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Abstract 
To design hybrid cellular/synthetic devices such as sensors and vaccines, understanding of how 

the metabolic state of living cells changes upon physical confinement within three-dimensional 

matrices is vital. We analyze the gene expression patterns of stationary phase Saccharomyces 

cerevisiae (S. cerevisiae) cells encapsulated within three distinct nanostructured silica matrices and 

relate those patterns to known naturally occurring metabolic states. It was found that the cells for 

all three-encapsulated methods enter quiescent states characteristic of response to stress, albeit to 

different degrees and with differences in detail. By the measure of enrichment of stress-related 

Gene Ontology categories, we find that the AqS+g encapsulation more amenable to the cells than 

CDA and SD encapsulation. We hypothesize that this differential response in the AqS+g 

encapsulation is related to four properties of the encapsulating gel: 1) oxygen permeability, 2) 

relative softness of the material, 3) development of a protective sheath around individual cells, and 

4) the presence of glycerol in the gel, which has been previously noted to serve as a protectant for 

encapsulated cells and can serve as the sole carbon source for S. cerevisiae under aerobic 

conditions. This work represents a combination of experiment and analysis aimed at the design 

and development of 3D encapsulation procedures to induce, and perhaps control, well-defined 

physiological behaviors. 

 

We also report on the temporal pattern of yeast gene expression patterns during encapsulation in 

silica matrices via a cell-directed assembly process, and upon release. Three broad classes of 

patterns are seen. A major shift in expression patterns is seen upon encapsulation, relative to the 

beginning stationary state, similar to previously reported stress response. Significant continuing 

shifts are seen by sampling at different intervals during a one week encapsulation. Upon release 

from encapsulation and reincubation in growth medium, the cells are in a state significantly 

different from the state prior to encapsulation and similar to the state during encapsulation. 

Implications are drawn for the use of encapsulated micro-organism as sensors and effectors, and 

for the persister state of such organisms.   

 

Ordinarily Gene Ontology (GO) enrichment analysis is subject to an arbitrary threshold for 

defining significance of enriched classes. In this paper, we consider replacing an arbitrary threshold 

with F-measure optimization to define the p-value that divides “significant enrichment” from 
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“non-significant”.  It is found that evaluation of false negatives (essential for computing recall and 

thus F-measure) requires a heuristic (but reasonable) assumption. We apply F-measure 

optimization to two sets of genes from different organisms and use Benjamini-Hochberg and 

random resampling to evaluate the number of false positives.  It is found that the uncorrected p-

value that produces optimum F-measure varies widely from one data set to another.  It is also found 

that all three methods of FDR calculation diverge from each other within a range of uncorrected 

p-values that provide F-measure optimum p-values. This study includes in Appendix AI a pipeline 

for using resampling and F-measure optimization to create lists of enriched GO classes that provide 

for variable weights of precision and recall. 
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Chapter 1: Literature Review 

Yeast Stress Responses 
The yeast (Saccharomyces cerevisiae) is a model eukaryotic unicellular organism and the first 

eukaryotic organism whose genome was completely sequenced.1 As a unicellular organism, yeast 

lives freely in natural environment that put yeast under variety of external stresses. Any 

environmental condition that challenges the cell to survive or perturbs the normal function of cell 

is termed as stress.2 The yeast cells must adjust internal system to handle these external changes 

to perform regular functions. One of the yeast responses to these changes is provisional pause of 

normal cellular processes during the reorganization of internal system.2 There are some stress 

conditions that have been studied experimentally like growth at suboptimal temperature, growth 

at limited nutrients supply, DNA damaging or toxic agents, growth in a medium of different 

osmolarity and others. Yeast’s genomic response is unique to the features of environment. 

Scientists carried out yeast comparative analysis of stress responses to varying kind of conditions. 

These experiments uncovered that there are approximately 900 genes whose expression was 

changed upon different environmental stresses.2 These 900 genes were named as Environmental 

Stress Response (ESR) genes. Environmental Stress Response (ESR) genes were classified into 

two categories depending upon the expression profiles. Category one contains 300 upregulated 

genes in response to stresses and these genes were referred as induced genes while category two 

contains 600 downregulated genes and these genes were referred as repressed genes. It was noted 

that changes in ESR genes expression were directly proportional to the magnitude of 

environmental stress. Authors verified this correlation by carried out dose dependent experiment 

in which they exposed yeast cells to extreme environmental change and observed greater change 

in ESR gene expression while exposure to delicate or less extreme environmental change led to 

small change in ESR gene’s expression.3 Most of genes whose expression was downregulated were 

involved in ribosome synthesis and processing, transcription, translation, and RNA processing. 

These downregulated processes are energy consuming processes and lower synthesis of these 

processes will help cell to conserve energy for important cellular functions. However, genes whose 

expression went upregulated were genes involved in carbohydrate metabolism, autophagy, DNA 

damage response, and oxidative stress responses.2 This is very much important for cells to cope 
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with these environmental challenges for its survival; However, coming back to normal state after 

adopting to the new environmental is also very critical for cell’s survival. To understand this later 

aspect, further studies needed to be carry out. A comprehensive understanding of yeast’s genomic 

responses under stress will help to grasp the connection between stress responses and aging, 

identification of new antibiotics, and deeper understanding of evolutionary importance of yeast’s 

stress responses.3 

Persister Cells and Drug Tolerance 
Persister cells were first discovered by Bigger by analyzing the mode of penicillin action.4 Bigger 

observed that penicillin broke down the growing Staphylococcus spp; however, some small sub-

population of bacteria who was not antibiotic resistant was survived. Bigger proposed this small 

population of surviving cells was non-growing or slow growing, non-dividing and dormant.4 It 

was recently discovered that persister cells were not only present in bacterial population but also 

found in some small population of yeast such as Candida Albicans cells who were survived in high 

concentration of antifungal agents. Microbial population forms persister cells as one mode of 

survival and these persister cells have same genotype but phenotypic variants of large population, 

which are multidrug tolerant.5 Tolerance is the way of cells to evade killing by antibiotic or 

antifungal agents by altering the target or not synthesizing the target required by antibiotic or 

antifungal agents to kill the cells. The production of persister cells is done by shutting down of 

energy conserve processes and upregulation of genes involved in growth arrest.6 Priority of the 

cell is not to enter into dormancy rather remain as dividing cell as it takes more time for dormant 

cell to come back to original normal state.5 The best way to achieve persistence is the upregulation 

of genes involved in toxin production. Overproduction of toxic products inhibits important cellular 

processes and cell growth, which ultimately inhibits the antibiotic action as the target for antibiotic 

or antifungal agents, is not expressed by cell.7 The drug resistance mechanisms include 

modification of target by mutation, target modification by enzymes or producing alternative 

targets. The main objective of these modifications is to prevent antibiotic binding to target. If 

persister cells are dormant and not actively growing, no cell-wall synthesis, very little translation 

then antibiotics will act on these cells but due to absence of target, antibiotics will not be able to 

change or corrupt the target molecule. Recently, pumping persister were discovered that uses efflux 

pumps and throw the antibiotic out from the cells to keep the intracellular concertation of 
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antibiotics at lower level.8 Another study reported found that depletion of ATP plays an important 

role in persister formation in S. aureus.9 Microbes achieve their persistence by above mechanism 

and become tolerant to multidrug but they also pay a cost as being remained non-dividing or by 

slow growth.6 It is known that most of chronic infections are due to persister cells but we do not 

have a single proficient drug to eradicate these persister cells. Many of antibiotics would fail if 

tested against non-growing stationary phase but all will collapse if tested against dormant cells. 

The first to handle chronic infections is to develop antibiotics and antifungal therapies against non-

growing, dormant/persister cells that will not be an easy step.7 

Biofilms and Their Role in Persister Cells Formation 
Numerous microorganisms have the capacity to grow surfaces in a collection of cells called a 

biofilm. They became very important topic in research because the recognition of their role in 

different infections in humans.10 Biofilms are blamed for a wide range of microbial infections in 

human as cells present in biofilms are more resistant or tolerant to drugs than free living cells.10 

Fungal biofilms play an important role in highly unmanageable infections. The formation of 

persister cells in bacteria and fungi is different such as yeast persister cells were only found in 

biofilm rather than in a non-growing stationary phase population as it happens in bacteria.7 The 

persister cell formation in fungal biofilms is quite different bacterial persister cells in which 

planktonic or free living cells contains higher number of persister cells than biofilm.6 This 

observation showed that biofilm is the mode of survival or production of persister cells for yeast 

and is the main source of formation of drug tolerant cells. The production of drug tolerant persister 

cells is an important way of giving cell heterogeneity to yeast population.11 

Introduction to Cell Encapsulation Methods  
Yeast cells are decent shielding structure. These cells have been used as encapsulation materials 

for different applications for last 40 years. They have been used in numerous fields such as 

pharmaceutical, food processing, and environmental protection for many years. However, these 

cells need favorable growth conditions to work efficiently. In order to provide optimum conditions 

for growth to microbial cell, cell immobilization techniques have been proposed.12 Cell 

immobilization is imprisonment of whole cells to a confined space while keeping cell viable.13 

Numerous methods have been developed for cell immobilization such as adsorption or attachment 

of cells to an inert substance, self-aggregation by flocculation and encapsulation or confinement 
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using polymers.14 To ensure cells viability, confinement is done under moderate conditions.15  

 

Extrusion 

In this method, microbial cells are mixed with a polymeric solution, which are later extruded 

through an opening as droplets into the solution of a cross-linking agent. The mixing of polymer 

solution with cross-linking agent results in solidification or gelation. There are number of factors 

affect the size of spheres include the diameter of opening, the thickness and movement, 

concentration and temperature of polymeric solution.16 Extrusion is simple, inexpensive, and 

moderate operation conditions that ensure viability of cells.15  

 

Encapsulation in Silica Particles via Spray Drying  

The Spray Drying method uses the prehydrolyzed silica sol plus short chain lipid solution but try 

to make sure minimal contact between cells and somewhat cytotoxic precursor sol constituents by 

mixing the cells and sol immediately prior to introduction to the spray nozzle. Cells and precursor 

are combined via an automatic feed (peristaltic pumps) and aspirated into a heated, dry N2 gas 

sheath forming small liquid droplets. Droplets dry very rapidly (within ~400 ms), forming ordered 

lipid/silica mesophases in a manner related to aerosol-assisted EISA, yielding solidified particles 

with size distributions from ~0.5 to 25 µm.17 There is need to optimize the conditions such as air 

movement, temperature, inlet and outlet air temperature.14  

 

Encapsulation in Silica Films via Cell Directed Assembly 

The integration of cells into physical devices is very challenging. Scientist believed that there is 

need to replace dishes with to 3D-dimensional designs that resembles closer to cell’s natural 

extracellular matrix. In this method, cells are mixed with a soluble form of silica plus a short chain 

phospholipid (DiC6PC) plus water and ethanol and HCl. These samples are rapidly deposited on 

a substrate by spin-coating technique wherein evaporation of the ethanol and water drives the self-

assembly of the lipids into a periodic mesophase. Water interface is replaced with silica. So the 

cells are incorporated in a hexagonal or lamellar lipid-silica mesophase.18 The nanostructure used 

in this method of encapsulation is made of very small (nanometer-scale) channels with a thin size 

delivery that avoids widespread drying and associated stresses. Cell directed assembly maintains 

three-dimensional fluidic connectivity and allows simplistic cellular assimilation into devices.18 
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Aqueous Sol-Gel Process for Cell Encapsulation 

This method employs an aqueous sodium silicate precursor solution instead of the silicon alkoxide-

based precursor solution as used in above two methods. The sodium silicate solution is hydrolyzed 

by ion exchange to create an acidified, aqueous silicic acid sol (pH 3), which upon addition of cells 

in buffer, forms a porous silica gel monolith promoted by the accelerated rate of silica condensation 

at neutral pH. Glycerol is added to the sol precursor solution prior to gelation and serves as an 

ameliorant against stresses exerted on the cells stemming from syneresis. The precursor solution 

and cells in buffer (as before) are mixed briefly and immediately dispensed into a vessel. The 

solution soldifies into a gel within ~15-30s and is further aged for 12-24hrs to promote more 

complete silica condensation. The gel consists of a highly porous network of silica nanoparticles, 

which physically entraps cells plus buffer and glycerol.19 

Platforms to Measure Gene Expression 
Microarray experiments are considered as a major platform to measure the gene expression that 

allows to quantify the average mRNA expression level. A DNA microarray is a collection of 

microscopic DNA spots attached to a solid surface that is used to detect the presence and 

abundance of labeled nucleic acids in samples on a high throughput level. Each DNA spot in 

microarray contains specific DNA sequence known as probes. Probe is a small portion of a gene 

or other DNA element that is supposes to hybridize a target, which can be cDNA or cRNA under 

high rigor conditions. To identify which genes are expressed under given condition in experiment, 

amounts of mRNA produced by cells are measured or examined. Differential expression of mRNA 

in turn uncovers how cells adjust its internal homeostasis in response to outer environment. There 

are two types of DNA microarrays: 1) oligonucleotide arrays, 2) a variety of cDNA arrays. 

Affymetrix in-situ synthesized oligonucleotide array is the most commonly used microarray 

platform to measure the differential gene expression.  

 

Affymetrix in-situ synthesized oligonucleotide 

Oligonucleotide probes used in affymetrix are a set of 20-25 short oligonucleotides. The probes 

are specific for each gene or exon. Furthermore, one base mismatch is integrated at middle position 

of each oligonucleotide. Probes are made in situ using genomic information to lead 

photolithographic deposition. The arrays are hybridized to a single biotinylated amplified RNA 
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sample. Gene expression is measured for each gene taking the difference between the match and 

mismatch measurements, and averages. In affymetrix, image-processing algorithms are included 

into the GeneChip experimental process as well. Oligonucleotide arrays are powerful tools for 

monitoring gene expression in comparison to cDNA microarrays as later one comprises large 

pieces of DNA that can be from hundreds to thousands of base pairs. There are some other 

advantages to oligonucleotide-based microarrays over cDNA arrays such as the quality and 

reproducibility of printed oligonucleotide arrays is excellent.20 In our study, we used Yeast Genome 

2.0 Array that contains “5,744 probe sets for 5,841 of the 5,845 genes” present in S. cerevisiae. 

Microarray Data Processing and Normalization 
DNA microarray technology is very strong way for genome wide research. DNA microarray results 

in measurement of differential gene expression of hundreds of thousands of genes across different 

conditions. Due to limitation of technology, there are some differences in RNA quantities and 

variations such as intensity levels may differ from one replicate to another replicate. There is need 

to take some important steps before analysis of microarray data for differential expression of genes. 

Due to these differences, normalization is used to remove systematic errors and bias originated 

from microarray experimentation. Normalization methods try to remove sources of variation helps 

in meaningful biological analysis.21 As it was described earlier that affymetrix array is widely used 

method for measurement of gene expression data. Affymetrix technology comprise perfect match 

and mismatch probe pairs along with probes for each individual gene. To measure the absolute 

expression for each specific gene, meaningful data processing is required. In preprocessing steps, 

multiple probe signals are combined into one absolute call, which is also referred as normalization 

methods. Therefore, it is very vital step to choose appropriate normalization method as 

normalization has an important effect on selection of differential genes. There are different 

normalization methods as briefly described below. 

 

Microarray Suite 5.0 (MAS5) 

Affymetrix has developed Microarray Suite 5.0 (MAS5) normalization method. MAS5 first correct 

both perfect match (PM) and mismatch (MM). In second step, mismatches are converted into ideal 

mismatches in such way that perfect match values greater than their corresponding mismatch as 

30% of time mismatch values are greater than their respective perfect match. In another case, if 
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mismatch value is already lesser than the respective perfect match then mismatch value remain 

unchanged. In next step, algorithm mean is calculated over log2-transformed differences between 

perfect match and mismatch followed by normalization of intensity values by adjusting the timed 

mean of original signals to an already specified value. MAS5 normalize the data after the 

summarization step same as many other algorithms do.22 

 

Robust Multi-Array Analysis (RMA) 

Robust Multi-array algorithm convert probe level data into gene expression values. This 

normalization method ignores mismatch probe reading. However, MM probes provides very useful 

information but according to RMA developers, mismatch probes incorporate more noise. RMA 

adjust background noise on a raw intensity scale such that there is no negative background 

corrected values. Furthermore, the log2-converted values are obtained for each background 

corrected perfect match probe followed by quantile normalization.23 

 

GeneChip RMA (GCRMA) 

GeneChip RMA (GCRMA) is commonly used technique for microarray normalization. GCRMA 

is mainly based on RMA normalization method. The difference between GCRMA and RMA is that 

the former one considers probe sequence information to measure the background. GeneChip RMA 

(GCRMA) use quantile normalization to process the gene expression data. GeneChip RMA 

(GCRMA) algorithm considers bases composition and location on the probe to adjust the intensity 

values as hybridization between complimentary probe and sample bases largely depend on labeling 

such that label usually bind to Cytosine that can affect the cytosine and guanine bond. To account 

these factors, GCRMA included the adjustment formula for normalization of gene expression data. 

GeneChip RMA (GCRMA) is advance form of RMA normalization method and it is more accurate 

method than other normalization methods.22  

Introduction to Functional Analysis 
Microarray technologies have been widely used for gene expression analysis and huge amount of 

gene expression data and knowledge has been produced. There is need of robust computational 

methods for incorporation, extraction, comparative analysis, and biological meaning of high-

throughput data. There are numerous bioinformatics methods to thoroughly isolate large gene lists 
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to build a summary of the most enriched and related biology. The main objective of functional 

analysis is to find different classes differentially enriched among genes.24 To analyze large set of 

genes, Gene Set Enrichment Analysis (GSEA) can be performed that uses all data on microarray 

rather than selected list of differentially expressed genes based on some threshold.25  

 

The Database for Annotation, Visualization, and Integrated Discovery (DAVID) Knowledgebase 

The DAVID resources consist of an integrated biological knowledgebase and analytic tools 

designed at thoroughly mining biological meaning from large gene/protein lists.26 The DAVID 

database provides a full set of tools/algorithms for understanding biological functions associated 

with large set of genes. The DAVID database contains cluster of information for genes and their 

products from different public databases. Numerous tools in DAVID database are efficient in 

finding enriched Gene Ontologies (GO), determining enriched functional-related gene groups; 

visualizing genes on BioCarta27 and KEGG28 pathway maps and converting gene identifiers from 

one type to another. The DAVID database use modified Fisher's exact test and EASE score that 

is a modified Fisher Exact p-value , which is 0.1 by default.26 

 

Gene Ontology (GO) 

Gene ontology (GO) project is a major bioinformatics ingenuity to merge the representation of 

gene and gene product attributes across all species. The main aims of GO project is 1) Provide and 

develop the organized vocabulary of gene and their products, 2) Interpret  the functions of genes 

their products, and integrate and distribute annotation data, 3) Offer tools to extract features of the 

data, and 4) Allow functional biological understanding of data using the GO through enrichment 

analysis.29  There are following three main classes for Gene Ontologies (GO): 1) Biological 

Process, are series of events with defined start and end, crucial to cell’s function, 2) Molecular 

Function, the fundamental actions of a gene product at the molecular level, and 3) Cellular 

component, is the location in cell where gene’s products are located or functioning.30  

 

Gene Set Enrichment Analysis (GSEA) 

Gene set enrichment analysis is a method to select the group of genes overrepresented or 

underrepresented in large list of genes and show the association of these genes with known diseases 

or phenotypes.25 In GSEA, all genes (for example all genes on chip) are used in analysis rather 
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than selected differentially expressed genes. In this method, all genes on chip are ranked listed (L) 

according to some measure such as fold change. GSEA uses prior gene sets who have been 

associated with known phenotype. These predefined gene set (S) is mapped to ranked list  

(L) genes to find the location of each gene from genes set S in ranked list (L) genes. The enrichment 

score is calculated by walking down in the list L and if gene in S mapped in list L then running 

sum statistics increased and running sum statistics decreased when a gene in L is not present in 

gene set S. The significance of enrichment score (ES) is calculated by permutation test procedure, 

i.e. permute the phenotype labels or random gene sets and recomputed the ES.25 

 

Multiple Hypothesis Testing 

Multiple hypothesis testing refers to the testing of more than one hypothesis simultaneously. For 

example, t-test used on number of genes and those genes whose p-value is lower than the arbitrary 

selected threshold such as 0.05 can be selected as differentially expressed genes. As microarray or 

next generation sequencing studies generate huge amount of data such as on scale of 10000 genes 

and using 0.05 p-value there will 500 genes who has p-value lower than 0.05 by chance and will 

considered as false positives and False discovery rate (FDR) control is one of the methods used to 

correct multiple tests. In 1995, Benjamini Hochberg proposed a method called FDR Benjamini 

Hochberg method to correct multiple comparisons and it is most widely used method for 

controlling false positives.31 In this method, p-values are sorted and then ranked those p-values. 

The smallest p-value get the rank 1 and largest will get the rank N. In next step, each p-value is 

multiplied by N, which followed by division by its assigned rank that results the adjusted p-value.  

Bonferroni method is also used to correct multiple hypothesis and it is considered as very 

conservative method.32 In Bonferroni method, each p-value is multiplied by the total number of 

genes (N) tested. The resulted p-value will be very high and only few genes will have selected as 

differentially expressed.  

 

Permutation Tests 

Permutation tests are statistical significance tests that do not assume any distribution to estimate 

the significance of test statistic. Permutation test is also called randomization test or exact 

permutation tests and can be used for any test statistics. Exact permutation test use all possible 

values with replacement of test statistics and it turns out be computationally very expensive. 
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However, in case of randomized permutation, only subsets of test statistics are used to calculate or 

approximate the sampling distribution rather than using all possible values of test statistics. In 

random permutation tests, significance level or confidence level can be increased by increasing 

the number of random samples.33 

Gene Network Visualization and Analysis 
Visualization and analysis of data generated from high-throughput techniques is an important 

technique to know the comprehensive relationship of genes and proteins. In networks, genes or 

proteins are represented as nodes and edges represent the relationship between these genes or 

proteins. The interaction between network entities can be direct or indirect. Cytoscape34 is 

widespread open source tool for visualization of gene network interaction using gene expression 

profiles or other types of measures. BisoGenet is one the plugin used in cytoscape software for 

building and visualization of gene network.35 BisoGenet consist of three levels such as data level, 

middle level and client level. The data component stores protein-protein interaction (PPI), gene-

DNA interaction, Gene Ontology (GO) and pathway information. In middle component, the 

bioentities and their relationship from database is represented as a global network. The third level 

is called client tier that is a Cytoscape plugin, which takes and manage user input followed by 

communication with web service and finally visualize and analyze the network. String (Search 

Tool for the Retrieval of Interacting Genes) is a database of known and predicted protein-protein 

interaction that provide physical as well as functional association.36 It contains biological 

information from various sources such as experimental data, computational data, data mining, co-

expression data. The latest version of string contains 9.6 million proteins from about 200 

organisms. String also provides functional enrichment of input list of proteins on carious domains 

such GO and pathway. 
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Chapter 2: Three-Dimensional Encapsulation of Saccharomyces 

Cerevisiae in Silicate Matrices Creates Distinct Metabolic States as 

Revealed by Gene Chip1 

Abstract 
To design hybrid cellular/synthetic devices such as sensors and vaccines, it is important to 

understand how the metabolic state of living cells changes upon physical confinement within three-

dimensional matrices. We analyze the gene expression patterns of stationary phase Saccharomyces 

cerevisiae (S. cerevisiae) cells encapsulated within three distinct nanostructured silica matrices and 

relate those patterns to known naturally occurring metabolic states. Silica encapsulation methods 

employed were lipid-templated mesophase silica thin films formed by cell-directed assembly 

(CDA), lipid-templated mesophase silica particles formed by spray drying (SD), and glycerol 

doped silica gel monoliths prepared from an aqueous silicate (AqS+g) precursor solution. It was 

found that the cells for all three-encapsulated methods enter quiescent states characteristic of 

response to stress, albeit to different degrees and with differences in detail. By the measure of 

enrichment of stress-related Gene Ontology categories, we find that the AqS+g encapsulation more 

amenable to the cells than CDA and SD encapsulation. We hypothesize that this differential 

response in the AqS+g encapsulation is related to four properties of the encapsulating gel: 1) 

oxygen permeability, 2) relative softness of the material, 3) development of a protective sheath 

around individual cells (visible in TEM micrographs vide infra), and 4) the presence of glycerol 

in the gel, which has been previously noted to serve as a protectant for encapsulated cells and can 

serve as the sole carbon source for S. cerevisiae under aerobic conditions. This work represents a 

combination of experiment and analysis aimed at the design and development of 3D encapsulation 

procedures to induce, and perhaps control, well-defined physiological behaviors. 

Introduction 
Harnessing unique properties innate to biomolecules and living cells by incorporating them within 

                                                
1 Reprinted with permission from (Three-Dimensional Encapsulation of Saccharomyces cerevisiae in Silicate 

Matrices Creates Distinct Metabolic States as Revealed by Gene Chip Analysis: Zeeshan Fazal, Jennifer 
Pelowitz, Patrick E. Johnson, Jason C. Harper, C. Jeffrey Brinker, and Eric Jakobsson. ACS Nano 2017 11 (4), 
3560-3575 DOI: 10.1021/acsnano.6b06385). Copyright (2017) American Chemical Society. 
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hybrid materials continues to excite and inspire the efforts of researchers.37–40 Such functional 

hybrid living materials may impact areas as diverse as biocatalysis, controlled delivery of 

therapeutics, stabilization of probiotics in food products, environmental and human health 

monitoring, industrial process monitoring, pollution remediation, early warning of warfare agents, 

advanced prosthetics, bioelectronics, and tissue/organ replacement.41–48 Extensive techniques have 

been developed for incorporating biomolecules and living cells within materials that can maintain 

biological function, while providing stability outside the in vivo environment. For living cells, the 

majority of reported techniques rely on cellular encapsulation within  polymeric materials that 

physically confine and protect the cells and can act as a synthetic extracellular matrix.49,50 

Successful matrices incorporate specific material properties that assuage chemical and mechanical 

stresses exerted on the integrated cells, provide access to oxygen, nutrients and molecules of 

interest, and allow for expulsion of metabolic wastes.51–54 Many reports have implicated the 

importance of the interface chemistry between the cell surface and host matrix on meeting these 

requirements and enhancing long-term viability and activity.55,56 

 

Encapsulation and physical confinement of living cells, however, can drastically alter the cellular 

environment and exert multiple stresses on the cells. Stresses commonly associated with 

encapsulation include compressive/tensile stress, osmotic stress, oxidative stress, acid/base 

exposure, nutrient depletion, temperature shock, and cytotoxic chemical exposure.57–59 Unicellular 

organisms have evolved to rapidly respond to abrupt changes in environmental conditions by 

autonomous mechanisms that regulate gene expression profiles.3 By altering the cell’s metabolic 

state, cells can often maintain the vital functions and processes necessary for viability and 

growth.60,61 As an example, some microorganisms encapsulate themselves in polymer matrix 

biofilms. These cells sense changes in their local environment (e.g. quorum sensing) and alter their 

metabolic state, showing enhanced resistance to antibiotics, upregulation of virulence factors, 

development of competence, and changed growth morphology.62 

 

As an alternative to organic polymers, amorphous silicon dioxide (SiO2) and hybrid organosilicate 

matrices have also been used for cellular encapsulation.  Generally, silica matrix encapsulated cells 

are physically confined such that growth and division is arrested. Metabolites and waste products 

must diffuse through the silica matrix, and the cell wall/membrane may interact with the polar and 
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negatively charged silica surface, which is terminated with surface silanol (ºSi-OH) and 

deprotonated silanol (ºSi-O-) groups. The metabolic state of living cells has been shown to change 

significantly upon physical confinement within silica matrices. For example, in response to this 

3D encapsulation, Catharantus roseus plant cells have been shown to substantially increase 

secondary metabolite (i.e. alkaloid) production, demonstrating a 10-100 fold increase over cells 

free in solution.63 This may be due to the cells shifting metabolic load from growth/division 

towards other metabolic pathways. Sol-gel immobilized Escherichia coli (E. coli) cells have also 

been reported to express GFP,64 and produce ATP,65 at levels nearly 2-fold greater than cells in 

solution. In these studies, the authors did not provide a hypothesis for this significant enhancement 

in biosynthesis. An individual Staphylococcus aureus (S. aureus) cell encapsulated in a 

nanostructured silica matrix was observed to self-initiate quorum sensing (QS) pathways due to 

constrained diffusion of quorum sensing ‘autoinducer’ signaling molecules, showing that 

confinement alone can serve as a mechanism for inducing QS and its associated metabolic shifts.66 

Further, encapsulated QS S. aureus cells66 and encapsulated QS Serratia marcescens (S. 

marcescens) cells67 have significantly longer viability over encapsulated non-QS S. aureus and S. 

marcescens, indicating profound effects of encapsulation that have not as yet been well 

documented. The metabolic state of cells upon encapsulation can also significantly impact their 

ability to respond to the stresses of encapsulation. Saccharomyces cerevisiae cells from 

exponential phase culture (high metabolic activity) showed higher rates of induced gene 

expression than cells encapsulated from stationary phase cultures (low metabolic activity).68 

However, cells from stationary phase cultures exhibited significantly greater long-term viability. 

Further, addition of nutrients to the encapsulation matrix, which researchers expected to enhance 

long-term viability,55 adversely impacted long-term viability. This was attributed to media 

components inducing exit of the cells from more robust metabolic states (i.e. quiescence), and the 

metabolic production of toxic byproducts. 

 

Despite significant efforts by many researchers to elucidate and characterize the condition of cells 

upon encapsulation, the physiological and metabolic state of these cells remains poorly 

understood. This is in part due to the challenges associated with probing cells within the 

encapsulation matrix and measuring the cellular response. Specifically, the ‘gold-standard’ 

measurement of viability is reproductive capability. As the vast majority of silica matrices 
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physically restrict cells from growth and division,56 (with notable recent exceptions64,69) this 

technique for evaluating viability requires arduous procedures to free the cells from the matrix 

without compromising their integrity. Removal from the matrix may again alter the cellular state, 

or encapsulated cells may have entered an irreversible viable but non-culturable (VBNC) state17,70 

such that they maintain metabolic activity by do not reproduce, making it challenging to draw 

conclusions from these measurements.65 

 

To avoid these complications, it has become increasingly common for researchers to employ vital 

dye staining and fluorescence microscopy to report viability of encapsulated cells.71 Vital dye 

staining typically assays cell membrane integrity and non-specific enzyme activity; however, this 

technique has been shown to not always correlate with reproductive capability. Davey and Hexley 

reported that S. cerevisiae subjected to chemical and physical stresses stained with propidium 

iodide (PI), a membrane impermeant dye, indicative of cell death.72 However, they also showed 

that some of the PI stained cells were able to recover and reproduce. Further, we recently reported 

that E. coli cells encapsulated in an aqueous silicate-based matrix showed compromised membrane 

integrity, but enhanced gene expression rates over cells in solution and retained reproductive 

capability when freed from the matrix.73 This lack of correlation between membrane integrity, 

reproductive capacity, and protein expression highlight the complex relationship between the 

nanostructured inorganic matrix chemistry and the metabolic state of the encapsulated biological. 

Herein we present the genomic expression patterns of S. cerevisiae cells encapsulated within silica 

matrices and relate those patterns to known naturally occurring metabolic states. Within the field 

of 3D cellular encapsulation, this is the first paper to comprehensively elucidate how systematic 

modifications of the encapsulating nanostructure influence cellular behavior based on gene chip 

analysis. In this work, three distinct silica encapsulation methods were employed: lipid-templated 

mesophase silica thin films formed by cell-directed assembly (CDA),18 lipid-templated mesophase 

silica particles formed by spray drying (SD),17 and glycerol doped silica gel monoliths prepared 

from an aqueous silicate (AqS+g) precursor solution.33 S. cerevisiae cells from stationary phase 

cultures were used for encapsulation and as the reference condition for identifying differentially 

expressed genes. Gene enrichment analysis and grouping of biologically significant attributes via 

gene ontology (GO) revealed that distinct metabolic states were induced in S. cerevisiae from each 

encapsulation method. Further, the material properties at the bio-nano interface more profoundly 
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influence biological behavior than the bulk chemistry of the matrix and the effect of physical 

confinement alone. Additionally, analysis of enriched gene data revealed the significant unique 

stresses exerted on cells from a encapsulation method and the cellular response to those stresses. 

This information will allow for informed tuning of encapsulation matrix parameters to improve 

upon desired biological traits, and may facilitate the ability to induce, and perhaps control, new 

and unique physiological behaviors. 

Materials and Methods 
Materials 

Saccharomyces cerevisiae (strain S288c) was acquired from American Type Culture Collection 

(ATCC; Manassas, VA). 1,2-dihexanoyl-sn-glycero-3-phosphocholine (diC6 PC) was purchased 

from Avanti Polar Lipids, Inc. (Alabaster, AL). Absolute ethanol, hydrochloric acid (HCl, 37%), 

tetraethylorthosilicate (TEOS, 98%), sodium silicate solution (26.5% SiO2; 10.6% Na2O), strongly 

acid cation-exchange resin (DOWEX 50WX8-100, hydrogen, 50-100 mesh), glycerol, yeast 

extract, peptone, D-(+)-glucose, adenine, sodium acetate, ethylenediaminetetraacetic acid 

(EDTA), sodium dodecyl sulfate (SDS), phenol, choloroform:isoamyl alcohol (24:1), sodium 

phosphate (mono- and dibasic), sodium acetate, phosphate buffer saline (PBS, pH 7.0), glass 

beads, and Alconox detergent were purchased from Sigma-Aldrich (St. Louis, MO). RNeasy Mini 

Kit (including Buffer RW1 and Buffer RPE) was obtained from Qiagen (Germantown, MD). RNA 

6000 Nano Kit was purchased from Agilent (Santa Clara, CA). Yeast Genome 2.0 Arrays and 

Genechip 3’ IVT Express Kits were from Affymetrix (Santa Clara, CA). 

 

Cell Culture 

S. cerevisiae S288c cells were grown aerobically in Yeast Peptone Dextrose + Adenine (YPD+A) 

broth at 30 °C for seven days until the culture was in stationary phase (OD600 1.5-2.0). Cells were 

then centrifuged at 10,000 rpm for 5 mins, washed with DI H2O three times, and re-suspended in 

DI H2O (OD600 0.1-1.0). 

 

Encapsulation of S. cerevisiae in Phospholipid-Templated Silica Films via Cell Directed Assembly 

(CDA)18 

Glass coverslips (25-mm, No. 1.5) were soaked in 0.1 M KOH for a minimum of 4hr, washed with 



 16 

10% Alconox (m/v), rinsed with DI H2O, dried under a stream of N2 gas, and then cleaned in UV-

ozone (Jelight, model 342) for 5mins. Prehydrolyzed tetraethyl orthosilicate (TEOS) stock 

solutions (A2**) were made by refluxing 61 mL of TEOS, 61 mL of absolute ethanol, 4.9 mL of 

DI H2O, and 0.2 mL of 0.07 N HCl (molar ratio 1:4:1:5x10-5) for 90mins at 60°C. A2** stock 

solutions were then stored at -20°C. CDA precursor sol was prepared by combining 0.25 mL of 

A2** stock solution, 0.2 mL of absolute ethanol, 0.16 mL of 0.05 N HCl, 0.4 mL of DI H2O and 

30 mg of diC6 PC. This precursor solution was aged at room temperature for 20mins and then 

passed through a 0.45-µm filter. To this solution was combined an equal volume of PBS washed 

and re-suspended S. cerevisiae. This mixture was cast onto cleaned glass coverslips. Resulting thin 

films could air dry, were rinsed with DI H2O to remove non-integrated cells, and stored under 

ambient conditions (25˚C ± 2˚C) for three days.  

 

Encapsulation of S. cerevisiae in Phospholipid-Templated Silica Particles via Spray Drying (SD)17 

The silica precursor sol was prepared by adding 0.83 mL A2** stock (described above) to a 

solution containing 1.33 mL DI H2O, 0.66 mL ethanol and 0.53 mL 0.07 N HCl – the same 

chemistry as the CDA method, but scaled-up for higher material yield. This solution could age at 

room temperature with sonication for 30-60mins until complete homogenization of the precursors 

had occurred. Immediately prior to sample preparation, 100 mg diC6 PC lipid was added to the 

fully condensed sol and mixed until fully dissolved (~20s).  

 

Samples were spray dried with a Mini Spray Drier B-290 (Buchi, Flawil, Switzerland) using a 0.7 

mm nozzle. The inlet temperature of the spray nozzle was adjusted between 60-65˚C to maintain 

an outlet temperature of 30˚C, with an aspiration rate of 90%, a peristaltic pump feed rate of 3.5 

mL/min, and nitrogen as a carrier gas at a rate of 60 L/hr. 3.3mL of precursor sol and dissolved 

lipid (described above), and 3.3mL of cells in PBS suspension, were loaded into separate 

assimilation vials. Two peristaltic pumps with individual feed rates of 1.75 mL/min (3.5mL/min 

combined feed rate) were used to deliver the solution to the spray drier nozzle with mixing via a 

Y connector immediately prior to inspiration into the nozzle. This technique allowed for minimal 

contact between cells and the acidic and alcoholic precursor solution, improving cell viability. 

After mixing, the solution containing cells, silica precursors and lipid was aerosolized into the dry 

nitrogen sheath established within the spray drier. Rapid evaporation of the solvent results in lipid-
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directed evaporation induced self-assembly (EISA). Particles are fully dried before entering the 

spray drier cyclone. Spray dried particles were collected in assimilation vials that were connected 

to the standard cyclone, replacing the standard collection chamber. After spray drying, samples 

were stored under ambient conditions (25˚C ± 2˚C and 60% RH ± 5% RH) for three days. 

 

Encapsulation of S. cerevisiae in Glycerol Doped Aqueous Silica Gel Monoliths (AqS+g)73  

An aqueous silica matrix precursor solution was prepared by adding 1.654 mL of sodium silicate 

solution to 6.8 mL of DI H2O. This mixture was immediately added to 3.08 g of highly acidic 

hydrogen (H+) cation-exchange resin. The solution was mixed for approximately 2mins. The resin 

was then removed by vacuum filtration, or by centrifugation to pellet the resin, followed by 

collection of the supernatant. To this solution, 20% (vol.) glycerol was added. Stationary phase S. 

cerevisiae cells were washed 3× and resuspended in 1.0 M sodium phosphate buffer, pH 7.0. Cells 

in buffer and aqueous sol precursor solution were then mixed in a 1:1 ratio. Gelation occurred 

within 25-30 seconds of mixing the two solutions. Final cell density was 106-107 cells/mL. Silica 

gels were formed and stored under ambient conditions (25˚C ± 2˚C) for three days. 

 

Optical Microscopy 

For optical imaging, dried powders were suspended in water, vortexed for 10s and pipetted onto 

standard microscope slides. Samples were imaged on a Zeiss LSM 510 confocal microscope 

mounted on a Zeiss Axiovert 100 inverted microscope. Prior to encapsulation, S. cerevisiae were 

stained with Syto-9 green fluorescent dye according to manufacturer’s specifications. 

We created z-stack images for particles of varying sizes to visualize the distribution of cells within 

particles. This was achieved by setting the upper and lower boundaries of a particle and taking an 

image with a given optical slice diameter and collecting an image every diameter distance. The 

resulting collection of images maps the entire z-dimension within the sample, allowing us to create 

3D reconstructions of the sample. Compressed z-stack images were created by merging all the 

images from the z-stack into one image, allowing for easier visualization of the entire particle.  

 

Electron Microscopy 

Prior to transmission electron microscopy (TEM), image contrast between S. cerevisiae cells and 

the encapsulating matrix was improved for all three matrix types via fixation and staining of cells 
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using glutaraldehyde and osmium tetroxide respectively. For CDA and SD samples, this was 

accomplished simply by adding the powder to the solutions outlined below. For the gel sample, a 

cured gel (300µL volume, vida infra) was fractured into smaller ~1mm pieces using a clean razor 

blade prior to treatment. We fixed the cells by incubating the samples in 2.5% glutaraldehyde in 

PBS for 1hr at RT (room temperature) followed by 3x rinse cycles in PBS using 10kRPM and 30s 

for centrifuge settings. We stained the samples using osmium tetroxide (OsO4) following the 

protocol recommended by R. Wright.74 Here, fixed cells are centrifuged, the supernatant is 

removed, and 1% OsO4 in PBS is added and the sample is incubated for 2hrs on ice due to the high 

vapor pressure of OsO4. 

 

Prior to TEM imaging, it was necessary to remove the aqueous phase within the samples, which 

was done by stepwise dehydration and water replacement with ethanol. This was achieved by 

incubating the three fixed and stained samples in increasing concentrations of EtOH for 15mins 

(concentrations were 30%, 50%, 70%, 90%) and finally for 60mins (concentrations were 95% and 

100%). Dehydrated samples were stored at 4°C. For TEM imaging, samples were switched to an 

anhydrous acetone for the final dehydration. The preparation was then infiltrated with resin by 

incubating particles in 1:1 Spurr's resin: acetone, 3:1 Spurr's resin: acetone and, finally, 100% 

Spurr's resin. Samples were placed in embedding molds, polymerized by incubation at 60˚C for at 

least 16hrs, and the blocks were trimmed for microtoming. Microtomed sections with thicknesses 

between 60 and 80nm were used for imaging. Transmission Electron Microscopy was performed 

using a Hitachi H7700 equipped with an AMT XR16M 16-megapixel camera. 

 

Extraction and Purification of RNA from Encapsulated Cells 

Portions of encapsulated cell-containing silica matrices were rinsed with DI H2O and placed in 2 

mL centrifuge tubes, breaking the matrix into smaller pieces as necessary. 270 µL sodium acetate 

buffer (50 mM sodium acetate, pH 5.2, and 10 mM EDTA, pH 8.0), 30 µL 10% SDS, and 

approximately 100 µL of glass beads (0.5 – 0.6 mm diameter) were added to centrifuge tubes. 

Samples were stirred and agitated to physically break apart the matrix. Water saturated acid phenol 

(300 µL) preheated to 65°C was added to the samples, followed by vortexing for 1min. Samples 

were then incubated in a 65°C water bath for 5mins, followed again by vortexing for 1min. This 

was repeated for a total of six cycles over approximately 45mins. Samples were then placed in a 
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cooling block for 2mins, followed by the addition of 300 µL choloroform: isoamyl alcohol (24:1), 

and mixed by vortexing for 30 seconds. Samples were then centrifuged for 5mins at 15,000 rpm, 

followed by transferring the RNA-containing top layer to new centrifuge tubes. An equal volume 

of 70% ethanol was added and mixed by pipetting.  

 

Next, samples were transferred to Qiagen RNeasy spin columns and centrifuged for 30 seconds at 

15,000 RPM, discarding flow through. 700 µl of RW1 buffer was added to the columns and the 

samples were centrifuged for 30 seconds at 15,000 RPM, discarding flow through. 500 µL of RPE 

buffer was added to the columns, followed by centrifugation for 30 seconds at 15,000 RPM, 

discarding flow through. 500 µL of RPE buffer was added to the columns and followed by 

centrifuging for 2mins at 15,000 RPM, discarding flow through. Columns were then placed in new 

2 mL collection tubes and centrifuged for 1min at 15,000 RPM. Next, columns were placed in new 

1.5 mL collection tubes and 40 µL of DI H2O was added. Columns were again centrifuged for 

1min at 15,000 RPM, after which 40 µL of DI H2O was added and the columns were centrifuged 

again for 1min, yielding the purified RNA product. A NanoDrop spectrophotometer (Wilmington, 

DE) and an Agilent 2100 Bioanalyzer (Santa Clara, CA) were used to determine concentration, 

purity and integrity of RNA extractions. RNA samples were stored at -20°C until used. 

 

Gene Chip Hybridization 

cDNA preparation, and biotin-labeled cRNA generation and fragmentation were performed using 

Affymetix Genechip 3’IVT Express Kits per the manufacturer protocol. Hybridization solution 

was prepared with the fragmented cRNA and controls, and was then hybridized to the probe array 

with a 16-hour incubation period. The solution was then removed and the probe array was washed 

and stained in an automated microfluidics station. Arrays were read by an Affymetrix Genechip 

Scanner attached to a workstation running Affymetrix Microarray Suite. 

Experimental Design 
Gene chip data from four treatments groups were collected. Each treatment had two replicates. 

Group 1: Stationary phase S. cerevisiae cells (grown for 7 days in aerated media) washed and 

resuspended in phosphate buffer saline solution (PBS). This group served as the baseline cultured 

S. cerevisiae control to which the RNA expression levels from sample groups 2-4 were compared. 



 20 

Group 2: Stationary phase S. cerevisiae cells encapsulation in silica via cell-directed assembly 

(CDA) and stored dry for three days under ambient temperature and relative humidity (RH). Group 

3: Stationary phase S. cerevisiae cells encapsulation in silica via spray drying (SD) and stored dry 

for three days under ambient temperature and RH. Group 4: Stationary phase S. cerevisiae cells 

encapsulation in glycerol doped aqueous silica gels and stored sealed for three days under ambient 

temperature. 

Identification of Differentially Expressed Genes 
Statistical analyses were performed with the LIMMA75 R package using an empirical Bayes linear 

modeling approach and gene expression intensities were normalized using GeneChip RMA 

(GCRMA)76 normalization. To control multiple hypothesis testing, Benjamini and Hochberg 

(B&H)31 FDR method was used to correct raw p-values. The resulting statistical analyses provide 

the differentially expressed genes with respect to control based on estimate measures of gene 

expression, with associated p-values. The FDR-adjusted p-value <0.05 and (|log2(fold change) | > 

1 was used to identify the differentially upregulated and downregulated genes respectively between 

CDA vs Control, SD vs Control, and AqS+g vs Control.  

Functional and Gene Network Analysis 
The Database for Annotation, Visualization and Integrated Discovery (DAVID)26 was used to 

identify enriched GO terms. This functional analysis permitted the identification of Gene Ontology 

(GO)30 from the gene expression data, including biological processes, cellular component, and 

molecular function. GO terms were considered significantly enriched at FDR-adjusted p-value 

<0.05 using the Yeast 2.0 array as background. Redundant GO terms were removed and further 

summarized by semantic similarity in REVIGO,77 and represented by two-dimensional space in 

scatter plots. The GO terms that semantically similar should position together in scatter plot and 

semantic space units have no inherent meaning. The size of the circle is relative to the frequency 

of the GO term in underlying GO database; however, color of circle represents the log 10 p-value. 

GO terms with FDR-adjusted p-value <0.05 are shown on scatter plots. The threshold used for 

allowed sematic similarity is “medium”. Gene Ontology analysis from DAVID was complemented 

with Gene Set Enrichment Analysis (GSEA)25 (Table 2.3, 2.4, and 2.5). GSEA was carried out on 

all genes present on the chip to identify the overrepresented categories in each method of 

encapsulation. The gene set sizes were 1000 and 15 for maximum and minimum cutoff 
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respectively. The statistical significance of enriched categories was measured by using 1000 

permutation which was used to calculate the FDR to control the multiple hypothesis testing. Kyoto 

Encyclopedia of Genes and Genomes (KEGG)78 pathway enrichment analysis was carried out 

using The Database for Annotation, Visualization and Integrated Discovery (DAVID)26 to find 

significant pathways overrepresented in different encapsulation methods. The KEGG pathways 

were considered significantly enriched at FDR-adjusted p-value <0.05 using Yeast 2.0 background. 

 

Gene networks were constructed and visualized using Cytoscape34 plugin BisoGenet.35 Networks 

include genes that are differentially expressed (FDR-adjusted P-value < 0.05, and (|log2(fold 

change) | > 5 in each encapsulation method (Supplementary Figure 2.3). Networks represent gene 

relationships based on protein-protein interactions annotated in BIOGRID, DIP, HPRD, INTACT, 

MINT, and BIND databases. 

Results and Discussion 
We have examined the effects of three differing silica matrices with respect to the physiological 

and metabolic state of encapsulated S. cerevisiae cells and evaluated these effects with respect to 

the micro- to nano- morphologies of the material structure. The methods investigated include lipid-

templated mesophase silica thin films formed by cell-directed assembly (CDA), lipid-templated 

mesophase silica particles formed by spray drying (SD), and glycerol doped silica gel monoliths 

prepared from an aqueous silicate (AqS+g) precursor solution. The synthesis procedure used for 

each silica encapsulation method is shown schematically in Figure 2.1 and further detailed in the 

Materials and Method Section. 

 

In CDA (Figure 2.1A), short-chain phospholipids are used to direct the formation of an ordered 

lipid/silica mesophase during evaporation-induced self-assembly (EISA) of a silicate sol derived 

from acid-catalyzed hydrolysis of TEOS in an ethanol/water solvent.18 

 

When performed in the presence of living cells, the cells actively intervene to direct the formation 

of a novel bio-nano interface comprising a fluid, multilayered lipid/silica mesophase that interfaces 

coherently with the 3D silica nanostructure.18 To prepare samples via CDA, cells in buffer and 

lipid dissolved in the silicate sol are prepared as described in the Materials and Methods section. 
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These solutions are combined in a 1:1 ratio (v/v), mixed, and immediately applied to a cleaned 

glass slide. The solvent can evaporate (2+hrs), yielding a thick glassy coating on the slide which 

can be scraped into a powder mechanically using a cleaned razor blade. The resulting powder is 

composed of large, flake-like particles that contain many cells packed together within a 

nanostructured lipid/silica matrix. TEM observations (Figure 2.1A, material nanostructure panel) 

reveal an ordered, conformal lipid-silica matrix that interfaces coherently with the cell surface. 

Here, two cells are shown with an intervening nanostructure exhibiting a striped pattern consistent 

with a cylindrical or lamellar lipid/silica mesophase as noted in previous work in which silica 

matrix formation is ordered by amphiphilic phospholipids.18 

 

The SD method (Figure 2.1B) employs the same prehydrolyzed silica sol plus short chain lipid 

solution as the CDA method, but ensures minimal contact between cells and somewhat cytotoxic 

precursor sol constituents (~15% ethanol v/v and pH 3) by mixing the cells and sol immediately 

prior to introduction to the spray nozzle. Cells and precursor solutions are prepared as with CDA 

samples, but they are combined via an automatic feed (peristaltic pumps) and aspirated into a 

heated, dry N2 gas sheath forming small liquid droplets. Droplets dry very rapidly (within ~400 

ms), forming ordered lipid/silica mesophases in a manner related to aerosol-assisted EISA,79 

yielding solidified particles with size distributions from ~0.5 to 25 µm.17 As with the CDA 

samples, TEM images (Figure 2.1B, material nanostructure panel) show a conformal striped 

nanostructure, consistent with a lamellar or hexagonal mesophase,18 which again interfaces 

directly with the cell surface. 

 

The third encapsulation matrix is a silicate gel monolith system, AqS+g (Figure 2.1C), which 

employs an aqueous sodium silicate precursor solution instead of the silicon alkoxide-based 

precursor solution as used in CDA and SD. The sodium silicate solution is hydrolyzed by ion 

exchange to create an acidified, aqueous silicic acid sol (pH 3), which upon addition of cells in 

buffer, forms a porous silica gel monolith promoted by the accelerated rate of silica condensation 

at neutral pH.80 Glycerol is added to the sol precursor solution prior to gelation and serves as an 

ameliorant against stresses exerted on the cells stemming from syneresis.73 The precursor solution 

and cells in buffer (as before) are mixed briefly and immediately dispensed into a vessel (here, 1.5 

mL microfuge tubes). The solution soldifies into a gel within ~15-30s and is further aged for 12-
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24hrs to promote more complete silica condensation. The gel consists of a highly porous network 

of silica nanoparticles, which physically entraps cells plus buffer and glycerol. The silica 

nanoparticles are separated from the cell surface by a thin liquid layer, which may be enriched in 

glycerol (vide infra), as shown in the material nanostructure panel of Figure 2.1C. 

Macro- and Nano-Morphologies of Encapsulated Cells via Cell Directed 

Assembly 
While all S. cerevisiae cells in this study are encapsulated within a porous silica matrix, the 

physical properties at the bio-nano interface produced from each encapsulation method are 

markedly different. We have analyzed all three methods for their micro- and nano-morphologies 

using confocal fluorescence microscopy and transmission electron microscopy (TEM), and 

compared them with respect to their physical properties (Figures 2.2-2.4).  

 

As depicted schematically in Figure 2.1 and observed by eye, particles prepared using CDA appear 

rough and fragmented. Figure 2.2A-C are projection confocal (compressed z-stack) fluorescence 

and differential interference contrast (DIC) microscopy images of film fragments detailing the 

location of the encapsulated cells (fluorescently labeled green) within the lipid-silica fragments.  

 

Inspection of CDA samples with TEM reveals a tightly packed array of cells incorporated within 

a conformal nanostructured lipid/silica matrix that interfaces directly with the cell wall (Figure 

2.2E, inset) as reported previously.17,18 The ‘striped’ nanostructure is consistent with an ordered 

lamellar or hexagonal lipid/silica mesophase as reported in previous work in which the formation 

of the silica matrix is directed by amphiphilic phospholipids.18 Osmium tetroxide (OsO4) staining 

of the cell wall allows for the visualization of the cells with respect to the lipid/silica matrix and 

emphasizes the conformal encapsulation of the cells. The ridge-like pattern observed in the TEM 

images is attributed to the high hardness (0.25 ± 0.10 GPa hardening to 0.52 ± 0.1 GPa with 15 

day aging) and Young’s modulus (4.3 ± 0.1 GPa, unchanging with 15 day aging) of the CDA 

samples, which exceed those of many natural and synthetic composites and cause “chattering” of 

the ultra-microtome blade as described previously.17  This phenomenon is also evident with the 

SD samples, but not with the relatively soft gel materials (vide infra). 
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Macro- and Nano-Morphologies of Encapsulated Cells via Spray Drying. 
Here, using the same precursor chemistry as with CDA, we have extended our scalable, spray 

drying process as developed previously for E. coli17 to spray dried lipid-silica particles containing 

eukaryotic organisms (Figure 2.3). As shown schematically in Figure 2.1, compared to CDA, 

spray drying involves extremely short cell-solvent contact times due to the mixing chamber and 

very short residence/drying times of ~400 ms.81 Furthermore, this technique allows for the facile 

preparation of large quantities of biomaterial with tight control over material macro-morphologies 

(size, shape, approximate cell loading), while independently maintaining the material properties 

(specifically nanostructure and hardness). 

 

As observed using confocal fluorescence microscopy (Figure 2.3 A-C), SD particles appear as 

aggregates of smaller particles. Shown is an optical slice within the z-stack of the particle depicting 

the placement of several cells within the center of the particle.  

 

TEM images of SD samples highlight the differing microstructure found with this class of material, 

which comprises individual or multiple cells incorporated within distinct, isolated macroscopic 

particles that preserve the conformal ordered lipid/silica nanostructure observed for CDA samples. 

Figure 2.3D highlights two S. cerevisiae cells encapsulated within two larger particles, showing a 

distinct layer of matrix “peeling” off from the surface of the cell – an artifact produced during 

sample preparation via solvent exchange or microtoming. This thin shell surrounding the cell is a 

further indication that the cell is completely encapsulated within the silica matrix. Figure 2.3E 

magnifies the interface between the cell and the matrix and zoomed insets clearly show an ordered 

lamellar structure (Figure 2.3F) immediately adjacent to the cell wall with a lamellar/hexagonal 

mesophase (Figure 2.3G) extending throughout the bulk of the particle. This data suggests that 

the encapsulation of S. cerevisiae cells within this class of spray dried nanostructured lipid-silica 

matrix exhibits essentially identical nano-properties to those observed for bacteria encapsulated in 

the same spray-drying procedure and exhibits a similar-sized nanostructure with ~3 nm lamellar 

features (Figure 2.3F).17 Similar to CDA specimens, these TEM images show a distinct chattering 

pattern in the material microstructure, which we attribute to the high hardness (1.4 ± 0.1 GPa) and 

elastic modulus (13.0 ± 0.1 GPa) of the encapsulating lipid/silica mesophase. It is worth noting 

that, based on our previous study with E. coli, the reported hardness and Young’s modulus of SD 
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samples as compared to CDA samples are ~3-6 times and ~3 times higher, respectively, and the 

TEM images presented herein reflect a more distinct fatigue pattern with the SD samples as 

compared to the CDA samples. For comparison, TEM images of gel samples (Figure 2.4D) exhibit 

no discernible chattering pattern (vide infra). 

Macro- and Nano-Morphologies of Encapsulated Cells via Aqueous Gel 

Monoliths 
Encapsulation of cells within silica gels has been extensively studied,17 where cells are introduced 

into an aqueous silica sol and are physically entrapped by pH-triggered, base catalyzed silica 

condensation19 with no accompanying drying, and little to no shrinkage. Figures 2.4A-C show 

confocal fluorescence and DIC images of a gel fragment, where a random incorporation of cells 

within a non-fluorescent silica gel fragment is observed. Figure 2.4D shows a TEM image of an 

individual cell entrapped within the silica gel matrix. Because the gel maintains the same relative 

volumes of the constituent components as the sol, and no evaporation occurs (as opposed to the 

CDA and SD samples), the cells appear individually isolated within the gel matrix (Figure 2.4D). 

This matrix is comprised of a highly porous, ramified network of aggregated 10 nm silica 

nanoparticles, as expected from extensive previous experiments confirming the fractal nature of 

amorphous silica gels.56,82,83 Importantly, Figure 2.4D and the magnified inset distinctly 

emphasize that, compared to CDA or SD, the silica gel matrix does not conform to the cell surface 

and is separated by a boundary region which is rich in glycerol. Also, noteworthy as mentioned 

above, the gel sample is notably less hard/stiff than the CDA and SD samples, and does not exhibit 

any chattering during microtoming.  

RNA Expression Levels of Encapsulated S. cerevisiae Cells 
To more comprehensively explore the physiological and metabolic state induced by each silica 

encapsulation matrix, genetic analysis was performed using S. cerevisiae cells from stationary 

phase cultures (7 day old cultures). Cells in this state are more resistant to a multitude of stresses 

and have shown greater long-term viability when integrated within hybrid abiotic materials.31-33 S. 

cerevisiae cells in stationary phase cultures have undergone two metabolic shifts. In the first shift, 

rapidly proliferating cells in exponential culture deplete all fermentable carbon and undergo slow 

carbon starvation. The cells alter their metabolism (diauxic shift) to consume ethanol and non-
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fermentable carbon byproducts of fermentation. After all fermentation byproduct carbon is 

depleted, the cells again shift their metabolism, with a portion of the cells entering quiescence, a 

maintenance-like resting state where proliferation does not occur and cells can remain viable 

without nutrients.84 Cells from stationary phase were used in all three silica encapsulation matrices, 

and were also used as the baseline condition to which encapsulated cell RNA expression levels 

were referenced. Identification of differentially expressed genes, and identification of gene 

ontology (GO),30 followed the method of Benjamini and Hochberg,31 by The Database for 

Annotation, Visualization and Integrated Discovery (DAVID), 26 as described in the Materials and 

Methods section. 

 

The extent to which the three-encapsulation methods used in this work induce similar genetic 

expression patterns, and the extent to which they differ, is also summarized in Venn Diagram form 

in Figure 2.5. Generally, all three methods share 750 and 598 upregulated and downregulated 

genes, respectively. However, CDA have 427 downregulated and 301 upregulated alone, followed 

by SD (225 downregulated, 293 upregulated) alone. The AqS+g method has least unique number 

of genes differentially downregulated (138) and upregulated (124) genes. 

Functional Analysis of RNA Expression 
Genes for whom the biological function is known can be categorized into three GO domains: 

Biological Process (BP), Molecular Function (MF), and Cellular Component (CC). BP terms refer 

to genes associated with multistep events requiring organized assembles of molecular functions 

(e.g. RNA transport, autophagy, biosynthesis). MF terms describe genes that participate in single-

step elemental activities at the molecular level, such as binding or catalysis. ATP-binding, 

hydrolase activity, and toll receptor binding are examples of MF terms. Genes associated with 

components of cells, or the extracellular environment, are described as CC terms. Example of CC 

terms include protein dimers, ribosomes, mitochondrion, and cell wall.  

 

The distribution of enriched GO terms for upregulated and downregulated genes from S. cerevisiae 

cells encapsulated within each silica matrix is presented in Figure 2.6. In the Biological Process 

domain (Figure 6, BP), many GO terms are shared between all three methods for both up and 

down regulated genes. The CDA method showed more upregulated enriched GO terms (14) than 
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the other encapsulation methods (SD: 5; AqS+g: 1), with 9 shared GO terms between all three 

methods. For the downregulated genes, 25 GO terms are shared between three methods, however, 

the CDA method showed significantly more enriched BP terms (11) than the other two methods 

(SD: 4; AqS+g: 4). A significant majority of downregulated BP terms (14) are shared between the 

CDA and AqS+g methods. Also, cells encapsulated via CDA and SD shared 11 downregulated BP 

terms. In aggregate, these data show that all three methods shared more biological process terms 

than were unique to any one method of encapsulation. However, each of the encapsulation 

procedures produced some unique enriched classes. 

 

In the Molecular Function GO domain (Figure 2.6, MF), most upregulated (8) and downregulated 

(12) terms are again shared between all three methods. Downregulated MF terms show little 

difference between the encapsulation methods with respect to number of unique MF terms 

(CDA:4; SD:8; AqS+g:1). These data indicate that AqS+g encapsulated S. cerevisiae cells show 

similar molecular function associated gene expression compared to cells in a stationary state.  

 

In the Cellular Component GO domain (Figure 2.6, CC), the largest number of upregulated (11) 

and downregulated (11) CC GO enriched classes are shared by all three methods, followed by 

upregulated CC terms unique to CDA (8) and SD (7). Cells encapsulated in SD and CDA methods 

have a greater number of unique downregulated CC terms (6 and 5 respectively) than AqS+g, 

which has none. 

Identification of Differentially Enriched GO Terms 
Groupings of GO enrichment terms for Biological Process (BP) for encapsulated S. cerevisiae are 

presented in scatter plots by REVIGO77 comprising Figures 2.7, 2.9 and 2.10. The scatter plots 

show the represented functional clusters after removing redundant terms by REVIGO.77 The GO 

terms that are semantically similar should position together in the scatter plot and semantic space 

(X, Y), but it should be noted that X,Y coordinate units have no inherent meaning. The size of the 

circle is relative to the frequency of the GO term in the underlying GO database; the color of the 

circle represents the log 10 p-value. The threshold used for allowed sematic similarity is 

“medium.” The corresponding complete listings of GO enrichment terms are provided in Appendix 

A, as are associated FDR-adjusted p-values for the GO enrichments. 
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In the following discussion, it is important to keep in mind that up- or down-regulation of 

expression of genes associated with a biological process may not be synonymous with up- or 

down-regulation of the process itself.  Some of the genes may activate the process in question 

while others may inhibit it.  Depending on overall feedback mechanisms, genes associated with 

activating a process may be upregulated to exploit availability of a substrate, while in other cases 

they may be upregulated to compensate for scarcity of a substrate.  The only completely reliable 

inference to draw from enrichment of a gene ontology is with respect to association in some way 

with the process in question.  

 

Enrichment of BP GO terms in each of encapsulation method is shown in Figure 2.7. All three 

methods show upregulated enrichment in cellular response to oxidative stress, proteolysis, 

oxidation-reduction process, protein transport and piecemeal microautophagy of nucleus (Figure 

2.7A).  Proteolysis is one of the key responses to stress as damaged proteins need to be eliminated 

from the cell.24 Furthermore, reactive oxygen species (ROS) generated through oxidative 

phosphorylation can lead to chemical reactions that damage cells, which leads in turn to activation 

of oxidative stress responses from the cell.24 All these processes are generally implicated in stress 

response.24 Lipid and carbohydrate metabolic processes are upregulated in both SD and CDA 

(Figure 2.7B, 2.7C, Appendix A respectively). CDA and SD (but not AqS+g) share the 

upregulated BP term phosphorylation. Cells encapsulated via CDA showed upregulated cell wall 

organization terms (Figure 2.7B) as a response to weakened cell walls during stress. SD-

encapsulated cells showed upregulated responses associated with obtaining energy by fatty acid 

beta oxidation (Figure 2.7C). 

 

All three methods show downregulated enrichment in ribosome biogenesis, methylation, amino 

acid biosynthetic process, and a cluster of terms related to RNA processing (Figure 2.7D-F, 

Appendix A). Ribosome biogenesis and processing of RNAs such as tRNA or rRNA use a 

significant amount of energy and cells need to lower the expression of these genes to conserve 

energy under unfavorable conditions.24 Reduction in expression level of ribosome biogenesis and 

RNA processing can be interpreted as a reduction in cell growth.85 Furthermore, expression of 

genes associated with translation and tRNA aminoacylation are reduced as a general response to 

stress (Appendix A). Downregulation of these processes are characteristic features of stress 
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response.24 Terms shared between CDA and SD, but not AqS+g, include metabolic process and 

phosphorylation. Both terms were also enriched in upregulated genes from CDA and SD, 

indicating cells from both methods have significantly changed their metabolic states and 

phosphorylation profiles in response to stress (Figure 2.7B, 2.7C & 2.7E, 2.7F).  

 

BP GO terms that are unique to each of the three encapsulation methods (as mentioned in Figure 

2.6) show that the different methods of encapsulation have some distinctly different effects on gene 

expression patterns (Figure 2.8). Upregulated genes in CDA are uniquely enriched in ascospore 

formation, fungal-type cell wall organization, aerobic respiration, glycogen biosynthetic process, 

and response to heat (Figure 2.8A). Ascospore formation in yeast is implicated in response to 

nutrition deprivation that allows cells to produce stress resistant haploid spores.86 Furthermore, 

upregulated CDA genes are enriched in mitophagy and pexophagy (Figure 2.8A). Both mitophagy 

and pexophagy are selective autophagy processes to remove damaged mitochondria and 

peroxisomes, respectively in response to stress.87,88  Upregulated genes in SD are uniquely 

enriched in protein targeting to mitochondrion, vesicle mediated transport, regulation of vacuole 

fusion and BP GO terms related to protein catabolism (Figure 2.8A). Upregulated genes in AqS+g 

are only enriched in the ubiquitin-dependent protein catabolic process via the multivesicular body 

sorting pathway (Figure 2.8A). Upregulation of ubiquitin dependent protein degradation is 

implicated in stress as damaged proteins are degraded by ubiquitination to adjust the cellular 

protein repertoire to cope with the new environment.24  

 

Differentially downregulated genes in CDA are uniquely enriched in covalent chromatin 

remodeling, RNA splicing, protein transport, mRNA transport, mRNA processing, DNA 

replication, nucleoside metabolism and small metabolic processes, consistent with the observation 

that these processes are energy consuming and their expression levels are reduced under stress 

(Figure 2.8B).24 Differentially downregulated genes in AqS+g are uniquely enriched in tRNA 

methylation, formation of translation preinitiation complex, transcription from RNA polymerase I 

promoter, and ribosomal subunit export from nucleus (Figure 2.8B), consistent with the 

observation of reduced levels of transcription and translation under stress.24 Differentially 

downregulated genes in SD are uniquely enriched in amino acid transport, cell cycle, protein 

glycosylation and drug transmembrane transport (Figure 2.8B). 
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Enrichment of MF GO terms in each encapsulation method are arranged into clusters and shown 

in Figure 2.9. Upregulated genes in all three methods are enriched in oxidoreductase activity, lyase 

activity, peptidase activity, and structural constituents of cell wall terms (Figure 2.9A-C). 

Upregulation of oxidoreductase activity is consistent with upregulation of the BP term response to 

oxidative stress enriched in all three methods (Figure 2.7A-C). Downregulated genes from all 

three methods are enriched in translation initiation factor activity (Figure 2.9D-F). Both 

upregulated and downregulated genes from all three methods are enriched in nucleotide binding 

(Figure 2.9A-F). Downregulated clusters of aminoacyl-tRNA ligase, metal ion binding, and 

sequence-specific DNA binding are only enriched in CDA and SD (Figure 2.9E, F). Ligase 

activity and translation initiation factor binding are uniquely enriched in downregulated genes in 

the CDA method (Figure 2.9E). Transporter activity and antiporter activity are uniquely enriched 

in downregulated genes in the SD method (Figure 2.9F). A detailed list of unique differentially 

upregulated and downregulated MF terms in each method are displayed as heat map in 

Supplementary Figure 2.1.  

 

Enrichment of CC GO terms in each encapsulation method is shown in Figure 2.10. The 

upregulated gene lists from all three methods are enriched in eisosome, cytoskeleton, and 

membrane terms (Figure 2.10A-C). Furthermore, upregulated and downregulated genes in all 

three methods are enriched in cytoplasm and polysome terms (Figure 2.10A-F). Upregulated 

genes in SD and AqS+g are both enriched in proteasome complex (Figure 2.10C, Appendix A 

respectively). The downregulated genes in both CDA and SD are downregulated enriched in 

nucleoplasm, and plasma membrane (Figure 2.10E, 2.10F). In contrast to the SD and AqS+g gene 

sets, the upregulated genes in CDA method are enriched in the Cellular Component categories 

fungal-type cell wall, extracellular region, and anchored component of membrane terms (Figure 

2.10B).  These are consistent with cell wall-associated observations in the BP enriched GO terms 

in same (CDA) method (Figure 2.7B). Furthermore, the CC term “cellular bud” is only enriched 

in cells encapsulated by the CDA method (Figure 2.10B). A detailed list of unique differentially 

upregulated and downregulated CC terms in each method are displayed as a heatmap in 

Supplementary Figure 2.2. 

 

Enriched KEGG pathways (to a p-value of <0.01) are shown for upregulated and downregulated 
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genes for each encapsulation method in Tables 2.1 and 2.2, respectively. For all three 

encapsulation methods, metabolic pathways, biosynthesis of secondary metabolites, endocytosis, 

carbon metabolism, peroxisome, regulation of autophagy, and protein processing in endoplasmic 

reticulum are enriched in upregulated genes. Upregulated genes of AqS+g are uniquely enriched 

in fatty acid degradation, pyruvate metabolism, biosynthesis of amino acids, and tryptophan 

metabolism pathways. Upregulated genes of SD are uniquely enriched in proteasome and methane 

metabolism pathways. In the case of CDA, upregulated genes are uniquely enriched in meiosis, 

starch and sucrose metabolism, and phosphatidylinositol signaling system pathways.  

 

In the case of downregulated genes, ribosome biogenesis in eukaryotes, metabolic pathways, 

pyrimidine metabolism, purine metabolism, RNA transport, Aminoacyl-tRNA biosynthesis, RNA 

polymerase, biosynthesis of secondary metabolites, and biosynthesis of amino acids are enriched 

in all three methods. Downregulated genes of CDA are uniquely enriched in RNA degradation, 

ribosome, spliceosome, arginine biosynthesis, and the mRNA surveillance pathway. 

Downregulated genes in SD are uniquely enriched in meiosis, glycine, serine and threonine 

metabolism, and the MAPK signaling pathway. A more extensive table showing all enriched 

pathways at p-value <0.05 is provided in Appendix A. 

Unique Metabolic States for Encapsulated S. cerevisiae Cells 
These enrichment results provide substantial new insight and understanding regarding the 

physiological state of living cells confined within silica matrices. Each of the three matrices studied 

in this work induced a unique metabolic state in the encapsulated S. cerevisiae cells. Significant 

overlap in gene expression profiles was observed between CDA and SD entrapment methods, 

which may be expected as both methods employ identical silica-lipid sol precursor solution 

chemistry. Still, substantial differences in gene expression profiles between the two methods were 

observed. In the case of CDA, cell wall processes were uniquely upregulated. This indicates that 

of the three encapsulation methods, cells entrapped via CDA experience greater cell wall 

associated stresses. This may be a result of the higher exposure time of these cells to the precursor 

sol solution, which contains ethanol, acid and hydrolyzed silica particles that may interact with, or 

pass through, the cell wall and stress or damage the cell. S. cerevisiae cells use the cell wall 

integrity (CWI) pathway to maintain cell wall integrity and repair damage via cell wall 
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biosynthesis and actin organization.89 The cell wall integrity pathway also cross-talks to other cell 

stress pathways to relieve stresses.90 Cells entrapped via CDA also showed substantial reduction 

in gene expression associated with ribosome biosynthesis and RNA processing. Biosynthetic 

processes require considerable energy, and reduced expression of rRNA processing, and ribosome 

biogenesis indicate that the cells are under stress and are minimizing energy consumption.  

 

For cells encapsulated via the SD process, fatty acid beta oxidation GO term was very highly 

enriched (FDR-adjusted p-value=0.00001) in upregulated genes. The upregulation of these terms 

indicates that in the absence of a carbon nutrient source, S. cerevisiae cells can generate energy 

from the oxidation of fatty acids present in the encapsulation matrix at the cell surface. This results 

in acetyl moieties that can be used in the TCA cycle for generation of energy through anabolic 

metabolism. Interestingly, oxidation of fatty acids occurs in peroxisomes of S. cerevisiae cells,91 

and this is in agreement with the upregulated CC GO peroxisomal matrix term (Appendix A). As 

indicated previously, and as observed in previous reports, our results suggest that there is a lipid 

interface between the cell and the surrounding lipid-templated matrix, which may offer the cell a 

source of nutrients. We previously showed using a fluorescence recovery after photobleaching 

(FRAP) assay that this lipid layer is interdigitated throughout the entire bulk of CDA thin films 

and SD particles, and it remains extremely fluid. Thus, encapsulated cells are presented with a 

replenishing source of fatty acid nutrients even in the dry particle state. SD method entrapped cells 

also show significant reduction in ribosomal biogenesis and rRNA processing, indicating that the 

cells are under stress, but not to the same extent as cells entrapped via CDA. This may allow for 

some metabolic load to be focused on lipid metabolism for energy generation. 

 

Overall, AqS+g cells exhibited fewer differentially expressed genes and fewer differentially 

expressed GO terms than either CDA or SD, indicating that this encapsulation method induced 

less drastic disruption than either SD or CDA. In particular, S. cerevisiae AqS+g cells lacked 

stress-related terms exhibited by CDA, or SD, or both including: upregulated lipid and 

carbohydrate metabolism such as observed in CDA and SD, upregulated cell wall organization and 

downregulation of mRNA transport, mRNA processing, nucleoside metabolism, and mitophagy 

observed in CDA. Furthermore, AqS+g cells use ubiquitin dependent protein catabolism, while 

SD cells use proteasomal machinery for protein catabolism (i.e. ubiquitin independent protein 
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catabolism) along with ubiquitin dependent protein catabolism. Overall, by the measure of stress-

related enriched GO categories, the AqS+g method encapsulated cells are less stressed than cells 

entrapped via CDA or SD. We believe one reason is the inclusion of glycerol in AqS+g matrix, 

which is known to enhance long-term cellular viability.20 This is attributed to the formation of a 

high glycerol and water containing region between the cells and the surrounding nanostructured 

silica matrix, resulting in a fluid interface between the cell membrane and polar silanol groups that 

may damage the membrane, while also insulating the cell from stresses induced during 

gelation.19,33 We further believe that S. cerevisiae cells encapsulated in AqS+g can use glycerol as 

a source of carbon nutrient.92 

 

Quiescent states in S. cerevisiae are commonly induced by stress, such as starvation, anoxia, etc.84 

These states are generally characterized by downregulation of genes associated with many forms 

of biosynthesis, but an upregulation of genes associated with forms of maintenance, for example 

cell wall maintenance.93 Within this general framework, we note that S. cerevisiae does not exhibit 

one, but rather several different quiescent states depending on the particular stress that induced the 

state (starvation of a particular nutrient, for example).93 Gene expression patterns were further 

analyzed and compared to known, naturally occurring metabolic states. Major states identified in 

the literature include exponential growth, stationary, quiescent, dormancy, and persister.6,84,94 It is 

difficult to distinguish between the states that various authors describe as quiescence, dormancy, 

and persistence, to the extent that it may be reasonable to consider them different names for the 

same entity.  In the remainder of this paper we will adopt the term “quiescence,” not because we 

prefer it to the other two, but simply to have one label. 

 

The gene expression patterns induced by all three methods are generally consistent with the pattern 

of quiescence, but as with other stresses there are differences in the details of the quiescent states.  

The above mentioned major shifts of gene expression we see in encapsulated cells relative to the 

unencapsulated stationary state are characteristic of the quiescent state. In general, quiescent states 

are phenotypic variants of wild type cells and are induced by stresses such as nutrient starvation, 

antifungal stress or induction of biofilm formation.95 Under conditions of high nutrient availability, 

the TOR complex 1 (TORC1) pathway plays an important role  in cell growth by positively 

regulating ribosome biogenesis, and inhibiting stress associated pathways that have negative 
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effects on cell growth such as cell wall integrity (CWI) pathways.89 However, under a stress 

environment or as a response to the unavailability of nutrients, TORC1 is inhibited, resulting in no 

cell growth, one characteristic of a quiescent state.96 Bojsen et al95 recently reported that inhibition 

of  TORC1 in S. cerevisiae resulted in increased tolerance to antifungal agents.  

Significance of Confinement and the Bio-Nano Interface on Living Cell 

Metabolic State 
While confinement within silica matrices has been widely reported to induce significant and 

unexpected shifts in biological behaviors, a comprehensive understanding of the influence 

encapsulation matrix properties has on specific biological functions is lacking. In this first analysis 

of how systematic modifications of the encapsulating nanostructure influence S. cerevisiae cells 

genetic expression profiles, the physicochemical properties at the bio-nano interface influence the 

metabolic state of encapsulated cells beyond those induced by 3D physical confinement alone. 

This is evidenced by uniquely enriched genes and associated unique functional categories from 

each method. As shown in the heat map and Venn diagram in Figure 2.5, 750 upregulated, and 

598 downregulated genes are shared between all three encapsulation chemistries. However, and 

importantly, there are a similar number of unshared up and down regulated genes among each 

encapsulation method (AqS+g: 444 up, 344 down; CDA: 565 up, 786 down; SD: 707 up, 694 

down) This is also shown in Figure 2.8, and in Supplementary Figures 2.1 and Supplementary 

Figure 2.2. Physicochemical properties at the bio-nano interface are also more influential than the 

overall chemistry of the confinement matrix. Although both CDA and SD methods employ 

identical matrix chemistries and share many enriched genes (936 upregulated, 902 downregulated), 

many genes were still uniquely enriched by the two methods (CDA: 379 up, 482 down; SD: 521 

up, 390 down). Overall, of the 3872 differentially regulated genes measured in this study, 1508, or 

39%, were unique to a given encapsulation matrix, demonstrating that the interaction of the cell 

with the three differing nanostructures substantially impacts cell metabolism. 

 

Here it is noteworthy that the three different encapsulating matrices were all amorphous silicate-

based. There is a large body of work studying the toxicity of nanostructured materials, which has 

been shown to differ from the toxicity of bulk materials of the same chemical composition. That 

work shows that the nanostructure and type of nanomaterial clearly influence cellular metabolic 
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activity. From data collected in this study, any silica specific effects on the metabolic state of the 

cells is challenging to determine for. Still, it is known that amorphous silica materials are Generally 

Recognized as Safe (GRAS) by the US Food and Drug Administration, and that sol-gel derived 

silica nanoparticles have been FDA approved for diagnostic applications in a stage I human clinical 

trial.97 It is therefore unlikely that there would be significant silica specific toxicity or effects on 

cell metabolism. In the case of CDA versus SD, the starting lipid/silica compositions were 

identical, the physicochemical properties at the bio-nano interface differed significantly. This 

includes differences in the physical interaction of lipid, glycerol, and silica with the cell wall, as 

shown in the TEM imaging data (Figures 2.2-2.4). Also, physical forces exerted at the bio-nano 

interface differ between each matrix as indicated by mechanical modulus data. As we recently 

reported, the Young’s modulus of SD matrices is ~14 GPa, as determined by nano-indentation, 

compared to ~4 GPa for CDA determined in an identical manner.17 Due to their porosity (see 

Figure 2.4), aqueous silica gel matrices are much softer. Based on literature reports, we estimate 

the Young’s modulus of the AqS+g matrix to be ~ 500 KPa to 2MPa80 (where Young’s modulus, 

E, is calculated from the reported shear modulus, G, by E = 2(1+n) G, where Poisson’s ratio n is 

assumed to be 0.2), over 1000x softer than SD. Thus, these differing matrices mechanically 

constrain the cell to differing extents, which could be manifested in multiple stress-associated 

pathways. Although the aqueous gels are quite soft, they still inhibited replication of S. cerevisiae 

as did the stiffer, conformal CDA and SD matrices. This contrasts with very soft silica gel matrices 

or hierarchical macro-meso-microporous silica gels where replication of E. coli was observed 

respectively.64,69  

 

Therefore, when using materials chemistry to elicit a desired biological response, the bio-nano 

interface structural and chemical properties are highly significant parameters to control. This 

understanding opens the possibility of integrating living cells within functional materials that are 

less-biocompatible, or even cytotoxic, but may provide long-term viability and activity by 

incorporating a well-designed bio-nano interface. Finally, tuning the parameters of the bio-nano 

interface can induce yet unexplored cellular states that will require further study to understand, but 

may contribute substantial understanding of cancer, aging, cell signaling, quorum sensing, 

starvation, and other complex cellular behaviors. 
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Conclusions 
In summary, we have performed a comprehensive genetic analysis of living cells encapsulated 

within silica matrices. Comparison of encapsulated cells RNA levels with stationary phase cells 

permitted the identification of stresses exerted on the cells associated with a given encapsulation 

chemistry, and a broad data set illustrative of the cells’ metabolic processes. This will allow for 

further tuning of the given encapsulation approach to improve upon the desired biological traits, 

enhancing the performance of the hybrid biomaterial. This study also showed that the material 

properties at the bio-nano interface significantly influence biological behavior, in addition to the 

bulk chemistry of the matrix and physical confinement alone. Distinct metabolic states for cells 

entrapped in each silica matrix were observed. In future work, we believe it will be possible to 

induce, and perhaps control, a biological state by tuning the nanomaterial properties at the bio-

nano interface of the encapsulation matrix. This ability may provide a powerful new technique for 

the study of complex cellular behaviors impacting the fields of cancer, aging, cell-cell signaling 

and quorum sensing research, and the development of bioelectronics and cell-based biosensors. 
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Figures 

 

Figure 2.1. Schematic depicting the three cellular encapsulation methods investigated in this 
study. For all three methods, cells in buffer are mixed with precursor solution and either added to 
a substrate (A), spray dried (B), or added to a gelation vessel (C). In the first two cases, evaporation 
induced self-assembly (EISA) drives the formation of a nanostructured lipid-silica encapsulating 
matrix, which results in a dry film (A) or powder (B), both of which exhibit a conformal ordered 
nanostructure as visualized by TEM. In the third case, gelation occurs within the sealed vessel, 
physically entrapping the cells within a highly porous matrix composed of aggregated silica 
nanoparticles that does not conform to the cell surface. 
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Figure 2.2. Micro- and nano-morphologies of CDA fragments show tightly packed cells. 
Fluorescence projection z-stack analysis verifies encapsulation while transmission electron 
microscopy (TEM) reveals an ordered nanostructured lipid/silica encapsulating matrix that 
interfaces with the cell surface. (A-C) Projection confocal fluorescence images of a small fragment 
highlight the placement of cells within the particle. (The green bands at the edge of the particle are 
an optical artifact resulting from refraction of the green fluorescence occurring within the glass-
like particle). (D) TEM analysis shows a very dense cell loading within the particle and a zoomed 
image (E) reveals an ordered nanostructured matrix that, here, is highlighted between two cells. 
The inset clearly shows an ordered nanostructure interfacing between two cell walls. CW: cell 
wall; Mx: matrix. 
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Figure 2.3. Micro- and nano-morphologies of SD particles reveal distribution of cells within dry, 
spray-dried powders. (A-C) Projection confocal fluorescence image (A), DIC image (B), and 
merged image (C) of a particle fragment highlight the placement of cells within the particle. (D) 
TEM analysis shows cells encapsulated within a conformal, ordered lipid-silica matrix in addition 
to whole lipid-silica particles, which contain no cells as described previously.17 The chattering in 
the ultra-microtomed section is attributed to the high hardness and Young’s modulus of the silica 
nanostructure as described previously.17 (E) A zoomed image shows the interface of the lipid/silica 
nanostructure and the cell which appears to be “peeling off” from the cell surface. The 
nanostructure is clearly visible and interfaces directly with the cell surface (F) and extends into the 
bulk of the particle (G). CW: cell wall; Mx: matrix. Both the peeling and separation of the matrix 
from the cell are attributed to sample preparation artifacts given correspondence of the shape of 
the separated matrix and cell surface.   
 
 
 



 40 

 

Figure 2.4. Micro- and nano-morphologies of gel particles show cells that are individually 
incorporated within an amorphous matrix and are surrounded by a glycerol sheath. (A-C) 
Projection confocal fluorescence images of a small particle highlight the placement of cells within 
the particle. (D) TEM images of an individual cell show incorporation within a ramified, highly 
porous matrix composed of small (10 nm) primary silica nanoparticles that is separated from the 
cell surface by a 20-450 nm thick porous layer that is rich in glycerol. CP: cytoplasm; CW: cell 
wall; Gly: glycerol; Mx: matrix. 
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Figure 2.5. Distribution of all differentially expressed genes (FDR-adjusted p-value <0.05, 
(|log2(fold change) | > 1) from S. cerevisiae cells encapsulated within three differing silica 
matrices: Cell-directed assembly (CDA); spray drying (SD); aqueous silicate with glycerol 
(AqS+g). Upregulated genes are shown in red. Downregulated genes are shown in green. 
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Figure 2.6. Gene ontology (GO) categorization of differentially expressed genes from silica matrix 
encapsulated S. cerevisiae cells. GO domains: Biological Process (BP); Molecular Function (MF); 
Cellular Component (CC). Silica encapsulation matrices: Cell-directed assembly (CDA); Spray 
drying (SD); Aqueous silicate with glycerol (AqS+g). 
 

 

 

 

 

 

 

 



 43 

 

Figure 2.7. Gene Ontology (GO) enrichment of biological processes (BP) terms as determined 
according to The Database for Annotation, Visualization and Integrated Discovery (DAVID). 
Redundant GO terms were removed and then summarized by REVIGO and represented as scatter 
plot. (A-C) Upregulated biological processes for S. cerevisiae encapsulated via (A) AqS+g, (B) 
CDA, (C) SD. (D-F) Downregulated biological processes for S. cerevisiae encapsulated via (D) 
AqS+g, (E) CDA, (F) SD. GO terms are shown by circles and plotted by semantic similarity with 
other GO terms, circles closer to each other shows closely related GO terms. The size of the circle 
is relative to the frequency of the GO term in the underlying GO database. Circle color represents 
the log 10 p-value. GO terms with FDR-adjusted p-value <0.05 are shown. 
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Figure 2.8. Biological Process (BP) Gene ontology (GO) terms that are uniquely enriched in each 
of the three encapsulation methods. GO enrichment was determined via the Database for 
Annotation, Visualization and Integrated Discovery (DAVID). (A) Upregulated and (B) 
downregulated BP for S. cerevisiae encapsulated via AqS+g, CDA, and SD. Red colored boxes 
show absence of a GO term, while blue color box show presence of a GO term in the given 
encapsulation method. GO terms with FDR-adjusted p-value < 0.05 are shown. Individual FDR-
adjusted p-values are shown in Appendix A. 
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Figure 2.9. Gene Ontology (GO) enrichment of molecular function (MF) terms as determined 
according to the Database for Annotation, Visualization and Integrated Discovery (DAVID). 
Redundant GO terms were removed and then summarized by REVIGO and represented as scatter 
plot. (A-C) Upregulated molecular functions for S. cerevisiae encapsulated via (A) AqS+g, (B) 
CDA, (C) SD. (D-F) Downregulated molecular functions for S. cerevisiae encapsulated via (D) 
AqS+g, (E) CDA, (F) SD. GO terms are shown by circles and plotted by semantic similarity with 
other GO terms, circles closer to each other show closely related GO terms. The size of the circle 
is relative to the frequency of the GO term in underlying GO database. Circle color represents the 
log 10 p-value. GO terms with FDR-adjusted p-value <0.05 are shown. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 46 

 

Figure 2.10. Gene Ontology (GO) enrichment of Cellular Component (CC) terms as determined 
according to The Database for Annotation, Visualization and Integrated Discovery (DAVID). 
Redundant GO terms were removed and then summarized by REVIGO and represented as scatter 
plot. (A-C) Upregulated cellular components for S. cerevisiae encapsulated via (A) AqS+g, (B) 
CDA, (C) SD. (D-F) Downregulated cellular components for S. cerevisiae encapsulated via (D) 
AqS+g, (E) CDA, (F) SD. GO terms are shown by circles and plotted by semantic similarity with 
other GO terms, circles closer to each other shows closely related GO terms. The size of the circle 
is relative to the frequency of the GO term in underlying GO database. Circle color represents the 
log 10 p-value. GO terms with FDR-adjusted p-value <0.05 are shown. 
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Tables 
Table 2.1 Enriched Pathways in Upregulated Genes in Each Encapsulation Method. 
 

Pathway Name FDR-adjusted p-value 
CDA AqS+g SD 

Metabolic pathways 5.33E-20 5.33E-17 3.32E-23 
Biosynthesis of secondary metabolites 5.04E-10 1.25E-12 1.89E-13 
Endocytosis 4.63E-05 8.79E-12 5.97E-08 
Carbon metabolism 1.17E-06 6.51E-07 2.30E-07 
Peroxisome 5.32E-05 8.58E-07 4.74E-07 
Protein processing in endoplasmic reticulum 4.22E-05 1.78E-04 5.60E-05 
Glycerolipid metabolism >0.01 1.99E-04 1.94E-04 
Fatty acid degradation >0.01 5.31E-04 >0.01 
Pyruvate metabolism >0.01 9.05E-04 >0.01 
SNARE interactions in vesicular transport >0.01 0.0011 9.82E-04 
Regulation of autophagy 3.54E-05 0.0011 1.07E-04 
Glycolysis / Gluconeogenesis 0.0016 0.0025 >0.01 
Biosynthesis of amino acids >0.01 0.0027 >0.01 
Tryptophan metabolism >0.01 0.0065 >0.01 
Proteasome >0.01 >0.01 2.46E-05 
Methane metabolism >0.01 >0.01 0.0068 
Glycerophospholipid metabolism 0.0032 >0.01 0.0035 
Meiosis 3.38E-06 >0.01 >0.01 
Starch and sucrose metabolism 9.77E-06 >0.01 >0.01 
Phosphatidylinositol signaling system 0.0066 >0.01 >0.01 
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Table 2.2 Enriched Pathways in Downregulated Genes in Each Encapsulation Method. 
 

Pathway Name FDR-adjusted p-value 
CDA AqS+g SD 

Ribosome biogenesis in eukaryotes 3.25E-26 6.96E-24 1.50E-25 
Metabolic pathways 4.77E-22 8.16E-13 2.60E-20 
Pyrimidine metabolism 3.11E-12 1.27E-09 2.21E-11 
Purine metabolism 3.49E-12 6.84E-08 1.00E-08 
RNA transport 1.85E-14 2.66E-06 2.13E-08 
Aminoacyl-tRNA biosynthesis 1.25E-04 1.10E-05 1.00E-04 
RNA polymerase 2.04E-09 5.11E-04 2.35E-08 
Biosynthesis of secondary metabolites 1.40E-07 5.55E-04 1.41E-07 
Biosynthesis of amino acids 4.65E-08 5.72E-04 2.26E-10 
Phenylalanine, tyrosine and tryptophan biosynthesis >0.01 0.0027 0.0022 
Cell cycle - yeast 0.0034 >0.01 3.45E-04 
RNA degradation 4.23E-05 >0.01 >0.01 
Ribosome 2.70E-04 >0.01 >0.01 
2-Oxocarboxylic acid metabolism 0.0017 >0.01 0.0015 
Cysteine and methionine metabolism 0.0023 >0.01 5.70E-04 
Spliceosome 0.0029 >0.01 >0.01 
Alanine, aspartate and glutamate metabolism 0.0052 >0.01 0.0070 
Arginine biosynthesis 0.0084 >0.01 >0.01 
mRNA surveillance pathway 0.0089 >0.01 >0.01 
Meiosis - yeast >0.01 >0.01 7.27E-06 
Glycine, serine and threonine metabolism >0.01 >0.01 5.63E-04 
MAPK signaling pathway - yeast >0.01 >0.01 0.0025 
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Table 2.3 Gene Set Enrichment Analysis Categories over-represented and under-represented in 
AqS+g relative to control (Nominal p-value =0) 
 

GO Term NG p-value FDR 
Over-represented 

protein targeting to vacuole & establishment of protein localization to vacuole 91 0 0.144 
protein localization to vacuole 92 0 0.170 
establishment of protein localization to organelle 276 0 0.244 
protein localization to organelle 332 0 0.249 
intracellular protein transport 319 0 0.308 
protein transport 344 0 0.316 
mitochondrion organization 281 0 0.319 
protein targeting 271 0 0.323 
vacuolar transport 142 0 0.371 
establishment of protein localization 370 0 0.446 

Under-represented 
preribosome 170 0 0.003 
septin ring organization 28 0 0.018 
septin cytoskeleton organization 29 0 0.018 
maturation of SSU rRNA from tricistronic rRNA transcript SSU rRNA 5.8s rRNA LSU rRNA  96 0 0.022 
maturation of SSU rRNA 105 0 0.023 
rRNA metabolic process 241 0 0.023 
nucleolus 245 0 0.024 
ribonucleoside triphosphate metabolic process 43 0 0.024 
purine containing compound biosynthetic process 51 0 0.026 
90s preribosome 85 0 0.029 
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Table 2.4 Gene Set Enrichment Analysis Categories over-represented and under-represented in 
CDA relative to control (Nominal p-value =0) 
 

GO Term NG p-value FDR 
Over-represented 

external encapsulating structure & cell wall & fungal type cell wall 89 0 0.023 
hydrolase activity hydrolyzing on glycosyl compounds 35 0 0.024 
mitochondrion localization 35 0 0.064 
cortical endoplasmic reticulum 17 0 0.112 
energy reserve metabolic process 34 0 0.112 
protein localization to vacuole 92 0 0.112 
CVT pathway 37 0 0.116 
monovalent inorganic cation homeostasis 40 0 0.118 
hydrolase activity acting on glycosyl bonds 43 0 0.123 
extracellular region 27 0 0.160 

Under-represented 
ncRNA metabolic process 435 0 0 
ribosome biogenesis 327 0 0 
preribosome 170 0 0 
ncRNA processing 327 0 0 
nucleolus 245 0 0 
ribonucleoprotein complex biogenesis 402 0 0 
rRNA metabolic process 241 0 0 
ribosomal large subunit biogenesis 93 0 0 
ribosomal small subunit biogenesis 125 0 0 
rRNA processing 224 0 0 
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Table 2.5 Gene Set Enrichment Analysis Categories over-represented and under-represented in 
SD relative to control (Nominal p-value =0) 
 

GO Term NG p-value FDR 
Over-represented 

pre autophagosomal structure 22 0 0.156 
mitochondrial outer membrane 93 0 0.182 
protein targeting to vacuole & establishment of protein localization to vacuole 91 0 0.186 
positive regulation of protein complex assembly 39 0 0.190 
extrinsic component of membrane 92 0 0.204 
microbody & peroxisome 69 0 0.205 
mitochondrion organization 281 0 0.215 
glycogen metabolic process 32 0 0.221 
outer membrane & organelle outer membrane 96 0 0.266 
vacuolar transport 142 0 0.297 

Under-represented 
nucleolus 245 0 0 
ribosome biogenesis 327 0 0 
preribosome 170 0 0 
rRNA processing 224 0 0 
ncRNA processing 327 0 0 
ribonucleoprotein complex biogenesis 402 0 0 
ncRNA metabolic process 435 0 0 
rRNA metabolic process 241 0 0 
ribosomal small subunit biogenesis 125 0 0 
maturation of SSU rRNA 105 0 0 
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Supplementary Figures 
 

 
 
Supplementary Figure 2.1. Molecular Function (MF) Gene ontology (GO) terms that are 
uniquely enriched in each of the three encapsulation methods. Gene Ontology (GO) enrichment 
was done via The Database for Annotation, Visualization and Integrated Discovery (DAVID). (A) 
Upregulated molecular functions for S. cerevisiae encapsulated via AqS+g, CDA, and SD. (B) 
Downregulated molecular functions for S. cerevisiae encapsulated via AqS+g, CDA, and SD. Red 
color box show absence of a GO term while blue color box show presence of a GO term in 
encapsulation method. GO terms with FDR-adjusted p-value of 0.05 or less are shown. Individual 
FDR-adjusted p-values are shown in Appendix A. 
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Supplementary Figure 2.2. Cellular Component (CC) Gene ontology (GO) terms that are 
uniquely enriched in each of the three encapsulation methods. Gene Ontology (GO) enrichment 
was done via The Database for Annotation, Visualization and Integrated Discovery (DAVID). (A) 
Upregulated cellular component for S. cerevisiae encapsulated via AqS+g, CDA, and SD. (B) 
Downregulated cellular component for S. cerevisiae encapsulated via AqS+g, CDA, and SD. Red 
color box show absence of a GO term while blue color box show presence of a GO term in 
encapsulation method. GO terms with FDR-adjusted p-value of 0.05 or less are shown. Individual 
FDR-adjusted p-values are shown in Appendix A. 
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Supplementary Figure 2.3. Network of differentially expressed genes (FDR-adjusted p-value 
<0.05, and (|log2 fold change|) >5 in each encapsulation method (CDA, SD, and AqS+g). Green 
Node color indicated downregulated genes, Red color indicated upregulated genes. Edges show 
the relationship between gene from databases in BisoGenet. Interaction between differentially 
expressed genes is shown. 
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Chapter 3: Time-Varying Response of Yeast Cells to Encapsulation 

in a Silica Matrix and Subsequent Reincubation in a Growth 

Medium 

Abstract 
We report on the temporal pattern of yeast gene expression patterns during encapsulation in silica 

matrices via a cell-directed assembly process, and upon release. Three broad classes of patterns 

are seen. A major shift in expression patterns is seen upon encapsulation, relative to the beginning 

stationary state, similar to previously reported stress response. Significant continuing shifts are 

seen by sampling at different intervals during a one week encapsulation. Upon release from 

encapsulation and reincubation in growth medium, the cells are in a state significantly different 

from the state prior to encapsulation and similar to the state during encapsulation. Implications are 

drawn for the use of encapsulated micro-organism as sensors and effectors, and for the persister 

state of such organisms. 

Introduction 
Encapsulation of microbial cells can disturb the cellular environment and impose various stresses. 

Encapsulation stresses include mechanical stress, tensile stress, acid exposure, starvation stress, 

and temperature shocks.57–59 To handle these environmental changes, cell must adjust internal 

system to perform regular functions. One of the yeast Saccharomyces Cerevisiae (S. Cerevisiae) 

responses to these changes is the provisional pause of normal cellular processes during the 

reorganization of the internal system.3 In response to stress, cells often change their physiological 

or metabolic state to induce the expression of those genes who are involved in cellular processes 

required for growth and survival. Microbial cells present in biofilms can change their metabolic 

state to enhance antibiotic resistance/tolerance and formation of persister cells.98,99 Furthermore, 

encapsulation in nanostructure silica matrix has induced quorum sensing in individual 

Staphylococcus aureus cells.66 The response to many stresses like deprivation of nutrients, growth 

at high or low temperature, osmolarity, acidic environment and presence of toxic agents have been 

studied.3 In a prior study we explored the stationary response of yeast cells to various methods of 

encapsulation in silica matrices.100  In the present study, we present and analyze the time-varying 

gene expression patterns of S. cerevisiae cells encapsulated in a cell-directed assembly (CDA) 



 56 

method of encapsulation, and compare our results to published results of yeast cells under other 

types of stress. 

Material and Methods 
Materials 

Saccharomyces cerevisiae (strain S288c) was acquired from American Type Culture Collection 

(ATCC; Manassas, VA). 1,2-dihexanoyl-sn-glycero-3-phosphocholine (diC6 PC) was purchased 

from Avanti Polar Lipids, Inc. (Alabaster, AL). Absolute ethanol, hydrochloric acid (HCl, 37%), 

tetraethylorthosilicate (TEOS, 98%), sodium silicate solution (26.5% SiO2; 10.6% Na2O), strongly 

acid cation-exchange resin (DOWEX 50WX8-100, hydrogen, 50-100 mesh), glycerol, yeast 

extract, peptone, D-(+)-glucose, adenine, sodium acetate, ethylenediaminetetraacetic acid 

(EDTA), sodium dodecyl sulfate (SDS), phenol, choloroform:isoamyl alcohol (24:1), sodium 

phosphate (mono- and dibasic), sodium acetate, phosphate buffer saline (PBS, pH 7.0), glass 

beads, and Alconox detergent were purchased from Sigma-Aldrich (St. Louis, MO). RNeasy Mini 

Kit (including Buffer RW1 and Buffer RPE) was obtained from Qiagen (Germantown, MD). RNA 

6000 Nano Kit was purchased from Agilent (Santa Clara, CA). Yeast Genome 2.0 Arrays and 

Genechip 3’ IVT Express Kits were from Affymetrix (Santa Clara, CA). 

 

Cell Culture 

S. cerevisiae S288c cells were grown aerobically in Yeast Peptone Dextrose + Adenine (YPD+A) 

broth at 30 °C for seven days until the culture was in stationary phase (OD600 1.5-2.0). Cells were 

then centrifuged at 10,000 rpm for 5 mins, washed with DI H2O three times, and re-suspended in 

DI H2O (OD600 0.1-1.0). 

 

Encapsulation of S. cerevisiae in Phospholipid-Templated Silica Films via Cell Directed Assembly 

(CDA)18 

Glass coverslips (25-mm, No. 1.5) were soaked in 0.1 M KOH for a minimum of 4hr, washed with 

10% Alconox (m/v), rinsed with DI H2O, dried under a stream of N2 gas, and then cleaned in UV-

ozone (Jelight, model 342) for 5mins. Prehydrolyzed tetraethyl orthosilicate (TEOS) stock 

solutions (A2**) were made by refluxing 61 mL of TEOS, 61 mL of absolute ethanol, 4.9 mL of 

DI H2O, and 0.2 mL of 0.07 N HCl (molar ratio 1:4:1:5x10-5) for 90mins at 60°C. A2** stock 



 57 

solutions were then stored at -20°C. CDA precursor sol was prepared by combining 0.25 mL of 

A2** stock solution, 0.2 mL of absolute ethanol, 0.16 mL of 0.05 N HCl, 0.4 mL of DI H2O and 

30 mg of diC6 PC. This precursor solution was aged at room temperature for 20mins and then 

passed through a 0.45-µm filter. To this solution was combined an equal volume of PBS washed 

and re-suspended S. cerevisiae. This mixture was cast onto cleaned glass coverslips. Resulting thin 

films could air dry, were rinsed with DI H2O to remove non-integrated cells, and stored under 

ambient conditions (25˚C ± 2˚C) for three days.  

 

Extraction and Purification of RNA from Encapsulated Cells 

Portions of encapsulated cell-containing silica matrices were rinsed with DI H2O and placed in 2 

mL centrifuge tubes, breaking the matrix into smaller pieces as necessary. 270 µL sodium acetate 

buffer (50 mM sodium acetate, pH 5.2, and 10 mM EDTA, pH 8.0), 30 µL 10% SDS, and 

approximately 100 µL of glass beads (0.5 – 0.6 mm diameter) were added to centrifuge tubes. 

Samples were stirred and agitated to physically break apart the matrix. Water saturated acid phenol 

(300 µL) preheated to 65°C was added to the samples, followed by vortexing for 1min. Samples 

were then incubated in a 65°C water bath for 5mins, followed again by vortexing for 1min. This 

was repeated for a total of six cycles over approximately 45mins. Samples were then placed in a 

cooling block for 2mins, followed by the addition of 300 µL chloroform:isoamyl alcohol (24:1), 

and mixed by vortexing for 30 seconds. Samples were then centrifuged for 5mins at 15,000 rpm, 

followed by transferring the RNA-containing top layer to new centrifuge tubes. An equal volume 

of 70% ethanol was added and mixed by pipetting.  

 

Next, samples were transferred to Qiagen RNeasy spin columns and centrifuged for 30 seconds at 

15,000 RPM, discarding flow through. 700 µl of RW1 buffer was added to the columns and the 

samples were centrifuged for 30 seconds at 15,000 RPM, discarding flow through. 500 µL of RPE 

buffer was added to the columns, followed by centrifugation for 30 seconds at 15,000 RPM, 

discarding flow through. 500 µL of RPE buffer was added to the columns and followed by 

centrifuging for 2mins at 15,000 RPM, discarding flow through. Columns were then placed in new 

2 mL collection tubes and centrifuged for 1min at 15,000 RPM. Next, columns were placed in new 

1.5 mL collection tubes and 40 µL of DI H2O was added. Columns were again centrifuged for 

1min at 15,000 RPM, after which 40 µL of DI H2O was added and the columns were centrifuged 
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again for 1min, yielding the purified RNA product. A NanoDrop spectrophotometer (Wilmington, 

DE) and an Agilent 2100 Bioanalyzer (Santa Clara, CA) were used to determine concentration, 

purity and integrity of RNA extractions. RNA samples were stored at -20°C until used. 

 

Gene Chip Hybridization 

cDNA preparation, and biotin-labeled cRNA generation and fragmentation were performed using 

Affymetix Genechip 3‘ IVT Express Kits per the manufacturer protocol. Hybridization solution 

was prepared with the fragmented cRNA and controls, and was then hybridized to the probe array 

with a 16-hour incubation period. The solution was then removed and the probe array was washed 

and stained in an automated microfluidics station. Arrays were read by an Affymetrix GeneChip 

Scanner attached to a workstation running Affymetrix Microarray Suite. 

Experimental Design 
Gene chip data from five treatments groups were collected. Each treatment had two replicates. 

Group 1: Stationary phase S. cerevisiae cells (grown for seven days in aerated media) washed and 

resuspended in phosphate buffer saline solution (PBS). This group served as the baseline cultured 

S. cerevisiae control to which the RNA expression levels from sample groups 2-5 were compared. 

Groups 2-4 were all stationary phase S. cerevisiae cells (grown for seven days in aerated media) 

encapsulated in silica via cell-directed assembly (CDA) and stored dry different lengths of time 

under ambient temperature and relative humidity (RH). Group 2 was stored for four hours. Group 

3 was stored for three days. Group 4 was stored for seven days. Group 5 was stationary phase S. 

cerevisiae cells (grown for seven days in aerated media) encapsulated in silica via cell-directed 

assembly (CDA) and stored dry for seven days under ambient temperature and relative humidity 

(RH), then returned to YPD+A broth and incubated at 30°C for four hours before extraction of 

RNA. 

Identification of differentially expressed genes 
Differentially expressed genes between 4-hours post-encapsulation (4H) vs control, 3-days post-

encapsulation (3D) vs control, 7-days post-encapsulation (7D) vs control, and 7-days  post-

encapsulation plus 4-hours reincubation period (7D+4HRI) vs control were identified using 

LIMMA R package.75 GCRMA was used to normalize the genes expression intensity value.22 The 

differentially expressed genes were identified using FDR-adjusted P-value <0.05 and (|log2(fold 
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change) | > 1. 

Functional enrichment analysis  
Functional enrichment of differentially expressed genes (FDR-adjusted P-value < 0.05) was 

performed using the Database for Analysis, Validation, and Integrated Discovery system 

(DAVID).26 The Gene Ontology (GO) categories included are biological process (BP), cellular 

component (CC), and molecular function (MF). The statistical significance of enriched GO 

categories was estimated by Expression Analysis Systematic Explorer (EASE) scores. To 

minimize the redundancy between GO categories, clustering of GO terms was carried out using 

functional annotation tool in DAVID. The geometric mean of EASE score of individual GO 

categories in each cluster was used to assign overall EASE score to each functional cluster. 

Functional cluster with Enrichment Score of >2.0 were considered significant using Yeast array 

2.0 as a background. 

Gene network analysis and Yeast global metabolic pathway 
Protein-Protein interaction network of differentially expressed genes ((|log2(fold change) | > 2) 

shared between 4-hours, 3-days, 7-days post-encapsulation, and 7-days post-encapsulation+4-

hours reincubation was carried out using String v10 software.36 Nodes in the network represents 

protein products coded by differentially expressed genes while edges represent the physical 

interaction between the products of different genes. The significance of interaction was assessed 

with very high confidence score of 0.9.  

 

Differentially expressed genes shared between 4-hours, 3-days, 7-days post-encapsulation, and 7-

days post-encapsulation+4-hours reincubation are mapped on KEGG78 global metabolic map using 

IPATH.101 Metabolic compounds are represented by nodes while edges represent the enzymatic 

alterations. 

Results and Discussion 
The differentially expressed genes between 4-hours post-encapsulation vs control, 3-days post-

encapsulation vs control, 7-days post-encapsulation vs control, and 7-days post-encapsulation plus 

4-hours reincubation vs control are summarized in Figure 3.1. Overall, 460 (upregulated) and 588 

(downregulated) genes are shared between all four gene sets (Figure 3.1A, 3.1B). This major 
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overlap among each of the time points shows that there is a general encapsulation response by cells 

regardless of the duration of encapsulation, which persists for at least four hours after re-

incubation. The second major overlap was differentially upregulated (209) and downregulated 

(243) genes shared between 7-days post-encapsulation and 7-days post-encapsulation+4hours 

reincubation (Figure 3.1A, 3.1B).  This implies that restoration of the pre-encapsulation state 

within four hours of re-incubation is far from complete.  The yeast suffers from a genomic version 

of post-traumatic stress syndrome. The third major overall commonality was differentially 

upregulated (113) and downregulated (131) genes shared between 4-hours and 3-days post-

encapsulation (Figure 3.1A, 3.1B). However, 84 (upregulated) and 123 (downregulated) genes are 

uniquely differentially expressed at 7-days post-encapsulation+4-hours reincubation followed by 

69 (upregulated) and 85 (downregulated) genes are uniquely differentially expressed at 4-hours 

post-encapsulation. These two sets may be considered the unique or special responses to re-

incubation and encapsulation, respectively.  

Functionally enriched GO clusters 

The largest subgroup of genes (upregulated: 466, downregulated: 588) are those shared among all 

the treatment categories (4H, 3D, 7D, 7D+4HRI). Figure 3.2 illustrates the functionally enriched 

GO categories among these genes. The upregulated genes in this group are most enriched with a 

GO cluster of terms related to membrane. A second cluster is enriched with terms related to 

sporulation and ascospore cell wall assembly (Figure 3.2A). This is consistent with the finding 

that stress of Saccharomyces cells result in sporulation.86 Furthermore, the upregulated genes in 

this group are enriched with GO cluster of terms related to cell wall organization. Again, this is 

consistent with published findings that cells use cell wall integrity pathways (CWI) to maintain 

cell wall and reorganization of cell wall when subjected to stress.89,100  

 

The downregulated genes shared between 4H, 3D, 7D and 7D+4HRI are enriched with GO cluster 

of terms related to ribosome, translation, cytoplasm translation and ribonucleoprotein complex 

(Figure 3.2C). Downregulation of all these categories is implicated in published studies of cellular 

stress response.3,100 The normal growing cell contains ~200,000 ribosomes3; thus biogenesis of 

ribosomes require ample amount of energy, and downregulation of these processes is expected to 

conserve cellular energy.3 Furthermore, downregulated gene are enriched in TCA cycle (Figure 



 61 

3.2C). Activity in the TCA cycle leads to higher amount of reactive oxygen species (ROS) that can 

result in cell death in the stressed cell.102 Downregulation of the TCA cycle is characteristic of 

persister cells.102 

 

The subgroup with the second most genes (upregulated: 209, downregulated: 243) are shared 

between 7-days post-encapsulation and 7-days post-encapsulation+4-hours reincubation. This set 

of genes represents a genomic “memory” of encapsulation that persists for at least four hours after 

reincubation in growth medium.  The upregulated component includes clusters related to fungal 

type cell wall organization, response to stress, membrane, and integral component of membrane 

(Figure 3.3A). The functional GO clusters enriched in differentially downregulated genes shared 

between 7-days post-encapsulation and 7-days post-encapsulation+4-hours reincubation include 

clusters related to protein degradation such as proteasomal complex, proteolysis, ATP binding and 

ATP transport, amino acid transport, transmembrane transport, and antiporter activity (Figure 

3.3B). 

 

The third largest group of genes (upregulated: 113 (Figure 3.2A), downregulated: 131 (Figure 

3.4)) are those shared between 4-hours post encapsulation and 3-days post encapsulation. GO 

clusters enriched in differentially expressed genes shared between 4-hours post-encapsulation and 

3-days post-encapsulation are shown in figure 4. The upregulated genes are ontologically random; 

there are no clusters at our threshold value. However, the downregulated genes show statistical 

enrichment for one cluster, with subclusters related to ribosome, ribosome biogenesis, rRNA 

processing, cytoplasmic translation, and a second GO cluster related to protein transport (Figure 

3.4). 

 

The fourth largest group of genes (upregulated: 84, downregulated: 123) are expressed only at 7-

days post-encapsulation+4-hours reincubation (7DR+4HRI). Differentially upregulated genes are 

enriched in three clusters of GO categories related to membrane, fungal type vacuole and protein 

transport (Figure 3.5A). Differentially downregulated genes are enriched with single cluster of 

GO categories related to GTPase activity (Figure 3.6C).  This set represents the manner in which 

the post-incubation was uniquely different from both the pre-encapsulation cells and the during-

encapsulation cells. 
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The fifth largest group of genes (upregulated: 69, downregulated: 85) uniquely differentially 

expressed at 4-hours post-encapsulation (4H) are illustrated in Figure 3.7. The GO enriched 

clusters uniquely upregulated at 4-hours post-encapsulation includes integral component of 

membrane and plasma membrane (Figure 3.7A). Ion transport, especially iron ion transport and 

iron ion homeostasis categories, are enriched in upregulated genes uniquely expressed at 4-hours 

post-encapsulation (Figure 3.7A). Iron ion transport has been implicated in stress response as an 

important element for growth of a cell.103,104 The GO Cluster related to vacuole, such as membrane 

vacuole, is also enriched in upregulated genes (Figure 3.7A). Vacuoles are membrane bound 

organelles that play a vital role in cellular ion homeostasis.105 Yeast cells growing in nutrient 

enriched medium transport the cytosolic iron, beyond that required for metabolic processes, to 

vacuoles. Under iron-poor environment, stored iron in vacuole is transported back to the cytosol.105 

The enrichment of upregulated genes in iron transport and vacuole transport support this 

observation of iron transport to cytosol through membrane vacuole under stressed environment 

(Figure 3.7A). 

 

The GO clusters enriched in genes uniquely downregulated at 4-hours post-encapsulation include 

clusters of ribosome, translation, ribosome biogenesis, rRNA processing (Figure 3.7C). All these 

processes are implicated under environmental stress response and play vital role in adjusting cell’s 

metabolic state in response to stress.2,3,100 Other groups on the Venn diagram contain only a few 

genes each.  In some cases, they show no enriched categories, while in other cases the judgement 

of enrichment is based on only a very small number of genes. 

Comparison of gene expression patterns of encapsulated cells with universal 

yeast stress set 
Gasch et al2,3 analyzed the gene expression patterns of Saccharomyces cerevisiae in response to 

diverse environmental conditions such as temperature shocks, amino acid starvation, hydrogen 

peroxide, hypo and hyper osmatic stress etc. Authors identified ~600 genes whose expression was 

reduced and ~300 genes whose expression were induced in response to most of these 

environmental conditions and termed these genes as Environmental Stress Response (ESR) set. 

We carried out the functional enrichment analysis of ESR set using the same methods our 
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experimental sets, and compared the results with functional enrichment of encapsulate cells 

reported in this study. Due to large number of functionally enriched GO clusters in ESR, we only 

reported the top 5 clusters (Table 3.1, Table 3.2). The upregulated ESR genes are functionally 

enriched with Clusters of GO terms related to oxidation-reduction process, carbohydrate metabolic 

process, response to oxidative stress, and glutathione metabolic process (Table 3.1). The 

downregulated ESR genes are enriched with Clusters GO terms related to ribosome biogenesis, 

rRNA processing, rRNA methylation, cytosolic translation, and methylation (Table 3.2).  

 

The functional enrichment of downregulated ESR set is in almost complete agreement with the 

functional enrichment of downregulated genes in encapsulated cells. Results of both these studies 

shows regardless of nature of stress, cell usually preferred to downregulate/reduce the energy 

consuming process such translation, transcription, ribosome biogenesis, and rRNA to minimal 

level as a general response to stress. However, functional enrichment of upregulated ESR set is 

different from the functional enrichment of encapsulated cells. This is consistent with the published 

results showing that the upregulated gene categories in response to different types of stress are 

different from each other, while the downregulated categories are similar.2,3  Encapsulation stress 

is different yet from all the others; that is, functional enrichment of upregulated genes in 

encapsulated cells are mostly enriched with membrane, plasma membrane and cell wall 

organization related GO terms (Figure 3.2, 3.3 and Figure 3.5, 3.6). The closest analogy in nature 

to the silica confinement is in biofilms, in which the cells are confined in a polysaccharide 

matrix.10,94,106  This natural encapsulation also induces upregulation of genes related to cell wall 

and cell membrane, as well as downregulation characteristic of our experiments and the ESR 

set.2,3,11,94,107  

Global metabolic map and protein-protein interaction network 
The relationship between the protein products of differentially expressed genes (|log2(fold change) 

|>2) shared between 4H, 3D, 7D, and 7D+4HRI is illustrated using String 10.136 (Figure 3.8A). 

The protein-protein interaction network of these genes shows a high degree of variability among 

the genes in their degree of interactivity. Genes that have more than 5 interactions are shown in a 

histogram (Figure 3.8B).  The histogram of genes having >5 interaction is dominated by 

downregulated gene (green) than upregulated genes. For example, GUA1 (>20 interactions) 
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encodes GMP synthase that is negatively regulated under nutrients limited conditions. 

Furthermore, many highly interacting genes (> 5 interactions) are dominated by genes whose 

products are involved in ribosomal biogenesis, rRNA processing such as such as RRP12, RPS9B, 

RPL13A, LSG1, RPL2A etc. and downregulated at all encapsulation time points. Previous 

microarray studies shown that genes encoding these transcripts are tightly co-regulated2,3 which is 

reinforced by our results and the representation in Figure 8B. However, there are only 7 

upregulated genes whose products have > 5 interactions such ALD3 gene produce Aldehyde 

Dehydrogenase whose expression is induced under stress, CDC40 is involved in cell cycle 

regulation, VPS71 plays role in protein sorting, and MRPS18 encodes mitochondrial ribosomal 

protein and vital for cell’s viability.  

Conclusions 
This study was designed to explore what changed and what remained constant upon and during 

encapsulation of yeast cells in a silica matrix, and upon subsequent reincubation in a growth 

medium. One overall result is that, for most genes (3,180 out of 5,900 on the gene chip), the 

expression levels did not change significantly from the initial stationary state in culture. Of the 

remaining 2,720 differentially expressed genes the expression level of a large number (1,048 

differentially expressed gene), changed upon encapsulation and thereafter remained relatively 

constant throughout 7 days of encapsulation and even upon reincubation in growth medium. Gene 

Ontology analysis revealed that, throughout the course of our experiments, the categories of 

downregulated genes agreed with categories seen in other experiments on yeast under stress from 

various treatments, namely ribosome, ribosome biogenesis, rRNA processing, cytoplasmic 

translation, and translation.3 On the other hand, our upregulated categories, especially related to 

cell wall organization and cell membrane, were unique to the type of stress our experiments 

imposed. A transient change in expression of genes at 4-hours post-encapsulation iron ion 

transport, that was not observed later during the encapsulation at 3-days, 7-days, and 7-days post-

encapsulation+4-hours reincubation, showed strong upregulation of iron ion transport. We 

attribute this to facilitation of iron transport from vacuoles to cytoplasm. 

 

The downregulated gene expression patterns observed in this study such as reduction in ribosome 

biogenesis and minimal transcription and translation, are typical features of a quiescent/dormant 
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or persister state. On the other hand, the persister state in nature, for example in biofilms, is 

characterized by the ability to return to the state that existed prior to the stress that induced 

persistence. Our experiments are inconclusive in that regard.  The four hours reincubation after 

release from encapsulation may not have provided enough time for the culture to move through a 

growth phase and return to the stationary state that pertained prior to encapsulation.  It is reasonable 

to hypothesize that our cells, given sufficient time, after an initial growth phase, would have 

returned to that stationary state.  We therefore believe that our encapsulation induced a persister 

state, with downregulated categories of genes in common with other stressed or persister states, 

and upregulated gene categories specific to the type of stress induced by the silica matrix 

encapsulation. 

 

This work has implications for use of yeast cells embedded in silica matrices for devices or sensors.  

It suggests that such use will depend on advances on two fronts. One such necessary advance 

would be to somehow embed the cells in a less stressful way.  From our previous study100 it may 

be that aqueous gel encapsulation may be less stressful, Time-varying studies on that method 

should be carried out. The second advance would be to design the desired function of the cell in 

such a way as to be compatible with the constraints of the persister state. 

 

  



 66 

Figures 

 

Figure 3.1. Distribution of all differentially expressed genes (FDR-adjusted P-value <0.05) that 
overlap between 4-hours post-encapsulation(4H), 3-days post-encapsulation (3D), 7-days post-
encapsulation (7D), and 7-days post-encapsulation+4hours re-incubation (7D+4HRI). 
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Figure 3.2. Functionally enriched GO clusters shared among 4H, 3D, 7D, and 7D+4HRI that 
have enrichment score > 2 and corresponding Gene Ontology (GO) biological process (BP), 
cellular component and molecular function (MF) categories. (A) GO clusters enriched in 
upregulated genes shared between 4H, 3D, 7D, and 7D+4HRI shown in (B). (C) GO clusters 
enriched in downregulated genes shared between 4H, 3D, 7D, and 7D+4HRI shown in (D). 
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Figure 3.3. Functionally enriched GO clusters shared among 7D, and 7D+4HRI that have 
enrichment score > 2 and corresponding Gene Ontology (GO) biological process (BP), cellular 
component and molecular function (MF) categories. (A) GO clusters enriched in upregulated genes 
shared between 7D, and 7D+4HRI shown in (B). (C) GO clusters enriched in downregulated genes 
shared between 7D, and 7D+4HRI shown in (D). 
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Figure 3.4. Functionally enriched GO clusters shared among 4H and 3D that have enrichment 
score > 2 and corresponding Gene Ontology (GO) biological process (BP), cellular component 
and molecular function (MF) categories. (A) GO clusters enriched in downregulated genes shared 
between 4H and 3D shown in (B). 
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Figure 3.5. Functionally enriched GO clusters unique in 7D+4HRI that have enrichment score > 
2 and corresponding Gene Ontology (GO) biological process (BP), cellular component and 
molecular function (MF) categories. (A) GO clusters enriched in upregulated genes uniquely 
expressed at 7-days post-encapsulation+4-hours reincubation (7D+4HRI) as shown in (B). (C) GO 
clusters enriched in downregulated genes uniquely expressed at 4hours post-encapsulation (4H) as 
shown in (D). 
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Figure 3.6. Functionally enriched GO clusters unique in 4H that have enrichment score > 2 and 
corresponding Gene Ontology (GO) biological process (BP), cellular component and molecular 
function (MF) categories. (A) GO clusters enriched in upregulated genes uniquely expressed at 4-
hours post-encapsulation (4H) as shown in (B). (C) GO clusters enriched in downregulated genes 
uniquely expressed at 4-hours post-encapsulation (4H) as shown in (D). 
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Figure 3.7. (A) Network of differentially expressed genes shared between 4H, 3D, 7D, and 
7D+4HRI. (|log2(fold change) | > 2) visualized using STRING with very high confidence score of 
0.9. (B) The histogram of genes from (A) having >5 interaction. Red color represent upregulated 
genes and Green color shows downregulated genes. 
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Tables 
Table 3.1 Functionally enriched GO clusters in ESR induced genes (Top 5) 
 

Cluster Category Enrichment Score GO Terms 
Cluster1 BP, MF 10.21 oxidation-reduction process, oxidoreductase activity 
Cluster2 BP 5.59 carbohydrate metabolic process 
Cluster3 BP, MF 5.11 cellular oxidant detoxification, glutathione peroxidase activity 
Cluster4 BP, MF 3.35 peroxidase activity, response to oxidative stress, peroxiredoxin 

activity 
Cluster5 BP, MF 3.27 glutathione metabolic process, glutathione transferase activity 
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Table 3.2 Functionally enriched GO clusters in ESR repressed genes (Top 5) 
 

Cluster Category Enrichment 
score 

GO Terms 

Cluster1 BP, CC 101.08 ribosome biogenesis, nucleolus, rRNA processing 
Cluster2 CC 51.85 nucleolus, nucleus 
Cluster3 BP, CC, 

MF 
41.56 intracellular ribonucleoprotein complex, cytoplasmic translation, 

translation, ribosome, cytosolic large ribosomal subunit, structural 
constituent of ribosome, intracellular, cytosolic small ribosomal subunit 

Cluster4 BP, CC 31.04 90S preribosome, rRNA methylation, small-subunit processome, 
endonucleolytic cleavage in ITS1 to separate SSU-rRNA from 5.8S 
rRNA and LSU-rRNA from tricistronic rRNA transcript, endonucleolytic 
cleavage in 5'-ETS of tricistronic rRNA transcript, endonucleolytic 
cleavage to generate mature 5'-end of SSU-rRNA 

Cluster5 BP, MF 6.77 methyltransferase activity, methylation, transferase activity 
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Chapter 4: Using Optimal F-Measure and Random Resampling in 

Gene Ontology Enrichment Calculations2 

Abstract 
Ordinarily Gene Ontology (GO) enrichment analysis is subject to an arbitrary threshold for 

defining significance of enriched classes. In this paper, we consider replacing an arbitrary threshold 

with F-measure optimization to define the p-value that divides “significant enrichment” from 

“non-significant”.  It is found that evaluation of false negatives (essential for computing recall and 

thus F-measure) requires a heuristic (but reasonable) assumption. We apply F-measure 

optimization to two sets of genes from different organisms and use Benjamini-Hochberg and 

random resampling to evaluate the number of false positives.  It is found that the uncorrected p-

value that produces optimum F-measure varies widely from one data set to another.  It is also found 

that all three methods of FDR calculation diverge from each other within a range of uncorrected 

p-values that provide F-measure optimum p-values. This study includes in Supplementary Material 

a pipeline for using resampling and F-measure optimization to create lists of enriched GO classes 

that provide for variable weights of precision and recall. 

Introduction 
Gene Ontology (GO) enrichment analysis is a powerful tool to interpret the biological implications 

of selected groups of genes. The gene lists from experiments such as microarrays, are gathered 

into clusters associated with biological attributes, and defined as GO terms.30 The GO terms are 

arranged in an acyclic tree structure from more specific to more general descriptions, including 

biological process (BP), cellular component (CC), and molecular function (MF).30 GO aspires to 

be both a cross-species common language, and means of understanding the uniqueness of each 

species at in the categories or biological process, location in the cell, and molecular function.30 

Each enriched GO term is then evaluated by its significance level, i.e. the probability that the 

enrichment has not occurred by pure chance. 

 

Enrichment tools have been developed to process large gene lists to generate significantly enriched 

                                                
2 This work has been submitted in BMC Bioinformatics for publication. 
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ontologies. Huang et.al (2009) summarizes the tools widely used for GO enrichment.108 Different 

tools emphasize different features. Gorilla109, DAVID26, g-profiler110 are web interfaces that 

integrate functional annotations including GO annotations, disease and pathway databases etc. 

Blast2GO111 extends annotation of gene list to non-model organisms by sequence similarity. GO-

Miner112, Babelomics24, FatiGO113, GSEA25, and ErmineJ114 apply resampling or permutation 

algorithms on random sets to evaluate the number of false positives in computed gene ontologies 

associated with test sets. DAVID26 and Babelomics24 introduced level-specific enrichment 

analysis; that is, not including both parents and children terms. The TopGO algorithms “eliminate” 

and “parent-child” eliminate or reduce the weight of genes in the enriched children terms when 

calculating parent term enrichment.115  TopGO116 and GOstats117 provide R-scripted tools for ease 

of further implementation.  Cytoscape plugin in BinGO118 is associated with output tree graphs.  

To calculate raw p-values for GO enrichment without multiple hypothesis correction, methods 

used include hypergeometric distribution, Fisher’s distribution, Binomial distribution, or χ2 

distribution.119  Rivals et. al. discussed the relative merits of these methods.119   

 

Uncorrected p-values are subjected to multiple hypothesis correction by the methods of 

Bonferroni32, Benjamini-Hochberg (BH)31, or Benjamini-Yekutieli (BY).120 Bonferroni is the most 

stringent one among these multiple hypothesis correction methods. Benjamini-Hochberg has been 

widely applied in enrichment tools such as BinGO118, DAVID26, GOEAST121, Gorilla109, and 

Babelomics24, to name a few. The Benjamini-Yekutieli method is included in the GOEAST 

package.121 GOssip provides a direct analytical estimation of false positives that compares well 

with resampling.122 In random resampling, a null set is constructed by random sampling from the 

same structured database that the test set enrichment is computed from. Because it is most directly 

related to the question of how likely it is that an enrichment result may arise by chance, it can be 

reasonably considered the most reliable method for estimating false positives.122 Resampling is 

more computer-intensive than other methods122, but high-throughput techniques have 

demonstrated that it is possible to keep resampling time in a reasonable range.25   

 

In applying all the cited methods and tools, it is common to apply a threshold boundary between 

"significant enrichment" and "insignificance". Such assignment to one of two classes is an example 

of a binary classification problem. Often such classifications are made utilizing an optimum F-
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measure.123 Rhee, et.al. (2008) have suggested application of F-measure optimization to the issue 

of gene ontology enrichment analysis.124 In the present work, we present an approach to gene 

enrichment analysis based on F-measure optimization, which considers both precision and recall 

and provides a flexible reasonable threshold for data sets depending on user choice as to the relative 

importance of precision and recall. The work suggests that resampling is preferable to analytical 

methods to estimate FDR, and F-measure optimization is preferable to an arbitrary threshold, in 

computing enrichment in gene ontology analysis. 

Methods 
Enrichment Tool 

For results reported in this study (described below), the TopGO116 package is implemented to 

perform GO enrichment analysis, using the “classic” option.  In this option, the hypergeometric 

test is applied to the input gene list to calculate an uncorrected p-value.  

 

FDR Calculation 

The empirical resampling, and Benjamini-Hochberg (BH) methods are used to estimate the FDR. 

The p-value adjustment using Benjamini-Hochberg corrections are carried out by a function 

implemented in the R library. http://stat.ethz.ch/R-manual/R-devel/library/stats/html/p.adjust.html  

The resampling method is based on the definition of p-value as the probability that an observed 

level of enrichment might arise purely by chance. To evaluate this probability, we generate several 

null sets, which are the same size as the test set. The genes in the null sets are randomly sampled 

from the background/reference list. GO enrichment analysis was carried out on both test set and 

null set. The average number of enriched results in the null sets would be the false positives. In all 

the results shown in this paper, 100 null sets were used to compute the average.  In the pipeline, 

available for download in Supplementary material, the number of null sets is an adjustable 

parameter.  The ratio of false positives to total positives is the FDR. 

 

F-measure Optimization  

The F-measure is a weighed value of precision and recall.123 The parameter b is chosen based on 

the research question, whether minimization of “type I” (false positive) or “type II” (false negative) 

error, or balance between the two, is preferred, according to the equation: 
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𝐹b =	 (1 + b') )*+,-.-/0∙2+,344
b5)*+,-.-/062+,344

     --------------------- Equation 1 

The larger the magnitude of b the more the value of 𝐹b is weighted towards recall; the smaller the 

value of b the more the value of 𝐹b is weighted towards precision.  To obtain F-measure, precision 

and recall are derived from enrichment results. For an analytical method such as BH, we first 

calculate precision by the equation: 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 1 − 𝐹𝐷𝑅. The true positive is derived by 

(𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒) 	= 	 (𝑇𝑜𝑡𝑎𝑙	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒) 	 ∙ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛. On the other hand, for the resampling 

method, the number of enriched terms from random set indicates false positives. Therefore, we 

first calculate true positive number by: 

𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑣𝑒 = 		 𝑇𝑜𝑡𝑎𝑙	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 −	(𝐹𝑎𝑙𝑠𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒). 

Then, we calculate the precision: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	
𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
𝑇𝑜𝑡𝑎𝑙	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

Recall is defined as 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑣𝑒

𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡	𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠 

“Relevant Elements” is defined by 

𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡	𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠 = 𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 

 

In the absence of the ability to calculate “False Negatives” directly, we estimate the number of 

relevant elements as the maximum true positive achieved across the range of possible p-values, as 

shown graphically in Figure 4.1 for BH method of computing false positives, for a gene list to be 

described in detail later in the paper.  In this figure we plot total positives, false positives (False 

Discovery Rate x total positives, and true positives (total positives – false positives) vs. 

uncorrected p-value for the entire range of p-values from 0 to 1.  At very relax p-values the FDR 

approaches 1, resulting in the true positives approaching 0. It is difficult to evaluate false negatives 

and thus assign a number for “relevant elements”, since a false negative is an object that escaped 

observation, and thus can’t be counted directly.  Yet such estimation is essential to applying F-

measure.  In our case, if we follow the trajectory of the true positives in Figure 4.1 as the threshold 

is relaxed, we see that at very stringent p-values all positives are true positives.  As the threshold 

is relaxed further, more false positives are generated, so the total positive and true positive curves 

start to diverge.  At p = 0.2 (a far higher value than would ordinarily be used as a cutoff) the true 



 79 

positives reach a maximum, and the number of true positives starts to decline as p is further 

relaxed.  We utilize this maximum value as the maximum number of GO categories that can be 

possibly regarded as enriched in the data set; i.e., the number of relevant elements. 

 

Based on precision and recall at each raw p-value cut-off, we can obtain a table and curve of F-

measure vs raw p-value. Optimizing F-measure provides us a threshold which emphasize precision 

(b<1) or recall (b>1), or balance of both (b=1).   Note that precision and recall are extreme values 

of F-measure; that is, Precision=F0 and Recall=F∞. 

Data Sets 
Environmental Stress Response (ESR) 

First dataset is the Yeast Environmental Stress Response (ESR) data3, a robust data set for a model 

organism. The ESR set is list of genes commonly differentially expressed in response to 

environmental stresses such as heat shock, nutrient depletion, chemical stress, etc. Approximately 

300 genes are up-regulated and 600 genes are down-regulated in ESR set.3  We expect this set is 

“well-behaved” (give reasonable results with standard methods of analysis), since the data come 

from a very well annotated model organism subject to a widely studied experimental intervention.   

 

Alarm Pheromone (AP) 

The second data set is comprised of human orthologs to the honey bee Alarm Pheromone set.125 

The Alarm Pheromone set is a list of genes differentially expressed in honey bee brain in response 

to the chemical alarm pheromone, which is a component of the language by which honey bees 

communicate with each other. Previous studies have shown that the Alarm Pheromone set is 

enriched in placental mammal orthologs, compared to other metazoans including non-social insect 

orthologs.126 The Alarm Pheromone set is much smaller than the ESR set, with 91 up-regulated 

genes and 81 down-regulated genes. We expect the AP set is not so “well-behaved” compared to 

the ESR set, as we are using a model organism orthologs (human) to a non-model organism (honey 

bee) and the organisms diverged about 600 million years ago. 

 

Random Test Sets 

To generate a baseline of the analysis for each data set using different FDR calculation methods, 
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we have applied the pipeline to analyze randomly-generated sets as “test” set inputs, where FDR 

should equal to 1 for all uncorrected p-values.  

 

The BH FDR curves are calculated in the following way: The R program p.adjust is applied to 

generate a list of analytically calculated FDR’s (BH) corresponding to uncorrected p-values for 

each “test” sets. Then the lists of FDRs are merged and sorted by uncorrected p-values. The FDRs 

are smoothed by a “sliding window” method: at each uncorrected p-value point, the new FDR is 

the average value of 11 FDRs centered by the uncorrected p-value point. 

 

The Resampling FDR curves are calculated in the following way: The output uncorrected p-values 

are binned in steps of 1E-4. The counts in each bin for the “test” set enrichment categories are the 

“Total Positives”, and average counts in each bin for the null set enrichment categories are the 

“False Positives”. The process is repeated for the 10 “test” sets within each group, and we would 

obtain 10 lists of “Total Positives” and “False Positives”. Then the number of “Total Positives” 

and “False Positives” are averaged. The FDR would be the quotient of the averaged Total and 

False Positives. Then, all the FDRs are plotted against the uncorrected p-values. 

Results and Discussion 
In this section, we present the results of applying our methods to the two previously published sets 

of data introduced in the Methods section, the ESR set and the human orthologs of the Alarm 

Pheromone set. For both above data sets, we show the results from analyzing the genes using the 

biological process (BP) category of the gene ontology.   

ESR Set (Environmental Stress Response, yeast)  
Benjamini-Hochberg (BH) 

Figure 4.2 shows the results of F-measure optimization on the ESR data based on FDR calculated 

by Benjamini-Hochberg (BH) method.  As expected by their definitions, precision (F0) decreases 

with increasing p-value while recall increases with increasing p-value. F0.5 (precision-

emphasized), F1 (precision and recall equally weighted) and F2 (recall-emphasized) all show 

relative maxima, providing a rational basis for assigning a threshold for significance. The 

horizontal scale is extended far enough to visualize the determination of the number of relevant 

items.  In the case of the up-regulated gene set, maximum F1 occurs at an uncorrected p-value close 
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to 0.05.  In the case of the down-regulated gene set however, it appears that a more stringent cutoff 

would be appropriate.  

 

Resampling 

Figure 4.3 shows the results of F-measure optimization on the ESR data using resampling to 

calculate FDR. The false positives are calculated by average number of GO categories enriched in 

random sets. All the F-measures optimize at much lower uncorrected p-values than do the F-

measures calculated by the BH method. 

Alarm Pheromone Set (human orthologs)  
Benjamini-Hochberg (BH) 

Figure 4.4 shows exactly the corresponding results as Figure 4.2, this time on the human orthologs 

to the honey bee alarm pheromone set.  F-measures are maximized at much higher thresholds than 

for the ESR set.  The difference in optimal F-measure is largely due to the different shapes of the 

recall curves.  For the ESR set, precision drops significantly more rapidly with increasing 

uncorrected p-value than does the AP set.  Therefore, a higher uncorrected p-value can be used for 

the latter set with essentially the same degree of confidence.  

 

Resampling 

Figure 4.5 shows the number of GO categories and F-measures for the alarm pheromone set human 

orthologs using resampling method. The resampling method have found more false positives than 

BH, and therefore the precision is much lower than the precision calculated from BH, and the F-

measures are optimized at lower uncorrected p-values than the F-measures calculated from BH. 

In the above Figures 4.2-4.5, we can note the stepped structure in the number of enriched GO 

categories. The stepped structure lies in the fact that the number of genes associated with any GO 

category, in the test set or reference set, must be an integer with limited number of choices. 

Therefore, the uncorrected p-values calculated would be in a discrete set instead of a continuum. 

Consequently, the number of positives as a function of p-values increases in a stepped way. As a 

result, the F-measures derived from the number of GO categories have spikes. But as our graphs 

have demonstrated, the optimal F-measures reflect the different weights on precision and recall 

despite the spikes. 



 82 

Comparison of FDR (False Positive) Calculation by Benjamini-Hochberg 

(BH) and Resampling 
In the previous section, we have demonstrated how to use F-measure optimization to obtain a 

flexible threshold based on requirement of the research problem, whether precision or recall is 

more heavily weighted. This section demonstrates how the resampling method applies to the F-

measure optimization approach by providing an alternative way to estimate FDR. We have plotted 

the FDR calculated by BH and Resampling of the test sets, as well as the randomly selected sets 

that are same size as the test sets as the baselines. The random “test” sets are selected from the 

same reference set as the test sets they are compared to. To reduce random fluctuation, each random 

“test” set result is averaged over 50 runs.  

 

Figure 8 shows that for the ESR set, the BH method and resampling estimate similar FDR at low 

p-value. As the threshold increases, the BH method estimates lower false discovery rate, and 

therefore higher precision, than the resampling method at the same raw p-value. For the Alarm 

Pheromone set, the BH method estimates lower FDR than resampling.  

 

To further evaluate the methods, we carried out multiple runs using random sets as test sets.  In 

this case, the FDR should in principle be 1, for any uncorrected p-value.  The results of this test 

are shown in Figure 4.6a, where for each segment of p-values (bin size = 0.0001) we show the 

mean plus/minus the standard deviation. The Resampling method passes the test on the average, 

but the results are noisy; and the BH method systematically underestimates FDR.  Figure 4.6b 

shows that the noise in the Resampling method results in Figure 4.6a are largely due to the 

variation in the random “test” sets, and that the noise level in using random resampling for real 

data is acceptably low. 

Threshold comparison summary 
In this section, we show the bar graphs (Figures 4.7, 4.8) of number of enriched biological process 

GO categories associated with ESR and alarm pheromone sets, at different thresholds including 

the commonly-used FDR < 0.05, optimization of F0.5, F1, and F2, with BH and resampling methods.  

This is an alternative representation of data already presented in Figures 4.2-4.5. 

In Figures 4.7 and 4.8, we are comparing the number of enriched GO categories found using 
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thresholds calculated by BH and Resampling. The leftmost bars in each cluster represents FDR 

under 0.05, and the next three bars are results from flexible thresholds by F-measure optimization. 

We see that the most widely used method (BH FDR<0.05) is generally quite stringent. When we 

weight more on precision by optimizing F0.5 using the resampling method, a more stringent 

threshold is calculated for the alarm pheromone set. Maximizing F1 would bring back many more 

terms. Investigation into precision tells us that sometimes the F1-maximized FDR is too high (near 

1) for us to tell apart signal and noise, and might not be a good threshold. However, whether F1 

optimization is reasonable depends on the data set. In the ESR set, where precision and recall can 

reach the balance where both are reasonable (precision=0.84, recall =0.96 for the up-regulated; 

precision=0.93, recall=0.94 for the down-regulated), the F1 optimized threshold is reliable in the 

sense we can be confident in validity of the large majority of the terms that are returned. On the 

other hand, for the alarm pheromone set, precision becomes very low when F1 is optimized 

(precision=0.46, recall=0.35 for the up-regulated; precision=0.53, recall=0.81 for the down 

regulated), so the user may wish to use a more stringent threshold.  The major point is that the 

threshold will not be arbitrary, but rather based on the scientist’s judgment on the relative biological 

significance of how much weight to give precision and recall. 

Conclusions 
In this work, we have addressed two issues with the commonly used methods in the GO enrichment 

analysis: the arbitrariness of the threshold for significance, and the relationship between 

resampling vs. Benjamini-Hochberg theory for estimating false discovery rate. For the first part, 

we introduced optimization of F-measures so that both type I and II errors are considered. Unlike 

arbitrarily applied threshold of BH FDR<0.05 or raw p-value<0.01 for any data set, the F-measure 

optimization approach provides a flexible threshold appropriate to the nature of the data set and 

the research question. If the data set is high in noise-to-signal ratio and the penalty for letting in 

false positive is high, we can choose to optimize F-measures weighing more on precision. If the 

data set fails to show much enrichment by commonly-applied methods, we can relax the threshold 

and extract the best information indicated by F-measure optimization. For the second part, we 

introduced resampling approach using random sets to directly estimate false positives, and 

consequently derive values of FDR, precision, recall, and F-measures. We believe that for the GO 

enrichment analysis, a resampling method is more universally applicable than the BH method, 
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because the resampling method is a direct algorithmic representation of the false discovery rate; 

that is, the likelihood of getting a positive result by pure chance. Thus, results from resampling are 

independent of the structure of the data set, such as parent-child relationships. A concern is that, 

because of the nature of the problem, we were forced to use a heuristic (albeit reasonable) method 

to estimate the false negatives, essential for calculating recall.  We judge that this concern is more 

than offset by the advantage of enabling the replacement of an arbitrary threshold with F-measure 

optimization.  In the supplementary material, we present our automatic pipeline integrating TopGO 

with resampling and analyzing functions to carry out the whole process of resampling, enrichment 

analysis, F-measure calculation, and representing results in tables and figures. The pipeline also 

includes a GOstats117 module for easy analysis of under-represented terms. As demonstrated, the 

pipeline can also calculate analytical FDR including, but not limited to the BH method. In 

summary, we suggest replacing a fixed p-value for assigning a threshold in enrichment calculations 

with an optimal F-measure, which incorporates the well-established and well-defined concepts of 

precision and recall. 
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Figures 

 
Figure 4.1. Number of positives for the yeast environmental stress response (ESR) set over the 
full range of uncorrected p-values from 0 to 1. “Total Positives” is the number of Biological 
Process GO categories returned as a function of the p-value threshold for significance.  “False 
Positives” is the number of total positives multiplied by the False Discovery Rate as calculated by 
the Benjamini-Hochberg formulation.  “True Positives” is “Total Positives” minus “False 
Positives”.  “Relevant Items”, necessary to estimate number of false negatives, is estimated as the 
largest number of true positives computed at any uncorrected p-value. 
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Figure 4.2. Number of positives and F-measure values for ESR set, BH-estimated FDR a) Shows 
the number of enriched biological process Gene Ontology categories as a function of uncorrected 
p-value, the Benjamini-Hochberg number of false discoveries, and the projected true positives, 
namely the difference between the total positives and the false positives, for the upregulated ESR 
gene set. This panel is from the same data set at Figure 4.1.  The number pairs in parenthesis are 
respectively (uncorrected p-value maximizing F0.5, “number of true positives” at that p-value), 
(uncorrected p-value maximizing F1, “number of true positives” at that p-value), (uncorrected p-
value maximizing F2, “number of true positives” at that p-value), (uncorrected p-value maximizing 
true positives, “number of true positives” at that p-value) b) is the same as a) for the downregulated 
gene set. c) shows the F-measures computed from a) and d) the F-measures computed from b). 
Number of relevant items, necessary to calculate recall (and therefore (F-measure)), is 
approximated by (total positives – false positives) max, where Fmax is the p-value at which the 
computed true positives are a maximum. This p-value is 0.19 for upregulated gene list (a) and at 
0.104 for downregulated gene list. (b) The pairs of numbers in parenthesis in a) and b) indicate the 
p-value and number of returned GO terms at significant markers, specifically at maximum F0,5  
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Figure 4.2 (Con’t) 
(emphasizing precision), F1 (balanced emphasis between precision and recall), F2 (emphasizing 
recall), and Fmax (p-value at which computed true positives are a maximum). 
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Figure 4.3. Number of Positives and F-measure values for ESR set, Resampling-estimated FDR. 
A) Shows the number of enriched biological process Gene Ontology categories as a function of 
uncorrected p-value, the average number of enriched Gene ontology categories from the random 
set as the false positives, and the projected true positives, namely the difference between the total 
positives and the false positives, for the up-regulated ESR gene set. The number pairs in 
parenthesis are respectively (uncorrected p-value maximizing F0.5, “number of true positives” at 
that p-value), (uncorrected p-value maximizing F1, “number of true positives” at that p-value), 
(uncorrected p-value maximizing F2, “number of true positives” at that p-value), (uncorrected p-
value maximizing true positives, “number of true positives” at that p-value) b) is the same as a) 
for the down-regulated gene set. c) shows the F-measures computed from a) and d) shows the F-
measures computed from b). Number of relevant items, necessary to calculate recall (and therefore 
(F-measure)), is approximated by (total positives – false positives) max, where Fmax is the p-value 
at which the computed true positives are a maximum. This p-value is 0.038 for upregulated gene 
list (a) and 0.018 for downregulated gene list. (b) The pairs of numbers in parenthesis in a) and b) 
indicate the p-value and number of returned GO terms at significant markers, specifically at  
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Figure 4.3 (Con’t) 
maximum F0,5 (emphasizing precision), F1 (balanced emphasis between precision and recall), F2 
(emphasizing recall), and Fmax (p-value at which computed true positives are a maximum). 
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Figure 4.4. Number of Positives and F-measure values for Alarm Pheromone set, BH-estimated 
FDR a) Shows the number of enriched biological process Gene Ontology categories as a function 
of uncorrected p-value, the Benjamini-Hochberg number of false discoveries, and the projected 
true positives, namely the difference between the total positives and the false positives, for the 
upregulated alarm pheromone human orthologs gene set. The number pairs in parenthesis are 
respectively (uncorrected p-value maximizing F0.5, “number of true positives” at that p-value), 
(uncorrected p-value maximizing F1, “number of true positives” at that p-value), (uncorrected p-
value maximizing F2, “number of true positives” at that p-value), (uncorrected p-value maximizing 
true positives, “number of true positives” at that p-value) b) is the same as a) for the downregulated 
gene set. c) shows the F-measures computed from a) and d) the F-measures computed from b). 
Number of relevant items, necessary to calculate recall (and therefore (F-measure)), is 
approximated by (total positives – false positives) max, where Fmax is the p-value at which the 
computed true positives are a maximum. This p-value is 0.385 for upregulated gene list (a) and at 
0.312 for downregulated gene list. (b) The pairs of numbers in parenthesis in a) and b) indicate the 
p-value and number of returned GO terms at significant markers, specifically at maximum F0,5  
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Figure 4.4 (Con’t) 
(emphasizing precision), F1 (balanced emphasis between precision and recall), F2 (emphasizing 
recall), and Fmax (p-value at which computed true positives are a maximum). 
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Figure 4.5. Number of Positives and F-measure values for Alarm Pheromone set, Resampling-
estimated FDR. The Figure shows the number of enriched biological process Gene Ontology 
categories as a function of uncorrected p-value, the average number of enriched Gene ontology 
categories from the random set as the false positives, and the projected true positives, namely the 
difference between the total positives and the false positives, for the up-regulated alarm pheromone 
human orthologs gene set. b) is the same as a) for the down-regulated gene set. c) shows the F-
measures computed from a) and d) the F-measures computed from b). Number of relevant items, 
necessary to calculate recall (and therefore (F-measure)), is approximated by (total positives – 
false positives) max, where Fmax is the p-value at which the computed true positives are a maximum. 
This p-value is 0.475 for upregulated gene list (a) and at 0.048 for downregulated gene list. (b) 
The pairs of numbers in parenthesis in a) and b) indicate the p-value and number of returned GO 
terms at significant markers, specifically at maximum F0,5 (emphasizing precision), F1 (balanced 
emphasis between precision and recall), F2 (emphasizing recall), and Fmax (p-value at which 
computed true positives are a maximum). 
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Figure 4.6. False discovery rate estimated by Benjamini-Hochberg and Resampling for the ESR 
set and Alarm Pheromone set. Figure 4.8 compares the number of false discovery rate calculated 
by Benjamini-Hochberg and Resampling in each set: a) up-regulated ESR, b) down-regulated ESR, 
c) up-regulated Alarm Pheromone set, and d) down-regulated Alarm Pheromone set. Generally, 
resampling has found higher false discovery rate than Benjamini-Hochberg. At low p-values, the 
BH and resampling methods get similar estimation of false discovery rate for the ESR set. 
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Figure 4.7. Comparison of different FDR calculation methods on accuracy and convergence. a) 
Comparison of BH and Resampling on random “test” sets.  At each p-value (p-values binned at 
intervals of .0001), the mean and standard deviation are calculated and plotted as shown.  The 
random test sets consist of 281 yeast genes, against the background of the entire yeast genome. 
For each of the methods 50 test sets were used and the mean plus/minus standard deviation plotted 
as shown, it is seen that BY hits the mark (FDR=1) over a wide range of p-values, Resampling hits 
the mark on the average but with substantial noise, while BH systematically underestimates FDR. 
b) Evaluation of resampling convergence on a real data set, ESR upregulated considered in this 
paper.  This set is run against five different ensembles of null sets, each ensemble containing 100 
null sets.  The mean and standard deviation are plotted and compared to the results from the random 
test sets.  It is seen that the noise of the resampling method on a real data set is acceptable. 
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Figure 4.8. Number of GO categories obtained at different thresholds including: FDR<0.05, F0.5 
optimization, F1 optimization, and F2 optimization, using Benjamini-Hochberg (BH) and 
Resampling.  Calculated FDR for the ESR set, up- and down-regulated. BH-estimated F0.5, F1, and 
F2 optimization gives 120, 188, and 331 GO terms for up-regulated ESR set respectively, and 98, 
129, 161 terms for down-regulated set respectively. Resampling-estimated F0.5, F1, and F2 
optimization gives 98, 126, and 148 terms for up-regulated ESR set respectively, and 100, 124, 
140 terms for down-regulated set respectively. As more emphasis is placed on recall, the threshold 
would increase and more terms would be recovered. The F-measure optimization thresholds 
estimated by BH is more relaxed by resampling and consistently brings back more terms. The 
FDR<0.05 threshold is more stringent for the up-regulated set than F0.5 optimization, but less 
stringent for the down-regulated set than F0.5 optimization. For both up- down- regulated sets, the 
most stringent thresholds given by BH and resampling are close to each other (FDR<0.05 for up-
regulated, and F0.5 optimization for down-regulated), indicating BH and resampling estimates 
similar FDR at the most stringent thresholds for the ESR set, but then deviates as thresholds 
increase.  
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Figure 4.9. Number of GO categories obtained at different thresholds including: FDR<0.05, F0.5 
optimization, F1 optimization, and F2 optimization, using Benjamini-Hochberg (BH) and 
Resampling – calculated FDR for the AP set, up- and down-regulated. BH-estimated F0.5, F1, and 
F2 optimization gives 790, 1218, and1363 GO terms for up-regulated AP set respectively, and 453, 
767, 799 terms for down-regulated set respectively. Resampling-estimated F0.5, F1, and F2 
optimization gives 86, 211, and 941 terms for up-regulated AP set respectively, and 45, 136, 143 
terms for down-regulated set respectively. As more emphasis is placed on recall, the threshold 
would increase and more terms would be recovered. The F-measure optimization thresholds 
estimated by BH is more relaxed by resampling and consistently brings back more terms. The 
FDR<0.05 threshold is more stringent for the up-regulated set than F0.5 optimization, but less 
stringent for the down-regulated set than F0.5 optimization. Increasing the thresholds to optimize 
F0.5, an F-measure which includes the effect recall but still emphasize on precision, brings in many 
more terms. Therefore, for the alarm pheromone set a cutoff of FDR<0.05 might leave out too 
many possible candidates. 
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Appendix A: GO terms and KEGG pathways enriched in each 

encapsulation method 
Table S1 Complete list of GO terms enriched in CDA at FDR-adjusted P-value <0.05  
Table S2 Complete list of GO terms enriched in AqS+g at FDR-adjusted P-value <0.05  
Table S3 Complete list of GO terms enriched in SD at FDR-adjusted P-value <0.05  
Table S4 Complete list of KEGG pathways enriched in CDA, AqS+g and SD at FDR-adjusted P-
value <0.05  
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Appendix B: Workflow for TopGO and GOstats automated pipeline 
A TopGO- and GOstats-based automated pipeline for GO enrichment analysis using F-measure 
optimization based on resampling and traditional calculation.  
 

 


