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ABSTRACT

This thesis presents the study of an advanced non-equilibrium model for

state-specific chemical kinetics based on method of moments. The focus of

this project is on the rovibrational chemical kinetics of the N2(
1Σ+

g )-N(4Su)

system. Internal excitation, dissociation, recombination and energy transfer

reactions, which are important processes in aerothermodynamics, are studied.

The kinetic and thermodynamic data is obtained from ab-initio calculations

performed at NASA Ames Research Center. Previous analysis of the popula-

tion distribution revealed that the population of the low lying energy levels of

nitrogen molecules strongly deviates from a Boltzmann distribution, and the

non-equilibrium distribution exhibits significant curvature. By invoking the

maximum entropy principle subject to a series of constraints, the logarithm

of distribution function is reconstructed using quadratic functions in the in-

ternal energy space of the molecular species. The results of the numerical

simulations for an ideal chemical reactor show that the quadratic model cap-

tures the excitation and dissociation profiles accurately by using only three to

seven groups thereby reducing the computational costs for non-equilibrium

flow simulations significantly.
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CHAPTER 1

INTRODUCTION

Non-equilibrium flows occur during the entry or re-entry of a space vehicle

into the planetary atmosphere. The re-entry occurs at hypersonic speeds giv-

ing rise to strong bow shocks in the forebody region as seen in figure 1.1. This

heats up the gas to several thousand Kelvin which results in excitation of

the internal energy modes of the molecules and change in composition of the

gas mixture. These thermal and chemical process occur over a finite period

of time known as the characteristic time for these process. This characteris-

tic time is of the same order of magnitude as that of the flow characteristic

time leading to flowfield with thermal and chemical non-equilibrium. These

process have a prominent effect on the surface heating of the vehicle due

radiation and convection. This nesseciates the use of well designed and ap-

propriate thermal protection systems which facilitate the dissipation of heat

from the surface of the vehicle by various methods like ablation, insulation

etc.

Since the aerothermodynamic heating is very sensitive to the non-equilibrium

processes in the flow, accurate characterization of non-equilibrium is vital.

This study aims at modeling chemical non-equilibrium using first principles.

1.1 Objective and Overview

In the design of robust and effective thermal protection systems for space-

craft, it is vital that the heating on the surface of spacecraft moving at hy-

personic speeds is predicted accurately. During entry of a space vehicle into

the atmosphere of a planet, high temperatures reached in the shock layers

change the state of the gas surrounding the spacecraft. The strong chemical

non-equilibrium in the gas mixture causes changes in the energy distribution

around the capsule thereby affecting the determination of heat loads on the
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vehicular surface. Hence estimation of the heating depends strongly on the

modeling and characterization of the non-equilibrium flow physics. Accurate

modeling of non-equilibrium is also necessary for correct interpretation of

data obtained through experiments in the shock tube, arc jet etc.

Currently, a tremendous effort is underway to study the microscopic inter-

actions of the molecule-atom and molecule-molecule systems (Airforce/NASA).

However, solving all these microscopic interactions from first principles is not

practical since it is computationally very expensive. For example, the N2-N

system has 23 million reaction mechanisms possible. This number increases

dramatically for molecule-molecule system due to the introduction of simul-

taneous excitation-dissociation as well as simultaneous excitation processes.

Therefore, these limitations motivate the formulation of physics-based re-

duced order models in order to study non-equilibrium flows.

Therefore, the objective of the current study is to construct a new class

of quantum-chemistry based models to enable truly predictive simulation of

non-equilibrium chemistry phenomena, over a wide spectrum of flow con-

ditions. Figure 1.2 give a pictorial representation of the objective of this

project.

Figure 1.1: Flowfield around a hypersonic planetary re-entry vehicle
Source - Nasa Ames Research Center
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Figure 1.2: Objective: Work at the interface between computational
chemistry, experimental measurements and CFD

The current work is dedicated to modeling the chemical kinetics of the

N2(
1Σ+

g )-N(4Su) system in a computationally efficient way. However, it

should be kept in mind that the models developed in this thesis are ap-

plicable to any molecule system.

1.2 Literature Review

With the advancement in computational resources, detailed calculations of

the reaction rates can be carried out [1, 2, 3, 4, 5]. Reaction rates govern the

rate at which chemical reactions occur. They also determine the equilibrium

constant and can be used to predict the equilibrium composition of a mixture.

In these rate calculations, the first step is to obtain the Potential Energy

Surface (PES); this is followed by calculation of the reaction rates by studying

the collisional scattering using either quasi-classical trajectory (QCT)[6, 7, 8]

or quantum approaches[9].

Departure of the population distribution function from the equilibrium

Boltzmann distribution has a strong effect on the processes of dissociation

[10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23] and recombination

[24, 25, 26, 27, 28, 29] which in turn affect the heating of the gas. The most

accurate method to account for the non-equilibrium process is the state-to-

state model, [30, 31, 32] which describes the evolution of the molecules in

each energy state individually. Even though these methods are accurate,
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they are computationally expensive due to the large number of energy states

and possible reactions. Hence, it is impractical to include these methods in

flow solvers to account for non-equilibrium dynamics [35, 36, 37, 38, 39]. An-

other approach to handle non-equilibrium flows is that of a multi-temperature

model, where each internal energy mode follows an equilibrium distribution

at a temperature corresponding to that energy mode [40, 41, 42]. However,

this model is applicable only for flows where the deviation from equilibrium

is very small.

The moment method was proposed to model translational non-equilibrium

by Grad [43] and Levermore [44] in order to overcome the breakdown of the

Chapman-Enskog expansion [45] in case of strong non-equilibrium conditions.

An early attempt at modeling vibrational non-equilibrium was done by Lan-

dau and Teller [46]. This model is a linear relaxation model with various sim-

plifying assumptions. Recently, Liu et al. [18, 19, 20] introduced a general

methodology for modeling thermal and chemical non-equilibrium processes.

In order to characterize the non-Boltzmann distribution, piece-wise repre-

sentations of the distribution function were proposed. The quantum energy

states of atoms and molecules are first subdivided into groups. A unified set

of macroscopic equations for solving for both microscopic and macroscopic

quantities are formulated by taking moments of the microscopic master equa-

tions. The microscopic solution is obtained by reconstruction based on the

maximum entropy principle subject to the moment constraints, in which the

logarithm of the distribution function in each energy group is expressed as

a power series in internal energy. Macroscopic group rate coefficients are

determined using the exact formulations but with the model distribution

function. They are expressed as weighted sums of the corresponding mi-

croscopic rate coefficients, involving no tuning parameters or ad hoc fixes.

Macroscopic modeling is considered as seeking the optimum reconstructed

microscopic distribution function that provides converged and time accurate

macroscopic quantities at all times. Through refinement of grouping and/or

moment order, one can improve the accuracy of microscopic quantities and

also check the convergence of macroscopic quantities. Since only moment

equations are involved in the model, the number of differential equation to

be solved is significantly reduced. The maximum entropy linear model was

first published in 2010[18], there the macroscopic mass and internal energy

equations for energy groups were obtained in a coupled manner from the
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zeroth-order and first-order moments of the master equations. The formula-

tion was later extended to high orders[19], and to general collisional and ra-

diative processes[20]. Results of the linear model obtained in isothermal heat

bath calculations have shown that accurate predictions of the macroscopic

number density and internal energy are achievable by using only one to three

energy groups, a total of 2 to 6 macroscopic equations[19, 20]. However, the

linear model has also exhibited some deficiencies in predicting microscopic

non-equilibrium populations if too few groups are used. [20]

In the multi-group models, the energy levels can be grouped together in

various ways. Grouping is usually done based on a physical property of the

levels where levels having close values for a property are grouped together.

One such grouping technique which is also employed in this paper is the

energy based grouping method. However, this method does not incorporate

the kinetics of the system. An improved grouping strategy was proposed

Sahai et. al. [47, 48]. This novel grouping strategy is based on the energy as

well as the chemical kinetics of the system. The levels that are connected by

’fast’ reactions tend to equilibrate with each other and hence are identified

and grouped together. Two approaches are identified for grouping based on

kinetics. One is the island algorithm which is derived from graph theory. The

island algorithm finds points on a graph that are connected and lumps them

together in an island. In the multi-group chemistry models, these islands

are the groups of energy levels. Another technique developed for grouping

energy levels is based on spectral clustering also from graph theory.

The current work presents a maximum entropy high order, modeling tech-

nique for non-equilibrium flows to address the deficiencies of the linear model.

In this study, we use a piecewise quadratic representation for each group to

describe the population distribution function. We focus on the rovibrational

chemical kinetics of the N2(
1Σ+

g )-N(4Su) system. While constructing the

macroscopic governing equations we make no ad hoc assumptions regarding

the internal energy modes of the molecule. The system can be generalized to

involve other collisional and radiative processes if state-to-state rate coeffi-

cients become available. Note that the calculations to obtain all microscopic

state-to-state rate coefficients would be very time consuming, and often im-

practical, for a collisional or radiative process. A new approach tailored for

the model using Monte Carlo QCT that requires only a small fraction of the

microscopic state-to-state coefficients to obtain converged macroscopic group
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rate coefficients has been recently proposed by Macdonald et al. [49].

1.3 Thesis Organization

This thesis is organized in to 5 chapters. Chapter 1 is the introductory

chapter. Chapter 2 describes the maximum entropy principle which is vital

in formulation of the reduced order model. It also describes the exact system

being studied which included the state to state kinetics of the N2(
1Σ+

g )-

N(4Su) system and the microscopic governing equations. This chapter lays

the ground for building the reduced order model. The detailed derivation and

formulation of the reduced order quadratic model is discussed in chapter 3.

The chapter first discusses the method of moments applied in statistics. This

method is used to form the macroscopic governing equations of the system.

Various grouping strategies that can be used to club together internal states

of the molecules are discussed. The exact macroscopic equations obtained

from the microscopic equations are formulated with out any assumptions.

Finally the chapter discusses the properties of the grouped chemical rates.

The validation of this model against the state to state model is presented in

chapter 4. This chapter shows the results of various numerical simulations

run with different number of groups and different reconstruction operators

including linear and quadratic reconstruction. The thesis is finally concluded

in the last chapter.
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CHAPTER 2

NON-EQUILIBRIUM FLOWS - PHYSICAL
MODELING

There are 2 main aspects to the methodology developed. First is using the-

maximum entropy principle in order to obtain a representation of the popu-

lation distribution of the molecules in varies energy levels and second is the

formulation of the macroscopic governing equations. This method involves

the use of concepts of statistical mechanics and method of moments dicussed

in the various sections of this chapter.

2.1 Maximum Entropy Principle

According to the postulates of thermodynamics, it is stated that in a system

with no internal constraints, the extensive properties like internal energy,

volume and number of particles, assume values that maximize the entropy

of the system[50].

In the microcanonical ensemble of statistical thermodynamics, the Boltz-

mann equation gives a relation between the possible equiprobable microstates

of a system and the entropy of the system. Maximum entropy is therefore

related to Wmax, which is the maximum number of microstates possible for

a given macrostate. The Boltzmann’s equation then describes the maximum

entropy of a system in equilibrium as,

Smax = kB lnWmax (2.1)

Wmax can be described by either the Fermi-Dirac Statistics or the Bose-

Einstein Statistics. However, in the dilute limit, when the number of states

available is much larger than the number of particles both statistics converge

to the Maxwell-Boltzmann Statistics. This assumption is particularly valid

at the high temperatures in the flow field of a hypersonic re-entry vehicle.

Using the maximum entropy principle, the population distribution in the
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internal energy space of the system can be described by the following Boltz-

mann distribution function,

ni = ntot
gie

εi
kBT

Q
(2.2)

Q represents the partition function and is given by the following equation,

Q =
∑

gie
εi

kBT (2.3)

Here, gi represents the degeneracy of the internal energy state ‘i’. In the

formulation of the new reduced order model, the entropy of each group is

maximized and the distribution of the population in each group is given by

a piecewise quadratic function.

2.1.1 Statistics

For a system of particles, the particles can be distributed in the various micro-

states (in this study, the internal energy states) based on two statistics:

• Fermi-Dirac Statistics

• Bose-Einstein Statistics

These two statistics depend on the nature of the particles being studied.

Fermi-Dirac Statistics

In this type of statistics, only one fermion(elementary particle) can occupy

a given degenerate state. The number of ways in which fermions, ni can

occupy the energy levels is given by:

WF =
∏
iεIg

gi!

(gi − ni)!
(2.4)

By Sterling’s Approximation, we get:

lnWF =
∑
iεIg

[
ni ln

(
gi − ni
ni

)
+ gi ln

(
gi

gi − ni

)]
(2.5)
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Bose-Einstein Statistics

In this type of statistics, there is no restriction on the number of bosons(elementary

particles) that can occupy a given degenerate state. The number of ways in

which the bosons, ni can occupy the energy levels is given by:

WB =
∏
iεIg

(ni + gi − 1)!

(gi − 1)!ni!
(2.6)

Assuming gi � 1 and ni � 1, by Sterling’s Approximation, we get:

lnWB =
∑
iεIg

[
ni ln

(
ni + gi
ni

)
+ gi ln

(
ni + gi
gj

)]
(2.7)

In the limiting case, we have gi � ni. In this dilute limit, both Fermi-Dirac

and Bose-Einstein statistics converge to the Boltzmann Statistics, resulting

in:

lnWF
B =

∑
iεIg

[
ni ln

(
gi ± ni
ni

)
∓ gi ln

(
gi ∓ ni
gi

)]
(2.8)

lnWF
B =

∑
iεIg

[ni ln(gi ± ni)− ni ln(ni)∓ gi ln(gi ∓ ni)± gi ln(gi)] (2.9)

To find the value of W that maximizes the above equation, the derivative

of the equation is computed.

d(lnWF
B ) =

∑
iεIg

dni

[
ln(gi ± ni)±

ni
gi ± ni

− ln(ni)− 1 +
gi

gi ∓ ni

]
(2.10)

d(lnWF
B ) =

∑
iεIg

dni [ln(gi ± ni)− ln(ni)]

=
∑
iεIg

dni

[
ln

(
gi ± ni
ni

)]
=

∑
iεIg

dni

[
ln

(
gi
ni
± 1

)]
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Since gi � 1, ni � 1 and gi � ni, we get:

d(lnWF
B ) =

∑
iεIg

dni

[
ln

(
gi
ni

)]
(2.11)

For Wmax,

d(lnWF
B ) =

∑
iεIg

dni

[
ln

(
gi
ni

)]
= 0 (2.12)

2.2 State-to-State Kinetics

To study the application of the macroscopic model developed, chemical re-

actions occurring in the N2(
1Σ+

g )-N(4Su) system are studied. By N2(
1Σ+

g )-

N(4Su) system it is meant that only reactions occurring due to the collisions

of N2 molecules and N atoms are considered, i.e. the collision partner in

all reactions is the nitrogen atom, N(4Su). For simplicity, no radiative pro-

cesses are included in this paper. The state-to-state collision reactions consid-

ered include the rovibrational energy transfer interactions and dissociation-

recombination reactions. The concentration of the chemical species is a func-

tion of time alone, i.e. the mixture is spatially homogeneous and the simula-

tions are 0-D simulations. Electronic transitions and ionization reactions are

ignored in this study. However, this is a generic model and can be applied

for all kinetic (state-to-state collisional) and radiative processes.

The N2(
1Σ+

g ) molecule has 9390 rovibrational levels. The first 7421 levels

are bound levels and the remaining are pre-dissociative or quasi bound. The

state-to-state kinetics data for this system is obtained from the ab initio cal-

culations done at NASA Ames Research Cente.[1, 3, 2, 4]. The rovibrational

levels are sorted in the increasing order of their energy. There is no distinc-

tion between the rotation and vibration levels. They are treated in the same

manner. The kinetics of this chemical system is discussed below.

The following represents the energy transfer reactions of the N2(
1Σ+

g )-

N(4Su) system:

N i
2 +N ⇐⇒ N j

2 +N

These reactions include momentum and energy transfer amongst the molecules

and atoms. The index i and j in the reaction represent the rovibrational level
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in the N2(
1Σ+

g ) molecule. There is no superscript on the collision partner

since it is assumed that the collision partner does not undergo a change in

its internal state during the reactions.

The other pair of reactions studied are the dissociation-recombination re-

actions. These can be represented as:

N i
2 +N ⇐⇒ N +N +N

These reactions also include mass transfer in addition to momentum and

energy transfer.

2.3 Microscopic Governing Equations

There are over 40 x 106 rovibrational dissociation and energy transfer reac-

tions possible in the N2(
1Σ+

g )-N(4Su) system. The chemical master equation

governing these reactions is discussed in this section.

Let niN2
, gi and εi denote the population, degeneracy and energy of rovibra-

tional level i of the N2 molecule. nN denotes the number of nitrogen atoms.

The excitation rate coefficients from level i to j are denoted by ki,j and the

dissociation rate coefficients are denoted by kdi . These rate coefficients are

calculated using an Arrhenius fit where the fit parameters are obtained from

the calculations done at NASA Ames Research Center. The de-excitation

rate coefficients kj,i and recombination rate coefficients kri are computed us-

ing the relations of detailed balancing. The principle of detailed balancing

relates the forward and backward rates of a chemical reaction by the equilib-

rium constant. The equilibrium constant can be expressed as a function of

the degeneracy and energy value of the level. The following equations show

the relationship between these various rate coefficients.

Kexc
eq =

gj
gi

exp

[
−(εj − εi)
kB T

]
(2.13)

Kdiss
eq =

(gN Qtr
N)

2

gi Qtr
N2

exp

[
−(2εN − εi)

kB T

]
(2.14)

Qtr =

(
2π m kB T

h2

)1.5

(2.15)
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Keq is the notation used for the equilibrium constant either for the excitation-

deexcitation reactions (exc) or dissociation-recombination reactions (diss).

These equilibrium constants are used in the principle of detailed balancing

to compute the reverse chemical rate coefficients. In the above equations, ‘T’

corresponds to the translation temperature of the system. The internal states

equilibriate to this translation temperature. The symbol kB represents the

Boltzmann constant and ‘h’ is the Planck’s constant. Qtr is the translation

partition function. In the translation partition function, ‘m’ is the mass of

the single atom or molecule.

The microscopic deexcitation rate coefficient is given by the equation (2.16).

Similarly, the recombination rates are given by equation (2.17)

kj,i =
ki,j
Kexc
eq

(2.16)

kri =
kdi
Kdiss
eq

(2.17)

The microscopic governing equation for the population density of the N2

molecules is then written as,

dniN2

dt
=
∑
jεn

[
−ki,jniN2

nN + kj,in
j
N2
nN
]

+
[
−kdi niN2

nN + krin
3
N

]
(2.18)

The first two terms in the master equation denote the change in the energy-

state number density due to the excitation and de-excitation process. The

last two terms in the rate equation denote the change in the individual state

population density due to dissociation and recombination processes. The

master equation, equation (2.18), has only a temporal derivative since it is

assumed that the chemical reactions have no spatial dependence. The mole

fractions have no spatial gradients.

This microscopic master equation is the pivotal point in the development of

the advanced quadratic model characterizing chemical non-equilibrium which

uses the method of moments.
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CHAPTER 3

MAXIMUM ENTROPY QUADRATIC
MODEL

Since it is impractical to solve the microscopic master equation (2.18), the

method of moments is adopted to handle chemical and thermal non-equilibrium.

Using this method, instead of solving the kinetics for each energy state of

the molecule, particular macroscopic moments of the system are solved for.

These macroscopic moments are used to reconstruct the state-to-state pop-

ulation distribution. The macroscopic moments used during reconstruction

are such that they retain the physics of the system.

3.1 Method of Moments

Method of moments is widely used in statistics. In this method, the sam-

pled moments are equated to theoretical moments of the random variable

being studied. (The moments of a random variable are the estimated val-

ues of the powers of the random variable.) The basic idea in this method

is forming as many moment equations as there are parameters to be solved

and then solving for the parameters. These parameters are used to charac-

terize the distribution function. For example, ‘p’ parameters are required

to characterize the distribution of the random variable, then ‘p’ moments of

the population distribution are computed which depend on the parameters,

α1,...,αp [51]. Equations (3.1) represents these theoretical moments.

µ1 ≡ E(X) = g1(α1, α2, . . . , αp),

µ2 ≡ E(X2) = g2(α1, α2, . . . , αp),
...

µp ≡ E(Xp) = gp(α1, α2, . . . , αp) (3.1)
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To obtain the sampled moments, ‘m’ samples are drawn and the moments

are then calculated as follows,

µ̂j =
1

m

m∑
i=1

wji (3.2)

where wi is the ith sample drawn and ‘j’ represents the power to which

the sample value is raised. The jth sampled moment is then given by µ̂j.

These depend on the estimated parameters denoted by α̂p. Therefore, the

following system of equations can be solved to obtain the parameters of the

distribution function.

µ̂1 = g1(α̂1, α̂2, . . . , α̂p),

µ̂2 = g2(α̂1, α̂2, . . . , α̂p),
...

µ̂p = gp(α̂1, α̂2, . . . , α̂p) (3.3)

One application of the method of moments is the estimation of the coeffi-

cients of a kth order polynomial function used to approximate the probability

distribution function of a random variable [52].

In this thesis, the method of moments along with polynomial reconstruc-

tion is utilized to formulate the reduced order model to characterize the

non-equilibrium population distribution of molecules in a gas mixture. The

formulation is discussed in the subsequent sections.

3.2 Grouping Strategies

One of the key aspects of the model reduction procedure is the grouping of

internal levels into bins, the so-called level partitioning step. In order to solve

a macroscopic system instead of treating individual energy states as a differ-

ent species, it is required that energy states with certain similar properties

are grouped together and solved for as one species. Various grouping strate-

gies can be used [48, 47]. The effectiveness of these algorithms is evaluated

by their ability to reproduce the exact state-to-state results for simple time-

dependent simulations like an isothermal reactor. These algorithms range
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from simple and efficient energy-based methods to very accurate methods

based on the kinetics of the system. These advanced algorithms implement

a modified island algorithm and a spectral clustering approach [48, 47]. A

brief description of the grouping methods is given here.

• Uniform-energy method: This approach sub-divides the whole energy

range of internal states into a set of uniform energy intervals, and all

levels within each energy interval are then assigned to a given bin. To

implement this method, all the internal energy states of the molecules

are arranged in the ascending order and then the levels are divided in

equal energy partitions where the number of partitions is equal to the

number of groups desired.

• Closest-energy method: In this approach, instead of assuming an uni-

form sub-division of the entire energy range, the internal levels are

grouped according to their energy spacing, the closest levels being

grouped first. The underlying procedure is as follows. The internal

levels are first arranged in the increasing order of their energy and the

energy spacing between adjacent levels is calculated. The two closest

levels are then grouped together, leading to one level less in the initial

set of internal levels. The level grouping steps are repeated until the

resulting number of levels matches the target number of groups. Note

that the energy of a group corresponds to the average energy of all its

sub-levels.

• Kinetic-based method: These methods use an adaptive grouping method-

ology based on both the magnitude of the transition rates and the

energy of the internal levels. Levels that are close in energy and are

related by fast transitions with respect to each other are grouped to-

gether. This is done since the rate determining process are always the

slow processes and these are the process that lead to non-equilibrium.

Therefore, grouping two levels that are very close in energy but interact

via a transition rate that is low should not be grouped together. These

kinetics based methods ensure this. Two approaches have been devel-

oped for adaptive grouping, one uses the a modified island algorithm

and the other groups levels based on spectral clustering techniques.

The two energy-based approaches differ conceptually in the sense that the
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former relies on the assumption of a uniform distribution of internal states

within the electronic structure of the species, while the latter takes advan-

tage of the actual energy spacing of the internal levels. However, for vibra-

tional/rovibrational levels of small molecules, the uniform energy grouping

is a valid approximation. Studying more complex geometry molecules like

carbon dioxide it is imperative to use kinetic-based methods.

3.3 Exact Formulation - Macroscopic Moments

Equation

The grouping strategy used in this study is uniform energy grouping, i.e. the

entire energy space of the molecule is split into groups having equal energy

intervals. This forces the states having energies close to each other to be

lumped into the same group. The reconstruction operator used is a polyno-

mial in energy for each internal state belonging to the group. This polynomial

represents the logarithm of the population for each state belonging to that

group, normalized by its degeneracy.

In order to arrive at the macroscopic moment equation, moments of the

microscopic master equation (2.18) are taken. Various moments of equation

(2.18) are then summed over all the levels belonging to each group. This

reduces the number of ordinary differential equations from the order of rovi-

brational levels in the molecule to the order of the number of groups chosen

to represent the energy space of the molecule. Following the approach of Liu

et al. [19, 20], we obtain:

∑
iεIg

dniN2

dt
=
∑
iεIg

∑
hεIn

∑
jεIh

[
−ki,jniN2

nN + kj,in
j
N2
nN
]
+
∑
iεIg

[
−kdi niN2

nN + krin
3
N

]
(3.4)

∑
iεIg

deiN2

dt
=

∑
iεIg

∑
hεIn

∑
jεIh

[
−ki,jεiniN2

nN + kj,iεin
j
N2
nN
]

+
∑
iεIg

[
−kdi εiniN2

nN + kri εin
3
N

]
(3.5)
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∑
iεIg

df iN2

dt
=

∑
iεIg

∑
hεIn

∑
jεIh

[
−ki,jε2iniN2

nN + kj,iε
2
in

j
N2
nN
]

+
∑
iεIg

[
−kdi ε2iniN2

nN + kri ε
2
in

3
N

]
(3.6)

The above equations are the exact macroscopic moment governing equa-

tions. No ad hoc assumptions are made in formulating these equations. The

symbols used in the macroscopic moment equations are as follows. In denotes

the total number of groups in the system. Ig and Ih refer to the set of energy

levels belonging to the group g and group h, respectively. ngN2
, egN2

and f gN2

represent the macroscopic moments of group g.

Further, the group rate coefficients are computed and equations (3.4)-(3.6)

are rewritten using grouped macroscopic rate coefficients. Kg,h denotes the

group excitation rate coefficient for the excitation process occurring from

group g to group h, and Cd
g represents the group dissociation rate from group

g. Similarly, Kh,g and Cr
g are the group de-excitation and recombination

rate coefficients, respectively. The numerical index on these rate coefficients

corresponds to the order of the moment for which the rate coefficient is being

defined.

dngN2

dt
=
∑
hεIn

[
−0Kg,hn

g
N2
nN +0Kh,gn

h
N2
nN
]
−0Cd

gn
g
N2
nN +0Cr

gn
3
N (3.7)

degN2

dt
=
∑
hεIn

[
−1Kg,he

g
N2
nN +1Kh,ge

h
N2
nN
]
−1Cd

g e
g
N2
nN +1Cr

gn
3
N (3.8)

df gN2

dt
=
∑
hεIn

[
−2Kg,hf

g
N2
nN +2Kh,gf

h
N2
nN
]
−2Cd

gf
g
N2
nN +2Cr

gn
3
N (3.9)

The group rate coefficients are derived from the microscopic rate coef-

ficients directly without making any simplifications or assumptions. The

detailed derivations are attached in the appendix.
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0Kg,h =
∑
iεIg

∑
jεIh

ki,jn
i
N2

ngN2

, 1Kg,h =
∑
iεIg

∑
jεIh

ki,jεin
i
N2

egN2

, 2Kg,h =
∑
iεIg

∑
jεIh

ki,jε
2
in

i
N2

f gN2

The dissociation rates are similarly derived and can be represented by the

relations given in equation (3.10).

0Cd
g =

∑
iεIg

kdi n
i
N2

ngN2

, 1Cd
g =

∑
iεIg

kdi εin
i
N2

egN2

, 2Cd
g =

∑
iεIg

kdi ε
2
in

i
N2

f gN2

The recombination rates are simply a summation of the individual micro-

scopic recombination rate coefficients of the states belonging to a particular

group since recombination rates do not depend on the internal energy state

population distribution of the molecules. They depend only on the transla-

tion temperature of the system.

0Cr
g =

∑
iεIg

kri ,
1Cr

g =
∑
iεIg

kri εi,
2Cr

g =
∑
iεIg

kri ε
2
i

3.4 Model Reduction

In this section, the reduced order model is developed using the maximum

entropy principle and method of moments. The internal energy of each en-

ergy state of the molecule system is analogous to the random variable in the

method of moments . The evolution of moments of the internal energy is

studied numerically which are then used to reconstruct the probability dis-

tribution function of the population within each group. The procedure is

discussed in detail in the following subsections.

3.4.1 Constraints

Since the entire energy spectrum can not be accurately reconstructed using

a single group for all levels, the levels are partitioned into smaller groups

and the method of moments is applied to each group. The moments of each

group are subject to constraints based on the maximum entropy principle.
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These constraints are conservation equations of the moments. The conser-

vation of the first few moments have physically interpretable meanings. The

zeroth moment conservation corresponds to conservation of mass. The first

moment conservation corresponds to the conservation of the internal energy

of the group. This imposition of the conservation of moments is analogous

to equating the sampled moments to the theoretical moments in the method

of moments. Since in the quadratic model a second order polynomial is used

to approximate the distribution function, three moments are used.

∑
iεIg

ni = ng
∑
iεIg

niεi = eg
∑
iεIg

niε
2
i = fg (3.10)

Differentiating the equations illustrated above gives:

∑
iεIg

dni = 0

∑
iεIg

εidni = 0

∑
iεIg

ε2i dni = 0

These are the constraints that the system is subjected to while finding

the most probably macrostate (ie, one with the maximum number of mi-

crostates).

3.4.2 Equations obtained from Maximum Entropy Principle

Going back to chapter 2, we recall that the solution of equation (2.12) gives

the distribution of microstates within the most probable macrostate of the

system of particles. This equation however is subject to the constraints given

in equation (3.10). Hence this is an over-constrained equation. Lagrange’s

multipliers (αg, βg and γg) are used to obtain the solution of the equation to

find Wmax. Therefore, equation (2.12) is written as:

∑
iεIg

[
ln
gi
ni
− αg − βgεi − γgε2i

]
dni = 0 (3.11)

The number of Lagrange multipliers used is equal to the order of the poly-
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nomial used to reconstruct the population distribution function within the

group. Infact, these Lagrange multipliers are indeed the coefficients of the

polynomial used for population reconstruction with each group as shown

below:

ln
gi
ni
− αg − βgεi − γgε2i = 0 (3.12)

ln
gi
ni

= αg + βgεi + γgε
2
i (3.13)

3.4.3 Solution for Lagrange multipliers

The Lagrange multipliers are unique for each group since the quadratic func-

tion used for reconstruction varies for each group depending on the group

properties. Therefore, rewriting equation (3.13) as,

ni = gie
(−αg−βgεi−γgε2i ) (3.14)

and summing over all the levels belonging to a particular group, we get:

∑
iεIg

ni =
∑
iεIg

gie
(−αg−βgεi−γgε2i ) (3.15)

ng =
∑
iεIg

gie
(−αg−βgεi−γgε2i ) (3.16)

The constant term in the quadratic representation of the energy-state pop-

ulation distribution, αg, is related to the number of moles in the group and

the zeroth partition function by the following relation,

e(−αg) =
ng
Qg

(3.17)

where, Qg is referred to as the group partition function and depends on

the slope and curvature term of the quadratic function. The first coefficient,

αg, can be viewed as a normalizing constant.

Qg =
∑
iεIg

gie
(−βgεi−γgε2i )
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Similarly, the higher moments can be written as:

eg =
∑
iεIg

giεie
(−αg−βgεi−γgε2i ) (3.18)

Substituting for e(−αg),

eg
ng

=

∑
iεIg

giεie
(−βgεi−γgε2i )

Qg

(3.19)

fg =
∑
iεIg

giε
2
i e

(−αg−βgεi−γgε2i ) (3.20)

fg
ng

=

∑
iεIg

giε
2
i e

(−βgεi−γgε2i )

Qg

(3.21)

Substituting for Wmax in (2.1) we get,

S = k

∑
iεIg

ni

(
ln
gi
ni

)
+
∑
iεIg

ni


= k

∑
iεIg

ni
(
αg + βgεi + γgε

2
i

)
+ n


= k (αgng + βgeg + γgfg) + kng

S = (kαgng + kβgeg + kγgfg) + kng (3.22)

Differentiating S with respect to eg we obtain,

∂S

∂eg
=

(
kng

∂αg
∂eg

+ kβg + keg
∂βg
∂eg

+ kfg
∂γg
∂eg

+ kγg
∂fg
∂eg

)
(3.23)

The Gibbs relation gives an expression for the derivative of the entropy

with respect to energy of the system at equilibrium. The Gibbs relation is

shown in equation (3.24). Tg is the group internal temperature at equilib-

rium.

∂S

∂eg
=

1

Tg
(3.24)

Since ‘f’, the second moment is independent of the group internal energy,
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‘e’, ∂fg
∂eg

= 0. Therefore, equating (3.23) and equation (3.24), we get:(
kng

∂αg
∂eg

+ keg
∂βg
∂eg

+ kfg
∂γg
∂eg

)
+ kβg =

1

Tg
(3.25)

From equation (3.17),

αg = ln

∑
iεIg

gie
−βgεi−γgε2i

− lnng (3.26)

∂αg
∂eg

=
∂αg
∂βg

∂βg
∂eg

+
∂αg
∂γg

∂γg
∂eg

(3.27)

∂αg
∂eg

=
∂βg
∂eg

1∑
iεIg

gie(−βgεi−γgε
2
i )

∑
iεIg

[
gie

(−βgεi−γgε2i )
(
−εi −

∂γg
∂βg

ε2i

)]

+
∂γg
∂eg

1∑
iεIg

gie(−βgεi−γgε
2
i )

∑
iεIg

[
gie

(−βgεi−γgε2i )
(
−∂βg
∂γg

εi − ε2i
)]

∂αg
∂eg

=
∂βg
∂eg

∑
iεIg

(
giεie

(−βgεi−γgε2i )
)
− ∂γg

∂βg

∑
iεIg

(
giε

2
i e

(−βgε2i−γgε2i )
)

Qg

+
∂γg
∂eg

∂βg
∂γg

∑
iεIg

(
giεie

(−βgεi−γgε2i )
)
−
∑
iεIg

(
giε

2
i e

(−βgε2i−γgε2i )
)

Qg

(3.28)

We know that,
∂γg
∂βg

= 0 (3.29)

∂βg
∂γg

= 0

because βg and γg are independent variables.

Substituting from equations (3.19) and (3.21),

∂αg
∂eg

= − eg
ng

∂βg
∂eg
− fg
ng

∂γg
∂eg

(3.30)
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Putting equation 3.30 in equation (3.25)

kβg +

[
−keg

∂βg
∂eg
− kfg

∂γg
∂eg

+ keg
∂βg
∂eg

+ kfg
∂γg
∂eg

]
=

1

Tg
(3.31)

Therefore, at equilibrium we get,

βg =
1

kTg
(3.32)

This is consistent with the physical relation that should be arrived at

equilibrium since at equilibrium, the distribution relaxes to a Boltzmann

distribution which is a straight line with slope inversely proportional to the

temperature of the system.

3.4.4 Multi-Group Maximum Entropy Quadratic Formulation

Figure 3.1 shows a pictorial representation of the model reduction approach

developed. Initially, the internal states of the molecule (blue dots) are

grouped together based on some grouping strategy, uniform grouping in this

study. This is followed by treating all the levels within a group as a single en-

tity (red dot) and solving for the moments of this single grouped level. Once

the moments of each group are estimated the population is then reconstructed

using a piece-wise polynomial(blue line) to obtain the non-equilibrium dis-

tribution. It should be noted that the population distribution within each

group is not known a priori. The blue dots are shown just to briefly explain

the grouping process.
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Figure 3.1: Population reconstruction from macroscopic moments

This section is used to describe the reconstruction operator used in the

maximum entropy quadratic model. A quadratic function in energy is used

to describe the energy state population distribution function within each

group. The population distribution within each group is given by[18, 19, 20]

ln
gi
ni

= αg + βgεi + γgε
2
i , i ∈ Ig (3.33)

The parameters used in describing the microscopic population distribu-

tion within each group are functions of the macroscopic moments of that

particular group, equation (3.34).

αg = αg(ng, eg, fg), βg = βg(ng, eg, fg), γg = γg(ng, eg, fg) (3.34)

This system of equations is used to describe the thermodynamic state of

the system of molecules.

When the system reaches equilibrium, using the concept of Lagrange Mul-

tipliers and Maximum Entropy Principle, the value of βg of each group is

derived earlier to be related to the Boltzmann constant(kB) and the final

equilibrium temperature of the system.
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βg =
1

kBT
(3.35)

At equilibrium, the temperatures of all the groups are equal to each other

and equal to the translational temperature of the system. The derivation of

the slope(β) and curvature(γ) parameters also suggests that at equilibrium

the value of γg for all groups tends to zero. This outcome is physically

significant since, at equilibrium, the population distribution of the molecules

attains a Boltzmann distribution which is a straight line in the log scale

which implies that the curvature terms should go to zero.

Substituting equations (3.33) and (3.17) in equations (3.10) and (3.10) the

group rate coefficients are obtained. Note that we do not make any ad hoc

assumptions in calculating these rate coefficients and hence the physics of

the system is retained to a large extent in this model satisfying the objective

of this study.

3.5 Group Properties

The macroscopic group rate coefficients for the mth moment are given by

equations (3.36) and (3.37). mQg in these expressions denotes the mth mo-

ment group partition function for the group g. The partition function is a

normalization parameter and can be described as a weighted sum of prob-

abilities of finding a molecule in a particular group. Equation (3.38) gives

the form of the partition function. An exhaustive description of the grouped

properties can be found in the paper by Liu et al [20].

mKg,h =
1

mQg

∑
iεIg

∑
jεIh

ki,jε
m
i gie

−βgεi−γgε2i (3.36)

mCd
g =

1
mQg

∑
iεIg

kdi ε
m
i gie

−βgεi−γgε2i (3.37)

mQg =
∑
iεIg

giε
m
i e

−βgεi−γgε2i (3.38)

In the quadratic model, m = 0, 1, 2 corresponds to the first three moments

of the microscopic population distribution function. The value of m depends

on the degree of the polynomial used to describe the population distribution.
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On solving for the macroscopic moments using equations (3.7) - (3.9), the

moment values are obtained at every instant of time. Using this result, we

solve for the quadratic parameters (αg, βg, γg) at every time step and then

reconstruct the energy state population distribution.

3.5.1 Computation of αg, βg and γg

In order to first formulate an algorithm to determine the values of αg, βg and

γg, a test case is created. This is represented in the figure below. Figure 3.2

Figure 3.2: Population distribution in various energy levels in
Non-equilibrium flow

represents the population distribution within various energy levels in a non-

equilibrium flow. The different lines correspond to different values of αg, βg

and γg in equation (3.33). The degeneracy of each energy level is taken as

unity, gi = 1. It is noticed that γg has very high values of the order of 1036
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and hence to normalize the value, γg is represented by the following equation:

γg =
1

(kTg)2
(3.39)

where Tg is a temperature and k is the Boltzmann constant.

The algorithm implemented is as follows:

• In order to estimate the values of βg and γg, Newton Raphson’s method

to solve nonlinear equations is used. The equations solved using New-

ton Raphson are:

F2(αg, βg, γg) =
∑
iεIg

[
giεie

(−αg−βgεi−γgε2i )
]
− eg (3.40)

F3(αg, βg, γg) =
∑
iεIg

[
giε

2
i e

(−αg−βgεi−γgε2i )
]
− fg (3.41)

• ng,eg and fg are obtained from figure 3.2. In this test run only one

group is considered.

• The jacobian of this system of equations is a 3 × 3 matrix and is as

follows:

J =


∂F2

∂βg
∂F2

∂γg

∂F3

∂βg
∂F3

∂γg

 (3.42)

• The Newton Raphson formulation of the problem is shown below:{
∆βg

∆γg

}
= −J−1

{
F2(αg, βg, γg)

F3(αg, βg, γg)

}
(3.43)

{
βi+1

γi+1

}
=

{
βi

γi

}
+

{
∆βg

∆γg

}
(3.44)

where i is just a counter.

The tables below shows the actual values and the estimated values.
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Table 3.1: Comparison of Actual values with Estimated values

Plot No. Variable Actual Value Estimated Value

1

αg -39.14394658 -39.14394660

βg 1.44927536e+19 1.44864596e+19

γg -5.50e+36 -5.50001832e+36

2

αg -39.14394658 -39.14394658

βg 1.31695046e+19 1.31695048e+19

γg -5.00e+36 -5.00000073e+36

3

αg -39.14394658 -39.14394658

βg 1.20720459e+19 1.20720459e+19

γg -5.00e+36 -5.00000007e+36

4

αg -39.14394658 -39.14394658

βg 1.810806895e+19 1.81080697e+19

γg -6.30e+36 -6.30000437e+36

5

αg -39.14394658 -39.14394667

βg 1.76664087e+19 1.76664682e+19

γg -6.40e+36 -6.40030933e+36

6

αg -39.14394658 -39.14394658

βg 1.60960612e+19 1.60960615e+19

γg -6.00e+36 -6.00000110e+36

7

αg -39.14394658 -39.14394658

βg 1.72457799e+19 1.72457819e+19

γg -6.50e+36 -6.50000969e+36

8

αg -39.14394658 -39.14394658

βg 1.03474679e+19 1.03474681e+19

γg -4.50e+36 -4.50000045e+36

9

αg -39.14394658 -39.14394658

βg 9.05403447e+18 9.05403449e+18

γg -4.00e+36 -4.00000003e+36

10

αg -39.14394658 -39.14394658

βg 8.04803064e+18 8.04803064e+18

γg -4.00e+36 -4.00000000e+36
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CHAPTER 4

RESULTS: APPLICATION TO HEAT BATH

Chemical non-equilibrium processes are studied by carrying out simulations

of an isothermal reactor. The temperature of the reactor is initially 2,000 K.

A mixture of 95% N2 and 5% N is introduced in the reactor. The temperature

of the reactor is increased to 20,000 K. Translation modes of the N2-N system

equilibrate to the temperature of 20,000 K instantly. The strong chemical

non-equilibrium state within the ro-vibrational levels of the N2-N system is

studied to validate the proposed model.

Figure 4.1: 0-D Isothermal Reactor

0-D Isothermal Reactor

Initial Temperature : 2,000 K

Final Temperature : 20,000 K

N2 : 95% N : 5%

Number of levels : 7421

ODE Solver : CVODE

4.1 Nitrogen System

Validation of the maximum entropy quadratic model is done by comparison

of the solutions obtained by simulating the full state-to-state model discussed

in section 2.3 and the solutions of the macroscopic governing equations (3.7)-

(3.9) discussed in section 3.3.
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These equations represent a set of stiff non-linear ordinary differential

equations (ODE). In order to solve this system of ODEs, Backward Euler

Scheme is employed. For the simulations carried out in this study, CVODE

is chosen as the ODE solver, which is a part of the package SUNDIALS [53].

In order to solve the non-linear system of equations as seen in equation (3.34),

we adopt the non-linear equation solver, KINSOL, also from the SUNDIALS

package. CVODE and KINSOL use a LAPACK based direct solver, where

LAPACK is run in parallel using OpenMP. The microscopic rate coefficients

are also calculated in parallel using OpenMP.

The analytical jacobian is derived and used in newton iterations. This

facilitates in reducing the computation time of the simulation drastically by

avoiding the number of computations required to find the jacobian numeri-

cally.

4.1.1 Comparison of State Population Distribution

Accurate representation of the microscopic state population distribution is

necessary to study the collisional and radiative processes and non-equilibrium

behavior of a system of molecular species. The quadratic and linear max-

entropy models are used to study the N2-N system for varying number of

bins. The reactions accounted for in the simulations comprise of the energy

transfer reactions and dissociation-recombination reactions. A comparison

of the full state population distribution is done for the quadratic model at

various simulation times. Two quadratic cases are studied: 2 bins and 3 bins.

Energy based binning is employed for both linear and quadratic bins.

Equation (2.18) is solved to obtained the temporal evolution of the full

state-to-state population distribution. The microscopic reaction rates are

obtained from the ab-initio calculations carried out at NASA Ames Research

Center [3, 4, 5]. Macroscopic group quantities are obtained by solving equa-

tion (3.7) - (3.9) from which the population distribution is reconstructed

using equation (3.33).

In figure 4.2, it is observed that the 1st linear bin deviates from the full

state solution significantly. Comparing this to the 1st quadratic bin, it can

be seen that the quadratic model provides a better representation of the

state-to-state population distribution. The ability of the quadratic model to
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account for the curvature in the distribution function helps in obtaining a

better depiction of the kinetics of the system of molecules.

During initial excitation, the results obtained by using 2 quadratic groups

and the results from the linear reconstruction are similar for the first group.

Both models provide an inaccurate representation of the population distribu-

tion. The representation by the quadratic model is inaccurate only during the

first few time steps whereas the linear model provides a poor representation

throughout the simulation.

To overcome the inability to accurately depict the population distribution

in the initial time steps using just 2 bins, a simulation with 3 quadratic

groups is run. Figure 4.3 shows a comparison of the three models. Re-

construction using 3 quadratic groups show promising representation of the

non-equilibrium behavior of the system at all times. Towards the end of the

simulation when the energy transfer reactions are no more prominent, the

curvature of the distribution functions tends to infinity. This means that

the distribution approaches the Boltzmann distribution at 20,000 K. The

quadratic parameter γ which corresponds to the curvature of the function

tends to zero as we approach equilibrium which is a physically meaningful

result.

The distribution function temporally evolves from a Boltzmann distribu-

tion at 2,000 K following intermediate non-Boltzmann distributions to a

Boltzmann distribution at 20,000 K. The slope of the initial distribution

is higher than the final distribution since the slope of the plot is inversely

proportional to the temperature of the system: higher the temperature lower

the slope. When the simulation starts, higher energy states start equilibrat-

ing and adapting to the final temperature faster. The lower energy states

are frozen at the beginning of the simulation. At t = 1.58489E − 13s, the

higher levels start approaching the Bolztmann distribution at the final trans-

lation temperature while the lower levels are in strong non-equilibrium. As we

march forward in the simulation time, it can be seen that the non-Bolztmann

distributions are correctly reconstructed using the quadratic model at every

time instant. The moment values and hence, the slope as well as the curva-

ture values in the quadratic formulation change continuously such that the

state population distribution is reconstructed accurately. This can be seen

in Figure 4.2a and 4.2b.

The dissociation limit of N2 molecule is equal to 9.753 eV. Hence, molecules
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which have the energy equal to the dissociation limit dissociate instanta-

neously. This causes the population to plummet at the dissociation limit

which is seen in the plots of the population distribution function.

(a) t = 1.58489E-13 s (b) t = 3.98107E-09 s

(c) t = 1.00000E-07 s (d) t = 2.51189E-07 s

Figure 4.2: Comparison of the State Population distribution obtained using
the State-to-State model and the Quadratic model

Another interesting feature is observed in the full state population distri-

bution at around 0.1 µs. In the lower energy states, distinct strands separate

out. As we move higher in the energy space, the strands dissolve into an un-

defined geometrical form. It is noticed that the energy states connected by

these strands have the same vibrational quantum number. This implies that

the rotational states belonging to the same vibration energy state tend to

equilibrate faster which gives rise to these strands. The quadratic model us-

ing 2 or 3 bins is able to provide an averaged representation of the curvature

of these strands. However, it is not able to mimic the strands individually
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because in the binning strategy employed in this study, the kinetics of the

chemical system is not considered.

(a) t = 1.58489E-13 s (b) t = 3.98107E-09 s

(c) t = 1.00000E-07 s (d) t = 2.51189E-07 s

Figure 4.3: Comparison of the State Population distribution obtained using
the State-to-State model and the Quadratic model

4.1.2 Comparison of Group Properties

Group properties are vital in the determination of the quadratic parame-

ters which are used to reconstruct the state-to-state population distribution

function. Equation (3.34) shows that the quadratic parameters are func-

tions of the macroscopic group parameters. However, these functions are

non-linear and can not be inverted to calculate the quadratic parameters di-

rectly. Therefore, it is imperative to use an iterative root-finding algorithm.

The package KINSOL from SUNDIALS is used with inexact Newton itera-

tions to obtain the values of the quadratic parameters from this system of
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coupled non-linear equations.

Group quantities are obtained by numerically integrating the equations

(3.7)-(3.9) in time using package CVODE from SUNDIALS. The macroscopic

rate coefficients are calculated using equation (3.36) and equation (3.37) at

every time step for each group. This is required since the macroscopic group

rate coefficients depend on the quadratic parameters which alter with time.

The comparison of the group properties is done for both 2 and 3 quadratic

groups against the state-to-state simulation. The group properties from the

state-to-state simulation are calculated in the post processing step since the

output from the state-to-state simulation directly gives the population in

each energy state at every time step. The population of each internal state

is taken to compute the moments as well as the quadratic parameters. These

are used to compare the results from the two models.

Figure 4.4 shows a comparison of the number of moles of each group for

2 and 3 groups. The solid lines represent the state-to-state results and the

markers represent the quadratic model. It is observed that there is very good

agreement between the two models for both 2 and 3 quadratic groups. The

number of moles of group 1 decrease continuously in both cases. This is

because there is no excitation to group 1 and internal excitation within the

group does not change the number of moles within the group. The change in

the number of moles in group 1 is due to excitation to higher energy groups

and dissociation of the molecules into atoms. The initial constant value of the

number of moles corresponds to the phase of the simulation when the energy

transfer reactions within the group dominate. Hence the number of moles

is not changing. This trend is in contrast to the evolution of the number

of moles in other higher groups. The initial number of moles in the higher

groups is very low. This is because at a temperature as low as 2,000 K most

of the molecules are in the ground state or occupy the lowest energy states.

As time evolves, the excitation reactions from the lower lying groups cause

the mole fractions of the higher groups to increase and eventually reach a

maximum. After the excitation processes become less prominent, dissociation

reactions cause the number of moles to decrease and finally plateau at zero

when all the nitrogen molecules have dissociated into nitrogen atoms.
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(a) 2 Bins (b) 3 Bins

Figure 4.4: Time evolution of number of moles in a group. The dots
represent the quadratic model and the solid lines represent the full
state-to-state model

First moment in the quadratic model corresponds to the internal energy

within a group. The plot of the first moment of each group using the two mod-

els shows that the internal energy within each group first increases reaches

a maximum and then decreases to finally become zero. The trend for all

groups is the same since internal excitation within the group changes the

internal energy within the group without changing the mole fraction. This

is observed due to the fact that internal excitation within a group populates

the higher energy states of the group. This increases the total internal energy

of the group without changing its mole fraction. Finally, the decrease in the

internal energies is due to the dissociation reactions gaining predominance

over the energy transfer reactions.

Group 1 shows a higher internal energy at the start of the simulation be-

cause the lower energy states are most highly populated. Therefore, the rise

in the internal energy also occurs first for group 1 since it is most highly

populated and increasing the energy of the system by a small amount will

excite energy states within group 1, populating the higher rovibrational lev-

els within the group before excitation occurs to energy states belonging to

the higher lying groups. This delay in the rise of internal energy is more ob-

servable while using 2 quadratic bins since the energy difference between the

states lying in the 1st and 2nd groups is higher. Significant number of states

belong to group 1 making internal excitation within the group predominant

before excitation to higher group.
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Unlike the behavior of the zeroth moment of the 1st group, the energy of

this group reaches a supremum. This behavior is due to the fact that even

though there is no change in the population present in group 1, excitation

from the lower energy states to higher energy states belonging to that group

increase the total energy of the group.

The group second moment plots show trends similar to internal energy

plots. Figure 4.6 is a graph of the temporal evolution of the group second

moment. In comparison to the full state-to-state model, the quadratic model

shows good agreement with the state-of-the-art state-to-state modeling. Like

the internal energy of the group, the group second moment for the state-to-

state simulation is constructed from the population distribution solution.

The group second moment, like the group internal energy first increases,

reaches a maximum due to excitation dominance and then plummets to zero

as dissociation takes precedence. Finally, the plot flattens at zero when all

the molecules have dissociated.

(a) 2 Bins (b) 3 Bins

Figure 4.5: Time evolution of Group internal energy
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(a) 2 Bins (b) 3 Bins

Figure 4.6: Time evolution of Group second moment

Another important physical macroscopic quantity studied is the internal

temperature of each group. The temperature for each group is computed

using the energy state population distribution. To calculate the temperature,

the following one dimensional non-linear equation is solved using KINSOL.

T = T (ng, eg) (4.1)

Here, ng and eg are obtained by calculating the moments of the popula-

tion distribution function for each group. The subscript ‘g’ corresponds to

the group number. A linear reconstruction function is used to compute the

moments of the distribution function where the linear term coefficient is in-

versely proportional to the internal temperature of the group. The equation

given below shows the equation that is solved to find the group temperatures.

eg
ng

=
1

Qg

∑
iεIg

gi εi e
−εi/kBT

The simulation starts at a temperature of 2,000 K and progresses to equi-

librate at 20,000 K. A comparison of the temperatures obtained from the

state-to-state and quadratic models at different time intervals show good

agreement. All groups attain a final temperature of 20,000 K, the temper-

ature of the reactor. In the case of 2 and 3 bins, a quasi-steady state is

noticeable near the end of the simulation when the dissociation processes

dominate.
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(a) 2 Bins (b) 3 Bins

Figure 4.7: Time evolution of Group Temperature

4.1.3 Comparison of the Global Values

This subsection comprises of comparisons of the global macroscopic prop-

erties of the molecule-atom system. The simulations are run for different

number of groups: 1,2,3,5 and 7. In figure 4.8, global mole fractions of the

nitrogen molecule are compared with the full state-to-state result. Grouping

all the bound states in 1 group is not very efficient in representing the global

properties. It deviates significantly from the full state model. As the number

of groups is increased, the mole fraction values get closer to the state-to-state

values. The zoomed in figure shows that the mole fraction values converge

for groups 2,3,5 and 7. However, the difference in increasing the number of

groups is justified by the better representation of the reconstructed popula-

tion distribution as seen in section 4.1.1.

There are two phases of chemical reactions. Until around t= 3E−07s there

is minimal dissociation of the nitrogen molecule. The reactions occurring un-

til this time are predominantly energy transfer(excitation and de-excitation)

reactions. This first phase of transfer reaction dominance is followed by dis-

sociation of nitrogen molecules. As the system evolves to the final state

at 20,000K, in order to attain thermal equilibrium, the temperature of the

system increases. The rate coefficients for dissociation are higher for higher

temperatures. This means that the dissociation reactions will be faster at

higher temperatures. Therefore, as the system temperature increases, the

molecules are already excited and hence even slight increase in energy leads
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to dissociation, making dissociation process more noticeable than the energy

transfer processes. During dissociation, the mole fraction of the molecules

decreases and evens out at zero after all the molecules are dissociated. The

dissociation is complete and the system reaches chemical and thermal equi-

librium by 3 µs.

In these high temperature regimes, it is noticed that the recombination rate

coefficients are significantly smaller than the rate coefficients for the other

kinetic processes and hence recombination processes have negligible effect on

the mole fractions of various species present in the system.

The total internal energy as well as the total second moment of the nitrogen

molecules show a similar progression. Figure 4.9a shows a comparison of the

total internal energy of the molecules obtained from the state-to-state model

and the quadratic model. It can be seen that the quadratic model is able to

predict the first and second moment of the population distribution accurately.

The internal energy of the N2 molecules is initially almost a constant since

there are very few excitation and dissociation processes occurring at 2,000

K. As the system evolves, the high energy states become more populated

due to excitation process, and the internal energy of the system increases.

In this regime, the effect of the excitation processes on the internal energy

are more dominant than the effect of the dissociation processes. Marching

even further in time, the temperature of the system becomes high enough for

the dissociation interactions to become predominant. This leads the internal

energy of the system to decrease and finally plateau at zero when almost

all the molecules are dissociated into atoms. The magnified view of the

excitation and dissociation portion of the internal energy, figure 4.9b, shows

that even with just 2 bins there is good convergence with the state-to-state

model. Some deviation from the full simulation exists due to the type by

binning strategy employed.
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(a) Mole fraction of N2 molecule (b) Mole fraction profiles zoomed in
during dissociation

Figure 4.8: Evolution of mole fractions in time

(a) Total internal energy of N2

molecules
(b) Internal Energy zoomed in
during dissociation

Figure 4.9: Evolution of the internal energy in time
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(a) Total second moment of the N2

molecule
(b) Second moment zoomed in
during dissociation

Figure 4.10: Evolution of the second moment in time

4.1.4 Comparison of Group Parameters

From the simulations, it is observed that the non-linear system of equations

(3.34) is very stiff. The actual values of β and γ are of the order of the

energy and energy square, the energy here corresponds to the rovibrational

energy level of the molecule. The energies are of the order of a few electron

volts. Hence to obtain more reasonable values of β and γ, the quadratic

equation coefficients, the energy in the system is normalized with the value

of the energy of the last bound level of the nitrogen molecule, 9.753 eV(≡ ε̂).

This energy corresponds to the dissociation limit of the nitrogen molecule.

These new normalized parameters are distinguished by a hat. The normalized

values of β and γ are related to the actual values by the following equations,

β̂ = βε̂ (4.2)

γ̂ = γε̂2 (4.3)
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(a) Evolution of β̂ (b) Evolution of β̂

Figure 4.11: Quadratic Parameters using 2 Groups

(a) Evolution of β̂ (b) Evolution of β̂

Figure 4.12: Quadratic parameters using 3 Groups

From figures 4.11 and 4.12, it is seen that as the system approaches equi-

librium, the slope and curvature values of all the groups start to converge.

Further using equation (3.35) for the equilibrium condition, the tempera-

tures of the groups are calculated and they are found to be very close to

the final translational temperature of the system, 20,000 K. In equilibrium,

the molecules attain a Boltzmann distribution and hence all higher order

terms in the description of the population distribution become zero. The

simulations of the quadratic model for the N2(
1Σ+

g )-N(4Su) system also show

similar trends. As the system approaches equilibrium, the γ̂ values for all

groups approach zero.

Figure 4.11a shows the evolution of β̂ for each group in the 2 quadratic
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group simulation. As soon as the simulation starts, group 2 slope value

decreases almost instantly. The decreased value of the slope of group 2

corresponds closely to the slope value for the final temperature of 20,000

K. The slope of group 1 starts off with a value corresponding to the initial

temperature of 2,000 K. Group 1 is initially in a frozen state and hence

the slope and curvature value do not change. This is also observed in the

population distribution plots. As time progresses, the slope of group 1 starts

to decrease until the end when it attains the slope corresponding to the

temperature of 20,000 K. Meanwhile, the curvature of group 1 increases. This

can be observed from figure 4.11b. This increase in curvature corresponds

to the strong non-equilibrium regime of the simulation. After reaching a

maximum, the curvature of group 1 decreases and finally becomes zero when

the system approaches and attains equilibrium. This is a requirement that

the model is required to satisfy in order to give physically meaningful results.

Group 2 curvature remains close to zero during most of the simulation. There

is a slight deviation from the zero value during the time frame when the

dissociation processes are dominant. This corresponds to the simulation time

of 0.05 µs to 5 µs. After this time period, the curvature value goes to zero

and the system attains equilibrium.

Figure 4.12 shows the progression of the quadratic parameters for 3 quadratic

bins. Group 1 β̂ value starts with a value corresponding to the Boltzmann

distribution at 2,000 K, similar to the previous case of 2 quadratic groups.

The trend can be distinguished in 3 regimes. The initial frozen regime, the

dissociation regime and finally the equilibrium regime. The evolution of the

normalized curvature value is similar to the progression observed in group

1 of 2 quadratic groups. Group 2 starts with an initial β̂ higher than the

group 1 value. The value then reduces continuously to attain a final value

corresponding to the equilibrium distribution at 20,000 K. There are some

steps observed in the figure for group 2. This is a numerical manifestation.

The curvature parameter for group 2 also reduces continuously to attain a

value of zero towards the end of the kinetic processes.

Group 3 shows a peculiar behavior. The slope parameter for group 3 starts

off near zero at the beginning of the simulation. As time advances, the slope

reduces to a negative value. This negative slope for group 3 should not be

confused with a population inversion. This value of slope is just a parameter

in the quadratic model which is combined with the curvature terms. These
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two terms together define the nature of the population distribution in the

levels belonging to this group. The anomalous behavior of the parameters of

the 3rd group is due to the high dissociation rate of the group. The curvature

value also attains a negative value when dissociation reactions dominate the

kinetics of the system.

The central portion with non-zero values for the group γ̂ values is of inter-

est whilst studying chemical non-equilibrium. As seen in section 4.1.1, the

population distribution follows a non-Boltzmann distribution when there is

chemical non-equilibrium. Hence, the representation of the population dis-

tribution needs to account for the curvature of the graph, which is accom-

modated by the maximum entropy quadratic model.
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CHAPTER 5

CONCLUSION

This study is focused on advanced modeling of non-equilibrium flows for

state-specific chemical kinetics based on a moment method combined with

an energy state grouping strategy. A novel multi group maximum entropy

model has been introduced in this thesis. This model comprises of a quadratic

reconstruction operator to represent the population distribution function of

the molecules in the energy space. Rovibrational non-equilibrium involv-

ing energy transfer and dissociation-recombination reactions of the N2(
1Σ+

g )-

N(4Su) system are studied. The kinetic and thermodynamic data is obtained

from ab initio calculations performed at NASA Ames Research Center. 7421

bound levels of the nitrogen molecule are lumped together in groups based

on the energy of the quantum mechanical states (energy based grouping

strategy). The macroscopic governing equations are formulated based on the

method of moments. The macroscopic master equations are solved to obtain

the group moment value which are used to reconstruct the population dis-

tribution in the energy space; the quadratic parameters are calculated from

the group properties/moments. The population distribution function within

each group is subject to constraints. These constraints are the moment con-

servation equations. In the quadratic model, the first three moments of the

distribution function are chosen. Therefore, there are three constraints on

the equation. This makes the problem over-constrained. To solve this over-

constrained system the method of Lagrange multipliers is used to obtain

a solution. The Lagrange multipliers correspond to the coefficients of the

reconstruction polynomial.

The macroscopic equations are derived from the exact microscopic govern-

ing equations by taking its moments and summing up the levels belonging to

a particular group. This reduces the order of the ordinary differential equa-

tions to be solved. The group rate coefficients, which characterize the kinetics

amongst groups, are computed directly from the microscopic rates which are
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obtained from first principles. Therefore, in the computation of group prop-

erties no ad hoc assumptions are made and hence this model retains most of

the physics of the system.

To study and validate the quadratic model, various test cases with different

number of groups are simulated and compared with the state-of-the-art state-

to-state model. To emphasize the advantage of a quadratic reconstruction

function, simulations are compared against a linear reconstruction function as

well. From the state-to-state simulations, it is observed that the intermediate

non-equilibrium regime between the initial and final equilibrium population

distribution has an inherent curvature associated with the distribution func-

tion. Using a linear type of reconstruction forces the states belonging to a

group to be in equilibrium at a particular group temperature. Hence, the

linear model is not suitable for depicting the curvature of the distribution

function. In order to capture the distribution function with reasonable accu-

racy, it will be imperative to use a large number of groups. This drawback

in the linear model is overcome by introducing a quadratic term in the re-

construction polynomial, making it a second order polynomial. With the

inclusion of the quadratic term, the number of groups required to represent

the population distribution function reduces significantly.

A comparison of the population distribution function using the three mod-

els shows that the quadratic model captures the non-Boltzmann distribution

functions with good accuracy with just two and three groups. A comparison

of the group properties and global properties show good agreement between

the quadratic and the state-to-state model. The internal temperature pro-

files obtained from the two models match and the group temperatures finally

reach the temperature of 20,000 K which is the temperature of the reac-

tor. Since at equilibrium, the distribution function becomes the Boltzmann

distribution at the equilibrium temperature, this implies that the curvature

of the distribution plot goes to zero and the slope of the plot becomes in-

versely proportional to the temperature of the system. Studying the time

evolution of the quadratic function parameters, the trends show that the

curvature term, γg goes to zero for all groups when the system reaches the

final equilibrium state and the value of βg attains a value corresponding to

the final equilibrium temperature. This shows that the quadratic model is

able to represent the final equilibrium state of the system correctly which is

an important condition to be satisfied by the model.
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The key contribution of the multi group maximum entropy quadratic

model is the introduction of the curvature parameter in the reconstruction

function. It is able to accurately capture the behavior of the population den-

sity in the entire span of the phase space at all times. Using the maximum

entropy quadratic model results in a reduction of the number of groups re-

quired to represent the energy space of the molecule, thereby leading to a

reduction of the computational time required to simulate the non-equilibrium

processes while still maintaining good accuracy.

In future, this chemistry model will be coupled with the flow equations

introducing new energy conservation equations corresponding to the number

of groups used and second moment conservation equations. There will also be

more continuity equations introduced which will also depend on the number

of groups in the molecule system. The following equations represent the flow

equations with the chemistry model developed in this thesis.

∂ρg

∂t
+∇.(ρgu + Jg) = ω̇g (5.1)

∂eg

∂t
+∇.(ρgueg + Jgeg) = Ω̇g

e (5.2)

∂f g

∂t
+∇.(ρguf g + Jgf g) = Ω̇g

f (5.3)

Here, ω̇g, Ω̇g
e and Ω̇g

f represent the chemical source terms obtained from

equations (3.7) - (3.9).
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APPENDIX A

MACROSCOPIC GROUP RATES

The macroscopic group rates can be derived as follows.

A.1 Macroscopic group rate for population density

∑
iεIg

dniN2

dt
=
∑
hεn

∑
iεIg

∑
jεIh

[
−ki,jniN2

nN
ngN2
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]
+
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48



0Cr
g =

∑
iεIg

kri (A.3)

Where,

Qg =
∑
iεIg

gie
−βgεi−γgε2i (A.4)

A.2 Macroscopic group rate for internal energy density

∑
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A.3 Macroscopic group rate for the function ‘niε
2
i ’
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2Cr
g =

∑
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2
i (A.13)

Where,

Qf
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∑
iεg
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−βgεi−γgε2i (A.14)
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