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Abstract

Most robots in industrial settings today rely on playback of precise pre-defined coordinates

and do not adjust their motion using feedback from sensors. This thesis describes a system

to implement real-time motion control of ABB Industrial robots through ROS (Robot Oper-

ating System), which enables general use for future experiments that control the robot arms

using real-time feedback from force-torque sensors and/or computer vision. Additionally,

these robots are used to bend a Nitinol rod into a desired shape and a hardware system has

been built to shape-set Nitinol rods with Joule heating.
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Chapter 1

Introduction

This project has been funded by NSF Grant IIS-1320519, the purpose of which is to study

the mechanics, manipulation, and perception of deformable objects for robotic manufac-

turing. This is motivated by capability deficiencies in state-of-the-art industrial robotics

today. For example, welding and painting are tasks commonly completed by robots in fac-

tories today, often with superior results than human workers. However, these tasks can be

pre-programmed to follow precise pre-determined paths, whereas a task such as installing

a wiring harness is easier for a human than state-of-the-art robotics to accomplish. The

goal of this project is to enable further research into new algorithms for manipulation and

perception of deformable objects. To this end, real-time control of an ABB industrial robot

via ROS (Robot Operating System) has been implemented. Based of the hardware design

described by Gilbert and Webster [2], a system to shape-set Nitinol rods held by robotic

arms has been built. The next chapter will provide background into the robot platform and

Robot Operating System. Chapter 3 will describe the implementation of real-time control on

the ABB IRC5 industrial robot controller using ROS (Robot Operating System). Chapter

4 will describe a system to shape-set Nitinol rods held by the robot arms.
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Chapter 2

Background

2.1 ABB IRB120 Robotic Arms

Our lab has two ABB IRB120 robotic arms installed in a shared work area (Figure 2.1),

so that they can simultaneously manipulate the same object. The IRB 120 is the smallest

robot produced by ABB [3], weighing 25kg. It can be mounted at any angle, and handles a

payload up to 3kg. The arm has 6 joints and 6 degrees-of-freedom, with a reach of 580mm.

The arms offer precise control and are specified to have .01mm position repeatability.

The two arms are arranged facing each other, so that their ranges of motion overlap

(figure 2.2), and the arms can simultaneously grip and manipulate a deformable object for

experiments. Figure 2.3 shows the range that each individual arm has from top and side

views.

2.2 ABB IRC5 Industrial Robot Controller

Up to 4 ABB robotic arms are controlled by one ABB IRC5 Controller. [4][5] Each robotic

arm is connected to a dedicated motor drive that powers the brake release and motors for each

of the six joints in each arm, as commanded by the motion planner of the IRC5 controller.

In our setup, the IRC5 control module and first arm’s drive are located in the same cabinet

and the second arm’s drive is located in a smaller cabinet, as shown in figure 2.4.

Figure 2.5 shows the inside of the first cabinet, containing the IRC5 control module and

the first arm’s drive. On the outside, there is an Ethernet network connection for control,

programming, and monitoring via computer, and in our case, Robot Operating System. The

system has a remote cord connecting to a FlexPendant, a hand-held controller for the IRC5

system. Also on the outside are the Emergency Stop, Motors On button, and the Auto/Hand
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Figure 2.1: The two IRB120 robotic arms installed in our lab. The IRC5 controller is in
the right hand cabinet in the background, which also houses the drive module for robot 1.
The left cabinet contains the drive module for robot 2.
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Figure 2.2: Working range of our pair of IRB120 robotic arms installed 3 feet apart (other
units: millimeters). The arm’s work spaces overlap to allow manipulation of the same
object by both arms.

Figure 2.3: Top and side views of one IRB120 robotic arm’s working range (units:
millimeters).
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Figure 2.4: ABB IRC5 controller and drive module cabinets

Figure 2.5: IRC5 Industrial Robot Controller and drive module
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Figure 2.6: IRC5 control module block diagram

mode switch. The Motors On button is pushed to re-enable the drives after startup or a

fault. When the Hand/Auto Mode switch is in Hand mode, a dead-mans-switch must be

held on the FlexPendant the entire time that the brakes are disengaged and the arms run

at a limited speed. When the switch is in Auto mode, the robot will run automatically and

up to its full speed. For safety, all experiments so far have been run in Hand mode.

Figure 2.6 shows a block diagram of how the IRC5 controller communicates with other

parts of the system. A 5-port industrial Ethernet switch bridges the IRC5 controller and

up to 4 drive modules. The Panel Board is a single board for all arms that is connected to

the IRC5 controller via Ethernet and has power and safety loop circuitry. The FlexPendant

is also part of the physical safety loop through its dead-mans-switch and connects to the

IRC5 controller via Ethernet. The IRC5 controller in our lab has a ABB DSQC 652 I/O

Unit with 16 digital inputs and 16 digital outputs at 24 volts; it is currently unused. The

I/O unit communicates with the IRC5 controller on a DeviceNet bus, to which other units

could be added.

Figure 2.7 shows how each arm drive is connected to the rest of the system. In addition

to driving an arm’s joint motors, each arm drive module measures the current angle of each
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Figure 2.7: IRC5 drive module block diagram

joint via connections to sensors in the joints; this position feedback data is then returned to

the IRC5 controller.

2.3 The RAPID programming language

The IRC5 controller is programmed with the RAPID programming language, ABB’s pro-

prietary programming language for its robot systems. It has high-level programming lan-

guage features, such as functions, procedures, modules, error-handling, trap routines, and

multi-tasking that supports up to 10 simultaneous threads.

RAPID code is executed on the IRC5 controller. Robot movements are programmed as

pose-to-pose movements and the path between these two positions is automatically calculated

by a built-in motion planner. The robot then moves, at the user-desired speed, to reach

the next target position. Each pose is in six dimensions and can be specified either as

the positions of the six joints or as the 3-D work-space coordinates and 3-D end-effector

orientation.
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2.4 RAPID MultiMove

The IRC5 controller has built-in support for synchronizing movement between multiple

robotic arms driven by the same controller. This feature is broken into two functions, each

requiring a separate license:

• MultiMove Independent: the robots work independently at some times and wait for

each other at others.

• MultiMove Coordinated: all motion is synchronized for the robotic arms.

The multi-move functionality is used through special RAPID instructions. For MultiMove

Independent, the WaitSyncTask instruction can be used to synchronize multiple processes at

a point. Each process calls the WaitSyncTask instruction with a special variable that other

tasks wishing to coordinate with it use as well. Once all tasks reach their WaitSyncTask,

each task starts simultaneously, but otherwise runs independently from then on.

In normal operation and in MultiMove Coordinated, there is a motion planner for every

motion task that executes the movement instructions for its task. When using MultiMove

Coordinated, however, every task wishing to have coordinated motion uses the same mo-

tion planner. Every task wishing to coordinate motion first calls SyncMoveOn, executes the

movements (each indexed with an identifier corresponding to the same movement in different

tasks) and then all tasks call SyncMoveOff. With MutliMove Coordinated, all coordinated

movements start and end at the same time.

2.5 Robot Operating System

Robot Operating System (ROS) is a framework for controlling robots and is most often

used in research and academic settings. It is not what is normally called an ”operating

system”, since it does not manage lower-level hardware and resources directly. Rather,

it provides software frameworks and acts as a middle layer for networked communication

between robotics hardware and control software [6]. ROS uses a publish-subscribe pattern

for inter-process communication over channels called “topics”.
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2.6 ROS-Industrial

ROS-Industrial is an extension project that aims to extend the features of ROS to support

robots in industrial settings [7]. ROS-Industrial provides a common control interface for

industrial robots from different manufacturers so generic motion control software can control

them. Currently, robotic arm controllers made by ABB, Adept, Fanuc, Motoman, and

Universal Robot are supported. A running ROS-Industrial setup creates a ROS node for

the industrial robot that has a manufacture-independent interface for controlling the robot’s

motion and getting feedback of the robot’s current joint states.

ROS-Industrial supports a few distinct modes of operation for communicating motion

instructions to industrial robots.

• Trajectory Downloading: A series of joint positions is sent to the robot and the

robot executes the series when all joint trajectory points have been downloaded to

the robot controller. The trajectory includes a velocity for each position which the

robot controller adheres to. After executing a trajectory, the robot stops and waits to

download the next trajectory.

• Trajectory Streaming: Point positions are streamed to the controller similarly to

Trajectory Downloading, but the robot executes the commands as it receives them,

possibly subject to a small buffer.

• Position Streaming: Joint positions are streamed to the robot controller from ROS-

Industrial, but the robot velocity is fixed by the robot controller.

In the current table of supported hardware provided by ROS-Industrial, only one of the

three modes is implemented for any robot:

The asterisk(*) denotes that this thesis describes an implementation of Trajectory Stream-

ing for ABB robots controlled by the IRC5 controller.
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Table 2.1: ROS-Industrial current hardware support (Source: [1])

Position Trajectory Trajectory
Vendor Controller(s) Streaming Downloading Streaming
ABB IRC5 NO YES NO*
Adept CX, CS YES NO NO
Fanuc R-30iA YES NO NO
Motoman DX100 NO NO YES
Universal Robot UR 5 YES NO NO

2.7 The Simple Message protocol

In any mode, the ROS-Industrial node communicates with the controller using the Simple

Message protocol. The Simple Message protocol is a binary protocol that usually runs over

TCP sockets, but could use serial or UDP channels as well. It is standardized so that most

robot hardware can use the generic Industrial Robot Client of ROS-Industrial. However,

if customization is required to support particular hardware, it is desired that it be added

at this level instead of changing the interface provided by ROS topic messages, so external

software is still provided the same interface.

2.8 A ROS-Industrial Robot Driver Node

According to the ROS-Industrial Robot Driver Specification [8], a motion control node

should accept commands from two ROS topics: joint_path_command and joint_command

• joint_path_command: ROS-Topic with JointTrajectory messages. Each message con-

tains a series of joint positions and velocities/durations that will executed by the robot.

• joint_command: ROS-Topic with JointTrajectoryPoint messages. One joint position

for the robot to execute. This should allow dynamic streaming of points for real-time

control.

However, upon inspection of all current ROS-Industrial code, a subscription to the joint_command

topic is not implemented by any generic or manufacturer-specific robot drivers. Indeed, only

a Github issue was found to note the missing functionality [9]. The current generic robot
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Figure 2.8: ROS-Industrial ABB downloading driver

drivers do implement Trajectory Streaming, but they only do so from JointTrajectory mes-

sages. If the JointTrajectory message contains only one point, the generic robot client will

actually send the robot controller the same point twice, with the first set to start motion and

second to stop motion. In addition, there is a 250 millisecond polling period in the generic

streaming client while waiting for new JointTrajectories to stream. It is evident that the

ROS-Industrial framework does not support real-time control with any supported hardware

today.

Figure 2.8 shows a system block diagram containing the ABB IRC5 Robot control, the

ROS-Industrial node connected to it, and other ROS nodes that control and get feedback

from the robot through ROS message topics. The next chapter will describe work improving

this system to allow real-time control of ABB robots.
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Chapter 3

Real-Time Control of ABB robots with ROS-Industrial

It was desired that the ABB robots in our lab are controllable in real-time. As described in

the background chapter, ROS-Industrial currently only supports Trajectory Downloading for

ABB robots, thus, it was necessary to implement Trajectory Streaming on the ABB robots.

In addition, a ROS node was implemented to subscribe to JointTrajectoryPoint messages

from the joint_command topic and stream them to the robot controller.

3.1 RAPID Streaming ABB Driver

To implement Trajectory Streaming in RAPID code on the ABB IRC5 controller, the

network server and motion tasks were modified to only consider the current, most recent

point received. The motion server listens on a TCP port for a client connection from the

industrial robot client ROS node. A motion task then runs for every robot arm that is

to be simultaneously controlled. The motion task is written to dynamically determine its

Mechanical Unit Index, so that the same source code file does not need to be copied or

edited to run multiple motion tasks. Configuring the arms to be controlled on the IRC5

controller only requires that the motion code is set to run as a task for every mechanical

unit and the motion task be added to a configuration list. The MultiMove Independent

features are utilized to synchronize the motion-server task with all of the motion tasks. The

WaitSyncTask function was employed to block the motion tasks until a joint command was

received by the motion server.

Listings 3.1, and 3.2 shows selected lines of the source code for the server and motion

tasks, respectively. When the motion server receives a Trajectory Point message, it puts

the next joint target and duration into variables shared by the motion server and all motion

tasks. It then calls WaitSyncTask, which allows the motion tasks to continue and to read
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the next target. Then, WaitSyncTask is called a second time by both the server and motion

tasks. In this use, WaitSyncTask has two functions: protecting read and write access to

the shared variables and synchronizing the motion of multiple arms. If a license for Coor-

dinated MultiMove were obtained, SyncMoveOn could additionally be used to more closely

synchronize movement of multiple arms through the same motion planner.

Listing 3.1: Selected lines from the real-time trajectory driver’s server task

PROC main ( )

WHILE TRUE DO

ROS_receive_custom_joints c l i e n t_ s o c k e t ;

WaitSyncTask ROS_sync1 , \Timeout := . 5 ;

! Motion s e r v e r s copy shared v a r i a b l e s here

WaitSyncTask ROS_sync2 , \Timeout := . 0 5 ;

! Send r ep l y a f t e r motion accepted so

! c l i e n t can implement r a t e c o n t r o l

ROS_send_msg c l i e n t_so ck e t , reply_msg ;

ENDWHILE

ENDPROC

Listing 3.2: Selected lines from the real-time trajectory driver’s motion task

PROC main ( )

VAR j o i n t t a r g e t t a r g e t ;

WHILE TRUE DO

WaitSynctask ROS_sync1 , ROS_sync_list ;

! Copy data from shared v a r i a b l e s

t a r g e t . robax := ROS_joints{mecunit_idx } ;

MoveDuration := ROS_duration ;

WaitSynctask ROS_sync2 , ROS_sync_list ;

MoveAbsJ ta rge t , move_speed , \T:=MoveDuration ,

stop_mode , t o o l 0 ;

13



ENDWHILE

ENDPROC

3.2 Industrial Robot Client

Although there exists generic implementations of industrial robot clients for ROS-Industrial

node, it was determined that the current implementation of both Trajectory Streaming

and Trajectory Downloading were ill-suited for real-time feedback control, due to limita-

tions discussed in the background. A new ROS node was created that subscribes to the

joint_command ROS topic and accepts single JointTrajectoryPoint messages that it then

forwards to the robot controller.

The standard SimpleMessage protocol has a fixed-size payload and carries 10 joint angles,

regardless of the number of angles the robot actually has. Since our two robot arms have

12 joints combined, this implementation re-compiled the ROS-Industrial library with the

number of joints in the Simple Message increased from 10 to 12. The motion server RAPID

code was also hard-coded to use this new packet size.

3.3 Experiments

The first experiment aims to measure the delay between commanding the robot to move

to a position and when the system reports that the joints have moved to that position. A

program was written to publish joint commands at 30 Hz that commanded a single joint of

one robot arm to angles that followed a sinusoidal motion over a range of π/8 radians with

a period of 2 seconds. A logging program listened on the ROS topics joint_path_command

and joint_states, logging each joint command and state message received to CSV files

with each line prepended by a global timestamp. T = 0 was set to the first point timestamp

from any source.

Using scipy.optimize.leastsq, a least-squares fit was made to each data series to re-

cover the measured amplitude, period, and phase of the sine wave. The control latency is
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Figure 3.1: Latency between commanded and measured joint angle

then the phase difference between the sine wave of the commands and that recorded by the

joint angle, to a higher precision than would otherwise be possible with the sample rate.

Figure 3.1 shows each point measured and the fitted curves for the command and measure-

ment signals. The fitted sinusoidal waves for the commanded and measured movements are

455 milliseconds out-of-phase. It would be expected that the measured positions lag by the

period of the commanded positions, which is 33 milliseconds. The remaining 455−33 = 422

milliseconds of latency are due to some other delay between sending joint commands and

the movement being registered from the measured angles. It is thought that all of this delay

is due to the motion-planner on the IRC5 controller. Local experiments were also done in

RAPID code to confirm that the motion-planner introduces delays in the hundreds of mil-

liseconds, even if tens of move instructions have been executed before the physical drives

respond to the first commands.

While measuring the latency between commanded and measured joint angles, it is un-

known what portion of the delay is introduced before the robot arm begins to physically

move for commands, or if any delay is introduced in the measurement and communication

of the joint states through the RAPID program and back to the ROS node. To attempt
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Figure 3.2: Latency between joint_state and Accelerometer readings

a more direct measurement of the physical arm movement, an accelerometer was attached

to the robot arm and this data was logged with the same program that was recording the

commanded and measured joint angles.

Since the joint positions are commanded and measured by the robot by sin(t), the ex-

pected acceleration is the second derivative: −sin(t). Figure 3.2 shows the accelerometer

measurements over time as the robot was moving as commanded in the previous trial, with

the fitted curve for angles measured by the robot controller overlaid as a dashed line.

Although the accelerometer readings were noisy, a least-squares fit was still able to be

found, and the measured frequency matched the 2 Hz of the commanded motion. In this trial,

the joint_state signal was found to have −5 milliseconds of latency from the accelerometer

readings, meaning that the accelerometer readings could be delayed. However, the delay was

measured in two additional trials as −1 and +12 milliseconds. While this a relatively noisy

and inaccurate measurement of the joint_state latency, it does show that practically all

of the latency in the real-time control loop is due to the motion planner.

16



3.4 Future Work

To allow this work to be used by the broader community, it would be desirable for the

solution to be made more generalized. The Simple Message protocol could be extended

to support variable numbers of joints, so that ROS-Industrial can work generically with

multiple-arm robots from different manufacturers. The generic ROS-Industrial robot client

nodes could receive JointTrajectoryPoint messages from the joint_comand topic to support

real-time control of all robots for which ROS-Industrial has a trajectory streaming driver.

Further work could be done specifically for ABB robots to enable lower-latency control.

A new feature called Externally Guided Motion (EGM) was added in ABB RobotWare 6.0,

released in 2015. EGM bypasses the path planner and gives direct control to the motor

reference generator. A separate license purchase is required to use EGM [10], and it was

unable to be tested in this work. Ørjan [11] implemented a system to use EGM to follow

a disc rolling down a ramp and tracked by a camera. With EGM, the robot path can be

updated every 4 milliseconds (250 Hz), with a control lag of 8 to 20 milliseconds [12].
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Chapter 4

A System For Shape-Setting Nitinol Rods With Robotic
Arms

This chapter describes a system for shape-setting nitinol rods that are held into a desired

shape by a pair of robotic arms. “Nitinol” is the short name for a metal alloy of nickel and

titanium, usually consisting of 55-60% nickel, and is a shape-memory alloy with superelastic

properties. Its superelastic properties mean that it can be deformed to very high strains (up

to 8% strain), and still return to its original shape without heating (like a spring). Since the

“superelastic” properties are caused by a phase transformation due to the stress of bending,

a more accurate name is psuedoelasticity. This superelastic property is utilized in many

applications that require substantial flexibility and motion of metal without deformation,

such as concentric tube robots. As a shape-memory alloy, it can be deformed and will return

to its original shape when heated. The original shape is also called the ”parent” shape. The

parent shape can be set by heating the nitinol to even higher temperatures, around 500 ◦C,

a process called shape setting [13].

4.1 System Overview

With our two robotic arms, we will hold a nitinol rod in a desired shape and then heat

it to set the shape. If the two end-effectors that grip the rod are connected to a power

supply, the rod can be heated via joule heating by passing an electric current though it.

Gilbert and Webster [2] have built such a system for shape-setting nitinol tubes and rods,

which modulates an electric current through the rod and measures its resistance as a proxy

for its temperature. The system is relatively inexpensive, rapid, and accurate, with a mean

absolute temperature error of 10 ◦C from the target temperature.

Gilbert and Webster improve upon other shape setting methods, such as furnace-based

approaches, and have more accurate results. However, a drawback of Gilbert and Webster’s
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shape-setting system is that it requires a jig to hold the nitinol rod in the desired shape

during heating. A jig must be custom crafted for any shape desired, which takes time to

construct and also reduces the quality of parts as heat transfers through contact points. Our

system has the advantage that no construction process is required for custom shapes and

the robots hold the rod in the air, providing uniform heat transfer.

During heating, the current and voltage across the part is measured and the part’s resis-

tance can be directly measured by application of Ohm’s Law; the temperature rise can be

calculated by proxy to the rise in the rods electrical resistance. With our robotic arms, the

desired shape of the rod could simply be set in software and the robots will quickly bend the

rod into the desired shape. The shape-setting system will heat up the rod as the robots hold

its ends, eliminating any contact points except the ends. This system could enable rapid

prototyping of customized parts for things like concentric-tube robots, and may produce

superior quality parts.

4.2 Electrical Resistivity

Electrical resistivity is an intrinsic property of a material that quantifies its opposition

to electrical current. The resistance (R) of a rod is then a function of its length (l), cross

section (A), and resistivity (ρ):

R = ρ
l

A
(4.1)

The temperature coefficient of resistivity quantifies the resistivity change in a material

given a temperature change. Often, a linear approximation of the temperature coefficient is

used. The temperature coefficient of materials is often given at 20 ◦C, thus the resistance

of the rod at a temperature (T ), with a known 20 ◦C resistivity (ρ20), and temperature

coefficient of resistivity (α), can be calculated:

R = (ρ20 + α(T − 20))
l

A
(4.2)

In our shape setting system, the goal is to reach and hold a target temperature for an
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amount of time. Since the system measures the rod’s resistance, the above formula could be

used to directly determine the target resistance if the length and width of the sample are

known. However, the length and width dimensions of each sample may be hard to measure

accurately enough for a rod to be shape-set. A more uniform measure of each part to be

shape set is the starting temperature, which may be simply taken as the temperature of the

surrounding room. If the ratio of the target final resistance (RF ) to the initial resistance (RI)

is made using using equation 4.2, the length and cross-section parameters cancel, leaving

only the resistivity and temperature parameters:

RF

RI

=
ρ20 + α(TF − 20)

ρ20 + α(TI − 20)
=

ρF
ρI

(4.3)

Using equation 4.3, the only input parameter the shaping controller requires is the ex-

pected ratio of the initial to target resistivity. The system will measure the initial resistance

of a particular rod when the shaping process is first started and then calculate the target

resistance. This method improves the potential productivity of the system for rapid proto-

typing, as the system can quickly perform the same temperature setting on multiple parts

of different dimensions without changing any input parameters.

4.3 Hardware

Our robots currently have a drill chuck mounted on each arm, which can be tightened to

grip a rod. The drill chucks are good gripping devices, since they hold the rod in a precise

location relative to the robot. They also serve the shape-setting system well, as the chucks

will conduct electricity to the rod.

However, it is required that the robot arms are shielded from the voltage and heat of the

shape-setting process. A ceramic bolt was used to rigidly hold the end-effector to the robot,

chosen because ceramic is a great electrical and thermal insulator. An image of our shape-

setting end-effector is shown in figure 4.1. The wire lead from power source is attached to

the drill chuck with a 1/2 inch bolt. The bolt has 5/16 inch threads tapped into its face,

which the ceramic bolt screws into. A 3-D printed adaptor holds the ceramic bolt to the
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Figure 4.1: The shape-setting system end effector

robotic arm and a ceramic washer separates the adaptor from the chuck.

The design of the system’s control circuit board is based on Gilbert and Webster’s and

we thank them for providing their source code and schematics. However, our system is

designed for a higher level of safety and durability; the enclosure, operator-interface, high-

power components, and safety design/interlocks are designed to industrial standards. The

MOSFET, current-measurement shunt, Arduino, and associated control circuitry is installed

in a fiberglass electrical enclosure, as shown in figure 4.2. The enclosure is 12x10x6 inches

and has an aluminum subpanel inside, onto which the other components can be mounted.

The system has a remote control on a 50 foot cable, which has a key switch and a button

that must be held to enable the electromechanical relays inside the control box in manual

mode, unless it’s allowed to be enabled by a relay connected to the robot’s safety circuit.

These buttons/relays enable a 500-amp relay in series with the MOSFET.

The system power source for shape-setting is a standard 12-volt (6-cell) lead-acid spill-

proof car battery, rated at 1000 cranking amperes [14]. The battery’s charge is maintained

by a dedicated charger that also powers the control circuit. Additionally, the battery is

connected via a 300-amp fuse to protect against overload from a connection or software

error.

Besides the battery and charger, all other components are mounted inside an electrical

enclosure to increase safety and sturdiness. The enclosure can be mounted under the robots

and has indicators to show the current status. A chassis-mounted MOSFET was chosen,
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Figure 4.2: Shape-setting system control box
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Figure 4.3: Shape-setting system remote

which offers high-speed switching to regulate the power delivered to the part. The IXYS

IXTN660N04T4 MOSFET we use is rated for 200 ampere continuous and 1800 ampere

instantaneous current [15]. For measuring the current flowing through the nitinol wire, a

chassis-mounted shunt was placed in series with the circuit through the nitinol rod. The

shunt is rated up to 1000 ampere, and is also chassis-mount.

Local control of the shape-setter is provided by an Arduino microcontroller. The Arduino

can quickly switch the MOSFET so that the average power delivered to the part can be

regulated. The Arduino measures feedback by the voltage and current flowing through the

nitinol part to control the part’s temperature. The final cost of our shape-setting system

was less than $1000 (breakdown in Appendix A).

4.4 Operator Interface

The Nitinol shaping system has a 50-foot corded remote control with a selector switch and

momentary push-button, shown in figure 4.3. The selector switch requires a key to operate

and has three positions:

• Auto – The shape-setter is interlocked with the robot’s safety circuit, so that the

shape-setter will be enabled simultaneously when the robot is engaged. If the robot is

in its Hand mode, the operator must hold the FlexPendant dead-man-switch.

23



Figure 4.4: Block diagram of the nitinol shaping system

• Manual – The shape-setter will work without the robot, but the push button on the

remote must be held for the duration of shape setting.

• Off – Disables the shape-setter. The key can be removed to prevent unauthorized

operation.

There are three LED indicators on the front panel of the control box: green, yellow, and

red. The green and yellow lights are controlled by the Arduino. During normal operation,

the green LED will light when powered and the yellow will light when the shape-setter is

“armed”. The red LED is tied to the main relay and indicates when the shape-setting system

is engaged.
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4.5 Microchip components

The Arduino Yún was chosen for this project [16]. Figure 4.4 shows how the various

microchip components are connected. It has the ATmega32U4 microcontroller, a standard

AVR Arduino microcontroller, the same as that used in the Arduino Leonardo, and has

the the standard Arduino headers for expansion boards. The microcontroller is tasked with

controlling the rod heater feedback loop. Unlike other Arduino boards, the Yún also has

a second microprocessor, the Atheros AR9331, to which Ethernet, Wi-Fi, and a Micro-SD

card reader are attached. The Atheros processor runs Linux at a clock speed of 400Hz. The

Linux system is tasked with high-level functions, like communicating with ROS or a web

client for input parameters and reporting the system status.

The voltage and current of the system are measured through an analog-to-digital conver-

sion, but the Arduino’s built-in analog-to-digital converters are too slow and have insufficient

of resolution for this system. Instead, an external analog-to-digital converter, the ADS1255

from Texas Instruments, was used to provide 24-bit resolution at up to 30,000 samples-per-

second [17]. It is connected via the Arduino’s SPI bus and a client library for the Arduino

was written to communicate with it. An INA132 [18] difference amplifier is used to measure

the relative voltage across the part and output a 0-2.5 volt signal that the ADS1255 measures

relative to ground. For measuring the current, an INA139 [19] converts the voltage across

the current-measurement shunt into the second channel for the ADS1255 to measure.

4.6 Software Control

The software has both safety and control responsibilities. For safety, the Arduino’s low-

resolution analog inputs are connected to various points in the system to ensure that it is

operating nominally and will stop the process if any error is detected. The AnalogScanner

library [20] was used to read the analog inputs via interrupts, so the main control loop does

not block while waiting for the ADC to perform conversions.

While shape-setting, a PID controller is used to regulate the rod’s temperature. The

input to the PID controller is the error between the rod’s target resistance and its measured
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resistance and the output is the amperes to be delivered to the rod. Since instantaneous

current to the rod can only turned on or off with the MOSFET, an exponential moving

average with a time constant of 10 milliseconds is used to track the average amperage

delivered. A simple boolean expression is then evaluated every control loop to turn the

MOSFET on if the averaged current is less than the target current from the PID controller.

4.7 Future Work

Experiments should be performed to determine the temperature accuracy and effectiveness

of the shape-setting system. Additionally, programs could use the shape-setting system and

the robots together by controlling both the robot arms and shape-setting process through

ROS.
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Chapter 5

Conclusions

In this work, real-time control of ABB robots has been implemented through a modified

ROS-Industrial installation. It is limited, however, by a 400-500 millisecond delay that the

ABB IRC5 robot controller introduces with its motion planner. Future work may use the Ex-

ternally Guided Motion feature to dramatically lower the control latency. Finally, a system

for shape-setting nitinol rods held in shapes with the robot arms has been implemented.
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Appendix A

Hardware Costs

Table A.1: Approximate Component Cost of Robot-Mounted Nitinol Shape Setter

Item Cost
Battery $160
Electrical Enclosure with Subpanel $110
3-stage battery charger $72
3 Panel-mount LED Indicators $16
2 5/16” Ceramic Bolts $14
10 Battery terminals (various sizes) $30
40 feet 2AWG Welding Cable $73
Arduino Yún $68
500 Amp Relay $50
Fuse and holder $35
Miscellaneous ?
Total: About $1000
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