (FeSO4·7H2O) 19.0 
Sodium bicarbonate (NaHCO3) 366.0 
Sodium fluoride (NaF) 2.0 
Sodium hypochlorite (NaOCl) 2.5 
Ammonium bicarbonate (NH4HCO3) a 28.0 

Characteristics  
Total COD  3000.0 
Soluble COD 2939.0 

a Ammonium biocarbonate was added as a component of synthetic wastewater at day 84. 
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Table B.2 Summary of the relative abundance of OTUs (at least >4%) applied to the network analysis.  
Unit (%) 

Phase I II III IV V 
Average relative 

abundance Day 82 136 196 258 373 454 528 602 648 723 798 
Location Up Up Low Up Low Up Low Up Low Up Low Up Low Up Low Up Low Up Low Up Low 

OTU1229 1.9 0.3 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 2.1 0.1 9.8 1.5 0.8 
OTU1255 0.0 0.0 0.0 0.1 0.0 0.2 0.3 0.1 0.0 8.2 0.0 0.1 0.0 4.4 0.8 0.8 0.0 2.1 0.2 0.0 0.3 0.8 
OTU1650 2.9 0.2 3.4 2.0 3.7 1.2 0.5 2.7 3.6 9.1 4.1 2.3 3.9 9.2 9.0 7.8 5.8 0.4 3.7 0.0 0.0 3.6 
OTU1661 0.2 0.3 12.3 6.9 6.7 5.2 8.0 0.4 4.6 1.3 7.6 3.3 1.8 1.5 1.1 1.9 0.8 0.1 1.3 0.0 1.1 3.2 
OTU1682 7.6 1.7 2.9 1.0 1.1 1.7 4.1 0.7 0.7 0.7 0.8 0.2 0.4 1.3 2.8 4.1 2.1 0.5 1.6 0.1 0.4 1.7 
OTU1933 1.1 25.2 0.0 19.0 0.7 8.8 8.6 22.4 18.7 1.7 12.9 8.1 19.0 1.5 2.3 1.5 3.1 0.5 1.5 0.1 0.4 7.5 
OTU2101 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 8.8 0.0 0.9 0.1 3.8 0.4 1.0 0.1 0.0 0.0 0.0 0.0 0.7 
OTU2194 1.2 0.0 0.0 0.1 0.3 0.0 0.0 0.0 0.0 1.4 0.0 2.6 0.0 1.1 0.4 4.3 0.0 24.9 0.9 9.6 5.8 2.5 
OTU2195 2.5 3.1 5.0 3.4 3.2 0.4 0.9 0.6 0.2 4.2 0.2 2.9 2.3 4.1 5.3 5.9 3.2 16.0 2.5 23.6 5.4 4.5 
OTU225 4.1 2.6 8.1 2.0 6.8 3.1 2.7 2.0 2.3 0.5 1.4 2.0 0.7 0.8 0.5 1.0 0.9 0.2 0.9 0.0 0.4 2.0 

OTU2325 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.2 0.1 2.2 0.0 5.9 0.0 2.6 0.5 
OTU3099 3.1 0.2 1.7 0.4 5.0 0.8 1.0 0.0 0.2 0.0 0.4 0.0 0.0 0.0 0.0 0.1 0.3 0.1 0.1 0.0 0.0 0.6 
OTU3237 0.0 0.0 4.3 0.2 2.7 0.2 1.0 0.0 0.9 0.1 1.2 0.1 0.3 0.1 0.6 0.1 1.0 0.0 0.4 0.0 0.0 0.6 
OTU3311 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 5.7 0.3 
OTU3624 0.8 1.2 8.9 1.6 3.8 1.2 4.1 0.2 1.4 0.3 1.3 0.5 0.8 0.4 0.8 0.1 0.5 0.0 0.3 0.0 0.0 1.3 
OTU3987 5.8 4.1 0.1 1.1 0.0 0.3 0.0 0.0 0.1 2.4 0.3 2.7 0.4 3.3 1.6 1.7 0.2 1.8 0.1 0.3 2.0 1.3 
OTU4556 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.2 3.0 0.5 9.8 1.1 4.0 0.7 2.4 0.2 0.1 0.1 0.0 0.4 1.1 
OTU4826 0.1 5.1 0.3 4.5 0.9 6.1 6.4 0.8 3.2 1.4 6.8 3.0 9.9 0.5 3.8 0.0 1.1 0.1 1.7 0.1 0.1 2.7 
OTU5084 2.5 0.1 1.8 0.3 4.0 2.0 1.2 1.6 4.6 0.6 3.4 0.4 1.3 0.5 2.0 0.4 2.6 0.1 4.5 0.0 1.0 1.7 
OTU5208 0.4 15.0 0.2 15.9 0.1 22.0 14.0 33.7 19.5 0.6 2.5 0.5 2.1 0.4 0.9 0.0 0.5 0.0 0.2 0.0 0.1 6.1 
OTU5665 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 6.4 0.0 4.3 0.5 4.1 1.0 1.2 0.1 0.0 0.2 0.0 0.2 0.9 
OTU5677 0.0 0.3 0.3 1.5 0.0 1.1 0.9 2.7 2.5 0.5 4.9 3.1 6.7 0.6 0.8 0.4 1.3 0.2 0.6 0.0 0.1 1.4 
OTU5687 0.7 0.4 0.2 0.8 0.5 0.9 1.8 4.4 0.2 0.5 0.2 0.2 0.0 0.7 0.5 3.5 0.4 1.1 3.5 0.4 0.5 1.0 
OTU588 0.0 0.0 0.0 0.1 0.5 0.5 0.3 0.1 0.3 1.2 0.1 1.0 0.1 0.6 0.2 0.3 0.1 1.4 1.6 0.1 7.3 0.8 

OTU6110 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.3 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.2 0.0 0.3 0.0 4.7 0.1 0.3 
OTU6134 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.5 0.2 3.3 0.9 2.0 3.0 4.9 5.2 5.8 2.9 0.2 2.4 0.0 1.1 1.5 
OTU851 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.1 0.8 0.5 2.2 0.3 2.8 0.4 6.9 0.1 3.8 0.0 0.1 0.9 
OTU964 0.0 0.0 0.0 0.0 0.0 5.0 1.8 1.9 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.7 0.0 0.5 
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Table B.3 Information of the data used in the principal component analysis of the different ecosystems. 

Sample 
ID Accession info. Sample name Sample 

description Reactor type Method Country 

No. of 
bacterial 16S 
rRNA gene 
sequences 

Reference 

1 

NCBI SRA026842 

Suo-Jin-Cun (Nanjing, 
PRC)  

Full-scale 
activated 
sludge 
treating 
domestic 
wastewater 

Anoxic/aerobic 

Pyrosequencing 

China 20964 

Zhang et 
al., 2012 

2 Tuan-Dao (Qingdao, PRC)  Anaerobic/anoxic/aerobic China 24456 

3 Ha-Er-Bin (Haerbin, PRC)  Anoxic/aerobic China 22603 

4 Min-Hang (Shanghai, 
PRC)  Anoxic/aerobic China 21412 

5 Bei-Xiao-He (Beijing, 
PRC)  Anaerobic/anoxic/aerobic+MBR  China 23621 

6 Long-Wang-Zui (Wuhan, 
PRC)  Anaerobic/anoxic/aerobic China 22497 

7 Da-Tan-Sha (Guangzhou, 
PRC)  Anaerobic/anoxic/aerobic China 22098 

8 Ulu Pandan (Singapore)  Conventional activated 
sludge+MBR  China 23967 

9 Columbia Regional 
(Columbia,USA) Conventional activated sludge USA 25500 

10 Potato Creek (Griffin, 
USA)  Oxidation ditch USA 26383 

11 Guelph (Guelph, Canada)  Conventional activated sludge Canada 22098 

12 Sha-Tin 1 (Hong Kong, 
PRC) Anoxic/aerobic China 28260 

13 Sha-Tin 2 (Hong Kong, 
PRC) Anoxic/aerobic China 26900 

14 Stanley (Hong Kong, PRC)  Anoxic/aerobic China 24796 

 15 

Genbank 

EF222481–
EF248596 Brazil 

Soil 

 - 

Pyrosequencing 

Brazil 26140 

Roesch et 
al., 2007 16 EF276845–

EF308590 Illinois  - USA, 
Illinois 31818 

17 EF308591–
EF361836 Canada  - Canada 53533 

18 
Genbank GU481685- 

GU549391 

Suspended sample Full-scale 
fixed-film 
activated 

Fixed-film activated sludge 
system (IFAS) Sanger Korea 

86 Kwon et 
al., 2010 19 Attached samples 82 
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Sample 
ID Accession info. Sample name Sample 

description Reactor type Method Country 

No. of 
bacterial 16S 
rRNA gene 
sequences 

Reference 

20 Suspended sample sludge 
treating 
domestic 
wastewater 

Pyrosequencing 
23536 

21 Attached samples 44003 

22 

Genbank SRX005900- 
SRX005907 

Apr-05-JI 

Sewage Conventional activated sludge Pyrosequencing USA, 
Wisconsin 

17338 

McLellan 
et al., 
2010 

23 Apr-07-JI 21352 

24 Aug-07-JI 31877 

25 Dec-07-JI 26503 

26 Apr-05-SS 28684 

27 Apr-07-SS 34080 

28 Aug-07-SS 24463 

29 Dec-07-SS 30793 

30 

NCBI 

AB479546–
AB479708        
AB618290–
AB618481       
AB818471–
AB818472 

238B1 

Full-scale 
UASB-DHS 
treating 
domestic 
wastewater 

DHS Sanger Japan 

93 

Kubota et 
al., 2014 

31 238B4 99 

32 238B8 96 

33 441B1 127 

34 441B2 165 

35 441B3 120 

 
 

Table B.3 (cont.) 
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Table B.4 Coverage and diversity of the microbial communities of the samples collected 
from the DHS reactor.  

Sample ID No. of 
reads 

No. of 
OTUsa 

Chao1 
richness 

estimatorb 

Good’s 
coveragec Equitabilityb, d PDb Shannonb 

Phase Day Location 

I 

82 Up 2296 325 577 0.93 0.80 36.3 6.59 

136 
Up 1070 133 203 0.93 0.71 55.1 6.53 

Low 6357 585 768 0.95 0.69 24.8 5.37 

196 
Up 1570 203 377 0.94 0.71 54.0 6.74 

Low 1054 209 332 0.89 0.85 15.6 4.77 

258 
Up 3165 285 466 0.96 0.69 55.5 6.84 

Low 1573 241 510 0.91 0.75 52.3 5.74 

373 
Up 2846 196 327 0.97 0.55 65.8 7.51 

Low 2003 256 439 0.94 0.67 59.1 6.59 

454 
Up 9509 849 934 0.94 0.69 58.8 7.19 

Low 11351 967 939 0.94 0.69 56.1 6.33 

II 

528 
Up 8516 839 968 0.95 0.73 53.6 6.22 

Low 7272 743 967 0.94 0.66 55.2 7.28 

602 
Up 9145 792 887 0.95 0.72 32.6 5.51 

Low 9338 870 950 0.95 0.76 39.1 5.29 

III 648 
Up 8168 785 933 0.94 0.73 29.8 5.84 

Low 5601 709 975 0.94 0.77 23.6 6.30 

IV 723 
Up 7351 661 822 0.95 0.62 25.0 4.16 

Low 6681 866 1125 0.93 0.77 29.4 6.14 

V 798 
Up 7765 451 540 0.97 0.61 33.5 5.36 

Low 8320 810 933 0.95 0.76 14.0 3.90 
a Operational taxonomic units (OTU) were defined at a 97% similarity threshold.  
b Chao1 richness estimators at 95% confidence interval, Equitability, PD, and Shannon 
diversity indices were calculated using QIIME pipeline. 
c Good’s coverage was calculated using the equation: [1-(n/N)], where n is the number of 
singleton reads and N is the total number of reads. 
d Equitability index was a measure of evenness.  
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APPENDIX C: SUPPLEMENTAL MATERIALS IN CHAPTER 4 
 
 

 
Figure C.1 Electrophoresis gel of extracted genomic DNA (left) and the triplicates of total 
RNA (right) with a 1 kb DNA ladder. 
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Figure C.2 Overview of the bioinformatic analytical workflow.  
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Figure C.3 Microbial community composition at the phylum/class level in U648, L648, and 
U798 metagenomic datasets. Relative abundances of reads blasted to the reconstructed 16S 
rRNA genes using EMIRGE (Emg) and reads blasted to the SILVA rRNA gene database 
(release 119) are shown with Pearson correlation coefficient.   
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Figure C.4 Microbial phylogenetic composition in the DHS reactor. In the 16S rRNA gene-
based phylogenetic tree (bootstrap 1000: >90% black node, >70% gray node, and >50% 
white node), DHS_Emg refers to reconstructed ribosomal sequences using EMIRGE, and 
DHS_OTU refers to representative operational taxonomic units (OTU) from amplified 16S 
rRNA gene analysis by pyrosequencing. The relative abundance of the pyrosequencing 
OTUs (16S) and reads from the metagenome datasets blasted to the reconstructed 16S rRNA 
genes using EMIRGE (Emg) is indicated with color codes. The relative abundance is 
normalized to total number of bacterial 16s rRNA gene sequences in each dataset. 
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Figure C.4 (cont.) 
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Figure C.5 Microbial community compositions determined by protein encoding gene-based 
analyses in the metagenomes and metatranscriptomes. Taxonomic classification was 
assigned at the order level for the entire datasets (on left), and the genus level classifications 
were further indicated in the dominant order groups (on right).  
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Figure C.6 SEED subsystem level 3 that is significantly abundant at the 98% confidence 
level. Three columns on the left indicated metagenomic library, and the three triplicate 
columns on the right indicated each metatranscriptional library that is relative to the 
corresponding the metagenomic libraries.  
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Figure C.7 Global analysis of metabolic potential and functional activities in the DHS communities. Genomic relative abundance and 
expression profile of dominant orders at the SEED subsystem level 3. The genomic and transcriptomic relative abundance in 
percentage was indicated by white-purple scale color codes for the ten most dominant orders in sequence from left to right, and the 
transcriptional activity in terms of ratio of the transcriptional relative abundance to the genomic relative abundance was represented in 
log 2-fold change by white-red scale color codes. Light gray indicates U648, gray indicates L648, and dark gray indicates U798. The 
tree columns on the left side showed the entire transcriptional activity of each datasets, and the rest of the columns on the right side 
represented the transcriptional activity by each dominant order. * Unclassified Opitutae at the order level. 
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Figure C.8 Heatmap reflecting the putative genes of carbohydrate-active enzyme families in 
the dominant draft genomes. 
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Table C.1 Information of genomic and transcriptomic datasets and subtraction of rDNA and rRNA. 

Sample Library 
name 

Pre-QC no. of 
readsa Post-QC no. of readsa rRNA reads Coding DNA reads 

and non-rRNA reads 

Coding DNA reads and  
non-rRNA reads aligned 

to the assembly  
(>95% similarity) 

MG-RAST 
IDb 

Genome 

U648  89,172,658   66,692,412  (74.8%)  119,188   66,573,224  (99.8%) 38,902,409 58.40% 4623852.3 

L648  106,079,512   77,214,480  (72.8%)  146,348   77,068,132  (99.8%) 39,653,970 51.50% 4623716.3 

U798  195,173,938   143,790,358  (73.7%)  320,343   143,470,015  (99.8%) 83,954,088 58.50% 4623717.3 

Transcriptome 

U648_1  14,559,832   13,283,368  (91.2%)  9,919,717   3,363,651  (25.3%) 980,798 29.20% 4622228.3 
U648_2  14,362,838   13,130,084  (91.4%)  9,218,856   3,911,228  (29.8%) 1,336,392 34.20% 4622229.3 

U648_3  15,113,751   13,773,593  (91.1%)  7,251,092   6,522,501  (47.4%) 2,433,721 37.30% 4622230.3 
L648_1  15,177,201   13,784,821  (90.8%)  9,375,257   4,409,564  (32.0%) 1,003,397 22.80% 4622226.3 

L648_2  13,890,712   12,646,690  (91.0%)  3,623,167   9,023,523  (71.4%) 2,241,401 24.80% 4622351.3 
L648_3  14,599,754   13,217,552  (90.5%)  2,983,808   10,233,744  (77.4%) 2,606,952 25.50% 4622227.3 

U798_1  18,183,052   16,651,704  (91.6%)  13,998,258   2,653,446  (15.9%) 965,784 36.40% 4622352.3 
U798_2  18,297,640   16,744,277  (91.5%)  12,864,623   3,879,654  (23.2%) 1,495,042 38.50% 4622234.3 

U798_3  15,842,203   14,589,031  (92.1%)  9,605,762   4,983,269  (34.2%) 1,987,216 39.90% 4622235.3 

a. QC, quality control 
b. The listed libraries were submitted under the MG-RAST project (ID: mgp9993).  
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Table C.2 Pre- and final- assemblies and their statistics. 

Dataset Assembler k-value Post-QC no. 
of reads 

Assembled 
reads 

Total  
contig size 

No.  
of contig 

Max. contig 
size N50 N90 

U798-1 

Velvet 61  72,824,136   38,228,542   141,585,064   226,253   295,973   1,521   272  

SOAPdenovo2 75  72,824,136   30,399,419   104,645,387   180,721   296,063   703   257  

IDBA-UD 55-95  72,824,136   45,412,756   235,275,495   114,100   770,539   7,347   679  

U798-2 

Velvet 65  70,966,222   25,032,687   102,094,822   160,681   295,977   1,624   272  

SOAPdenovo2 65  70,966,222   27,416,319   151,940,000   307,211   279,983   606   218  

SOAPdenovo2 73  70,966,222   22,103,187   96,872,247   165,165   224,654   799   250  

IDBA-UD 59-99  70,966,222   31,570,350   178,946,071   91,167   474,299   9,572   611  

U648 

Velvet 49  66,692,412   40,703,566   276,956,125   784,337   384,151   607   176  

SOAPdenovo2 69  66,692,412   26,384,373   136,996,898   306,880   415,117   427   230  

SOAPdenovo2 83  66,692,412   14,799,218   35,239,331   42,786   249,487   1,968   284  

IDBA-UD 49-79  66,692,412   39,109,187   264,379,966   161,141   750,416   6,449   441  

L648 

Velvet 51  77,214,480   43,954,847   314,226,368   942,534   426,095   486   178  

Velvet 63  77,214,480   29,572,859   141,284,737   237,453   136,179   1,204   257  

SOAPdenovo2 49  77,214,480   46,542,214   406,086,569   1,135,112   414,414   384   168  

SOAPdenovo2 73  77,214,480   24,096,435   123,339,653   236,266   65,682   586   246  

IDBA-UD 45-95  77,214,480   43,754,598   341,435,213   226,361   1,008,602   3,579   475  
Final 

assembly Newbler     440,563,666   45,392   1,008,159   25,560   3,186  
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Table C.3 Assembly statistic of metagenomic datasets. 

  Total 
scaffolds 

Contigs Contigs Contigs Contigs 

> 300 bp > 1 kb > 50 kb > 100 kb 

Total Base (Mbp) 440.6 440.5 440.2 165.9 110.9 

Number of contigs 45,392 45,037 44,592 1,354 551 

Mean length (bp) 9,705 9,781 9,872 122,523 201,273 

N50 (bp) 25,560 25,560 25,560 143,676 217,873 

N90 (bp) 3,186 3,186 3,186 60,804 114,858 

Largest Scaffold (bp) 1,008,159 1,008,159 1,008,159 1,008,159 1,008,159 
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Table C.4 MG-RAST annotation of Assembly (contigs > 300 bp). 

Item Statistics 

Contigs 45,037 
Average length (bp) 9,780 ± 27,941  
Total length (bp) 440,496,337 
Predicted ORFs 272,083 
Annotated 200,515 
rRNAs 511 
Functional category 166,555 
Unrecognized 71,568 
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Table C.5 Summary of protein encoding genes annotated by SEED subsystem. 
Total number of protein encoding genes 95,002 

Summary of protein 
encoding genes (length) 

Minimum 300 

1st Quantile 907 

Median 1,458 

Mean 1,875 

3rd Quantile 2,389 

Maximum 29,070 
 

  



 
	
	

144 

 

 
Table C.6 Protein encoding genes aligned with coding-DNA and non-rRNA sequences.  

Genomic 
sample  

Present protein  
encoding genes 

Transcriptomic 
sample 

Expressed protein encoding 
genes 

U648 81,025 85.3% 

U648_1 34,291 36.1% 

U648_2 32,684 34.4% 

U648_3 47,054 49.5% 

L648 76,121 80.1% 

L648_1 27,442 28.9% 

L648_2 38,546 40.6% 

L648_3 38,605 40.6% 

U798 86,674 91.2% 

U798_1 18,647 19.6% 

U798_2 25,886 27.2% 

U798_3 27,926 29.4% 
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Table C.7 Metagenomic and metatranscriptomic statistics of the ten most dominant 
homologous orders at the subsystem level 3. 

 
U648 L648 U798 

Order MGa MTa MGa MTa MGa MTa 
Sphingobacteriales 11.9 15.7 3.3 4.2 5.1 6.1 
Flavobacteriales 10.0 10.5 2.9 2.7 9.4 9.6 
Rhodocyclales 1.7 0.9 2.8 0.8 14.1 21.6 
Rhizobiales 7.8 4.3 11.2 8.1 5.2 1.4 
Burkholderiales 7.1 5.5 8.4 3.3 8.3 4.5 
Solibacterales 1.7 4.3 3.0 26.3 1.0 0.4 
Desulfuromonadales 2.3 3.9 4.0 3.6 7.4 13.9 
Cytophagales 8.6 9.0 2.6 2.7 6.1 5.2 
Bacteroidales 3.1 4.1 1.0 1.6 4.8 5.5 
Rhodospirillales 3.7 4.3 4.9 3.5 2.0 0.6 
Clostridiales 1.4 2.1 1.9 2.1 2.5 4.9 
Optitutae* 1.9 0.8 4.1 2.3 0.4 0.1 

a. Percentage based on each dataset  
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Table C.8 Metagenomic bins that contributes top 50 % of abundance in genomic presence and transcriptomic expression. 

Bin_ID 
U648 L648 U798 

Marker lineage 
Marker gene copies Complete-

ness
c
 

Contami-
nation

c
 

Size 
(Mb) 

Contig 
count ORF

e
 

PEG 

MG
a
 MT1

ab
 MT2

ab
 MT3

ab
 MG

a
 MT1

ab
 MT2

ab
 MT3

ab
 MG

a
 MT1

ab
 MT2

ab
 MT3

ab
 0 1 2 3 

Bin01 9.3 2.8 2.6 3.7 38.4 22.2 19.7 18.0 0.1 0.1 0.1 0.0 g_Opitutus 1 226 3 0 99.3 1.4 3.6 34 2294 872 

Bin02 9.6 2.4 1.2 2.5 41.7 8.6 12.1 7.9 0.7 0.2 0.2 0.1 o_Burkholderiales  19 403 2 1 98.6 1.0 3.8 22 2448 958 
Bin03 1.3 5.1 2.0 4.2 24.4 46.1 45.0 41.4 0.0 0.1 0.1 0.0 o_Desulfuromonadales 37 148 5 0 86.3 3.8 5.2 372 3351 877 

Bin04 2.9 2.0 1.5 2.4 17.3 17.7 19.5 18.3 0.0 0.0 0.0 0.0 g_Nitrospira 7 170 4 0 95.9 2.8 3.1 30 2002 612 

Bin05 21.1 14.7 9.5 7.7 39.5 15.7 13.5 11.4 0.5 0.4 0.5 0.2 o_Rhodospirillales 7 325 4 0 97.5 1.7 7.8 103 5701 1716 
Bin06 1.7 4.4 2.2 5.0 12.8 38.4 26.7 36.3 3.5 0.1 0.9 0.6 g_Gemmatimonas 3 143 1 0 96.7 1.1 3.2 12 1715 523 

Bin07 0.4 0.4 0.1 0.3 14.3 2.1 1.6 1.7 0.4 0.0 0.0 0.0 f_Planctomycetaceae 0 141 2 0 100.0 2.3 4.9 99 3205 693 

Bin08 61.9 24.0 18.4 23.7 24.1 10.8 13.9 10.0 3.5 0.3 1.0 0.3 g_Chitinophaga  1 297 2 1 99.5 1.5 6.7 82 4610 1203 
Bin09 25.1 47.6 57.7 40.8 11.2 21.4 22.6 19.7 0.1 0.1 0.1 0.0 g_Haliscomenobacter 2 300 0 0 99.0 0.0 4.2 72 2809 636 

Bin11 0.5 0.7 0.7 3.6 9.8 14.1 19.0 15.8 0.1 0.0 0.0 0.0 f_Planctomycetaceae 14 128 1 0 95.5 1.1 4.0 106 2546 687 
Bin12 3.3 2.3 1.7 3.4 17.1 9.1 10.4 9.2 0.9 0.1 0.1 0.1 o_Desulfuromonadales 20 219 8 0 90.8 2.6 6.4 335 4534 1190 
Bin14 1.5 0.9 0.5 0.6 17.8 2.3 2.9 2.1 0.1 0.0 0.1 0.1 o_Burkholderiales 6 411 2 0 98.4 0.4 6.5 204 4327 1392 

Bin23 14.7 10.6 10.9 8.8 7.0 5.4 9.0 6.9 0.2 0.1 0.0 0.0 f_Verrucomicrobiaceae 2 223 5 0 98.7 3.4 5.5 143 3225 833 
Bin24 24.5 22.8 23.4 22.5 5.7 6.8 8.0 7.7 53.4 23.7 28.5 17.6 g_Fluviicola 1 274 3 0 99.5 1.6 4.4 71 2449 704 
Bin44 5.6 56.7 28.3 39.2 2.8 9.6 10.0 10.9 18.6 1.4 3.0 3.6 o_Desulfuromonadales 17 227 3 0 93.7 1.9 5.4 223 3319 792 

Bin55 8.7 23.3 40.6 36.9 0.9 2.8 2.4 3.2 0.0 0.1 0.1 0.0 g_Haliscomenobacter 20 274 8 0 91.8 2.0 6.1 236 3409 924 
Bin56 56.7 62.7 66.5 51.6 0.6 3.5 11.0 11.5 0.1 0.1 0.0 0.0 g_Chitinophaga  2 299 1 0 99.0 0.5 4.7 71 3310 905 

Bin65 10.3 36.9 28.0 22.2 0.4 0.7 1.8 1.0 9.8 0.6 3.3 2.2 f_Acetobacteraceae 38 292 4 2 86.4 1.3 4.6 544 3603 1337 
Bin68 18.8 23.6 25.7 30.1 0.6 0.7 2.1 1.5 3.7 1.0 1.3 0.8 o_Burkholderiales  56 342 28 0 90.7 8.5 6.2 760 4564 1852 
Bin70 28.1 1.3 1.0 1.4 0.2 0.0 0.0 0.0 4.6 0.3 0.3 0.1 f_Verrucomicrobiaceae 1 222 6 0 99.3 4.5 6.0 57 3641 931 

Bin72 1.4 1.5 1.3 1.4 0.2 0.2 0.3 0.3 28.8 21.4 28.2 16.0 o_Burkholderiales 15 408 3 0 98.3 0.8 6.1 97 3935 1763 
Bin74 9.6 44.2 64.7 51.2 0.1 0.4 0.3 0.4 46.2 44.9 43.9 50.1 g_Haliscomenobacter 1 299 2 0 99.5 0.5 5.7 109 3944 899 
Bin78 0.1 0.4 0.2 0.3 0.1 0.2 0.1 0.1 40.6 77.6 78.5 78.6 g_Dechlomonas 59 343 23 0 90.8 3.9 3.9 122 2444 1226 

Bin79 0.5 1.2 2.6 0.8 0.0 0.5 0.2 0.1 36.6 91.1 100.5 110.8 g_Geobacter 2 230 15 0 99.3 3.5 4.7 93 2685 1121 
Bin80 0.2 0.4 0.2 0.3 0.0 0.1 0.1 0.1 22.3 34.0 38.2 38.0 g_Dechlomonas 181 241 3 0 62.6 1.0 2.8 219 1878 927 

Bin87 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 21.9 79.8 73.1 70.9 g_Haliscomenobacter 2 284 11 1 99.0 5.7 6.0 364 3194 1021 
Bin88 1.5 0.3 0.7 0.4 0.0 0.0 0.0 0.0 10.5 65.1 42.1 45.0 o_Clostridiales 5 232 10 0 96.9 4.7 3.4 304 2204 736 

Bin99S 0.6 12.6 8.3 11.3 2.6 147.6 113.8 158.8 0.1 0.1 0.2 0.0 s_Ca.Solibacter 113 72 0 0 35.7 0.0 1.6 213 1221 381 
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a. Normalized abundance of genomic (MG) and transcriptomic (MT) datasets aligned to the protein-coding genes. 
The bins contributes top 50% of abundance for each dataset highlighted in bold.   

b. Average values of the triplicates.   
c. Completeness and contamination of genome bins were assessed using CheckM. Bins that were less than 60% complete or with 

greater than 10% contamination were discarded. 
d. Marker lineage was analyzed using AMPHORA2 and reported if 75% of the classifications were in agreement at a particular 

taxonomic level. 
e. Open reading frames (ORFs) were predicted using FragGeneScan.  
f. The listed bins were submitted under the MG-RAST project (ID: mgp9993). 

  

Table C.8 (cont.) 
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Table C.9 Gene inventory analysis related to N-substituted biomass structural detritus utilization.  
Genome Feature ID Protein locus tag (accession) Functional role 
Haliscomenobacter 
hydrossis 
(NC_015510) 

fig|760192.3.peg.1023 
Halhy_0946   
CDS_1166632_1169307_- 
(YP_004445720.1) 

TonB-dependent receptor 

fig|760192.3.peg.1033 
Halhy_0956   
CDS_1176470_1177717_- 
(YP_004445730.1) 

N-acetylglucosamine related transporter, NagX 

fig|760192.3.peg.1058 
Halhy_0978   
CDS_1204720_1207575_- 
(YP_004445750.1) 

TonB-dependent receptor 

fig|760192.3.peg.1133 
Halhy_1044   
CDS_1278061_1280481_- 
(YP_004445816.1) 

TonB-dependent receptor 

fig|760192.3.peg.1134 
Halhy_1045   
CDS_1281067_1283394_- 
(YP_004445817.1) 

beta-glucosidase (EC 3.2.1.21) 

fig|760192.3.peg.1212 
Halhy_1118   
CDS_1378600_1381563_+ 
(YP_004445889.1) 

TonB-dependent receptor 

fig|760192.3.peg.1289 
Halhy_1187   
CDS_1480711_1481445_+ 
(YP_004445957.1) 

Glucosamine-6-phosphate deaminase (EC 
3.5.99.6) 

fig|760192.3.peg.1465 
Halhy_1353   
CDS_1686331_1688622_+ 
(YP_004446121.1) 

TonB-dependent receptor 

fig|760192.3.peg.1496 
Halhy_1383   
CDS_1738919_1741129_+ 
(YP_004446151.1) 

TonB-dependent receptor 

 
fig|760192.3.peg.1552 

Halhy_1436   
CDS_1798408_1801230_+ 
(YP_004446203.1) 

TonB-dependent receptor 

 
fig|760192.3.peg.1593 

Halhy_1472   
CDS_1852891_1856088_+ 
(YP_004446239.1) 

TonB-dependent receptor 

 
fig|760192.3.peg.1642 

Halhy_1513   
CDS_1907633_1910611_+ 
(YP_004446278.1) 

TonB-dependent receptor 
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Table C.9 (cont.) 

Genome Feature ID Protein locus tag (accession) Functional role 
Haliscomenobacter 
hydrossis 
(NC_015510) 

fig|760192.3.peg.1665 
Halhy_1539   
CDS_1944077_1944943_+ 
(YP_004446304.1) 

Beta-galactosidase (EC 3.2.1.23) 

 
fig|760192.3.peg.1729 

Halhy_1597   
CDS_2010973_2013093_+ 
(YP_004446361.1) 

Beta-galactosidase (EC 3.2.1.23) 

 
fig|760192.3.peg.1767 

Halhy_1633   
CDS_2054708_2056765_+ 
(YP_004446396.1) 

TonB-dependent receptor 

 
fig|760192.3.peg.1848 

Halhy_1706   
CDS_2144811_2147420_- 
(YP_004446468.1) 

Beta-mannosidase (EC 3.2.1.25) 

 
fig|760192.3.peg.1886 

Halhy_1742   
CDS_2185567_2187918_- 
(YP_004446503.1) 

TonB-dependent siderophore receptor 

 
fig|760192.3.peg.1900 

Halhy_1755   
CDS_2201227_2203455_- 
(YP_004446516.1) 

TonB-dependent receptor 

 
fig|760192.3.peg.1957 

Halhy_1809   
CDS_2261545_2264412_- 
(YP_004446568.1) 

TonB-dependent receptor 

 
fig|760192.3.peg.1959 

Halhy_1819   
CDS_2265706_2268000_- 
(YP_004446519.1) 

TonB-dependent receptor 

 
fig|760192.3.peg.1960 

Halhy_1820   
CDS_2268043_2268228_- 
(YP_004446520.1) 

TonB-dependent receptor 

 
fig|760192.3.peg.1965 

Halhy_1816   
CDS_2274491_2277526_- 
(YP_004446574.1) 

TonB-dependent receptor 

 
fig|760192.3.peg.1977 

Halhy_1827   
CDS_2287667_2290417_+ 
(YP_004446585.1) 

TonB-dependent receptor 
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Table C.9 (cont.) 
Genome Feature ID Protein locus tag (accession) Functional role 

Haliscomenobacter 
hydrossis 
(NC_015510) 

fig|760192.3.peg.1989 
Halhy_1838   
CDS_2317816_2319801_+ 
(YP_004446596.1) 

TonB-dependent receptor plug 

 
fig|760192.3.peg.2097 

Halhy_1939   
CDS_2441702_2444239_- 
(YP_004446697.1) 

TonB-dependent receptor 

 
fig|760192.3.peg.2218 

Halhy_2055   
CDS_2607019_2607414_-  
(YP_004446813.1) 

peptidoglycan-binding lysin domain-containing 
protein 

 
fig|760192.3.peg.2254 

Halhy_2087   
CDS_2649328_2651532_- 
(YP_004446845.1) 

TonB-dependent receptor; Outer membrane 
receptor for ferrienterochelin and colicins 

 
fig|760192.3.peg.2315 

Halhy_2144   
CDS_2775542_2778781_+ 
(YP_004446902.1) 

TonB-dependent receptor 

 
fig|760192.3.peg.2467 

Halhy_2286   
CDS_2962182_2964080_+ 
(YP_004447038.1) 

1,4-alpha-glucan (glycogen) branching enzyme, 
GH-13-type (EC 2.4.1.18) 

 
fig|760192.3.peg.2538 

Halhy_2353   
CDS_3040668_3042125_- 
(YP_004447102.1) 

Transcriptional regulator, GntR family domain / 
Aspartate aminotransferase (EC 2.6.1.1) 

 
fig|760192.3.peg.2563 

Halhy_2378   
CDS_3068670_3071645_+ 
(YP_004447127.1) 

Beta-hexosaminidase (EC 3.2.1.52) 

 
fig|760192.3.peg.2581 

Halhy_2395   
CDS_3092399_3093715_+ 
(YP_004447143.1) 

N-acetylglucosamine related transporter, NagX 

 fig|760192.3.peg.26 Halhy_0027   CDS_25892_28654_- 
(YP_004444814.1) TonB-dependent receptor 

 
fig|760192.3.peg.2776 

Halhy_2578   
CDS_3294435_3296876_- 
(YP_004447321.1) 

TonB-dependent receptor 

 
fig|760192.3.peg.2818 

Halhy_2615   
CDS_3339688_3340860_+ 
(YP_004447357.1) 

N-acetylglucosamine-6-phosphate deacetylase 
(EC 3.5.1.25) 
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Table C.9 (cont.) 
Genome Feature ID Protein locus tag (accession) Functional role 

Haliscomenobacter 
hydrossis 
(NC_015510) 

fig|760192.3.peg.2828 
Halhy_2625   
CDS_3351328_3354237_- 
(YP_004447367.1) 

TonB-dependent receptor 

  
fig|760192.3.peg.2834 

Halhy_2631   
CDS_3360307_3362145_- 
(YP_004447373.1) 

Glucosamine--fructose-6-phosphate 
aminotransferase [isomerizing] (EC 2.6.1.16) 

  
 

fig|760192.3.peg.2853 
Halhy_2649   
CDS_3394286_3395506_- 
(YP_004447391.1) 

Anhydro-N-acetylmuramic acid kinase (EC 
2.7.1.170) 

fig|760192.3.peg.2865 
Halhy_2661   
CDS_3408415_3409761_+ 
(YP_004447403.1) 

D-alanyl-D-alanine carboxypeptidase (EC 
3.4.16.4) 

fig|760192.3.peg.315 
Halhy_0307   
CDS_377670_378965_- 
(YP_004445092.1) 

N-acetylmuramoyl-L-alanine amidase (EC 
3.5.1.28) 

fig|760192.3.peg.3260 
Halhy_3045   
CDS_3864273_3865313_- 
(YP_004447781.1) 

Muramoyltetrapeptide carboxypeptidase (EC 
3.4.17.13) 

fig|760192.3.peg.3297 
Halhy_3084   
CDS_3903942_3905336_+ 
(YP_004447820.1) 

Membrane-bound lytic murein transglycosylase D 
precursor                  (EC 3.2.1.-) 

fig|760192.3.peg.3343 
Halhy_3128   
CDS_3951630_3955061_+ 
(YP_004447863.1) 

TonB-dependent receptor 

fig|760192.3.peg.3449 
Halhy_3235   
CDS_4083931_4084224_- 
(YP_004447968.1) 

TonB family protein 

fig|760192.3.peg.3506 
Halhy_3293   
CDS_4151350_4152246_- 
(YP_004448025.1) 

N-acetylneuraminate lyase (EC 4.1.3.3) 

fig|760192.3.peg.3509 
Halhy_3295   
CDS_4153900_4157217_- 
(YP_004448027.1) 

TonB-dependent receptor 
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Table C.9 (cont.) 
Genome Feature ID Protein locus tag (accession) Functional role 

Haliscomenobacter 
hydrossis 
(NC_015510) 

fig|760192.3.peg.354 
Halhy_0342   
CDS_433938_437171_+ 
(YP_004445127.1) 

TonB-dependent receptor 

 
fig|760192.3.peg.3733 

Halhy_3512   
CDS_4417333_4420569_- 
(YP_004448240.1) 

TonB-dependent receptor 

 
fig|760192.3.peg.3794 

Halhy_3571   
CDS_4488951_4492403_+ 
(YP_004448298.1) 

TonB-dependent receptor 

 
fig|760192.3.peg.3884 

Halhy_3658   
CDS_4609360_4612752_- 
(YP_004448383.1) 

TonB-dependent receptor 

 
fig|760192.3.peg.3948 

Halhy_3721   
CDS_4689540_4690634_- 
(YP_004448446.1) 

Transcriptional regulator, LacI family 

 
fig|760192.3.peg.3949 

Halhy_3722   
CDS_4690985_4693975_+ 
(YP_004448447.1) 

TonB family protein / TonB-dependent receptor 

 
fig|760192.3.peg.3950 

Halhy_3723   
CDS_4693988_4695487_+ 
(YP_004448448.1) 

RagB/SusD domain-containing protein 

 
fig|760192.3.peg.3954 

Halhy_3727   
CDS_4702060_4704096_+ 
(YP_004448452.1) 

Beta-galactosidase (EC 3.2.1.23) 

 
fig|760192.3.peg.3970 

Halhy_3743   
CDS_4726420_4727325_- 
(YP_004448468.1) 

ROK family sugar kinase or transcriptional 
regulator 

 
fig|760192.3.peg.406 

Halhy_0388   
CDS_493981_496365_+ 
(YP_004445172.1) 

TonB-dependent receptor 

 
fig|760192.3.peg.408 

Halhy_0390   
CDS_499750_501342_+ 
(YP_004445174.1) 

SusD, outer membrane protein 
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Table C.9 (cont.) 
Genome Feature ID Protein locus tag (accession) Functional role 

Haliscomenobacter 
hydrossis 
(NC_015510) 

fig|760192.3.peg.4108 
Halhy_3874   
CDS_4895183_4897519_+ 
(YP_004448598.1) 

TonB-dependent receptor 

 
fig|760192.3.peg.4165 

Halhy_3927   
CDS_4973819_4976314_+ 
(YP_004448648.1) 

beta-glucosidase (EC 3.2.1.21) 

 
fig|760192.3.peg.4302 

Halhy_4064   
CDS_5148897_5151257_- 
(YP_004448785.1) 

ABC transporter, permease protein 

 
fig|760192.3.peg.4340 

Halhy_4100   
CDS_5185215_5187605_- 
(YP_004448821.1) 

ABC transporter, permease protein 

 
fig|760192.3.peg.4343 

Halhy_4103   
CDS_5189959_5192340_- 
(YP_004448823.1) 

ABC transporter, permease protein 

 
fig|760192.3.peg.4349 

Halhy_4110   
CDS_5195442_5197880_- 
(YP_004448829.1) 

TonB-dependent receptor 

 
fig|760192.3.peg.4418 

Halhy_4177   
CDS_5274650_5277139_+ 
(YP_004448896.1) 

TonB-dependent receptor 

 
fig|760192.3.peg.4549 

Halhy_4304   
CDS_5416504_5417517_+ 
(YP_004449021.1) 

Transcriptional regulator, LacI family 

 
fig|760192.3.peg.4553 

Halhy_4308   
CDS_5421555_5422463_- 
(YP_004449025.1) 

Membrane-bound lytic murein transglycosylase D 
precursor (EC 3.2.1.-) 

 
fig|760192.3.peg.4606 

Halhy_4356   
CDS_5485251_5486033_- 
(YP_004449073.1) 

N-acetylmuramic acid 6-phosphate etherase (EC 
4.2.1.126) 

 
fig|760192.3.peg.462 

Halhy_0443   
CDS_566774_568831_+ 
(YP_004445227.1) 

Beta-hexosaminidase (EC 3.2.1.52) 
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Table C.9 (cont.) 
Genome Feature ID Protein locus tag (accession) Functional role 

Haliscomenobacter 
hydrossis 
(NC_015510) 

fig|760192.3.peg.4628 
Halhy_4375   
CDS_5518070_5519110_- 
(YP_004449092.1) 

Transcriptional regulator, LacI family 

 
fig|760192.3.peg.4629 

Halhy_4376   
CDS_5519378_5522680_+ 
(YP_004449093.1) 

TonB-dependent receptor 

 
fig|760192.3.peg.4632 

Halhy_4379   
CDS_5526554_5528164_+ 
(YP_004449096.1) 

Beta-xylosidase (EC 3.2.1.37) 

 
fig|760192.3.peg.4690 

Halhy_4439   
CDS_5608743_5611940_- 
(YP_004449154.1) 

TonB-dependent receptor 

 
fig|760192.3.peg.4726 

Halhy_4473   
CDS_5659154_5660263_+ 
(YP_004449187.1) 

N-acetylglucosamine related transporter, NagX 

 
fig|760192.3.peg.4812 

Halhy_4557   
CDS_5756371_5759478_+ 
(YP_004449270.1) 

TonB-dependent receptor 

 
fig|760192.3.peg.4815 

Halhy_4537   
CDS_5762400_5763131_+ 
(YP_004449237.1) 

TonB-dependent receptor 

 
fig|760192.3.peg.4816 

Halhy_4538   
CDS_5763082_5765511_+ 
(YP_004449238.1) 

TonB-dependent receptor 

 
fig|760192.3.peg.4820 

Halhy_4563   
CDS_5768102_5771152_+ 
(YP_004449275.1) 

TonB-dependent receptor 

 
fig|760192.3.peg.4821 

Halhy_4564   
CDS_5771192_5772544_+ 
(YP_004449276.1) 

RagB/SusD domain-containing protein 

 
fig|760192.3.peg.4887 

Halhy_4627   
CDS_5852532_5855558_+ 
(YP_004449336.1) 

SusC, outer membrane protein involved in starch 
binding 
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Table C.9 (cont.) 
Genome Feature ID Protein locus tag (accession) Functional role 

Haliscomenobacter 
hydrossis 
(NC_015510) 

fig|760192.3.peg.4888 
Halhy_4628   
CDS_5855572_5857257_+ 
(YP_004449337.1) 

SusD, outer membrane protein 

 
fig|760192.3.peg.4898 

Halhy_4636   
CDS_5867463_5868827_- 
(YP_004449345.1) 

beta-glucosidase (EC 3.2.1.21) 

 
fig|760192.3.peg.4926 

Halhy_4665   
CDS_5903035_5906115_- 
(YP_004449373.1) 

TonB-dependent receptor 

 
fig|760192.3.peg.4972 

Halhy_4709   
CDS_5964404_5965795_- 
(YP_004449416.1) 

N-acetylglucosamine deacetylase (EC 3.5.1.-) / 3-
hydroxyacyl-[acyl-carrier-protein] dehydratase, 
FabZ form (EC 4.2.1.59) 

 
fig|760192.3.peg.5071 

Halhy_4804   
CDS_6066985_6069942_- 
(YP_004449510.1) 

TonB-dependent receptor 

 
fig|760192.3.peg.5073 

Halhy_4807   
CDS_6071732_6074854_- 
(YP_004449513.1) 

TonB-dependent receptor 

 
fig|760192.3.peg.5088 

Halhy_4821   
CDS_6089501_6092962_+ 
(YP_004449527.1) 

TonB-dependent receptor 

 
fig|760192.3.peg.5115 

Halhy_4847   
CDS_6129987_6130994_+ 
(YP_004449552.1) 

Transcriptional regulator, LacI family 

 
fig|760192.3.peg.5178 

Halhy_4898   
CDS_6219711_6223118_- 
(YP_004449600.1) 

Beta-galactosidase (EC 3.2.1.23) 

 
fig|760192.3.peg.5181 

Halhy_4901   
CDS_6226482_6228047_- 
(YP_004449603.1) 

SusD, outer membrane protein 

 
fig|760192.3.peg.5182 

Halhy_4902   
CDS_6228071_6231016_- 
(YP_004449604.1) 

SusC, outer membrane protein involved in starch 
binding 
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Table C.9 (cont.) 
Genome Feature ID Protein locus tag (accession) Functional role 

Haliscomenobacter 
hydrossis 
(NC_015510) 

fig|760192.3.peg.5303 
Halhy_5020   
CDS_6369366_6370739_- 
(YP_004449721.1) 

RagB/SusD domain-containing protein 

 
fig|760192.3.peg.5304 

Halhy_5021   
CDS_6370758_6373727_- 
(YP_004449722.1) 

TonB-dependent receptor 

 
fig|760192.3.peg.5358 

Halhy_5071   
CDS_6439605_6441962_- 
(YP_004449770.1) 

TonB-dependent receptor 

 
fig|760192.3.peg.5396 

Halhy_5108   
CDS_6489645_6492017_- 
(YP_004449807.1) 

TonB-dependent receptor 

 
fig|760192.3.peg.542 

Halhy_0488   
CDS_629171_630199_+ 
(YP_004445271.1) 

Transcriptional regulator, LacI family 

 
fig|760192.3.peg.5425 

Halhy_5134   
CDS_6517834_6521067_- 
(YP_004449833.1) 

TonB-dependent receptor 

 
fig|760192.3.peg.545 

Halhy_0491   
CDS_634311_635978_+ 
(YP_004445274.1) 

Beta-xylosidase (EC 3.2.1.37) 

 
fig|760192.3.peg.549 

Halhy_0494   
CDS_641209_642360_+ 
(YP_004445277.1) 

Endo-1,4-beta-xylanase A precursor (EC 3.2.1.8) 

 
fig|760192.3.peg.551 

Halhy_0496   
CDS_643339_644415_+ 
(YP_004445279.1) 

Endo-1,4-beta-xylanase A precursor (EC 3.2.1.8) 

 
fig|760192.3.peg.553 

Halhy_0497   
CDS_644673_646598_+ 
(YP_004445280.1) 

Endo-1,4-beta-xylanase A precursor (EC 3.2.1.8) 

 
fig|760192.3.peg.5552 

Halhy_5252   
CDS_6687891_6689564_- 
(YP_004449951.1) 

Beta-xylosidase (EC 3.2.1.37) 
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Table C.9 (cont.) 
Genome Feature ID Protein locus tag (accession) Functional role 

Haliscomenobacter 
hydrossis 
(NC_015510) 

fig|760192.3.peg.5555 
Halhy_5255   
CDS_6691694_6692899_- 
(YP_004449953.1) 

Chitinase (EC 3.2.1.14) 

 
fig|760192.3.peg.5579 

Halhy_5280   
CDS_6723818_6727108_- 
(YP_004449978.1) 

TonB-dependent receptor 

 
fig|760192.3.peg.5607 

Halhy_5305   
CDS_6754885_6757863_+ 
(YP_004450003.1) 

TonB-dependent receptor 

 
fig|760192.3.peg.5610 

Halhy_5308   
CDS_6761094_6762257_+ 
(YP_004450006.1) 

N-acylglucosamine 2-epimerase (EC 5.1.3.8) 

 
fig|760192.3.peg.5692 

Halhy_5388   
CDS_6860833_6861264_- 
(YP_004450086.1) 

TonB family protein 

 
fig|760192.3.peg.5708 

Halhy_5404   
CDS_6886087_6889209_- 
(YP_004450102.1) 

Beta-galactosidase (EC 3.2.1.23) 

 
fig|760192.3.peg.5722 

Halhy_5419   
CDS_6905991_6909203_- 
(YP_004450117.1) 

Beta-hexosaminidase (EC 3.2.1.52) 

 
fig|760192.3.peg.5776 

Halhy_5474   
CDS_6969873_6973112_- 
(YP_004450172.1) 

TonB-dependent receptor 

 
fig|760192.3.peg.5863 

Halhy_5557   
CDS_7087100_7090264_+ 
(YP_004450254.1) 

TonB-dependent receptor 

 
fig|760192.3.peg.5896 

Halhy_5587   
CDS_7130831_7133218_+ 
(YP_004450284.1) 

TonB-dependent siderophore receptor 

 
fig|760192.3.peg.6003 

Halhy_5689   
CDS_7251939_7254377_+ 
(YP_004450385.1) 

TonB-dependent receptor 
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Table C.9 (cont.) 
Genome Feature ID Protein locus tag (accession) Functional role 

Haliscomenobacter 
hydrossis 
(NC_015510) 

fig|760192.3.peg.6010 
Halhy_5695   
CDS_7264146_7267073_+ 
(YP_004450391.1) 

TonB-dependent receptor 

 
fig|760192.3.peg.6042 

Halhy_5727   
CDS_7315830_7319018_+ 
(YP_004450423.1) 

TonB-dependent receptor 

 
fig|760192.3.peg.607 

Halhy_0556   
CDS_693473_694411_+ 
(YP_004445339.1) 

D-alanyl-D-alanine carboxypeptidase (EC 
3.4.16.4) 

 
fig|760192.3.peg.6124 

Halhy_5803   
CDS_7431751_7434561_- 
(YP_004450499.1) 

TonB-dependent receptor 

 
fig|760192.3.peg.6127 

Halhy_5806   
CDS_7436355_7437734_+ 
(YP_004450502.1) 

Phosphomannomutase (EC 5.4.2.8) / 
Phosphoglucosamine mutase (EC 5.4.2.10) 

 
fig|760192.3.peg.6157 

Halhy_5837   
CDS_7479923_7483069_+ 
(YP_004450533.1) 

TonB-dependent receptor 

 
fig|760192.3.peg.6161 

Halhy_5841   
CDS_7492360_7493403_+ 
(YP_004450537.1) 

Transcriptional regulator, LacI family 

 
fig|760192.3.peg.6191 

Halhy_5871   
CDS_7542221_7545163_- 
(YP_004450567.1) 

TonB-dependent receptor 

 
fig|760192.3.peg.6192 

Halhy_5872   
CDS_7545452_7547287_- 
(YP_004450568.1) 

RagB/SusD domain-containing protein 

 
fig|760192.3.peg.6193 

Halhy_5873   
CDS_7547321_7550467_- 
(YP_004450569.1) 

TonB-dependent receptor 

 
fig|760192.3.peg.6305 

Halhy_5983   
CDS_7644137_7645636_+ 
(YP_004450679.1) 

Beta-hexosaminidase (EC 3.2.1.52) 
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Table C.9 (cont.) 
Genome Feature ID Protein locus tag (accession) Functional role 

Haliscomenobacter 
hydrossis 
(NC_015510) 

fig|760192.3.peg.6445 
Halhy_6113   
CDS_7807143_7810139_+ 
(YP_004450808.1) 

TonB-dependent receptor plug 

 
fig|760192.3.peg.6518 

Halhy_4544   
CDS_7890942_7891583_- 
(YP_004450844.1) 

ABC transporter, permease protein 

 
fig|760192.3.peg.656 

Halhy_0602   
CDS_749944_751011_- 
(YP_004445384.1) 

L-alanine-DL-glutamate epimerase (EC 5.1.1.n1) 

 
fig|760192.3.peg.6564 

Halhy_6222   
CDS_7942864_7945611_+ 
(YP_004450915.1) 

TonB-dependent receptor 

 
fig|760192.3.peg.6601 

Halhy_6252   
CDS_7982182_7983345_+ 
(YP_004450945.1) 

N-acetylglucosamine related transporter, NagX 

 
fig|760192.3.peg.6813 

Halhy_6457   
CDS_8245857_8246969_- 
(YP_004451147.1) 

Endo-1,4-beta-xylanase A precursor (EC 3.2.1.8) 

 
fig|760192.3.peg.6857 

Halhy_6499   
CDS_8302128_8303399_+ 
(YP_004451188.1) 

N-acetyl glucosamine transporter, NagP 

 
fig|760192.3.peg.6883 

Halhy_6528   
CDS_8336343_8338724_+ 
(YP_004451217.1) 

TonB-dependent receptor 

 
fig|760192.3.peg.6885 

Halhy_6530   
CDS_8339641_8340393_- 
(YP_004451219.1) 

Beta-glucanase precursor (EC 3.2.1.73) 

 
fig|760192.3.peg.6903 

Halhy_6546   
CDS_8364784_8367066_- 
(YP_004451235.1) 

Beta-hexosaminidase (EC 3.2.1.52) 

 
fig|760192.3.peg.6904 

Halhy_6547   
CDS_8367204_8369123_- 
(YP_004451236.1) 

Glucosamine-6-phosphate deaminase (EC 
3.5.99.6) 
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Table C.9 (cont.) 
Genome Feature ID Protein locus tag (accession) Functional role 

Haliscomenobacter 
hydrossis 
(NC_015510) 

fig|760192.3.peg.6906 
Halhy_6549   
CDS_8370365_8371435_+ 
(YP_004451238.1) 

Transcriptional regulator, LacI family 

 fig|760192.3.peg.6965 Halhy_6608   CDS_71656_73884_+ 
(YP_004451297.1) TonB-dependent receptor 

 fig|760192.3.peg.6966 Halhy_6609   CDS_74405_76576_+ 
(YP_004451298.1) 

TonB-dependent receptor; Outer membrane 
receptor for ferrienterochelin and colicins 

 fig|760192.3.peg.6967 Halhy_4547   CDS_76727_76921_+ 
(YP_004450847.1) TonB-dependent receptor 

 
fig|760192.3.peg.712 

Halhy_0652   
CDS_806997_810143_- 
(YP_004445433.1) 

TonB-dependent receptor 

 
fig|760192.3.peg.783 

Halhy_0721   
CDS_897452_900592_+ 
(YP_004445502.1) 

TonB-dependent receptor 

 
fig|760192.3.peg.793 

Halhy_0730   
CDS_911316_912437_- 
(YP_004445511.1) 

Endo-1,4-beta-xylanase A precursor (EC 3.2.1.8) 

 
fig|760192.3.peg.802 

Halhy_0738   
CDS_921624_924635_- 
(YP_004445519.1) 

TonB family protein / TonB-dependent receptor 

 
fig|760192.3.peg.815 

Halhy_0750   
CDS_947502_950315_+ 
(YP_004445530.1) 

Beta-galactosidase (EC 3.2.1.23) 

  
fig|760192.3.peg.976 

Halhy_0904   
CDS_1113693_1116101_- 
(YP_004445678.1) 

TonB-dependent receptor 

Chitinophaga 
pinensis 
(NC_013132) 

fig|485918.6.peg.100 
Cpin_0106   
CDS_128386_130833_+ 
(YP_003119810.1) 

Beta-galactosidase (EC 3.2.1.23) 

 
fig|485918.6.peg.1022 

Cpin_1034   
CDS_1240012_1242792_+ 
(YP_003120733.1) 

TonB-dependent receptor 
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Table C.9 (cont.) 
Genome Feature ID Protein locus tag (accession) Functional role 

Chitinophaga 
pinensis 
(NC_013132) 

fig|485918.6.peg.1085 
Cpin_1097   
CDS_1315270_1318653_+ 
(YP_003120796.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.115 

Cpin_0121   
CDS_148670_150844_- 
(YP_003119825.1) 

TonB-dependent receptor; Outer membrane 
receptor for ferrienterochelin and colicins 

 
fig|485918.6.peg.1187 

Cpin_1197   
CDS_1424967_1426091_+ 
(YP_003120896.1) 

Anhydro-N-acetylmuramic acid kinase (EC 
2.7.1.170) 

 
fig|485918.6.peg.1269 

Cpin_1279   
CDS_1529335_1530612_- 
(YP_003120978.1) 

N-acetylglucosamine deacetylase (EC 3.5.1.-) / 3-
hydroxyacyl-[acyl-carrier-protein] dehydratase, 
FabZ form (EC 4.2.1.59) 

 
fig|485918.6.peg.129 

Cpin_0134   
CDS_162103_164793_- 
(YP_003119838.1) 

Beta-galactosidase (EC 3.2.1.23) 

 
fig|485918.6.peg.131 

Cpin_0136   
CDS_166355_169681_- 
(YP_003119840.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.1324 

Cpin_1334   
CDS_1590515_1591870_+ 
(YP_003121033.1) 

Membrane-bound lytic murein transglycosylase D 
precursor (EC 3.2.1.-) 

 
fig|485918.6.peg.1343 

Cpin_1354   
CDS_1618219_1621845_- 
(YP_003121053.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.1449 

Cpin_1458   
CDS_1786038_1786865_+ 
(YP_003121156.1) 

N-acetylmuramoyl-L-alanine amidase (EC 
3.5.1.28) 

 
fig|485918.6.peg.1451 

Cpin_1460   
CDS_1788040_1791237_+ 
(YP_003121158.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.1454 

Cpin_1463   
CDS_1793733_1794857_- 
(YP_003121161.1) 

N-acetylglucosamine related transporter, NagX 
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Table C.9 (cont.) 
Genome Feature ID Protein locus tag (accession) Functional role 

Chitinophaga 
pinensis 
(NC_013132) 

fig|485918.6.peg.1459 
Cpin_1468   
CDS_1800044_1802092_- 
(YP_003121166.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.1479 

Cpin_1487   
CDS_1825077_1827677_+ 
(YP_003121185.1) 

Beta-hexosaminidase (EC 3.2.1.52) 

 
fig|485918.6.peg.1486 

Cpin_1494   
CDS_1835420_1838515_+ 
(YP_003121192.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.1544 

Cpin_1552   
CDS_1894702_1897788_- 
(YP_003121249.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.1581 

Cpin_1589   
CDS_1932118_1935525_+ 
(YP_003121286.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.167 

Cpin_0171   
CDS_211125_214358_- 
(YP_003119873.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.1706 

Cpin_1716   
CDS_2064274_2067429_+ 
(YP_003121413.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.172 

Cpin_0176   
CDS_221066_223768_- 
(YP_003119878.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.1725 

Cpin_1734   
CDS_2088081_2091332_+ 
(YP_003121431.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.1741 

Cpin_1750   
CDS_2119885_2122224_- 
(YP_003121447.1) 

Beta-galactosidase (EC 3.2.1.23) 

 
fig|485918.6.peg.1771 

Cpin_1781   
CDS_2159362_2162496_+ 
(YP_003121478.1) 

TonB-dependent receptor 
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Table C.9 (cont.) 
Genome Feature ID Protein locus tag (accession) Functional role 

Chitinophaga 
pinensis 
(NC_013132) 

fig|485918.6.peg.1787 
Cpin_1798   
CDS_2181816_2183672_+ 
(YP_003121495.1) 

Beta-hexosaminidase (EC 3.2.1.52) 

 
fig|485918.6.peg.1790 

Cpin_1800   
CDS_2186845_2190021_+ 
(YP_003121497.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.1800 

Cpin_1810   
CDS_2210312_2212696_+ 
(YP_003121507.1) 

Beta-galactosidase (EC 3.2.1.23) 

 
fig|485918.6.peg.1827 

Cpin_1838   
CDS_2242611_2243966_+ 
(YP_003121535.1) 

beta-glucosidase (EC 3.2.1.21) 

 
fig|485918.6.peg.1835 

Cpin_1847   
CDS_2252285_2253667_- 
(YP_003121544.1) 

Phosphomannomutase (EC 5.4.2.8) / 
Phosphoglucosamine mutase (EC 5.4.2.10) 

 
fig|485918.6.peg.1874 

Cpin_1886   
CDS_2294751_2297756_- 
(YP_003121583.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.1876 

Cpin_1888   
CDS_2299807_2303115_- 
(YP_003121585.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.1881 

Cpin_1893   
CDS_2307980_2311045_+ 
(YP_003121590.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.1886 

Cpin_1897   
CDS_2315851_2318877_+ 
(YP_003121594.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.1906 

Cpin_1915   
CDS_2337717_2340047_- 
(YP_003121612.1) 

Beta-hexosaminidase (EC 3.2.1.52) 

 
fig|485918.6.peg.1991 

Cpin_2000   
CDS_2438688_2440523_- 
(YP_003121696.1) 

Glucosamine--fructose-6-phosphate 
aminotransferase [isomerizing] (EC 2.6.1.16) 
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Table C.9 (cont.) 
Genome Feature ID Protein locus tag (accession) Functional role 

Chitinophaga 
pinensis 
(NC_013132) 

fig|485918.6.peg.20 Cpin_0020   CDS_23772_25049_- 
(YP_003119730.1) TonB-dependent receptor 

fig|485918.6.peg.201 
Cpin_0204   
CDS_253225_255261_+ 
(YP_003119906.1) 

TonB-dependent receptor 

fig|485918.6.peg.2052 
Cpin_2062   
CDS_2512408_2514783_+ 
(YP_003121757.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.2069 

Cpin_2080   
CDS_2543208_2546522_+ 
(YP_003121774.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.2087 

Cpin_2097   
CDS_2568247_2571543_+ 
(YP_003121791.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.2100 

Cpin_2109   
CDS_2583170_2586592_+ 
(YP_003121803.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.2179 

Cpin_2184   
CDS_2681099_2685187_+ 
(YP_003121877.1) 

Chitinase (EC 3.2.1.14) 

 
fig|485918.6.peg.2181 

Cpin_2186   
CDS_2687008_2688618_+ 
(YP_003121879.1) 

Chitinase (EC 3.2.1.14) 

 
fig|485918.6.peg.2182 

Cpin_2187   
CDS_2688726_2689868_+ 
(YP_003121880.1) 

Beta-glucanase precursor (EC 3.2.1.73) 

 
fig|485918.6.peg.2187 

Cpin_2191   
CDS_2694371_2698030_+ 
(YP_003121884.1) 

TonB-dependent receptor 

 fig|485918.6.peg.22 Cpin_0022   CDS_26755_28398_+ 
(YP_003119732.1) Beta-galactosidase (EC 3.2.1.23) 

 
fig|485918.6.peg.2242 

Cpin_2250   
CDS_2768414_2770930_- 
(YP_003121942.1) 

TonB-dependent receptor 
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Table C.9 (cont.) 

Genome Feature ID Protein locus tag (accession) Functional role 

Chitinophaga 
pinensis 
(NC_013132) 

fig|485918.6.peg.2243 
Cpin_2251   
CDS_2771330_2773588_- 
(YP_003121943.1) 

beta-hexosaminidase precursor 

 
fig|485918.6.peg.2257 

Cpin_2264   
CDS_2790265_2793561_+ 
(YP_003121956.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.2267 

Cpin_2275   
CDS_2803635_2806184_+ 
(YP_003121967.1) 

Beta-mannosidase (EC 3.2.1.25) 

 
fig|485918.6.peg.231 

Cpin_0236   
CDS_283325_286144_+ 
(YP_003119937.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.2312 

Cpin_2320   
CDS_2854274_2857090_+ 
(YP_003122012.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.2415 

Cpin_2420   
CDS_2976039_2976770_- 
(YP_003122112.1) 

Predicted transcriptional regulator of N-
Acetylglucosamine utilization, GntR family 

 
fig|485918.6.peg.2431 

Cpin_2435   
CDS_2994779_2998306_- 
(YP_003122127.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.2439 

Cpin_2445   
CDS_3004953_3008237_+ 
(YP_003122135.1) 

SusC, outer membrane protein involved in starch 
binding 

 
fig|485918.6.peg.2440 

Cpin_2446   
CDS_3008272_3009888_+ 
(YP_003122136.1) 

SusD, outer membrane protein 

 
fig|485918.6.peg.2461 

Cpin_2469   
CDS_3041523_3044660_+ 
(YP_003122158.1) 

Beta-galactosidase (EC 3.2.1.23) 

 
fig|485918.6.peg.2477 

Cpin_2482   
CDS_3056062_3057093_+ 
(YP_003122171.1) 

Endo-1,4-beta-xylanase D 
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Table C.9 (cont.) 

Genome Feature ID Protein locus tag (accession) Functional role 

Chitinophaga 
pinensis 
(NC_013132) 

fig|485918.6.peg.2501 
Cpin_2507   
CDS_3083086_3084372_+ 
(YP_003122196.1) 

Membrane-bound lytic murein transglycosylase 

 
fig|485918.6.peg.2562 

Cpin_2580   
CDS_3156584_3159859_+ 
(YP_003122264.1) 

Chitinase (EC 3.2.1.14) 

 
fig|485918.6.peg.2587 

Cpin_2605   
CDS_3191978_3194224_- 
(YP_003122289.1) 

Beta-galactosidase (EC 3.2.1.23) 

 fig|485918.6.peg.2600 CDS_3206873_3210685_- TonB-dependent receptor 

 
fig|485918.6.peg.2652 

Cpin_2671   
CDS_3264412_3267942_- 
(YP_003122354.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.268 

Cpin_0274   
CDS_323190_325565_- 
(YP_003119974.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.2699 

Cpin_2720   
CDS_3320046_3323207_- 
(YP_003122401.1) 

Beta-galactosidase (EC 3.2.1.23) 

 
fig|485918.6.peg.2701 

Cpin_2722   
CDS_3324994_3327786_- 
(YP_003122403.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.2714 

Cpin_2734   
CDS_3344761_3347466_+ 
(YP_003122414.1) 

Beta-galactosidase (EC 3.2.1.23) 

 
fig|485918.6.peg.2719 

Cpin_2739   
CDS_3355658_3358804_+ 
(YP_003122419.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.2747 

Cpin_2768   
CDS_3393365_3396568_+ 
(YP_003122448.1) 

TonB-dependent receptor 
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Table C.9 (cont.) 
Genome Feature ID Protein locus tag (accession) Functional role 

Chitinophaga 
pinensis 
(NC_013132) 

fig|485918.6.peg.2800 
Cpin_2820   
CDS_3473916_3477023_+ 
(YP_003122500.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.2824 

Cpin_2845   
CDS_3507646_3510723_+ 
(YP_003122525.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.2836 

Cpin_2857   
CDS_3530707_3534153_+ 
(YP_003122537.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.2840 

Cpin_2861   
CDS_3538706_3541660_+ 
(YP_003122541.1) 

Beta-mannosidase (EC 3.2.1.25) 

 
fig|485918.6.peg.2841 

Cpin_2862   
CDS_3541687_3543930_+ 
(YP_003122542.1) 

beta-glucosidase (EC 3.2.1.21) 

 
fig|485918.6.peg.2845 

Cpin_2866   
CDS_3546304_3547767_+ 
(YP_003122546.1) 

endo-1,4-beta-xylanase 

 
fig|485918.6.peg.2860 

Cpin_2881   
CDS_3559782_3563399_- 
(YP_003122561.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.2929 

Cpin_2947   
CDS_3625558_3628947_- 
(YP_003122626.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.3021 

Cpin_3048   
CDS_3759849_3763430_+ 
(YP_003122722.1) 

TonB-dependent receptor 

 fig|485918.6.peg.3035    CDS_3778896_3779711_- () TonB-dependent receptor 

 
fig|485918.6.peg.3068 

Cpin_3094   
CDS_3811277_3813217_+ 
(YP_003122764.1) 

1,4-alpha-glucan (glycogen) branching enzyme, 
GH-13-type (EC 2.4.1.18) 
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Table C.9 (cont.) 
Genome Feature ID Protein locus tag (accession) Functional role 

Chitinophaga 
pinensis 
(NC_013132) 

fig|485918.6.peg.3095 
Cpin_3123   
CDS_3842146_3845490_+ 
(YP_003122792.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.3120 

Cpin_3148   
CDS_3880078_3883437_- 
(YP_003122816.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.3132 

Cpin_3164   
CDS_3898609_3901881_+ 
(YP_003122832.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.3157 

Cpin_3194   
CDS_3938954_3941671_- 
(YP_003122862.1) 

Beta-galactosidase (EC 3.2.1.23) 

 
fig|485918.6.peg.3159 

Cpin_3196   
CDS_3943164_3946463_- 
(YP_003122864.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.3167 

Cpin_3206   
CDS_3955928_3959242_+ 
(YP_003122874.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.3175 

Cpin_3214   
CDS_3965741_3969076_- 
(YP_003122882.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.318 

Cpin_0323   
CDS_371461_373884_+ 
(YP_003120023.1) 

beta-glucosidase (EC 3.2.1.21) 

 
fig|485918.6.peg.3248 

Cpin_3288   
CDS_4048448_4051735_+ 
(YP_003122956.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.3305 

Cpin_3346   
CDS_4113356_4113778_- 
(YP_003123014.1) 

Peptidoglycan-binding LysM 

 
fig|485918.6.peg.335 

Cpin_0339   
CDS_402104_405235_- 
(YP_003120039.1) 

TonB-dependent receptor 
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Table C.9 (cont.) 
Genome Feature ID Protein locus tag (accession) Functional role 

Chitinophaga 
pinensis 
(NC_013132) 

fig|485918.6.peg.3485 
Cpin_3538   
CDS_4405174_4408113_+ 
(YP_003123203.1) 

TonB family protein / TonB-dependent receptor 

 
fig|485918.6.peg.3501 

Cpin_3553   
CDS_4427541_4430771_- 
(YP_003123218.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.351 

Cpin_0356   
CDS_423682_427068_- 
(YP_003120056.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.3548 

Cpin_3601   
CDS_4490895_4494167_+ 
(YP_003123265.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.3579 

Cpin_3633   
CDS_4559334_4562852_+ 
(YP_003123296.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.3589 

Cpin_3643   
CDS_4573815_4577075_+ 
(YP_003123306.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.365 

Cpin_0369   
CDS_442341_445565_+ 
(YP_003120069.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.3670 

Cpin_3725   
CDS_4679786_4682542_- 
(YP_003123388.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.3694 

Cpin_3749   
CDS_4713600_4717007_- 
(YP_003123412.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.3737 

Cpin_3794   
CDS_4770439_4772151_- 
(YP_003123457.1) 

Beta-galactosidase (EC 3.2.1.23) 

 
fig|485918.6.peg.3751 

Cpin_3808   
CDS_4789144_4792407_+ 
(YP_003123471.1) 

TonB-dependent receptor 
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Table C.9 (cont.) 
Genome Feature ID Protein locus tag (accession) Functional role 

Chitinophaga 
pinensis 
(NC_013132) 

fig|485918.6.peg.38 Cpin_0043   CDS_50784_54053_- 
(YP_003119750.1) TonB-dependent receptor 

 
fig|485918.6.peg.3853 

Cpin_3941   
CDS_4898128_4900140_+ 
(YP_003123604.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.3872 

Cpin_3959   
CDS_4921603_4924737_+ 
(YP_003123622.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.3906 

Cpin_3992   
CDS_4966532_4967188_+ 
(YP_003123655.1) 

Beta-phosphoglucomutase (EC 5.4.2.6) 

 fig|485918.6.peg.3956    CDS_5032882_5034006_+ () TonB-dependent receptor 

 fig|485918.6.peg.4 Cpin_0004   CDS_3973_7302_+ 
(YP_003119714.1) TonB-dependent receptor 

 
fig|485918.6.peg.400 

Cpin_0405   
CDS_485451_488486_+ 
(YP_003120104.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.4045 

Cpin_4133   
CDS_5151177_5153729_- 
(YP_003123793.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.4057 

Cpin_4146   
CDS_5170759_5173644_- 
(YP_003123806.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.4084 

Cpin_4173   
CDS_5215073_5216122_- 
(YP_003123831.1) 

N-acetylglucosamine related transporter, NagX 

 
fig|485918.6.peg.4087 

Cpin_4176   
CDS_5218676_5221936_- 
(YP_003123834.1) 

TonB-dependent receptor 

 fig|485918.6.peg.4134    CDS_5292372_5292503_- () Endo-1,4-beta-xylanase A precursor (EC 3.2.1.8) 
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Table C.9 (cont.) 

Genome Feature ID Protein locus tag (accession) Functional role 
Chitinophaga 
pinensis 
(NC_013132) 

fig|485918.6.peg.4142 
Cpin_4240   
CDS_5301737_5302675_- 
(YP_003123895.1) 

Endo-1,4-beta-xylanase A precursor (EC 3.2.1.8) 

 
fig|485918.6.peg.4144 

Cpin_4242   
CDS_5304850_5306766_+ 
(YP_003123897.1) 

Endo-1,4-beta-xylanase A precursor (EC 3.2.1.8) 

 
fig|485918.6.peg.4272 

Cpin_4371   
CDS_5436435_5439059_- 
(YP_003124019.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.4293 

Cpin_4389   
CDS_5459171_5461120_+ 
(YP_003124036.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.4318 

Cpin_4414   
CDS_5501509_5503404_+ 
(YP_003124061.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.4320 

Cpin_4416   
CDS_5505619_5508477_+ 
(YP_003124063.1) 

SusC, outer membrane protein involved in starch 
binding 

 
fig|485918.6.peg.4402 

Cpin_4497   
CDS_5596822_5600343_- 
(YP_003124140.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.4406 

Cpin_4501   
CDS_5603425_5604375_- 
(YP_003124144.1) 

Endo-1,4-beta-xylanase A precursor (EC 3.2.1.8) 

 
fig|485918.6.peg.4409 

Cpin_4504   
CDS_5606957_5610145_- 
(YP_003124147.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.4435 

Cpin_4532   
CDS_5650790_5653816_- 
(YP_003124175.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.4448 

Cpin_4545   
CDS_5676081_5678399_- 
(YP_003124188.1) 

Endo-1,4-beta-xylanase A precursor (EC 3.2.1.8) 
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Table C.9 (cont.) 

Genome Feature ID Protein locus tag (accession) Functional role 

Chitinophaga 
pinensis 
(NC_013132) 

fig|485918.6.peg.4451 
Cpin_4548   
CDS_5680821_5684012_+ 
(YP_003124191.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.4459 

Cpin_4556   
CDS_5693602_5695434_- 
(YP_003124199.1) 

Beta-galactosidase (EC 3.2.1.23) 

 
fig|485918.6.peg.4462 

Cpin_4559   
CDS_5698617_5701607_- 
(YP_003124202.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.450 

Cpin_0454   
CDS_539509_542286_- 
(YP_003120153.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.4512 

Cpin_4609   
CDS_5750648_5753917_+ 
(YP_003124251.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.452 

Cpin_0456   
CDS_544497_547229_- 
(YP_003120155.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.454 

Cpin_0458   
CDS_549250_552465_- 
(YP_003120157.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.4540 

Cpin_4637   
CDS_5787682_5790867_- 
(YP_003124279.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.4559 

Cpin_4660   
CDS_5813872_5816556_+ 
(YP_003124299.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.4706 

Cpin_4811   
CDS_5999523_6002438_- 
(YP_003124446.1) 

Beta-mannosidase (EC 3.2.1.25) 

 
fig|485918.6.peg.4707 

Cpin_4812   
CDS_6002468_6005524_- 
(YP_003124447.1) 

TonB-dependent receptor 
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Table C.9 (cont.) 

Genome Feature ID Protein locus tag (accession) Functional role 

Chitinophaga 
pinensis 
(NC_013132) 

fig|485918.6.peg.4709 
Cpin_4814   
CDS_6007288_6010365_- 
(YP_003124449.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.4714 

Cpin_4819   
CDS_6015230_6018214_- 
(YP_003124454.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.4719 

Cpin_4824   
CDS_6026218_6029472_- 
(YP_003124459.1) 

TonB family protein / TonB-dependent receptor 

 
fig|485918.6.peg.4745 

Cpin_4849   
CDS_6061233_6064391_- 
(YP_003124484.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.4872 

Cpin_4975   
CDS_6221890_6225057_- 
(YP_003124609.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.4893 

Cpin_4994   
CDS_6243620_6245917_- 
(YP_003124628.1) 

Beta-hexosaminidase (EC 3.2.1.52) 

 
fig|485918.6.peg.4969 

Cpin_5069   
CDS_6313877_6314995_- 
(YP_003124702.1) 

N-acetylglucosamine related transporter, NagX 

 
fig|485918.6.peg.4988 

Cpin_5088   
CDS_6334805_6335464_- 
(YP_003124721.1) 

Beta-phosphoglucomutase (EC 5.4.2.6) 

 
fig|485918.6.peg.4991 

Cpin_5091   
CDS_6338502_6340094_- 
(YP_003124724.1) 

SusD, outer membrane protein 

 
fig|485918.6.peg.4992 

Cpin_5092   
CDS_6340114_6343080_- 
(YP_003124725.1) 

SusC, outer membrane protein involved in starch 
binding 

 
fig|485918.6.peg.5011 

Cpin_5109   
CDS_6370913_6372142_- 
(YP_003124742.1) 

beta-glucanase 
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Table C.9 (cont.) 
Genome Feature ID Protein locus tag (accession) Functional role 

Chitinophaga 
pinensis 
(NC_013132) 

fig|485918.6.peg.5015 
Cpin_5113   
CDS_6377593_6380820_+ 
(YP_003124746.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.5046 

Cpin_5147   
CDS_6423207_6426461_- 
(YP_003124780.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.5049 

Cpin_5150   
CDS_6429054_6430754_+ 
(YP_003124783.1) 

Beta-xylosidase (EC 3.2.1.37) 

 
fig|485918.6.peg.5099 

Cpin_5202   
CDS_6575270_6577006_- 
(YP_003124834.1) 

SusD, outer membrane protein 

 fig|485918.6.peg.51 Cpin_0057   CDS_68586_71567_- 
(YP_003119764.1) TonB-dependent receptor 

 
fig|485918.6.peg.5100 

Cpin_5203   
CDS_6577045_6580038_- 
(YP_003124835.1) 

SusC, outer membrane protein involved in starch 
binding 

 
fig|485918.6.peg.5159 

Cpin_5260   
CDS_6658435_6660222_- 
(YP_003124892.1) 

Beta-hexosaminidase (EC 3.2.1.52) 

 
fig|485918.6.peg.5179 

Cpin_5278   
CDS_6691494_6694985_- 
(YP_003124910.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.5215 

Cpin_5315   
CDS_6786556_6789636_- 
(YP_003124947.1) 

TonB family protein / TonB-dependent receptor 

 
fig|485918.6.peg.5243 

Cpin_5342   
CDS_6821994_6825551_+ 
(YP_003124974.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.5298 

Cpin_5396   
CDS_6900445_6903516_- 
(YP_003125027.1) 

TonB-dependent receptor 
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Table C.9 (cont.) 

Genome Feature ID Protein locus tag (accession) Functional role 

Chitinophaga 
pinensis 
(NC_013132) 

fig|485918.6.peg.5301 
Cpin_5399   
CDS_6906424_6907452_+ 
(YP_003125030.1) 

N-acylglucosamine 2-epimerase (EC 5.1.3.8) 

 
fig|485918.6.peg.5313 

Cpin_5411   
CDS_6918112_6919917_- 
(YP_003125041.1) 

Beta-galactosidase (EC 3.2.1.23) 

 
fig|485918.6.peg.5392 

Cpin_5486   
CDS_6995550_6998504_+ 
(YP_003125116.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.5415 

Cpin_5508   
CDS_7027184_7030144_- 
(YP_003125138.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.5417 

Cpin_5511   
CDS_7031812_7033422_- 
(YP_003125141.1) 

Beta-xylosidase (EC 3.2.1.37) 

 
fig|485918.6.peg.5428 

Cpin_5521   
CDS_7043539_7046916_- 
(YP_003125151.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.5439 

Cpin_5532   
CDS_7058148_7061426_- 
(YP_003125162.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.5457 

Cpin_5549   
CDS_7082902_7086012_+ 
(YP_003125177.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.5470 

Cpin_5562   
CDS_7098555_7101725_- 
(YP_003125190.1) 

TonB-dependent receptor 

 fig|485918.6.peg.55 Cpin_0061   CDS_74551_77295_+ 
(YP_003119768.1) Beta-galactosidase (EC 3.2.1.23) 

 
fig|485918.6.peg.5558 

Cpin_5648   
CDS_7204082_7207153_- 
(YP_003125273.1) 

TonB family protein / TonB-dependent receptor 
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Table C.9 (cont.) 

Genome Feature ID Protein locus tag (accession) Functional role 

Chitinophaga 
pinensis 
(NC_013132) 

fig|485918.6.peg.5651 
Cpin_5745   
CDS_7308074_7310089_- 
(YP_003125367.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.5740 

Cpin_5835   
CDS_7413320_7416421_+ 
(YP_003125455.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.5829 

Cpin_5926   
CDS_7520252_7523026_- 
(YP_003125545.1) 

TonB-dependent receptor; Outer membrane 
receptor for ferrienterochelin and colicins 

 
fig|485918.6.peg.5948 

Cpin_6044   
CDS_7642584_7644035_+ 
(YP_003125657.1) 

beta-xylosidase (1,4-beta-D-xylan xylosidase) 

 
fig|485918.6.peg.5992 

Cpin_6086   
CDS_7686680_7687462_+ 
(YP_003125696.1) 

N-acetylmuramoyl-L-alanine amidase (EC 
3.5.1.28) 

 
fig|485918.6.peg.6032 

Cpin_6129   
CDS_7729648_7731750_- 
(YP_003125739.1) 

TonB-dependent receptor; Outer membrane 
receptor for ferrienterochelin and colicins 

 
fig|485918.6.peg.6051 

Cpin_6148   
CDS_7749641_7753297_- 
(YP_003125757.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.6059 

Cpin_6155   
CDS_7761074_7764571_- 
(YP_003125764.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.6070 

Cpin_6166   
CDS_7778621_7781227_+ 
(YP_003125775.1) 

SusC, outer membrane protein involved in starch 
binding 

 
fig|485918.6.peg.6071 

Cpin_6167   
CDS_7781245_7782837_+ 
(YP_003125776.1) 

SusD, outer membrane protein 

 
fig|485918.6.peg.6075 

Cpin_6171   
CDS_7787822_7790263_+ 
(YP_003125780.1) 

Beta-galactosidase (EC 3.2.1.23) 
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Table C.9 (cont.) 

Genome Feature ID Protein locus tag (accession) Functional role 

Chitinophaga 
pinensis 
(NC_013132) 

fig|485918.6.peg.6077 
Cpin_6173   
CDS_7791580_7793424_- 
(YP_003125782.1) 

Beta-galactosidase (EC 3.2.1.23) 

 
fig|485918.6.peg.6095 

Cpin_6191   
CDS_7809977_7811647_+ 
(YP_003125798.1) 

N-acetylmuramoyl-L-alanine amidase (EC 
3.5.1.28) 

 
fig|485918.6.peg.6105 

Cpin_6201   
CDS_7823193_7825553_+ 
(YP_003125808.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.626 

Cpin_0633   
CDS_768696_771791_+ 
(YP_003120332.1) 

TonB family protein / TonB-dependent receptor 

 
fig|485918.6.peg.6264 

Cpin_6368   
CDS_8004774_8007707_- 
(YP_003125973.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.6305 

Cpin_6408   
CDS_8051011_8053329_+ 
(YP_003126013.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.6326 

Cpin_6427   
CDS_8073659_8076826_+ 
(YP_003126032.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.6348 

Cpin_6448   
CDS_8101439_8104690_- 
(YP_003126053.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.6366 

Cpin_6466   
CDS_8123618_8127034_- 
(YP_003126071.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.6369 

Cpin_6469   
CDS_8128914_8129936_- 
(YP_003126074.1) 

N-acetylglucosamine related transporter, NagX 

 
fig|485918.6.peg.6438 

Cpin_6538   
CDS_8202261_8203073_- 
(YP_003126143.1) 

N-acetylmuramic acid 6-phosphate etherase (EC 
4.2.1.126) 
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Table C.9 (cont.) 
Genome Feature ID Protein locus tag (accession) Functional role 

Chitinophaga 
pinensis 
(NC_013132) 

fig|485918.6.peg.6457 
Cpin_6560   
CDS_8227138_8228454_- 
(YP_003126165.1) 

N-acetyl glucosamine transporter, NagP 

 
fig|485918.6.peg.6463 

Cpin_6566   
CDS_8234829_8238242_- 
(YP_003126171.1) 

TonB-dependent receptor 

 

fig|485918.6.peg.6467 
Cpin_6570   
CDS_8241368_8243293_+ 
(YP_003126175.1) 

Glucosamine-6-phosphate deaminase (EC 
3.5.99.6) / domain similar to N-
acetylglucosaminyl-phosphatidylinositol de-N-
acetylase 

 
fig|485918.6.peg.6559 

Cpin_6660   
CDS_8353629_8356856_- 
(YP_003126265.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.6628 

Cpin_6729   
CDS_8426033_8429014_- 
(YP_003126331.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.6629 

Cpin_6730   
CDS_8430021_8430992_- 
(YP_003126332.1) 

endo-1,4-beta-xylanase D precursor 

 
fig|485918.6.peg.6633 

Cpin_6733   
CDS_8433470_8436766_+ 
(YP_003126335.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.6637 

Cpin_6737   
CDS_8441523_8442383_- 
(YP_003126339.1) 

Beta-glucanase precursor (EC 3.2.1.73) 

 
fig|485918.6.peg.6640 

Cpin_6740   
CDS_8445026_8448259_- 
(YP_003126342.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.6693 

Cpin_6791   
CDS_8502979_8506290_- 
(YP_003126393.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.6698 

Cpin_6796   
CDS_8510433_8513513_+ 
(YP_003126398.1) 

TonB-dependent receptor 
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Table C.9 (cont.) 
Genome Feature ID Protein locus tag (accession) Functional role 

Chitinophaga 
pinensis 
(NC_013132) 

fig|485918.6.peg.6713 
Cpin_6810   
CDS_8531595_8532788_- 
(YP_003126412.1) 

Anhydro-N-acetylmuramic acid kinase (EC 
2.7.1.170) 

 
fig|485918.6.peg.6714 

Cpin_6811   
CDS_8532794_8533594_- 
(YP_003126413.1) 

N-acetylmuramic acid 6-phosphate etherase (EC 
4.2.1.126) 

 
fig|485918.6.peg.6764 

Cpin_6860   
CDS_8592128_8593255_+ 
(YP_003126462.1) 

Muramoyltetrapeptide carboxypeptidase (EC 
3.4.17.13) 

 
fig|485918.6.peg.6782 

Cpin_6880   
CDS_8617332_8620577_- 
(YP_003126482.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.6844 

Cpin_6944   
CDS_8697892_8700105_- 
(YP_003126546.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.6940 

Cpin_7043   
CDS_8811225_8814794_- 
(YP_003126645.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.6952 

Cpin_7055   
CDS_8828577_8831147_- 
(YP_003126657.1) 

Beta-mannosidase (EC 3.2.1.25) 

 
fig|485918.6.peg.6960 

Cpin_7063   
CDS_8838479_8839711_- 
(YP_003126665.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.6964 

Cpin_7067   
CDS_8843633_8844544_+ 
(YP_003126669.1) 

Muramoyltetrapeptide carboxypeptidase (EC 
3.4.17.13) 

 
fig|485918.6.peg.7001 

Cpin_7106   
CDS_8892811_8895267_- 
(YP_003126708.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.7074 

Cpin_7176   
CDS_8961881_8963437_- 
(YP_003126777.1) 

SusD, outer membrane protein 
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Table C.9 (cont.) 

Genome Feature ID Protein locus tag (accession) Functional role 

Chitinophaga 
pinensis 
(NC_013132) 

fig|485918.6.peg.7075 
Cpin_7177   
CDS_8963534_8966449_- 
(YP_003126778.1) 

SusC, outer membrane protein involved in starch 
binding 

 
fig|485918.6.peg.7079 

Cpin_7182   
CDS_8970572_8974132_- 
(YP_003126783.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.7091 

Cpin_7193   
CDS_8987010_8988638_- 
(YP_003126794.1) 

Beta-xylosidase (EC 3.2.1.37) 

 
fig|485918.6.peg.7116 

Cpin_7217   
CDS_9017316_9019376_- 
(YP_003126818.1) 

TonB-dependent receptor; Outer membrane 
receptor for ferrienterochelin and colicins 

 
fig|485918.6.peg.7118 

Cpin_7219   
CDS_9020826_9022889_- 
(YP_003126820.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.7126 

Cpin_7227   
CDS_9029217_9031847_- 
(YP_003126828.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.7132 

Cpin_7233   
CDS_9037371_9038987_- 
(YP_003126834.1) 

SusD, outer membrane protein 

 
fig|485918.6.peg.7133 

Cpin_7234   
CDS_9039006_9042227_- 
(YP_003126835.1) 

SusC, outer membrane protein involved in starch 
binding 

 
fig|485918.6.peg.7152 

Cpin_7253   
CDS_9063368_9066358_- 
(YP_003126854.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.7169 

Cpin_7271   
CDS_9086893_9090147_- 
(YP_003126871.1) 

TonB-dependent receptor 

 
fig|485918.6.peg.786 

Cpin_0797   
CDS_961963_962586_+ 
(YP_003120496.1) 

Lyzozyme M1 (1,4-beta-N-acetylmuramidase) 
(EC 3.2.1.17) 
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Table C.9 (cont.) 
Genome Feature ID Protein locus tag (accession) Functional role 

Chitinophaga 
pinensis 
(NC_013132) 

fig|485918.6.peg.802 
Cpin_0813   
CDS_975944_977266_+ 
(YP_003120512.1) 

D-alanyl-D-alanine carboxypeptidase (EC 
3.4.16.4) 

 
fig|485918.6.peg.828 

Cpin_0839   
CDS_1004516_1007500_+ 
(YP_003120538.1) 

Beta-hexosaminidase (EC 3.2.1.52) 

  
fig|485918.6.peg.964 

Cpin_0973   
CDS_1169115_1172444_+ 
(YP_003120672.1) 

TonB-dependent receptor 

Bin87 fig|6666666.223310.peg.3286 contig01408_23897_28609_+ Chitinase (EC 3.2.1.14) 

 fig|6666666.223310.peg.759 contig00241_103420_108264_+ Chitinase (EC 3.2.1.14) 
 fig|6666666.223310.peg.4139 contig02949_22631_19056_- Chitinase (EC 3.2.1.14) 
 fig|6666666.223310.peg.4141 contig02949_25130_24921_- Chitinase (EC 3.2.1.14) 
 fig|6666666.223310.peg.962 contig00292_59465_62485_+ Chitinase (EC 3.2.1.14) 
 fig|6666666.223310.peg.963 contig00292_62521_66609_+ Chitinase (EC 3.2.1.14) 
 fig|6666666.223310.peg.984 contig00292_97740_95728_- Chitinase (EC 3.2.1.14) 
 fig|6666666.223310.peg.879 contig00269_108583_114465_+ Chitinase (EC 3.2.1.14) 
 fig|6666666.223310.peg.1988 contig00699_74190_72409_- Chitinase (EC 3.2.1.14) 
 fig|6666666.223310.peg.4380 contig04344_8198_13150_+ Chitinase (EC 3.2.1.14) 
 fig|6666666.223310.peg.1524 contig00547_17752_16337_- 1,4-alpha-glucan branching enzyme (EC 2.4.1.18) 
 fig|6666666.223310.peg.3361 contig01549_34522_35913_+ 1,4-alpha-glucan branching enzyme (EC 2.4.1.18) 
 fig|6666666.223310.peg.4302 contig03827_6171_5860_- 1,4-alpha-glucan branching enzyme (EC 2.4.1.18) 
 fig|6666666.223310.peg.4303 contig03827_6836_6210_- 1,4-alpha-glucan branching enzyme (EC 2.4.1.18) 
 fig|6666666.223310.peg.3939 contig02555_2285_3382_+ Anhydro-N-acetylmuramic acid kinase (EC2.7.1.) 
 fig|6666666.223310.peg.3231 contig01338_13133_16018_+ SusC, outer membrane protein involved in starch 

binding 
 fig|6666666.223310.peg.2906 contig01262_4899_7859_+ SusC, outer membrane protein involved in starch 

binding 
 fig|6666666.223310.peg.3232 contig01338_16038_17588_+ SusD, outer membrane protein 
 fig|6666666.223310.peg.2907 contig01262_7881_10064_+ SusD, outer membrane protein 
 fig|6666666.223310.peg.1879 contig00689_37211_40111_+ TonB-dependent receptor 
 fig|6666666.223310.peg.3733 contig02209_22091_25078_+ TonB family protein / TonB-dependent receptor 
 fig|6666666.223310.peg.729 contig00241_57555_60647_+ TonB family protein / TonB-dependent receptor 
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Table C.9 (cont.) 

Genome Feature ID Protein locus tag (accession) Functional role 
Bin87 fig|6666666.223310.peg.3692 contig02051_9610_6437_- TonB family protein / TonB-dependent receptor 
 fig|6666666.223310.peg.2583 contig01043_56667_54271_- TonB family protein / TonB-dependent receptor 
 fig|6666666.223310.peg.4412 contig04451_5135_5545_+ TonB family protein / TonB-dependent receptor 
 fig|6666666.223310.peg.4802 contig13779_5496_2335_- TonB family protein / TonB-dependent receptor 
 fig|6666666.223310.peg.2046 contig00726_52480_55695_+ TonB-dependent outer membrane receptor 
 fig|6666666.223310.peg.2419 contig00965_54249_56480_+ TonB-dependent outer membrane receptor 
 fig|6666666.223310.peg.2824 contig01234_25530_28358_+ TonB-dependent receptor 
 fig|6666666.223310.peg.2327 contig00921_4123_6333_+ TonB-dependent receptor 
 fig|6666666.223310.peg.1217 contig00389_100424_98139_- TonB-dependent receptor 
 fig|6666666.223310.peg.3975 contig02657_16864_19536_+ TonB-dependent receptor 
 fig|6666666.223310.peg.2235 contig00856_51413_49173_- TonB-dependent receptor 
 fig|6666666.223310.peg.355 contig00130_50993_53797_+ TonB-dependent receptor 
 fig|6666666.223310.peg.4736 contig09508_3611_6004_+ TonB-dependent receptor 
 fig|6666666.223310.peg.266 contig00041_321008_323506_+ TonB-dependent receptor plug domain protein 
 fig|6666666.223310.peg.2004 contig00726_7166_4818_- TonB-dependent receptor, plug precursor 
 fig|6666666.223310.peg.72 contig00041_83481_80860_- TonB-dependent receptor, putative 
 fig|6666666.223310.peg.685 contig00241_9893_7506_- TonB-dependent receptor, putative 
 fig|6666666.223310.peg.1439 contig00500_29553_31994_+ TonB-dependent receptor, putative 
 fig|6666666.223310.peg.2021 contig00726_26722_24278_- TonB-dependent receptor, putative 
 fig|6666666.223310.peg.1050 contig00378_27468_25015_- TonB-dependent receptor, putative 
 fig|6666666.223310.peg.935 contig00292_27812_30358_+ TonB-dependent receptor, putative 
 fig|6666666.223310.peg.370 contig00130_72655_70250_- TonB-dependent receptor, putative 
 fig|6666666.223310.peg.454 contig00130_184305_186740_+ TonB-dependent receptor, putative 
 fig|6666666.223310.peg.4585 contig05429_3682_6465_+ TonB-dependent receptor; Outer membrane 

receptor for ferrienterochelin and colicins 
 

fig|6666666.223310.peg.760 contig00241_110649_108352_- TonB-dependent receptor; Outer membrane 
receptor for ferrienterochelin and colicins 

 fig|6666666.223310.peg.2854 contig01255_6231_8630_+ TonB-dependent receptor; Outer membrane 
receptor for ferrienterochelin and colicins 

 



 
	
	

183 

Table C.9 (cont.) 
Genome Feature ID Protein locus tag (accession) Functional role 

Bin87 fig|6666666.223310.peg.464 contig00130_194809_197127_+ TonB-dependent receptor; Outer membrane 
receptor for ferrienterochelin and colicins 

 fig|6666666.223310.peg.2317 contig00899_60285_62474_+ TonB-dependent siderophore receptor 

 fig|6666666.223310.peg.1583 contig00547_81922_79724_- TPR domain protein, putative component of TonB 
system 

 fig|6666666.223310.peg.1878 contig00689_36916_36536_- Peptidoglycan-binding LysM 
 fig|6666666.223310.peg.3409 contig01663_16660_19797_+ Beta-hexosaminidase (EC 3.2.1.52) 
 fig|6666666.223310.peg.1162 contig00389_35865_33007_- Beta-hexosaminidase (EC 3.2.1.52) 
 fig|6666666.223310.peg.2625 contig01060_35900_33990_- Beta-hexosaminidase (EC 3.2.1.52) 
 fig|6666666.223310.peg.2626 contig01060_38490_35914_- Beta-hexosaminidase (EC 3.2.1.52) 
 fig|6666666.223310.peg.2937 contig01262_38110_35795_- Beta-hexosaminidase (EC 3.2.1.52) 
 fig|6666666.223310.peg.3585 contig02017_25686_25024_- Beta-phosphoglucomutase (EC 5.4.2.6) 
 fig|6666666.223310.peg.2609 contig01060_23366_24013_+ Beta-phosphoglucomutase (EC 5.4.2.6) 
 fig|6666666.223310.peg.3699 contig02051_16904_18355_+ Membrane-bound lytic murein transglycosylase D 

precursor (EC 3.2.1.-) 
 fig|6666666.223310.peg.3959 contig02639_12419_13468_+ Membrane-bound lytic murein transglycosylase D 

precursor (EC 3.2.1.-) 
 fig|6666666.223310.peg.2179 contig00837_60988_61881_+ Membrane-bound lytic murein transglycosylase D 

precursor (EC 3.2.1.-) 
 fig|6666666.223310.peg.2076 contig00759_11963_11097_- Membrane-bound lytic murein transglycosylase D 

precursor (EC 3.2.1.-) 
 fig|6666666.223310.peg.4414 contig04451_7025_5946_- L-alanine-DL-glutamate epimerase 

 fig|6666666.223310.peg.1858 contig00689_15755_17212_+ Aminoacyl-histidine dipeptidase (Peptidase D) 
(EC 3.4.13.3) 

 fig|6666666.223310.peg.3939 contig02555_2285_3382_+ Anhydro-N-acetylmuramic acid kinase (EC 2.7.1.-
) 

 fig|6666666.223310.peg.3460 contig01762_37126_38481_+ D-alanyl-D-alanine carboxypeptidase (EC 
3.4.16.4) 

 fig|6666666.223310.peg.1126 contig00378_114065_112146_- D-alanyl-D-alanine carboxypeptidase (EC 
3.4.16.4) 
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Table C.9 (cont.) 
Genome Feature ID Protein locus tag (accession) Functional role 
Bin87 fig|6666666.223310.peg.3404 contig01663_12305_10461_- Glucosamine--fructose-6-phosphate 

aminotransferase [isomerizing] (EC 2.6.1.16) 
 fig|6666666.223310.peg.659 contig00159_190646_188721_- Glucosamine-6-phosphate deaminase (EC 

3.5.99.6) 
 fig|6666666.223310.peg.1419 contig00500_10336_11070_+ Lyzozyme M1 (1,4-beta-N-acetylmuramidase) 

(EC 3.2.1.17) 
 fig|6666666.223310.peg.3700 contig02051_18390_19409_+ Muramoyltetrapeptide carboxypeptidase (EC 

3.4.17.13) 
 fig|6666666.223310.peg.974 contig00292_87014_86199_- N-Acetyl-D-glucosamine ABC transport system, 

permease protein 2 
 fig|6666666.223310.peg.4417 contig04451_12424_11306_- N-acetylglucosamine related transporter, NagX 
 fig|6666666.223310.peg.2942 contig01262_42130_42957_+ N-acetylmuramic acid 6-phosphate etherase 
 fig|6666666.223310.peg.3748 contig02264_14108_14740_+ N-acetylmuramoyl-L-alanine amidase (EC 

3.5.1.28) 
 fig|6666666.223310.peg.3279 contig01408_16548_15136_- N-acetylmuramoyl-L-alanine amidase (EC 

3.5.1.28) 
 fig|6666666.223310.peg.1404 contig00478_100818_99775_- N-acetylmuramoyl-L-alanine amidase (EC 

3.5.1.28) 
 fig|6666666.223310.peg.4276 contig03511_2_1090_+ N-acetylmuramoyl-L-alanine amidase (EC 

3.5.1.28) 
 fig|6666666.223310.peg.236 contig00041_288873_287476_- Phosphoglucosamine mutase (EC 5.4.2.10) 
 fig|6666666.223310.peg.3261 contig01408_2458_1082_- Phosphomannomutase (EC 5.4.2.8) / 

Phosphoglucosamine mutase (EC 5.4.2.10) 
 

fig|6666666.223310.peg.4138 contig02949_18856_17426_- 
N-acetylglucosamine deacetylase (EC 3.5.1.-) / 3-
hydroxyacyl-[acyl-carrier-protein] dehydratase, 
FabZ form (EC 4.2.1.59) 

 fig|6666666.223310.peg.1184 contig00389_68615_65214_- Beta-galactosidase (EC 3.2.1.23) 

 fig|6666666.223310.peg.1557 contig00547_56285_54591_- Beta-glucanase precursor (EC 3.2.1.73) 
 fig|6666666.223310.peg.1674 contig00559_79168_76841_- Beta-glucanase precursor (EC 3.2.1.73) 
 fig|6666666.223310.peg.2553 contig01043_14349_13150_- Beta-glucanase precursor (EC 3.2.1.73) 
 fig|6666666.223310.peg.2554 contig01043_15356_14430_- Beta-glucanase precursor (EC 3.2.1.73) 
 fig|6666666.223310.peg.3732 contig02209_19572_21824_+ Beta-glucosidase (EC 3.2.1.21) 
 fig|6666666.223310.peg.1260 contig00450_35922_33208_- Beta-glucosidase (EC 3.2.1.21) 
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Table C.9 (cont.) 
Genome Feature ID Protein locus tag (accession) Functional role 
Bin87 fig|6666666.223310.peg.1503 contig00500_103473_105890_+ Beta-glucosidase (EC 3.2.1.21) 
 fig|6666666.223310.peg.848 contig00269_66003_63688_- Beta-glucosidase (EC 3.2.1.21) 
 fig|6666666.223310.peg.929 contig00292_22797_20287_- Beta-mannosidase (EC 3.2.1.25) 
 fig|6666666.223310.peg.30 contig00041_32052_34274_+ beta-hexosaminidase precursor 
  fig|6666666.223310.peg.4070 contig02760_15279_14341_- ROK family Glucokinase with ambiguous 

substrate specificity 
Bin74 fig|6666666.223311.peg.1001 contig00112_192218_194164_+ Glucosamine-6-phosphate deaminase (EC 

3.5.99.6) 
 fig|6666666.223311.peg.1019 contig00112_222840_219913_- SusC, outer membrane protein involved in starch 

binding 
 fig|6666666.223311.peg.1027 contig00112_230896_233265_+ TonB-dependent receptor 
 fig|6666666.223311.peg.116 contig00045_149005_146801_- SusD, outer membrane protein 
 fig|6666666.223311.peg.117 contig00045_151995_149032_- SusC, outer membrane protein involved in starch 

binding 
 fig|6666666.223311.peg.1184 contig00168_163303_164496_+ Anhydro-N-acetylmuramic acid kinase (EC 2.7.1.-

) 
 fig|6666666.223311.peg.1270 contig00220_39162_41474_+ TonB-dependent receptor, plug precursor 
 fig|6666666.223311.peg.1296 contig00220_62539_61460_- Endoglucanase 
 fig|6666666.223311.peg.1302 contig00220_68542_70776_+ TonB-dependent receptor 
 fig|6666666.223311.peg.1307 contig00220_74005_77181_+ TonB family protein / TonB-dependent receptor 
 fig|6666666.223311.peg.1334 contig00220_118433_117453_- 6-phosphofructokinase (EC 2.7.1.11) 
 fig|6666666.223311.peg.1344 contig00220_138205_139494_+ SusD/RagB family protein 
 fig|6666666.223311.peg.1358 contig00220_155936_155001_- Beta-glucanase precursor (EC 3.2.1.73) 
 fig|6666666.223311.peg.1361 contig00220_161702_158589_- TonB family protein / TonB-dependent receptor 
 fig|6666666.223311.peg.1419 contig00226_58421_59785_+ Phosphomannomutase (EC 5.4.2.8) / 

Phosphoglucosamine mutase (EC 5.4.2.10) 
 

fig|6666666.223311.peg.1529 contig00240_5119_3719_- 
N-acetylglucosamine deacetylase (EC 3.5.1.-) / 3-
hydroxyacyl-[acyl-carrier-protein] dehydratase, 
FabZ form (EC 4.2.1.59) 

 fig|6666666.223311.peg.161 contig00045_210094_208751_- LysM-repeat proteins and domains 

 fig|6666666.223311.peg.1679 contig00240_157257_159464_+ TonB-dependent receptor; Outer membrane 
receptor for ferrienterochelin and colicins 
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Table C.9 (cont.) 
Genome Feature ID Protein locus tag (accession) Functional role 

Bin74 fig|6666666.223311.peg.1698 contig00247_6303_9068_+ TonB-dependent receptor 

 fig|6666666.223311.peg.1872 contig00255_43950_43006_- Beta-glucanase precursor (EC 3.2.1.73) 
 fig|6666666.223311.peg.1886 contig00255_63908_62526_- 1,4-alpha-glucan branching enzyme (EC 2.4.1.18) 
 fig|6666666.223311.peg.1899 contig00255_77552_79543_+ TonB-dependent receptor, putative 
 fig|6666666.223311.peg.1900 contig00255_79506_79958_+ TonB-dependent receptor, putative 
 fig|6666666.223311.peg.1923 contig00255_105123_104068_- Endo-1,4-beta-xylanase A precursor (EC 3.2.1.8) 
 fig|6666666.223311.peg.1934 contig00255_127586_130750_+ TonB family protein / TonB-dependent receptor 
 fig|6666666.223311.peg.1945 contig00255_147345_150020_+ Beta-glucosidase (EC 3.2.1.21) 
 fig|6666666.223311.peg.2003 contig00267_55827_55159_- Beta-hexosaminidase (EC 3.2.1.52) 
 fig|6666666.223311.peg.2007 contig00267_63139_60998_- Beta-hexosaminidase (EC 3.2.1.52) 
 fig|6666666.223311.peg.2017 contig00267_74901_73141_- D-alanyl-D-alanine carboxypeptidase (EC 

3.4.16.4) 
 fig|6666666.223311.peg.2033 contig00267_101673_104072_+ TonB-dependent receptor, putative 
 fig|6666666.223311.peg.2127 contig00279_45347_47719_+ TonB-dependent receptor; Outer membrane 

receptor for ferrienterochelin and colicins 
 fig|6666666.223311.peg.2242 contig00304_40929_39718_- D-alanyl-D-alanine carboxypeptidase (EC 

3.4.16.4) 
 fig|6666666.223311.peg.2274 contig00304_72958_74787_+ Beta-hexosaminidase (EC 3.2.1.52) 
 fig|6666666.223311.peg.2275 contig00304_77226_74788_- putative TonB-dependent receptor 
 fig|6666666.223311.peg.2328 contig00304_140984_143419_+ TonB-dependent receptor 
 fig|6666666.223311.peg.2337 contig00382_8100_6649_- 1,4-alpha-glucan branching enzyme (EC 2.4.1.18) 
 fig|6666666.223311.peg.2437 contig00397_6636_6178_- Endo-1,4-beta-D-glucanase 
 fig|6666666.223311.peg.2528 contig00397_112906_115158_+ TonB-dependent receptor, putative 
 fig|6666666.223311.peg.2619 contig00402_102021_105035_+ TonB family protein / TonB-dependent receptor 
 fig|6666666.223311.peg.2622 contig00402_109703_113794_+ D-alanyl-D-alanine carboxypeptidase (EC 

3.4.16.4) 
 fig|6666666.223311.peg.2677 contig00425_60820_59981_- Endo-1,4-beta-xylanase A precursor (EC 3.2.1.8) 
 fig|6666666.223311.peg.2730 contig00508_31223_30228_- Beta-galactosidase (EC 3.2.1.23) 
 fig|6666666.223311.peg.2737 contig00508_41128_38465_- TonB-dependent receptor; Outer membrane 

receptor for ferrienterochelin and colicins 
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Table C.9 (cont.) 
Genome Feature ID Protein locus tag (accession) Functional role 

Bin74 fig|6666666.223311.peg.2955 contig00569_76743_80138_+ Beta-galactosidase (EC 3.2.1.23) 

 fig|6666666.223311.peg.2970 contig00569_96424_94202_- Regulatory sensor-transducer, BlaR1/MecR1 
family / TonB-dependent receptor 

 fig|6666666.223311.peg.3030 contig00596_59291_57069_- TonB-dependent outer membrane receptor 

 fig|6666666.223311.peg.3040 contig00596_65489_67858_+ TonB-dependent receptor plug domain protein 
 fig|6666666.223311.peg.3093 contig00626_26064_24610_- D-alanyl-D-alanine carboxypeptidase (EC 

3.4.16.4) 
 fig|6666666.223311.peg.3110 contig00626_50555_47733_- TonB-dependent receptor, putative 
 fig|6666666.223311.peg.3119 contig00626_61594_60371_- N-acetylmuramoyl-L-alanine amidase (EC 

3.5.1.28) 
 fig|6666666.223311.peg.3122 contig00626_68322_66313_- TonB-dependent receptor 
 fig|6666666.223311.peg.3148 contig00737_3931_2468_- Aminoacyl-histidine dipeptidase (Peptidase D) 

(EC 3.4.13.3) 
 fig|6666666.223311.peg.3169 contig00737_28415_30895_+ TonB-dependent receptor, putative 
 fig|6666666.223311.peg.3320 contig00756_45629_46717_+ N-acetylglucosamine related transporter, NagX 
 fig|6666666.223311.peg.3339 contig00756_71994_72746_+ N-acetylmuramic acid 6-phosphate etherase 
 fig|6666666.223311.peg.3346 contig00765_1256_183_- L-alanine-DL-glutamate epimerase 
 fig|6666666.223311.peg.3425 contig00812_18382_21549_+ TonB family protein / TonB-dependent receptor 
 fig|6666666.223311.peg.3449 contig00812_56832_54574_- TonB-dependent receptor; Outer membrane 

receptor for ferrienterochelin and colicins 
 fig|6666666.223311.peg.3557 contig00945_6557_3576_- TonB family protein / TonB-dependent receptor 

 fig|6666666.223311.peg.3563 contig00945_19227_17845_- 1,4-alpha-glucan branching enzyme (EC 2.4.1.18) 
 fig|6666666.223311.peg.3594 contig00945_57159_54226_- TonB family protein / TonB-dependent receptor 
 fig|6666666.223311.peg.3654 contig00949_53177_51966_- Membrane-bound lytic murein transglycosylase D 

precursor (EC 3.2.1.-) 
 fig|6666666.223311.peg.3785 contig01226_26143_25394_- Regulatory sensor-transducer, BlaR1/MecR1 

family / TonB-dependent receptor 
 fig|6666666.223311.peg.379 contig00076_69282_71282_+ 1,4-alpha-glucan (glycogen) branching enzyme, 

GH-13-type (EC 2.4.1.18) 
 fig|6666666.223311.peg.3830 contig01229_27352_24728_- TonB-dependent receptor 

 fig|6666666.223311.peg.3903 contig01331_7526_9787_+ Beta-hexosaminidase (EC 3.2.1.52) 
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Table C.9 (cont.) 
Genome Feature ID Protein locus tag (accession) Functional role 
Bin74 fig|6666666.223311.peg.3928 contig01331_45425_42024_- Beta-galactosidase (EC 3.2.1.23) 
 fig|6666666.223311.peg.3951 contig01419_17123_19513_+ putative TonB-dependent receptor 
 fig|6666666.223311.peg.3976 contig01419_44307_46109_+ TonB-dependent receptor 
 fig|6666666.223311.peg.3980 contig01466_3117_1423_- Beta-glucanase precursor (EC 3.2.1.73) 
 fig|6666666.223311.peg.4228 contig01656_29573_32188_+ TonB-dependent receptor 
 fig|6666666.223311.peg.4294 contig01669_27802_25382_- TonB-dependent receptor 
 fig|6666666.223311.peg.4370 contig02798_12529_14154_+ putative TonB-dependent receptor 
 fig|6666666.223311.peg.4521 contig04220_5572_7947_+ Beta-glucosidase (EC 3.2.1.21) 
 fig|6666666.223311.peg.4584 contig05480_7265_4464_- TonB-dependent receptor 
 fig|6666666.223311.peg.4628 contig06439_2604_1462_- Endo-1,4-beta-xylanase A precursor (EC 3.2.1.8) 
 fig|6666666.223311.peg.4632 contig06439_5535_7199_+ Beta-xylosidase (EC 3.2.1.37) 
 fig|6666666.223311.peg.493 contig00076_193129_191471_- D-alanyl-D-alanine carboxypeptidase (EC 

3.4.16.4) 
 fig|6666666.223311.peg.620 contig00078_32668_30371_- TonB-dependent receptor, putative 
 fig|6666666.223311.peg.63 contig00045_68520_71111_+ TonB-dependent receptor 
 fig|6666666.223311.peg.656 contig00078_78428_76413_- TonB-dependent receptor; Outer membrane 

receptor for ferrienterochelin and colicins 
 fig|6666666.223311.peg.682 contig00078_103499_100278_- Beta-hexosaminidase (EC 3.2.1.52) 

 fig|6666666.223311.peg.853 contig00112_23855_26587_+ TonB-dependent receptor, plug precursor 
 fig|6666666.223311.peg.905 contig00112_84028_86976_+ Beta-hexosaminidase (EC 3.2.1.52) 
 fig|6666666.223311.peg.929 contig00112_114813_113962_- Membrane-bound lytic murein transglycosylase D 

precursor (EC 3.2.1.-) 
  fig|6666666.223311.peg.967 contig00112_150074_151912_+ Glucosamine--fructose-6-phosphate 

aminotransferase [isomerizing] (EC 2.6.1.16) 
Bin55 fig|6666666.223476.peg.1067 contig00784_74831_72564_- Beta-glucosidase (EC 3.2.1.21) 

 fig|6666666.223476.peg.1087 contig00808_15052_17469_+ TonB-dependent receptor 
 fig|6666666.223476.peg.1159 contig00824_33825_31711_- Chitinase (EC 3.2.1.14) 
 fig|6666666.223476.peg.1288 contig00840_33654_30850_- TonB-dependent receptor 
 fig|6666666.223476.peg.1344 contig00852_30678_29587_- D-alanyl-D-alanine carboxypeptidase (EC 

3.4.16.4) 
 fig|6666666.223476.peg.1693 contig01072_15409_18348_+ SusC, outer membrane protein involved in starch 

binding 
 fig|6666666.223476.peg.1694 contig01072_18406_20604_+ SusD, outer membrane protein 
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Table C.9 (cont.) 

Genome Feature ID Protein locus tag (accession) Functional role 
Bin55 fig|6666666.223476.peg.1707 contig01072_38549_36216_- TonB-dependent receptor 
 fig|6666666.223476.peg.1806 contig01107_27622_29961_+ TonB-dependent receptor, plug precursor 
 fig|6666666.223476.peg.1818 contig01107_38137_39189_+ LysM-repeat proteins and domains 
 fig|6666666.223476.peg.1847 contig01220_12847_15282_+ TonB-dependent receptor, putative 
 fig|6666666.223476.peg.1893 contig01223_2000_4807_+ TonB-dependent receptor 
 fig|6666666.223476.peg.1901 contig01223_11476_14253_+ TonB-dependent receptor, putative 
 fig|6666666.223476.peg.1935 contig01248_3572_4621_+ Muramoyltetrapeptide carboxypeptidase (EC 

3.4.17.13) 
 fig|6666666.223476.peg.207 contig00475_106590_105505_- Endoglucanase 
 fig|6666666.223476.peg.2089 contig01357_17494_14495_- Beta-hexosaminidase (EC 3.2.1.52) 
 fig|6666666.223476.peg.2102 contig01357_47727_45292_- TonB-dependent receptor 
 fig|6666666.223476.peg.2282 contig01533_24071_24994_+ Lyzozyme M1 (1,4-beta-N-acetylmuramidase) 

(EC 3.2.1.17) 
 fig|6666666.223476.peg.2304 contig01539_2327_3403_+ L-alanine-DL-glutamate epimerase 
 fig|6666666.223476.peg.2415 contig01572_10836_19487_+ Chitinase (EC 3.2.1.14) 
 fig|6666666.223476.peg.2446 contig01614_15656_17902_+ TonB-dependent receptor; Outer membrane 

receptor for ferrienterochelin and colicins 
 

fig|6666666.223476.peg.2519 contig01648_2821_1412_- 
N-acetylglucosamine deacetylase (EC 3.5.1.-) / 3-
hydroxyacyl-[acyl-carrier-protein] dehydratase, 
FabZ form (EC 4.2.1.59) 

 fig|6666666.223476.peg.2528 contig01648_11484_9175_- Beta-hexosaminidase (EC 3.2.1.52) 

 fig|6666666.223476.peg.2558 contig01661_2549_3307_+ Lyzozyme M1 (1,4-beta-N-acetylmuramidase) 
(EC 3.2.1.17) 

 fig|6666666.223476.peg.2611 contig01662_16910_20323_+ Beta-galactosidase (EC 3.2.1.23) 
 fig|6666666.223476.peg.265 contig00498_64573_62612_- TonB-dependent receptor 
 fig|6666666.223476.peg.2679 contig01690_22740_20404_- TonB-dependent receptor 
 fig|6666666.223476.peg.2743 contig01772_15348_16298_+ N-acetyl-D-glucosamine kinase (EC 2.7.1.59) 
 fig|6666666.223476.peg.2901 contig01889_25480_23675_- D-alanyl-D-alanine carboxypeptidase (EC 

3.4.16.4) 
 fig|6666666.223476.peg.3095 contig02009_19473_16924_- TonB-dependent receptor, putative 
 fig|6666666.223476.peg.3100 contig02009_30763_27827_- TonB family protein / TonB-dependent receptor 
 fig|6666666.223476.peg.3101 contig02009_33080_30852_- Beta-glucosidase (EC 3.2.1.21) 
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Table C.9 (cont.) 
Genome Feature ID Protein locus tag (accession) Functional role 
Bin55 

fig|6666666.223476.peg.3134 contig02016_31889_30447_- D-alanyl-D-alanine carboxypeptidase (EC 
3.4.16.4) 

 fig|6666666.223476.peg.3158 contig02023_19222_18047_- D-alanyl-D-alanine carboxypeptidase (EC 
3.4.16.4) 

 fig|6666666.223476.peg.329 contig00503_42662_41682_- Membrane-bound lytic murein transglycosylase A 
precursor (EC 3.2.1.-) 

 fig|6666666.223476.peg.3296 contig02102_17799_20195_+ TonB-dependent receptor plug domain protein 

 fig|6666666.223476.peg.3404 contig02276_7009_6155_- D-alanyl-D-alanine carboxypeptidase 
 fig|6666666.223476.peg.3416 contig02276_22610_23512_+ Membrane-bound lytic murein transglycosylase D 

precursor (EC 3.2.1.-) 
 fig|6666666.223476.peg.3663 contig02477_4061_2382_- putative TonB-dependent receptor 

 fig|6666666.223476.peg.3807 contig02694_27306_25516_- TonB-dependent receptor, putative 
 fig|6666666.223476.peg.3847 contig02784_12154_10964_- Endo-1,4-beta-xylanase A precursor (EC 3.2.1.8) 
 fig|6666666.223476.peg.3848 contig02784_13008_12181_- Beta-glucanase precursor (EC 3.2.1.73) 
 fig|6666666.223476.peg.3852 contig02784_18677_15630_- TonB family protein / TonB-dependent receptor 
 fig|6666666.223476.peg.4017 contig03231_19853_17313_- Chitinase (EC 3.2.1.14) 
 fig|6666666.223476.peg.4095 contig03547_1419_1808_+ LysM domain protein 
 fig|6666666.223476.peg.4106 contig03547_10148_12475_+ TonB-dependent receptor, plug precursor 
 fig|6666666.223476.peg.4131 contig03600_19261_16733_- TonB-dependent receptor, putative 
 fig|6666666.223476.peg.4139 contig03651_5597_4086_- Membrane-bound lytic murein transglycosylase D 

precursor (EC 3.2.1.-) 
 fig|6666666.223476.peg.4150 contig03662_6753_11651_+ Chitinase (EC 3.2.1.14) 

 fig|6666666.223476.peg.4163 contig03727_4783_2123_- TonB-dependent receptor 
 fig|6666666.223476.peg.4174 contig03727_14407_17370_+ TonB family protein / TonB-dependent receptor 
 fig|6666666.223476.peg.4254 contig04018_7481_9250_+ D-alanyl-D-alanine carboxypeptidase (EC 

3.4.16.4) 
 fig|6666666.223476.peg.4257 contig04018_10625_13090_+ TonB-dependent receptor; Outer membrane 

receptor for ferrienterochelin and colicins 
 fig|6666666.223476.peg.4444 contig04844_16_2307_+ TonB-dependent receptor, putative 

 fig|6666666.223476.peg.4461 contig04863_27_1877_+ Chitinase (EC 3.2.1.14) 
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Table C.9 (cont.) 
Genome Feature ID Protein locus tag (accession) Functional role 
Bin55 fig|6666666.223476.peg.4562 contig05207_14729_12381_- TonB-dependent receptor, putative 
 fig|6666666.223476.peg.4588 contig05634_3409_4611_+ Chitinase 
 fig|6666666.223476.peg.4631 contig05784_2262_3992_+ endo-1,3-1,4-beta-glucanase 
 fig|6666666.223476.peg.4772 contig07534_1697_393_- N-acetylmuramoyl-L-alanine amidase (EC 

3.5.1.28) 
 fig|6666666.223476.peg.48 contig00411_49070_47799_- N-acetyl glucosamine transporter, NagP 
 fig|6666666.223476.peg.4805 contig07775_9160_9540_+ TonB family protein 
 fig|6666666.223476.peg.507 contig00587_53251_50519_- TonB-dependent receptor 
 fig|6666666.223476.peg.5151 contig27350_2904_1570_- Aminoacyl-histidine dipeptidase (Peptidase D) 

(EC 3.4.13.3) 
 fig|6666666.223476.peg.5154 contig28171_2872_2393_- TonB-dependent outer membrane receptor 
 fig|6666666.223476.peg.580 contig00624_54243_52567_- D-alanyl-D-alanine carboxypeptidase (EC 

3.4.16.4) 
 fig|6666666.223476.peg.600 contig00624_81199_82377_+ Beta-glucosidase (EC 3.2.1.21) 
 fig|6666666.223476.peg.621 contig00639_10998_11807_+ N-acetylmuramic acid 6-phosphate etherase 
 fig|6666666.223476.peg.69 contig00411_68343_65764_- Beta-mannosidase (EC 3.2.1.25) 
 fig|6666666.223476.peg.698 contig00672_9628_8210_- D-alanyl-D-alanine carboxypeptidase (EC 

3.4.16.4) 
  

fig|6666666.223476.peg.72 contig00411_70340_72529_+ D-alanyl-D-alanine carboxypeptidase (EC 
3.4.16.4) 

Bin09 fig|6666666.223312.peg.1042 contig00037_352442_351063_- LysM-repeat proteins and domains 
 fig|6666666.223312.peg.150 contig00003_162082_163365_+ Membrane-bound lytic murein transglycosylase D 

precursor (EC 3.2.1.-) 
 fig|6666666.223312.peg.230 contig00003_252560_253447_+ Membrane-bound lytic murein transglycosylase D 

precursor (EC 3.2.1.-) 
 fig|6666666.223312.peg.179 contig00003_193802_196627_+ putative TonB-dependent receptor 

 fig|6666666.223312.peg.469 contig00003_525060_527486_+ putative TonB-dependent receptor 
 fig|6666666.223312.peg.2317 contig00266_118609_116384_- TonB-dependent outer membrane receptor 
 fig|6666666.223312.peg.959 contig00037_239898_237430_- TonB-dependent receptor 
 fig|6666666.223312.peg.1549 contig00160_201982_205044_+ TonB-dependent receptor 
 fig|6666666.223312.peg.2138 contig00258_54230_56557_+ TonB-dependent receptor 
 fig|6666666.223312.peg.2811 contig00601_72455_75136_+ TonB-dependent receptor 
 fig|6666666.223312.peg.3005 contig00895_20054_17286_- TonB-dependent receptor 
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Table C.9 (cont.) 
Genome Feature ID Protein locus tag (accession) Functional role 
Bin09 fig|6666666.223312.peg.1699 contig00165_159234_161588_+ TonB-dependent receptor, plug precursor 
 fig|6666666.223312.peg.1709 contig00165_176046_178526_+ TonB-dependent receptor, putative 
 fig|6666666.223312.peg.2533 contig00453_84531_82135_- TonB-dependent receptor, putative 
 fig|6666666.223312.peg.2930 contig00783_41481_43799_+ TonB-dependent receptor, putative 
 fig|6666666.223312.peg.1407 contig00160_58334_55749_- TonB-dependent receptor; Outer membrane 

receptor for ferrienterochelin and colicins 
 

fig|6666666.223312.peg.1563 contig00165_7815_9944_+ TonB-dependent receptor; Outer membrane 
receptor for ferrienterochelin and colicins 

 
fig|6666666.223312.peg.2457 contig00453_1057_3477_+ TonB-dependent receptor; Outer membrane 

receptor for ferrienterochelin and colicins 
 

fig|6666666.223312.peg.2527 contig00453_73998_76163_+ TonB-dependent receptor; Outer membrane 
receptor for ferrienterochelin and colicins 

 
fig|6666666.223312.peg.731 contig00003_819369_822506_+ Beta-galactosidase (EC 3.2.1.23) 

 fig|6666666.223312.peg.580 contig00003_654862_652571_- Beta-hexosaminidase (EC 3.2.1.52) 
 fig|6666666.223312.peg.3408 contig05478_14188_12680_- Beta-hexosaminidase (EC 3.2.1.52) 
 fig|6666666.223312.peg.2012 contig00250_77641_75167_- Beta-mannosidase (EC 3.2.1.25) 
 fig|6666666.223312.peg.1041 contig00037_349974_351053_+ Endoglucanase 
 fig|6666666.223312.peg.2079 contig00250_153630_152728_- Endoglucanase (EC 3.2.1.4) 
 fig|6666666.223312.peg.3058 contig01181_30419_29601_- N-acetylmuramic acid 6-phosphate etherase 
 fig|6666666.223312.peg.1544 contig00160_196550_195738_- N-acetylmuramoyl-L-alanine amidase (EC 

3.5.1.28) 
 

fig|6666666.223312.peg.1634 contig00165_90655_92046_+ 
N-acetylglucosamine deacetylase (EC 3.5.1.-) / 3-
hydroxyacyl-[acyl-carrier-protein] dehydratase, 
FabZ form (EC 4.2.1.59) 

 
fig|6666666.223312.peg.246 contig00003_267166_268242_+ Anhydro-N-acetylmuramic acid kinase (EC 

2.7.1.-) 
 fig|6666666.223312.peg.939 contig00037_216606_215335_- 1,4-alpha-glucan branching enzyme (EC 2.4.1.18) 
 fig|6666666.223312.peg.2604 contig00485_45932_47317_+ Phosphomannomutase (EC 5.4.2.8) / 

Phosphoglucosamine mutase (EC 5.4.2.10) 
 

fig|6666666.223312.peg.410 contig00003_456759_454921_- Glucosamine--fructose-6-phosphate 
aminotransferase [isomerizing] (EC 2.6.1.16) 
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Table C.9 (cont.) 
Genome Feature ID Protein locus tag (accession) Functional role 

Bin09 fig|6666666.223312.peg.1224 contig00074_143085_144785_+ D-alanyl-D-alanine carboxypeptidase (EC 
3.4.16.4) 

 fig|6666666.223312.peg.1229 contig00074_148304_149977_+ D-alanyl-D-alanine carboxypeptidase (EC 
3.4.16.4) 

 fig|6666666.223312.peg.1991 contig00250_56246_57988_+ D-alanyl-D-alanine carboxypeptidase (EC 
3.4.16.4) 

  fig|6666666.223312.peg.2116 contig00258_26577_25126_- D-alanyl-D-alanine carboxypeptidase (EC 
3.4.16.4) 

Bin56 fig|6666666.223473.peg.1011 contig00067_213378_215849_+ TonB-dependent receptor, putative 
 fig|6666666.223473.peg.1043 contig00067_249936_252713_+ TonB-dependent receptor 
 fig|6666666.223473.peg.1054 contig00067_269642_271675_+ TonB-dependent receptor; Outer membrane 

receptor for ferrienterochelin and colicins 
 fig|6666666.223473.peg.1112 contig00107_11237_13075_+ Glucosamine--fructose-6-phosphate 

aminotransferase [isomerizing] (EC 2.6.1.16) 
 fig|6666666.223473.peg.1130 contig00107_33534_32143_- 1,4-alpha-glucan branching enzyme (EC 2.4.1.18) 

 fig|6666666.223473.peg.130 contig00021_149056_151725_+ Beta-glucosidase (EC 3.2.1.21) 
 fig|6666666.223473.peg.1479 contig00194_155812_153245_- TonB-dependent receptor 
 fig|6666666.223473.peg.1661 contig00214_146332_144128_- TonB-dependent receptor; Outer membrane 

receptor for ferrienterochelin and colicins 
 fig|6666666.223473.peg.1665 contig00214_152869_150725_- TonB-dependent receptor; Outer membrane 

receptor for ferrienterochelin and colicins 
 fig|6666666.223473.peg.1728 contig00320_40498_43248_+ TonB-dependent receptor; Outer membrane 

receptor for ferrienterochelin and colicins 
 fig|6666666.223473.peg.1788 contig00320_120094_116948_- TonB family protein / TonB-dependent receptor 

 fig|6666666.223473.peg.1861 contig00324_47081_45747_- D-alanyl-D-alanine carboxypeptidase (EC 
3.4.16.4) 

 fig|6666666.223473.peg.203 contig00021_232155_233258_+ N-acetylglucosamine-6-phosphate deacetylase 
(EC 3.5.1.25) 

 fig|6666666.223473.peg.2044 contig00338_96302_99427_+ TonB family protein / TonB-dependent receptor 
 fig|6666666.223473.peg.2047 contig00338_103083_103982_+ Beta-glucanase precursor (EC 3.2.1.73) 
 fig|6666666.223473.peg.2048 contig00338_104040_105056_+ Beta-glucanase precursor (EC 3.2.1.73) 
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Table C.9 (cont.) 
Genome Feature ID Protein locus tag (accession) Functional role 
Bin56 fig|6666666.223473.peg.2049 contig00338_105083_105979_+ Beta-1,3(4)-glucanase precursor (EC 3.2.1.6) 
 fig|6666666.223473.peg.2072 contig00338_128956_126920_- 1,4-alpha-glucan (glycogen) branching enzyme, 

GH-13-type (EC 2.4.1.18) 
 fig|6666666.223473.peg.2091 contig00356_10379_11533_+ Beta-hexosaminidase (EC 3.2.1.52) 

 fig|6666666.223473.peg.2278 contig00363_71091_73514_+ TonB-dependent receptor, putative 
 fig|6666666.223473.peg.2371 contig00434_45896_44574_- SusC, outer membrane protein involved in starch 

binding 
 fig|6666666.223473.peg.2458 contig00435_28318_25934_- TonB-dependent receptor, putative 
 fig|6666666.223473.peg.2476 contig00435_58094_57915_- N-acetylglucosamine-6-phosphate deacetylase 

(EC 3.5.1.25) 
 fig|6666666.223473.peg.2478 contig00435_61723_58718_- TonB-dependent receptor 
 fig|6666666.223473.peg.2574 contig00471_41363_40284_- N-acetylmuramoyl-L-alanine amidase (EC 

3.5.1.28) 
 fig|6666666.223473.peg.2648 contig00471_102437_101664_- Lyzozyme M1 (1,4-beta-N-acetylmuramidase) 

(EC 3.2.1.17) 
 fig|6666666.223473.peg.2672 contig00515_26497_29472_+ SusC, outer membrane protein involved in starch 

binding 
 fig|6666666.223473.peg.2673 contig00515_29490_31103_+ SusD, outer membrane protein 
 fig|6666666.223473.peg.2813 contig00527_86239_84860_- D-alanyl-D-alanine carboxypeptidase (EC 

3.4.16.4) 
 fig|6666666.223473.peg.2839 contig00607_15014_12387_- TonB-dependent receptor, putative 
 fig|6666666.223473.peg.3069 contig00754_3517_1943_- SusD, outer membrane protein 
 fig|6666666.223473.peg.3121 contig00754_69440_68094_- Chitinase (EC 3.2.1.14) 
 fig|6666666.223473.peg.3191 contig00857_65337_65759_+ N-acetylglucosamine-6-phosphate deacetylase 

(EC 3.5.1.25) 
 fig|6666666.223473.peg.3293 contig00874_29698_29276_- Peptidoglycan-binding LysM 
 fig|6666666.223473.peg.3298 contig00874_33233_35605_+ TonB-dependent receptor, plug precursor 
 fig|6666666.223473.peg.3361 contig00898_27466_25523_- Glucosamine-6-phosphate deaminase (EC 

3.5.99.6) 
 fig|6666666.223473.peg.3362 contig00898_30121_27629_- Beta-hexosaminidase (EC 3.2.1.52) 
 fig|6666666.223473.peg.3395 contig00898_61763_64219_+ TonB-dependent receptor, putative 
 fig|6666666.223473.peg.3396 contig00898_64491_66965_+ TonB-dependent receptor, putative 
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Table C.9 (cont.) 
Genome Feature ID Protein locus tag (accession) Functional role 
Bin56 fig|6666666.223473.peg.3422 contig00942_33739_34626_+ Muramoyltetrapeptide carboxypeptidase (EC 

3.4.17.13) 
 fig|6666666.223473.peg.3471 contig00976_23235_20953_- TonB-dependent receptor; Outer membrane 

receptor for ferrienterochelin and colicins 
 fig|6666666.223473.peg.3549 contig01071_40355_38976_- Phosphomannomutase (EC 5.4.2.8) / 

Phosphoglucosamine mutase (EC 5.4.2.10) 
 fig|6666666.223473.peg.3587 contig01105_20114_17673_- TonB-dependent receptor, putative 

 fig|6666666.223473.peg.3594 contig01105_28180_26513_- putative TonB-dependent receptor 
 fig|6666666.223473.peg.3600 contig01105_35858_34458_- D-alanyl-D-alanine carboxypeptidase (EC 

3.4.16.4) 
 fig|6666666.223473.peg.3647 contig01455_25735_23369_- TonB-dependent receptor plug domain protein 
 fig|6666666.223473.peg.365 contig00021_404417_407722_+ TonB family protein / TonB-dependent receptor 
 fig|6666666.223473.peg.3669 contig01483_3713_1314_- TonB-dependent receptor, putative 
 fig|6666666.223473.peg.3711 contig01579_6230_7999_+ D-alanyl-D-alanine carboxypeptidase (EC 

3.4.16.4) 
 fig|6666666.223473.peg.3729 contig01579_26630_25584_- N-acetylmuramoyl-L-alanine amidase (EC 

3.5.1.28) 
 fig|6666666.223473.peg.3815 contig01645_39732_38209_- D-alanyl-D-alanine carboxypeptidase (EC 

3.4.16.4) 
 fig|6666666.223473.peg.387 contig00021_439291_438554_- Glucosamine-6-phosphate deaminase (EC 

3.5.99.6) 
 fig|6666666.223473.peg.3906 contig01802_31039_30749_- 1,4-alpha-glucan branching enzyme (EC 2.4.1.18) 
 fig|6666666.223473.peg.400 contig00021_453344_455566_+ Beta-glucosidase (EC 3.2.1.21) 
 fig|6666666.223473.peg.4040 contig02476_29046_28624_- N-acetylglucosamine-6-phosphate deacetylase 

(EC 3.5.1.25) 
 fig|6666666.223473.peg.4120 contig03253_10709_11503_+ Beta-glucanase precursor (EC 3.2.1.73) 
 fig|6666666.223473.peg.4274 contig20267_2376_1558_- N-acetylmuramic acid 6-phosphate etherase 
 fig|6666666.223473.peg.458 contig00047_1635_4847_+ TonB family protein / TonB-dependent receptor 
 fig|6666666.223473.peg.464 contig00047_11687_13294_+ Beta-xylosidase (EC 3.2.1.37) 
 fig|6666666.223473.peg.512 contig00047_59615_60682_+ Membrane-bound lytic murein transglycosylase D 

precursor (EC 3.2.1.-) 
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Table C.9 (cont.) 
Genome Feature ID Protein locus tag (accession) Functional role 

Bin56 
fig|6666666.223473.peg.573 contig00047_131318_132721_+ 

N-acetylglucosamine deacetylase (EC 3.5.1.-) / 3-
hydroxyacyl-[acyl-carrier-protein] dehydratase, 
FabZ form (EC 4.2.1.59) 

 fig|6666666.223473.peg.6 contig00021_7366_5192_- TonB-dependent receptor, putative 
 fig|6666666.223473.peg.652 contig00047_218066_220273_+ TonB-dependent receptor; Outer membrane 

receptor for ferrienterochelin and colicins 
 fig|6666666.223473.peg.679 contig00047_252902_254830_+ TonB-dependent receptor 

 fig|6666666.223473.peg.736 contig00047_315296_316399_+ N-acetylglucosamine related transporter, NagX 
 fig|6666666.223473.peg.748 contig00047_327365_326547_- N-acetylmuramoyl-L-alanine amidase (EC 

3.5.1.28) 
 fig|6666666.223473.peg.749 contig00047_328354_327401_- N-acetylmuramoyl-L-alanine amidase (EC 

3.5.1.28) 
 fig|6666666.223473.peg.804 contig00067_6165_6596_+ N-acetylmuramoyl-L-alanine amidase (EC 

3.5.1.28) 
 fig|6666666.223473.peg.823 contig00067_33611_30663_- Beta-hexosaminidase (EC 3.2.1.52) 
 fig|6666666.223473.peg.830 contig00067_43336_41951_- D-alanyl-D-alanine carboxypeptidase (EC 

3.4.16.4) 
 fig|6666666.223473.peg.840 contig00067_51701_52756_+ TonB-dependent receptor 
  fig|6666666.223473.peg.999 contig00067_200702_197577_- TonB family protein / TonB-dependent receptor 
Bin08 fig|6666666.223313.peg.1027 contig00006_61173_59977_- N-acylglucosamine 2-epimerase (EC 5.1.3.8) 
 

fig|6666666.223313.peg.1085 contig00006_131934_133337_+ 
N-acetylglucosamine deacetylase (EC 3.5.1.-) / 3-
hydroxyacyl-[acyl-carrier-protein] dehydratase, 
FabZ form (EC 4.2.1.59) 

 fig|6666666.223313.peg.109 contig00002_137649_142319_+ Chitinase (EC 3.2.1.14) 

 fig|6666666.223313.peg.11 contig00002_12126_12851_+ TonB family protein / TonB-dependent receptor 
 fig|6666666.223313.peg.12 contig00002_12966_15533_+ SusC, outer membrane protein involved in starch 

binding 
 fig|6666666.223313.peg.1253 contig00006_312644_313813_+ N-acetylglucosamine related transporter, NagX 
 fig|6666666.223313.peg.1285 contig00006_347927_347112_- N-acetylmuramoyl-L-alanine amidase (EC 

3.5.1.28) 
 fig|6666666.223313.peg.1289 contig00006_350700_353162_+ TonB-dependent receptor, putative 
 fig|6666666.223313.peg.13 contig00002_15551_17224_+ SusD, outer membrane protein 
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Table C.9 (cont.) 

Genome Feature ID Protein locus tag (accession) Functional role 
Bin08 fig|6666666.223313.peg.1371 contig00006_437379_434923_- TonB-dependent receptor, putative 
 fig|6666666.223313.peg.1385 contig00006_451590_454550_+ SusC, outer membrane protein involved in starch 

binding 
 fig|6666666.223313.peg.1435 contig00006_510839_507867_- TonB family protein / TonB-dependent receptor 
 fig|6666666.223313.peg.1446 contig00006_526154_523212_- Beta-hexosaminidase (EC 3.2.1.52) 
 fig|6666666.223313.peg.1451 contig00006_533184_531811_- D-alanyl-D-alanine carboxypeptidase (EC 

3.4.16.4) 
 fig|6666666.223313.peg.1459 contig00006_540027_541091_+ TonB-dependent receptor 
 fig|6666666.223313.peg.1531 contig00006_605056_603908_- Chitinase (EC 3.2.1.14) 
 fig|6666666.223313.peg.1557 contig00006_625132_626511_+ N-acylglucosamine 2-epimerase 
 fig|6666666.223313.peg.1637 contig00006_710899_708584_- TonB family protein / TonB-dependent receptor 
 fig|6666666.223313.peg.1696 contig00027_20521_19751_- Lyzozyme M1 (1,4-beta-N-acetylmuramidase) 

(EC 3.2.1.17) 
 fig|6666666.223313.peg.175 contig00002_208768_207464_- Endo-1,4-beta-xylanase B precursor 
 fig|6666666.223313.peg.1758 contig00027_88747_87602_- N-acetylglucosamine related transporter, NagX 
 fig|6666666.223313.peg.1770 contig00027_97120_98235_+ L-alanine-DL-glutamate epimerase 
 fig|6666666.223313.peg.1829 contig00027_153471_156788_+ TonB family protein / TonB-dependent receptor 
 fig|6666666.223313.peg.1861 contig00027_197802_200765_+ TonB family protein / TonB-dependent receptor 
 fig|6666666.223313.peg.1862 contig00027_200785_202347_+ SusD, outer membrane protein 
 fig|6666666.223313.peg.1879 contig00027_223693_226674_+ TonB family protein / TonB-dependent receptor 
 fig|6666666.223313.peg.19 contig00002_27258_26185_- Endo-1,4-beta-xylanase A precursor (EC 3.2.1.8) 
 fig|6666666.223313.peg.1904 contig00027_254193_255938_+ Beta-xylosidase (EC 3.2.1.37) 
 fig|6666666.223313.peg.1911 contig00027_261940_262875_+ Beta-galactosidase (EC 3.2.1.23) 
 fig|6666666.223313.peg.1952 contig00027_306287_304380_- Beta-hexosaminidase (EC 3.2.1.52) 
 fig|6666666.223313.peg.2006 contig00027_359061_361418_+ TonB-dependent receptor, putative 
 fig|6666666.223313.peg.2061 contig00027_420063_422879_+ TonB-dependent receptor 
 fig|6666666.223313.peg.212 contig00002_239587_242916_+ TonB family protein / TonB-dependent receptor 
 fig|6666666.223313.peg.213 contig00002_242956_244479_+ RagB/SusD domain protein 
 fig|6666666.223313.peg.2140 contig00053_77631_75313_- TonB-dependent receptor 
 fig|6666666.223313.peg.2143 contig00053_78736_79386_+ Beta-phosphoglucomutase (EC 5.4.2.6) 
 fig|6666666.223313.peg.2165 contig00053_109745_107712_- TonB-dependent receptor; Outer membrane 

receptor for ferrienterochelin and colicins 
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Table C.9 (cont.) 

Genome Feature ID Protein locus tag (accession) Functional role 

Bin08 fig|6666666.223313.peg.2184 contig00053_134423_131340_- TonB family protein / TonB-dependent receptor 

 fig|6666666.223313.peg.2227 contig00053_186668_184791_- Chitinase (EC 3.2.1.14) 
 fig|6666666.223313.peg.2228 contig00053_188397_186679_- Chitinase (EC 3.2.1.14) 
 fig|6666666.223313.peg.2236 contig00053_193355_196063_+ TonB-dependent receptor; Outer membrane 

receptor for ferrienterochelin and colicins 
 fig|6666666.223313.peg.2257 contig00053_215167_216288_+ Endoglucanase 

 fig|6666666.223313.peg.228 contig00002_260778_259399_- 1,4-alpha-glucan branching enzyme (EC 2.4.1.18) 
 fig|6666666.223313.peg.2362 contig00053_302504_307426_+ Chitinase (EC 3.2.1.14) 
 fig|6666666.223313.peg.2382 contig00053_320928_321659_+ Glucosamine-6-phosphate deaminase (EC 

3.5.99.6) 
 fig|6666666.223313.peg.2400 contig00053_340121_343048_+ SusC, outer membrane protein involved in starch 

binding 
 fig|6666666.223313.peg.2401 contig00053_343065_344633_+ SusD, outer membrane protein 
 fig|6666666.223313.peg.2483 contig00060_66934_68004_+ Membrane-bound lytic murein transglycosylase D 

precursor (EC 3.2.1.-) 
 fig|6666666.223313.peg.2555 contig00060_143030_140484_- TonB-dependent receptor 

 fig|6666666.223313.peg.26 contig00002_37670_34467_- SusC, outer membrane protein involved in starch 
binding 

 fig|6666666.223313.peg.2641 contig00060_241852_240722_- Anhydro-N-acetylmuramic acid kinase (EC 2.7.1.-
) 

 fig|6666666.223313.peg.2770 contig00066_28109_25533_- Beta-hexosaminidase (EC 3.2.1.52) 
 fig|6666666.223313.peg.2773 contig00066_31993_30809_- N-acylglucosamine 2-epimerase (EC 5.1.3.8) 
 fig|6666666.223313.peg.2777 contig00066_36642_35680_- N-acetylneuraminate lyase (EC 4.1.3.3) 
 fig|6666666.223313.peg.2779 contig00066_41786_38382_- TonB family protein / TonB-dependent receptor 
 fig|6666666.223313.peg.2787 contig00066_49238_50530_+ N-acetyl glucosamine transporter, NagP 
 fig|6666666.223313.peg.287 contig00002_334097_335497_+ Phosphomannomutase (EC 5.4.2.8) / 

Phosphoglucosamine mutase (EC 5.4.2.10) 
 fig|6666666.223313.peg.2905 contig00066_167606_165264_- TonB-dependent receptor 
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Table C.9 (cont.) 
Genome Feature ID Protein locus tag (accession) Functional role 
Bin08 fig|6666666.223313.peg.2945 contig00066_211296_208162_- SusC, outer membrane protein involved in starch 

binding 
 fig|6666666.223313.peg.2965 contig00066_229292_231721_+ TonB-dependent receptor, putative 
 fig|6666666.223313.peg.2983 contig00066_248130_250559_+ putative TonB-dependent receptor 
 fig|6666666.223313.peg.3040 contig00066_326235_322756_- SusC, outer membrane protein involved in starch 

binding 
 fig|6666666.223313.peg.3118 contig00122_91334_90417_- Membrane-bound lytic murein transglycosylase D 

precursor (EC 3.2.1.-) 
 fig|6666666.223313.peg.3133 contig00122_105296_106675_+ 1,4-alpha-glucan branching enzyme (EC 2.4.1.18) 

 fig|6666666.223313.peg.3147 contig00122_122599_120761_- Glucosamine--fructose-6-phosphate 
aminotransferase [isomerizing] (EC 2.6.1.16) 

 fig|6666666.223313.peg.3332 contig00132_47530_49641_+ Beta-xylosidase (EC 3.2.1.37) 

 fig|6666666.223313.peg.3378 contig00132_91960_94650_+ TonB-dependent receptor 
 fig|6666666.223313.peg.3395 contig00132_113272_110660_- TonB-dependent receptor, putative 
 fig|6666666.223313.peg.3503 contig00132_222756_221560_- N-acetylglucosamine related transporter, NagX 
 fig|6666666.223313.peg.3611 contig00135_89548_92862_+ TonB family protein / TonB-dependent receptor 
 fig|6666666.223313.peg.3612 contig00135_92873_94252_+ RagB/SusD domain protein 
 fig|6666666.223313.peg.371 contig00002_400436_402178_+ N-acetylmuramoyl-L-alanine amidase (EC 

3.5.1.28) 
 fig|6666666.223313.peg.3773 contig00151_36528_37658_+ N-acetylglucosamine related transporter, NagX 
 fig|6666666.223313.peg.3776 contig00151_41381_43453_+ TonB-dependent receptor 
 fig|6666666.223313.peg.3842 contig00151_112361_111615_- Beta-glucanase precursor (EC 3.2.1.73) 
 fig|6666666.223313.peg.3843 contig00151_113640_112618_- Beta-glucanase precursor (EC 3.2.1.73) 
 fig|6666666.223313.peg.3844 contig00151_114545_113646_- Beta-glucanase precursor (EC 3.2.1.73) 
 fig|6666666.223313.peg.3847 contig00151_121305_118192_- TonB family protein / TonB-dependent receptor 
 fig|6666666.223313.peg.3851 contig00151_127483_128742_+ Chitinase (EC 3.2.1.14) 
 fig|6666666.223313.peg.3906 contig00151_164123_163257_- Endo-1,4-beta-xylanase A precursor (EC 3.2.1.8) 
 fig|6666666.223313.peg.3917 contig00151_172346_173398_+ D-alanyl-D-alanine 

carboxypeptidase( EC:3.4.16.4 ) 
 fig|6666666.223313.peg.400 contig00002_427024_428211_+ Chitinase (EC 3.2.1.14) 
 fig|6666666.223313.peg.4012 contig00176_38497_37604_- D-alanyl-D-alanine carboxypeptidase (EC 

3.4.16.4) 
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Table C.9 (cont.) 
Genome Feature ID Protein locus tag (accession) Functional role 
Bin08 fig|6666666.223313.peg.4051 contig00176_78081_75556_- TonB-dependent receptor 
 fig|6666666.223313.peg.4117 contig00176_135527_134415_- beta-hexosaminidase precursor 
 fig|6666666.223313.peg.4186 contig00176_202017_200812_- Membrane-bound lytic murein transglycosylase 
 fig|6666666.223313.peg.42 contig00002_54546_52621_- Endo-1,4-beta-xylanase A precursor (EC 3.2.1.8) 
 fig|6666666.223313.peg.4226 contig00201_37784_40276_+ TonB-dependent receptor, putative 
 fig|6666666.223313.peg.4239 contig00201_52237_55461_+ TonB family protein / TonB-dependent receptor 
 fig|6666666.223313.peg.44 contig00002_55737_54661_- Endo-1,4-beta-xylanase A precursor (EC 3.2.1.8) 
 fig|6666666.223313.peg.4451 contig00257_81977_80895_- conserved hypothetical protein, with LysM-

repeats 
 fig|6666666.223313.peg.4509 contig00257_149436_147082_- TonB family protein / TonB-dependent receptor 
 fig|6666666.223313.peg.4552 contig00286_42777_40450_- Beta-glucosidase (EC 3.2.1.21) 
 fig|6666666.223313.peg.4556 contig00286_48909_46288_- TonB-dependent receptor, putative 
 fig|6666666.223313.peg.4561 contig00286_51903_52946_+ Muramoyltetrapeptide carboxypeptidase (EC 

3.4.17.13) 
 fig|6666666.223313.peg.4563 contig00286_54600_55511_+ Muramoyltetrapeptide carboxypeptidase (EC 

3.4.17.13) 
 fig|6666666.223313.peg.4614 contig00286_129457_128564_- Endoglucanase (EC 3.2.1.4) 
 fig|6666666.223313.peg.4615 contig00286_129792_129577_- Endoglucanase (EC 3.2.1.4) 
 fig|6666666.223313.peg.4620 contig00286_135640_134195_- Endo-1,4-beta-xylanase A precursor (EC 3.2.1.8) 
 fig|6666666.223313.peg.4623 contig00286_142049_138897_- TonB family protein / TonB-dependent receptor 
 fig|6666666.223313.peg.47 contig00002_58200_56764_- Endo-1,4-beta-xylanase A precursor (EC 3.2.1.8) 
 fig|6666666.223313.peg.476 contig00002_520474_518546_- Glucosamine-6-phosphate deaminase (EC 

3.5.99.6) 
 fig|6666666.223313.peg.477 contig00002_523851_521503_- Beta-hexosaminidase (EC 3.2.1.52) 
 fig|6666666.223313.peg.4984 contig00380_68852_70024_+ D-alanyl-D-alanine carboxypeptidase (EC 

3.4.16.4) 
 fig|6666666.223313.peg.5018 contig00380_96211_98319_+ Beta-galactosidase (EC 3.2.1.23) 
 fig|6666666.223313.peg.5088 contig00406_46681_43514_- TonB family protein / TonB-dependent receptor 
 fig|6666666.223313.peg.5090 contig00406_51645_48637_- SusC, outer membrane protein involved in starch 

binding 
 fig|6666666.223313.peg.5118 contig00406_78593_76941_- putative TonB-dependent receptor 
 fig|6666666.223313.peg.5125 contig00406_87453_86071_- D-alanyl-D-alanine carboxypeptidase (EC 

3.4.16.4) 
 fig|6666666.223313.peg.5226 contig00492_63262_61160_- Beta-galactosidase (EC 3.2.1.23) 
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Table C.9 (cont.) 
Genome Feature ID Protein locus tag (accession) Functional role 
Bin08 fig|6666666.223313.peg.5243 contig00492_90271_87182_- TonB family protein / TonB-dependent receptor 
 fig|6666666.223313.peg.5248 contig00492_99516_96424_- TonB family protein / TonB-dependent receptor 
 fig|6666666.223313.peg.5259 contig00553_3705_877_- TonB-dependent receptor; Outer membrane 

receptor for ferrienterochelin and colicins 
 fig|6666666.223313.peg.5356 contig00595_14828_15949_+ Endo-1,4-beta-xylanase A precursor (EC 3.2.1.8) 

 fig|6666666.223313.peg.5359 contig00595_19730_20896_+ Endo-1,4-beta-xylanase A precursor (EC 3.2.1.8) 
 fig|6666666.223313.peg.5367 contig00595_28546_29406_+ Endo-1,4-beta-xylanase A precursor (EC 3.2.1.8) 
 fig|6666666.223313.peg.537 contig00002_571631_572515_+ endo-1,4-beta-xylanase B 
 fig|6666666.223313.peg.5377 contig00595_38918_40627_+ Beta-xylosidase (EC 3.2.1.37) 
 fig|6666666.223313.peg.5419 contig00595_93138_88621_- Chitinase (EC 3.2.1.14) 
 fig|6666666.223313.peg.5487 contig00764_10180_10965_+ Beta-hexosaminidase (EC 3.2.1.52) 
 fig|6666666.223313.peg.5488 contig00764_10970_13123_+ Beta-hexosaminidase (EC 3.2.1.52) 
 fig|6666666.223313.peg.5489 contig00764_13281_15947_+ Beta-glucosidase (EC 3.2.1.21) 
 fig|6666666.223313.peg.5492 contig00764_19766_17583_- Beta-hexosaminidase (EC 3.2.1.52) 
 fig|6666666.223313.peg.5496 contig00764_27437_25596_- Beta-galactosidase (EC 3.2.1.23) 
 fig|6666666.223313.peg.55 contig00002_70996_68381_- Beta-glucosidase (EC 3.2.1.21) 
 fig|6666666.223313.peg.5503 contig00764_44143_40922_- TonB family protein / TonB-dependent receptor 
 fig|6666666.223313.peg.5551 contig00798_13278_15737_+ TonB-dependent receptor, putative 
 fig|6666666.223313.peg.5591 contig00798_55855_54734_- D-alanyl-D-alanine carboxypeptidase (EC 

3.4.16.4) 
 fig|6666666.223313.peg.5721 contig00846_45315_44134_- N-acylglucosamine 2-epimerase (EC 5.1.3.8) 
 fig|6666666.223313.peg.5729 contig00846_54072_53032_- Endoglucanase E precursor (EC 3.2.1.4) (EgE) 

(Endo-1,4-beta-glucanase E) (Cellulase E) 
 fig|6666666.223313.peg.5887 contig00930_60173_57849_- Beta-galactosidase (EC 3.2.1.23) 

 fig|6666666.223313.peg.590 contig00002_625398_626186_+ Endo-1,4-beta-xylanase A precursor (EC 3.2.1.8) 
 fig|6666666.223313.peg.5943 contig01020_48635_49813_+ LysM-repeat proteins and domains 
 fig|6666666.223313.peg.6206 contig08920_491_66_- Peptidoglycan-binding LysM 
 fig|6666666.223313.peg.642 contig00002_677264_679675_+ TonB-dependent receptor, putative 
 fig|6666666.223313.peg.775 contig00002_816298_818103_+ SusC, outer membrane protein involved in starch 

binding 
 fig|6666666.223313.peg.776 contig00002_818130_819296_+ SusC, outer membrane protein involved in starch 

binding 
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Table C.9 (cont.) 
Genome Feature ID Protein locus tag (accession) Functional role 
Bin08 fig|6666666.223313.peg.777 contig00002_819309_821000_+ SusD, outer membrane protein 
 fig|6666666.223313.peg.779 contig00002_822269_824275_+ 1,4-alpha-glucan (glycogen) branching enzyme, 

GH-13-type (EC 2.4.1.18) 
 fig|6666666.223313.peg.793 contig00002_835215_836030_+ N-acetylmuramic acid 6-phosphate etherase 

 fig|6666666.223313.peg.813 contig00002_862681_861731_- N-acetylmuramoyl-L-alanine amidase (EC 
3.5.1.28) 

 fig|6666666.223313.peg.857 contig00002_907707_909275_+ Beta-hexosaminidase (EC 3.2.1.52) 
  fig|6666666.223313.peg.931 contig00002_980911_979931_- Chitinase (EC 3.2.1.14) 
Dechloromonas 
aromatica RCB 
(NC_007298) 

fig|159087.6.peg.652 Daro_0643 CDS_706428_707039_- 
(YP_283870.1) 

FIG016425: Soluble lytic murein transglycosylase 
and related regulatory proteins (some contain 
LysM/invasin domains) 

 
fig|159087.6.peg.3683 

Daro_3704 
CDS_3981962_3982936_- 
(YP_286903.1) 

Membrane-bound lytic murein transglycosylase A 

 
fig|159087.6.peg.2506 

Daro_2520 
CDS_2718014_2719057_+ 
(YP_285723.1) 

Membrane-bound lytic murein transglycosylase B 

 
fig|159087.6.peg.1315 

Daro_1320 
CDS_1436224_1437762_- 
(YP_284540.1) 

Membrane-bound lytic murein transglycosylase D 

 
fig|159087.6.peg.2435 

Daro_2441 
CDS_2642738_2643055_+ 
(YP_285646.1) 

Membrane-bound lytic murein transglycosylase D 

 
fig|159087.6.peg.1298 

Daro_1301 
CDS_1411728_1413263_- 
(YP_284523.1) 

Membrane-bound lytic murein transglycosylase F 
(EC 4.2.2.n1) 

 
fig|159087.6.peg.4120 

Daro_4132 
CDS_4430201_4432129_+ 
(YP_287328.1) 

Soluble lytic murein transglycosylase precursor 
(EC 3.2.1.-) 

 
fig|159087.6.peg.1042 

Daro_1044 
CDS_1144121_1146301_+ 
(YP_284270.1) 

Probable tonB-dependent receptor yncD precursor 
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Table C.9 (cont.) 
Genome Feature ID Protein locus tag (accession) Functional role 
Dechloromonas 
aromatica RCB 
(NC_007298) 

fig|159087.6.peg.2932 
Daro_2953 
CDS_3189600_3191612_+ 
(YP_286153.1) 

Probable tonB-dependent receptor yncD precursor 

 fig|159087.6.peg.21 Daro_0020 CDS_25900_26931_- 
(YP_283249.1) 

Uncharacterized protein with LysM domain, 
COG1652 

 
fig|159087.6.peg.2022 

Daro_2034 
CDS_2184790_2185809_+ 
(YP_285249.1) 

beta-N-acetylglucosaminidase (EC 3.2.1.52) 

 
fig|159087.6.peg.1429 

Daro_1444 
CDS_1570887_1572524_+ 
(YP_284663.1) 

Phosphoglucomutase (EC 5.4.2.2) 

 
fig|159087.6.peg.3285 

Daro_3299 
CDS_3547851_3549227_+ 
(YP_286499.1) 

Phosphoglucomutase (EC 5.4.2.2) @ 
Phosphomannomutase (EC 5.4.2.8) 

 fig|159087.6.peg.594 Daro_0586 CDS_657897_659762_+ 
(YP_283813.1) 

1,4-alpha-glucan (glycogen) branching enzyme, 
GH-13-type (EC 2.4.1.18) 

 
fig|159087.6.peg.945 

Daro_0946 
CDS_1026760_1028037_+ 
(YP_284172.1) 

Phosphoglucosamine mutase (EC 5.4.2.10) 

 
fig|159087.6.peg.3918 

Daro_3931 
CDS_4226551_4228374_+ 
(YP_287129.1) 

Glucosamine--fructose-6-phosphate 
aminotransferase [isomerizing] (EC 2.6.1.16) 

 
fig|159087.6.peg.3028 

Daro_3049 
CDS_3293633_3294982_- 
(YP_286249.1) 

N-acetylmuramoyl-L-alanine amidase (EC 
3.5.1.28) 

  fig|159087.6.peg.299 Daro_0291 CDS_332243_333382_- 
(YP_283520.1) 

D-alanyl-D-alanine carboxypeptidase (EC 
3.4.16.4) 

Bin79 fig|6666666.177556.peg.1211 contig00145_177247_175868_- N-acetylmuramoyl-L-alanine amidase (EC 
3.5.1.28) 

 fig|6666666.177556.peg.1293 contig00157_36058_37419_+ Phosphoglucosamine mutase (EC 5.4.2.10) 
 fig|6666666.177556.peg.1308 contig00157_51391_52131_+ LysM domain protein 
 fig|6666666.177556.peg.1311 contig00157_53976_55442_+ LysM domain protein 
 fig|6666666.177556.peg.1388 contig00157_139491_137566_- TonB-dependent receptor; Outer membrane 

receptor for ferrienterochelin and colicins 
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Table C.9 (cont.) 
Genome Feature ID Protein locus tag (accession) Functional role 

Bin79 fig|6666666.177556.peg.1409 contig00157_159389_158217_- 6-phosphofructokinase (EC 2.7.1.11) 

 fig|6666666.177556.peg.157 contig00070_155763_157340_+ Membrane-bound lytic murein transglycosylase D 
precursor (EC 3.2.1.-) 

 fig|6666666.177556.peg.1996 contig00275_16532_14553_- TonB-dependent receptor; Outer membrane 
receptor for ferrienterochelin and colicins 

 fig|6666666.177556.peg.2003 contig00275_23936_21846_- TonB-dependent receptor; Outer membrane 
receptor for ferrienterochelin and colicins 

 fig|6666666.177556.peg.203 contig00070_202830_203645_+ Membrane-bound lytic murein transglycosylase D 
precursor (EC 3.2.1.-) 

 fig|6666666.177556.peg.2226 contig00334_121635_122315_+ Beta-phosphoglucomutase (EC 5.4.2.6) 

 fig|6666666.177556.peg.2239 contig00334_132908_132294_- Membrane-bound lytic murein transglycosylase C 
precursor (EC 3.2.1.-) 

 fig|6666666.177556.peg.2389 contig00353_7229_6402_- TonB-dependent receptor, putative 

 fig|6666666.177556.peg.2583 contig00365_82258_84357_+ TonB-dependent receptor; Outer membrane 
receptor for ferrienterochelin and colicins 

 fig|6666666.177556.peg.2613 contig00365_114427_116004_+ LysM domain protein 

 fig|6666666.177556.peg.3035 contig00575_50137_48263_- TonB-dependent receptor; Outer membrane 
receptor for ferrienterochelin and colicins 

 fig|6666666.177556.peg.3353 contig00673_75051_73549_- D-alanyl-D-alanine carboxypeptidase (EC 
3.4.16.4) 

 fig|6666666.177556.peg.344 contig00089_44064_46283_+ Soluble lytic murein transglycosylase precursor 
(EC 3.2.1.-) 

 fig|6666666.177556.peg.3622 contig00828_31689_33803_+ TonB-dependent receptor, plug 
 fig|6666666.177556.peg.3724 contig00907_62697_61696_- Membrane-bound lytic murein transglycosylase B 

precursor (EC 3.2.1.-) 
 fig|6666666.177556.peg.3747 contig01085_13271_14977_+ Chitinase (EC 3.2.1.14) 

 fig|6666666.177556.peg.3751 contig01085_17800_18750_+ D-alanyl-D-alanine carboxypeptidase (EC 
3.4.16.4) 
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Table C.9 (cont.) 
Genome Feature ID Protein locus tag (accession) Functional role 
Bin79 fig|6666666.177556.peg.3756 contig01085_23554_22376_- D-alanyl-D-alanine carboxypeptidase (EC 

3.4.16.4) 
 fig|6666666.177556.peg.3814 contig01134_20543_21832_+ 6-phosphofructokinase (EC 2.7.1.11) 
 fig|6666666.177556.peg.3945 contig01392_11522_12592_+ Endoglucanase (EC 3.2.1.4) 
 fig|6666666.177556.peg.4003 contig01444_22191_22988_+ Glucosamine--fructose-6-phosphate 

aminotransferase [isomerizing] (EC 2.6.1.16) 
 fig|6666666.177556.peg.4377 contig08296_5810_3981_- Glucosamine--fructose-6-phosphate 

aminotransferase [isomerizing] (EC 2.6.1.16) 
  fig|6666666.177556.peg.906 contig00142_72437_74512_+ TonB-dependent receptor 

Bin03 fig|6666666.177616.peg.1010 contig01754_35480_34947_- TonB-dependent receptor 
 fig|6666666.177616.peg.1181 contig01849_34708_35709_+ Endoglucanase precursor (EC 3.2.1.4) 
 fig|6666666.177616.peg.1534 contig02222_15941_14736_- Beta-galactosidase (EC 3.2.1.23) 
 

fig|6666666.177616.peg.1559 contig02254_10274_11650_+ Membrane-bound lytic murein transglycosylase D 
precursor (EC 3.2.1.-) 

 fig|6666666.177616.peg.1674 contig02407_15134_18271_+ Chitinase (EC 3.2.1.14) 

 fig|6666666.177616.peg.1784 contig02480_10778_10251 Beta-galactosidase (EC 3.2.1.23) 
 fig|6666666.177616.peg.1791 contig02480_20467_19163_- D-alanyl-D-alanine carboxypeptidase (EC 

3.4.16.4) 
 fig|6666666.177616.peg.1904 contig02721_2647_1409_- Membrane-bound lytic murein transglycosylase A 

precursor (EC 3.2.1.-) 
 fig|6666666.177616.peg.1999 contig02832_21200_19056_- Beta-glucosidase (EC 3.2.1.21) 

 fig|6666666.177616.peg.204 contig01024_31464_33398_+ TonB-dependent receptor 
 fig|6666666.177616.peg.2040 contig02963_21220_19853_- Membrane-bound lytic murein transglycosylase D 

precursor (EC 3.2.1.-) 
 fig|6666666.177616.peg.2160 contig03224_9937_9041_- Muramoyltetrapeptide carboxypeptidase (EC 

3.4.17.13) 
 fig|6666666.177616.peg.2426 contig03674_5398_6252_+ Chitinase (EC 3.2.1.14) 
 fig|6666666.177616.peg.2529 contig03980_2293_2_- TonB-dependent receptor; Outer membrane 

receptor for ferrienterochelin and colicins 
 fig|6666666.177616.peg.2719 contig04339_15131_17374_+ TonB-dependent receptor 
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Table C.9 (cont.) 
Genome Feature ID Protein locus tag (accession) Functional role 
Bin03 fig|6666666.177616.peg.2899 contig04874_2378_1560_- N-Acetyl-D-glucosamine ABC transport system, 

permease protein 2 
 fig|6666666.177616.peg.2943 contig04948_8107_7040_- Beta-hexosaminidase (EC 3.2.1.52) 
 fig|6666666.177616.peg.3032 contig05447_37_3633_+ Chitinase (EC 3.2.1.14) 
 fig|6666666.177616.peg.3139 contig05880_6219_7358_+ D-alanyl-D-alanine carboxypeptidase (EC 

3.4.16.4) 
 fig|6666666.177616.peg.3267 contig06866_10_591_+ Membrane-bound lytic murein transglycosylase D 

precursor (EC 3.2.1.-) 
 

fig|6666666.177616.peg.3305 contig07140_6825_5065_- Beta-galactosidase (EC 3.2.1.23) 

 fig|6666666.177616.peg.3334 contig07226_3338_4552_+ Beta-galactosidase (EC 3.2.1.23) 
 fig|6666666.177616.peg.3335 contig07226_4620_6278_+ Phosphoglucomutase (EC 5.4.2.2) 
 fig|6666666.177616.peg.3431 contig07740_3128_1092 TonB-dependent receptor 
 fig|6666666.177616.peg.3612 contig08532_5174_6985_+ Glucosamine--fructose-6-phosphate 

aminotransferase [isomerizing] (EC 2.6.1.16) 
 

fig|6666666.177616.peg.367 contig01177_56051_54561_- TonB-dependent receptor 

 fig|6666666.177616.peg.4197 contig20293_256_1062_+ N-acetylmuramoyl-L-alanine amidase (EC 
3.5.1.28) 

 fig|6666666.177616.peg.597 contig01295_43691_45055_+ Phosphoglucosamine mutase (EC 5.4.2.10) 
 fig|6666666.177616.peg.620 contig01313_13882_12941_- N-acetylglucosamine-6-phosphate deacetylase (EC 

3.5.1.25) 
 fig|6666666.177616.peg.704 contig01501_16823_18115_+ N-acetylmuramoyl-L-alanine amidase (EC 

3.5.1.28) 
 fig|6666666.177616.peg.756 contig01505_35825_34473_- Beta-glucosidase (EC 3.2.1.21) 
 fig|6666666.177616.peg.764 contig01505_43767_42652_- D-alanyl-D-alanine carboxypeptidase (EC 

3.4.16.4) 
 fig|6666666.177616.peg.824 contig01615_24351_25661_+ D-alanyl-D-alanine carboxypeptidase (EC 

3.4.16.4) 
 fig|6666666.177616.peg.832 contig01615_35613_41477_+ Beta-galactosidase (EC 3.2.1.23) 
  fig|6666666.177616.peg.906 contig01694_5653_7437_+ Chitinase (EC 3.2.1.14) 
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Table C.9 (cont.) 
Genome Feature ID Protein locus tag (accession) Functional role 
Geobacter 
metallireducens GS-
15 (NC_007517) 

fig|269799.8.peg.1025 
Gmet_0990 
CDS_1098034_1099452_+ 
(YP_383957.1) 

Phosphoglucomutase (EC 5.4.2.2) @ 
Phosphomannomutase (EC 5.4.2.8) 

 

fig|269799.8.peg.117 Gmet_0104 CDS_129995_131824_+ 
(YP_383078.1) 

Glucosamine--fructose-6-phosphate 
aminotransferase [isomerizing] (EC 2.6.1.16) 

 
fig|269799.8.peg.1194 

Gmet_1158 
CDS_1284271_1285164_+ 
(YP_384121.1) 

Putative TonB-dependent receptor 

 
fig|269799.8.peg.1224 

Gmet_1188 
CDS_1319834_1320817_+ 
(YP_384150.1) 

N-acetylmuramoyl-L-alanine amidase 

 
fig|269799.8.peg.1283 

Gmet_1245 
CDS_1403629_1405539_+ 
(YP_384206.1) 

Putative TonB-dependent receptor 

 
fig|269799.8.peg.1415 

Gmet_1377 
CDS_1539404_1541563_- 
(YP_384336.1) 

Soluble lytic murein transglycosylase precursor 
(EC 3.2.1.-) 

 
fig|269799.8.peg.1461 

Gmet_1425 
CDS_1593423_1594667_+ 
(YP_384384.1) 

N-acetylmuramoyl-L-alanine amidase (EC 
3.5.1.28) 

 
fig|269799.8.peg.148 Gmet_0135 CDS_163535_164944_- 

(YP_383109.1) 
Phosphoglucomutase (EC 5.4.2.2) @ 
Phosphomannomutase (EC 5.4.2.8) 

 
fig|269799.8.peg.1527 

Gmet_1487 
CDS_1680833_1682662_+ 
(YP_384446.1) 

Glucosamine--fructose-6-phosphate 
aminotransferase [isomerizing] (EC 2.6.1.16) 

 
fig|269799.8.peg.1679 

Gmet_1640 
CDS_1839853_1840944_+ 
(YP_384596.1) 

6-phosphofructokinase (EC 2.7.1.11) 

 
fig|269799.8.peg.1708 

Gmet_1669 
CDS_1874607_1876637_- 
(YP_384625.1) 

TonB-dependent receptor; Outer membrane 
receptor for ferrienterochelin and colicins 
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Table C.9 (cont.) 
Genome Feature ID Protein locus tag (accession) Functional role 

Geobacter 
metallireducens GS-
15 (NC_007517) 

fig|269799.8.peg.1929 
Gmet_1886 
CDS_2100595_2101950_- 
(YP_384840.1) 

Phosphoglucosamine mutase (EC 5.4.2.10) 

 
fig|269799.8.peg.1998 

Gmet_1953 
CDS_2179681_2180292_- 
(YP_384907.1) 

Membrane-bound lytic murein transglycosylase C 
(EC 3.2.1.n1) 

 
fig|269799.8.peg.2335 

Gmet_2294 
CDS_2600934_2602004_- 
(YP_385244.1) 

Endoglucanase 

 

fig|269799.8.peg.2594 

Gmet_2556 
CDS_2901389_2902888_- 
(YP_385500.1) 
 

Membrane-bound lytic murein transglycosylase D 

 
fig|269799.8.peg.3301 

Gmet_3262 
CDS_3671554_3672327_- 
(YP_386200.1) 

Soluble lytic murein transglycosylase and related 
regulatory proteins (some contain LysM/invasin 
domains) 

  
fig|269799.8.peg.974 

Gmet_0938 
CDS_1039789_1040748_- 
(YP_383905.1) 

6-phosphofructokinase (EC 2.7.1.11) 

Bin78 fig|6666666.177606.peg.1028 contig00359_114953_117109_+ TonB-dependent receptor 
 fig|6666666.177606.peg.107 contig00173_114082_115305_+ Membrane-bound lytic murein transglycosylase A 

precursor (EC 3.2.1.-) 
 fig|6666666.177606.peg.1535 contig00780_64767_62602_- TonB-dependent receptor; Outer membrane 

receptor for ferrienterochelin and colicins 
 fig|6666666.177606.peg.1621 contig00815_72000_73358_+ Phosphoglucosamine mutase (EC 5.4.2.10) 

 fig|6666666.177606.peg.1625 contig00822_2936_4990_+ TonB-dependent receptor; Outer membrane 
receptor for ferrienterochelin and colicins 

 fig|6666666.177606.peg.1839 contig00929_17892_19208_+ Beta-hexosaminidase (EC 3.2.1.52) 

 fig|6666666.177606.peg.2047 contig01049_33830_32007_- Glucosamine--fructose-6-phosphate 
aminotransferase [isomerizing] (EC 2.6.1.16) 

 fig|6666666.177606.peg.2061 contig01049_47688_48581_+ TonB protein 

 fig|6666666.177606.peg.2073 contig01078_3513_1210_- TonB dependent receptor 
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Table C.9 (cont.) 
Genome Feature ID Protein locus tag (accession) Functional role 
Bin78 fig|6666666.177606.peg.215 contig00197_16177_18117_+ Soluble lytic murein transglycosylase precursor 

(EC 3.2.1.-) 
 fig|6666666.177606.peg.2184 contig01130_48057_49064_+ Beta N-acetyl-glucosaminidase (EC 3.2.1.52) 
 fig|6666666.177606.peg.2345 contig01296_40943_42409_+ Aminoacyl-histidine dipeptidase (Peptidase D) 

(EC 3.4.13.3) 
 fig|6666666.177606.peg.2529 contig01554_8465_7206_- 6-phosphofructokinase (EC 2.7.1.11) 
 fig|6666666.177606.peg.3098 contig02822_8025_9095_+ D-alanyl-D-alanine carboxypeptidase (EC 

3.4.16.4) 
 fig|6666666.177606.peg.310 contig00197_116911_115886_- Uncharacterized protein with LysM domain, 

COG1652 
 fig|6666666.177606.peg.3221 contig03312_17722_15746_- TonB-dependent receptor; Outer membrane 

receptor for ferrienterochelin and colicins 
 fig|6666666.177606.peg.329 contig00197_136940_137647_+ N-acetylmuramoyl-L-alanine amidase 

 fig|6666666.177606.peg.3594 contig10661_26_1750_+ TonB-dependent receptor 
 fig|6666666.177606.peg.3613 contig17609_1754_3187_+ Membrane-bound lytic murein transglycosylase D 

precursor (EC 3.2.1.-) 
 fig|6666666.177606.peg.523 contig00231_157293_158183_+ Membrane-bound lytic murein transglycosylase D 

precursor (EC 3.2.1.-) 
 fig|6666666.177606.peg.627 contig00285_99904_98594_- N-acetylmuramoyl-L-alanine amidase (EC 

3.5.1.28) 
 fig|6666666.177606.peg.627 contig00285_99904_98594_- N-acetylmuramoyl-L-alanine amidase (EC 

3.5.1.28) 
 fig|6666666.177606.peg.793 contig00312_134961_133585_- Phosphoglucosamine mutase (EC 5.4.2.10) 
 fig|6666666.177606.peg.867 contig00345_73381_72761_- Membrane-bound lytic murein transglycosylase D 

precursor (EC 3.2.1.-) 
 fig|6666666.177606.peg.877 contig00345_81055_80438_- Membrane-bound lytic murein transglycosylase D 

precursor (EC 3.2.1.-) 
  fig|6666666.177606.peg.980 contig00359_43408_41540_- 1,4-alpha-glucan (glycogen) branching enzyme, 

GH-13-type (EC 2.4.1.18) 
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C.1 Supplemental descriptions for additional metagenomic datasets in Chapter 4 

In the chapter 4, ecological roles of the microbial community, selectively enriched in 

the DHS reactor for biological degradation of SMP, was revealed by providing the 

community structure and the functionality in both community and population levels using 

coupled metagenomic and metatranscriptomic approaches. To verify that the microbial 

community shift and the functional preservation between Phase III and Phase V were in a 

temporal continuity, additional samples from the upper part of the reactor at days 528 and 

602 in Phase II, and 723 in Phase IV were collected (Figure 4.1). The additional samples 

were analyzed by as same methods as possible in the section 4.3. The detailed differences 

were described below.  

 

C.2 DNA extraction, library construction, and sequencing 

The procedures for biomass collection and DNA extraction were followed as written in 

section 4.3.2. The concentrations of DNA in the samples were measured by a Nanodrop 

1000 spectrophotometer, which were 100.2 ng/ml, 236.4 ng/ml, and 247.7 ng/ml for U528, 

U602, and U723, respectively. The integrity of the extracted DNA was verified by running 

100ng of each sample with a DNA molecular weight marker (1kb DNA ladder, Promega) on 

a 1% denaturing formaldehyde agarose gel for electrophoresis prior to sequencing (Figure 

C.1). The extracted DNA samples were submitted to the Roy J. Carver Biotechnology 

Center at the University of Illinois at Urbana-Champaign (IL, USA) for sequencing and 

DNA and library construction. The DNA libraries were constructed for each sample using a 

Hyper Library construction kit (Kapa Biosystmes), and the pooled libraries were quantitated 

by qPCR and sequenced on one lane for 151 cycles from each end of the fragments on a 

HiSeq4000 sequencer (Illumina, San Diego, CA, USA) using a HiSeq 4000 sequencing kit 

version 1. The genomic libraries were generated and demultiplexed with the bcl2fastq 

v2.17.1.14 Conversion Software (Illumina, San Diego, CA, USA).  

 

C.3 Quality control, rRNA subtraction, and 16S rRNA gene reconstruction 

The raw genomic reads were trimmed using a Q13 Phred quality score cutoff and 

screened with minimum length 50 bp cutoff using SolexaQA v3.1.71 for a quality control 

(QC) (Table C.10). The post QC genomic datasets were used to reconstruct full length of 
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16S rRNA using EMIRGE2 with 0.99 OTU identity and default settings for the rest of 

conditions to reveal the microbial community compositions. The reconstructed genes for the 

three genomic datasets were combined and subjected to an operational taxonomic units 

(OTUs) assignment in QIIME,3 and the phylogenetic affiliation of the OTUs was classified 

based on the Greengenes ARB database (Greengenes_16S_2011_1.arb) using ARB 

parsimony method and visualized in a phylogenetic tree as described in the section 4.3.4.1. 

The relative abundance of the representative sequences in each genomic dataset was 

expressed in percentage of the raw sequencing reads mapped to the representative sequences 

using Blastn with a cutoff of 95% identity and the parameters of X = 150, q = −1 and F = F 

at default settings. 

 

C.4 Metagenomic assembly and assembled genome bins 

The three post OC genomic dataset were subjected to be assembled together using 

MEGAHIT4 with a range of k-mer sizes, 21-141 (Table C.10). The assembled contigs longer 

than 300 bp were submitted to the MG-RAST pipeline5 and subjected to protein encoding 

genes (PEG) prediction (MG-RAST ID, 4740023.3 in the project, mgp 9993).6 Taxonomic 

annotation was performed against the SEED database using a Best Hit Classification 

approach with a maximum e-value cutoff of 1E-5, a similarity cutoff of 60%, and a 

minimum alignment length of 15 measured in amino acids for protein and base pairs for 

RNA databases. Functional annotation was conducted by comparison to the subsystems 

using a hierarchical classification algorithm with a maximum e-value cutoff of 1E-5, a 

similarity cutoff of 60%, and a minimum alignment length of 15 amino acids. The PEGs 

longer than 300 bp were applied to the further expression analysis. The relative abundance 

of PEGs was estimated by following steps described in the section 4.3.4.4. 

The assembled contigs greater than 1000 bases were subjected to cluster into genome 

bins, using MaxBin (v 2.2.1).7 Assembled genome bins, the estimated completeness and 

contamination of which using CheckM (v 1.0.5)8 were less than 20% and more than 10%, 

respectively, were discarded. AMPHORA29 was used to estimate the taxonomic affiliation 

of the assembled genome bins, and the resulted marker lineage was reported when 75% of 

the classifications reached a consensus taxonomic level.10 A genome-wide phylogenetic 

analysis of the assembled genome bins was conducted using PhyloPhlAn.11 The predicted 
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protein encoding genes for the assembled genome bins were identified and aligned on a 

subset of 400 conserved protein sequences. The assembled genome bins and reference 

genomes were integrated into the tree of life with 3,171 microbial genomes.  

 

C.5 Carbohydrate-active enzyme annotation 

The clustered contigs for the most abundant thirty four assembled genome bins (Table 

C.14) were subjected to gene prediction using FragGeneScan v1.30.12 A carbohydrate-active 

enzyme (CAZy)-family specific hidden Markov model (HMMs) were downloaded from the 

dbCAN database (http://csbl.bmb.uga.edu/dbCAN/)13 and used in screening amino acid 

sequences of the predicted ORFs for similarity to 385 families (13 auxiliary activity (AA), 

81 carbohydrate-binding module (CBM), 16 carbohydrate esterase (CE), 145 glycoside 

hydrolase (GH), 103 glycosyl transferase (GT), and 27 polysaccharide lyase (PL) families) 

in the CAZy database.14 The protein sequences were compared and sorted as described in 

the section 4.3.4.6 using hmmscan. The CAZy families which the related genes of the major 

bins belong to were plotted using the heatmap.2 function of the gplots package (v 3.0.1) in 

R. The relative abundances of the CAZy families were normalized as described in the 

section, 4.2.4.4. 

 

C.6 Microbial phylogenetic community structure in Phase II and Phase IV 

The additional samples collected were named U528 and U602 in Phase II and U723 

in Phase IV to determine the temporal continuity between the samples collected in Phase III 

and V. To compare the phylogenetic community structures among those samples, the three 

microbial community samples were sequenced using Illumina, and the sequencing results 

provided paired-end 150 bp metagenomic reads with a range of fragment size 150 bp to 800 

bp (2.4 x 108 reads for U528, 2.4 x 108 reads for U602, 2.2 x 108 reads for U723) (Table 

C.10). The post QC genomic reads were blasted to the EMIRGE-based reconstructed 16S 

rRNA gene sequences.2 The dominant bacterial EMIRGE-constructed representative 

sequences that indicated relative abundance  >1% of the total number of 16s rRNA gene 

sequences in any sample were included in constructing a phylogenetic tree with closely 

related references (Figure C.9). In U528, Acidithiobacillales-related member in 

Gammaproteobacteria (DHS_Emg 28, 6.0%), Saprospiraceae-related member in 
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Sphingobacteriales (DHS_Emg 0, 5.5%), and Cytophaga-related members (DHS_Emg 33, 

2.4%) were most abundant. Compared to U528, in U602, Saprospiraceae-related members 

(DHS_Emg 0, 5.8%, DHS_Emg 29, 3.0%, and DHS_Emg 19, 2.2%) became more abundant 

followed by Cytophaga-related members (DHS_Emg 33, 2.3%), whereas DHS_Emg 28 

dramatically decreased to less than 0.2%. As previously indicated in a comparison between 

U648 and &798, in U723 a clear shift among the abundant Saprospiraceae-related members 

was observed; the abundance of all three Saprospiraceae-related members, DHS_Emg 0, 

DHS_Emg 29, and DHS_Emg 19 decreased to about 0.1% in U723. Instead, another 

Saprospiraceae-relative (DHS_Emg 22, 7.4%) became most abundant. In addition, 

Dechloromonas-related members (DHS_Emg 8, 2.9%) and Geobacter-related members 

(DHS_Emg 18, 5.8%) increased in U798. These population shifts which observed in U723 

indicated transitional microbial community in the upper part of the DHS reactor between 

U648 and U798.  
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Table C.10 Assembly statistic of metagenomic datasets. 

Assembly Assembler kmer 
size Total trimmed readsa Assembled reads 

(95% similarity) 
Total contig 

size 
Number 
of contig 

Max contig 
size N50 

TGTHR MEGAHIT 
21 
- 

141 

U528  238,473,718   212,229,902  89% 
  

3,519,636,225  
  

1,972,366  
    

2,892,810  
  

3,813  U602  238,432,590   217,195,520  91% 

U723  219,542,298   193,956,863  88% 

a. The raw genomic reads were trimmed using a Q13 Phred quality score cutoff and screened with minimum length 50 bp cutoff 
using SolexaQA v3.1.7. 
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Figure C.9 Microbial phylogenetic composition in Phase II (U528 and U602) and Phase IV 
(U723). In the 16S rRNA gene-based phylogenetic tree (bootstrap 1000: >90% black node, 
>70% gray node, and >50% white node), DHS_Emg refers to reconstructed ribosomal 
sequences using EMIRGE. The relative abundance is normalized to total number of bacterial 
16s rRNA gene sequences in each dataset. 
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C.7 Microbial global functionality and expressions in Phase II and Phase IV 

The de novo assembly produced using MEGAHIT4 included 89% of the 238 million 

reads in U528, 91% of the 238 million reads in U602, and 88% of the 220 million reads in 

U723 (Table C10). The assembly contained 1,972,366 contigs with a total sequence size of 

3.5 Gb, a maximum contig size of 2.9 Mb and N50 of 3,813 bp with cutoff 300 bp. Using 

MG-RAST functional annotation, 3,404,512 ORFs were predicted, 1,950,961 ORFs of 

which were annotated with putative protein functions and 1,579,174 ORFs were assigned to 

a functional classification (Table C11). Among the annotated ORFs, 86.0% of features were 

classified as SEED Subsystems-based PEGs (Table C12). 85.2%, 82.4%, and 78.9% of the 

PEGs by Subsystems encoded in U528, U602, and U723 post QC datasets, respectively 

(Table C13). The relative abundance of the genomic encodes at the SEED Subsystem level 1 

were exhibited (Figure C.10). Cluster-based subsystems (12.0-13.9%) and Carbohydrates 

(10.5-11.4%) were the two systems most abundantly encoded, followed by Amino acids and 

derivatives (9.4-10.7%) and Protein metabolism (7.8-8.3%). These subsystems indicated the 

constant metabolic categories and abundances as analyzed in the three datasets in Phase III 

and Phase V. U528 and U602 were closely clustered together rather than with U723, which 

indicated that change of the global functionality was likely subjected to temporal variation.  
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Figure C.10 Global analysis of metabolic potential and functional activities in the DHS 
communities. Clustering of the three metagenomic and triplicated metatranscriptomic 
datasets based on normalized relative abundance of SEED subsystem level 1. Hierarchical 
clustering of the metagenomic and the metatranscriptomic datasets were separately 
conducted with Euclidean distance using R package (Stats v3.2.0). 
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Table C.11 MG-RAST annotation of Assembly (contigs > 300 bp). 
Item Statistics 
Contigs 1,972,366 
Average length (bp) 1,784 ± 10,535  
Total length (bp) 3,519,636,225 
Predicted ORFs 3,404,512 
Annotated 1,950,961 
rRNAs 1,493 
Functional category 1,579,174 
Unrecognized 371,787 
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Table C.12 Summary of protein encoding genes annotated by SEED Subsystems. 

Total number of protein encoding genes 1,677,780 

Summary of protein encoding genes 
(length) 

Minimum 47 
1st Quantile 505 

Median 804 
Mean 1,174 

3rd Quantile 1,404 
Maximum 71,960 
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Table C.13 Protein encoding genes aligned with coding-DNA.  

Genomic 
sample 

Number of aligned reads 
(95% similarity blasted to 

protein encoding genes among 
the trimmed reads) 

Present protein encoding genes 

U528 141,047,525 59% 1,428,607 85.15% 

U602 160,287,239 67% 1,382,469 82.40% 

U723 125,549,466 57% 1,323,504 78.88% 
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C.8 Potential encoding of CAZy families in the assembled genome bins 

 As a result of a metagenomic binning to reconstruct assembled genome bins, the 

assembled contigs were clustered into 244 bins with less than 10% contamination and more 

than 20% completeness.10 34 assembled genome bins that contributed top 50% of relative 

abundance of PEG in any dataset were subjected to construction of a genome-wide 

phylogenetic analysis with other 3,171 reference genomes using PhyloPhlAn11 (Figure C.11 

and Table C14). Additionally, their taxonomic affiliations were assigned using 

AMPHORA29 software with 31 conserved bacterial phylogenetic protein marker genes 

(Table C14). 12 bins were assigned in Bacteroidetes, six of which (BinN002, BinN013, 

BinN022, BinN024, BinN026, and BinN424) constituted a deep branch with 

Haliscomenobacter hydrossis DSM 1100 (IMG taxon ID: 2504756004). BinN013 and 

BinN040 constructed a branch with Chitinophaga pinensis UQM 2034 (IMG taxon ID: 

644736340). As observed in the community structure (Figure C.9), a shift was observed in 

the relative abundance of the genomic encodes; BinN002 was the most abundant in Phase II 

while BinN008 and BinN024 became abundant in Phase IV. In Proteobacteria, 14 bins were 

classified affiliated: alphaproteobacteria (5), betaproteobacteria (6), deltaproteobacteria 

(2), and gammaproteobacteria (2).  The relative abundance was shifted from BinN001 in 

gammproteobacteria, constituting a deep branch with Alkalilimnicola ehrlichii MLHE-

1(IMG taxon ID: 637000324), in Phase II to BinN042 in deltaproteobacteria and BinN115 

and BinN213 in betaproteobacteria. This shift may indicate a continuity to the abundance of 

the Geobacter and Dechloromonas-related assembled genome bins later in U798. The rest of 

them were affiliated with Acidobacteria (2), Gemmatinomonadetes (1), Planctomycetes (2), 

and Verrucomicrobia (2).  

 To further investigate how the functionally dominant microbial populations were 

involved in polysaccharide and glycan degradation, the 34 major assembled genomic bins 

were subjected to the carbohydrate-active enzyme analysis using the profile hidden Markov 

model specifying CAZy database. The normalized genomic abundances of each CAZy 

family, which were significantly abundant at the 98% confidence level, were shown (Figure 

C.12). As previously observed in the datasets in Phase III and Phase V, the assembled 

genomic bins affiliating Bacteroidetes indicated the most abundant genomic encodes in the 

predicted enzymes. The abundance among the Bacteroidetes-related genomic bins were 
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changed from the Haliscomenobacter-related bin, BinN002, in U528 and U602, to another 

Haliscomenobacter-related bin, BinN024, and Chitinophaga-related bin, BinN008, in U723. 

The most genomically predicted enzyme families by them were CBM families 32, 37, 40, 

44, and 50, together with Cohesin and Dockerin, of which the glucan specific CBM family, 

CBM44, was most highly encoded. The most predicted glycoside hydrolytic GH families 

were endoglucanase (GH74), GalNAc hydrolase (GH109), oligo-alpha-glucosidase (GH13) 

and peptidoglycan lyase (GH23). The predicted glycoside hydrolytic GH families were 

mostly endoglucanase (GH74), GalNAc hydrolase (GH109), and peptidoglycan lyase 

(GH23). Carboxyl esterase enzyme families (CE1 and 10) were also highly encoded by the 

Bacteroidetes-related assembled genome bins. In spite of the temporal variance, the 

Bacteroidetes-related bins were equipped with the CAZy families involved in both binding 

modules to glucan and glycan substrates and following glycoside hydrolases and esterases. 

The gene inventory of the Bacteroidetes-related bins, further, showed that these bins were 

fully equipped with exo-enzymes and intracellular genes (chitinase, glucuronidase, hex, 

nagZ, nagK, murQ, nagA, and nagB), which were necessary to bind and degrade N-

substituted oligosaccharides (Table C15). Laster increasing abundance of these CAZy 

families in Geobacter and Dechloromonas-related assembled genome bins were observed, 

but insignificant in U723.   
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Figure C.11 The genome-wide phylogenetic analysis and the abundance profile of the major 
assembled genome bins contributing cumulative top 50% of relative abundance for each 
dataset. The phylogenetic tree was generated by PhyloPhlAn and iTOL from predicted 
protein sequences of the major bins and 3,171 other reference genomes (bootstrap 1000: 
>90% black node, >70% gray node, and >50% white node; IMG taxon ID of the reference 
genomes in parenthesis.  
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Figure C.12 Potential encoding and expression of CAZy by the dominant assembled 
genome bins. The genomic normalized abundance of each CAZy family, which was 
significantly abundant at the 98% confidence level, were plotted with closed circles. 
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Table C.14 Assembled genome bins that contribute top 50 % of abundance in each genomic dataset. 
Bin_Id U528a U602a U723a Marker lineagec Marker gene copies Completeness

b Contaminationb Size 
(Mb) 

GC 
(%) 

Contig 
count 0 1 2 3 

BinN001 6.4 1.9 0.9 o_Chromatiales 8 266 1 0 97.1 0.1 2.6 63.4 1164 
BinN002 5.2 5.5 0.2 g_Haliscomenobacter 3 298 1 0 98.5 0.3 6.7 56.8 364 
BinN003 3.0 0.2 0.0 f_Planctomycetaceae 8 143 1 0 93.2 1.1 5.7 64.5 2921 
BinN004 3.3 1.3 0.0 o_Burkholderiales 21 403 1 0 93.4 0.1 3.9 58.6 223 
BinN008 1.1 1.4 6.7 g_Fluviicola 2 273 3 0 98.9 1.6 4.3 60.6 434 
BinN009 1.2 1.4 0.1 g_Cytophaga 6 441 7 0 98.5 0.7 4.5 41.7 47 
BinN010 1.1 0.2 0.0 c_Alphaproteobacteria 0 349 0 0 100.0 0.0 3.0 56.9 564 
BinN011 1.0 0.5 0.0 g_Cytophaga 25 404 23 2 94.5 6.5 3.9 49.1 47 
BinN013 0.8 1.1 0.0 g_Chitinophaga 6 295 1 0 97.5 0.5 4.7 43.8 364 
BinN014 0.6 1.4 0.5 o_Nitrospirales 5 179 4 0 95.7 2.0 3.8 53.2 2258 
BinN016 1.1 0.9 2.1 o_Verrucomicrobiales 1 208 19 1 99.3 6.3 6.3 62.6 88 
BinN017 0.5 0.5 0.0 f_Gemmatimonadaceae 2 139 2 0 97.7 2.3 4.9 70.7 2921 
BinN018 1.5 1.0 0.1 o_Rhodospirillales 14 301 20 1 95.7 5.8 7.1 67.8 63 
BinN019 0.7 1.8 0.3 o_Burkholderiales 2 417 5 1 99.1 1.6 4.1 69.0 223 
BinN020 0.5 1.4 0.0 f_Xanthomonadaceae 11 637 11 0 98.3 1.4 4.8 62.2 55 
BinN021 0.6 1.2 0.1 c_Betaproteobacteria 10 401 14 0 96.4 3.8 3.8 61.5 223 
BinN022 0.4 1.4 0.1 g_Haliscomenobacter 2 299 1 0 99.0 0.3 4.2 36.2 364 
BinN023 0.7 0.8 0.2 f_Gemmatimonadaceae 2 140 5 0 97.8 4.8 5.8 69.6 2993 
BinN024 0.6 0.4 7.6 g_Haliscomenobacter 1 295 6 0 99.5 1.4 5.8 36.3 364 
BinN025 0.4 0.8 0.2 c_Solibacteres 8 174 6 0 94.0 5.1 4.0 51.5 2258 
BinN026 0.5 0.2 0.9 g_Haliscomenobacter 3 298 1 0 98.5 0.5 5.7 55.1 364 
BinN029 0.8 1.3 3.7 o_Rhodospirillales 27 286 22 1 91.7 6.8 5.0 66.2 63 
BinN040 0.5 2.0 1.0 g_Chitinophaga 1 297 2 1 99.5 1.5 6.7 42.0 364 
BinN041 0.3 0.6 0.1 c_Alphaproteobacteria 60 326 2 0 94.6 0.8 3.1 62.6 468 
BinN042 0.4 0.5 2.2 o_Desulfuromonadales 11 233 3 0 93.3 1.9 6.0 64.4 83 
BinN046 0.3 0.9 0.0 o_Verrucomicrobiales 1 228 1 0 99.3 0.7 3.7 66.2 88 
BinN115 0.2 0.2 2.4 o_Burkholderiales 8 395 22 1 98.0 5.6 6.3 68.5 193 
BinN128 0.0 0.0 0.6 o_Rickettsiales 3 306 11 3 98.6 8.3 1.7 33.8 83 
BinN148 0.1 1.4 0.0 g_Haliscomenobacter 15 274 13 0 94.2 4.3 6.4 48.0 364 
BinN154 0.1 3.6 2.2 o_Myxococcales 15 227 4 1 91.2 2.8 9.4 69.9 83 
BinN213 0.1 0.5 1.3 o_Burkholderiales 53 369 5 0 97.2 2.3 5.3 68.4 193 
BinN398 0.0 0.0 1.1 o_Rhizobiales 26 299 24 0 92.7 6.4 3.0 64.0 564 
BinN422 0.0 0.0 0.5 g_Fluviicola 16 298 2 0 93.3 1.0 3.6 33.9 350 
BinN424 0.0 0.0 1.2 g_Haliscomenobacter 2 285 10 1 99.0 4.7 6.1 52.5 364 
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Table C.14 (cont.) 
a. Normalized abundance of genomic datasets aligned to the protein-coding genes. The bins contributing top 50% of abundance for 

each dataset were listed in the table.  
b. Relative abundance ratio (%), defined by the actual coverage levels divided by summed coverage levels of all assembled genome 

bins that are retrieved from the results using MaxBin (v.2.2.1). The assembled genome bins that contribute cumulative top 50% of 
relative abundance were listed.  

c. Completeness and contamination of the assembled genome bins were assessed using CheckM. Bins that were less than 90% 
complete or with greater than 10% contamination were discarded. 

d. Marker lineage was analyzed using AMPHORA2 and reported if 75% of the classifications were in agreement at a particular 
taxonomic level. 

e. The listed bins were submitted under the MG-RAST project (ID: mgp9993). 
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Table C.15 Gene inventory analysis related to N-substituted biomass structural detritus utilization in the Bacteroidetes-related 
genome bins. 

Genome Feature ID Protein locus tag (accession) Functional role 

BinN002 fig|6666666.273398.peg.103 contig1035842_8895_7054_- Glucosamine--fructose-6-phosphate aminotransferase [isomerizing] (EC 
2.6.1.16) 

 fig|6666666.273398.peg.1076 contig1349688_118669_121344_+ TonB-dependent receptor 

 fig|6666666.273398.peg.108 contig1035842_13474_11981_- Membrane-bound lytic murein transglycosylase D precursor (EC 3.2.1.-) 

 fig|6666666.273398.peg.12 contig1032987_15020_17965_+ TonB family protein / TonB-dependent receptor 

 fig|6666666.273398.peg.1203 contig1383735_90043_91290_+ N-acetylglucosamine related transporter, NagX 

 fig|6666666.273398.peg.1204 contig1383735_92895_91402_- SusD, outer membrane protein 

 fig|6666666.273398.peg.1205 contig1383735_96015_93022_- SusC, outer membrane protein involved in starch binding 

 fig|6666666.273398.peg.1212 contig1383735_106999_104462_- TonB-dependent receptor 

 fig|6666666.273398.peg.1219 contig1383735_113438_111045_- TonB-dependent receptor 

 fig|6666666.273398.peg.127 contig1035842_36180_33691_- TonB-dependent receptor, putative 

 fig|6666666.273398.peg.1571 contig176149_132715_131336_- Phosphomannomutase (EC 5.4.2.8) / Phosphoglucosamine mutase (EC 
5.4.2.10) 

 fig|6666666.273398.peg.1585 contig176149_151447_150149_- N-acylglucosamine 2-epimerase (EC 5.1.3.8) 

 fig|6666666.273398.peg.1590 contig176149_157374_160664_+ TonB family protein / TonB-dependent receptor 

 fig|6666666.273398.peg.1616 contig176149_191066_192037_+ N-acetyl-gamma-glutamyl-phosphate reductase (EC 1.2.1.38) 

 fig|6666666.273398.peg.1643 contig176149_228293_237829_+ Chitinase (EC 3.2.1.14) 

 fig|6666666.273398.peg.1848 contig1871866_43359_41020_- TonB-dependent receptor, plug precursor 

 fig|6666666.273398.peg.1918 contig1871866_140886_139576_- N-acetylglucosaminyltransferase (EC 2.4.1.-) 

 fig|6666666.273398.peg.192 contig1035842_106495_109506_+ TonB family protein / TonB-dependent receptor 

 fig|6666666.273398.peg.193 contig1035842_109630_110964_+ SusD/RagB family protein 

 fig|6666666.273398.peg.1939 contig1871866_163665_160750_- TonB family protein / TonB-dependent receptor 

 fig|6666666.273398.peg.1958 contig1871866_189217_187796_- N-acetylglucosamine deacetylase (EC 3.5.1.-) / 3-hydroxyacyl-[acyl-carrier-
protein] dehydratase, FabZ form (EC 4.2.1.59) 

 fig|6666666.273398.peg.1996 contig1888521_25362_22282_- Chitinase (EC 3.2.1.14) 

 fig|6666666.273398.peg.2021 contig1903360_27132_25714_- D-alanyl-D-alanine carboxypeptidase (EC 3.4.16.4) 

 fig|6666666.273398.peg.208 contig1041127_15712_13019_- TonB-dependent receptor, putative 

 fig|6666666.273398.peg.2150 contig1937582_61602_60550_- Membrane-bound lytic murein transglycosylase A precursor (EC 3.2.1.-) 

 fig|6666666.273398.peg.2475 contig211462_101956_100382_- SusD, outer membrane protein 

 fig|6666666.273398.peg.2476 contig211462_105130_102098_- SusC, outer membrane protein involved in starch binding 
 



	
	
	

228 

Table C.15 (cont.) 
Genome Feature ID Protein locus tag (accession) Functional role 
BinN002 fig|6666666.273398.peg.2515 contig211462_150397_147224_- chitinase II 

 fig|6666666.273398.peg.258 contig1046462_47961_51509_+ Chitinase (EC 3.2.1.14) 

 fig|6666666.273398.peg.2581 contig211462_271645_272184_+ Phospholipid-lipopolysaccharide ABC transporter 

 fig|6666666.273398.peg.2812 contig233572_105312_107666_+ TonB-dependent receptor; Outer membrane receptor for ferrienterochelin and 
colicins 

 fig|6666666.273398.peg.2898 contig233572_218617_217778_- N-acetylmuramic acid 6-phosphate etherase 

 fig|6666666.273398.peg.2947 contig245956_19602_18817_- D-alanyl-D-alanine carboxypeptidase 

 fig|6666666.273398.peg.2962 contig249485_18315_20753_+ TonB-dependent receptor, putative 

 fig|6666666.273398.peg.2972 contig249485_35622_38432_+ TonB-dependent receptor 

 fig|6666666.273398.peg.3066 contig268405_139855_141075_+ N-acetyl-L,L-diaminopimelate deacetylase (EC 3.5.1.47) 

 fig|6666666.273398.peg.3067 contig268405_147419_141132_- Chitinase (EC 3.2.1.14) 

 fig|6666666.273398.peg.3081 contig268405_160961_163420_+ TonB-dependent receptor, putative 

 fig|6666666.273398.peg.3144 contig283311_25868_23640_- Membrane-bound lytic murein transglycosylase D precursor (EC 3.2.1.-) 

 fig|6666666.273398.peg.34 contig1034615_6503_9550_+ TonB family protein / TonB-dependent receptor 

 fig|6666666.273398.peg.3415 contig394373_60481_59360_- N-acetylglucosamine related transporter, NagX 

 fig|6666666.273398.peg.3534 contig484478_14503_12296_- TonB-dependent receptor; Outer membrane receptor for ferrienterochelin and 
colicins 

 fig|6666666.273398.peg.3641 contig530325_34960_32105_- putative TonB-dependent receptor 

 fig|6666666.273398.peg.3862 contig591739_37050_38990_+ Glucosamine-6-phosphate deaminase (EC 3.5.99.6) 

 fig|6666666.273398.peg.3922 contig618580_49300_48455_- D-alanyl-D-alanine dipeptidase (EC 3.4.13.-) 

 fig|6666666.273398.peg.4059 contig646410_72600_76646_+ Chitinase (EC 3.2.1.14) 

 fig|6666666.273398.peg.4060 contig646410_76760_81199_+ Chitinase (EC 3.2.1.14) 

 fig|6666666.273398.peg.4065 contig646410_89929_94818_+ Chitinase (EC 3.2.1.14) 

 fig|6666666.273398.peg.4199 contig65279_58406_59905_+ Phosphoglucosamine mutase (EC 5.4.2.10) 

 fig|6666666.273398.peg.421 contig108488_105709_108813_+ Chitinase (EC 3.2.1.14) 

 fig|6666666.273398.peg.425 contig108488_113214_114122_+ Membrane-bound lytic murein transglycosylase D precursor (EC 3.2.1.-) 

 fig|6666666.273398.peg.4267 contig668715_86168_83682_- TonB-dependent receptor, putative 

 fig|6666666.273398.peg.4296 contig686991_33618_31975_- putative TonB-dependent receptor 

 fig|6666666.273398.peg.4331 contig687193_1652_7555_+ Chitinase (EC 3.2.1.14) 

 fig|6666666.273398.peg.4333 contig687193_10539_17465_+ Chitinase (EC 3.2.1.14) 

 fig|6666666.273398.peg.4337 contig687193_20997_23525_+ TonB-dependent receptor 

 fig|6666666.273398.peg.4347 contig687193_37105_33806_- TonB-dependent receptor 

 fig|6666666.273398.peg.4518 contig735952_27979_28962_+ N-acetylmuramoyl-L-alanine amidase (EC 3.5.1.28) 
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Table C.15 (cont.) 

Genome Feature ID Protein locus tag (accession) Functional role 
BinN002 fig|6666666.273398.peg.4539 contig735952_53966_55129_+ N-acetylhexosamine 1-kinase 

 fig|6666666.273398.peg.4661 contig735952_200253_207476_+ Chitinase (EC 3.2.1.14) 

 fig|6666666.273398.peg.474 contig108488_164942_166138_+ Anhydro-N-acetylmuramic acid kinase (EC 2.7.1.-) 

 fig|6666666.273398.peg.4851 contig814186_55849_54512_- N-acetylmuramoyl-L-alanine amidase (EC 3.5.1.28) 

 fig|6666666.273398.peg.4920 contig823276_36704_33837_- TonB-dependent receptor; Outer membrane receptor for ferrienterochelin and 
colicins 

 fig|6666666.273398.peg.5199 contig877855_169662_167467_- TonB-dependent siderophore receptor 

 fig|6666666.273398.peg.5205 contig877855_178219_181014_+ TonB-dependent receptor; Outer membrane receptor for ferrienterochelin and 
colicins 

 fig|6666666.273398.peg.5211 contig877855_187453_186239_- N-acetylglucosaminyltransferase (EC 2.4.1.-) 

 fig|6666666.273398.peg.5360 contig999578_9709_11049_+ D-amino acid dehydrogenase small subunit (EC 1.4.99.1) 

 fig|6666666.273398.peg.544 contig109545_9499_7394_- Probable tonB-dependent receptor yncD precursor 

 fig|6666666.273398.peg.606 contig109545_79743_81800_+ TonB-dependent receptor 

 fig|6666666.273398.peg.679 contig1138890_29349_28147_- Muramoyltetrapeptide carboxypeptidase (EC 3.4.17.13) 

 fig|6666666.273398.peg.72 contig103538_11954_9390_- TonB-dependent receptor 

 fig|6666666.273398.peg.804 contig1186173_97696_100362_+ TonB-dependent receptor 

 fig|6666666.273398.peg.823 contig1186173_124841_122439_- TonB-dependent receptor, putative 

 fig|6666666.273398.peg.836 contig1202278_6429_5155_- N-acetyl glucosamine transporter, NagP 

 fig|6666666.273398.peg.923 contig1330001_36789_39995_+ TonB family protein / TonB-dependent receptor 
  fig|6666666.273398.peg.971 contig1349688_17674_15443_- TonB-dependent receptor 
BinN008 fig|6666666.273400.peg.1273 contig33798_93301_94035_+ TonB family protein 

 fig|6666666.273400.peg.1323 contig33798_146272_147963_+ putative TonB-dependent receptor 

 fig|6666666.273400.peg.1341 contig33798_166718_166957_+ Putative peptidoglycan binding domain 1 

 fig|6666666.273400.peg.1458 contig446840_8844_9671_+ Glutamate racemase (EC 5.1.1.3) 

 fig|6666666.273400.peg.169 contig125349_17128_15728_- Phosphoglucosamine mutase (EC 5.4.2.10) 

 fig|6666666.273400.peg.174 contig125349_20029_21105_+ Anhydro-N-acetylmuramic acid kinase (EC 2.7.1.-) 

 fig|6666666.273400.peg.1766 contig501300_101050_102189_+ TonB family protein 

 fig|6666666.273400.peg.1797 contig501300_130902_129058_- Glucosamine--fructose-6-phosphate aminotransferase [isomerizing] (EC 
2.6.1.16) 

 fig|6666666.273400.peg.198 contig125349_43600_41177_- TonB-dependent receptor, plug precursor 

 fig|6666666.273400.peg.1995 contig566071_23008_20789_- TonB-dependent receptor; Outer membrane receptor for ferrienterochelin and 
colicins 
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Table C.15 (cont.) 

Genome Feature ID Protein locus tag (accession) Functional role 

BinN008 fig|6666666.273400.peg.224 contig125349_75255_77549_+ TonB-dependent receptor; Outer membrane receptor for ferrienterochelin and 
colicins 

 fig|6666666.273400.peg.2294 contig57381_92081_90567_- N-acetylgalactosamine 6-sulfatase 

 fig|6666666.273400.peg.2380 contig585643_61379_62476_+ N-acetylglucosaminyltransferase (EC 2.4.1.-) 

 fig|6666666.273400.peg.2468 contig615680_43075_40496_- TonB-dependent receptor 

 fig|6666666.273400.peg.2491 contig615680_67960_66974_- Glucose-6-phosphate isomerase, archaeal II (EC 5.3.1.9) / Mannose-6-
phosphate isomerase, archaeal (EC 5.3.1.8) 

 fig|6666666.273400.peg.2497 contig615680_75048_73582_- Membrane-bound lytic murein transglycosylase D precursor (EC 3.2.1.-) 

 fig|6666666.273400.peg.2622 contig625043_14111_17206_+ TonB-dependent receptor 

 fig|6666666.273400.peg.2656 contig69057_30654_29839_- N-acetylmuramic acid 6-phosphate etherase 

 fig|6666666.273400.peg.2873 contig720972_48096_45718_- TonB-dependent receptor, putative 

 fig|6666666.273400.peg.3004 contig777453_47453_46137_- N-acetyl glucosamine transporter, NagP 

 fig|6666666.273400.peg.3089 contig840221_36786_39263_+ TonB-dependent receptor; Outer membrane receptor for ferrienterochelin and 
colicins 

 fig|6666666.273400.peg.3108 contig840221_60269_61738_+ N-acetylglucosamine deacetylase (EC 3.5.1.-) / 3-hydroxyacyl-[acyl-carrier-
protein] dehydratase, FabZ form (EC 4.2.1.59) 

 fig|6666666.273400.peg.3111 contig840221_63162_67325_+ Chitinase (EC 3.2.1.14) 

 fig|6666666.273400.peg.3214 contig94918_37882_37070_- N-acetylmannosaminyltransferase (EC 2.4.1.187) 

 fig|6666666.273400.peg.3286 contig94918_110583_111623_+ L-alanine-DL-glutamate epimerase 

 fig|6666666.273400.peg.3384 contig94918_232694_235135_+ TonB-dependent receptor 

 fig|6666666.273400.peg.350 contig153540_35147_33759_- Chitinase (EC 3.2.1.14) 

 fig|6666666.273400.peg.3571 contig972386_127409_126204_- N-acetyl-L,L-diaminopimelate deacetylase (EC 3.5.1.47) 

 fig|6666666.273400.peg.382 contig157047_36908_38104_+ N-acetylmuramoyl-L-alanine amidase (EC 3.5.1.28) 

 fig|6666666.273400.peg.583 contig1790038_26596_25640_- Membrane-bound lytic murein transglycosylase D precursor (EC 3.2.1.-) 

 fig|6666666.273400.peg.723 contig1985150_7435_8682_+ Phospho-N-acetylmuramoyl-pentapeptide-transferase (EC 2.7.8.13) 

 fig|6666666.273400.peg.770 contig222786_26390_23628_- TonB-dependent receptor 

 fig|6666666.273400.peg.926 contig24165_31057_28730_- TonB-dependent receptor 

 fig|6666666.273400.peg.93 contig1234741_22762_24267_+ Membrane-bound lytic murein transglycosylase D precursor (EC 3.2.1.-) 
  fig|6666666.273400.peg.97 contig1234741_29342_29091_- TonB family protein 
BinN024 fig|6666666.273401.peg.108 contig1093387_8181_9665_+ Chitin binding protein 

 fig|6666666.273401.peg.1148 contig1467467_146203_147396_+ Periplasmic septal ring factor with murein hydrolase activity EnvC/YibP 
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Table C.15 (cont.) 

Genome Feature ID Protein locus tag (accession) Functional role 

BinN024 fig|6666666.273401.peg.1186 contig1467467_185372_186565_+ Anhydro-N-acetylmuramic acid kinase (EC 2.7.1.-) 

 fig|6666666.273401.peg.1269 contig1510968_33543_36206_+ TonB-dependent receptor; Outer membrane receptor for ferrienterochelin and 
colicins 

 fig|6666666.273401.peg.1331 contig1541227_19711_21471_+ D-alanyl-D-alanine carboxypeptidase (EC 3.4.16.4) 

 fig|6666666.273401.peg.1509 contig1554492_85347_88487_+ TonB family protein / TonB-dependent receptor 

 fig|6666666.273401.peg.1512 contig1554492_93155_97246_+ D-alanyl-D-alanine carboxypeptidase (EC 3.4.16.4) 

 fig|6666666.273401.peg.1536 contig1595497_18036_20294_+ TonB-dependent receptor; Outer membrane receptor for ferrienterochelin and 
colicins 

 fig|6666666.273401.peg.1560 contig1595497_56486_53319_- TonB family protein / TonB-dependent receptor 

 fig|6666666.273401.peg.1601 contig1595497_105205_103751_- D-alanyl-D-alanine carboxypeptidase (EC 3.4.16.4) 

 fig|6666666.273401.peg.1618 contig1595497_129696_126874_- TonB-dependent receptor, putative 

 fig|6666666.273401.peg.1628 contig1595497_140735_139512_- N-acetylmuramoyl-L-alanine amidase (EC 3.5.1.28) 

 fig|6666666.273401.peg.1631 contig1595497_147463_145454_- TonB-dependent receptor 

 fig|6666666.273401.peg.167 contig1127358_12599_9957_- TonB-dependent receptor 

 fig|6666666.273401.peg.1753 contig1683636_83063_85543_+ TonB-dependent receptor, putative 

 fig|6666666.273401.peg.1830 contig1739719_27403_24779_- TonB-dependent receptor 

 fig|6666666.273401.peg.2035 contig220997_15913_19026_+ TonB family protein / TonB-dependent receptor 

 fig|6666666.273401.peg.2052 contig220997_39410_38121_- SusD/RagB family protein 

 fig|6666666.273401.peg.2089 contig220997_103610_100434_- TonB family protein / TonB-dependent receptor 

 fig|6666666.273401.peg.2094 contig220997_109073_106839_- TonB-dependent receptor 

 fig|6666666.273401.peg.2126 contig220997_138453_136141_- TonB-dependent receptor, plug precursor 

 fig|6666666.273401.peg.217 contig1136211_12168_13268_+ D-galactose 1-dehydrogenase (EC 1.1.1.48) 

 fig|6666666.273401.peg.2259 contig30784_58766_59518_+ D-alanyl-D-alanine dipeptidase (EC 3.4.13.-) 

 fig|6666666.273401.peg.237 contig116609_13942_12140_- TonB-dependent receptor 

 fig|6666666.273401.peg.2390 contig30784_216416_218431_+ TonB-dependent receptor; Outer membrane receptor for ferrienterochelin and 
colicins 

 fig|6666666.273401.peg.2430 contig30784_262191_264488_+ TonB-dependent receptor, putative 

 fig|6666666.273401.peg.2467 contig309883_13005_15938_+ TonB family protein / TonB-dependent receptor 

 fig|6666666.273401.peg.2505 contig309883_63607_66588_+ TonB family protein / TonB-dependent receptor 

 fig|6666666.273401.peg.2578 contig332824_68611_71202_+ TonB-dependent receptor 

 fig|6666666.273401.peg.2631 contig332824_149097_146893_- SusD, outer membrane protein 

 fig|6666666.273401.peg.2632 contig332824_152087_149124_- SusC, outer membrane protein involved in starch binding 
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Genome Feature ID Protein locus tag (accession) Functional role 

BinN024 fig|6666666.273401.peg.3067 contig365579_121910_123310_+ N-acetylglucosamine deacetylase (EC 3.5.1.-) / 3-hydroxyacyl-[acyl-carrier-
protein] dehydratase, FabZ form (EC 4.2.1.59) 

 fig|6666666.273401.peg.3174 contig407875_28137_25726_- TonB-dependent receptor plug domain protein 

 fig|6666666.273401.peg.3184 contig407875_34293_36515_+ TonB-dependent outer membrane receptor 

 fig|6666666.273401.peg.3324 contig449887_19914_22334_+ TonB-dependent receptor 

 fig|6666666.273401.peg.3379 contig49397_25101_22732_- TonB-dependent receptor 

 fig|6666666.273401.peg.3387 contig49397_33157_36084_+ SusC, outer membrane protein involved in starch binding 

 fig|6666666.273401.peg.3405 contig49397_63779_61833_- Glucosamine-6-phosphate deaminase (EC 3.5.99.6) 

 fig|6666666.273401.peg.3439 contig49397_105905_104067_- Glucosamine--fructose-6-phosphate aminotransferase [isomerizing] (EC 
2.6.1.16) 

 fig|6666666.273401.peg.3477 contig49397_141166_142017_+ Membrane-bound lytic murein transglycosylase D precursor (EC 3.2.1.-) 

 fig|6666666.273401.peg.3553 contig49397_232124_229392_- TonB-dependent receptor, plug precursor 

 fig|6666666.273401.peg.357 contig1206644_33706_30542_- TonB family protein / TonB-dependent receptor 

 fig|6666666.273401.peg.3744 contig496638_193323_191665_- D-alanyl-D-alanine carboxypeptidase (EC 3.4.16.4) 

 fig|6666666.273401.peg.391 contig1206644_81786_81334_- TonB-dependent receptor, putative 

 fig|6666666.273401.peg.392 contig1206644_83746_81749_- TonB-dependent receptor, putative 

 fig|6666666.273401.peg.3948 contig61346_17316_18437_+ N-acetylglucosaminyltransferase (EC 2.4.1.-) 

 fig|6666666.273401.peg.3979 contig61346_57976_60777_+ TonB-dependent receptor 

 fig|6666666.273401.peg.4004 contig636711_12587_13798_+ Membrane-bound lytic murein transglycosylase D precursor (EC 3.2.1.-) 

 fig|6666666.273401.peg.403 contig1206644_93891_95090_+ N-acetyl-L,L-diaminopimelate deacetylase (EC 3.5.1.47) 

 fig|6666666.273401.peg.4218 contig653883_157985_155220_- TonB-dependent receptor 

 fig|6666666.273401.peg.4312 contig700315_9451_7199_- TonB-dependent receptor, putative 

 fig|6666666.273401.peg.4630 contig892113_75670_76740_+ Protein often near L-alanine-DL-glutamate epimerase (cell wall recycling) 

 fig|6666666.273401.peg.4631 contig892113_76737_77810_+ L-alanine-DL-glutamate epimerase 

 fig|6666666.273401.peg.4649 contig912080_10758_8551_- TonB-dependent receptor; Outer membrane receptor for ferrienterochelin and 
colicins 

 fig|6666666.273401.peg.497 contig125023_45829_46917_+ N-acetylglucosamine related transporter, NagX 

 fig|6666666.273401.peg.516 contig125023_72194_72946_+ N-acetylmuramic acid 6-phosphate etherase 

 fig|6666666.273401.peg.528 contig1321850_5938_3503_- TonB-dependent receptor 

 fig|6666666.273401.peg.614 contig1321850_105993_107204_+ D-alanyl-D-alanine carboxypeptidase (EC 3.4.16.4) 

 fig|6666666.273401.peg.717 contig1321850_199521_200498_+ N-acetyl-gamma-glutamyl-phosphate reductase (EC 1.2.1.38) 
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Genome Feature ID Protein locus tag (accession) Functional role 
BinN024 fig|6666666.273401.peg.742 contig1321850_234408_235646_+ D-amino acid dehydrogenase small subunit (EC 1.4.99.1) 

 fig|6666666.273401.peg.832 contig1404041_106577_104205_- TonB-dependent receptor; Outer membrane receptor for ferrienterochelin and 
colicins 

  fig|6666666.273401.peg.985 contig1404041_267853_266489_- Phosphomannomutase (EC 5.4.2.8) / Phosphoglucosamine mutase (EC 
5.4.2.10) 
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