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ABSTRACT

Globalization has strengthened and expanded connections between consumers and distant

water resources used in production, by enabling consumer demand in one location to be ful-

filled with production and resource use in another. Many of the environmental consequences

associated with water-intensive production, particularly agricultural production, are not felt

by those consuming the products but are left as an artifact for producing communities.

Consumers increasing dependency and influence on nonlocal water use decisions can lead

to water scarcity, groundwater depletion, or other environmental impacts, but, with better

understanding, can provide an opportunity for innovative and sustainable solutions to local

water issues.

The primary goal of this dissertation is to better understand the telecouplings between

nonlocal consumers, which drive transfers of water and water-intensive goods, and the over-

exploitation of local water resources. There is an incongruity between the scale at which

water is studied and managed and the scale that water dependencies and impacts coalesce;

this dissertation begins to resolve this mismatch of scale. This work provides an important

first step toward empowering producers, consumers, water planners, and decision makers to

manage water resources more holistically and at the appropriate scale by linking understand-

ing of local production water consumption with new knowledge of virtual water transfers —

that is, the water embedded in the production of traded commodities.

We draw upon publicly available data on agricultural production, water withdrawals and

consumption, water infrastructure, and trade, as well as modeled estimates of agricultural

water requirements to quantify virtual water transfers between producers and consumers. A

novel dimension of this research is the fine spatial, temporal, commodity, and water source

resolution made possible through empirically-based datasets and our unique methodological

approach.

In this dissertation, we quantify and track agricultural virtual groundwater transfers from

the overexploited Mississippi Embayment, High Plains, and Central Valley aquifer systems in

the United States to their final destination. Specifically, we determine which US metropolitan
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areas, US states, and international export destinations are currently the largest consumers

of these critical aquifers. Next, we study drought impacts to food and virtual water transfers

from the Central Valley of California and examine the linkage between distant consumption

of virtual water resources and local water impacts. More broadly, this study elucidates how

local climate shocks reverberate through the global food system, highlighting the importance

of complex interactions in the coupled climate-food-water system, and the critical role of local

groundwater depletion. A comprehensive, high-resolution database was also created that

estimates the water footprint of US production and the virtual water contents of food, energy,

services, manufacturing, and mining products produced within the US. This work elucidates

how different water sources within the US support the country’s economy, explicitly relating

these water sources to over 500 different industries and products. Finally, an interdisciplinary

framework to mitigate the complex social and natural barriers to physical water transfers is

put forth.
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Chapter 1

INTRODUCTION

1.1 Motivation & Overview

Mankind has left an indelible imprint on many of the world’s watersheds and aquifers, fun-

damentally altering their natural hydrologic response. In turn, the evolution of hydrologic

systems has altered societal behavior. Together, this interplay between humans and water

represents an example of a coupled human-nature system. The distant interactions between

people and places are commonly referred to as ‘telecoupling’ (Liu et al., 2013), which rep-

resent a specific case of the complex interactions that arise between coupled human and

natural systems. These nonlocal interactions are increasingly widespread and lead to unan-

ticipated outcomes with profound implications for resource consumption and sustainability

(Liu et al., 2015). In this light, there is a growing recognition that hydrologic systems should

no longer be studied only within a local context but instead examined through the lens of

the nonlocal socioeconomic system that shape it (Hoekstra and Hung , 2005; Sivapalan et al.,

2014; Liu et al., 2015; Sanderson and Frey , 2015).

Human activity, such as the global food trade system, scales in unexpected and unpre-

dictable ways, producing water sustainability challenges that must be integrated into novel

water science and management approaches (Dalin et al., 2012; Sivapalan et al., 2014; Dang

et al., 2015). Socio-hydrology offers a framework to study cross-scale interactions between

humans and hydrologic systems (Sivapalan et al., 2012, 2014; Levy et al., 2016). Konar

et al. (2016) conceptualizes (see Fig 1.1) how the traditional study of physical flows and

stocks of water within a watershed can be coupled with human-mediated flows and stocks

of freshwater. In the proposed socio-hydrologic framework, humans shape the hydrologic

system through internal modifications (e.g., land-use change, infrastructure), physical wa-

ter transfers, and virtual water transfers. The inclusion of external water transfers beyond

the physical boundaries of the watershed (which is where most studies end), allows for the

exploration of telecouplings between humans and specific water resources. In addition, this
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framework enables the identification of local and/or nonlocal causes of unsustainable water

use and can guide sustainable water management across scales.

Figure 1.1: Conceptual diagrams of (A) physical hydrology and (B) socio-hydrology. The
socio-hydrology framework incorporates human-mediated flows and stocks of freshwater
that extend beyond the watershed, the principle unit of analysis in traditional hydrology.
From Konar et al. (2016) with permission.

Nonlocal interactions between freshwater and humans are commonly made evident by

physical and virtual water transfers. Both types of water transfers are shaped by complex

exchanges between natural processes and social institutions, policies, norms, and economics,

which may potentially lead to unexpected water transfers and associated impacts. Physi-

cally transferring water between users or locations (i.e., water reallocation) is an alternative

approach to more traditional water supply and demand management strategies. Water re-

allocation is the transfer of water between users who are committed formally or informally

to a certain amount of water when the existing allocation is physically infeasible, economi-

cally inefficient, or socially unacceptable. Alternatively, virtual water transfers represent the

water embedded within the production of traded goods or services. Virtual water transfers

couple local water use to the final, often nonlocal, consumer who is ultimately driving its

consumption.
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One of the underlying mechanisms relating and driving both virtual and physical transfers

of water is ineffective water pricing. Water users often only pay water’s delivery cost, and

many pay even less than that. Water prices rarely reflect opportunity cost associated with

other water uses, whether by humans or the environment. Disregarding the value of some

water uses, as well as the full cost of water use, leads to negative externalities, such as

groundwater depletion and water degradation. Moreover, water, or the goods — especially

agricultural goods — being produced with water, are heavily subsidized. The use of subsidies

and pricing water below its marginal cost creates market distortions. These distortions can

partially explain the seemingly paradoxical water-intensive production patterns in arid areas

and transfers of water from water scarce to water rich regions (Dalin et al., 2014; Zhao

et al., 2015).

The goal of this dissertation is to demonstrate how distant demands for water and water-

intensive goods shape local water use and sustainability. More specifically, we will evaluate

how the global food trade system links consumers around the world to major aquifers in the

United States. A particularly novel dimension of this dissertation is the explicit linking of

specific water bodies (namely, aquifers of the US) to distant consumers using empirically-

based, sub-national commodity transfer data. Previous sub-national studies have used mod-

eled trade estimates (e.g., Verma et al. 2009; Dalin et al. 2014), which typically require

several crude assumptions and introduce additional errors. This work captures the source

of water use by specific commodities, evaluates indirect consumption patterns, and assesses

impacts of water use at fine spatial resolutions. A comprehensive database was also created

that estimates the water footprint of US production and the virtual water contents of over

500 food, energy, services, manufacturing, and mining products produced within the US.

Lastly, an interdisciplinary framework to mitigate the complex social and natural barriers

to physical water transfers is overviewed and advanced.

In this introductory chapter, I discuss relevant background and concepts, outline the

research objectives and questions of this research, and demonstrate the original contributions

of this work. Lastly, I layout the organizational structure of the remaining dissertation.

1.2 Background

Mankind’s growing production and consumption patterns have moved the planet beyond its

boundaries of sustainable resource use (Rockström et al., 2009). Urbanization and globaliza-

tion have caused a decoupling of human consumption from the local resource base, making it
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difficult to link and appropriate consumers to the carry capacity of far-off landscapes. This

may create dependencies that are not ecologically sustainable or geopolitically stable. The

seminal work of Rees (1992) first introduced the ‘footprint’ concept to relate consumers to

distant ‘elsewhere’ and link their resource demand to the negative impacts on the areas that

support them. Since then, the footprint concept has evolved from broadly concerning ecology

(Rees and Wackernagel , 1996; Wackernagel and Rees , 1998) to more specific measures of

mankind’s mark on atmospheric greenhouse gases (carbon footprint; Wiedmann and Minx

2008), mineral cycles (nitrogen and phosphorus footprints; Wang et al. 2011; Leach et al.

2012), and water resources (water footprint; Hoekstra 2003), among others.

This dissertation’s focus is on the various ways society uses and impacts water both locally

and nonlocally. The water footprint (WF ), which is a measure of fresh water appropriated to

different societal purposes, is the foundational concept upon which we build our work. Water

footprints can be used to describe the direct water use of producers (WF of production)

or the indirect water use by consumers of water-dependent goods (WF of consumption).

Additionally, the water footprint of a product (PWF , also known as virtual water content,

VWC) is the amount of water used to produce that commodity, good, or service, typically

normalized by the product’s weight or price. The Water Footprint Assessment (WFA)

framework, along with the accompanying ’virtual water’ (VW ) concept that relates water

used in production to specific distant consumers of those goods, provides a quantitative

methodology to assess direct and indirect water use. This framework has been used to trace

indirect dependencies on distant water resources (Dalin et al., 2012), connect far-removed

consumers to out-of-sight water issues which they play a part (Marston et al., 2015; Marston

and Konar , 2017), and to assess exposure to nonlocal water related shocks (Rushforth and

Ruddell , 2016).

The following sections will describe how the field has progressed since its inception and how

this dissertation pushes the literature forward. Attention will be given to how the literature

has evolved with regards to i) water source partitioning (e.g., blue vs. green; surface water

vs. groundwater; scarce vs. non-scarce), ii) spatial resolution, iii) industry and commodity

specification, and iv) temporal resolution of analysis. This dissertation makes advances

on all four fronts and contributes unique methodological approaches to answer outstanding

questions in the field (refer to 1.3 and 1.4 sections).
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1.2.1 Methodological advances and overview

Water footprint and virtual water studies have advanced considerably since the concept was

first introduced by Hoekstra (2003). Initial studies were generally performed at the global

level, tracing VW flows between nations. Water footprints were assumed to be uniform

over large spatial areas and product types, ignoring local climatic and production difference.

Likewise, inter- and intra-annual variation in climate and crop yields were ignored in favor

of longer term averages. Local water scarcity, degradation, and overexploitation of different

water sources were not considered.

The first methodological framework to quantify VW trade and WF of consumers and

producers was a process-based, bottom-up approach called the WFA developed by Hoekstra

et al. (2009). This has since been followed by a similar bottom-up approach developed within

the life cycle assessment (LCA) literature. Top-down approaches have been widely used

as well and typically use environmentally extended input-output (EEIO) models to trace

VW through the entire supply chain. We employ and build-upon the WFA methodology

throughout this dissertation because of its ability to accommodate finer commodity, water

source, and spatial resolution than other methodological frameworks.

Water source delineation

Water has different opportunity cost and sustainability implications depending on its source.

In recognition of this, the concept of blue and green water (Ringersma et al., 2003; Falken-

mark and Rockström, 2004; Falkenmark and Rockström, 2006) was adopted early in the WF

and VW literature. Green water refers to water in the root zone made available by pre-

cipitation, while blue water is comprised of surface water and groundwater. Although some

studies do not distinguish between green and blue water (e.g., Islam et al. 2007; Zeitoun

et al. 2010; Vanham 2013), this is increasingly rare. Several studies, especially those follow-

ing the LCA or the top-down EEIO approaches, do not consider green water, insisting its

use has little environmental or economic implications (Chenoweth et al., 2014). However, a

growing number of researchers contend that green water should not be overlooked (Rock-

ström, 2001; Allan, 2006; Falkenmark and Rockström, 2006; Rost et al., 2008; Aldaya et al.,

2010).

Empirical measurements of water consumption are sparse. This is particularly true of

agricultural water consumption, which is responsible for 92% of global water consumption

(Hoekstra and Mekonnen, 2012). Therefore, most studies utilize a crop water model to
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calculate the consumptive water requirements (i.e., evapotranspiration, ET) and crop yields

necessary to determine the crop’s VWC (ET/crop yield). These models partition crop ET

between green water and blue water based on climatic, crop, and management conditions.

CROPWAT is the most used model, while models such as the Global Crop Water Model

(GCWM) (Siebert and Döll , 2010), H08 (Hanasaki et al., 2010; Dalin et al., 2014), and

AQUACROP (Chukalla et al., 2015; Zhuo et al., 2016) have been widely utilized as well.

Researchers are gradually distinguishing between blue water sources as well. Recent stud-

ies have included environmental flow requirements and monthly variations in water availabil-

ity to differentiate blue water use based on its scarcity and sustainability impacts (Hoekstra

et al., 2012; Hoekstra and Mekonnen, 2016; Zhuo et al., 2016; Yano et al., 2016). Addi-

tionally, a handful of studies have partitioned blue water into blue surface water and blue

groundwater sources, since the implications of using each is different (Aldaya and Llamas ,

2008; Aldaya et al., 2010; Dumont et al., 2013; Schyns and Hoekstra, 2014; Schyns et al.,

2015; Yano et al., 2015, 2016; Marston et al., 2015; Marston and Konar , 2017). Mayer et al.

(2016) goes even further, attributing water use of specific sectors to shallow groundwater,

deep groundwater, tributary surface water, and Great Lakes water. Recently, Dalin et al.

(2017) distinguished between renewable and non-renewable groundwater footprints of global

crop production. Marston et al. (2015), Marston and Konar (2017), and now Dalin et al.

(2017), are the first to connect groundwater extraction to the nonlocal consumers driving

their overexploitation. Throughout this dissertation, we distinguish between groundwater,

surface water, and green water sources. This represents the state of the science and begins

to bring more meaning to VW and WF analysis.

Grey water was introduced several years after blue and green water by Hoekstra and Cha-

pagain (2011) as an indicator of freshwater pollution caused by a production process. It

represents the volume of water needed to dilute pollutants (namely, nitrogen and phospho-

rous) to a given water quality standard. The use of grey water footprints has not been as

widely adopted as blue and green water footprints because it is a theoretical rather than ac-

tual consumptive measure and the assumptions behind it are questionable (see Chenoweth

et al. 2014). Therefore, grey water is not considered in this dissertation.

Spatial resolution

Water footprint and virtual water trade assessments range from the urban (Hoff et al.,

2014; Rushforth and Ruddell , 2015, 2016) to global scale (Hoekstra and Mekonnen, 2012;
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Wang and Zimmerman, 2016). Most studies evaluate WF s and VW trade between nations

since data is more abundant (particularly bilateral trade data) at the national level than the

subnational level. Sub-national VW studies typically pair VWC with modeled estimates

of commodity transfers (e.g., Verma et al. 2009; Dalin et al. 2014, 2015) or multi-regional

input-output (MRIO) models (e.g., Shi and Zhan 2015; Zhi et al. 2014; Dong et al. 2014).

This dissertation builds on the work of Lin et al. (2014) and Dang et al. (2015) who

first utilized empirical sub-national commodity transfer data to explore the properties of the

US food and VW trade networks. Our use of empirically-based commodity transfer data

within this dissertation reduces the uncertainty in VW trade estimates and contributes to

the novelty of our work.

Regional (Vanham, 2013; Vanham and Bidoglio, 2014) and subnational studies can pro-

vide more detail and offer greater insight into sustainability challenges faced within a basin

or locality than global studies. For example, Aldaya and Llamas (2008) and Aldaya et al.

(2010) determined the green, surface, and groundwater footprint of Spain’s Guadiana Basin

under different climate conditions (e.g., wet, normal, dry) and made suggestions on the im-

plications of water related policies. Likewise, Rushforth and Ruddell (2015) and Rushforth

and Ruddell (2016) use US county level estimates of water withdrawals per sector to deter-

mine the exposure and resilience of two US cities to direct and indirect water risk. In many

areas though, further spatial refinement in WF and VW estimates is limited by a lack of

data.

Subnational, national, and global studies are gradually moving toward using both hydro-

logic and geopolitical boundaries in their analysis (Aldaya and Llamas , 2008; Vanham, 2013;

Vanham and Bidoglio, 2014; Schyns and Hoekstra, 2014; Pfister and Bayer , 2014; Wang and

Zimmerman, 2016; Zhuo et al., 2016). Increasingly, studies are attempting to relate VW

trade and WF to local environmental sustainability and hydrologic conditions. The shift to-

ward more impact oriented VW and WF assessments necessitates analysis at a finer spatial

resolution in order to reveal sustainability challenges, which most often manifest themselves

at local levels. The river basin has traditionally been used in water science and management

as the chief spatial unit to assess water scarcity and environmental sustainability associated

with water use. Therefore, most WF and VW trade studies considering environmental sus-

tainability and/or water scarcity use the river basin as the fundamental spatial boundary

of analysis. This shift in the literature also moves the field closer to offering more policy

relevant results (e.g., water footprint caps per river basin; Hoekstra and Wiedmann 2014).

Hoekstra et al. (2012) first assessed water scarcity at a global scale using the river basin as
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the foundational unit of analysis. They found that 201 of the 405 basins evaluated worldwide

face severe water scarcity at least one month per year due to human consumption and climate

patterns. Wang and Zimmerman (2016) quantified the impacts of VW trade on water use

and stress at both the national and basin scale (over 12,000 basins were analyzed). Their

study showed that some of the world’s most water stressed basins would require 10-80% more

renewable water resources if not for virtual water trade. Although the general findings and

methodological advances of these studies are noteworthy, results for individual basins should

be interpreted with great care since several assumptions were needed to disaggregate national

level statistics down to the basin level. Moreover, monthly water scarcity was determined

without considering infrastructure in place to buffer against intra-annual water variability.

For water footprint assessments and studies of virtual water trade to provide meaningful and

actionable findings they must be presented at the scale useful for water governance. This

dissertation makes progress in this regard by providing results along specific water resource

boundaries (i.e., aquifers) and at county and city delineations. In fact, we were the first

to analyze the WF and VW trade along aquifer boundaries (Marston et al., 2015). We

avoid many of the assumptions (and the corresponding uncertainty) of other studies that

downscale national water use statistics to finer resolutions (e.g., Wang and Zimmerman

2016; Hoekstra and Mekonnen 2012) by leveraging high-resolution, empirically-based data

at the point, county, and sub-state scales.

Insufficient data often leads to several assumptions in WF and VW trade studies. These

assumptions may result in significant, yet difficult to quantify, uncertainty in WF and VW

trade estimates. Moreover, WF and VW studies often employ datasets from different spatial

scales, adding further uncertainty in estimates. The work presented in this dissertation is

not immune to the issues of data scarcity, scale, and uncertainty prevalent within the field.

We partially address the uncertainty within our results by comparing our findings against

other studies and performing sensitivity analysis of critical and highly variable parameters.

Industry and commodity specification

Most WF and VW trade studies have only focused on the agricultural sector since it is

responsible for over 90% of consumptive water use globally. Top-down approaches quantify

one or two WF values for the entire agriculture sector, but the more common bottom-up (or

process-based) approaches estimate water use of each crop and livestock animal. In recent

years, there has been growing interest in calculating WF and VW trade of other sectors
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of the economy. Limited data availability and significant variability between sectors and

locations has hindered progress in this area, however.

Estimates of water use across the entire economy typically employ a top-down approach,

using environmentally extended MRIO tables and other regional data to allocate water use

to each economic sector. Estimates using this approach are almost exclusively in China

(e.g., Guan and Hubacek 2007; Shi and Zhan 2015; Zhi et al. 2014; Dong et al. 2014; Zhao

et al. 2010; Feng et al. 2012; Zhang and Anadon 2014) since the country produces MRIO

tables needed for this type of analysis. The direct water footprints provided by these studies

represent anywhere from 6 to 40 sectors, with agriculture represented by one or two of these

sectors.

Mekonnen and Hoekstra (2011a) provide global coverage of industrial water use at 5’ x

5’ resolution and their work provides the basis for several subsequent papers (e.g., Hoekstra

and Mekonnen 2012; Lenzen et al. 2013; Schyns et al. 2015). Yet, Mekonnen and Hoekstra

(2011a) make several assumptions that raise serious concerns about the accuracy of their es-

timates. First, all industrial water uses are lumped into one broad category, glossing over the

significant variability in water use among sectors. Second, the authors arbitrarily assumed a

uniform and global industrial water consumption coefficient of 5%. Lastly, subnational dif-

ferences in water use due to water prices, scarcity, technology, and conservation are ignored.

Instead, national level statistics were disaggregated to 5’ x 5’ grid cells based on population.

Wang and Zimmerman (2016) introduce a hybrid approach that seems to combine the

greater sectoral detail of process-based studies with the top-down I/O-based analysis, which

captures intermediate and final consumption of commodities and the water embedded within

them throughout the entire supply chain. This work provides greater sectoral specification

(45 non-agriculture sectors are assessed) and uses different consumption coefficients for var-

ious industries (still, the same values are used for entire continents and/or multiple sectors).

Nonetheless, Wang and Zimmerman (2016) rely on national estimates of industrial water

use, which they then downscale to the basin level based on water use proxy variables, such

as population, irrigated area, nighttime lights, and electric power generation.

Blackhurst et al. (2010) offers the greatest sectoral specification of any study to date.

The authors use direct requirement coefficients related to I/O tables to estimate water with-

drawals and intensities for 428 sectors in the United States. This work provides estimates

at the national level, ignoring local differences in water use and assuming a uniform water

price across the nation. Furthermore, water use is reported in terms of water withdrawals,

not water consumption as standard in the WF literature.
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In our research, we match the sectoral and crop level detail of Blackhurst et al. (2010) and

Mekonnen and Hoekstra (2010) (both representing the state of the art, respectively), while

overcoming many of their shortcomings. Unlike previous work, this study does not rely on

global maps of crop area or irrigation but uses county level census data to estimate agricul-

ture production and irrigated area. By leveraging county and sub-state data on economic

activity and water withdrawals, we estimate direct water footprints of production for over 500

goods and economic sectors at the state, sub-state, and/or county scale. Furthermore, water

footprints of non-agriculture sectors are bounded by locally reported water withdrawals and

transfers and estimated by local economic activity and water use coefficients. In this way,

we improve upon previous approaches and reduce some of the uncertainty in WF and VW

trade estimates attributable to these studies’ critical downscaling assumptions.

Temporal resolution

The current literature has not given considerable attention to the inter- and intra-annual

variability of VW transfers and WF . A finer temporal resolution can permit exploration of

changes in water consumption within a given year but also under precipitous (e.g., export

bans, drought) and gradual (e.g., population growth, technological improvements) changes

across several years. Furthermore, inter- and intra-annual variations can reveal sustainability

challenges that may not be evident when evaluating average values. Authors have generally

removed temporal variability by assuming average climate, production, and trade patterns

over a 5- or 10-year period.

Although sparse, some recent studies have begun to examine the temporal dynamics of VW

transfers and WF . For instance, several authors investigated the temporal evolution of the

global VW trade network (Carr et al., 2012; Dalin et al., 2012; Clark et al., 2015; Roson and

Sartori , 2015). These inter-annual global studies revealed that VW trade more than doubled

between 1986–2007, demonstrating the increasing connection between international trade

and local water use (Dalin et al., 2012). Dalin and Conway (2016) quantify international

VW trade from southern Africa from 1986–2011. Their study reveals how socio-economic

change and climatic variability in southern Africa propagated through the global food and

VW trade network. Basin level WFA in Spain (Aldaya and Llamas , 2008; Aldaya et al.,

2010; Dumont et al., 2013), Cyprus (Zoumides et al., 2014) and China (Zhuo et al., 2016)

show how climate, agricultural production, and trade shape water use in a basin over time.

The third chapter of this dissertation reveals a severe drought’s impact on agriculture
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water use and consumer’s indirect water dependencies over time. A particularly novel aspect

of this work is that it demonstrates inter-annual shifts in consumer behavior (represented

through changes in trade patterns) and farmer decision making (represented by irrigation

and cropping decisions). These important findings would be smoothed over if we represented

long-term average values as is typical in the literature.

1.2.2 Physical water transfers and reallocation

Globally, the volume of VW transfers dwarfs those of physical water transfers. However,

at a local level physical water transfers, or the reallocation of water between places and/or

uses, can play a significant role in meeting local water requirements. The fifth chapter of

this dissertation is related to physical water transfers, thereby providing a comprehensive

assessment of how society depends on and shapes water resources (refer to Fig 1.2).

Researchers (Molle and Berkoff , 2006; Hadjigeorgalis , 2009), practitioners (Johnson

et al., 1990), and politicians (Committee on Western Water Management , 2012) have pro-

posed water reallocation as an adaptive water management strategy that can reduce the eco-

nomic, social, and environmental harm caused by water scarcity. The reallocation of water

has resolved conflict among, and balanced the needs of, multiple water users while improving

local and regional economic robustness (Zhu et al., 2015; Rosegrant and Binswanger , 1994).

It has been used to serve multiple purposes, such as improving water quality and ecosystems

(Debaere et al., 2014), directly meeting water demands (Palomo-Hierro et al., 2015), en-

hancing system flexibility and reliability (Molle and Berkoff , 2009), and decreasing water

supply cost (Lund and Israel , 1995). When current supplies are inadequate and further

source development is infeasible, reallocation has been shown to be one of the most cost-

effective means of supplying water to the highest priority users (Bathia et al., 1995; Gomez

et al., 2004) and, in some cases, can reduce water shortage vulnerabilities by diversifying

users’ water sources (Kasprzyk et al., 2009). The cost effectiveness of water reallocation was

demonstrated by (Firoozi and Merrifield , 2003) who used a theoretical model that showed a

water portfolio including water reallocation could delay the construction of costly reservoirs.

Despite the cited benefits of water reallocation, it has not been as broadly implemented

or effective as expected (Eden et al., 2008; Giannoccaro et al., 2013). Wide-spread and

effective application of water reallocation is still fraught with major obstacles due to complex

and poorly understood human-water interactions and feedbacks. These barriers are often

interrelated and can only be overcome through a systems approach due to the complex
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interactions between nature and society, which cannot be easily disentangled. Yet, the

current literature reduces problems to fit within disciplinary silos and ignores the complex

couplings and feedbacks often seen in examples of water reallocation. The current body of

literature was found to primarily focus on the institutional, economic, and social obstructions

to water reallocation, with little consideration to the natural and physical dimensions of water

reallocation. This deficiency in the current literature motivated our investigation into the

major barriers to water reallocation and the development of an interdisciplinary research

framework to overcome them.

1.3 Research Objectives and Questions

The overarching research question behind this research plan is how is water use shaped by

anthropogenic influences within and beyond the water’s hydrologic boundary? The follow-

ing four objectives, along with their accompanying research questions, will be the focus of

this dissertation. Fig 1.2 provides a schematic overview of how these four objectives relate

together.

Objective 1 Comprehensively quantify and trace virtual groundwater and food transfers

from overexploited aquifers in the US to their destination of final use.

Research Question(s): What locations are most responsible for — and currently

most reliant upon — depletion of critical and overexploited aquifers in the US?

Objective 2 Improve understanding of how drought reverberates through the global food

system. More specifically, quantify drought impacts to the water footprint of agricul-

tural production and virtual water transfers from California’s Central Valley.

Research Question(s): (i) How do agricultural production water footprints in Cal-

ifornia evolve with drought? (ii) How does drought impact food and virtual water

transfers from California? and (iii) How is global demand for California agriculture

contributing to unsustainable local water use?

Objective 3 Quantify the direct water footprint of food, energy, services, manufacturing,

and mining products produced within the United States at an unparalleled sectoral

detail and spatial resolution.

Research Question(s): (i) How much surface water, groundwater, and green water

is used to support production of different industries and products across the United
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Figure 1.2: Dissertation framework. Collectively, the four objectives of this dissertation
highlight how local water use and sustainability are shaped by local and nonlocal
anthropogenic forcings via virtual and physical water transfers.

States? (ii) To what degree does spatially explicit and industrial specific PWF im-

prove water use estimates compared to PWF estimates at coarser spatial or industrial

resolutions? (iii) How much do PWF vary across different industries and locations?

Objective 4 Derive the major barriers to physical water transfers from an extensive lit-

erature review. Propose interdisciplinary framework to overcoming major barriers to

physical water transfers.

Research Question(s): (i) What are the major obstacles to physical water transfers?

(ii) Why do these barriers still exist and how can they be overcome?
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1.4 Research Contributions

The original contributions of this dissertation are as follows:

1. A novel dimension of this research is the fine spatial, temporal, commodity, and water

source resolution we provide, which is made possible through empirically-based datasets

and our unique methodological approach. Moreover, the incorporation of empirical sub-

national commodity transfer data differentiates this work from other studies, which

typically utilize crude trade models to replicate intra-national trade flows.

2. We are the first to quantitatively demonstrate the role of distant consumer demands on

local groundwater sustainability and the fact that aquifer depletion must be considered

within its global context.

3. It is shown how local climate shocks reverberate through the global food system, high-

lighting the importance of complex interactions in the coupled climate-food-water sys-

tem, and the critical role of local groundwater depletion.

4. We provided the most comprehensive and detailed water footprint assessment of a

country to date. Hotspots of United States water consumption, by crop and industry,

are identified through improved disaggregation techniques.

5. This work provides a comprehensive and high-resolution dataset of water use require-

ments of food, energy, services, manufacturing, and mining products produced within

the US. This database will be useful for water management and modeling, environ-

mental life cycle assessments, water footprint assessments, benchmarking water use,

and demand forecasting and planning.

6. We contribute an interdisciplinary framework to overcome the complex social and

natural barriers to water reallocation.

1.5 Dissertation Structure

The chapters of this dissertation are organized as follows:

❼ In Chapter 2, we comprehensively quantify and track agricultural virtual groundwater

transfers from overexploited aquifers of the United States to the major U.S. cities,
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U.S. states, and countries that are currently most reliant upon them. Much is un-

derstood about local food production and groundwater use in these critical aquifer

systems. Here, we evaluate the consumption side of the story and determine where

these resources are being demanded.

❼ In Chapter 3, we examine drought impacts to food and virtual water transfers from

the Central Valley of California and examine the linkage between distant consumption

of virtual water resources and local water impacts. More broadly, this study elucidates

how local climate shocks reverberate through the global food system, highlighting the

importance of complex interactions in the coupled climate-food-water system, and the

critical role of local groundwater depletion.

❼ In Chapter 4, we estimate the water footprint of production of the United States, the

largest producer and consumer of goods and services in the world. This study is the

most detailed, comprehensive water footprint analysis of a given country to date. We

present direct water footprints of production and product water footprints for around

140 agricultural products and the production of over 375 other goods and services,

including energy generation. This study broadly contributes to our understanding of

water in the US economy, enables supply chain managers to assess direct and indirect

water dependencies, and provides opportunities to reduce water use through bench-

marking.

❼ Chapter 5 explores the potential of water reallocation as an adaptive water management

strategy in places of real or institutional water scarcity. By taking a high-level view of

the existing body of knowledge, we put forth an interdisciplinary research framework

to overcome the primary hindrances to broader implementation of water reallocation.

The proposed framework demonstrates how the social sciences, natural sciences, and

engineering fields can integrate their unique perspectives so to overcome each of the

major barriers impeding wider and more effective water reallocation. We outline some

of the specific problems an integrated research approach could be applied to and what

the anticipated outcomes would entail.

❼ Chapter 6 highlights conclusions of this research, notes limitations of our work, and

suggest broader implications and paths for future research.

The core chapters of this dissertation either have or will be submitted for publication.

Below are the full references:
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Chapter 2

VIRTUAL GROUNDWATER TRANSFERS FROM

OVEREXPLOITED AQUIFERS IN THE UNITED

STATES

2.1 Introduction 1

Globalization has strengthened and expanded connections between socioeconomic systems

and distant resources, by enabling consumer demand in one location to be fulfilled with pro-

duction and resource use in another. The distant interactions between people and places are

commonly referred to as ‘teleconnections’ (Seto et al., 2012), which represent a specific case

of the complex interactions that arise between coupled human and natural systems (Liu

et al., 2013). These non-local interactions are increasingly widespread and lead to unan-

ticipated outcomes with profound implications for resource consumption and sustainability

(Liu et al., 2015). The global food trade system is a clear example of a teleconnected system

that connects local resource use with distant consumer demands. Agricultural production

is a particularly water-intensive sector of the economy (Vörösmarty , 2000; Hoekstra and

Chapagain, 2011; Hoff , 2009), such that trade of agricultural products connects local water

use for irrigation to the end consumer of the commodity, in a ‘virtual water trade’ (Allan,

1998; Hoekstra and Hung , 2005). In this paper, we seek to understand how distant food

demands are linked with non-sustainable local agricultural water use.

Groundwater plays a critical and ubiquitous role in human society (Konikow and Kendy ,

2005), providing an estimated 36%, 42%, and 27% of global domestic, agricultural, and

industrial water uses, respectively (Döll et al., 2012). Population growth, socioeconomic

development (Vörösmarty , 2000; Konikow and Kendy , 2005), and to a lesser extent, cli-

mate change (Vörösmarty , 2000; Döll , 2009), are expected to increase future demand for

groundwater resources. Unsustainable groundwater withdrawals will limit future ground-

water availability (Gleick and Palaniappan, 2010; Wada et al., 2010; Gleeson et al., 2012;

Castle et al., 2014), with implications for food security (Hanjra and Qureshi , 2010), since

1This chapter is published as an article in the Proceedings of the National Academy of Sciences, 2015
(Marston et al., 2015)
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approximately 40% of global irrigated agriculture relies upon groundwater. Importantly,

approximately 42% of irrigated agriculture in the U.S., one of the largest food producers and

the largest exporter globally, depends on groundwater (Kenny et al., 2009). Furthermore,

groundwater depletion will affect the ability of urban areas, over half of which are located

in water scarce basins (Richter et al., 2013), to meet normal water demands and cope with

climate variability, against which groundwater acts as a buffer (Konikow and Kendy , 2005).

The Central Valley (CV), High Plains (HP), and Mississippi Embayment (ME) aquifer

systems (mapped in Fig. 2.5) enable agricultural production that is critical to local economies

and contributes to U.S. and global food security. In 2007, roughly one-fifth of the ✩300 billion

agricultural industry in the United States came from these aquifer regions (USDA, 2014;

Scanlon et al., 2012). The lands overlying the CV (52,000 km2), HP (450,000 km2), and

ME (202,000 km2) make up 8% of U.S. land area, yet comprise 16% of U.S. cropland. More

than 17 million people live within the boundaries of these three aquifers. In addition, 25.7%

of all U.S. irrigation and livestock withdrawals and 61.1% of all groundwater irrigation and

livestock withdrawals come from these three aquifers (Kenny et al., 2009). Despite their

importance, these aquifers are being managed unsustainably: 67% of U.S. groundwater

depletion from 1900-2008 and 93% of groundwater depletion from 2000-2008 is attributed to

these three aquifers (Konikow , 2013).

2.2 Methodology

Here, we detail the data used in this study and explain how data sources at different spatial

and commodity resolutions were integrated to quantify virtual groundwater transfers from

the CV, HP, and ME aquifers.

Water use data

The United States Geological Survey (USGS) publishes a report estimating county-level

water use in the United States for years ending in zero and five. Estimates of county-level

groundwater and total irrigation were taken from the 2005 report (Kenny et al., 2009).

The USGS estimates irrigation withdrawals using information from state and federal crop

reporting programs, canal companies, irrigation districts, and incorporated management

areas (Kenny et al., 2009).
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Agricultural production data

County-level agricultural production data was collected from the United States Department

of Agriculture (USDA) 2007 Census of Agriculture (USDA, 2014). The USDA sent surveys

to nearly all of the recorded 3.2 million farms (defined as producing and selling more than

✩1,000 of agricultural products annually) across the United States. The response rate for

the 2007 Census of Agriculture was 85.2%, with a minimum response rate of 75% for all

counties.

Virtual water content data

Virtual water contents (commonly referred to as water footprints) for 126 crops and more

than 200 crop derived products were collected from WaterStat (Mekonnen and Hoekstra,

2011b). A high resolution, spatially explicit, dynamic water balance model was used to

calculate crop water use from 1996-2005. The reported state-level virtual water contents

are the average crop water requirement over this time period, taking into account climatic

conditions and daily soil water balance within each grid cell. WaterStat reports state-level

green, blue, and grey water footprints; we use the blue water footprints for our study.

Domestic transfer data

Data on food transfers [tons] were collected from the Commodity Flow Survey (CFS) for the

year 2007 (US Census Bureau, 2014a).The CFS data was collected from quarterly surveys

and provides data on the origin and final destination of goods, including their weight, value,

and mode of transportation. Bilateral food transfer data is provided for 123 CFS areas

within the U.S. and for seven agricultural commodity groups (as defined by the Standard

Classification of Transported Goods, SCTG). These commodity groups are listed in Table

2.1 and the complete composition of each SCTG category can be found with US Census

Bureau (2007).

The CFS database provides information on bilateral commodity transfers between CFS

Areas. CFS Areas are comprised of Metropolitan Areas and Remainder of States. Metropoli-

tan Areas are delineated by county boundaries based on the size of business activity within

the area or the area’s importance as a transportation hub. The Remainder of States are the

state areas that exclude the Metropolitan Areas. In some cases the Remainder of State is

the entire state (e.g., Idaho and Nebraska).
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International export data

Port-level export data of agricultural commodities was collected from the foreign trade di-

vision of the Census Bureau for the year 2007 (US Census Bureau, 2014b). Harbors of

the U.S. were spatially linked with CFS areas. Ports within the U.S. that exported more

than 1,000 tons of agricultural goods were included within our study. The Census Bureau’s

port-level records provide data for air and barge transport, which comprises the vast ma-

jority of all foreign exports. Exports to Mexico and Canada, however, predominately rely

on truck and rail. To capture exports to Mexico and Canada, we matched major overland

ports from the Commodity Flow Survey with interstate and railroad maps, in order to trace

the path of agricultural goods from the point of production to overland shipments to Mexico

and Canada. The quantity of each agricultural commodity group exported to Canada and

Mexico by air and barge was subtracted from the total amount sent to each country, as spec-

ified by the USDA Global Agricultural Trade System (USDA, 2014). The difference was

assumed to be the tonnage exported via truck or rail. This export tonnage was distributed

amongst the previously identified land ports. This was done proportionally to the incoming

agricultural tonnage to the port’s corresponding CFS Area (i.e., CFS Areas with greater

incoming tonnage are assumed to also export a greater fraction of tonnage sent to either

Canada or Mexico). In this way, food transfers were traced from CFS areas overlying the

aquifers to U.S. ports, and then to international export destination.

Data integration across spatial resolutions

The data used in this study are provided at multiple spatial scales. USGS water withdrawal

data (Kenny et al., 2009) and USDA agricultural production data (USDA, 2014) are at

the U.S. county scale (e.g., Fig 2.1A). Virtual water content data (Mekonnen and Hoekstra,

2011b) is at the U.S. state scale (e.g., Fig 2.1B). International export data of food com-

modities (US Census Bureau, 2014b) is available at the U.S. harbor scale (e.g., Fig 2.1C).

Domestic food commodity transfers (US Census Bureau, 2014a) are at the CFS Area scale

(e.g., Fig 2.1D).

County, state, and port scale data were mapped to the CFS Area scale. We use the CFS

Area scale as the primary spatial unit because this is the highest resolution food transfer

information available. County-level water use and agricultural production data were scaled

to CFS Areas by aggregating the county level data within a CFS Area. State-level virtual

water contents were attributed to all CFS Areas within a given state. Each of the 92 ports
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Figure 2.1: Spatial scale of each data source. (A) County: Water use data and agricultural
production data; (B) State: Virtual water contents; (C) Port: International export of
agricultural commodities; (D) CFS Area: Domestic transfers of food commodities.

of the United States was assigned to the CFS Area within which it is located.

Data integration across commodity resolutions

The data used in this study are provided at multiple commodity resolutions. Agricultural

production and virtual water content data are provided for individual agricultural items.

However, when tracking the shipments of goods, the U.S. Census Bureau uses the Standard

Classification of Transported Goods (SCTG) to group similar products. We use item-specific

water use and virtual water content information to weight the transfers of SCTG food com-

modity groups. Every food commodity that used groundwater was assigned a weight based

on the tonnage of the item-specific production data relative to the total production tonnage

of the SCTG category within a CFS Area. This assumes that the composition of each SCTG
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category reflects the agricultural production within a CFS Area. Note that some items were

either not produced in the aquifer regions or their production tonnage was negligible.

2.2.1 International virtual groundwater transfers

In this section, we explain how we trace international virtual groundwater transfers. First,

agricultural transfers are tracked from all agriculture producing CFS Areas to CFS Areas

containing a port. Then, we assume that the export composition matches the composition

of transfers coming into the port. For example, if 80% of all cereal coming into the Seattle-

Tacoma-Olympia, WA CFS Area is from the HP, we assume that 80% of cereal exports from

each of the three ports within the Seattle-Tacoma-Olympia, WA CFS Area originates from

the HP. For each commodity group and importing country, the fraction of transfers from

each aquifer region is multiplied by the total international export tonnage to get the total

exports to each country originating from each aquifer. This tonnage is then multiplied by

the corresponding virtual groundwater content (V GC) to arrive at the virtual groundwater

transfers to each country for each commodity group.

2.2.2 Determination of cereal supply reliant on overexploited aquifers

Here, we detail how we determine the fraction of each country’s cereal supply that is depen-

dent on the CV, HP, and ME aquifers. First, we calculate the fraction of cereal grown using

groundwater irrigation, excluding cereal grown without irrigation or grown using strictly

surface water irrigation. Next, groundwater-dependent cereal transfers are tracked from the

CV, HP, and ME aquifers to CFS Areas containing a port. Cereal transfers dependent on

groundwater are assumed to be proportional to the tonnage of cereal production reliant

on that aquifer. For example, if 57% of the tonnage of cereals produced in Nebraska used

groundwater from the HP, it is assumed that the same percentage of all cereals transferred

from Nebraska are reliant on the HP aquifer (i.e., the percentage of transferred cereals that

are reliant on groundwater is the same as the percentage of cereals grown that are reliant on

groundwater).

For each port, all incoming cereal tonnage dependent on the same aquifer (i.e., either the

CV, HP, or ME) was summed. This was then divided by all incoming cereal transfers from

across the U.S. to arrive at the fraction of incoming cereal transfers to each port area that

are reliant on each aquifer. The aquifer dependent fraction was then multiplied by the cereal
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tonnage exported from the port to each country. For each country, the sum of all exported

cereals reliant on the CV, HP, and ME aquifers that were sent to that country was taken

across all U.S. ports, according to the following equation:

CTA,I =
∑

P

(CTP,I ∗

∑
O∈A CTO,P ∗GFO∑

O CTO,P

) (2.1)

where CT is cereal transfers [tons] and GF is the fraction of total cereal production

dependent on groundwater from a study aquifer. A is a CFS area overlying an aquifer (i.e.,

either the HP, CV, or ME), I is the international destination of cereal exports, P is a U.S.

port, and O is all origin CFS Areas.

2.2.3 Virtual groundwater content estimates

The virtual water content (VWC) refers to the total water required for crop evapotranspi-

ration and incorporation within the product divided by the crop yield (Equation 2.2).

VWC =
ET + IW

CW
(2.2)

where ET refers to crop evapotranspiration [m3], IW refers to water incorporated within

the harvested crop [m3], and CW refers to crop weight [tons]. The VWC is comprised of

two components: green and blue VWC, which correspond to rainfall and surface and/or

groundwater, respectively. The ET and IW of the green VWC is attributed to rain water,

whereas the ET and IW of the blue VWC (BVWC) is from surface water and/or ground-

water sources. This study focuses on the unsustainable groundwater component of BVWC,

the virtual groundwater content (V GC).

SCTG 02 and 03: State-level estimates of BVWC for items within SCTG commodity

groups 02 and 03 were collected from Mekonnen and Hoekstra (2011b). Note that Mekonnen

and Hoekstra (2011b) presents conservative estimates of BVWC since evapotranspiration

only is considered and return flows are excluded. County-level irrigation withdrawals from

the USGS in the year 2005 were utilized to calculate the fraction of irrigation supplies from

groundwater (GF ) for each irrigated crop produced within aquifer boundaries. County-level

production data (USDA, 2014) was used to determine a production-weighted average V GC

across items within an SCTG commodity group:

V GCSCTG,CFS =

∑
c BVWCC,CFS ∗GFCFS ∗ PC,CFS

PSCTG,CFS

(2.3)
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where V GC refers to virtual groundwater content, BVWC refers to blue virtual water

content, GF refers to groundwater fraction, and P refers to agricultural production [tons].

Subscripts C, SCTG, and CFS refers to commodity item within SCTG commodity group,

SCTG commodity group, and CFS area, respectively.

SCTG 06 and 07: All methods follow those of SCTG commodity groups 02 and 03, but

now production-based weights are modified. Categories SCTG 06 and 07 are comprised of

processed and milled goods, but the production volumes of the individual products are not

available. However, the product composition of SCTG 06 and 07 can be estimated based on

the production of the primary crops within the CFS area that are used in the production of

the processed goods. To avoid over-estimating exports of virtual groundwater embodied in

SCTG 06 and 07, the processed goods that require primary crops not produced within the

CFS area are not given weight in the SCTG category’s overall V GC, while products whose

primary inputs are crops widely grown in CFS area are weighted according to production

data. This approach discounts the exports of processed commodities whose primary crops

are not grown locally.

SCTG 04: The feed V GC was calculated in conjunction with the livestock and meat

V GC. Feed requirements per head of the primary livestock raised within the aquifer areas

(i.e., cattle, equine, goats, hogs, sheep, chickens (layers and broilers), turkeys, pheasants,

and quail) were collected from Chapagain and Hoekstra (2003). The number of livestock

head produced and sold in 2007 was collected from USDA (2014). The feed requirement per

head of livestock was multiplied by the number of head sold to arrive at feed requirements.

The amount of feed imported into the CFS area was subtracted from the CFS area’s feed

requirement to get the total feed that needed to be produced within the CFS area. The

vast majority of required feed (97%) was produced locally. It was assumed that SCTG 04

consists of the same feed composition as the feed required for livestock inside the CFS area.

To determine V GC of feed, the required tonnage of each crop within the feed composition

was multiplied by its V GC and then summed to get the total volume of virtual groundwater

of feed. The total virtual groundwater volume attributed to feed was divided by the total

tonnage of the feed crops to get the feed V GC for each CFS area.

SCTG 01 and 05: The volume of virtual groundwater of the required feed was divided

by the total tonnage of livestock to get the feed component of the V GC of animal produc-

tion within each CFS area. The required water for drinking and for servicing of livestock

(from Chapagain and Hoekstra 2003) was multiplied by the fraction that was taken from

groundwater (Kenny et al., 2009) to get the amount of groundwater used per head of each
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animal. This was then multiplied by the number of each animal sold in 2007 (USDA, 2014)

to get the volume of groundwater required for drinking and servicing for each animal type.

The required groundwater volume for each animal type was summed and then divided by

the total animal tonnage to get the component of the animal production V GC within each

CFS area attributed to drinking and servicing. This was added to the corresponding V GC

of feed production to arrive at the total V GC for all livestock sold from within the CFS area

boundaries. The V GCs differ between SCTG 01 and SCTG 05 because the virtual ground-

water volume is divided by the live animal tonnage for SCTG 01, whereas it is divided by

the edible fraction (per Gerbens-Leenes et al. 2011) for SCTG 05. In this way, the V GC

corresponding to SCTG 01 and SCTG 05 are weighted by the tonnage sold or butchered of

each animal type within the CFS area.

V GCSCTG,CFS =
(FRCFS − FICFS) ∗ V GCSCTG04,CFS

PSCTG,CFS

+

∑
C WRC,CFS ∗GFCFS ∗ PC,CFS

PSCTG,CFS

+

∑
C SRC,CFS ∗GFCFS ∗ PC,CFS

PSCTG,CFS

(2.4)

where FR refers to feed requirement [tons], FI refers to imported feed [tons], WR refers

to livestock water requirement [m3/ton], and SR refers to livestock servicing requirement

[m3/ton]. All other acronyms and subscripts follow those above.

2.2.4 Virtual groundwater transfers

The food transfer data was multiplied by the virtual groundwater content to arrive at virtual

groundwater transfers:

V GTSCTG,O,D = V GCSCTG,O ∗ FTSCTG,O,D (2.5)

where V GT indicates virtual groundwater transfer [m3], V GC indicates virtual ground-

water content [m3/ton], FT indicates food transfers [tons]. Subscripts SCTG, O, and D

indicates food commodity group, origin CFS area, and destination, respectively. In this way,

V GT volumes are tracked from aquifer areas to their final destination.
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2.3 Results and Discussion

2.3.1 Total virtual groundwater transfers

According to the U.S. Geological Survey (Kenny et al., 2009), irrigation withdrawals from

the HP, ME, and CV systems totaled 23.38 km3, 13.59 km3, and 9.34 km3, respectively

(refer to the size of the circles in Fig. 2.2). Of these agricultural withdrawals, approximately

27% is lost to irrigation inefficiencies and return flows, while the rest is virtually embod-

ied within crops and livestock (i.e., directly used for crop growth or livestock production).

The groundwater footprint of a commodity is the volume of water that is virtually embod-

ied throughout the production process of that commodity, which is also referred to as the

virtual groundwater content (i.e., the volume of groundwater per commodity unit, V GC;

refer to Methods). Note that V GC varies by commodity and aquifer (see Table 2.1). The

total volume of virtual groundwater transfers (V GT ; refer to Methods) across all aquifers

is comparable to the capacity of Lake Mead (35.7 km3), the largest surface reservoir in the

United States. Between 45% (HP) and 58% (CV) of agricultural groundwater withdrawals

that are virtually transferred are not utilized within the States overlying the aquifers, but

transferred either elsewhere within the U.S. or exported abroad. The vast majority of V GT

remains within the U.S., with 9% exported abroad.
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Figure 2.2: Consumption of overexploited aquifers in the United States. The size of each
circle indicates the volume of groundwater withdrawals for agriculture from each aquifer as
given by the U.S. Geological Survey. In 2005, 23.38 km3, 13.59 km3, and 9.34 km3 of
groundwater was withdrawn for irrigation from the High Plains, Mississippi Embayment,
and Central Valley aquifer systems, respectively. Each circle shows the proportion of
groundwater withdrawals that go to irrigation losses and return flows, intra-aquifer state
transfers, domestic transfers, and international exports. The Mississippi Embayment
aquifer ships the largest proportion of its virtual groundwater abroad (10.5%), compared
with 3.4% in the High Plains and 7.8% in the Central Valley.
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Table 2.1: Virtual groundwater content (V GC) estimates for the SCTG food commodity
groups in each of the overexploited aquifers of the United States. Units are cubic meters of
groundwater consumed per metric ton of production.

Standard Classification of Transported Goods (SCTG)
Central

Valley

High

Plains

Mississippi

Embayment

SCTG

Code SCTG Name m3/ton m3/ton m3/ton

01 Animals & Fish (live) 1,570.7 303.7 9.0

02 Cereal Grains (including seed) 271.5 68.4 129.4

03 Agricultural Products Except for Animal Feed (other) 66.2 63.9 76.5

04 Animal Feed & Products of Animal Origin 134.7 27.9 1.3

05 Meat, Fish, and Seafood & Their Preparations 1,984.7 367.4 9.9

06 Milled Grain Products & Preparations, & Bakery Products 107.7 47.1 369.7

07 Other Prepared Foodstuffs, & Fats & Oils 246.5 164.7 57.2

2.3.2 Domestic virtual groundwater transfers

The annual volume of V GT between States overlying the aquifers is 16.9 km3, which is

comparable to the annual average flow volume of the Colorado River into Lake Mead (ap-

proximately 18 km3/y). There are 7.30 km3, 3.24 km3, and 3.47 km3 transferred out of the

HP, CV, and ME aquifer boundaries, respectively, which remains within the United States.

This equates to four (CV, ME) to ten (HP) times more groundwater being transferred out of

the aquifer regions to other domestic locations than is being withdrawn for local municipal

and industrial purposes combined.

Urban areas are key recipients of V GT . Cities in California receive the largest share of

domestic V GT : Los Angeles and San Francisco-Oakland receive 12.7% of all V GT . San

Francisco-Oakland, Los Angeles, and Sacramento are the recipients of 40.5% of all V GT

from the CV. To put the transfer volumes in perspective, around 3.4 km3 of water was

physically transferred in 2007 from the Sierra Nevada Mountains to Los Angeles via the Los

Angeles Aqueduct system; in that same year, 1.76 km3 of groundwater from the CV aquifer

system was virtually transferred to Los Angeles solely in agricultural commodities.

The CV and ME aquifer systems both have one or two metropolitan areas that receive

relatively large shares of V GT (refer to Fig. 2.3). However, this is not the case for the HP

aquifer system where the transfers are more dispersed. This is likely because the HP aquifer

system extends across much of the central U.S., where there is more than one or two major

cities or ports that would be viable principal consumption or transfer locations. This may

also be due to the fact that cereals comprise a large share of agricultural production in the

HP, which can be stored and widely distributed, compared with the large quantify of fresh

items produced in the CV, such as vegetables and meat (refer to Fig. 2.4).
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Figure 2.3: Ranking of U.S. Metropolitan areas that currently most rely on virtual
groundwater from each of the Central Valley, High Plains, and Mississippi Embayment
aquifers. The total volume virtually transferred to each U.S. Metropolitan area is provided,
as well as the fraction of groundwater withdrawals from each aquifer system that this
represents. Note that the triangles are provided for graphic representation only and are not
scaled according to size. Importantly, cities in the Western U.S. are relatively reliant upon
virtual groundwater transfers from the Central Valley aquifer, while virtual groundwater
transfers from High Plains aquifer tend to be more dispersed across the U.S., as they are
with the Mississippi Embayment aquifer, with the exception of the major shipping port of
New Orleans.
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Figure 2.4: Percentage of virtual groundwater transfers attributed to each of the seven
commodity groups in the High Plains, Mississippi Embayment, and Central Valley aquifers.

With increased intersectoral demands for water, economic development, and climate change,

water is projected to become more scarce in many locations (Gleick , 2003). Conflicts have

arisen between rural and urban areas, U.S. states, and countries regarding renewable surface

water allocations. Reallocation of water from rural agriculture to urban uses is a politically

charged issue, but a growing trend nonetheless (Falkenmark and Molden, 2008; Molle and

Berkoff , 2009). These results demonstrate that water use in rural areas already largely serves

urban areas by providing food (i.e., virtual water flows to cities through food commodities).

Fig. 2.5 highlights that domestic V GT are predominantly to population centers, wealthy

areas, and between areas that are close in distance, as we would expect from the gravity model

of trade (Tinbergen, 1962). Since large volumes of water are virtually transferred within the

U.S., the socioeconomic and environmental challenges in both sending and receiving locations

should be considered in future water supply discussions. Going forward, stakeholders may

want to evaluate teleconnections that impact their local water balance, considering not only
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physical water allocations, but how water relates to the broader economy and virtual water

transfers between sectors and locations.

Figure 2.5: Maps of overexploited aquifers in the U.S.: (A) Central Valley, (B) High Plains,
and (C) Mississippi Embayment. The areal extent of the aquifers are shown with white
highlighting. The U.S. states are shaded to indicate the volume of virtual groundwater
transferred from each overexploited aquifer. Darker shades highlight more virtual
groundwater transfers into the U.S. State.

Much is understood about local food production and groundwater use in the HP, CV,

and ME aquifer systems. It is now imperative to begin to evaluate the consumption side

of the story and determine where these resources are being demanded if we are to better

understand opportunities to slow their overexploitation (Zhao et al., 2015). To this end,

we comprehensively quantify and trace virtual groundwater transfers from these aquifers to

their destination of final use. To our knowledge, this is the first time this has been done

and represents an important first step in the evaluation of consumption flows of critical

groundwater resources. In this paper, we utilize high-resolution empirical data on domestic

food transfers within the United States in 2007 (US Census Bureau, 2014a; Lin et al., 2014)

and link this with port-level data on international exports (US Census Bureau, 2014b).

Additionally, we employ national statistics on agricultural production (USDA, 2014) and

irrigation (Kenny et al., 2009) and modeled estimates of virtual water content (Mekonnen

and Hoekstra, 2011b; Gerbens-Leenes et al., 2011) to quantify virtual transfers of critical

groundwater resources (refer to Methods). This approach enables us to identify the locations

that are most responsible for – and currently most reliant upon – depletion of the HP, CV,

and ME aquifers.

Nearly 9% of domestic V GT are to ports. This highlights the importance of food produc-

tion for international export, with some states (e.g., Louisiana and Washington) exporting
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over half of all incoming V GT s. California, Texas, and Arkansas have the largest V GT s;

the large transfer volumes of Arkansas are primarily due to large intrastate transfers of rice,

which has an extremely high groundwater footprint and is widely produced in Arkansas.

Moreover, 74% of all V GT s from the ME aquifer system originate from Arkansas and 41%

of Arkansas transfers (3.21 km3) are transported within the state for consumption, process-

ing, and/or storage. Not coincidentally, Arkansas has seen much greater groundwater level

declines than other states overlying the ME (Clark et al., 2011).

Virtual groundwater transfers from Texas and Kansas are of particular interest since they

are the origin of the greatest overexploitation of groundwater resources in the High Plains.

Transfer volumes from Kansas were 5.66 km3 (28.8% of HP transfers), while Texas had V GT s

of 4.38 km3 (22.3% of HP transfers). The groundwater embodied within the trade of cereals,

meat, and prepared foodstuffs make up the vast majority of the groundwater transfers from

these overexploited areas. Groundwater embodied within traded corn makes up the largest

fraction of cereal V GT (96% KS, 71% TX), beef makes up the largest fraction of meat V GT

(98% KS, 71% TX), and dairy products make up the largest fraction of prepared foodstuffs

(57% KS, 85% TX).

The Central Valley is often referred to as the ‘fruit and vegetable basket of the world’

because it grows and exports an abundance of fruit and vegetables. Interestingly, we find

that a relatively small fraction (i.e., 4%, refer to Fig. 2.4) of V GT from the CV aquifer is due

to trade of fresh produce. This can be partially explained by three factors: First, amongst

the Standard Classification of Transported Goods (SCTG) (US Census Bureau, 2007) seven

food commodity categories, the one containing vegetables, fruits, and nuts (SCTG 03, refer

to Table 2.1) has the smallest groundwater footprint. For example, the V GC of the vegetable

commodity group is only 3% as much as the meat commodity group (SCTG 05). Secondly,

although the CV area grows more vegetables, fruits, and nuts than other areas, it also

produces and trades much of the other food commodities as well (e.g., six and ten million

more tons of SCTG 04 and SCTG 07 are traded than SCTG 03, respectively). Third, some

produce and nuts are not represented in SCTG 03 because they are processed and included

within the prepared foodstuffs trade category (SCTG 07), which, along with dairy products,

make up the bulk of this category and account for 39% of total V GT from the aquifer.

Meat products comprise 4%, 10%, and 13% of traded agricultural tonnage from the CV,

HP, and ME, respectively (Fig. 2.4); however, 38% and 31% of the total V GT s from the CV

and HP are derived from meat products, respectively, while the ME only has 1% derived

from meat products. The high VGC of feed and high proportion of cattle in the CV and HP
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(beef is 97% and 77% of meat V GT , respectively) are the primary drivers of the variances

between the tonnage fraction of meat and the virtual groundwater fraction of meat. Only

30% of V GT associated with meat from the ME are from beef, with the majority of the

V GT of meat comprised of poultry and fowl, which requires approximately 11 times less

water for production than beef; furthermore, the V GC of the feed is significantly smaller in

the ME region than it is in the CV and HP.

Domestic food security in the United States is heavily reliant upon the unsustainable ex-

traction of groundwater in the HP, CV, and ME aquifer systems: the cereals produced

by these aquifers amounts to 18.5% of the domestic cereal supply (refer to Table 2.2).

These groundwater resources are especially critical for agricultural production during times

of drought, particularly in California (Scanlon et al., 2012). This buffer (i.e., option) value

of groundwater (Qureshi et al., 2012) is not currently accounted for, but will be increas-

ingly important under a more variable future climate (Taylor et al., 2013) with increased

irrigation demands (Zhang and Anadon, 2013). Additionally, these aquifers provide a trade

advantage to the U.S., accounting for 8.6% of U.S. cereal exports (see Table 2.2). To protect

U.S. food security and trade interests, domestic policy makers may want to consider slowing

groundwater depletion by implementing policies that recognize the full value of groundwa-

ter, such as private water markets (Qureshi et al., 2012), which may encourage technology

adoption.

Table 2.2: Countries that are most reliant on cereals produced with groundwater from the
Central Valley, High Plains, and Mississippi Embayment aquifers. Domestic cereal supply
and total cereal import data [tons] were collected from the FAO (Food and Agriculture

Organization, 2014). Countries are ranked in descending order by the fraction of their
domestic cereal supply that originates from these three aquifers (column 4). Island nations
that import more cereal than is required for their domestic supply have been excluded (i.e.,
St Vincent and the Grenadines, Trinidad and Tobago, Grenada, Jamaica, and Barbados).

(1000 tons)
Domestic Cereal

Supply

Total Cereal

Imports

Aquifer Fraction

of Domestic Cereal

Supply

Aquifer Fraction of

Cereal Imports

Aquifer Fraction of

Cereal Imports

from USA

United States 303,016 - 18.5% - -

Taiwan 7,268 6,336 10.0% 11.5% 13.4%

Japan 32,961 26,425 9.2% 11.4% 15.4%

Panama 863 649 9.1% 12.1% 13.4%

Costa Rica 1,153 1,133 7.9% 8.0% 8.9%

Dominican Re-

public
2,180 1,714 5.8% 7.4% 8.3%

Colombia 8,396 5,206 4.5% 7.2% 9.6%

South Korea 16,401 12,660 4.4% 5.7% 12.0%

Honduras 1,388 663 3.9% 8.2% 8.2%

Israel 3,436 3,007 3.4% 3.9% 8.9%

Ecuador 3,205 1,188 3.0% 8.2% 15.1%

Syria 6,746 1,845 2.9% 10.8% 12.0%

World Total 2,120,603 345,753 2.7% 2.5% 8.6%
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2.3.3 International virtual groundwater transfers

Unsustainable ‘blue water’ (i.e., fresh surface water and groundwater Falkenmark and

Molden 2008) sources are estimated to comprise between 32% and 52% (estimated from

Hanasaki et al. 2010; Vorosmarty et al. 2005; Rost et al. 2008) of the global blue water foot-

print of agricultural production. However, the overexploited U.S. aquifers comprise 35% of

the U.S. blue water footprint for agricultural production. Two-fifths of global virtual blue

water exports from agriculture is attributed to unsustainable water sources (calculated from

Hanasaki et al. 2010). However, only 13% of U.S. virtual blue water agriculture exports are

from the HP, CV, and ME aquifers. Therefore, the U.S. relies less on nonrenewable water

sources for agriculture production and international export of agricultural goods than the

rest of the world as a whole.

Fig. 2.6 shows the major international transfers of virtual groundwater from the HP, CV,

and ME aquifers. Asia is the top importer of virtual groundwater from all three aquifers.

Of all international V GT , approximately half goes to Asia. This finding parallels previous

studies that show Asia as the principal importer of U.S. agricultural goods and virtual

water (Gerbens-Leenes et al., 2011; Mekonnen and Hoekstra, 2011b; Konar et al., 2011).

Reduced agricultural production due to aquifer depletion or policies restraining groundwater

withdrawals should be of particular interest to Taiwan, Japan, Panama, and Syria: they all

depend on the three aquifers of this study for over 10% of their total cereal imports (refer

to Table 2.2).
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Figure 2.6: International virtual groundwater transfers from overexploited aquifers in the
United States. The size of the outer bar indicates the total virtual groundwater export
volume for the Mississippi Embayment aquifer (blue), High Plains aquifer (yellow), and
Central Valley aquifer (green). Aquifer origin volume is indicated with links emanating
from the outer bar of the same color. Export destination volume is indicated with a white
area separating the outer bar from links of a different color. The countries and regions that
import the most virtual groundwater are provided. The links are scaled relative to the
volume of virtual groundwater exported. This figure was created with network
visualization software available at http://circos.ca, developed by (Krzywinski et al., 2009).

Table 2.2 presents the countries that are currently most reliant upon cereals – critical for

food security (e.g., Foley et al. 2011) – grown in the HP, CV, and ME aquifers. Countries

are ranked in order of the fraction contribution of cereals produced in these aquifers to total

domestic cereal supply (column 4). Besides the U.S. itself, Taiwan is the country that is

most reliant upon these aquifers: 10.0% of its domestic cereal supply is produced by these
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aquifers. These aquifers produce 9.2% of Japan’s cereal supply, and 9.1% of the cereal

supply of Panama. Consumers in these countries would be impacted by rising world prices

if agricultural production in the HP, CV, and ME aquifer systems were to slow or halt.

However, the willingness and ability of consumers to pay increased commodity prices differs

across countries, such that some countries would be more impacted than others.

Panama, Costa Rica, and the Dominican Republic are the third, fourth, and fifth most

dependent on cereal imports from U.S. aquifers to meet their domestic cereal requirements.

However, these countries do not import large volumes of virtual groundwater because cereals

have low V GC. Small, developing island nations, such as Cook Islands and Samoa, as

well as some arid Asian countries, such as Mongolia, import relatively modest quantities

of food from the U.S. aquifers, but they disproportionately import virtual groundwater

resources, since they import mostly meat and processed food commodities, which have the

highest V GC. Agricultural land availability, soil nutrients, and industrial capabilities –

rather than water – are likely restricting local production of these commodities within the

island nations. Comparative advantage across a wide suite of factors leads to complexities in

the teleconnected food trade system, with unanticipated outcomes, such as non-local aquifer

depletion.

This analysis highlights international consumers that are most vulnerable to eventual

reductions in agricultural production from unsustainably managed reserves of groundwater

in the United States. Countries that are heavily reliant on these aquifers can use this

information to evaluate how their domestic food security will be impacted when agricultural

production from these aquifers is eventually slowed or halted altogether. If future consumer

welfare is at risk, then policy makers in those countries may want to consider diversifying the

sources of their food supply, with implications for the global food trade system. Additionally,

some consumers – currently not receiving a price signal of resource scarcity – may be willing

to pay a premium now to store groundwater supplies for future food security. In principle,

this could operate as a payment for ecosystem services (Naeem et al., 2015). However,

implementing the payment of such a premium may prove challenging in practice, because

food commodities are available cheaply on international markets, counteracting such an

exchange; instead encouraging tragedy of the commons behavior amongst consumers.
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2.4 Concluding Remarks

It is imperative to understand the teleconnections and demand forces that are contributing

to the unsustainable use of aquifers in the United States if we are to effectively slow their

depletion. In this paper we quantified and traced virtual transfers of critical groundwater

resources from the High Plains, Central Valley, and Mississippi Embayment aquifers. This

is the first study to track virtual groundwater transfers to the final destination using high-

resolution empirical data on food commodity transfers. This is an important first step

towards empowering producers, consumers, water-planners, and decision-makers, by linking

understanding of local production withdrawals with new knowledge on the virtual transfers

of groundwater resources.

The vast majority (91%) of virtual groundwater transfers remains within the United States.

Cereal production using groundwater from the High Plains, Central Valley, and Mississippi

Embayment aquifers contributes to 18.5% of U.S. cereal supply and 8.6% of U.S. cereal

exports. Since these aquifers are critical to domestic food security and trade interests, policy

makers in the U.S. may want to consider implementing policies that properly value these

groundwater reserves, particularly since they may represent a strategic domestic water source

in the future. Decision makers may want to reconsider current measures that exacerbate

common pool aquifer depletion, and, instead, explore opportunities to value these aquifers

for their risk mitigation potential under an uncertain future. A relatively small fraction

of the virtual groundwater transfers are international; however, cereals produced by these

aquifers comprise a significant fraction of the cereal supply of some recipient countries,

such as Taiwan, Japan, and Panama. Countries that are reliant upon these aquifers can

determine their potential vulnerability to global price increases associated with eventually

slowing groundwater extraction in productive locations. Policy makers in these countries

may consider diversifying the sources of their food supply to mitigate supply chain risk.

One unintended consequence of the current landscape of economic and trade policies has

been the overexploitation of groundwater reserves in the United States. Under an uncertain

climate future, in which rainfed agriculture is likely to experience more droughts and extreme

climate events, groundwater resources may become more valuable. This buffer value of

groundwater – along with other non-extractive values that promote ecosystem services –

is not currently incorporated into the calculation of the costs and benefits of groundwater

extraction. To better determine the welfare tradeoffs and guide policy, the costs and benefits

accrued along the entire value chain of this teleconnected system need to be taken into

account. This includes the value of groundwater resources – both now and in the future – as
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a food security buffer to variable surface water supplies. Such an analysis must recognize that

there are competing goals and multiple objectives related to water resources use, and that

decision makers often work at vastly different spatial and temporal scales to those necessary

to address global sustainability challenges.
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Chapter 3

DROUGHT IMPACTS TO WATER FOOTPRINTS

AND VIRTUAL WATER TRANSFERS OF THE

CENTRAL VALLEY OF CALIFORNIA

3.1 Introduction 1

California is one of the most productive agricultural areas in the world and is commonly re-

ferred to as the ‘fruit and vegetable basket’ of the United States, responsible for nearly half of

U.S. grown fruits, vegetables, and nuts. California’s agricultural industry is made possible by

a complex and vast water system that relies on precipitation, surface water, and groundwa-

ter. From 2012–2014, California experienced its worst drought in over a millennium (Griffin

and Anchukaitis , 2014). Although local impacts have been examined (Howitt et al., 2014;

Cooley et al., 2015; Swain, 2015), it is not yet well understood how the drought has impacted

distant consumers of California agricultural commodities through the global food system.

In this paper we examine drought impacts to water footprints of agricultural production

and food and virtual water transfers from the Central Valley of California, including tracing

these flows to their final destination of consumption. Broadly, this study elucidates how

local climate shocks reverberate through the global food system and highlights the critical

role of groundwater aquifers.

Drought is not an uncommon occurrence in California, but the 2012–2014 drought was ex-

ceptional. For only the second time in its history, California proclaimed a State of Emergency

due to drought on January 17, 2014. In 2015, Governor Brown introduced unprecedented

mandatory water use restrictions on urban users, requiring them to reduce usage by 25%. In

California, where irrigation is responsible for 74% of water withdrawals (Maupin et al., 2014),

drought is particularly impactful to agriculture, which is crucial to the identity, culture, and

economy of California. In 2014 alone, drought led 173,200 additional hectares of irrigated

cropland to be fallowed, ✩2.2 billion in economic cost, and the loss of 17,100 jobs (Howitt

et al., 2014).

The impacts of the drought to agriculture would have been much worse if not for Cali-

1This chapter is published as an article in Water Resources Research, 2017 (Marston and Konar , 2017)
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fornia’s conjunctive water use system, which permits farmers to rely more on groundwater

during times of surface water deficits. However, farmers are currently extracting much more

groundwater from the Central Valley Aquifer (boundaries shown in Fig 3.1) than is being

recharged, leading to an annual average depletion of 1.85 x 109 m3 since 1960 (Faunt , 2009)

and nearly double that rate during the current drought (Faunt and Sneed , 2015). During

average climate conditions, 40% of irrigation in the Central Valley comes from groundwater,

but during drought groundwater provides closer to 70% of irrigation supplies, with more

reliance on groundwater in the arid Tulare and San Joaquin Basins, and less groundwater

use in the more humid Sacramento Basin (Faunt and Sneed , 2015; Jones , 2015).

The Central Valley aquifer system is likely to be under even greater pressure in the fu-

ture. Anthropogenic warming is expected to increase the frequency of dry, warm years in

California, thereby increasing the likelihood of severe droughts (Diffenbaugh et al., 2015).

Additionally, demand for water is increasing amongst environmental, urban, and agricultural

uses (Faunt , 2009), while continued groundwater depletion (Famiglietti et al., 2011), salin-

ization of the deeper aquifers (Schoups et al., 2005), and new legislation restricting future

groundwater withdrawals (e.g. the 2014 California Sustainable Groundwater Management

Act) will reduce groundwater availability. This not only has implications for Californians

who depend on the aquifer for agricultural and urban uses, but also the millions of people

globally who consume groundwater dependent agricultural products grown in the Central

Valley (Marston et al., 2015).

Much is understood about local impacts of drought to agricultural production (Howitt

et al., 2014; Cooley et al., 2015; Faunt and Sneed , 2015). However, the food system is global

in nature, such that agricultural commodities are part of a complex supply chain and typically

consumed far from their location of production, in an example of a telecoupled system (Liu

et al., 2013, 2015). The trade of water-intensive food commodities is referred to as ‘virtual

water trade’ (Allan, 1998; Hoekstra and Hung , 2005) and links distant consumption of water-

intensive goods to local water use and impacts. Increasingly, it is critical to understand the

non-local impacts of drought. Does the global food system amplify or dampen the impacts

of local droughts shocks? On one hand, global food supply chains may propagate drought

risk to distant consumers through the disruption of complex supply chains (D’Odorico et al.,

2010; Suweis et al., 2015). On the other hand, the impacts of local climate shocks, such

as droughts, may be mitigated if a country imports the same agricultural commodity from

multiple producers, all of which experience spatially and temporally uncorrelated climate

shocks.
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Figure 3.1: Map of the Central Valley Aquifer of California. The major basins of the
Central Valley Aquifer are the Sacramento Valley (blue), San Joaquin Basin and Delta
(red), and Tulare Basin (green). The 20 counties overlying the Central Valley Aquifer are
provided.

In this study, we evaluate the impact of drought to agricultural water footprints and vir-

tual water transfers from the Central Valley of California. Our work builds on recent high

resolution studies of water footprints and food and virtual water flows in the United States.

The water footprint of crops and derived crop products has been established for all states in
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the U.S. (Mekonnen and Hoekstra, 2011b; Mubako and Lant , 2013), with additional work

on California (Fulton et al., 2012, 2014; Mubako et al., 2013). These studies, however, do

not distinguish between surface water and groundwater sources and do not account for inter-

annual variability in water footprints. High resolution intra-national food transfer data has

been used to evaluate food and virtual water flows within the United States (Lin et al.,

2014; Dang et al., 2015). Marston et al. (2015) determine virtual groundwater transfers from

overexploited aquifers of the United States, as well as the major U.S. cities, U.S. states, and

international export destinations that are most reliant upon agricultural production from

these aquifers. These recent studies refined our understanding of the spatial variability in

water footprints and virtual water transfers under average climatic conditions. However,

climatic variability and extremes, such as drought, significantly impacts agricultural produc-

tion, trade, and embedded water resources (Dalin and Conway , 2016; Zhuo et al., 2016),

making it essential to better resolve food and virtual water flows in time, which is a major

novelty of this study.

We integrate high resolution databases and models to quantify the water footprints of

agricultural production and virtual water transfers from California’s Central Valley from 2011

(baseline, no drought) through three years of consecutive, exceptional drought (2012–2014).

A major novelty of our methodology is that we distinguish precipitation, surface water, and

groundwater contributions to the total water footprint of agricultural production. Our study

describes (i) how local water footprints have evolved over the course of the drought, (ii) how

local drought shocks propagate to distant consumers of water-intensive goods, and (iii) how

distant consumption of virtual water resources is linked with local water impacts. In this

way, we aim to address the following questions: (i) How do agricultural production water

footprints in California evolve with drought? ii) How does drought impact food and virtual

water transfers from California? and iii) How is global demand for California agriculture

contributing to local water resources impacts? The paper is organized as follows. We describe

our methods in Section 3.2. Our results are detailed and discussed in Section 3.3. We

conclude and highlight implications of our work and future research needs in Section 3.4.

3.2 Methods

In this section, we describe how we quantify the water footprints and virtual water transfers

from the 20 counties overlying the Central Valley of California (map provided in Fig 3.1).

We calculate the total water footprint of agricultural production, which is comprised of con-
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tributions from precipitation (i.e. ‘green water’) and irrigation supplies (i.e. ‘blue water’).

A major novelty of our approach is that we further distinguish the irrigation component

into surface and groundwater sources. We also explain how we calculate virtual water trans-

fers from the Central Valley. Note that we use the term ‘transfers’ because we examine

sub-national and international flows of agricultural commodities and embodied water. We

reserve the standard trade terms (i.e. ‘trade’, ‘import’, and ‘export’) solely for international

exchanges of goods.

Drought impacts to agricultural production and transfers are highly local and time-

dependent, which necessitates the use of high-resolution spatial and temporal data. To

determine the impact of the California drought, we pair empirical databases with modeled

estimates of crop evapotranspiration. Refer to Table 3.1 for key data sources and models

used in this study. We quantify the water footprints of crop production at the annual tem-

poral scale, county spatial scale, and for each source of water (i.e. rainfall, irrigation from

surface water sources, and irrigation from groundwater sources). We also quantify virtual

water transfers at the annual and county scale for each source of water. The counties of the

Central Valley are shown in Fig 3.1.

First, we detail how we calculate the virtual water content of agricultural products. Sec-

ond, we describe the agricultural production and transfer datasets. Then, we explain how we

quantify water footprints of agricultural production. Lastly, we describe how virtual water

contents and food transfer data are brought together to quantify virtual water transfers.

3.2.1 Virtual water content estimates

The virtual water content (VWC) of a crop is defined as VWC = ET/Y , where ET is the

total crop evapotranspiration [m3
water area

−1] and Y is the crop yield [toncrop area
−1]. VWC

is equivalent to the water footprint of crops (Hoekstra and Chapagain, 2011) and indicates

the amount of water embodied in crop production over the entire growing season. VWC

values were calculated for each crop, county, and year (2011–2014) combination.

The 67 crops included in this study represent 98.5% of the harvested crop tonnage of

California reported in the 2012 USDA Census of Agriculture. Importantly, we quantify

the fractional contribution of each major water source to total crop ET . In other words, we

segment the contribution of green (i.e., effective precipitation) and blue water (i.e. irrigation)

to total crop ET . Additionally, we further segment blue water into irrigation from surface and

groundwater sources. In this way, we estimate VWC from green, surface, and groundwater
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sources (i.e. VWCgreen, VWCsurface, and VWCground, respectively).

Crop evapotranspiration

The ET of each crop was calculated using the Consumptive Use Program Plus (CUP+)

model. The CUP+ model is a dynamic soil water balance model developed by the California

Department of Water Resources (CDWR) and the University of California, Davis to help

water agencies and growers determine crop water requirements in California. The CUP+

model computes reference evapotranspiration (ETO) using the daily Penman-Monteith equa-

tion. Daily weather data, including solar radiation, maximum and minimum temperature,

dew point temperature, wind speed, and precipitation, were inputs to the model and came

from CDWR (2015). Planting and harvest dates, maximum soil depth, and available water

holding capacity were provided within the model databases. The maximum rooting depth

for each crop was taken from USDA SCS (1983).

Using the CUP+ model, we determine crop specific daily evapotranspiration (ETc). To

do this, we follow a similar methodology as Doorenbos and Pruitt (1977), in which different

crop coefficients (Kc) are applied during the growing season to represent how plant water

requirements vary during different growth periods. Each day, Kc is determined and multi-

plied by ETO to arrive at daily ETc. Total crop ET is determined by the sum of all daily

ETc values during the cropping season. Total crop ET estimates crop evapotranspiration

from all water sources (i.e. rainfall, surface, and groundwater sources).

Importantly, the CUP+ model distinguishes between ET from rainfall and ET from irriga-

tion supplies (ETi). In CUP+, irrigation occurs when the soil water content in the effective

root zone is less than half of capacity. This assumption is in accordance with the manage-

ment allowable depletion historically used by most irrigators (USDA SCS , 1993; Ozdogan

et al., 2010). Irrigation water is applied until the soil water content returns to field capacity.

The cumulative ET for the entire crop season attributed to irrigation is given by:

ETi = CDsw −∆WC = (CETc − CEspg − CEr)−∆WC =
n∑

i=1

NAi (3.1)

where ETi is ET of applied water (i.e., irrigation), CDsw is the cumulative daily change

in soil water content, ∆WC is the difference between initial and final soil water content, and

NAi is the net water application. CETc, CEspg, and CEr are the seasonal cumulative crop

evapotranspiration, cumulative effective seepage, and cumulative effective rainfall contribu-
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tion, respectively (Orang et al., 2011). CUP+ does not distinguish between E and T and

does not incorporate capillary rise, unlike other ET models used to determine high-resolution

water footprints (Chukalla et al., 2015; Zhuo et al., 2016). However, depths to the water

table are considerable in the Central Valley, so capillary rise is negligible for crop growth

in this region. An important feature of our approach is that we use daily climate data to

force CUP+, whereas other studies use monthly climate variables (Chukalla et al., 2015;

Zhuo et al., 2016). Importantly, CUP+ simulations encompassed several months before the

growing season to appropriately capture antecedent soil moisture conditions.

Note that although the CUP+ model distinguishes between rainwater and irrigation sup-

plies, it does not break irrigation water down between surface and groundwater sources.

Thus, the CUP+ model is used to calculate county-level and crop-specific ETgreen and ETblue

for each year of the drought. We explain how we separate the surface and groundwater con-

tribution to irrigation in the next section.

Surface and groundwater contributions

As described in the previous section, we use the CUP+ model to distinguish precipitation

and irrigation contributions to total ET for each crop and county. Here, we explain how we

additionally segment irrigation into surface and groundwater contributions for each county

overlying the Central Valley Aquifer for the years 2011–2014. First, we obtained data from

the California Department of Water Resources on surface and groundwater irrigation volumes

for all available water years, which were 2002–2010 (CDWR, 2013). Note that irrigation data

from CDWR is provided annually (for the years 2002–2010) at the county spatial resolution,

but is not crop specific. Data on irrigation by crop and for the years of this study (i.e.

2011–2014) would improve our estimates, but this data does not exist, unfortunately.

Next, we used this data to quantify the fraction of total irrigation coming from groundwater

(i.e. the groundwater fraction, GF ) for 2002–2010. Then, we determined the relationship

between GF and a county-level drought index (DI) for 2002–2010. DI data was obtained

from the US Drought Monitor (US Drought Monitor , 2016). The relationship between GF

and DI varies across counties in the Central Valley, likely due to differing surface water

rights and availability, as well as differences in agricultural production practices. Counties

located in the wetter northern region had a relatively consistent reliance on groundwater,

irrespective of drought conditions. In other words, GF does not vary with DI in these

counties, so an average GF value was calculated based on their historic groundwater use
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and used to approximate GF from 2011–2014. Table 3.2 shows the GF between 2011–2014

for counties overlying the Central Valley aquifer system that do not exhibit a relationship

between drought and groundwater irrigation.

Table 3.2: Groundwater fraction for the 10 counties overlying the Central Valley Aquifer
that do not correlate with drought conditions. For these counties, GF is the average of
2002–2010 values.

County Groundwater Fraction
Butte 0.36
Contra Costa 0.01
Placer 0.06
San Joaquin 0.19
Shasta 0.14
Solano 0.4
Sutter 0.24
Tehama 0.73
Yolo 0.41
Yuba 0.18

We constructed county-specific relationships between the groundwater fraction and drought

intensity for counties located in the central and southern portions of the Central Valley (see

Fig 3.2). Regressions in Fig 3.2 show the location-specific relationship between GF and

DI. The relationships plateau as we might expect, since individual locations eventually

reach a limit to groundwater pumping. This limit varies by location and is constrained by

location-specific groundwater availability (well yields). The most senior water right holders

will continue to have priority to any surface water supplies that are available during drought.

Note that the blue points in Fig 3.2 present data from 2002–2010.

We fit a logarithmic trend line to the observed data, because this functional form best

fits the data and enables us to employ a conservative approach when projecting GF . The

logarithmic functional relationship means that GF levels off with increasing DI, thereby

capturing location-specific surface water rights and groundwater pumping limits. The other

extreme would be if the groundwater wells had all been pumped dry during the drought, such

that we are overestimating the groundwater fractions available during the drought. However,

it is important to note that we restrict our analysis with production data (see next section),

meaning that water resources must have been available and used to meet crop demands.

To estimate GF for 2011–2014, we use DI data for 2011–2014 in conjunction with the

regression relationships. The red points on Fig 3.2 illustrate estimated values of GF from
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Figure 3.2: Regression equations relating the fraction of irrigation from groundwater (GF )
to the drought index (DI). DI ranges from 0-100, with 100 being the most severe drought.
The trend line is shown, along with its equation and its coefficient of determination.
Empirical values of GF and DI from 2002–2010 are represented by blue markers.
Estimated values of GF for 2011–2014 are shown with red markers and are labeled by year.

2011–2014. Since the 2012–2014 drought is the worst on record, we had to extrapolate

beyond the x-axis bounds of the regression equation in some instances (typically just for the

year 2014). However, extrapolation was often minimal (e.g. Colusa, Glenn, and Sacramento
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counties) since California experienced the seventh driest three-year period between 2007–2009

in terms of state-wide precipitation and it was the only other time a state-wide proclamation

of emergency was declared due to drought. Importantly, note that most projected values of

GF (i.e. red points) fall within the GF bounds of the observed past, despite the fact that

DI for the year 2014 falls outside the bounds of historic DI observations. This means that

estimated values of GF have been observed before, making them feasible and conservative.

Only one estimate of GF during the drought exceeds observed values: Fresno’s 2014 GF was

1.69% greater than the historical maximum. In 2014, river runoff in the Tulare Basin was

27% of average, while state and federal water project deliveries reached record lows; final

allocations from the California State Water Project were 5% of assigned allocations (McEwan

et al., 2016). This unprecedented reduction in surface water availability likely dramatically

increased the amount of groundwater used to meet irrigation demands beyond historical

observations, giving us confidence that our GF estimate is likely conservative in this region.

Irrigation supplies from surface water sources are estimated by the difference between the

total irrigation requirement and the groundwater contribution. Then, we obtained crop yield

values for each county, crop, and year from the California Department of Food and Agri-

culture (CADFA) (California Department of Food and Agriculture, 2017) (see next section).

We used the water source specific ET values in conjunction with Y values to determine

VWC by water source. Note that our approach to segmenting irrigation into surface and

groundwater sources is more refined in space than it is by crop. For this reason, crop-specific

groundwater and surface water footprints should be used with caution.

3.2.2 Agricultural production and transfers

Here, we explain the data sources used to evaluate agricultural production and commodity

transfers in California. We also explain how transfer data were interpolated across spatial

and temporal scales.

Agricultural production

We use annual, county-level data on agricultural production, harvested area, and yields

from the California Department of Food and Agriculture (CADFA) (California Department

of Food and Agriculture, 2017). The 67 crops used in this study are presented in Table 3.3.

Together, these crops represent 98.5% of all harvested crop tonnage in the Central Valley
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according to the 2012 Census of Agriculture (USDA, 2016).

Table 3.3: Alphabetical listing of the 67 crops represented in this study.

1 Almonds 18 Corn, Grain 35 Melons, Honeydew 52 Raspberries
2 Apples 19 Corn, Silage 36 Melons, Watermelon 53 Rice
3 Apricots 20 Cotton 37 Nectarines 54 Safflower
4 Artichokes 21 Cucumbers 38 Oats 55 Spinach, Fresh
5 Asparagus 22 Dates 39 Olives 56 Spinach, Processing
6 Avocados 23 Garlic 40 Onions 57 Squash
7 Barley 24 Grapefruit 41 Oranges 58 Strawberries
8 Beans, Dry Edible 25 Grapes, Raisin Type 42 Peaches 59 Sugarbeets
9 Beans, Snap 26 Grapes, Table Type 43 Pears 60 Sunflower
10 Blackberries 27 Grapes, Wine Type 44 Pecans 61 Sweet Corn
11 Blueberries 28 Hay & Haylage 45 Peppers, Bell 62 Sweet Potatoes
12 Broccoli 29 Kiwifruit 46 Peppers, Chile 63 Tangerines
13 Cabbage 30 Lemons 47 Pistachios 64 Tomatoes, Fresh
14 Carrots 31 Lettuce, Head 48 Plums 65 Tomatoes, Processing
15 Cauliflower 32 Lettuce, Leaf 49 Potatoes 66 Walnuts
16 Celery 33 Lettuce, Romaine 50 Prunes 67 Wheat
17 Cherries 34 Melons, Cantaloupe 51 Pumpkins

Virtual water contents (VWC), water footprints, and virtual water transfers were calcu-

lated for each crop. Below, we explain how we combine this information with crop VWC

to obtain the water footprints of agricultural production. We also use crop production data

from from USDA (2016). Data from USDA (2016) is primarily used to estimate rainfed

production in the Central Valley, which is a relatively minor component of total production,

since the vast majority of agriculture in the Central Valley is irrigated.

Agricultural transfers

We estimate annual and county-level agricultural transfers from the Central Valley of Califor-

nia. To do this, we use version four of the Freight Analysis Framework (FAF4) (FAF4 , 2015).

The FAF4 dataset relies on several sources to reconstruct domestic and international com-

modity transfers but its foundation is the Commodity Flow Survey (CFS) and international

trade data is from the U.S. Census Bureau. The CFS is a quarterly survey administered

every five years (years ending in ‘2’ and ‘7’) that samples over 100,000 establishments on

their shipment activity, including a description of the transported good and its commodity

code, the good’s origin and final destination, weight, value, and mode of transportation. The

survey data sample is used to estimate the total value and weight of goods shipped in each

industry (US Census Bureau, 2014a).

The movement of goods is traced from the point of production to the place of final con-

sumption (this includes using the product as an input to value-added agriculture). Domestic

origin and destination locations are represented by 132 FAF Zones, which are comprised of
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84 U.S. metropolitan areas and 48 state or sub-state areas. International shipment destina-

tions are represented by eight countries or regions: Africa, Canada, Eastern Asia, Europe,

Mexico, Rest of Americas, Southeast Asia and Oceania, and Southwest and Central Asia.

Transfers of individual goods are not reported. Instead, commodities are aggregated ac-

cording to the Standard Classification of Transported Goods (SCTG) coding system. The

FAF4 dataset, along with the CFS dataset that it is based upon, tracks transfers from every

sector of the economy. However, in this study we only use transfers of agricultural products.

Our analysis uses SCTG 02 (Cereal Grains), SCTG 03 (Agricultural Products Except for

Animal Feed), and SCTG 04 (Animal Feed and Products of Animal Origin). The individual

crops that comprise each of these categories can be found in from (US Census Bureau,

2012).

The FAF4 dataset reports commodity transfers for the years 2012, 2013, and 2014. To

determine transfer volumes for 2011, we scale 2012 food transfers by agricultural production

data (California Department of Food and Agriculture, 2017). For instance, if a FAF Zone

harvested 5% more cereal grains in 2011 than in 2012, then 2011 transfers would be 5%

greater than 2012. This assumption captures potential changes in trade volume but presumes

that relative trade patterns do not significantly change between 2011 and 2012. We spatially

disaggregated the transfer data from the FAF scale to the county scale. This was achieved

by multiplying a county’s crop production by the fraction of the total production that is

transferred out of the corresponding FAF Zone. So, if a county produced 50% of a FAF Zone’s

animal feed, for example, it is assumed that 50% of the FAF Zone’s transfers can be attributed

to that county. Disaggregating the origin of commodity flows based upon production data

is a similar approach employed by (Hoekstra and Mekonnen, 2016). However, our empirical

information on commodity transfers is provided at the sub-national scale, compared with

the international trade data disaggregated in Hoekstra and Mekonnen (2016).

The final step was to disaggregate the transfer volumes of SCTG categories to transfers

of individual crops. Together, all these processes can be simplified into one equation:

Tc,a,n = Pc,a,n ·
TSCTG,FAF,a

PSCTG,FAF,a

(3.2)

Here, the transferred tonnage (T ) of an individual crop (c) was calculated for each year (a)

and county (n) by multiplying a crop’s harvested tonnage (P) by the fraction of production

that was transferred out of the associated FAF Zone. It was assumed that the difference

between a FAF Zone’s total crop production and the tonnage transferred out of the FAF

Zone is what remained in the origin FAF Zone. In this way, mass balance was achieved.
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The agricultural tonnage remaining in the FAF Zone of production can be attributed to

either post harvest loss, food storage, internal consumption, or further processing into other

products (e.g., corn into high fructose corn syrup).

3.2.3 Water footprints of agricultural production

The water footprint of agricultural production (WF ) for each crop-county-year was calcu-

lated as:

WFc,a,n,w = Pc,a,n · VWCc,a,n,w (3.3)

where P indicates agricultural production, VWC is virtual water content, and the sub-

scripts c, a, n, and w denote crop, year, county, and water source, respectively. Thus, water

footprints are sensitive to changes in farmer decisions (e.g., crop production patterns and

irrigation source), climate (e.g., effective precipitation and temperature), and crop response

(e.g., ET and yield).

3.2.4 Virtual water transfers

Virtual water transfers (VWT ) for each crop-county-year were calculated as:

VWTc,a,n→FAF,w = Tc,a,n→FAF · VWCc,a,n,w (3.4)

where T indicates commodity transfers, VWC is virtual water content, and the subscripts

c, a, n, and w denote crop, year, county, and water source, respectively. The subscript

n → FAF indicates the transfers from the county of origin (n) to a specific FAF Zone. VWT

are traced from each county overlying the Central Valley Aquifer to 132 domestic destinations

and 8 world regions. There are over two million virtual water transfers quantified in this

study. When reporting our findings, we aggregate our results along particular spatial scales,

water sources, or commodity resolutions of interest in order to make the results more clear.

Due to a lack of supply chain data, we did not trace virtual water flows associated with

processed agricultural goods, livestock, or meat products. Available data does not indicate

how the drought impacted where these products sourced their primary agricultural inputs

from and what water source was used. Estimates of the total virtual water transfers leaving

a FAF Zone are conservative since a portion of the agricultural products remaining in the
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FAF Zone of origin (and the water embedded within them) will be processed or consumed by

livestock and these secondary products will eventually be transferred and consumed outside

the region.

3.3 Results and Discussion

Here we quantify the impact of drought in California to agricultural production and yields,

virtual water contents, the water footprint of agricultural production, and food and virtual

water transfers from the Central Valley. Our results present one example of how local climate

shocks propagate through the global food system.

3.3.1 Drought impacts to agricultural area, yields, and production

Fig 3.3 presents the relative change [%] in harvested area, yields, and production over the

course of the drought. From Fig 3.3 it is clear that harvested area decreased over the course

of the drought, while yields actually increased and production remained relatively constant.

Table 3.4 shows the values of harvested area, yields, and production by commodity category

for each year of the study. Harvested area changed from 3,441,708 hectares in 2011 to

3,029,297 hectares in 2014, a 12% decline. This fallowing of less productive agricultural

area helps to explain the yield gains (refer to yellow line on Fig 3.3). Nearly half of all

crops saw 2014 yields maintain or exceed pre-drought yields in 2011. Crop production in

the Central Valley, which represents approximately 75% of crop production in California

by mass, only saw a 2% decline from 2011 to 2014. The vast majority of the decline in

production occurred amongst cereal crops and animal feed crops, which saw a 28% and 10%

decline, respectively (refer to Table 3.4). Other agriculture crop categories (namely fruits,

nuts, and vegetables), actually saw a 7% increase in production during the drought, despite

a 9% decline in harvested area (refer to Table 3.4).

3.3.2 Drought impacts to virtual water content

The drought had two distinct impacts on the VWC of crops. First, VWC values were

generally larger during the drought (2012–2014) than in 2011 (pre-drought) (refer to Fig 3.4).

This is because high temperatures during the drought increased plant water requirements
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Table 3.4: California Central Valley harvested area [hectares], yields [tons hectare−1], and
production [tons] pre-drought (2011) and during the drought (2012–2014). Cereal grains
(SCTG 2), other agricultural products (SCTG 3), and animal feed (SCTG 4) are provided.
Yield gains in cereal grains and other agricultural crops over the course of the drought can
be explained by the fallowing of less productive agricultural lands and changes in crop mix.

Harvested Area 2011 2012 2013 2014
Cereal grains 566,728 549,601 500,391 373,390
Other agricultural 2,165,484 2,150,788 2,036,481 1,995,848
Animal feed 709,496 740,716 709,636 660,059
Yield 2011 2012 2013 2014
Cereal grains 8.57 8.80 9.27 9.26
Other agricultural 15.90 16.85 18.10 18.68
Animal feed 28.19 28.94 29.52 26.47
Production 2011 2012 2013 2014
Cereal grains 4,339,420 4,234,356 4,209,809 3,121,597
Other agricultural 27,019,786 28,339,488 28,494,048 29,013,069
Animal feed 13,044,531 13,823,431 13,605,543 11,509,284
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Figure 3.3: Relative change [%] in study variables over the course of the drought.
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(numerator of VWC) while, in some instances, also reduced crop yields (denominator of

VWC). Second, different water sources were used for crop irrigation during the drought.

Since there was less rainfall available to meet crop water requirements during the drought,

farmers increasingly relied on irrigation. Additionally, as the drought progressed, the water

used for irrigation was increasingly obtained from groundwater sources. This is reflected in

steady increases in the groundwater components of VWC shown in Fig 3.4, particularly in

the Tulare Basin.
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Figure 3.4: Virtual water content [m3 ton−1], water footprint of agricultural production
[m3], and virtual water transfers [m3] pre-drought (2011) and during the drought
(2012–2014) by water source are shown for the three basins of the Central Valley Aquifer:
Sacramento Valley, San Joaquin Basin and Delta, and Tulare Basin. Note the increased
contribution of groundwater over time, particularly in the Tulare Basin.

The average VWC was between 27% and 59% higher in the Sacramento Basin than in the

San Joaquin and Tulare Basins. Although ET requirements for the same crop are lower in the
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cooler Sacramento Basin, average yields are also much lower. Nearly 40% of the Sacramento

Basin’s crop production is attributed to cereal grains (SCTG 2), which has average yields

between 30-50% that of crops classified as SCTG 3 and SCTG 4 that are more widely grown

in the San Joaquin and Tulare Basins (see Table 3.4). In comparison, only 1–5% of crop

production in the San Joaquin and Tulare Basin is classified as cereal grains. Thus, the

Sacramento Basin’s overall crop yield is roughly two-thirds of the other two basins due to

differences in cropping patterns. The lower yields lead to higher VWC in the Sacramento

Basin, despite lower ET values.

Seventeen of twenty Central Valley counties saw average VWCground increase during the

drought, some by over two-fold. VWCground within the Tulare Basin increased by 149%

from 2011 to 2014 on average, reflecting increased dependency on groundwater in this basin.

The San Joaquin and Sacramento Basins experienced average VWCground increases of 71%

and 14%, respectively. In 2014, average VWCground of the Tulare Basin was 370.91 m3

ton−1. The average VWCground was 199.22 m3 ton−1 in the San Joaquin Basin and Delta

and 208.77 m3 ton−1 in the Sacramento Valley. Permanent crops have VWCground values

4.5 times greater than average VWCground during the worst year of drought, with crops like

almonds consuming 11.5 times more groundwater than average.

3.3.3 Drought impacts to agricultural production water footprints

The total WF of crop production in the Central Valley peaked at 27.38 x 109 m3 in 2012.

In 2011, before the onset of the drought, the total WF was 26.21 x 109 m3. On average, for

every 1 m3 reduction in the green WF during the drought there was a 1.42 m3 increase in

the blue WF . This is due to increased crop ET during drought years, which is related to

higher temperatures (between one and three degrees Celsius across the Central Valley) and

a shift to more water-intensive orchard and vine crops.

We validate our results against two sources. First, we compare our estimates with the

California Water Plan Update 2013 (CDWR, 2013). According to the California Depart-

ment of Water Resources (CDWR), irrigation withdrawals for the 20 counties in this study

were 28.07 x 109m3 in 2010. We use CDWR irrigation efficiency parameters to convert our

consumptive water use estimates into withdrawal values. We estimate irrigation withdrawals

in 2011 as 31.20 x 109 m3. Our 2011 value is roughly 11% higher than the 2010 CDWR value.

This is reasonable given there was a 6% increase in harvested crop area between 2010 and

2011.
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Second, we validate our numbers against Howitt et al. (2014). Howitt et al. (2014) estimate

California’s 2010 irrigation groundwater usage as 9.87 x 109 m3, based on CDWR water

use records. In 2010, CDWR records show that irrigators in Central Valley counties were

responsible for 81% of groundwater use within California. Thus, based on these numbers,

groundwater use in the Central Valley was roughly 8.01 x 109 m3 in 2010. Howitt et al. (2014)

projected an increase of 6.17 x 109 m3 in groundwater irrigation across the Central Valley

from 2010 to 2014. So, groundwater use in the Central Valley would be 14.18 x 109 m3 in

2014, according to Howitt et al. (2014) estimates. We estimate 2014 groundwater use to be

13.63 x 109 m3. So, our estimate compares favorably with Howitt et al. (2014) and is only

3.9% less.

Nearly all of the increase in the blue WF of production is due to increased groundwater

consumption. In fact, 7 of the 20 Central Valley counties had a double-digit percentage

decrease in WFsurface (refer to Fig 3.5). The WFground of agricultural production in the

Central Valley increased from 7.00 x 109 m3 in 2011 to 13.63 x 109 m3 in 2014. The increase

in groundwater footprints coincided with a reduction in surface water and green water foot-

prints, shown in Fig 3.4. The Tulare Basin experienced the greatest increase in both absolute

and relative terms in groundwater footprints during the drought. In the Tulare Basin, total

crop groundwater consumption increased from 3.85 x 109 m3 in 2011 to 8.72 x 109 m3 in

2014 (see Fig 3.4).

Depletion of the Central Valley Aquifer is not spatially uniform since groundwater with-

drawals and recharge vary across the aquifer. Our study estimates volumes of groundwater

consumption; however, not all consumptive groundwater use is unsustainable. Previous stud-

ies (Faunt , 2009; Famiglietti et al., 2011) show that unsustainable groundwater use primarily

occurs in the Tulare Basin, manifested by declining groundwater tables, subsidence, and re-

duced baseflow. We find that the Tulare Basin consumed 3.81 x 109 m3 more groundwater

in 2014 than the Sacramento and San Joaquin Basins combined. Furthermore, we find that

locations with the largest groundwater footprint of agricultural production experienced the

highest levels of land subsidence during the drought, as illustrated by Fig 3.6. Fig 3.6B

shows the maximum recorded subsidence from 2011–2014 derived from USGS extensometers

and continuous GPS measurements. Remote sensing studies have shown land subsidence

up to 330 mm in just eight months in 2014 (Farr et al., 2015), meaning that USGS in-situ

measurements likely do not capture some of the more extreme instances of subsidence in

the region. Subsidence alters land-surface slopes and has caused costly operational, mainte-

nance, and construction-design issues related to water-delivery and flood-control canals and
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Figure 3.5: Drought impacts to the water footprint of agricultural production in the
California Central Valley. Panels indicate volumetric changes [m3] from pre-drought (2011)
to drought conditions (2014) for green water footprints (A), surface water footprints (B),
and groundwater footprints (C). Note that green and surface water footprints
predominantly decrease, while groundwater footprints increase, particularly in the Tulare
Basin.

other infrastructure (Faunt and Sneed , 2015).

From 2011 to 2014, the total irrigation water consumed in the production of cereal grains

decreased by 16%, or 0.42 x 109 m3. However, the blue water footprint of other agriculture

products, such as fruits, vegetables, and nuts, increased by 6% (2.80 x 109 m3) over this time

period (see Fig 3.7). This reflects a reallocation of limited water supplies from low-value to

higher-value crops during the drought.

Basin-wide, all crop categories increased their dependency on groundwater during the

drought. However, cereals continued to meet the majority (∼70%) of their irrigation re-

quirement from surface water sources. Fruits, nuts, vegetables, and animal feed crops went

from groundwater supplying 32% of their irrigation requirement pre-drought to relying on

groundwater to meet 57% of their irrigation needs in 2014. We estimate a smaller fraction of

irrigation comes from groundwater sources than other studies, e.g., Faunt and Sneed (2015);

Jones (2015). This is likely due to the conservative nature of our approach to estimating

the contribution of groundwater to irrigation, as well as because our study encompasses all

counties overlying the Central Valley aquifer system. This includes the area of counties that

is not directly over the aquifer, while other studies just evaluate the land directly over the

aquifer.

Changes in the water footprint of crop production during the drought occur for four rea-
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Figure 3.6: Map of groundwater footprints (A) and map of subsidence (B) for counties in
the Central Valley of California. Panel A) Each circle is scaled according to the total
groundwater footprint of crop production of each county aggregated from 2011–2014. The
fraction of virtual groundwater transfers that leave the FAF Zone of production is shown in
orange, while the fraction of virtual groundwater transfers that remain within the FAF
Zone is blue. Panel B) Land subsidence recorded by USGS extensometers and continuous
GPS measurements between 2011–2014 is mapped. Dark red indicates greater subsidence.
Counties with no subsidence measurements are hatched. Note that the Tulare Basin
counties have the largest groundwater footprint of agricultural production and the most
subsidence.

sons: 1) a change in crop yield and harvested area; 2) an increase in crop evapotranspiration

during drought years; 3) an increase in irrigation to compensate for rainfall deficits; and 4) an

increase in groundwater irrigation due to reductions in surface water availability. There was

an increase in the harvested area of permanent crops (vineyards and orchards) during the

drought and a corresponding decrease in the harvested area of non-permanent crops (field

crops and vegetables), shown in Fig 3.8. Between 2011 and 2014, 490,254 less hectares of

non-permanent crops were harvested (29% reduction) in the counties overlying the Central

Valley Aquifer. At the same time, 146,592 more hectares of permanent crops were harvested

(15% expansion).
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Figure 3.7: Green, surface, and groundwater footprints of agricultural production in the
Central Valley from pre-drought (i.e. 2011) through the third year of drought (i.e.
2012–2014). Water footprints for cereal grains (SCTG 2), fruits, nuts, and vegetables
(SCTG 3), and animal feed (SCTG 4) are shown.

Figure 3.8: Harvested area [hectares] of permanent and non-permanent crops pre-drought
(i.e. 2011) and during the drought (i.e. 2012–2014) in the California Central Valley.
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On average, the water requirement per hectare of permanent crops was approximately 91%

higher than non-permanent crops (see Fig 3.9). Thus, each additional hectare of permanent

crops harvested during the drought would require nearly two hectares of non-permanent

crops to be fallowed to maintain the same level of water consumption. A key exception is

hay (including alfalfa), which, on a per hectare basis, consumes a considerable volume of

water since the irrigated plot is harvested multiple times throughout the year. Permanent

crops are also more likely to be insured than forage and field crops grown in California.

Insured irrigated cropland requires farmers to maintain a certain level of water application

to maintain insurance coverage, further reinforcing the water use implications associated

with the transition from non-permanent to permanent crops (Deryugina and Konar , 2017).

Figure 3.9: Total evapotranspiration of permanent and non-permanent crops pre-drought
(i.e. 2011) and during the drought (i.e. 2012–2014) in the California Central Valley.

Fig 3.10 shows the blue ET requirement and the average revenue per hectare generated

for permanent crops that saw the largest increase in harvested area and the non-permanent

crops that experienced the largest decline in harvested area from 2011–2014. In the first

year of the drought, these permanent tree and vine crops saw a sharp price increase, while

the most widely grown non-permanent field crop prices remained relatively stable. Growing

global demand for tree nuts is primarily responsible for the rise in prices and is likely to

have caused the shift to more water-intensive tree nut crops. From an economic perspective,

the reallocation of water to higher value uses is encouraged (Zilberman et al., 2002; Marston
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and Cai , 2016) – this is foundational to California’s water market. However, from a drought

management perspective, changing cropping patterns from easily fallowed field crops to tree

and vine crops reduces flexibility in the water system.

Figure 3.10: California Central Valley crop revenue and irrigation requirement from 2011
to 2014. Bars indicate the average revenue per hectare of crop production. Blue circles
show the average crop evapotranspiration from irrigation. Permanent (tree and vine) crops
with the greatest increase in harvested area during the drought are compared with
non-permanent (field and vegetables) crops with the greatest decrease in harvested area.
With the exception of hay, which is often harvested (and irrigated) multiple times per year,
permanent crops have significantly higher ET requirements per hectare than the most
fallowed non-permanent crops.

3.3.4 Drought impacts to food and virtual water transfers

Overall, food transfers from the Central Valley decreased by 1% from 2011 to 2014 (refer to

Table 3.5). A decrease in food transfers was seen across 40% of all trade links, including 8

of the 10 largest trade links by tonnage. Transfers of cereal grains (SCTG 2) declined by

28%, with 95% of trade linkages facing a decline. Transfers of other agricultural products

(SCTG 3) experienced a more modest decline of 2%, with tonnage falling across 27% of

trade paths. Although production of animal feed (SCTG 4) decreased by 14% from 2011 to

2014, transfers increased by 15%. Nonetheless, 56% of animal feed was consumed, stored,

or further processed in the FAF Zone of production. Note that there was large variation in

food transfers during the drought depending on the transfer destination and food category.
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From 2011 to 2014, total VWT from the Central Valley increased by 3% (0.51 x 109 m3)

(see Fig 3.4). During the same period, there was a 3% increase (0.71 x 109 m3) in total WF .

This can be explained by higher drought temperatures increasing crop evaporative demands

and farmers switching to more water-intensive crops. These changes led to larger total water

footprints and virtual water transfers, despite declines in total agricultural production and

transfers. The driest year of the drought was 2013 (Jones , 2015), which is when VWTgreen

and WFgreen reached their lowest values of 1.04 x 109 m3 and 1.93 x 109 m3, respectively.

However, it was not until 2014 that reservoirs reached their lowest levels, leading to record-

low distributions from federal and state water projects (Jones , 2015). In 2014, VWTsurface

and WFsurface reached its lowest value of 6.98 x 109 m3 and 11.19 x 109 m3, respectively.

The increase of total VWT over the course of the drought can almost entirely be attributed

to the 3.42 x 109 m3 of additional VWTground during that same period. The increase in

virtual groundwater transfers offsets the 0.94 x 109 m3 reduction in VWTgreen and the 1.96

x 109 m3 decrease in VWTsurface. The Tulare Basin in particular was responsible for 59%

of all VWTground from the Central Valley. Fig 3.6, shows that areas reporting greater levels

of subsidence transferred 3.7 times more virtual groundwater than areas with no recorded

subsidence by USGS.

Urban areas of California are major indirect consumers of Central Valley water resources.

From 2011 to 2014, five major urban areas (i.e. Fresno, Los Angeles, Sacramento, San

Francisco, and San Diego) utilized 12.41 (± 0.35) x 109 m3 year−1 of virtual water from

the Central Valley. In comparison, Los Angeles physical water demand and aqueduct de-

Table 3.5: Percent change [%] in agricultural transfers from the California Central Valley
to major destinations from 2011 to 2014.

Destination Cereal grains Other agriculture Animal feed Total
(SCTG 2) (SCTG 3) (SCTG 4)

Africa -52% -4% 462% -38%
Canada -34% 21% 71% 19%
Eastern Asia -52% -16% 79% -1%
Europe -61% 29% 26% 24%
Mexico 39% 13% 62% 32%
Rest of Americas -13% 22% 38% 20%
SE Asia & Oceania -63% -37% -32% -40%
SW & Central Asia -41% 8% -44% -25%
United States -25% -2% 12% -2%
World Total -28% -2% 15% -1%
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liveries have averaged around 0.75 x 109 m3 and 0.25 x 109 m3 per year, respectively, since

1990 (LADWP , 2013). However, the portion attributed to each water source varied signifi-

cantly between years (see Fig 3.11). In 2014, approximately 45% of surface water consumed

by Central Valley crops was eaten or further processed (supporting jobs and local economies)

by these five cities. Together, these urban areas experienced a 34% reduction in VWTsurface

between 2011 and 2014, reflecting a decrease in agriculture production and a switch in de-

pendency from renewable surface water to the Central Valley Aquifer during the drought

(there was an 89% increase in VWTground).

Figure 3.11: Indirect water footprint from the Central Valley of California cities: Fresno,
Los Angeles, Sacramento, San Francisco, and San Diego by water source and year.

Overall, the State of California utilized 20.73 (± 1.06) x 109 m3 of virtual blue water from

the Central Valley region each year between 2011 and 2014. In 2011, roughly 69% of the

state’s virtual blue water use could be attributed to surface water sources but the fraction of

surface water shrank to 43% by 2014. To put the virtual water volumes in context, in 2013,

14.60 x 109 m3 of potable water was supplied for residential and non-residential users by the

over 400 urban water suppliers across the state (California EPA, 2016). During the drought,

urban water users in California were mandated to reduce their water use by 25%. California
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residential water users paid approximately ✩1,630 per 1,000 m3 of water in 2013 (Gaur et al.,

2013), while irrigators spent ✩22.19 in pumping cost per 1,000 m3 of on-farm water (surface

water and groundwater) and paid ✩36.96 per 1,000 m3 for off-farm water supplies (USDA,

2014a). This highlights the high opportunity cost of water in agriculture in California, due

to its heavy reliance on irrigation and proximity to urban areas.

Dependencies of US cities and states on the Central Valley’s water resources changed

significantly during the drought. Reliance on the Central Valley Aquifer more than doubled

for 69 FAF Zones from 2011–2014 (refer to Fig 3.12). At the same time, 31 FAF Zones

increased their utilization of both the Central Valley’s surface water and groundwater during

the drought. No areas saw an increase in VWTgreen during the drought. Rural Arizona saw

a significant reduction (85%) in cereal grain receipts from the Central Valley, making it the

only US FAF Zone to experience decreased dependency on the Central Valley Aquifer as the

drought intensified.
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Figure 3.12: Percent change [%] in virtual water transfers from the California Central
Valley to other areas of the United States between 2011 and 2014. Panels indicate green
(A), surface (B), and groundwater (C) virtual water transfers within the United States.
Note that green and surface virtual water transfers predominantly decrease, while
groundwater transfers mostly increase.

VWT to international destinations increased by 4% during the drought. Fig 3.13 maps

changes in virtual water exports from the Central Valley to international destinations from

2011 to 2014. All regions experience a decrease in VWTgreen (see Fig 3.13), while five of
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eight world regions receive more VWTsurface from the Central Valley over the course of the

drought (note the predominantly blue shading in Fig 3.13B). Conversely, all areas experience

an increase in VWTground during the drought, except for Africa (see Fig 3.13C). Africa’s

decrease in VWTground is due to a significant reduction in cereal grain exports from the

Central Valley during the drought (Africa disproportionately imports more of these goods

than other regions). Thus, during the California drought, global consumers relied more

heavily on the overexploited Central Valley Aquifer. This demonstrates how local changes in

production, such as greater reliance on groundwater during drought, can propagate through

the global food system and create complex patterns of dependencies on scarce resources by

distant consumers.
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Figure 3.13: Percent change [%] in virtual water transfers from the California Central
Valley to international destinations between 2011 and 2014. Panels indicate the percent
change in green (A), surface (B), and groundwater (C) virtual water transfers. Arrows
show the change in the volume of virtual water transfers [m3] and are scaled relative to
size. Volumes are provided for the largest links. Red arrows indicate a reduction in virtual
water transfers; blue arrows signify an increase.
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3.4 Concluding Remarks

In an increasingly globalized economy, it is critical that we understand how local production

shocks propagate through and interact with the global food trade system. In this paper

we quantified how severe drought impacted agricultural production, water footprints, and

virtual water transfers of the Central Valley of California. We paired high resolution data

of food commodity transfers and production with modeled estimates of water footprints by

county, year, and water source to better understand the ramifications of drought for the

coupled water-food-trade system.

We showed that there was a 3% increase (0.71 x 109 m3) in the total WF of agricultural

production over the course of the drought, due to increased crop water requirements and

shifts in production patterns. In particular, the groundwater WF increased from 7.00 x 109

m3 in 2011 to 13.63 x 109 m3 in 2014, predominantly in the Tulare Basin. Similarly, we

found that food transfers decreased by 1% (0.32 x 106 tons) during the drought, yet VWT

increased by 3% (0.51 x 109 m3). From 2011 to 2014, nonlocal groundwater VWT increased

by 3.42 x 109 m3, offsetting reductions in green and surface VWT (0.94 x 109 m3 and 1.96 x

109 m3, respectively). These findings demonstrate non-obvious patterns that emerge between

drought, farmers’ decisions on crop mixes and water use, and global commodity markets.

This study highlights the critical importance of existing national databases in the United

States, which this study relied upon. Through this analysis, we were able to identify oppor-

tunities to improve national data collection efforts as well. In particular, the scientific and

policy communities would dramatically benefit from high temporal resolution and metered

water use data by source. It is important to note that we presented expected values only and

do not quantify the uncertainty surrounding our results due to shortcomings in the input

data. Quantifying the sensitivity and uncertainty of water footprint estimates is an area of

active research (Zhuo et al., 2014; Tuninetti et al., 2015) and future research is needed to

evaluate the additional uncertainties that are involved when commodity transfers are also

considered.

Over the course of the drought, local and global consumers doubled their reliance on the

Central Valley Aquifer (95% or 6.63 x 109 m3). It is critical that groundwater resources are

recharged following drought, so that they are there to draw upon during the next drought.

Water pricing, water markets, property rights, managed aquifer recharge, and groundwater

policy are critical to conserving our groundwater resources for use during future drought

events (Zilberman et al., 2002). Local solutions will continue to be essential to ensuring

sustainability of the Central Valley Aquifer. In addition, our work enables consumers around
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the country and world to realize that they benefit from agricultural production that relies

upon the Central Valley Aquifer. This information is critically important to help non-local

Americans realize that they are connected to their distant, national resources and benefit

from non-local infrastructure.
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Chapter 4

HIGH RESOLUTION PRODUCTION WATER

FOOTPRINTS OF THE UNITED STATES

4.1 Introduction

The United States is the largest producer and consumer of goods and services in the world.

This economic activity relies on the nation’s rainfall, streams, lakes, and aquifers as a fun-

damental input in economic production. Despite water’s importance in the U.S. economy,

it is often undervalued and overexploited. The first step towards sustainable, equitable, and

economically efficient water use is to understand how water is currently being used through-

out the nation’s economy. Previous studies quantifying water use in the U.S. lack either the

spatial resolution or the sectoral detail needed to get a meaningful understanding of how the

country’s economy utilizes and depends on its water resources. In this paper, we calculate

the water footprint for over 500 unique industries and goods produced within the U.S. at

an unparalleled spatial resolution. This study is the most detailed, comprehensive water

footprint analysis of any country to date.

Future water availability within the United States is subject to dramatic changes in the

coming decades. Growing and shifting populations, economic growth, expansion of the en-

ergy sector, as well as warming temperatures, shifting rainfall patterns, and shrinking snow-

pack due to climate change, will alter water supplies and demand. Furthermore, increasing

water allocations to meet environmental requirements and the adjudication of Native Amer-

ican water-rights could further strain existing water uses (Marston and Cai , 2016). These

issues are particularly concerning in the American Southwest, which is already water stressed

and expected to face greater water scarcity in the coming decades (Schewe et al., 2014).

Unless we first understand the current linkages between the nation’s economic production

and its water resources, we will be challenged in predicting and managing future human and

natural changes impact on water availability, water demand, and economic activity.

Across the U.S., water use is extremely heterogeneous, decentralized, and politically con-

tentious, making it challenging to meter and report water consumption (also termed ‘use’
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here) of different users. This is especially true of the agriculture industry, the largest water

consumer, which has 213,621 irrigators scattered across the country (USDA, 2014b). Dif-

ferences in state policy and water management further challenge water data availability and

the development of a uniform methodology to estimate water use across state boundaries.

In the absence of metered water use data collected from each water user, many turn to water

use coefficients to approximate water use of an industry. Water use coefficients allow for the

estimation of water use based off a known variable, such as the number of employees, the

amount of energy produced, or the area of cropland, when water use is not strictly known.

However, water use coefficients are often for a very narrow geographic area and industry or

they are too broadly defined at the national and sector level. This makes comparison of

water use infeasible across different areas and industries.

To overcome this deficiency, we calculate subnational water footprints of production (WFP )

and product water footprints (PWF ) for over 500 goods and services produced within the

United States. In the creation of this comprehensive database, we use a variety of methods

to leverage existing but disparate datasets on water use and economic production. Here,

we define an industry or product’s WFP as the volume of freshwater directly consumed

during the present stage of production (i.e., only includes water incorporated into a product

or evaporated and does not include water indirectly used through the supply chain). PWF

is analogous to a water use coefficient and is defined as the volume of freshwater consumed

during the present stage of production, normalized by production output (in this case, U.S.

dollars). We further delineate WFP and PWF by distinguishing the contribution of green

water, surface water, and groundwater to meet the water requirements of the given industry

or product. Surface water and groundwater can be more broadly classified as blue water,

while green water corresponds to soil moisture in the root zone made available by rainfall.

Traditionally, water footprint assessments have primarily focused on agriculture, as it is the

largest user of water globally (Hoekstra and Mekonnen, 2012). However, there is a growing

body of literature that recognizes the important role other sectors of the economy play on

water resources, especially at the local level (Paterson et al., 2015). This follows a broader

trend of moving to finer spatial resolution (Mayer et al., 2016; Rushforth and Ruddell ,

2015, 2016) and industry specific (Blackhurst et al., 2010; Wang and Zimmerman, 2016)

estimates of water use by water source — including distinguishing between groundwater and

surface water (Dalin et al., 2017; Marston et al., 2015; Marston and Konar , 2017; Schyns

et al., 2015). Blackhurst et al. (2010) noted the need for subnational estimates of water

use by water source for specific industries in environmental impact assessments. However,
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the current literature masks the significant variability in water use between regions and/or

industries by providing findings at coarse geospatial or sectoral detail. Our work is a first

step in resolving this shortcoming in the literature.

The purpose of this paper is to gain a spatially explicit understanding of U.S. industries

dependency on different water resources to produce the goods and services demanded by

society. When accurate, site-specific data is unavailable, this work provides a rich and high-

resolution dataset of human-mediated water use in the U.S. that can be useful for water

management and modeling, environmental life cycle assessment, water footprint assessments,

demand forecasting and planning, and other US-based water studies. This study aims to

answer the following questions: (i) How much surface water, groundwater, and green water

is used to support production of different industries and products across the United States?

(ii) How much variance in water use exist across the country within each industry? (iii) Do

industries depend more on water directly or indirectly through their supply chains?

The rest of the paper is organized as follows. We highlight our primary dat a sources

in Section 4.2 and describe our methodology in Section 4.3. Our results are detailed in

Section 4.4. In Section 4.5, we discuss and highlight implications, as well as limitations, of

our work.

4.2 Data

We leverage existing datasets on agriculture, aquaculture, mining, thermoelectric energy,

hydropower, commercial, and industrial production and water use to build a comprehensive

compilation of U.S. WFP and PWF . We do not include residential water use in our analysis

since it is not considered an economically productive water use. Additionally, we do not

include water used for golf courses and other recreational purposes (such as duck hunting

or reservoirs purposed for recreation) due to incomplete data. Broadly, the data we do use

can be classified as relating to either water use and supply or economic production. Data

availability varied by sector and spatial scale. As much as possible, we use data within our

study period (˜2010–2012). We present the finest spatial resolution that the data allows.

Table 4.2 list the major data products utilized in this study by water use category. Water

use categories roughly follow those used by the U.S. Geological Survey (USGS) in their 5-year

water use report (Maupin et al., 2014), a foundational dataset used in this study. USGS es-

timates water withdrawals for each U.S. county for eight general water use categories: public

supply, industrial self-supplied, domestic self-supplied, mining, irrigation, livestock, aquacul-
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ture, and thermoelectric power. We do not include the domestic self-supplied category since

residential water use is outside the scope of this study. USGS public supply and industrial

self-supplied water use categories fall under the ‘Commercial, Industrial, and Institutional’

water use category in Table 4.2. Furthermore, we more broadly define USGS’s Irrigation

category as ‘Crops’ since we include water use estimates of both irrigated and rainfed crops.

Additional details relating to each data product are found throughout the methods section.
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Agriculture (USDA, 2016) and business production data (US Bureau of Economic Anal-

ysis , 2017) used in this study are sometimes suppressed by government collection agencies

when it may reveal information about specific companies or individuals. Instances of data

suppression are flagged within the dataset, indicating that there are limited producers in

that geographical area. Data suppression is more prevalent at smaller spatial scales (e.g.,

counties) and among specialty producers. For instance, production data of the only almond

farmer in Greeley County, Nebraska is flagged since reporting this data would reveal in-

formation related to that specific farmer. Like Isserman and Westervelt (2006), we take

advantage of the hierarchical structure of the data by industry/product and geography to

approximate suppressed values when encountered. Nonetheless, our study would benefit

from a complete original dataset that doesn’t necessitate estimates of suppressed records,

which may introduce errors, especially for smaller industries and estimates at finer spatial

scales.

4.3 Methods

A novel dimension of this research is the utilization of high resolution, spatially explicit, and

empirically-based datasets of economic production and water use. We fuse together these

disparate data sources to build a comprehensive understanding of how the U.S. economy

utilizes and depends on its water resources. To date, no study has matched both the sectoral

resolution and spatial detail found in this national study. Furthermore, we distinguish be-

tween surface water and groundwater footprints for each industry, highlighting each sector’s

dependencies on these different water resources. Indeed, we estimate state or sub-state scale

surface and ground WFP and PWF for over 500 products and/or industries, including

green WFP and PWF for around 140 crops. We provide PWF for every sector in units

of m3/✩ but also provide water use coefficients in other units when possible (e.g., crops in

m3/ha; livestock in m3 per head). Table 4.3 outlines the major contributions of our work

and relates it to the current state-of-the-art with regards to spatial and sectoral resolution

and water source delineation.
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Besides for improved sectoral resolution, a key difference between this work and water

use statistics reported by U.S. government agencies is that we calculate consumptive water

use, whereas their estimates are of water withdrawals (e.g., Maupin et al. 2014) or applied

water (e.g., USDA 2014b). We are concerned with consumptive water use since reporting

water withdrawals may overstate water scarcity and the amount of water necessitated for

economic production since return flows are often reused numerous times. For instance, water

withdrawals in the Colorado River Basin exceed renewable annual supply due to substantial

reuse of return flows (Richter , 2014).

In accordance with the water footprint definition, our PWF and WFP estimates only

include fresh water use. Some industries and locations may use treated or untreated saline

water, which are not represented in our analysis. Saline water is not widely used in most

production processes, but in a few sectors, such as mining, it may represent a significant

portion of the industry’s water use. Maupin et al. (2014) estimated that in 2010 saline

water comprised 13% of the nation’s total water withdrawals, with 90% of that attributed

to thermoelectric power generation.

We reemphasize that this work estimates direct PWF and WFP (i.e., water consumed

in the immediate production process). Therefore, the results presented here cannot be

directly compared to other studies that estimate total (i.e., direct and indirect) PWF and

WFP . However, our direct PWF estimates can be used within environmental extended

input-output (EEIO) models to calculate direct and indirect water use, as we demonstrate

later.

In the following subsections, we detail our methodology for determining WFP and PWF

each broad economic sector.

4.3.1 Crops WFP and PWF

Growing crops for food, feed, biofuel, or other purposes requires a significant amount of blue

and green water. Water is a critical input for crop production and in many areas the largest

water user. We present county-level WFP (m3) and water intensities (m3/ha) of 141 crops

grown in the United States based on modeled long-term estimates of blue and green crop

water requirements from Mekonnen and Hoekstra (2011b). Additionally, we provide state-

level green, blue, surface, and ground PWF (m3/✩) for 133 crops (data limitations prohibited

inclusion of some minor crops included in WFP assessment). Crop blue and green water

requirements are extremely variable in many regions due to inter-annual fluctuations in
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precipitation and ET. Here, we present average water requirements based on 10-year climate

averages. Although the production data we utilize is for 2012, the PWF and WFP we

present reflect water requirements of production under average climatic conditions.

The 5 x 5 arc minute gridded global dataset from Mekonnen and Hoekstra (2011b) provides

estimates of 146 crops’ blue and green water requirements per hectare. We exclude 5 crops

that are not grown in the United States or that have insufficient data coverage. Crop

water requirements are derived from a dynamic water equilbruim model that computes a

daily soil water balance and calculates crop water requirements and actual crop water use,

attributing the proper allocation to green water and blue water sources. Water stress and

non-optimal crop growth conditions are considered in the model. The model only accounts

for the evapotranspiration (ET) requirement of each crop, not other potential consumptive

water uses such as frost protection, field preparation, chemical application, and leaching.

Although these water uses are generally small in relation to ET requirements, their exclusion

means that our estimates are conservative.

We only use values corresponding to the U.S., though the model provides global output.

The final water footprints of crop production as shown in Mekonnen and Hoekstra (2011b)

rely on a global dataset of agriculture production and irrigation coverage. Here, we use

more localized datasets on crop production and irrigated area from the U.S. Department of

Agriculture 2012 Census of Agriculture (USDA, 2014a). We created a crosswalk table that

matches 141 USDA reported crops to their corresponding FAO crop name used by Mekonnen

and Hoekstra (2011b).

We average estimates of crop blue and green water requirements (m3/ha) to the county

scale to match USDA’s crop production and irrigation data. For many berry, orchard, and

vegetable crops, USDA does not specify whether the crop was rainfed or irrigated. In this

case, we estimate county-level irrigated and rainfed area of each crop by taking the product

of the crop’s total harvested area and the irrigated or rainfed area fraction of the broader

crop category to which it belongs (e.g., blackberries use berries irrigated fraction, apples use

orchard, celery use vegetables). Once we have the irrigated and rainfed crop area for each

crop type for every U.S. county, we multiply it by the corresponding water requirements

(blue and green for irrigated areas and green for rainfed areas).

Next, we attribute a portion of each crop’s blue water footprint to surface water and

groundwater sources. We use irrigation withdrawals from Maupin et al. (2014) to deter-

mine the fraction of total crop irrigation from surface water and groundwater sources within

each county. This gives county-level, crop-specific estimates of surface water, groundwater,
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and green water footprints of production for 141 irrigated and rainfed crops. County-level,

crop-specific data on groundwater and surface water utilization would further improve our

estimates but this data is not available. Thus, we must assume that farmers do not pref-

erentially irrigate some crops with either surface water or groundwater. Furthermore, some

farmers, particularly those in the southern portion of California’s Central Valley (Marston

and Konar , 2017), employ a conjunctive use irrigation system. This means that utilization

of groundwater or surface water for these areas may differ from USGS estimates during

exceptionally dry or wet years.

We provide PWF estimates in two forms: the first normalized by hectares and the other

normalized by dollars (see Mekonnen and Hoekstra 2011b for PWF in units of m3/ton).

Crop water requirements were scaled up from a grid of 5 x 5 arc minute areas to align with

county boundaries. Consumptive water use per hectare is presented for each county, crop,

and by irrigation practice (i.e., rainfed or irrigated) for 141 crops. Additionally, we allocate

total fresh water consumption to green water (irrigated and rainfed), and blue water sources,

with the latter further apportioned between groundwater and surface water. The distinction

between groundwater and surface water was determined as described previously. The values

we present denote the average amount of water per hectare required to grow a specific rainfed

or irrigated crop within a given county. This does not mean, however, that the crop was

grown there. The coefficients we present would need to be paired with the crop’s harvested

area to calculate the WFP .

We also calculate state-level PWF (m3/✩) for 133 crops. First, we divide the WFP

for each crop by that crop’s production (ton), which gives water consumption per ton of

production. Next, we divide the previous quotient by crop prices (✩/ton), ending with a crop

PWF in m3/✩. Crop prices and production come from USDA 2012 Census of Agriculture

(USDA, 2014a). National crop prices were used when state prices were not available. Like

before, all PWF specify water source (i.e., green water, blue water, groundwater, and surface

water).

4.3.2 Aquaculture WFP and PWF

Aquaculture is the farming of aquatic organisms in a controlled water system for at least part

of the year. Aquatic organisms harvested from non-controlled water (i.e., wild caught) are

not classified as aquaculture and thus not included in this analysis. Aquaculture products

are sold for food or distributed for restoration, conservation, or sport and include different
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fish species, mollusks, crustaceans, and other products, such as alligators and turtles.

The water footprint of aquaculture farming is largely dependent on the production method.

In 2013, there were 4,129 aquaculture operations in the United States. The primary pro-

duction methods were ponds (36%), tanks (17%), raceways (9%), cages and pens (7%), and

other methods (30%). Each of these methods require varying levels of water withdrawal and

consumption. Only water evaporated from ponds was considered consumptive use and was

directly attributable to aquaculture’s WFP . The consumption of water used in aquaculture

production associated with pass-through methods (such as raceways) or instream harvesting

(as sometimes the case with cages and pens) is negligible. Furthermore, water withdrawn

for oxygenation, waste discharge, temperature control, seasonal restocking, or seepage losses

are often replacing water returned to local surface water or groundwater sources, and thus

not considered a consumptive water use.

The WFP and PWF of aquaculture were calculated from data collected from USDA’s

2013 Census of Aquaculture (USDA, 2014c) and 2012 Census of Agriculture (USDA, 2014a).

Data limitations prohibit county level estimates, instead requiring us to only provide state

estimates of WFP and PWF . Moreover, nine states aquaculture sales and distributions

(representing 2.2% of the US total) were suppressed, as were freshwater surface area used in

aquaculture production (representing 1.7% of the US total). Our estimates are conservative

since state values corresponding to these missing records are not represented in our analysis.

Aquaculture blueWFP were estimated for each state by multiplying the total surface area

of water in production by the state’s long-term average open water evaporation rates. We de-

termined minimum, maximum, and representative open water evaporation rates (mm/year)

for each state based on long-term records from the National Oceanic and Atmospheric Ad-

ministration (NOAA; Farnsworth et al. 1982; Farnsworth and Thompson 1982). Since

evaporation rates can vary within a state, evaporation rates were collocated with the state’s

largest aquaculture producers and weighted more heavily in the state average. For instance,

nearly all of Texas’s aquaculture production occurs around the Gulf Coast where open water

evaporation rates are considerably lower than in the western part of the state. Therefore,

the representative open water evaporation rate was lower than a simple state average. Since

annual evaporative demand varies across time and under different local conditions, minimum

and maximum estimates of consumptive water use are also provided based on the range of

evaporation rates commonly seen within the state. In addition, we estimate surface water

and groundwater footprints by partitioning blue water use among the two sources. Following

the approach of Lovelace (2009b), we use the number of aquaculture operations reporting
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groundwater and surface water use within each state to divide the blue water footprint among

these different water sources.

Surface and ground PWF are given for each state in units of m3/✩. These were calculated

by dividing state WFP by aquaculture revenues from USDA (2014c).

4.3.3 Livestock WFP and PWF

Livestock directly use water for drinking, sanitation, cooling, waste disposal, onsite feed

mixing, and other service activities related to animal husbandry. We estimate WFP for

dairy cows, beef and other cattle, hogs and pigs, laying hens, broilers and other chickens,

turkeys, sheep and lambs, goats, and equine (including horses, ponies, mules, burros, and

donkeys). Estimates of water usage by specialty animals, such as alpacas and ostriches,

are not included in this study. Specialty livestock represent less than 1% of all livestock

inventory in the United States (USDA, 2014a). We assume that all water utilized in livestock

production is consumed (i.e., no return flows).

The WFP of livestock was calculated by multiplying county livestock population data

from the 2012 Census of Agriculture (USDA, 2014a) by water-use coefficients from national

(Lovelace, 2009a) and state reports (Buchwald , 2009; Carter and Neitzert , 2008; Pugh and

Holland , 2015; Sargent , 2011; Longworth et al., 2013). Water-use coefficients are required

to estimate each animal’s water footprint since most livestock water use is not metered or

reported (Lovelace, 2009a). Livestock water use varies between States depending on farming

practices and production methods, climatic conditions, and water availability. Some states

have developed water-use coefficients for internal use but do not publish them to protect the

privacy of livestock producers. Other states do not estimate state-specific coefficients, instead

choosing to use the median water-use coefficient of each animal, as reported in Lovelace

(2009a), when reporting livestock water use for the national USGS water use report.

We use publicly available state livestock water-use coefficients when available; however,

when state water-use coefficients are not available, we estimate them. First, to estimate state

coefficients we start by using the national median water-use coefficients (Lovelace, 2009a).

For each state, the national coefficients are scaled so that the product of these coefficients

and the state’s animal inventory (USDA, 2016) equal the state’s total water use as estimated

in the Maupin et al. (2014). This approach allows us to estimate water-use coefficients for

each state by replicating the approach used by USGS (Lovelace, 2009a) but in reverse (i.e.,

we calculate water use coefficients for each animal, not total water use). The water-use
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coefficients are then checked to ensure they fall within the range of potential values reported

by Lovelace (2009a).

Water use coefficients were converted from water use per head to groundwater and surface

water use per U.S. dollar (i.e., PWF ). First, we calculate each animal’s direct water use

over its lifetime. The average animal’s lifespan is calculated as the inverse of the inventory

turnover rate. For example, the U.S. hog inventory in 2012 was 66,026,785 and the national

hog slaughter total for 2012 was 113,246,600. This means that inventory turnover rate is 1.72

hogs per year (113,246,600 / 66,026,785) and thus, the average hog lifespan is 0.58 years (1 /

1.72). The animal’s lifetime direct water use is the product of its daily water use coefficient

and the animal’s lifespan. The animal’s lifetime direct water use is then divided by the total

value of the animal and its derived products (e.g., the total output value of a dairy cow is

both the milk it produces and its slaughter price). This represents each animal’s PWF in

m3/✩. Estimates of PWF , as well as WFP , were further partitioned into surface water and

groundwater using the fraction of total livestock withdrawals from groundwater and surface

water sources from Maupin et al. (2014).

Water use for each animal type was estimated for each U.S. county for the year 2012 (the

year of the most recent agriculture census). We multiplied state specific water-use coefficients

for each animal by each county’s animal population within the state. Here, we assume that

livestock inventories remain relatively stable throughout the year (i.e., livestock sold for

slaughter or that die are replaced by a new animal). We provide county WFP in terms of

groundwater, surface water, and total blue water for each animal.

4.3.4 Commercial, industrial, and institutional WFP and PWF

Commercial, industrial, and institutional (CII) water use represent the water required to

manufacture or process goods and provide services. Industrial water use is primarily used

for heating and cooling (heat transfer), processing, fabricating, washing, diluting, or is in-

corporated into a product (e.g., beverage manufacturing). Institutional and commercial

water use is water used by motels/hotels, restaurants, hospitals, retail and grocery stores,

office buildings, warehouses, schools, government, and other commercial facilities to serve

the requirements of customers, employees, members, visitors, and/or students, as well as to

maintain the premises (including heating, cooling, cleaning, and landscape irrigation).

We determined the WFP and PWF of 378 different CII enterprises across 117 differ-

ent geographical areas within the United States. The boundaries of these 117 areas align
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with the Census Bureau and Department of Transportation Commodity Flow Survey (CFS)

boundaries (though we merge a few together). Henceforth, we refer to these 117 areas as

CFS Areas. These CFS Areas represent the largest U.S. cities (amounting to 78% of the

nation’s CII economic activity), with remaining land area classified along state or rest of

state boundaries. Fig 4.6 shows the boundaries of our analysis. For each CFS Area, we also

report PWF of every industry in m3 of water consumption per dollar of revenue. We employ

a methodology similar to Blackhurst et al. (2010) but we improve upon these methods in the

following ways: i) we report subnational values, whereas they only report nation statistics;

ii) we report values in terms of water consumption; iii) we account for non-revenue water

losses; iv) our results offer a range of potential values capturing some of the uncertainty in

these estimates.

Like Blackhurst et al. (2010), to estimate CII water use we begin with estimates of water

withdrawals from the USGS national water use report (Maupin et al., 2014). Whereas

Blackhurst et al. (2010) used water use data from 2000, we employ the 2010 dataset. CII

water users retrieve their water from public supply and/or self-supplied surface water and

groundwater sources. Public supply systems are defined as public or private water providers

having a minimum of 15 service connections or serving at least of 25 people. Public supply

water is often locally sourced but can be conveyed across county or even state boundaries.

Industries that supply their own water typically locate near a water body due to the nature

of some water rights (e.g., riparian water rights require adjacency to the water body) and

the high cost of transferring water. We utilize different methods to disaggregate water use to

each industry depending on the water supply source (public supply or self-supplied). Each

industry’s total water use is the sum of its self-supplied and publicly-supplied water.

We begin by disaggregating public supply water withdrawals and delivers to specific in-

dustries. As noted previously, the location public supply facilities withdraw water may not

be the place where the water is used. Thus, the first step is to determine the net water

usage within each CFS Area, after accounting for water imports and exports. CFS Areas

stretch beyond traditional metropolitan boundaries, typically fully encompassing all major

water distribution systems. Thus, in most instances water withdrawals and water use are

contained within the same geospatial boundary. However, there are several instances of large

water transfers across CFS Area boundaries. Journal searches, review of city, state, and na-

tional reports, quarrying online databases, and personal communications with personnel at

state and federal agencies were employed to identify and quantify water transfers. Water

transfers were subtracted from the exporting area and added to the importing area. It is
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likely that some small public supply systems straddle two or more CFS Areas and transfer

water across borders. It is infeasible to capture all of these instances across the nation (there

are roughly 156,000 water distribution systems in the US; EPA 2008), especially since most

states do not collect this type of information. Here, we assume that small inter-CFS Area

transfers cancel one another out and/or are negligible.

Once the total public water supply utilized in the area was determined, we calculate how

much of that water was delivered to CII users. First, non-revenue water (NRW) was sub-

tracted from total public water supplies. NRW is water that is lost through real losses (e.g.,

leaks), apparent losses (e.g., theft or faulty metering), or authorized but unbilled water use

(e.g., street cleaning or fire-fighting). This water is withdrawn and enters the distribution

system but is not delivered to a paying customer. Web queries of major metropolitan water

districts, governmental and American Water Works Association (AWWA) reports, and per-

sonal communication with water district staff were used to estimate NRW as a percent of

total produced water for each CFS Area. When a recent NRW value was not available for a

CFS Area, the median value of 15% was used, as recommended by Solley et al. (1998). The

NRW percentage was multiplied by total produced water to determine the amount of water

lost and that delivered to paying end-users.

Next, water deliveries to domestic users was deducted. Domestic water deliveries were

estimated for each county in Maupin et al. (2014). These deliveries represent the water

that reaches and is used by residential consumers. This is typically estimated using surveys,

meter and billing data, and/or water use coefficients. We aggregate domestic water use from

the county to the CFS Area and then subtract this from the total water sold within the

CFS Area. We assume that the remaining water is all sold to CII users. The last time it

was recorded (Solley et al., 1998), only 0.3% of public water supplies went to thermoelectric

power generation. It was therefore considered negligible. The following equation summarizes

how we calculate total CII water deliveries.

(PSCFS ±NWTCFS) · (1−NRWCFS)−DODCFS = CIIDCFS (4.1)

where PS is public supply withdrawals, NWT is net water transfers, NRW is the fraction

of produced water that is considered non–revenue water, DOD is water deliveries to domestic

users and CIID is water deliveries to commercial, industrial, and institutional users within

a given CFS Area.

Total water deliveries to CII users within a CFS Area were allocated to each industry

according to their purchases from the ‘water, sewage, and other systems sector’ (US Bureau
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of Economic Analysis , 2017). This approach assumes a uniform pricing structure across all

users and that the price of water relative to sewage is also constant across all industries

within a CFS Area. Water purchases per unit of production (i.e., direct requirement coef-

ficients) were taken from the US Bureau of Economic Analysis (US Bureau of Economic

Analysis , 2017) 2007 input-output direct requirement table. The product of an industry’s

direct requirement coefficient and it’s reported revenue (US Census Bureau, 2017) yields

the total water purchased by that industry within a CFS Area. These water purchases were

normalized by dividing them by the sum of all CII water sales in the CFS Area. The fraction

of total water purchases allocated to an industry is then multiplied by the CII water deliv-

eries. This gives an industry-specific estimate of publicly supplied water deliveries (Si,CFS)

for each CFS Area, as depicted in the following equation:

WPi,CFS∑
i∈CII WPi,CFS

· CIIDCFS = Si,CFS (4.2)

where WP are water purchases of a given sector i within a particular CFS Area.

Industrial water use is often self-supplied, not purchased. Estimates of industrial self-

supplied water withdrawals from (Maupin et al., 2014) were allocated to industries man-

ufacturing and processing food and beverage products, textiles, wood and paper, metals,

minerals, petroleum, plastics, machinery, electronics, and other goods. Following the ap-

proach of Blackhurst et al. (2010), industrial water withdrawals per employee were taken

from recent Canadian water use and employment surveys (Statistics Canada, 2017a,b). Al-

though U.S. based estimates of water use per employee exist (e.g., Davis et al. 1987), the

more recent estimates from (Statistics Canada, 2017a) better capture the potential changes

in water use due to the significant changes and automation in the manufacturing sector

over the last few decades. For each CFS Area, coefficients of water use per employee were

multiplied by the number of employees (US Bureau of Economic Analysis , 2017) within

the corresponding industry. Water withdrawal estimates were scaled to match self-supplied

industrial water withdrawals reported by (Maupin et al., 2014). The industrial self-supplied

water allocation procedure is summarized as follows:

WCi,CFS · Ei,CFS∑
i∈I WCi,CFS · Ei,CFS

· TIWCFS = IWi,CFS (4.3)

where WC is the coefficient of water withdrawal per employee for industry i, E is the

number of employees, TIW is the total industrial self-supplied water withdrawals within a

CFS Area, and IW is the water withdrawals of a specific industry.
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Finally, we add self-supplied water use and water deliveries from public supply to derive

each industry’s total water use within each CFS Area. We assume that each industry within

a CFS Area uses the same fraction of surface water and groundwater, although their total

consumptive volume from each water source may differ. Industry-specific consumption coef-

ficients (US Census Bureau, 1986) are applied to determine the consumptive water use, or

WFP , of each industry. An industry’s surface water and groundwater footprints are divided

by the industry’s revenue to calculate the corresponding PWF . In the end, we estimate 378

industry-specific WFP and PWF for 117 distinct locations within the U.S.

4.3.5 Thermoelectric and hydropower generation WFP and PWF

Collectively, thermoelectric power facilities withdrawal the largest volume of water in the

United States. Thermoelectric power plants convert water to steam to turn turbines, which

produces electricity. The largest use of water by thermoelectric facilities, however, is cooling

the steam. Water withdrawals and consumption differ by fuel type utilized by the power

plant (i.e., fossil fuels, nuclear fission, or geothermal energy) but the major factor behind

differences in water withdrawals and consumption is whether the plant uses open-loop or

closed-loop cooling systems (Macknick et al., 2012). Open-loop cooling systems (found

predominately among older plants) withdrawal 96% more water than the same plant with

a closed-loop cooling system (DeNooyer et al., 2016). However, closed-loop systems, which

recirculate water through the system many times, consume around 60% more water than an

open-loop cooling system.

The U.S. Energy Information Administration (EIA) is the chief U.S. agency responsible for

reporting water withdrawals and water consumption associated with thermoelectric power

production. However, EIA thermoelectric water use estimates have been criticized due to

data inconsistencies, incompleteness, and data quality issues (Averyt et al., 2013; Diehl

et al., 2013). Moreover, a report by the USGS (Diehl and Harris , 2014) shows that most of

the reported EIA values of both withdrawal and consumption were not thermodynamically

plausible. Withdrawals reported by EIA were 24 percent higher than modeled estimates,

while reported consumption was 8 percent lower Diehl and Harris (2014). Given the noted

shortcomings of the EIA dataset, we use plant-level modeled estimates of consumptive water

use by water source (fresh groundwater or surface water) and cooling system from Diehl

and Harris (2014). These estimates are constrained and validated against collected data

and heat and water budgets, which consider electricity production and fuel use. Fresh water
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consumption is summed across all thermoelectric plants within a county to arrive at county

level WFP estimates.

Next, we calculate PWF for each plant, as well as aggregate state values. At each spatial

scale, PWF are presented by cooling system, fuel type, and fresh water source. Water use

is normalized by net energy generation (TJ) and, at the state level, also by revenue (✩).

State electricity prices (EIA, 2013c) and plant net energy generation (Diehl and Harris ,

2014; EIA, 2017c) where collected and used in the calculation. We assume that electricity

generated is sold at the average electricity price of the state where the electricity is produced.

A national estimate of consumptive water use attributable to hydroelectricity generation

was taken directly from Grubert (2016). Grubert (2016) estimates net and gross evapo-

ration associated with each US reservoir that is purposed with hydroelectricity generation.

Furthermore, the author provides PWF (m3/GJ) for 20 different regions within the United

States. There are several critical assumptions made in this study, namely the allocation

of storage space and evaporation amongst multi-purpose reservoirs, that lead to significant

uncertainty, especially when evaluating individual reservoirs. Therefore, we only report the

national WFP and do not detail other values here.

4.3.6 Mining WFP and PWF

Water is used to quarry minerals and ores, as well as in other mining operations such as

crushing, screening, washing, floatation, and dust suppression. Water is also injected into

the ground to extract crude petroleum and natural gas, which we also included here as

a mining water use. In addition to withdrawing and consuming water, mining operations

can also ‘produce’ water through the dewatering of mines or as a by-product of oil and gas

extraction. This water is not included in our analysis unless it is used for a beneficial purpose

in the mining operation, such as re-injection or dust suppression. Furthermore, the water

used to transport or process raw minerals, ores, petroleum, or natural gas is not included

here but as an industrial water use.

We estimate surface and ground WFP associated with the mining industry based off

withdrawals from Maupin et al. (2014) and consumption coefficients from Solley et al.

(1998). Due to limited extraction data for many of the materials, we are unable to attribute

the WFP to specific minerals, ores, natural gas, or oil. Instead, we multiply consumptive

water use coefficients by total mining withdrawals from Maupin et al. (2014) to estimate the

WFP of the entire mining industry within each county. There is uncertainty in estimates

91



of mining water withdrawals and consumption since very few mining operations track and

report their water usage. Moreover, mining water usage can be highly variable depending

on mining technique, climate, and available water supplies. Therefore, these estimates of

mining WFP , much like mining water withdrawals reported by USGS, should be viewed

as a first-order approximation. Although these estimates provide a more complete picture

of the U.S. WFP , additional data on material- and site-specific water consumption would

improve our understanding of how water is used within the industry in a spatially explicit

way.

Localized data on mine and well productivity and water use limit mineral specific WFP

estimates. Yet, through a review of current literature, we provide PWF estimates for 15

mined products (see Table 4.2 for list of references). We give preference to studies based

in the United States but, due to limited research in mining water use for many materials,

we also report PWF from international studies as well (mostly in Australia). We provide

representative or median PWF values for all products in m3 of consumed water per ✩ of

sales, as well as m3 of consumed water per ton of production (or m3 of production for liquids

and gases). For energy materials, such as coal, natural gas, crude oil, and uranium, we also

estimate PWF in m3 of consumed water per TJ of energy potential. The 2012 prices of

all minerals and ores came from USGS (Survey , 2017), while energy products came from

EIA (EIA, 2013a,b; EIA, 2017a,b). When possible, we give the minimum, maximum, 1st

quartile, and 3rd quartile PWF estimates for each material.

4.4 Results

4.4.1 Water footprint of US production

Water is used to produce the goods and services demanded by society. In the United States,

we find that roughly 7.30 x 1011 m3 of water is consumed annually to maintain the nation’s

economic production. Of this, 6.03 x 1011 m3 is from green water sources used to grow crops

for food, feed, and fuel. Surface water (6.68 x 1010 m3) and groundwater (6.11 x 1010 m3)

are valuable inputs in the production of irrigated agriculture but also every other economic

sector. For perspective, productive blue water use is roughly 15 times less than the U.S.

total average annual runoff between 2010–2014 (1.96 x 1012 m3; USGS 2017) and 1.5 times

less than the water supply and irrigation storage capacity (1.94 x 1010 m3; US Army Corps
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of Engineers 2017). Furthermore, blue water consumption is roughly one-third of all water

withdrawals. This seems to suggest an abundance of water but national statistics such as

these mask localized water shortage and scarcity.

The clear majority (95.4%) of the U.S. WFP is attributable to crop production. Green

water comprises 86.5% of all consumptive crop water use, while surface water and ground-

water makeup 5.9% and 7.6%, respectively. Roughly 84% of U.S. harvested crop area is

strictly rainfed, with most of this cropland dedicated to corn, soybeans, wheat, hay and hay-

lage grown in the Midwest and High Plains. Corn grain and silage, hay and haylage, rice,

wheat, soybeans, cotton, and almonds are among the largest surface water and groundwater

users. Together, these seven crops are responsible for 75% of the nation’s total groundwa-

ter consumption and 47% of its surface water consumption. Fig 4.1 shows the crops with

the largest WFP by water source, while Fig 4.2 illustrates the spatial distribution of U.S.

surface, ground, green, and total crop water consumption.
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Figure 4.1: Water footprints of U.S. crop production by crop: (A) surface water and
groundwater consumed by irrigated crops, and (B) green water consumed by irrigated and
rainfed crops. Boxes in each panel are scaled relative to size; however, sizes cannot be
compared between panel A and B, as green water consumption is substantially larger than
blue water consumption.
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Figure 4.2: Crop surface (A), ground (B), green (C), and total (D) water footprint of
production [km3] for each county in the conterminous United States.

Non-crop industries contribute 6.4% and 19.5% of the U.S. groundwater and surfaceWFP ,

respectively. Fig 4.3 indicates that most (1.59 x 1010 m3, or 61.7%) of the surface WFP

is due to evaporative losses from hydropower reservoirs and non-revenue water losses in

municipal distribution systems. Thermoelectric power generation, though the sector with

the largest water withdrawals, consumes the third most surface water and seventh most

groundwater amongst non-crop sectors. This is because 97.5% of thermoelectric freshwater

withdrawals correspond to power plants that employ once-through cooling systems, which

typically consume only 1-3% of withdrawals. Fig 4.4 illustrates the blue WFP for thermo-

electric power generation for each U.S. county. Animal husbandry requires 2.59 x 109 m3

blue water annually, with nearly half of the sector’s water use occurring in the Great Plain

States and California (see Fig 4.5 for county level map of livestock blue WFP ). Beef cattle

make up 56.0% of livestock water consumption nationally.
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Figure 4.3: Groundwater and surface water footprint of production of non-crop sectors in
the United States. Tiles are scaled relative to size.

Figure 4.4: County-level blue water footprints of thermoelectric power generation. [m3]
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Figure 4.5: County-level blue water footprints of animal husbandry. [m3]

The manufacturing and service sectors consumed 2.82 x 109 m3 and 2.32 x 109 m3 of blue

water per year, respectively. The manufacturing sector relies less on groundwater than ser-

vice industries, with only 21.6% of its WFP coming from groundwater sources, compared to

37.2% from the service sector. The top five water consumers are primary metal manufactur-

ing, food manufacturing, chemical manufacturing, wholesale trade, and food and beverage

stores. Whereas the first three manufacturing sectors can attribute their large WFP pri-

marily to their high PWF , the two service sectors have modest PWF but their large WFP

is a product of the sheer size of their economic production within the U.S. economy.

Fig 4.6 shows the spatial variation in blue PWF andWFP of the combined manufacturing

and service sectors. Generally, states with larger manufacturing economies (primarily in the

Rust Belt, the Southeast, Texas, and California) have the largest WFP . The cities with

the largest CII blue water footprint are Chicago, Los Angeles, and New Orleans. Laredo,

Texas has the smallest CII WFP of any city, largely since much of its publicly supplied

water is from brackish groundwater that is not included in WFP estimates. New York City

and Boston have the smallest blue PWF due to their focus on high value service industries,

while New Orleans and West Virginia have the two largest PWF since their economies rely

more on water-intensive heavy industries.
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Figure 4.6: Average PWF (A) and combined WFP (B) of the manufacturing and service
sectors for each CFS Area in units of [m3✩−1] and [m3], respectively.

There is significant spatial variability in both total water consumption and sectoral water

dependencies across the U.S. Fig 4.7 reveals the sector with the largest blue WFP in each

county. Eight of the ten counties with the largest WFP are in California, with irrigated

agriculture as the leading water user in each. Ten percent of U.S. counties are responsible

for seventy-four percent of the nation’s blue WFP . Clustering is evident in many places,

such as cereal farming in the Midwest and High Plains, dairy farming in Wisconsin, New
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York, and Pennsylvania, fruit and nut farming in California and Florida, and other livestock

production (namely pigs) in Iowa and North Carolina.

Figure 4.7: Sector with largest blue WFP in each U.S. county. Agriculture related
industries are the largest water user in 2,164 of the 3,143 U.S. counties and county
equivalents. Service providing industries (354), thermoelectric power generation (289),
manufacturing (234), and mining (102) are the dominant water users in other counties
around the nation. Hydropower, aquaculture, and non-revenue water uses are not included
since county level data is not available for these water uses.

4.4.2 Water for food and energy production

Water is a critical input in the production of food and energy across the United States. Yet,

water is not utilized uniformly across the nation to produce either food or energy, nor does

water use perfectly align with population (see Fig 4.8). In fact, there is a strong demar-

cation around the 97th meridian, which, not coincidently, is where precipitation (P) equals

potential evapotranspiration (PET). Nearly 80% of blue water consumed in food production

(both crop and livestock) and 90% of irrigation dam storage is west of the P=PET line.

Alternatively, 80% of water use for thermoelectric energy generation occurs east of the 97th

meridian. Since food and energy products are ultimately for human consumption, this spatial

mismatch between the FEW system and population demonstrate how people are supported

by production, water consumption, and infrastructure located in distant ‘elsewhere’.
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The impact of groundwater in agriculture production is also evident from Fig 4.8. Ground-

water makes crop production possible in many regions and can serve as a buffer against

drought and changing climates. The rate of blue water consumption sharply increases as

irrigators unsustainably pump large volumes of water from the Central Valley, High Plains,

and Mississippi Embayment aquifer systems to grow crops. Over two-thirds of aquifer deple-

tion in the United States between 1900-2008 has occurred in these three aquifers (Konikow ,

2013), which are critical to local economies, as well as domestic and international food sup-

plies (Marston et al., 2015).
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Figure 4.8: Cumulative blue water footprint of U.S. food and thermoelectric energy
production moving from the Western U.S. to the Eastern U.S. The P = PET line represents
the approximate location where precipitation equals potential evapotranspiration.

4.4.3 Product water footprints

We calculated the PWF for 133 crops, 8 livestock animals, 378 commercial, industrial, and

institutional sectors, 15 mined resources, thermoelectric power generation (by 5 fuel types

and 2 circulation types), and aquaculture. Together, this makes for the most comprehensive

grouping of PWF in the literature to date. Moreover, most of the PWF values were

calculated at the state or sub-state level. This allows for spatial differentiation and provides

a range of potential PWF values, as opposed to one value for the entire nation, which doesn’t

capture the spatial variability or diversity in water users.

Over 50,000 unique PWF were calculated for different industries and products across

the nation. In Table 4.3 we provide statistics on blue PWF s after grouping them into
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broader sectoral categories. There is significant variability within each sectoral category due

to production differences between individual products or industries within a sector, spatial

differences in water utilization intensities, and different production efficiencies within the

same industry.

Table 4.3: Statistics of blue PWF (m3/✩1000) by broad sectoral categories.

Sector 5th Percentile 25th Percentile Median 75th Percentile 95th Percentile
Nuts 0.00E+00 7.85E+00 7.55E+01 3.03E+02 1.94E+03
Fruit 2.27E+00 1.75E+01 4.81E+01 1.56E+02 8.69E+02
Vegetables 0.00E+00 2.44E+01 6.21E+01 1.64E+02 7.77E+02
Cereals 0.00E+00 0.00E+00 1.96E+01 5.15E+02 2.90E+03
Oilseeds 0.00E+00 0.00E+00 9.94E+00 4.70E+02 2.05E+03
Other Crops 0.00E+00 0.00E+00 2.34E+01 6.98E+02 3.45E+03
Beef Cattle 2.07E+01 2.42E+01 3.12E+01 3.76E+01 4.39E+01
Dairy Cattle 3.86E+00 5.11E+00 6.08E+00 7.35E+00 8.79E+00
Other Lifestock 1.93E+00 3.87E+00 1.03E+01 2.86E+01 5.29E+01
Aquaculture 3.24E+00 2.52E+01 1.09E+02 4.35E+02 7.42E+03
Manufacturing 1.34E-02 4.73E-02 1.24E-01 4.67E-01 4.03E+00
Service Providing Industries 5.66E-03 2.44E-02 6.17E-02 1.52E-01 5.81E-01
Mining 4.78E-04 4.58E-01 1.53E+00 5.26E+00 1.96E+01
Thermoelectric 1.99E+00 8.32E+00 1.63E+01 2.03E+01 2.29E+01

The greatest variability in PWF is within crop farming sectors. This variability is due to

local climate differences, management decisions (e.g., planting and harvesting dates, irriga-

tion practices), and differences in water requirements by crop type. Although not represented

in Table 4.3, crop farming sectors also utilize green water to meet its direct water require-

ment. In some locations and for certain crops, irrigation water (i.e., blue water) is not

applied, as the crop is strictly rainfed. This is represented by blue PWF values of zero in

Table 4.3.

4.4.4 Direct and indirect water use

An economic input-output (IO) matrix can be paired with our estimates of direct PWF

to calculate the direct and indirect water footprint of each sector. An IO table represents

interdependencies between industries by showing intersectoral input purchases required to

produce output in each sector. For instance, leather manufacturing requires purchases from

the cattle industry, which requires feed purchases from the grain industry, who in turn pur-

chases from the fertilizer industry and so on. The total direct and indirect water requirements

throughout a product’s supply chain can be calculated using an environmentally extended

version of the Leontief IO model:

w = k(I − A)−1y (4.4)
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Table 4.4: The direct and indirect blue water footprint of the ‘sugar and confectionery
product manufacturing’ sector. (✩1.07 / 5 lb.; Index Mundi 2017)

m3/✩1000 gallons / 5 lb. bag
Sector Name Low National

Average

High Low National

Average

High

Direct Water Use

Sugar and confectionery product
manufacturing

0.61 1.44 3.25 0.17 0.41 0.92

Indirect Water Uses

Sugar cane and sugar beets farming 0.30 37.35 412.99 0.09 10.55 116.61
Oilseed farming 0.02 3.75 61.45 0.00 1.06 17.35
Grain farming 0.00 3.56 22.12 0.00 1.01 6.25
Electric power generation,
transmission, and distribution

0.01 0.29 0.51 0.00 0.08 0.14

Paperboard container manufacturing 0.02 0.07 0.14 0.00 0.02 0.04
Fertilizer manufacturing 0.01 0.03 0.03 0.00 0.01 0.01
All other indirect uses 0.59 11.43 79.01 0.17 3.23 22.31
Total, all sectors 1.55 57.91 579.51 0.44 16.35 163.62

where w is a vector of industry direct and indirect water consumption (m3) due to the final

demand of y goods (✩). Direct water consumption is water either purchased or self-supplied

by sector j to produce its goods, while indirect water consumption is water used in sector i

production whose products are input to sector j output. k (m3/✩) is a row vector of direct

water footprints per dollar of output for each industry (i.e., PWF ). In the IO literature, the

k vector of PWF values is considered an environmental multiplier. Finally, I is the identity

matrix and A is the direct requirement matrix, which represents how much input from sector

i is needed to produce one unit of output in sector j. Total requirements [(I −A)−1], which

represent total industry inputs (direct and indirect) to deliver one dollar of industry output

to final users, were taken from (US Bureau of Economic Analysis , 2017).

Table 4.4 provides an example of the direct and indirect blue water footprint of ✩1,000 in

‘sugar and confectionery product manufacturing’ production. Additionally, Table 4.4 shows

the direct and indirect WF for a 5 lb (2.27 kg) bag of sugar. This example mirrors that of

Blackhurst et al. (2010), but here we demonstrate how national average water use coefficients

(as used by Blackhurst et al. 2010) mask significant variability in water use across the country.

We compare model outputs using the national average, high, and low blue PWF estimates.

The high and low PWF vector assume each sector sources its inputs from the most inefficient

and efficient blue water users, respectively.

The example in Table 4.4 shows that total water consumption associated with the na-

tional average blue PWF is roughly 37 times larger than if the sugar manufacturer sourced
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its inputs from the most efficient blue water users. Alternatively, if the sugar manufac-

turer sourced from the most inefficient water users, it would consume 10 times as much

water through its supply chain as the national average value. Direct water use by the sugar

manufacturing industry is a small contributor to the overall blue PWF . The largest deter-

minant of the sector’s PWF is the amount of blue water used to grow agricultural products,

namely sugar cane and sugar beets, that are utilized throughout the industry’s supply chain.

Whether these crops are primarily rainfed (as the case in the ‘Low’ PWF case) or are heavily

irrigated (‘High’ PWF ) can have dramatic implications on the sugar industry’s total blue

PWF . In fact, agricultural products contribute only 35% of the sugar industry’s total blue

PWF in the ‘Low’ scenario but are responsible for over 99% of total water consumption in

the ‘High’ scenario, whose total blue PWF is over three orders of magnitude larger than the

‘Low’ scenario. Water use attributed to other sectors can also differ by one to two orders of

magnitude but the relative effect of these changes on the overall PWF is small.

Sugar refining, like most industries, consume more water indirectly than directly. This

point was made by Blackhurst et al. (2010), who found that indirect water use exceeded

direct water use for 93% of U.S. sectors. We too find that, on average, 93% of sectors use

more water through their supply chains than they consume directly. However, these statistics

provide a national average value and therefore disguise significant water use variability within

each sector and water use through an industry’s supply chain. For instance, if all sectors

sourced their inputs from the most efficient water users, only 72% would use more water

indirectly than directly. Alternatively, if all sectors were supplied by the most inefficient

water users, 99% would depend more on indirect than direct sources of water (see Fig 4.9).
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Together, the previous examples demonstrate the importance of further spatial refinement

in water footprint and life cycle impact assessments. Otherwise, one may significantly over-

or under-estimate water use, as well as the impacts associated with its use.

4.4.5 Validation and uncertainty

Water footprint assessments, including this one, are subject to considerable uncertainty. To

date, only Zhuo et al. (2014) has conducted a rigorous uncertainty analysis on water footprint

estimates. Others (e.g., Wang and Zimmerman 2016; Mayer et al. 2016; Grubert 2016

have performed a basic sensitivity analysis on highly uncertain parameters to demonstrate

how this uncertainty impacts their findings. A lack of water metering and insufficient data

availability make it challenging to validate findings at the sector and spatial scale found in

our study. Nonetheless, we compare our results to other studies, albeit at coarser spatial or

sectoral resolutions, to determine the reasonableness of our results. We would expect our

findings to be similar but not exactly that of others since study periods and methods (e.g.,

some report withdrawals, not consumption, or classify sectors differently) do not perfectly

align. In addition to this comparison, we perform a sensitivity analysis by isolating and
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varying key variables to assess their impact on WFP and PWF values.

Table 4.4.5 shows that our results compare favorably with previous water footprint studies

and government reports on water use within the United States. At the national level, our es-

timates of crop blue, green, surface and groundwater footprints fall between estimates within

the literature and government reports. Water withdrawals, when possible, are converted to

consumption values for more direct comparison. For instance, Maupin et al. (2014) and

USDA (2014b) only report water withdrawals and applied water, respectively. Irrigation

efficiencies and conveyance losses were taken from Stewart and Howell (2003) and Brouwer

et al. (1989), respectively, to convert estimate what portion of water use was consumptive.

An average consumptive coefficient was calculated for each area by taking the weighted av-

erage irrigation efficiency, with the fraction of cropland employing each irrigation technology

acting as the weight. The crop area utilizing each irrigation method comes from Maupin

et al. (2014) and USDA (2014b).
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At the state-level, there is greater variability between our results and those reported by

Maupin et al. (2014) and USDA (2014b) (see Fig 4.10). However, discrepancies between

Maupin et al. (2014) and USDA (2014b) estimates are greater than between our study and

each of these studies. Variances in water use estimates are likely due to differences in study

years and methodology. For example, we use long-term average crop water requirements,

whereas USDA (2014b) estimates of applied crop water correspond to 2013 farmer surveys,

and Maupin et al. (2014) uses a variety of techniques to estimate water withdrawals which

differ by state and may utilize key data sources from various years (Dickens et al., 2011).
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Figure 4.10: Comparison of state crop blue water, surface water, and groundwater
consumption estimates between this study, USDA (2014b), and Maupin et al. (2014).
There is larger variability between studies at the state-scale than the national scale,
especially among states with smaller irrigation requirements. The largest discrepancies are
when comparing USDA (2014b) and Maupin et al. (2014).
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In addition to comparing our results to existing estimates in Table 4.4.5, we perform a

sensitivity analysis on key parameters to capture some of the uncertainty within our results.

A recent study by Zhuo et al. (2014) allows us to approximate the uncertainty in our total

crop WFP estimates. Using the same crop water model as we utilize in this study, Zhuo

et al. (2014) found that the average uncertainty in crop water footprints was ±30% (at

95% confidence level). Two-thirds of the uncertainty in crop WF was due to uncertainty in

precipitation and reference evapotranspiration estimates. It is important to note, however,

that their study did not have the range of crop coverage as our study, nor was it based in

the United States. The primary focus of our sensitivity analysis, though, is non-crop sectors

since these sectors have fewer points of comparison in the literature to validate our findings,

as demonstrated by Table 4.4.5.

Fig 4.11 illustrates the sensitivity of non-crop sectors blue WFP to critical parameters

and assumptions in our analysis. The bar chart represents the expected WFP , while the

error bars depict the WFP range under varying assumptions. High and low WFP estimates

of mining, manufacturing, and service providing industries were calculated by varying each

industry’s consumption coefficient. Our results are particularly sensitive to consumptive

use coefficients, which exhibit a great deal of variability and uncertainty. Following Mayer

et al. (2016), we use the consumptive coefficients representing the first and third quartile

of coefficient values as our upper and lower bounds. In addition to adjusting consumption

coefficients, we also varied non-revenue water fractions by ±20% based on average inter-

annual variability seen in cities where we collected records for multiple years. The high and

low values shown for manufacturing and service providing industries are a combination of

reduced/increased consumption coefficients and increased/reduced non-revenue water per-

centage. The former determines how much supplied water is consumed, while the latter

determines how much water is supplied from municipal sources. The combination of de-

creased (increased) consumption coefficients and increased (decreased) non-revenue fraction

yield conservative bounds on our estimates, assuming each extreme scenario is independent

and unlikely to actually occur simultaneously.
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Figure 4.11: Blue water footprint of production [m3] for non-crop sectors in the U.S. with
error bars representing WFP sensitivity to changes in key parameters or assumptions.

For all livestock sectors, we calculate low and high WFP estimates by adjusting each

state’s animal water-use coefficients to match coefficients representing the first and third

quartile coefficients seen across all 50 states. Since evaporative demand is highly variable and

uncertain, aquacultureWFP is bounded by high and low estimates of open water evaporative

demand seen within each state of production (Farnsworth et al., 1982; Farnsworth and

Thompson, 1982).

There is a great deal of uncertainty surrounding WFP in the energy sector, particularly

hydropower. Hydropower WFP estimates are most sensitive to how water consumption

is allocated among multipurpose reservoirs different users. The low and high estimates in

Fig 4.11 represent two common assumptions found in the literature on how to allocate reser-

voir evaporation among multiple users: i) no water is allocated to hydropower or ii) all

water consumption is allocated to hydropower. Other methods based on economic valuation

or equal weighting of all dam purposes provide estimates between the ranges we present.

The bar graph value is the representative value used in this study and follows the assump-

tion of Grubert (2016), who only assigns evaporative demand to hydropower if it is the

dam’s primary purpose. High and low estimates of thermoelectric WFP come directly from

(Diehl and Harris , 2014). These upper and lower bounds are determined by adjusting model
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parameters and inputs within plausible ranges.

4.5 Discussion

Water is a critical input in U.S. economic production. The evolving human and natural

pressures placed on the country’s water resources necessitate a better understanding of how

the nation utilizes its water resources within its economy. This will enable us to better

predict how future changes will impact water availability, water demand, and economic

activity. In this paper, we quantifyWFP and PWF of food, energy, services, manufacturing,

and mining products produced within the U.S. and, in doing so, create the most detailed,

comprehensive water footprint assessment of any country to date. Understanding the range

of potential water use within an industry allows us to explore opportunities for water savings

and benchmarking along the supply-chain, as well as assess direct and indirect dependencies

on water.

We find that the U.S. economy directly utilizes 7.30 x 1011 m3 of the nation’s water re-

sources annually to produce goods and services demanded by domestic and international

consumers. This amounts to over one and a half times the volume of Lake Erie, America’s

fifth largest fresh water lake and the seventeenth largest in the world. The majority (83%) of

the country’s water use is attributed to green water used to support crop farming. Although

much attention has been given to blue water in the literature and in practice, the sheer vol-

ume of green water required to sustain economic production and livelihoods, both directly

through support of farming occupations and indirectly through the supply chain, calls for

it to be given more consideration in water management. Green water is often disregarded

because it has little opportunity cost given that it cannot be readily used to meet water re-

quirements of most water users. However, optimal use of green water through enhanced crop

genetics, better farm management, and strategic regional incentives and coordination can

lead to greater production and free up blue water resources for more economically productive

uses (Marston and Cai , 2016; Davis et al., 2017). In areas of water scarcity, blue water

conservation and reallocation to more valuable uses can be encouraged through institutional

measures, such as water right banking, option markets, and aquifer and river basin caps.

Our results show clustering of some sectoral water users, especially in the agricultural in-

dustry. This economic clustering can leverage local economies of scale, natural resources, and

comparative advantages; however, it can also make industries and their supply chains more

exposed to water-related shocks, such as drought and floods, which are expected to increase
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under climate change (IPCC , 2014). Policies and subsidies have encouraged increased agri-

cultural productivity at the expense of agricultural diversity. Yet, recent research (Swenson,

2010) has shown the value of regionally diversified crop production, including growing fruits

and vegetables along the Corn Belt. As water becomes scarcer due to increasing demands

and more variable supplies, policy makers and planners should consider both economic pro-

ductivity and resilience to local and nonlocal water-related shocks, which can propagate

through supply chains.

This paper demonstrates the significant variability in total water consumption and water

consumption per dollar of output between sectors and locations. Even within a relatively

narrow sector, such as manufacturing or oilseed farming, WFP and PWF can differ by

several orders of magnitude depending on local conditions and individual industry processes.

For this reason, continued spatial and industrial refinement in water use estimates is needed.

Our results do not replace user-specific water use data, which better capture nuances of

individual users not reflected in our study. There is a need for annual surveys of water

use, much like is done in the agriculture industry by USDA. Surveys could be bolstered by

strategic water metering and remote sensing applications to validate survey results and fill

in coverage gaps. Furthermore, disparate local, state, and national water agencies should

coordinate their efforts and develop a common platform for collecting water use data. Data

should be reported along meaningful geopolitical and hydrologic boundaries and at more

refined sectoral resolution so that it can be useful for both local and regional planning and

management. We hope demonstrating the usefulness of these data and identifying current

data limitations will bring increased attention and resources needed to improve water use

metering, data collection, and reporting.
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Chapter 5

AN OVERVIEW OF WATER REALLOCATION AND

THE BARRIERS TO ITS IMPLEMENTATION

5.1 Introduction 1

Traditional water supply and demand management techniques have faced challenges in many

regions throughout the world trying to adapt to the rapid changes in overall water availability

and demands. Over 2.3 billion people (approximately one-third of the global population)

live in areas with chronic water shortage (Rockström et al., 2014), despite that many of

these regions already have water supply and demand mechanism in place to better utilize

their water resources. Globally, numerous basins are closing or are already closed, that

is, all or most of the renewable water is already allocated or committed for some purpose

(Gleick and Palaniappan, 2010). Water management institutions, infrastructure, and water

laws that were put in place decades or even centuries ago are not equipped to handle these

rapidly evolving conditions. Water reallocation can inject antiquated water management

systems with the flexibility they need to meet the most pressing demands within regions

facing water scarcity.

Water reallocation is the transfer of water among users who are committed formally or

informally to a certain amount of water, for example, by water right (also known as a water

entitlement), water use permit, or agreement, when the existing allocation is physically

impossible, economically inefficient, or socially unacceptable. Some authors (Vaux , 2012)

consider the initial development of a water resource as reallocating water from environmental

to human uses; however, we contend that for water to be reallocated it must first be formally

or informally committed to a water use (i.e., allocated). We follow the precedent in the

literature and use the terms ‘reallocation’ and ‘transfer’ interchangeably; however, the term

transfer has a broader meaning in that it is not necessary that the water be initially allocated

to a specific purpose.

1This chapter is published as an article in Wiley Interdisciplinary Reviews: Water, 2016 (Marston and

Cai , 2016)
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Water reallocation can act as an important piece component in a water supply and de-

mand management portfolio and has been shown to improve the costs, adaptability, and

performance of a water resources system (Kasprzyk et al., 2009; Zhu et al., 2015). Water

supply management primarily involves structural measures to increase the availability, relia-

bility, and quality of water resources for productive uses, while demand management intends

to reduce the use of water through increased efficiency from source to disposal. Realloca-

tion, while considered by some as strictly a demand management strategy (Palomo-Hierro

et al., 2015; Ghimire and Griffin, 2014; Chong and Sunding , 2006), may not directly yield

overall water savings but it can greatly increase the benefits received from water use. Real-

location can, however, prompt water conservation since it incentivizes an increase in water

productivity and allows any superfluous water to be transferred to more efficient users (i.e.,

more benefits derived per unit of water), essentially providing additional water supplies for

new or growing demands, especially those with higher marginal values of water use. In this

way, reallocation acts as a two-way bridge connecting the purposes of both water supply

and demand management. Where traditional engineering supply measures and conservation

efforts fall short, reallocation will prove to be critical in ensuring the benefits derived from

a region’s water resources are optimized and water is used in a more sustainable way.

Researchers (Cai et al., 2015; Molle and Berkoff , 2006; Hadjigeorgalis , 2009), practition-

ers (Johnson et al., 1990), and politicians (Committee on Western Water Management ,

2012) have cited the benefits of water reallocation, yet its realization is far behind what is

needed or expected and when implemented it is not as effective as theorized (Eden et al.,

2008; Giannoccaro et al., 2013).As more regions search for ways to deal with growing water

scarcity, this paper provides a timely overview of water reallocation based on a compre-

hensive search of English language journal articles and reports, including major works and

important recent contributions. The purpose of this review is to draw a consensus amongst

the current literature as to the primary ways water reallocation has taken place around the

world and the major obstructions to its wider implementation. In addition to overviewing the

current body of literature, which primarily focuses on the institutional, economic, and social

obstructions to water reallocation, we also demonstrate how greater input from the natural

sciences and engineering fields can lead to more holistic understanding and solutions to water

reallocation impediments. We discuss reallocation cases from six continents to demonstrate

the ubiquitousness of water reallocation and give specific context to major issues and/or

concepts; nevertheless, our paper reflects the literature, which primarily focuses on countries

with higher occurrences of water reallocation (e.g., United States, Australia, Spain, and
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China). Although each area faces unique challenges when reallocating water, many of the

issues this paper highlights (e.g., third-party effects, lack of information support, transaction

cost) are evident in most cases of reallocation, regardless of a specific region’s governing or

socioeconomic system.

This paper begins by explaining the impetuses for water reallocation, which are broadly

categorized as water supply forces and water demand forces. Next, the various forms of re-

allocation are outlined, including voluntary versus non-voluntary reallocation, intra-sectoral

versus inter-sectoral reallocation, temporary versus permanent reallocation, and local ver-

sus non-local transfers. Major obstacles to wider implementation of water reallocation are

discussed, as well as measures taken in practice or proposed in the literature to resolve

hindrances to effective water reallocation. The paper concludes by calling for researchers

to work within a broader interdisciplinary framework for water reallocation so that it can

become a more viable tool for water planners and managers around the world.

5.2 Impetus for Water Reallocation

Changes in societal preferences toward how water is distributed across all users, coupled

with evolving water demands and limited water supplies, prompt governments to establish

the requisite framework for water reallocation. In some regions, water supply development

and demand management will continue to be sufficient in managing water resources; yet a

growing number of regions around the world are facing inadequate water supplies to fulfill

unsustainable demands, with some regions already past “peak water” and moving toward

even less water availability. When a river basin becomes fully allocated (i.e., “closed”),

establishing a means for reallocation to occur is critical to allow for new water-dependent

development to take place; otherwise water allocations, and hence development, will be

relatively fixed. Fig 5.1 depicts the typical development of water resources, starting at a

point (i) where renewable water supplies (blue outer circle) can easily meet all water demands

(red inner circle). Water supplies expand through engineering measures as demands for water

grow (ii). As water demands approach available water supplies, water is typically allocated

or committed to specific users or purposes (division of the demand circle amongst different

users or sectors, represented by different colors). Next, water demands begin to outpace

renewable supplies and traditional supply and demand management strategies are unable to

fully reconcile the difference between water supplies and demands; thus, the water source is

overcommitted, leading to water scarcity and resource overexploitation in many places (iii).
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Water reallocation allows for the redistribution of water to new, growing, more productive,

and/or more needed uses from a social perspective and also provides a mechanism to bring

water use back within sustainable limits (iv).

117



Figure 5.1: (i) Initially, water demands (red inner-circle) can be easily met by renewable
water supplies, which are much greater in size (blue outer-circle). (ii) Over time, water
demands grow and supplies are expanded through engineering measures, as is illustrated by
the expansion of both the inner circle and outer circle, representing increasing water
demands and supplies, respectively. As water demands approach available supplies, water
is allocated amongst each of the current users, as represented by the division and coloring
of the inner demand circle. (iii) Water demands eventually outpace available supplies
(inner demand circle now larger than water supply circle), leading to over-allocation, water
scarcity, and environmental degradation. Under this condition, water allocations are fixed
and no new uses can occur due to a lack of unappropriated waters. (iv) Water reallocation
remedies this common occurrence by allowing water use to return within sustainable limits
through allocations to the environment (decrease in the size of the inner water demand
circle) and permitting water rights to be transferred between new and existing users (new
users represented by additional fragmentation of demand circle, while the size of each slice
— i.e., the amount allocated to each user — can dynamically change as well).
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In areas with fully allocated waters (i.e., the basin is closed), reallocation can be driven by

new or increasing water demands caused by technological advances, socioeconomic develop-

ment, changes in societal understanding or values, and/or population growth. For instance,

the expansion of water-intensive crops for biofuel production, along with water guzzling oil

and gas recovery technologies, have already been shown to be restricted in some areas due to

water availability (De Fraiture et al., 2008; Nicot and Scanlon, 2012; Scanlon et al., 2014),

thus making reallocation an attractive solution in meeting these new demands. Growing

scientific insights regarding the value of environmental sustainability and ecosystem services

have lead some societies to demand a change in the current allocation of water (Colby

et al., 1991), which often neglects environmental uses in favor of human needs. Recogni-

tion of previously neglected water rights of people groups or nations further necessitates

water reallocation as a means of adjusting to shifting values or governmental positions (e.g.,

reallocation of water in South Africa to increase the equitable distribution of water after

apartheid (Dinar et al., 1997) or the US government calling for reallocation of nearly ten

percent of Arizona’s total developed water supply to meet formally unrecognized Native

American water claims (Bark , 2009).Water reallocation has been shown to resolve conflict

among, and balance the needs of, multiple water users while improving local and regional

economic robustness (Zhu et al., 2015; Rosegrant and Binswanger , 1994).

Water reallocation can also be necessitated due to limited water supplies. Augmenting

water supplies through traditional measures, such as dam storage, is becoming more challeng-

ing due to increasing economic cost, a better understanding of the associated environmental

consequences, and the physical scarcity of unappropriated water. At the same time, current

water supplies are being reduced by the deterioration of existing infrastructure, a growing

issue in industrialized countries where many dams and other structures are near or have

surpassed the end of their design life and are filling with sediment. Water availability is

expected to reduce significantly in some basins already facing water scarcity due to climate

change, further straining the current water resource system (Bates et al., 2008; Molle and

Berkoff , 2009). Moreover, groundwater depletion and the degradation of water by point and

non-point source pollution have reduced viable water supplies in many regions, especially

developing countries (Molle and Berkoff , 2006). When current supplies are inadequate and

further source development is infeasible, reallocation becomes the most cost effective means

of supplying water to the highest priority users (Bathia et al., 1995; Gomez et al., 2004)

and, in some cases, can reduce water shortage vulnerabilities by diversifying users’ water

sources ( Kasprzyk et al. 2009; see the case of Manila in Table 5.1 which gives examples of
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different forces driving water reallocation). For example, Firoozi and Merrifield (2003) used

a theoretical model to demonstrate how a water portfolio including water reallocation can

delay the construction of costly reservoirs.

5.3 Comparison of Water Reallocation Forms

Water reallocation can take many forms that vary in duration, spatial scale, complexity,

and required institutional structure. The transferred water can be used to serve numerous

purposes, such as improving water quality and ecosystems, directly meeting water demands,

enhancing system flexibility and reliability, and decreasing water supply cost (Lund and

Israel , 1995). For all forms of water reallocation, it is important to have diverse water

users with different water requirements and productivity levels since transfers are generally

prompted by differences in users’ marginal value of water. The applicability of different

forms of reallocation depends on various conditions, particularly, the development of water

rights (i.e., do property rights exist for market transfers?), institutional development (i.e., do

organizations and policies exist to implement reallocation?), and infrastructural development

(i.e., is appropriate engineering, information, and transaction infrastructure available to

facilitate reallocation?). In practice, a combination of water reallocation approaches is used.

Meinzen-dick and Ringler (2008) categorized three forms of formal water reallocation:

administrative reallocation, collective negotiations, and market-driven reallocation. Admin-

istrative reallocation is a mandatory (non-voluntary) measure taken by a centralized public

or quasi-public entity (e.g., river basin authority) to redistribute existing water entitlements.

Collective negotiations and water markets are voluntary and decentralized reallocation meth-

ods which permit users to sell their water rights to other users, which can include a gov-

ernment entity. Other, informal means of reallocation can sometimes be found in practice

that rely on force, surreptitiousness, or illegal means to reallocate water to other purposes

(Meinzen-dick and Ringler , 2008). Table 5.2 provides some examples of how different water

reallocation forms have been used around the world to transfer water between different users

and places. The following sections describe the typical forms of reallocation and the relative

benefits and drawbacks of each form.
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Table 5.1: Reallocation is typically driven by limited and/or changing water supplies and
evolving water demands. Examples of some of the more common forces necessitating water
reallocation are described below.

Reallocation

Driven by

Driving Forces Cases

Limited water

supplies

1. Law/policy
change

1. Arizona, USA — A change in law made treated effluent transferable wa-
ter, distinguishing it from other surface and groundwater sources. Longstanding
downstream users of treated municipal water have seen water availability decrease
as it is sold to other users (National Research Council , 1992).

2. Economic
feasibility

2. Maipo River Basin, Chile — Burgeoning cities determined that buying
water rights from farmers through the area’s water market was five times less
costly than building a new dam (Bathia et al., 1995).

3. Climate change 3. Lima, Peru — Pronounced recession of glaciers in the Andes, a major water
source, may lead to long-term declines in available water (Raup et al., 2007)
in an area already facing water-related tensions amongst sectors. Water has
already been transferred from agriculture to urban uses, with more reallocation
potentially forthcoming.

4. Reliability of
water supplies

4. Manila, Philippines — The city of Manila receives 97% of its water supply
from a single source, subjecting it to risk during times of drought (Molle and

Berkoff , 2009). Reallocation, among other methods, have been used to bring
about greater water security and reliability.

5. Infrastructure
degradation

5. Kansas, USA — John Redmond Reservoir filled with sediment more rapidly
than projected, thereby reducing available water supplies for M&I and cooling
operations at a nuclear power plant. Instead of developing more storage, a portion
of the flood pool was reallocated to conservation storage (Johnson et al., 1990).

6. Infrastructure
development

6. Delhi, India — The City of Delhi reduce water losses by lining irrigation
canals that transferred its municipal supplies. Farmers contend that this reduced
recharge to their groundwater wells, thus indirectly reallocating water from their
historic irrigation uses (Molle and Berkoff , 2009).

7. Insufficient
infrastructure

7. Sana’a, Yemen — Unreliable municipal water infrastructure has led to the
pervasive use of tanker trucks to reallocate water from agricultural wells to do-
mestic users (Molle and Berkoff , 2009).

Evolving water

demands

1. Recognition of
previously neglected
rights

1. Nevada, USA — Judicial courts partially recognized previously unacknowl-
edged water rights of Native Americans. This prompted further reallocation of
water through market transfers and negotiations between the city of Reno and
Indian tribes (National Research Council , 1992).

2. Recognition of
environmental uses

2. California, USA — The California Supreme Court ruled that the city of
Los Angles reallocate water back to the Mono Basin because the ecological and
environmental harm the transfers caused were in opposition to the public interest
(National Audubon Socy v. Superior Ct. 33 Cal., 1983).

3. Growing /
Emerging Demands

3. Coimbatore, India — Growing urban demands, including an emerging
water-intensive textile industry, led to numerous formal and informal water trans-
fers from rural agriculture to urban uses (Meinzen-dick and Ringler , 2008).

4. Population
Growth

4. Amman, Jordan — A rapidly increasing population due in part to an
influx of refugees of war has caused domestic water demands to outpace supplies.
Agricultural water has been reallocated via tanker trucks to urban dwellers (Molle

and Berkoff , 2009).
5. Economic
development

5. Lesotho & South Africa — Water is transferred from Lesotho to South
Africa to meet the needs of South Africa’s evolving economic hub (Patrick ,
2014).

Examples of some the more common forces necessitating water reallocation are described in this table.
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Table 5.2: Broad categorization of the most common types of water reallocation between
different uses and/or places. Examples from around the world are given for each
reallocation form.

Reallocated

Between

Example Cases

Location Form Case Description

Human

and

Environment

1. China 1. Administrative 1. The Chinese government ordered a portion of irrigation
water within the Hei River Basin to be reallocated to
maintain greater instream flows in an effort to restore
the ecosystem of the region. Detrimental impacts to
farmers due to a decrease in irrigation water were par-
tially offset by a significant crop pattern change and
financial support from the central government for more
efficient irrigation technology (Liu et al., 2005).

2. Australia 2. Market 2. Water markets have been established in Victoria, Aus-
tralia to allow greater allocations of water to environ-
mental purposes. A cap on water extractions has ceased
further overexploitation and the government has pur-
chased billions of dollars’ worth of water for the envi-
ronment but there is debate to how effective these efforts
have been (Ladson and Finlayson, 2002).

Agricultural

and

Non-Agricultural

1. Wyoming,
USA

1. Negotiations 1. The city of Casper, Wyoming helped the Alcova Irri-
gation District with irrigation improvements, such as
canal lining, under the agreement that water savings
(several 1,000 AF/y) would be transferred to the city
for municipal water supply (Colby, 2011).

2. Indonesia 2. Administrative,
Negotiations, and
non-voluntary
(illegal means)

2. Textile factories in West Java have placed new de-
mands on available water resources, prompting trans-
fers from agricultural users through government reallo-
cations, deals with farmers, and/or unpermitted with-
drawals (Kurnia et al., 2000).

Traditional

and

New Uses

1. New Mexico,
USA

1. Negotiations 1. In the upper Rio Grande basin, water was voluntarily
reallocated from agriculture to support a ski resort. The
transfer was protested in the courts by local interest but
eventually the transfer was allowed (National Research

Council , 1992).
2. Texas,
USA

2. Negotiations 2. During drought conditions in Texas, energy producers
bought water from nearby farmers and municipalities
to use for hydraulic fracturing (Cooley and Donnelly,
2013).

3. Iran 3. Administrative 3. The rapid growth of Isfahan, Iran has been supported
by developing industries, such as steel production and
tourism, which required reallocation of water to main-
tain, especially during dry years. For instance, during
drought conditions all agriculture water was reallocated
to support urban uses (Molle and Berkoff , 2009).

Upstream

and

Downstream

1. Tunisia 1. Administrative 1. The downstream and water-rich areas of northern
Tunisia, redistribute water to water-poor regions up-
stream. In this way, much of the water is reallocated
from its original purpose (irrigation) to cities/tourist
resorts (Molle and Berkoff , 2009).

2. Mexico 2. Non-voluntary
(stealth)

2. Monterrey, the largest city in the state of Nuevo Len,
continues to claim more water from the El Cuchillo
reservoir, insidiously reducing water supplies allocated
to farmers in the downstream state of Tamaulipas
(Molle and Berkoff , 2009).

Examples from around the world are given for each reallocation form.
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5.3.1 Non-voluntary reallocation

Administrative reallocation

Administrative reallocation involves the transferring of water by the national, provincial/state,

or basin entity from one user to another, usually under the premise that it is for the benefit

of society as a whole. Administrative reallocation has been used to meet environmental

flow requirements (Liu et al., 2005) and social equity concerns (Dinar et al., 1997) since

these needs often cannot be directly met by these stakeholders; therefore, the task falls to

the government to fulfill their water needs under the public trust doctrine. Administrative

reallocation may be more suitable in many areas because it has fewer institutional and in-

vestment requirements than voluntary reallocation, especially when water rights are not well

defined.

Common forms of administrative reallocation are through the redistribution of the storage

volume in publicly-owned reservoirs, revoking water rights (through forfeiture or abandon-

ment provisions), eminent domain, legal action, or construction of large-scale water projects.

Administrative water reallocation in developed countries like the United States often con-

siders input from other stakeholders but direct stakeholder consultation is much rarer in

developing countries (Meinzen-dick and Ringler , 2008). For instance, reservoir storage orig-

inally dedicated to irrigation in the northeastern Hubei Province of China was unilaterally

reprioritized to recreation and tourism purposes during a drought event, which had nega-

tive ramifications on the livelihoods of low-income farmers who depended on the water for

drinking (Cai , 2008). In some cases, indirect or direct compensation may be provided but

payments often do not fully recompense the former users (Cai , 2008).

Other means of non-voluntary reallocation

Non-voluntary water reallocation can occur by other means which do not depend on law or

custom for justification, but instead on force or stealth. Inherently, these types of transfers

do not involve compensation and are done unilaterally by those seeking to acquire water.

Common examples include stealing water from agricultural canals or municipal lines or

infringing on others’ groundwater pumping by over-extracting from a nearby well. Forcible

water reallocation can be motivated or justified along ethnic, racial, and/or class lines, as

has been shown in the reallocation of water from Palestine to Israel during the formation

of Israel last century (Frederiksen, 2003) and between white settlers in South Africa and

123



black South Africans. In the latter case, white South Africans first took claim of 91% of the

land and then installed riparian water rights, which necessitates land ownership to acquire

a water allotment, thus implicitly reallocating water from black natives to new white land

owners (Molle and Berkoff , 2009).

Non-revenue water (i.e., water intended for sale for a specific purpose but reallocated

to unauthorized users by theft or to the environment and/or aquifers through distribution

leakage), is a form of non-voluntary water reallocation and a major issue in many developing

countries (Kingdom et al., 2006). In several underdeveloped regions, a vibrant tanker truck

industry has formed where parties with water access (sometimes illegally) transport and then

sell their water to domestic users with limited or no access to fresh water. In places like

Karachi, Pakistan, this form of reallocation accounts for roughly one-fifth of the population’s

domestic water supply (Kjellén and McGranahan, 2006).

Non-voluntary water reallocation can also be seen within transnational river basins. For

example, Turkey acted unilaterally in diverting and storing water within the headwaters of

the Tigris and Euphrates Rivers to expand irrigation within the country, thereby implicitly

reallocating water from downstream users (Syria and Iraq) to upstream uses. This has in

turn forced Iraq and Syria to overexploit their groundwater reserves (Voss et al., 2013).

5.3.2 Voluntary reallocation

Collective negotiations

Collective negotiations can create innovative solutions for water reallocation, which provide

mutually agreeable solutions between existing water users, old and new users, or users and

the government (Meinzen-dick and Ringler , 2008). Informal voluntary negotiations are seen

widely around the world but are most prevalent in Asian and Southeast Asian countries,

where water scarcity exists but no formal water markets are in place (Bjornlund , 2003). As

seen in Spain, this type of reallocation lays the foundation for further institutional reform

and the formation of a formal market (Palomo-Hierro et al., 2015).

Negotiations allow for reallocation of water at all scales: from small cities and nearby

farmers to neighbouring nations. For instance, a small city in Utah struck a deal with

a nearby irrigator to have the option to purchase his senior water right during times of

drought for a onetime payment of ✩25,000, along with 300 tons of hay and ✩1,000 for any

year that the city exercised its right to the water (Shupe et al., 1989). Before the demise of
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the Soviet Union, the regions that are now Kyrgyzstan and Uzbekistan agreed for reservoir

storage in a Kyrgyzstan dam, which was designated for hydropower generation during the

harsh winters, to be reallocated to irrigation supplies for Uzbekistan during the summer

growing season. In return, energy rich Uzbekistan would provide cheap energy supplies in

the winter months to offset Kyrgyzstan’s loss of hydropower (Cai et al., 2003).

Water reallocation by collective negotiations is typically beneficial to all stakeholders in-

volved in the agreement, yet one of the key concerns with this reallocation method is that it

sometimes acts to the determinant of those not involved in negotiations (i.e., it tends to have

negative externalities). Appropriate governance is required to guide and manage negotiated

water transfers so to protect third-party users, especially environmental uses, which may be

“invisible” and ignored during negotiations (Meinzen-dick and Ringler , 2008).

Market-based reallocation

Water markets provide a means for current water users to sell their existing water rights,

either temporarily or permanently, to new water users or existing users seeking greater water

availability. A prerequisite for well-functioning water markets is fully specified, exclusive,

transferable, and enforceable water rights (Coase, 1960); this requirement implies a robust

legal, institutional, and regulatory framework that is able to monitor, enforce, and provide

the necessary infrastructure for transfers. A sufficient number of willing market participants

with different opportunity cost of water improves the economic efficiency of markets. Em-

pirical studies largely support that markets move water from low-value uses to higher value

uses as theorized (Chong and Sunding , 2006; Leidner et al., 2011); however, prices are gener-

ally not equalized across all users, as would be expected in a perfect market, because water

markets often exhibit high transaction cost, administrative regulation, and participants who

invoke their market power to distort the market (Ansink and Houba, 2012). Markets are

necessitated by water scarcity and can take form gradually, as in the Murray-Darling Basin

of Australia, or relatively rapidly, driven by a catalyzing event such as a lawsuit to protect

endangered species, as was the case in Texas (Debaere et al., 2014). Formal and informal

water markets are active in at least nine countries, with varying levels of sophistication and

success (Hadjigeorgalis , 2009).

Market-based exchanges of water rights have demonstrated significant welfare gains to

buyers, sellers, and the economy on whole (although there can be losers, as discussed later).

The water markets of the Murray-Darling Basin Australia were first established in the 1980s
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and are among the largest, most advanced, and active in the world (Grafton and Horne,

2014; Grafton et al., 2012) and offer a glimpse of the potential benefits of water markets.

Australia’s National Water Commission reported (Commission, 2010; Wheeler et al., 2013)

that water markets increased the gross regional product of the southern Murray-Darling

Basin by ✩370 million, lessened the effect of the Millennium Drought on economic output by

✩4.3 billion, and had a net positive effect on the environment because transfers to downstream

users also benefited riverine ecosystems.

5.3.3 Other distinctions amongst reallocation forms

Intra-sectoral versus inter-sectoral reallocation: Traditionally, reallocation has almost exclu-

sively occurred within the agriculture industry (Levine et al., 2007). Often water reallocation

within the agriculture sector occurs within a ditch or mutual irrigation company, whose ex-

isting canal network makes reallocation amongst users feasible (Bjornlund , 2003). In these

cases, water rights or shares in the irrigation company (which entail a certain amount of

water) can be traded with other company shareholders on a temporary or permanent basis.

There is now increasing interest in inter-sector reallocation due to changing economics,

recognition of environmental water needs, and policies regarding water transfers (Levine

et al., 2007). Inter-sectoral water transfers are more complex and regulated, thus increasing

transaction cost and decreasing their occurrence. In the Western US and, to a lesser degree,

the Murray–Darling Basin of Australia, the price of water sales and leases between agriculture

users can be 10 times less than between agriculture and urban users, even after considering

transaction, delivery, and treatment cost (Grafton et al., 2012; Chong and Sunding , 2006).

This indicates the potential benefits of out-of-sector water transfers, yet several obstacles

remain, as discussed later.

Temporary versus permanent reallocation: Permanent water reallocation is the transfer of

water entitlements from one entity to another for perpetuity. The permanent reallocation of

water acts similarly to supply expansion and, in some cases, delays costly supply and demand

management efforts to increase water availability and/or reliability (Lund and Israel , 1995;

Firoozi and Merrifield , 2003). Temporary water reallocation typically occurs over one-year,

although longer leases can be between 2 to 100 years (leases from 25-40 years are most

common, however; Committee on Western Water Management 2012). Typically, temporary

transfers occur through spot markets, contingent transfers, dry-year options, water banks,

and eminent domain. In most regions, temporary water reallocation is far more prevalent
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than permanent water reallocations.

Local versus non-local reallocation: Most water reallocations occur locally since these

transfers exhibit lower transaction cost and fewer regulatory restrictions. Non-local real-

location of water requires significant differences in the opportunity cost of water between

users to overcome the large social, administrative, and physical cost to transfer the water.

Furthermore, non-local transfers frequently necessitate significant infrastructure investments

that far exceed the capacity of the stakeholders. Therefore, governments nearly always play

an integral role in large-scale, non-local reallocation of water. For example, the Chinese

government lead non-local water reallocation efforts in the Hei River basin (Liu et al., 2005),

the Yellow River basin (Cai , 2008), as well as the South-North Water Transfer Project (Cai

and Rosegrant , 2004).

5.4 Impediments to Effective Water Reallocation

Despite a voluminous collection of water reallocation research, successful examples of wa-

ter reallocation are relatively sparse. Its implementation is hindered due to many social,

institutional, economic, environmental, and physical barriers that have proven difficult to

overcome. For these barriers to be abated, we contend that a more holistic approach should

be employed that couples advancements in the natural sciences and engineering disciplines

with current water reallocation scholarship, which is predominately rooted within the social

sciences, especially the field of economics. The following sections overview the major diffi-

culties faced in carrying out water reallocation and offers suggestions of what can be done

to overcome some of these obstacles, including research needs.

5.4.1 Poorly defined water rights

The efficacy of voluntary water reallocation, specifically water markets, is often hindered

by the lack of well-defined and enforceable water property rights, especially in developing

countries (Molle and Berkoff , 2009). However, adjudicating all water rights can come at a

great cost and take considerable time. For example, in an effort to better facilitate water

markets, the State Engineer Office of New Mexico has sought to adjudicate state rights in the

Middle Rio Grande but they have estimated it will cost ✩300 million and take over 50 years

(Pease, 2010). Private water rights, and subsequent trading of these rights, are only effective

if they are enforced and monitoring. As noted by Leidner et al. (2011), the costs of monitoring
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and enforcement may also act as a barrier to voluntary water reallocation. Zhang (2007)

asserts that experimental water markets established in Zhangye City by China’s Ministry of

Water Resources were unsuccessful, in large part because there were few measures to stop

water users from extracting water in excess of their entitlement, thus reducing their need to

purchase water in the market.

Water is typically owned by the state, which grants usufructuary rights to private parties

or local communities for use under specified conditions. Voluntary water reallocation requires

fully specified, exclusive rights that are separated from land, as well as provisions for trade

of the rights; however, these requirements are rarely met, especially in many developing

countries (Hadjigeorgalis , 2009). How to effectively and equitably promote water reallocation

by transitioning from land-based water rights (either formal or informal) to use-based rights

is a pertinent question for researchers and policy-makers. In an effort to promote water

reallocation, water licenses in Australia’s Murray-Darling Basin were separated from land

rights and converted to volumetric entitlements (Grafton and Horne, 2014) (typically by

equating land area to a given allocation of water). Even when riparian rights are converted

to use-based rights, it is difficult to break the linkage between land and water rights in users’

minds, which can act as a barrier to trade, especially the permanent reallocation of water.

For instance, Giannoccaro et al. (2013) found that a lack of permanent water transfers in

Southern Spain’s water market could be partly explained by irrigators’ reluctance to separate

water entitlements from their land.

When water users are small and fragmented it can prove challenging to establish indi-

vidual water rights, especially in developing countries that lack the institutional capacity

to overcome this difficulty. In these instances, water entitlements may be allocated to lo-

cal communities or water user associations that can assign water entitlements internally, as

the case in Mexico (Easter et al., 1999). Hadjigeorgalis (2009), along with Rosegrant and

Binswanger (1994), argue that developing countries may be able to assign tradeable water

rights using a subsidiarity approach that includes stakeholder participation, instead of the

centralized top-down method recommended by donor agencies. This approach is more likely

to efficiently and equitably allocate water, while also being more socially acceptable.

Water right doctrines typically have a beneficial use provision, most of which require right

holders to “use it or lose it”. Although these provisions are meant to prevent speculation

and non-beneficial water uses, they can also act as a deterrent to water reallocation due to

fear that a right might be lost or reduced when temporarily transferred. Many Western US

states have addressed this issue by including provisions in their water transfer programs that
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protect water right holders from forfeiture or abandonment of their water rights if they are

transferred to other users. However, many water users are still unwilling to enter transfer

agreements because they are fearful that the legislatures will eventually revoke their excess

water rights.(Committee on Western Water Management , 2012).

The difficulty in properly assigning and enforcing tradeable water rights amongst human

users has been given significant attention in the water reallocation literature. However, the

daunting task of reallocating the appropriate amount of water to the environment may prove

to be an even grander challenge. Growing understanding of the societal benefits offered by

environmental flows (i.e., water needed to maintain ecosystems, as well as the livelihoods

and well-being of people that depend on these ecosystems) has led to efforts to formalize

environmental water allocations; yet, reallocating water from productive human uses to

environmental uses involves difficult trade-offs, which are exacerbated due to the uncertainty

and challenges in quantifying environmental flow requirements in terms of volume, duration,

timing, frequency, and quality.

The science required to determine the required flow regime for healthy riverine ecosystems

has evolved considerably in the last two decades, with more than 200 different environmen-

tal flow assessments developed (Tharme, 2003; Acreman and Dunbar , 2004), including the

index of hydrologic alteration (IHA) method (Arthington et al., 1992; Vogel et al., 2007;

Yang et al., 2008; Richter et al., 1996, 1997; Poff et al., 1997); numerous studies have also

reported on water requirements for terrestrial ecosystems (Baldocchi et al., 1996; Gerten

et al., 2004). Despite the seeming plethora of approaches for assessing environmental flows,

debates remain regarding the applicability and merits of each method. Additional scientific

support is needed to answer remaining critical questions that, left unanswered, will continue

to restrain water reallocation’s potential, especially for ecosystem restoration. For instance,

how much water has already been over-depleted (allocated to human uses) from ecosystems?

When reallocating limited water supplies, how are trade-offs made between different, and

sometimes conflicting, flow requirements of various ecosystem services? What is the ‘natural’

state of the environment and to what degree can the system diverge from this state before

hitting a critical (unsustainable) point? What flow regime and water quality are needed

to restore ecosystems to a target level (and how do we determine the ‘target’ level)? How

will reallocation to other human uses affect the environmental and ecological systems that

have become dependent on the original human water use (e.g., ecosystem associated with

irrigation)? How will ecosystems and human systems co-evolve in the future and what im-

plications does this have on water reallocation? Answers to these biophysical questions can
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be integrated into social science research on water reallocation, thereby linking ecohydrology

and ecosystem services with stakeholder outcomes.

5.4.2 Third-party effects

Third-party effects, that is, impacts to those not directly involved in the transfer of wa-

ter, are one of the greatest hurdles to water reallocation reaching its potential as a water

management strategy (Murphy et al., 2006; Leidner et al., 2011). The legitimate potential

for negative third-party effects can cripple reallocation opportunities that may create a net

positive economic and/or social benefits at a regional level or different location, yet have

detrimental effects at the area of origin. Most water policy dictates that water reallocation

can only occur if “no injury” occurs to other users, but these rules vary greatly and are

difficult to quantify. The incidental effects of water reallocation aren’t typically identifi-

able immediately, making it difficult to quantify damages and compensate those negatively

impacted. The reallocation of water can cause impacts to the quality and availability of

water for other users, including the environment. Furthermore, water reallocation can have

negative externalities that permeate throughout the area of origin and beyond, such as the

deterioration of a community’s values and culture, which are often tied to the livelihoods

that the water once supported, a depression in land values, excessive weeds and dust from

fallowed fields, reduction in the local tax base, and harm to supporting industries, such as

agribusinesses. If proper reinvestments and policy measures are not in place when water

is reallocated out of a region, the area exporting water will likely face socioeconomic and

population decline (Howe et al., 1990).

Rural communities within the American West have attempted, mostly unsuccessfully, to

require the water rights purchaser to pay the county of origin a fee for the amount of property

tax revenue lost as a consequence of water rights being transferred out of the region (Brown,

2006). Nebraska mandates that property taxes must be paid on the pre-transfer land value,

which ensures that local government remains funded but the additional cost may deter some

water reallocation (Committee on Western Water Management , 2012). Researchers have

suggested a fee or tax paid on reallocated water to compensate third-parties (Levine et al.,

2007), as the case between the Southern California’s Metropolitan Water District (importer)

and the Palo Verde Irrigation District (exporter), which established a ✩6 million fund to pro-

vide grants for community projects, business loans, and vocational training to offset losses

associated with the required fallowing of land (Committee on Western Water Management ,
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2012). Murphy et al. (2006) found a tax on transfers to compensate those negatively affected

provides very economically efficient and socially acceptable outcomes, while an alternative

approach of allowing third-party participation in market outcomes increased volatility, re-

duced economic efficiency, and prompted strategic behaviour.

Water reallocation is often viewed as a way to meet the neglected water requirements

of the environment, as seen in the United States (Brown, 2006), Australia (Garrick et al.,

2009), and China (Liu et al., 2005); ironically, water reallocation has also been opposed for

environmental externalities it sometimes creates. Some areas have legislation prohibiting

water transfers that would cause “unreasonable impact on fish, wildlife, or other instream

uses” (Rosegrant et al., 1994), with the most significant in the US being the Endangered

Species Act. Reallocation of water can disrupt the temporal pattern of instream flows and

reservoir releases, thus negatively impacting other uses — especially ecosystems that require

a very particular flow regime. Furthermore, reallocation to upstream or out-of-basin diversion

points can reduce the incidental environmental benefits achieved in the previous conveyance

to downstream users. Environmental externalities can be exacerbated when irrigators replace

transferred surface water with increased groundwater extractions because when surface water

and groundwater are hydraulically linked this can lead to a further reduction in baseflow,

which is critical for ecosystems during low-flow conditions (Poff et al., 1997). Small wetlands

and riparian ecosystems have formed along some irrigation conveyance systems, which would

also be threated if water is reallocated from agriculture. Llop and Ponce-Alifonso (2012)

have taken a first step toward establishing the trade-offs between economic benefits and the

environment under different reallocation schemes using a computable general equilibrium

(CGE) model with an ecological sector.

Most water transfer schemes are based on consumptive use, not the full diversion, so

to ensure downstream users dependent on upstream users’ return flows (non-consumptive

portion of withdrawals) to fulfill their water right are not adversely effected (Rosegrant and

Binswanger , 1994). This protection, however, can impede potential reallocation by adding

greater uncertainty and cost due to the challenge in quantifying consumptive use and return

flows. In a recent survey, one US State said determining the amount of water consumed by

the original user was the most difficult challenge in assessing water transfers (Committee on

Western Water Management , 2012).

Water conservation measures have been implemented to make “saved” water available for

transfer to other uses (Cai , 2008; Levine et al., 2007; Ward and Pulido-Velazquez , 2008),

though in most cases, water is not truly saved but inadvertently reallocated from those that
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depend on the existing return flows to other users (Ward and Pulido-Velazquez , 2008; Pfeiffer

and Lin, 2014; Huffaker and Whittlesey , 2003). Water conservation and efficient water use

(profit per drop) are often goals of water agencies, yet reduced return flows to streams and

aquifers have implications on other water users, including the environment, which are difficult

to measure and typically happen with considerable delay. Qureshi et al. (2010), found

empirical evidence that excess water produced from investments in more efficient irrigation

and conveyance systems do not provide a justifiable increase in environmental flows; yet,

management practices that reduce consumptive water use (such as land fallowing, deficit

irrigation, and less water-intensive crops) allow for considerable opportunities to reallocate

water to the environment.

The Colorado Big Thompson Project (CBT) in northern Colorado is the most active water

market in the United States (Grafton et al., 2012), largely because it has circumvented

the return flow issue by assigning rights proportional to streamflow and retaining rights

to return flows internally. Water users can access return flows but their availability is not

guaranteed. Chile and Mexico have adopted a similar approach, yet the institutional barriers

to transition to proportional water rights may make it infeasible for most regions (Grafton

et al., 2012). Other methods to sidestep the complexity of determining return flow rights

have been taken by New Mexico and Wyoming, which determine the permissible water

transfer volume using standard formulas applied for different conditions to avoid additional

costs, time, and uncertainties that can act as barriers to trade (Rosegrant et al., 1994).

Similarly, assumptions regarding return flows, consumptive use, and third-party impacts

can be established as a rebuttable presumption, thereby shifting the burden of proof to

those with objections to the transfer. This could reduce the number of baseless claims, while

allowing for greater consideration under special circumstances; however, the imprecision of

these methods may limit some transfers.

The inadequacies of current methods necessitate the creation of new methods and tech-

nologies that provide economical, scalable, and reliable estimates of a user’s consumptive

water use and utilizable return flows (Gates et al., 2012). Continual improvements of rela-

tively new technology, namely remote sensing tools (e.g., Landsat Thermal Infrared Sensor),

can help quantify consumptive water use and thus provide quick and inexpensive information

for reallocation decision making. However, determining utilizable return flow volumes will

likely prove to be even more challenging, especially from irrigation systems, because hydro-

logic heterogeneity and the dearth of data have encumbered the development of inexpensive

and widely acceptable methods for quantifying return flow. The usefulness of return flow
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depends on the path of the flow (i.e., via natural systems such as aquifers and interflow, or

man-made pathways such as drainage systems), the duration for it to become available for

reuse, and its quality — all of which are very difficult to determine. For example, a useable

quantity of return flow may not be truly useful due to extraordinary salinity from irrigation

districts (e.g., the Aral Sea case in Central Asia; Cai et al. 2003), increased temperature

from power plants, and, more seriously, the various types of pollutants from industrial areas

return flow. Therefore, new technologies and methods for determining return flows must

consider the quantity and timing of their availability, but also the quality.

5.4.3 Lack of information support and limited stakeholder involvement

Benefits derived from voluntary water reallocation often do not meet expectations because

participation is relatively limited — water transfers in many markets are around 2-5% of

total water demand (Zhang , 2007; Brown, 2006; Bjornlund et al., 2014). Giannoccaro

et al. (2015), along with Tisdell and Ward (2003), argue that the overestimation of bene-

fits by theoretical water market models is because stakeholder’s perceptions and values are

not considered. Many water users, especially farmers (which hold the majority of water

entitlements), exhibit a general aversion to the commoditization of water through market

mechanisms (Easter et al., 1999), instead preferring that a public entity maintain control of

water allocations (Bjornlund et al., 2013). The distrust of water markets have been shown

to stem from beliefs that markets will disadvantage low-income farmers (Easter et al., 1999)

perceptions water and land rights should not be separated (Bjornlund , 2003), and views

that water should not be treated as a commercial good (Giannoccaro et al., 2015). How-

ever, Bjornlund (2003), and Giannoccaro et al. (2015), have shown that these negative

perceptions of water transfers are somewhat abated over time and drought induced water

scarcity acts as a catalyst to market involvement (Wheeler et al., 2013). Early adopters to

water markets in Victoria, Australia were typically newer farmers with a farm plan, more

educated, higher earners, and female (Wheeler et al., 2009).

Improving the transparency of water reallocation decisions and increasing the availability

of information regarding the timing, location, volume, price, and purpose of water transfers

is critical to improve market performance, achieve societal acceptance of water reallocation

(Easter et al., 1999) (both voluntary and non-voluntary), and enable new research. Govern-

ments can increase acceptance and awareness of water reallocation by launching outreach

programs to educate citizens and gain trust. They can also make potential buyers and sellers
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feel more comfortable trading water rights by sponsoring mock transfer programs or engaging

in “seed” trades as a basis for larger and/or longer future agreements.

The government is best suited to collect data on water supply and facilitate data exchange,

while users are able to better determine their own demand. With the exception of Australia,

where the state and commercial water brokers make transfer records available, information

on water transfers is fragmented, incomplete, informal, or non-existent (Grafton et al.,

2010). Transfer data can be made available through a real-time, searchable online geographic

interface system, which would allow potential reallocation participants to gauge transfer

activity, inform prospective transfers, and gain insights into the spatial and temporal trends

in the basin. In addition, governments can provide seasonal or long-term projections of

water supplies so that water users can assess their needs and potentially free-up water (e.g.,

fallowing land or shifting to less water-intensive crops) for transfer.

Comprehensive, accurate, timely, and accessible information is needed to support wa-

ter reallocation and research advancements. The growing capabilities of technologies such

as remote sensing, geographic information systems (GIS), low-cost sensors, mobile phone

applications, and cyber-physical infrastructure can provide critical data concerning water

availability, quality, and demands. These data can lead to more informed reallocation deci-

sions with increased efficiencies, decreased cost, and reduced uncertainty. New data mining

techniques and Big Data predictive analytical tools can harness the voluminous amounts of

data these technologies can provide to bring about new insights and solutions to complex

water reallocation issues (Cai et al., 2015). However, before these tools are used, some

fundamental questions must be addressed: How can the water use of heterogeneous and

fragmented users be monitored and measured and how can this information be included in

the decision-making process? What other tools and new technologies are needed to account

for and allocate the ever-changing water (full hydrologic cycle) within the basin? How can

information describing human processes, institutions, and stakeholder behaviour be collected

and paired with physical and ecosystem data in a meaningful way?

5.4.4 Transaction and transition cost

Transaction cost are the collective cost of acquiring information, identifying transfer oppor-

tunities, negotiating or administratively determining transfer details, conveyance (including

water loss and infrastructure cost), mitigating third-party effects, and monitoring and en-

forcing transfers (Rosegrant and Binswanger , 1994). More broadly, transition costs are the
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institutional costs to shift the institutional structure to one more favourable to water reallo-

cation. This may involve reorganizing water agencies jurisdiction to match hydrologic bound-

aries, strengthening water rights, loosening policies restricting water reallocation, reforming

water-user associations, building new transfer infrastructure, and the general facilitation of

reallocation (Garrick et al., 2013).

The water reallocation literature primarily focuses on transaction cost associated with

markets; however, transaction costs are prevalent in all reallocation forms and have not

been proven as a larger deterrent in markets than they are for other transfer types. The key

difference between transaction costs in voluntary transfers versus administrative reallocation

is that the water authority absorbs the cost of administrative reallocation, whereas the

individual participants bear much of the cost in voluntary reallocation (Hadjigeorgalis ,

2009). There are particular factors that have been shown to either increase transaction

costs or make transaction cost a greater deterrent in both voluntary and non-voluntary

transfers. First, transaction cost increase with larger geographic dispersion of stakeholders

and greater number of small fragmented users due to the infrastructure and coordination

required to facilitate transfers (Rosegrant and Binswanger , 1994). Second, high transaction

cost (in terms of time and money) can deter small or short-term water transfers because the

monetary cost may exceed the actual value of the water, while the time to gather information,

gain approval, and complete the transfer may go beyond the timeframe of when the water

is required (Committee on Western Water Management , 2012). Third, the uncertainty

associated with determining environmental requirements can add greater cost and make

reallocating water to the environment potentially more challenging than reallocating water to

other water users (Ladson and Finlayson, 2002). Finally, transaction cost have been shown

to be a greater barrier for some water users (namely agriculture) than others (industry) due

to the latter’s greater economic gains from utilizing water and capacity to absorb additional

cost (Garrick et al., 2013; Wang , 2012).

Insufficient water infrastructure often constrains potential transfers by not offering a means

to store and then convey water to the new user; yet, the cost to build, maintain, and operate

infrastructure projects can make many transfer schemes economically infeasible. Ansink and

Houba (2012) contend that a lack of water transfer infrastructure leads to narrow markets

and bilateral oligopolies, which creates a non-Pareto optimal water allocation because of an

imbalance in market power between potential buyers and sellers. Private water vendors have

capitalized on the dearth of water infrastructure in many developing countries by creating

an informal non-pipe water distribution system to serve unmet water demands. However,
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these water transfers are sometimes illegal and have been shown to cost up to 12 times

more than a formal utility, which can amount to a significant portion of the income of

poor consumers who often rely on such a system (Kariuki and Schwartz , 2005). One

solution is to readapt existing infrastructure for the purpose of water reallocation (i.e.,

infrastructure sharing). Infrastructure sharing has seen some success (see Committee on

Western Water Management 2012 for examples in the US) but requires considerable planning

and coordination of operations amongst treatment facilities, canals, pumps, and storage

systems (Lund and Israel , 1995). These systems are often inefficient because they are being

utilized for reasons beyond their originally designed purpose. This can increase transaction

cost considerably and can possibly strain infrastructure in meeting its original purpose or

limit reallocation potential. Further advances in smart infrastructure (i.e., the nexus of

physical and cyber infrastructure) have the potential to revolutionize water management

and make reallocation a more physically and economically feasible option (Hoult et al.,

2009). However, any engineering solution will also necessitate collaboration by agencies

controlling major components of a region’s water infrastructure (Lund and Israel , 1995).

The uncertainty and lack of information regarding water availability further increases

transaction costs. It is difficult to determine the potential for water reallocation when basic

questions still need to be answered, such as how much water is available, of what quality, at

what time, and at what location. The traditional assumption of stationary hydro-climatic

conditions has been deemed inappropriate with our growing understanding of the impacts of

climate change and human interference (Milly et al., 2015), yet no methods exist that incor-

porate the complex, uncertain, and rapidly changing effects of climate and human change on

water resources. It is difficult to reallocate water if we are uncertain how much water is even

available and how this availability changes over time and under different conditions. Key

research questions need to be addressed, including the following: What impact does climate

change and socioeconomic growth have on water availability of a particular economic sector?

Given non-stationary hydro-climatic conditions, what is the reliability of the water supply

in meeting all water demands? To what degree can water reallocation mitigate the negative

impacts associated with climate-change related fluctuations in water availability?

5.4.5 Unsuitable institutional structure and operation

The efficacy of water reallocation is largely dependent on water governance institutions,

including how they coordinate and cooperate amongst themselves (Moore, 2015). As Table
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5.2 previously demonstrated, reallocation can occur under vastly different government or

institutional settings around the world. Yet, water transfers are more efficient, equitable,

and/or sustainable under certain legal and institutional frameworks than others. Grafton

et al. (2010) provides a comprehensive and integrated method to benchmark how well an

institutional structure promotes water reallocation (namely through markets) over time and

against other institutional types.

Overcomplicated regulations or restrictive rules that limit water transfers to other uses

or places can dissuade water reallocation, keeping water locked in economically inefficient

uses. For instance, Spanish law classifies priority levels to different water uses and prohibits

the transfer of water from higher priority uses to lower priority uses. This legal constraint

therefore inhibits potentially beneficial reallocation between agricultural and recreational

uses or some industrial uses (Palomo-Hierro et al., 2015). In addition, policies not directly

aimed at water resources, such as China’s and India’s policy promoting food self-sufficiency,

can have large implications on how water is allocated throughout the country, constraining

space for water reallocation.

Since the agriculture sector controls the majority of water rights, many researchers have

focused on how the institutional structure of irrigation organizations (including irrigation

districts) has impeded water reallocation (Ghimire and Griffin, 2014, 2015). Irrigation or-

ganizations (IO) are entities that hold communal water rights and supply irrigation water

to its members. They are widely found in various forms in both developed (e.g., Ghimire

and Griffin 2014) and developing (e.g., Rosegrant and Binswanger 1994) countries. The

literature shows that IOs are less likely to transfer water rights than irrigators not in IOs

primarily because of difficulties in 1) collectively deciding on transfer prices, 2) determining

the distribution of water transfer gains amongst members, 3) providing equitable compen-

sation methods for individual water conservation efforts, and 4) quantifying the incidental

district impacts due to seepage reduction (which replenishes aquifers and can be used again)

and the increased internal water conveyance cost (Moore, 2015; Ghimire and Griffin, 2015).

Ghimire and Griffin (2014) found IOs with larger water entitlements are more likely to par-

ticipate in inter-sectoral water reallocation, which implies that merging IOs with smaller

water right holdings could act as a catalyst for reallocation. In addition, reallocation can

be fostered by reshaping IOs ownership structure, such that members own a share of the

organization’s water right (opposed to exclusive possession by the IO), voting privileges are

weighted by irrigated acreage to prevent small-holders from exerting disproportional influ-

ence on transfer decisions, exit or termination fees assessed on IO members who sell their
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rights are waived or reduced, and water is priced according to its opportunity cost (Griffin,

2012; Garrick et al., 2009)

The present operation of most water storage systems locks in current water uses and

therefore must be adjusted to facilitate water reallocation. Many basins have undergone

extensive natural and human induced changes, yet the operation of the basin’s dams still

abide by the water control plan from the time of its design, thus implicitly assuming the

same hydrologic conditions, basin development (e.g., land use patterns, other reservoirs),

and water withdrawal patterns have remained constant throughout the years (McMahon

and Farmer , 2004). The assumed stationarity of human and natural systems leads to a

miscalculation of water availability and a misappropriation of water to demands that may

now hold less economic or societal value than when first allocated.

There have been recent calls for water to be reallocated to meet environmental and eco-

logical objectives by changing reservoir operation procedures (Suen and Eheart , 2006; Suen

et al., 2009; Yang and Cai , 2010). However, adjusting reservoir operation rules to meet such

objectives may jeopardize the original purposes of the reservoirs. Thus, research is needed

to determine the tradeoffs between the new (ecological) and original (economic) objectives

and how to balance these in the reallocation of reservoir storage (California Deptartment of

Water Resources , 2005). Great reallocation potential also exists through the joint-operation

of multiple reservoirs within a river basin. Institutions can coordinate reservoir operating

procedures to reallocate water to meet basin-wide objectives, not just water uses adjacent to

the reservoir. Basin-wide mechanisms for information sharing, coordination, and regulation

are not in place in many regions and technical difficulties in developing optimal operations

of multiple reservoirs still represent research challenges (Labadie, 2004).

Federal multi-purpose reservoirs in the U.S. provide an example of reallocation of reservoir

supply in response to changing conditions but also highlight the need for continued progress.

The Water Supply Act of 1958 has expedited reallocation of federally operated dams and

allowed the Corps to reallocate 640,000 acre-feet of storage across 44 dams to municipal and

industrial water supply since its inception ( Carter 2010; refer to Fig 5.2); however, this

represents only had a small percentage (0.3%) of the 216 million acre-feet of storage across

its portfolio of dams. Further reallocation will be required (and in some cases is already

needed) to obtain greater economic or social benefits from U.S. water resources (McMahon

and Farmer , 2004). In particular, storage space allocated to flood control may hold promise

for reallocation because the hydrologic record upon which flood storage was based has been

extended since many dams were designed, thereby changing risk profiles and flood storage
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requirements.

Figure 5.2: Percentage of total reservoir storage reallocated under the Water Supply Act of
1958 (abscissa) for 44 different sized (ordinate) U.S. Army Corps of Engineers’ reservoirs.
The size of each bubble represents the relative volume of reallocated storage. The majority
of dams have had less than 3% of their storage reallocated. Data from (Carter , 2010).

Overcoming the obstacles to water reallocation will require an integrated systems approach

and collective action amongst researchers of different disciplinary backgrounds, practitioners,

and policy makers. In particular, researchers need to move towards more interdisciplinary

water reallocation research by consolidating advances in natural sciences, engineering and

social sciences. We propose an initial path for the unification of the social sciences, natural

sciences, and engineering fields into water reallocation solutions in 5.3. A summary of the

major water reallocation barriers overviewed in this paper is provided in 5.3, where we also

show how contributions from the social sciences, natural sciences, and engineering can be

integrated into holistic approaches to overcome water reallocation obstacles. Economic stud-

ies of water reallocation (chiefly related to water markets) should be extended to include a
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broader social science context to deal with equity and community resilience associated with

water reallocation. Meanwhile, natural science and engineering studies should be extended

from traditional focuses on water availability and water supply to more effective realiza-

tion of water reallocation through novel infrastructure development, system operations and

information support (Cai et al., 2015).

5.5 Concluding Remarks and Suggestions for Future Research

Water reallocation exhibits great promise as an adaptive water management tool which can

reduce the economic, social, and environmental harm caused by water scarcity. Despite its

promise, this paper notes the numerous and diverse barriers that hinder water reallocation

from reaching its potential. Reforms in water institutions and policies are required to bring

about water reallocation at a greater scale; however, these changes must be guided by im-

proved scientific understanding and new tools to assess the trade-offs and interdependencies

involved in any water reallocation decision. Past research offering only policy, economic,

institutional, or engineering approaches to water reallocation have not been widely imple-

mented because it only addresses one part of a grander problem. The complex economic,

social, technical, environmental, and institutional underpinnings of water reallocation must

be all integrated into proposed solutions, not simply ignored or assumed away. Decision mak-

ing must be based on a comprehensive scientific understanding of the complex human-water

system, informed through new data collection and interpretation tools, and be actionable

through advances in technology and smart infrastructure. This seems to follow the calls

from Integrated Water Resources Management (Rahaman and Varis , 2005; Grigg , 2008)

(IWRM), but research for water reallocation is expected to provide a specific and realizable

context to implement IWRM to solve real world water management problems, as outlined

by Biswas (Biswas , 2004) who reviewed the implementation obstacles of IWRM. In short, a

broader interdisciplinary framework is needed to guide water reallocation decisions and re-

move its barriers. Although suitable choices of particular reallocation forms vary by regions

depending on the various governance, legal/regulatory, and social systems, shared issues

(e.g., poor governance, lack of information support, transaction cost, and third-party ef-

fects) exist among all water reallocation occurrences; thus, the proposed integrated research

framework can be utilized around the world as a means of overcoming these common barriers.

Until researchers resolve some of the critical barriers to water reallocation discussed

throughout this paper, water reallocation will continue to be challenging or infeasible in
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Table 5.3: The removal of water reallocation barriers requires an interdisciplinary approach
that integrates the social sciences and the natural sciences and engineering into a holistic
framework.

Major

Barrier to

Reallocation

Social Science Focus Natural Sciences

and Engineering

Focus

Holistic Approach Anticipated

Outcome

Poorly

defined

water rights

Establish water rights
and improve policies to
facilitate proper reallo-
cation

Quantify environmental
flow requirements

Link environmental
water requirements to
stakeholder outcomes
and create a systems
approach to evaluate
trade-offs between envi-
ronmental and human
water uses

Balanced water alloca-
tion to human-nature
needs

Third-party

effects

Assess economic and
non-economic third-
party impacts, as
well as methods for
compensation

Estimate consumptive
water use and return
flows more accurately
and develop more effec-
tive monitoring meth-
ods. Assess impacts
of climate and societal
change on water.

Co-optimize water ben-
efits based on physi-
cal and socioeconomic
connectedness through-
out the system

Reduced/enhanced neg-
ative/positive externali-
ties associated with re-
allocation

Lack of

information

support and

limited

stakeholder

involvement

Increase transparency
regarding transfers and
clarify stakeholders’
values and beliefs

Increase reliability
of water availability
and use data, improve
information accessi-
bility, and monitor
environmental effects.
Provide insights into
the human-water sys-
tem through advanced
information technology,
especially Big Data
tools.

Incorporate hydrologic
data and human re-
sponses and values into
a coupled human-water
framework

Reduced uncertainty,
lower transaction cost,
and enhanced stake-
holder support

Transaction

and

transition

cost

Comprehensive identifi-
cation and mitigation of
social and economic fac-
tors that lead to high
transaction cost

Advance physical
and cyber infrastruc-
ture, novel operation
schemes, reliable
forecast, and robust
methods to deal with
uncertainty

Manage transaction
cost through an inte-
gration of institutional,
policy, scientific, and
technological advances

Reduced transaction
cost and better in-
formed decision-making

Unsuitable

institutional

structure

and

operation

Identify institutional
structures and policies
that inhibit proper
reallocation

Improve system opera-
tion schemes, provide
more reliable hydrologic
information, and fa-
cilitate communication
among stakeholders by
novel technologies

Establish adaptive in-
stitution based on scien-
tific and engineering in-
formation support and
agency collaboration

Improved institutional
support and mitigated
institutional barriers
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many areas. Non-market means of reallocation will remain the primary avenue of reallocat-

ing water in the foreseeable future (Turner and Hildebrandt , 2005). Water markets can take

considerable time and resources to establish, even if the prerequisite institutions, policies,

and infrastructure required to facilitate a water market are already in place, which typi-

cally is not the case (especially for inter-sectoral markets). Although much of the literature

supports water markets over other means of reallocation because of its potential economic ef-

ficiency and decentralized approach, pragmatically, widespread application of water markets

may not be appropriate or even feasible in many circumstances, especially cases that require

immediate solutions. Thus, research is needed to support non-market based water realloca-

tion (i.e., administrative and collective negotiations), which often have fewer prerequisites

and can be implemented more readily. Specific to administrative reallocation, continued

research regarding how to optimally reallocate storage in existing multipurpose reservoirs

offers a promising means of managing scarce water resources at a very low cost. Regardless

of what method of reallocation is employed, it is evident that water reallocation will play a

critical role in dealing with growing water scarcity and in some closed basins it is the only

way to meet future demands (Committee on Western Water Management , 2012).
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Chapter 6

CONCLUSIONS

6.1 Concluding Remarks

This dissertation focuses on characterizing human appropriations of fresh water, both directly

and indirectly through the global trade network. The set of methods, concepts, and applica-

tions developed and explored here allow us to better understand the drivers of unsustainable

water use and water dependencies, which stretch across global supply-chains. Connecting

nonlocal water dependencies with impacts to specific water resources allows for exploration

of feedbacks and unexpected outcomes that can only be explained in the context of telecou-

pled human-nature systems (e.g., California farmers switching to more water-intensive crops

during the worst drought on record).

6.1.1 Groundwater overexploitation is not just a local issue

As globalization expands, groundwater resources act as a global commons shaped by distant

actors and exchanges (Sanderson and Frey , 2015). The systemic causes of groundwater

overexploitation are not fully understood because there is a mismatch in scale between water

use impacts and water demands, which are both local and global in nature (Vörösmarty

et al., 2015). In this dissertation, we are the first to address this scale mismatch with regards

to groundwater overexploitation, focusing on three critical US aquifer systems: the Central

Valley, High Plains, and Mississippi Embayment. Irrigated agriculture is contributing to

the depletion of these three aquifers. We show that agricultural production within these

aquifer regions comprise a significant portion of domestic and international food supply;

thus, potential food security implications arise if production significantly decreases to bring

groundwater withdrawals within sustainable limits. For the first time, this study tracks

and quantifies the food and embodied groundwater resources from these aquifer systems to

the final destination and determines the major US cities, US states, and countries that are
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currently most reliant upon them. Tracking virtual groundwater transfers highlights the role

of distant demands on local groundwater sustainability and the fact that aquifer depletion

must be considered within its global context.

After establishing nonlocal dependencies on critical aquifers in the United States, we

demonstrate how these global dependencies and local water use and decision-making co-

evolve under drought shocks. For the first time, we explore the hidden, but important,

connections between drought, food, water, and trade. Using the recent drought in Califor-

nia’s Central Valley as a case study, we find that drought can have important implications

on local water supplies, particularly aquifer depletion, and global consumers’ reliance on

groundwater-intensive agricultural commodities. To this point, we find that during Califor-

nia’s 2012–2014 drought, local and global consumers nearly doubled their reliance on the

Central Valley Aquifer, which is being rapidly depleted. Furthermore, our work suggests

that global food markets shape farmer’s cropping and irrigation decisions, which can in turn

lead to greater groundwater depletion, subsidence, and reliance on unsustainable water use

by global consumers. This work is critically important in informing consumers around the

US and world of their role in local resource use and reliance on nonlocal infrastructure and

production.

6.1.2 Water is a critical input in U.S. economic production

The United States economy utilizes water to produce goods and services demanded by so-

ciety. Despite its importance to economic production, there is little information on what

economic sectors are most dependent on America’s water resources and where these water

dependencies are located. The evolving human and natural pressures placed on the country’s

water resources necessitate a better understanding of how the nation utilizes its water re-

sources within its economy. In this dissertation, we quantified water footprints of production

of U.S. food, energy, services, manufacturing, and mining industries. In doing so, we create

the most detailed, comprehensive water footprint assessment of any country to date and

offer a database of product water footprints (i.e., VWC) of over 500 industries/products for

different state and sub-state areas across the country. We find that 93% of industries are

more dependent on water resources used indirectly through their supply chains than they use

directly as an input in production. However, sourcing production inputs from more water

efficient or inefficient suppliers can change an industry’s total indirect water requirements

by several orders of magnitude. Additionally, we find that just seven crops are responsi-
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ble for 75% of the nation’s groundwater footprint and 47% of its surface water footprint.

Our results also identify geographic clustering of water use by industry, potentially signaling

reduced resilience to water-related shocks in the supply chain. This work enables direct com-

parison of water uses across economic sectors and cities. It will provide a valuable resource

for water management and modeling, environmental life cycle assessments, water footprint

assessments, benchmarking water use, and demand forecasting and planning.

6.1.3 Water reallocation requires an interdisciplinary approach

The use of water reallocation (i.e., physical water transfers) as an adaptive water manage-

ment strategy is expected to increase with growing water scarcity. Yet, we do not fully

understand the complex feedbacks it invokes between society and nature, which hinders its

wider and more effective use. As part of this dissertation, we provide the first survey of the

water reallocation literature with the specific purpose of integrating findings across multiple

disciplines to understand the major barriers impeding water reallocation. We contribute an

interdisciplinary framework to make water reallocation a more viable, effective, and equitable

water management strategy.

6.2 Limitations of Current Work

This dissertation highlights the critical importance of existing national databases in the

United States, which this work depended upon. The key data sources used throughout

this work provide greater spatial resolution, production detail, and site-specific knowledge

than data sources commonly used throughout the literature. Although the key data sources

we utilize have gone through extensive quality control and assurance measures by the US

government agencies that release them, they do not specify the degree of error or uncertainty

associated with their estimates. Thus, any unspecified uncertainty in these data products is

reproduced within our results. Water footprint sensitivity and uncertainty analysis is an area

of active research (Zhuo et al., 2014; Tuninetti et al., 2015) and future research is needed

to evaluate the additional uncertainties that are involved when commodity transfers are also

considered.

Through this dissertation, we were able to identify opportunities to improve national data

collection efforts. The policy and scientific communities would greatly benefit from higher

temporal resolution and metered water use data by source. Ideally, every water user in
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America would provide sub-annual reports of metered water withdrawals and return flows

by source, economic activity, production processes, and the origin and destination of all

supplies and sales. This would dramatically improve our understanding of how water is used

throughout the economy and the implications of water use, as well as identify those directly

and indirectly dependent on the water and the economic activity it supports. Given that

much of this data is not available at the level of detail desired, assumptions were necessary

to fuse disparate data sources together across different spatial and temporal scales. Though

the data sources utilized in this study are of higher quality than those used in most WF

studies, there is still room for progress in data collection, which would further reduce the

uncertainty surrounding our WF and VW trade estimates.

Due to the data quality and availability issues just discussed, we checked the validity

of our main findings using three different approaches. First, we used alternative datasets

representing key variable of interests to test the sensitivity of our results when possible. For

instance, the California Department of Food and Agriculture (CDFA) and USDA both collect

county-level crop production data — a foundational data input. In Chapter 3 we calculated

WF and VW trade patterns associated with each dataset. Most of our results only varied

by 1-10%, while our main conclusions remained unchanged. Second, we tested our findings

against other published values of water use. Using Chapter 3 as an example again, we found

that our estimates of groundwater irrigation were within 3.9% of that estimated by Howitt

et al. (2014). These tests demonstrate the robustness of our approach and key findings and

gives us confidence in the general patterns and trends that we present. Finally, we performed

a sensitivity analysis by isolating and varying key variables to assess their impact on our

major results. For example, in Chapter 4 we inspect the impact of variability in consumption

coefficients, water-use coefficients, model parameters, non-revenue water losses, and other

assumptions had on our key findings.

6.3 Future Research Extensions

The methods and datasets created as part of this dissertation open several natural avenues

for future research in water resources and beyond, such as:

❼ Exploring the relationship between urban areas and the nonlocal river basins they are

indirectly reliant on. The methodological framework and WF datasets developed in

this dissertation can address outstanding questions, such as: i) Which watersheds are
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most critical in meeting US cities direct and indirect water requirements? (ii) Does

virtual water trade allow for ‘infrastructure sharing’ across basins? and (iii) Do the

physical and virtual flows of water mitigate or intensify water stress in US river basins?

❼ Comprehensively quantify the hydro-economic interdependencies and exposures for all

urban areas of the United States using metrics developed by Rushforth and Ruddell

(2015) and Rushforth and Ruddell (2016). The methodology we employ in this disser-

tation could be used to calculated embedded energy as well, yielding interdependent

FEW relationships.

❼ Results from this study could help set water footprint benchmarks per product or

industry. Additionally, river basin water footprint caps could be determined to put

sustainable limits on water extraction, as suggested by Hoekstra (2014).

❼ The decoupling of consumption from the local resource base is not only an issue per-

tinent to water resources, but all natural resources. The full social and environmental

cost associated with the use of natural resources in the global production and trade sys-

tem are rarely embodied in the price paid by consumers — a misevaluation that can

cause inefficient consumption decisions and unsustainable resource use. The frame-

work used in this dissertation can illuminate the hidden linkages between nonlocal

consumption patterns and local impacts related to production, use, or extraction of

other resources.

In conclusion, the work presented here provides an important first step toward empower-

ing producers, consumers, water planners, and decision makers to manage water resources

more holistically and at the appropriate scale by linking more detailed understanding of

local water used in production processes with new knowledge of virtual water transfers. As

water becomes scarcer and globalization increasingly connects consumers to distant natural

resources, this work is imperative to understand the demand forces that are contributing to

the unsustainable use and indirect dependencies of these water resources.
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