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ABSTRACT

This thesis presents the study of an advanced non-equilibrium model for
state-specific chemical kinetics based on method of moments. The focus of
this project is on the rovibrational chemical kinetics of the No(*¥})-N(*S,)
system. Internal excitation, dissociation, recombination and energy transfer
reactions, which are important processes in aerothermodynamics, are studied.
The kinetic and thermodynamic data is obtained from ab-initio calculations
performed at NASA Ames Research Center. Previous analysis of the popula-
tion distribution revealed that the population of the low lying energy levels of
nitrogen molecules strongly deviates from a Boltzmann distribution, and the
non-equilibrium distribution exhibits significant curvature. By invoking the
maximum entropy principle subject to a series of constraints, the logarithm
of distribution function is reconstructed using quadratic functions in the in-
ternal energy space of the molecular species. The results of the numerical
simulations for an ideal chemical reactor show that the quadratic model cap-
tures the excitation and dissociation profiles accurately by using only three to
seven groups thereby reducing the computational costs for non-equilibrium

flow simulations significantly.
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CHAPTER 1

INTRODUCTION

Non-equilibrium flows occur during the entry or re-entry of a space vehicle
into the planetary atmosphere. The re-entry occurs at hypersonic speeds giv-
ing rise to strong bow shocks in the forebody region as seen in figure 1.1. This
heats up the gas to several thousand Kelvin which results in excitation of
the internal energy modes of the molecules and change in composition of the
gas mixture. These thermal and chemical process occur over a finite period
of time known as the characteristic time for these process. This characteris-
tic time is of the same order of magnitude as that of the flow characteristic
time leading to flowfield with thermal and chemical non-equilibrium. These
process have a prominent effect on the surface heating of the vehicle due
radiation and convection. This nesseciates the use of well designed and ap-
propriate thermal protection systems which facilitate the dissipation of heat
from the surface of the vehicle by various methods like ablation, insulation
etc.

Since the aerothermodynamic heating is very sensitive to the non-equilibrium
processes in the flow, accurate characterization of non-equilibrium is vital.

This study aims at modeling chemical non-equilibrium using first principles.

1.1  Objective and Overview

In the design of robust and effective thermal protection systems for space-
craft, it is vital that the heating on the surface of spacecraft moving at hy-
personic speeds is predicted accurately. During entry of a space vehicle into
the atmosphere of a planet, high temperatures reached in the shock layers
change the state of the gas surrounding the spacecraft. The strong chemical
non-equilibrium in the gas mixture causes changes in the energy distribution

around the capsule thereby affecting the determination of heat loads on the



vehicular surface. Hence estimation of the heating depends strongly on the
modeling and characterization of the non-equilibrium flow physics. Accurate
modeling of non-equilibrium is also necessary for correct interpretation of
data obtained through experiments in the shock tube, arc jet etc.

Currently, a tremendous effort is underway to study the microscopic inter-
actions of the molecule-atom and molecule-molecule systems (Airforce/NASA).
However, solving all these microscopic interactions from first principles is not
practical since it is computationally very expensive. For example, the No-N
system has 23 million reaction mechanisms possible. This number increases
dramatically for molecule-molecule system due to the introduction of simul-
taneous excitation-dissociation as well as simultaneous excitation processes.
Therefore, these limitations motivate the formulation of physics-based re-
duced order models in order to study non-equilibrium flows.

Therefore, the objective of the current study is to construct a new class
of quantum-chemistry based models to enable truly predictive simulation of
non-equilibrium chemistry phenomena, over a wide spectrum of flow con-
ditions. Figure 1.2 give a pictorial representation of the objective of this

project.
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Figure 1.1: Flowfield around a hypersonic planetary re-entry vehicle
Source - Nasa Ames Research Center
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Figure 1.2: Objective: Work at the interface between computational
chemistry, experimental measurements and CFD

The current work is dedicated to modeling the chemical kinetics of the
No('X})-N(*S,) system in a computationally efficient way. However, it
should be kept in mind that the models developed in this thesis are ap-

plicable to any molecule system.

1.2 Literature Review

With the advancement in computational resources, detailed calculations of
the reaction rates can be carried out [1, 2, 3, 4, 5|. Reaction rates govern the
rate at which chemical reactions occur. They also determine the equilibrium
constant and can be used to predict the equilibrium composition of a mixture.
In these rate calculations, the first step is to obtain the Potential Energy
Surface (PES); this is followed by calculation of the reaction rates by studying
the collisional scattering using either quasi-classical trajectory (QCT)[6, 7, §]
or quantum approaches[9].

Departure of the population distribution function from the equilibrium
Boltzmann distribution has a strong effect on the processes of dissociation
(10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23] and recombination
24, 25, 26, 27, 28, 29] which in turn affect the heating of the gas. The most
accurate method to account for the non-equilibrium process is the state-to-
state model, [30, 31, 32] which describes the evolution of the molecules in

each energy state individually. Even though these methods are accurate,



they are computationally expensive due to the large number of energy states
and possible reactions. Hence, it is impractical to include these methods in
flow solvers to account for non-equilibrium dynamics [35, 36, 37, 38, 39]. An-
other approach to handle non-equilibrium flows is that of a multi-temperature
model, where each internal energy mode follows an equilibrium distribution
at a temperature corresponding to that energy mode [40, 41, 42]. However,
this model is applicable only for flows where the deviation from equilibrium
is very small.

The moment method was proposed to model translational non-equilibrium
by Grad [43] and Levermore [44] in order to overcome the breakdown of the
Chapman-Enskog expansion [45] in case of strong non-equilibrium conditions.
An early attempt at modeling vibrational non-equilibrium was done by Lan-
dau and Teller [46]. This model is a linear relaxation model with various sim-
plifying assumptions. Recently, Liu et al. [18, 19, 20] introduced a general
methodology for modeling thermal and chemical non-equilibrium processes.
In order to characterize the non-Boltzmann distribution, piece-wise repre-
sentations of the distribution function were proposed. The quantum energy
states of atoms and molecules are first subdivided into groups. A unified set
of macroscopic equations for solving for both microscopic and macroscopic
quantities are formulated by taking moments of the microscopic master equa-
tions. The microscopic solution is obtained by reconstruction based on the
maximum entropy principle subject to the moment constraints, in which the
logarithm of the distribution function in each energy group is expressed as
a power series in internal energy. Macroscopic group rate coefficients are
determined using the exact formulations but with the model distribution
function. They are expressed as weighted sums of the corresponding mi-
croscopic rate coefficients, involving no tuning parameters or ad hoc fixes.
Macroscopic modeling is considered as seeking the optimum reconstructed
microscopic distribution function that provides converged and time accurate
macroscopic quantities at all times. Through refinement of grouping and/or
moment order, one can improve the accuracy of microscopic quantities and
also check the convergence of macroscopic quantities. Since only moment
equations are involved in the model, the number of differential equation to
be solved is significantly reduced. The maximum entropy linear model was
first published in 2010[18], there the macroscopic mass and internal energy

equations for energy groups were obtained in a coupled manner from the
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zeroth-order and first-order moments of the master equations. The formula-
tion was later extended to high orders[19], and to general collisional and ra-
diative processes[20]. Results of the linear model obtained in isothermal heat
bath calculations have shown that accurate predictions of the macroscopic
number density and internal energy are achievable by using only one to three
energy groups, a total of 2 to 6 macroscopic equations[19, 20]. However, the
linear model has also exhibited some deficiencies in predicting microscopic
non-equilibrium populations if too few groups are used. [20)]

In the multi-group models, the energy levels can be grouped together in
various ways. Grouping is usually done based on a physical property of the
levels where levels having close values for a property are grouped together.
One such grouping technique which is also employed in this paper is the
energy based grouping method. However, this method does not incorporate
the kinetics of the system. An improved grouping strategy was proposed
Sahai et. al. [47, 48]. This novel grouping strategy is based on the energy as
well as the chemical kinetics of the system. The levels that are connected by
'fast” reactions tend to equilibrate with each other and hence are identified
and grouped together. Two approaches are identified for grouping based on
kinetics. One is the island algorithm which is derived from graph theory. The
island algorithm finds points on a graph that are connected and lumps them
together in an island. In the multi-group chemistry models, these islands
are the groups of energy levels. Another technique developed for grouping
energy levels is based on spectral clustering also from graph theory.

The current work presents a maximum entropy high order, modeling tech-
nique for non-equilibrium flows to address the deficiencies of the linear model.
In this study, we use a piecewise quadratic representation for each group to
describe the population distribution function. We focus on the rovibrational
chemical kinetics of the Ny(*¥¥)-N(*S,) system. While constructing the
macroscopic governing equations we make no ad hoc assumptions regarding
the internal energy modes of the molecule. The system can be generalized to
involve other collisional and radiative processes if state-to-state rate coeffi-
cients become available. Note that the calculations to obtain all microscopic
state-to-state rate coefficients would be very time consuming, and often im-
practical, for a collisional or radiative process. A new approach tailored for
the model using Monte Carlo QCT that requires only a small fraction of the

microscopic state-to-state coefficients to obtain converged macroscopic group



rate coefficients has been recently proposed by Macdonald et al. [49].

1.3 Thesis Organization

This thesis is organized in to 5 chapters. Chapter 1 is the introductory
chapter. Chapter 2 describes the maximum entropy principle which is vital
in formulation of the reduced order model. It also describes the exact system
being studied which included the state to state kinetics of the Ny(*¥¥)-
N(*S,) system and the microscopic governing equations. This chapter lays
the ground for building the reduced order model. The detailed derivation and
formulation of the reduced order quadratic model is discussed in chapter 3.
The chapter first discusses the method of moments applied in statistics. This
method is used to form the macroscopic governing equations of the system.
Various grouping strategies that can be used to club together internal states
of the molecules are discussed. The exact macroscopic equations obtained
from the microscopic equations are formulated with out any assumptions.
Finally the chapter discusses the properties of the grouped chemical rates.
The validation of this model against the state to state model is presented in
chapter 4. This chapter shows the results of various numerical simulations
run with different number of groups and different reconstruction operators
including linear and quadratic reconstruction. The thesis is finally concluded

in the last chapter.



CHAPTER 2

NON-EQUILIBRIUM FLOWS - PHYSICAL
MODELING

There are 2 main aspects to the methodology developed. First is using the-
maximum entropy principle in order to obtain a representation of the popu-
lation distribution of the molecules in varies energy levels and second is the
formulation of the macroscopic governing equations. This method involves
the use of concepts of statistical mechanics and method of moments dicussed

in the various sections of this chapter.

2.1 Maximum Entropy Principle

According to the postulates of thermodynamics, it is stated that in a system
with no internal constraints, the extensive properties like internal energy,
volume and number of particles, assume values that maximize the entropy
of the system[50].

In the microcanonical ensemble of statistical thermodynamics, the Boltz-
mann equation gives a relation between the possible equiprobable microstates
of a system and the entropy of the system. Maximum entropy is therefore
related to W4, which is the maximum number of microstates possible for
a given macrostate. The Boltzmann’s equation then describes the maximum

entropy of a system in equilibrium as,

Smax = kB In Wma:p (21>

Winaze can be described by either the Fermi-Dirac Statistics or the Bose-
Einstein Statistics. However, in the dilute limit, when the number of states
available is much larger than the number of particles both statistics converge
to the Maxwell-Boltzmann Statistics. This assumption is particularly valid
at the high temperatures in the flow field of a hypersonic re-entry vehicle.

Using the maximum entropy principle, the population distribution in the



internal energy space of the system can be described by the following Boltz-

mann distribution function,

€4

gie*B”

Q

Q represents the partition function and is given by the following equation,

(2.2)

Ny = Nyot

Q=Y gicrT (2.3)

Here, g; represents the degeneracy of the internal energy state ‘i’. In the
formulation of the new reduced order model, the entropy of each group is
maximized and the distribution of the population in each group is given by

a piecewise quadratic function.

2.1.1 Statistics

For a system of particles, the particles can be distributed in the various micro-

states (in this study, the internal energy states) based on two statistics:
e Fermi-Dirac Statistics
e Bose-Einstein Statistics

These two statistics depend on the nature of the particles being studied.

Fermi-Dirac Statistics

In this type of statistics, only one fermion(elementary particle) can occupy
a given degenerate state. The number of ways in which fermions, n; can

occupy the energy levels is given by:

we =] (9—' (2.4)

iely

By Sterling’s Approximation, we get:

anF:Z {niln (gi T_an) +¢;1n (g%n)} (2.5)

el




Bose-Einstein Statistics

In this type of statistics, there is no restriction on the number of bosons(elementary
particles) that can occupy a given degenerate state. The number of ways in

which the bosons, n; can occupy the energy levels is given by:

We = L0 (29)
ielg

Assuming g; > 1 and n; > 1, by Sterling’s Approximation, we get:

anB:Z [niln (nz;_gz> + g;In (ni—'_gi)] (2.7)

iely 9i

In the limiting case, we have g; > n,;. In this dilute limit, both Fermi-Dirac
and Bose-Einstein statistics converge to the Boltzmann Statistics, resulting

n:

4. . .
mWg=>" [n In (gl n”) F giIn (91 ]F")} (2.8)

; i i
tely

InWg = Z [niIn(g; £ n;) — ngIn(n;) F g:In(g; F i) £ g:1n(g;)]  (2.9)

1ely

To find the value of W that maximizes the above equation, the derivative

of the equation is computed.

d(lnW}) = Zdni [ln(gi +n;) £ " iln —1In(n;) — 1+ 7 izn} (2.10)

iely

dInWj) = > dn;[In(g; £ n;) — In(n;)]

el

S i (222

1ely

= Y dn, [111 <z— + 1>]

1ely




Since g; > 1, n; > 1 and g¢; > n;, we get:

dmW) =" dn, {m (fl—ﬂ (2.11)

iely
For W00,

AWk =" dn, {m (i—ﬂ =0 (2.12)

ielg

2.2  State-to-State Kinetics

To study the application of the macroscopic model developed, chemical re-
actions occurring in the Np(*¥F)-N(*S,) system are studied. By Ny(*¥})-
N(*S,) system it is meant that only reactions occurring due to the collisions
of N9 molecules and N atoms are considered, i.e. the collision partner in
all reactions is the nitrogen atom, N(*S,). For simplicity, no radiative pro-
cesses are included in this paper. The state-to-state collision reactions consid-
ered include the rovibrational energy transfer interactions and dissociation-
recombination reactions. The concentration of the chemical species is a func-
tion of time alone, i.e. the mixture is spatially homogeneous and the simula-
tions are 0-D simulations. Electronic transitions and ionization reactions are
ignored in this study. However, this is a generic model and can be applied
for all kinetic (state-to-state collisional) and radiative processes.

The Ny(*37) molecule has 9390 rovibrational levels. The first 7421 levels
are bound levels and the remaining are pre-dissociative or quasi bound. The
state-to-state kinetics data for this system is obtained from the ab initio cal-
culations done at NASA Ames Research Cente.[1, 3, 2, 4]. The rovibrational
levels are sorted in the increasing order of their energy. There is no distinc-
tion between the rotation and vibration levels. They are treated in the same
manner. The kinetics of this chemical system is discussed below.

The following represents the energy transfer reactions of the Ng(lE;)—
N(%S,) system:

Ni+ N <= Nj +N

These reactions include momentum and energy transfer amongst the molecules

and atoms. The index 7 and j in the reaction represent the rovibrational level
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in the Ng(lZ;) molecule. There is no superscript on the collision partner
since it is assumed that the collision partner does not undergo a change in
its internal state during the reactions.

The other pair of reactions studied are the dissociation-recombination re-

actions. These can be represented as:

Ni4+ N<= N+N+N

These reactions also include mass transfer in addition to momentum and

energy transfer.

2.3 Microscopic Governing Equations

There are over 40 x 108 rovibrational dissociation and energy transfer reac-
tions possible in the Ny(*37F)-N(*S,) system. The chemical master equation
governing these reactions is discussed in this section.

Let n’}VZ, g; and ¢; denote the population, degeneracy and energy of rovibra-
tional level 7 of the Ny molecule. ny denotes the number of nitrogen atoms.
The excitation rate coefficients from level 7 to j are denoted by k; ; and the
dissociation rate coefficients are denoted by k¢. These rate coefficients are
calculated using an Arrhenius fit where the fit parameters are obtained from
the calculations done at NASA Ames Research Center. The de-excitation
rate coefficients k;; and recombination rate coefficients k] are computed us-
ing the relations of detailed balancing. The principle of detailed balancing
relates the forward and backward rates of a chemical reaction by the equilib-
rium constant. The equilibrium constant can be expressed as a function of
the degeneracy and energy value of the level. The following equations show

the relationship between these various rate coefficients.

K = %exp {—_(Zg _Tgi)} (2.13)
tr\2
. —(2en — €;
Kdiss = (ng Q;TV) exp { ( ZgT €’>] (2.14)
i N,y
o m kg T\’
Q"= (—h2 . ) (2.15)
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K4 is the notation used for the equilibrium constant either for the excitation-
deexcitation reactions (exc) or dissociation-recombination reactions (diss).
These equilibrium constants are used in the principle of detailed balancing
to compute the reverse chemical rate coefficients. In the above equations, ‘T’
corresponds to the translation temperature of the system. The internal states
equilibriate to this translation temperature. The symbol kg represents the
Boltzmann constant and ‘h’ is the Planck’s constant. Q' is the translation
partition function. In the translation partition function, ‘m’ is the mass of
the single atom or molecule.

The microscopic deexcitation rate coefficient is given by the equation (2.16).

Similarly, the recombination rates are given by equation (2.17)

ki

kji = —= (2.16)
J K@q
Kk

k= — (2.17)
K

The microscopic governing equation for the population density of the N,

molecules is then written as,

i
dn’y,

T Z [—ki,jnév2nN + /Cj,mg\hmv} + [—kfné\@n]\; + k:ni’v] (2.18)

Jjen

The first two terms in the master equation denote the change in the energy-
state number density due to the excitation and de-excitation process. The
last two terms in the rate equation denote the change in the individual state
population density due to dissociation and recombination processes. The
master equation, equation (2.18), has only a temporal derivative since it is
assumed that the chemical reactions have no spatial dependence. The mole
fractions have no spatial gradients.

This microscopic master equation is the pivotal point in the development of
the advanced quadratic model characterizing chemical non-equilibrium which

uses the method of moments.
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CHAPTER 3

MAXIMUM ENTROPY QUADRATIC
MODEL

Since it is impractical to solve the microscopic master equation (2.18), the
method of moments is adopted to handle chemical and thermal non-equilibrium.
Using this method, instead of solving the kinetics for each energy state of
the molecule, particular macroscopic moments of the system are solved for.
These macroscopic moments are used to reconstruct the state-to-state pop-
ulation distribution. The macroscopic moments used during reconstruction

are such that they retain the physics of the system.

3.1 Method of Moments

Method of moments is widely used in statistics. In this method, the sam-
pled moments are equated to theoretical moments of the random variable
being studied. (The moments of a random variable are the estimated val-
ues of the powers of the random variable.) The basic idea in this method
is forming as many moment equations as there are parameters to be solved
and then solving for the parameters. These parameters are used to charac-
terize the distribution function. For example, ‘p’ parameters are required
to characterize the distribution of the random variable, then ‘p” moments of
the population distribution are computed which depend on the parameters,

ai,...,op [51]. Equations (3.1) represents these theoretical moments.

H1 = E(X) :gl(a17a2a-"7ap)7
py = E(X?) = golar,ay,...,qp),
L, = E(X?)=gy(on,00,...,qp) (3.1)

13



To obtain the sampled moments, ‘m’ samples are drawn and the moments

are then calculated as follows,

X 1 ;
= wa (32)

h

where w; is the it sample drawn and ‘j’ represents the power to which
the sample value is raised. The jth sampled moment is then given by ;.
These depend on the estimated parameters denoted by &,. Therefore, the
following system of equations can be solved to obtain the parameters of the

distribution function.

,al - 91(&17(342,---7@1)),
/:LQ = 92<d17d2a"'7dp)a
IELP = gp(a{h d27 s 7dp> (33>

One application of the method of moments is the estimation of the coeffi-
cients of a k' order polynomial function used to approximate the probability
distribution function of a random variable [52].

In this thesis, the method of moments along with polynomial reconstruc-
tion is utilized to formulate the reduced order model to characterize the
non-equilibrium population distribution of molecules in a gas mixture. The

formulation is discussed in the subsequent sections.

3.2 Grouping Strategies

One of the key aspects of the model reduction procedure is the grouping of
internal levels into bins, the so-called level partitioning step. In order to solve
a macroscopic system instead of treating individual energy states as a differ-
ent species, it is required that energy states with certain similar properties
are grouped together and solved for as one species. Various grouping strate-
gies can be used [48, 47]. The effectiveness of these algorithms is evaluated
by their ability to reproduce the exact state-to-state results for simple time-

dependent simulations like an isothermal reactor. These algorithms range
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from simple and efficient energy-based methods to very accurate methods
based on the kinetics of the system. These advanced algorithms implement
a modified island algorithm and a spectral clustering approach [48, 47]. A

brief description of the grouping methods is given here.

e Uniform-energy method: This approach sub-divides the whole energy
range of internal states into a set of uniform energy intervals, and all
levels within each energy interval are then assigned to a given bin. To
implement this method, all the internal energy states of the molecules
are arranged in the ascending order and then the levels are divided in
equal energy partitions where the number of partitions is equal to the

number of groups desired.

e Closest-energy method: In this approach, instead of assuming an uni-
form sub-division of the entire energy range, the internal levels are
grouped according to their energy spacing, the closest levels being
grouped first. The underlying procedure is as follows. The internal
levels are first arranged in the increasing order of their energy and the
energy spacing between adjacent levels is calculated. The two closest
levels are then grouped together, leading to one level less in the initial
set of internal levels. The level grouping steps are repeated until the
resulting number of levels matches the target number of groups. Note
that the energy of a group corresponds to the average energy of all its

sub-levels.

e Kinetic-based method: These methods use an adaptive grouping method-
ology based on both the magnitude of the transition rates and the
energy of the internal levels. Levels that are close in energy and are
related by fast transitions with respect to each other are grouped to-
gether. This is done since the rate determining process are always the
slow processes and these are the process that lead to non-equilibrium.
Therefore, grouping two levels that are very close in energy but interact
via a transition rate that is low should not be grouped together. These
kinetics based methods ensure this. Two approaches have been devel-
oped for adaptive grouping, one uses the a modified island algorithm

and the other groups levels based on spectral clustering techniques.

The two energy-based approaches differ conceptually in the sense that the

15



former relies on the assumption of a uniform distribution of internal states
within the electronic structure of the species, while the latter takes advan-
tage of the actual energy spacing of the internal levels. However, for vibra-
tional /rovibrational levels of small molecules, the uniform energy grouping
is a valid approximation. Studying more complex geometry molecules like

carbon dioxide it is imperative to use kinetic-based methods.

3.3  Exact Formulation - Macroscopic Moments
Equation

The grouping strategy used in this study is uniform energy grouping, i.e. the
entire energy space of the molecule is split into groups having equal energy
intervals. This forces the states having energies close to each other to be
lumped into the same group. The reconstruction operator used is a polyno-
mial in energy for each internal state belonging to the group. This polynomial
represents the logarithm of the population for each state belonging to that
group, normalized by its degeneracy.

In order to arrive at the macroscopic moment equation, moments of the
microscopic master equation (2.18) are taken. Various moments of equation
(2.18) are then summed over all the levels belonging to each group. This
reduces the number of ordinary differential equations from the order of rovi-
brational levels in the molecule to the order of the number of groups chosen
to represent the energy space of the molecule. Following the approach of Liu
et al. [19, 20|, we obtain:

dn’ , , .
5SS b + b 43 [y + K]
iely ielg hel, jelp, iely
(3.4)
de A .
% = Z Z Z [—kinginé\bn]v + kj,iging\[QnN }
iely iely heln jelp,

+ Z [—kfsinﬁinN + kfem?’v] (3.5)

iely
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df; ‘ |
% — Z Z Z [—k@jéf?n}VQnN + kjyiglzngVQnN}

tely telg hel, jelp

+ Z [—kleiniy,ny + keind] (3.6)

iely

The above equations are the exact macroscopic moment governing equa-
tions. No ad hoc assumptions are made in formulating these equations. The
symbols used in the macroscopic moment equations are as follows. I,, denotes
the total number of groups in the system. I, and Ij, refer to the set of energy
levels belonging to the group g and group h, respectively. n3,, e}, and f%,
represent the macroscopic moments of group g.

Further, the group rate coeflicients are computed and equations (3.4)-(3.6)
are rewritten using grouped macroscopic rate coefficients. K, denotes the
group excitation rate coefficient for the excitation process occurring from
group g to group h, and C’g represents the group dissociation rate from group
g. Similarly, Kj 4 and C] are the group de-excitation and recombination
rate coefficients, respectively. The numerical index on these rate coefficients

corresponds to the order of the moment for which the rate coefficient is being
defined.

dny,,
dt

_ 0 g 0 h 0, g 0w, 3
= g [—"Kgnnl,nn +° Kngniy,nn| —Cind,ny +°Ciny, (3.7
hel,,

de’
WNQ — Z [—1Kgyhe?v2nN +1Kh796%2nN} —1056?\[271]\/ +IC;TZ§)V (3‘8>

dfy,

dt Z [ 2Ky nfR,nn +° Kngfy,nn] =2Cf fR,nn +°Cony (3.9)

hely,

The group rate coefficients are derived from the microscopic rate coef-
ficients directly without making any simplifications or assumptions. The

detailed derivations are attached in the appendix.
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ielg jelp, ielg jelp, ielg jelp,

The dissociation rates are similarly derived and can be represented by the

relations given in equation (3.10).

od kin'y, Ld kiemly, i kdenNQ
Cy %n927 Cy ;eﬁ\b ’ Cy %

The recombination rates are simply a summation of the individual micro-
scopic recombination rate coefficients of the states belonging to a particular
group since recombination rates do not depend on the internal energy state
population distribution of the molecules. They depend only on the transla-

tion temperature of the system.

YK =Yke =Y ke

el iely iely

3.4 Model Reduction

In this section, the reduced order model is developed using the maximum
entropy principle and method of moments. The internal energy of each en-
ergy state of the molecule system is analogous to the random variable in the
method of moments . The evolution of moments of the internal energy is
studied numerically which are then used to reconstruct the probability dis-
tribution function of the population within each group. The procedure is

discussed in detail in the following subsections.

3.4.1 Constraints

Since the entire energy spectrum can not be accurately reconstructed using
a single group for all levels, the levels are partitioned into smaller groups
and the method of moments is applied to each group. The moments of each

group are subject to constraints based on the maximum entropy principle.
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These constraints are conservation equations of the moments. The conser-
vation of the first few moments have physically interpretable meanings. The
zeroth moment conservation corresponds to conservation of mass. The first
moment conservation corresponds to the conservation of the internal energy
of the group. This imposition of the conservation of moments is analogous
to equating the sampled moments to the theoretical moments in the method
of moments. Since in the quadratic model a second order polynomial is used

to approximate the distribution function, three moments are used.

Z n; = ng Z niE; = e ané‘? = f, (3.10)

iely iely ielg

Differentiating the equations illustrated above gives:

:E:: (Z7li =0

iely
E 5idn,~ =0
el
iely

These are the constraints that the system is subjected to while finding
the most probably macrostate (ie, one with the maximum number of mi-

crostates).

3.4.2 Equations obtained from Maximum Entropy Principle

Going back to chapter 2, we recall that the solution of equation (2.12) gives
the distribution of microstates within the most probable macrostate of the
system of particles. This equation however is subject to the constraints given
in equation (3.10). Hence this is an over-constrained equation. Lagrange’s
multipliers (ay, 8, and 7,) are used to obtain the solution of the equation to

find Wmax. Therefore, equation (2.12) is written as:

E {ln gi_ Qg — By — Vg | dny =0 (3.11)
n;
el

The number of Lagrange multipliers used is equal to the order of the poly-
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nomial used to reconstruct the population distribution function within the
group. Infact, these Lagrange multipliers are indeed the coefficients of the
polynomial used for population reconstruction with each group as shown

below:

In 2~ g — Byi — g5 =0 (3.12)

In — = ay + Byei + V47 (3.13)

)

3.4.3 Solution for Lagrange multipliers

The Lagrange multipliers are unique for each group since the quadratic func-
tion used for reconstruction varies for each group depending on the group

properties. Therefore, rewriting equation (3.13) as,

ny = giel o aei) (3.14)

and summing over all the levels belonging to a particular group, we get:

Z n; = Z gie(—ag—ﬁgei—'ﬁzg?) (315)

iely iely
ng = Zgie(*ag*ﬂgsi*%ﬁ) (3.16)
ielg

The constant term in the quadratic representation of the energy-state pop-
ulation distribution, ay, is related to the number of moles in the group and

the zeroth partition function by the following relation,

g
Qg

where, Q) is referred to as the group partition function and depends on

(3(“C¥g) —

(3.17)

the slope and curvature term of the quadratic function. The first coefficient,

oy, can be viewed as a normalizing constant.

Qg — Z gie(_ﬁgei_%}g?)

el
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Similarly, the higher moments can be written as:

= Z gieie! O PeEi s (3.18)

ielg

Substituting for e(~2),

Z gigie(fﬁggif’ygszz)

ey ey
— = 3.19
n a0, (3.19)
= Z gz.gz?e(—ag—ﬁgfi—%sz) (3.20)
iely
Z gigge(fﬂggifvggzz)
fg el
== 3.21
n . (3.21)
Substituting for W,,,, in (2.1) we get,
s = k| Sn(mf)
_ielg iely
=k an (o + Byei +7487) + 1
ielg
= k(agng + Beeqg +79fq) + kng
S = (kagng + kfBgeq + kg fq) + kng (3.22)
Differentiating S with respect to e, we obtain,
oS oo ap 87 af
— =k 1k k 4k A 3.23
de, <"ga TRt R e, T e, T 05, (3:23)

The Gibbs relation gives an expression for the derivative of the entropy
with respect to energy of the system at equilibrium. The Gibbs relation is
shown in equation (3.24). T, is the group internal temperature at equilib-
rium.

95 1 (3.24)
Oeg, T,

Since ‘f’, the second moment is independent of the group internal energy,
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‘e’ % = 0. Therefore, equating (3.23) and equation (3.24), we get:

(k % | ke 8ﬁg+kfg879)+kﬁg:

7 de, 70
From equation (3.17),

=1In Z gie*ﬁggf'ygsl2 —lInn,
el
Oay _ Oay 0B, N Oay O,
Je, 0B, 0ey Oy, Oey

8059 _ @/Bg ]- Z g.e(fﬁgsi*'ygE?)
aeg 8eg Z gie(_ﬁgai_'ﬁza?) ¢

ielg

ielg

é?’)@y [ (—Bgei—yqe2
. 9€i ngi) —
+ 8692:96 Bgei— vqe)z gi€

el -
g9
ZEIg

1

T,

—&; — —62)

0B,

9By

07y

(3.25)

(3.26)

(3.27)

2

Z <gi€i6(fﬁgsi7’ygs?)> 879 Z <gZ€ e 5g€ —YgE; ))

day OBy iel, 7 el
e, — Oe, Qy
a 869 Z (915 6( Bggi—gE; )) — Z (gig’?e(*ﬁgszz*%?s%))
’79 ? el iely
+ 3.28
5 0 (3.28)
We know that,
07y
— =0 3.29
o7, (529
0
9, _,
07y
because 3, and 7y, are independent variables.
Substituting from equations (3.19) and (3.21),
dog _ €98y Jy 0 (3.30)

Oeg ng deg  ny Oey
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Putting equation 3.30 in equation (3.25)

E)B 87 ap (97 1
k —kf