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Abstract

Railroad transportation is one of the most cost-effective and energy-efficient

modes of land transportation. With an eye toward improving these efficien-

cies, many efforts have focused on developing high speed railways. Tradi-

tionally railways have utilized passive suspension systems, but maintaining

dynamic stability at higher speeds demands enhancements to existing rail

vehicle suspensions. One strategy to improve dynamic performance is to in-

corporate active or semi-active elements, such as force actuators or variable

dampers, within the suspension system. Modern day road and rail vehicles

often utilize such actively-controlled suspensions to improve stability, ride

comfort and ride quality at high speeds. The dynamic performance of such

mechatronically-controlled suspension systems is related closely to the con-

gruence of the design of passive elements in conjunction with the chosen

control system strategy. Historically, design of controlled dynamic systems

has followed a sequential process (mechanical design followed by control de-

sign). In the field of mechatronics, engineers typically use design rules or

heuristics that help account for design coupling, but cannot produce system-

optimal designs. Passive elements are optimally designed first, followed by

the addition of controllers for system performance improvements. New in-

tegrated design strategies are required to realize the full potential of such

advanced complex dynamic systems and to capitalize on design coupling.

This thesis aims to explore and apply a recently developed synergistic

approach to design of controlled dynamic systems, called co-design. The-

oretical models of existing partitioned, optimization-based design methods

are compared to this combined active and passive system design strategy.

Parameters for a reduced and a full-scale rail vehicle model are then de-

signed using the developed optimal design formulations. Different control

techniques within the co-design framework are tested and compared. Typi-

cally feedback controllers are required for actual implementation of control
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strategies. Early-stage co-design strategies are normally based on open-loop

control, therefore, are limited for functional implementation. However, co-

design methods provide designers with better knowledge about the true per-

formance limits of dynamic systems, help them make more informed design

decisions, and provide a foundation for development of implementable feed-

back control systems. The results obtained in this thesis show significant

improvements achieved by co-design strategies over passive system design

and sequential design approaches. The results also demonstrate the poten-

tial of this framework in helping systematic selection of optimal plant design

variables, controller architecture, and implementable control techniques. Fu-

ture work includes designing practical feedback controllers built upon results

from co-design strategies for rail vehicles using non-linear vehicle models to

provide a complete active rail suspension solution.
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(c) lateral accelerations ÿ2w2, and (d) yaw accelerations ψ̈2

w2. . . 34
4.4 Active control (P1) for a 7-DOF system: Time history of

damping force (N) provided by the lateral active controller . . 35
4.5 Semi-active control (P2) for a 7-DOF system using linear

dampers: Trajectories of (a) damping force (N) provided
by the lateral semi-active controllers, and (b) damping co-
efficient (Ns/m). . . . . . . . . . . . . . . . . . . . . . . . . . . 35

viii



4.6 Semi-active control (P3) for a 7-DOF system using magneto-
rheological dampers: Trajectories of (a) voltage (V) ap-
plied and (b) damping force (N) provided by the lateral
semi-active MR dampers . . . . . . . . . . . . . . . . . . . . . 36

4.7 Active control (G1), semi-active control using linear dampers
(G2), and semi-active control using MR dampers (G3) for
a 17-DOF system: Trajectories of car body (a) lateral ac-
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Chapter 1

Introduction

Rail vehicles are complex, dynamic systems. Modern day rail cars utilize

elaborate mechatronics to improve performance, comfort, and reliability.

Conventional design approaches for such advanced rail vehicle suspensions

often overlook the symbiosis between passive and active elements of design.

There is a need to reassess existing methods and scrutinize newer synergistic

design strategies.

1.1 Rail Vehicle Design

With the recent introduction of high-speed rail in countries around the world

such as France, Spain, Japan, and China, improving the dynamic perfor-

mance of rail vehicles presently holds paramount importance. Performance

factors including ride quality, ride comfort, and dynamic stability of rail-cars

are closely related to the optimization of the underlying suspension systems.

Passive suspension systems, currently ubiquitous in rail vehicles, have limited

dynamic capabilities. Actively-controlled suspensions can be used to improve

conflicting objectives simultaneously, such as curve negotiability and tangent

track speeds. Safety of railway passengers and operational reliability of high

speed trains can also be improved significantly by minimizing unwanted dis-

turbances, such as hunting. Figure 1.1 shows the Japanese Shikansen 500,

one of the earliest in-service passenger railcars to adopt lateral semi-active

suspensions to improve dynamic stability, ride comfort and minimize effects

of hunting at high speeds.

Researchers have developed and validated detailed dynamic models with

passive suspension elements with varying degrees of complexity. Garg and

Dukkipati [5] developed extensive linear and non-linear models of passenger

and freight railway vehicles on both tangent and curved tracks using various
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Table 1.1: In-service high speed trains with active suspensions and
associated control strategies [1]

Train, Country Active Control Technique and Strategy
Pendolino, Spain and Britain Tilt and Centering; Hold-Off Device
Shinkansen Series 700, Japan Semi-active lateral suspension; Sky-Hook

Damping
Shinkansen Series E, Japan Active pneumatic actuators; H∞ control
Shinkansen Fastech 360, Japan Semi-active; electro-magnetic actuators

deterministic and random track inputs. Cheng et al. [6] derived 20-DOF

(degree-of-freedom), 14-DOF, and 6-DOF linear vehicle dynamics models,

and evaluated critical hunting speed via heuristic non-linear and linear creep

models on curved tracks. Graa et al. [7] proposed a 38-DOF model and

validated it using both experimental data and results produced by more

complex models from the literature. Hirotsu et al. [8] derived and formulated

a 31-DOF model, and found that yaw dampers had a large effect on improving

the lateral vehicle stability, especially in suppressing divergent hunting at

higher vehicle speeds. This is discussed in further detail in Chapters 3 and

4.

Active suspension systems for rail vehicles, while not a recent technolog-

ical development [9], have found limited adoption in the rail industry. The

primary impediment is cost of mechatronic systems, as well as the significant

service life of typical rail-cars (30-70 years) [10]. Goodall et al. [11] noted

the ever-increasing importance of mechatronic solutions to vehicle designs,

but acknowledged that the rail industry is falling behind the aircraft and

automotive industries in their implementation. As the rail industry seeks to

compete with other means of transportation, increased speed and reliability

are important factors for future economic success. Active suspension systems

provide a gateway to achieve these goals by providing advanced controllabil-

ity and dynamic performance that cannot be attained by passive systems.

A number of control applications for dynamic railway systems have been in-

vestigated by researchers. Orvnäs [1] reviewed existing theoretical and prac-

tical concepts of active systems and categorized them into two approaches:

� Active suspensions to improve stability and guidance

� Active suspensions to improve ride quality
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Figure 1.1: Shinkansen 500 series train, Japan, one of the earliest examples
with semi-active lateral suspensions to improve ride comfort [2]

The former deals with the idea of active elements in the primary sus-

pension. The latter employs active secondary suspensions, usually in the

lateral and yaw axes and/or for tilting technologies, to enhance passenger

ride comfort. Car-body tilting, which uses mechatronic systems to induce an

inward roll at curves to reduce centrifugal forces felt by the passengers, has

been fairly well-established in current railway systems. Although success-

fully implemented, tilting trains have been found to cause motion sickness in

passengers [12, 13], hence stimulating the need to investigate other possible

active technologies.

To actualize an efficient actively-controlled suspension, appropriate actu-

ators must be selected and designed to be governed by suitable control algo-

rithms. Different actuator types include electro-mechanical, electro-magnetic,

and hydraulic. These actuators can produce arbitrary force trajectories

within limits, but often have prohibitively high power requirements that hin-

der their widespread use in practice [3]. Another class of actuators has much

lower power requirements. Adjustable dampers enable precise control over

energy extraction from a suspension system, but do not inject energy into

the suspension. As a result, suspensions with adaptive dampers are often

called semi-active suspensions. Figure 1.2 illustrates the different suspen-

sion strategies investigated for use as secondary suspension systems in rail

vehicles.
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Figure 1.2: Illustration of different secondary suspension strategies for rail
vehicles: (a) Passive, (b) Semi-active, and (c) Fully-active [1, 3]

One type of adaptive damper uses electro/magneto-rheological (ER/MR)

fluids that are capable of adjustable damping characteristics through the con-

trolled application of electrical current or potential difference. ER fluids are

excited by an applied electric field requiring thousands of volts for operation,

which leads to safety and packaging concerns for designers and users. In con-

trast, MR fluids are excited by a magnetic field, which requires only a low

voltage source [14]. MR dampers are also relatively inexpensive, and consume

very small amounts of energy to control the magnetic field [1]. Du et al. [15]

found that semi-active suspensions with MR dampers can achieve perfor-

mance that is comparable to that of active suspensions, with near-zero power

consumption, and are inherently BIBO (Bounded-Input Bounded-Output)

stable. The strength of the applied (controlled) magnetic/electric field sig-

nificantly influences the viscosity of the fluid inside the damper, thereby

changing its inherent damping characteristics. The success of MR dampers

in semi-active vehicle suspension applications is determined primarily by the

accurate modeling of the MR dampers, and the selection of an appropriate

control strategy [15]. Modeling and control of MR Dampers is discussed in

further detail in Chapter 2.

Semi-active suspensions for rail vehicles using MR dampers have been sub-

ject to fairly limited research. One of the widely-adopted control strategies
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is Sky-hook damping, which damps the system relative to a fictive sky ref-

erence point. Although significant ride quality improvements were found

compared to passive systems, the strategy struggled to provide the same

level enhancements during curve negotiation and special track conditions [1].

Several researchers have explored optimal control strategies such as Linear

Quadratic Gaussian (LQG) control laws with semi-active suspensions. He

[16] used multidisciplinary optimization of combined mechanical and control

systems based on LQG and Kalman Filter Algorithms to optimize quarter-

vehicle (2-DOF) and half-vehicle model suspensions. Wang and Liao [17, 18]

created a full-scale model of a railway vehicle integrated with semi-active con-

trolled MR fluid dampers in the lateral secondary suspension system based

on their earlier work that demonstrated the feasibility of using MR Dampers

for rail purposes [19]. They found that under periodic track irregularities,

the semi-active suspension system can attenuate the lateral, yaw, and roll

accelerations of the car body significantly (approximately 70%) relative to

the passive suspension system. More recent work involves a hardware-in-

the-loop simulation (HILS) of MR dampers to test active lateral suspensions

[20], linear-quadratic regulator (LQR), and proportional-integral-derivative

(PID)-LQR approaches to identify the PID gains needed to improve pas-

senger comfort [7, 21, 22], and semi-active strategies with non-linear passive

suspension systems [23].

A brief review of the existing literature adequately affirms the feasibility of

using MR fluid dampers for semi-active suspensions to improve lateral sta-

bility and comfort of rail vehicles, and further motivates the need to identify

and examine robust optimal design and control strategies that help explore

tradeoffs and the limits of the overall system performance.

1.2 Dynamic System Design

Designing is a complex decision-making process which is often based on ex-

isting design rules, principles, and sequential procedures [24]. Mathematical

optimization is the process of maximizing or minimizing one or more objec-

tive functions, possibly with constraints, by adjusting a set of variable values

that influence both the objectives and the design constraints [25]. Thus,

optimal design involves accurate mathematical modeling, choosing an ap-
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propriate design objective, choosing the set of design variables, identifying

design constraints (time, resources, physical limitations, failure modes, etc.),

identifying a suitable solution method, and then solving for the best design

alternative.

Active dynamic systems are inherently multi-disciplinary. Established

Multidisciplinary Design Optimization (MDO) formulations largely are based

on static system analysis or black-box simulations, and often do not address

system dynamics explicitly [26]. As a result, the nuances of dynamic be-

havior are implicitly deemphasized, the special structure of dynamic design

problems cannot be exploited, and thus optimal design of controlled dynamic

systems becomes a challenging prospect using standard MDO methods. Sim-

ulations of such systems are usually computationally expensive, thus making

optimizations based on direct simulation often impractical [27].

Allison and Herber [26] defined multidisciplinary dynamic system design

optimization (MDSDO) as a branch of MDO that deals with systems where

the evolution of system state through time is a critical element of perfor-

mance, and where the unique properties of dynamic systems are exploited to

improve system performance and yield efficient problem solutions.

Historically, design of active dynamic systems has been carried out sequen-

tially. The physical design is explored, optimized, and fixed, following which

a controller is added to the system that can then be optimized. Integrating

the physical (plant) and control aspects of dynamic system design has the

ability to probe performance gains which may be indiscoverable with the se-

quential design processes. The preferred approach simultaneously considers

the plant and control design, and is often referred to as co-design [28].

Co-design leverages the use of existing indirect and direct design methods

used in solving optimal design problems, and integrates physical (plant) de-

sign variables, typically using either a single simultaneous or bi-level nested

optimization formulation. This allows the exploitation of the synergy be-

tween both disciplines and the identification of system-optimal solutions [27].

Figure 1.3 illustrates the various strategies discussed in this thesis for solving

dynamic system design problems.

Conventional optimal control methods take an ‘optimize-then-discretize’

approach, where optimality conditions are applied to generate a boundary

value problem that in special cases leads to a closed-form solution. A class of

direct methods known Direct Transcription (DT) uses a powerful ‘discretize-
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Figure 1.3: Strategies to Solve Dynamic System Design Problems

then-optimize’ approach. An infinite-dimensional optimal control problem is

transcribed to a finite-dimensional NLP [29]. DT-based co-design supports a

balanced approach in which plant and control are both given thorough treat-

ment, enabling engineers to construct a formulation that supports improving

overall system utility [26]. DT has been used to solve open-loop optimal

control problems and dynamic system co-design problems with great success

[3, 26, 28, 30, 31].

1.3 Thesis Overview

This thesis aims to leverage the state-of-the-art in integrated optimal physical

and control system design to explore the performance limits of active and

semi-active suspensions in rail vehicles. A number of different suspension

configurations are modeled and optimized, and the results are discussed.

Chapter 2 reviews dynamic system design optimization and co-design tech-

niques. Chapter 3 discusses the modeling of rail vehicle dynamics, modeling

of MR dampers, state-space modeling, and optimization setup. Chapter 4

presents the numerical studies and results based on different models, solu-

tion techniques, and suspension configurations. Chapter 5 concludes and

summarizes the findings.
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Chapter 2

Co-Design of Dynamic Systems

2.1 Design Optimization

In mathematical optimization, the maximum or minimum value of a function

is sought, possibly within constraints on the function input variables. Opti-

mization algorithms applied to engineering design are methodical processes

that involve changing input variable values (design variables) to improve ob-

jective function values within the feasible design space (defined by the design

constraints) [25]. Optimization-based engineering design is a well-established

design strategy. Papalambros [32] broke down the design optimization pro-

cedure into four primary stages:

� Selection of a set of variables to describe the design alternatives

� Selection of an objective (criterion), expressed in terms of the design

variables

� Determination of a set of constraints, expressed in terms of the design

variables

� Determination of a set of values for the design variables, which minimize

(or maximize) the objective, while satisfying all the constraints

An optimization-based approach in engineering design is used to identify

the most optimal set of solutions for an existing, well-formulated problem.

Typically set up in the negative null form, a general NLP can be expressed

as:

min
x

f(x) (2.1a)

subject to: h(x) = 0 (2.1b)

g(x) ≤ 0 (2.1c)

8



where x is the vector of optimization variables, f(x), is the objective func-

tion, and h(x) and g(x) represent the vector-valued equality and inequality

constraints, respectively.

Engineering design problems can often be posed naturally as constrained

optimization problems [33]. Constraints can be based on requirements and

physical limitations (e.g., stress, temperature, packaging, etc.). Design deci-

sion variables are given as inputs to the system with suitable starting points

and lower and upper bounds. Design variables should be independent. Ob-

jective (or “cost”) functions may be a single metric, multiple objectives, or

a weighted aggregate of multiple objectives.

2.2 Design of Dynamic Systems

Dynamic systems, being time-dependent systems, require more involved de-

sign formulations. Optimal design of dynamic systems must involve a com-

prehensive treatment of system dynamics. Conventional physical design for-

mulations incorporate simplified dynamics, as shown in Eqn. (2.1a). Dynamic

system models often incorporate realistic dynamics in state-space form:

ξ̇(t) = f(ξ(t),xp, t) (2.2)

where ξ(t) and ξ̇(t) are the state trajectories and their derivatives, respec-

tively, and xp is the vector of physical system design (plant) variables. Plant

design variables may include suspension stiffness coefficients, damping coef-

ficients, geometric parameters, etc. Although such models require advanced

development effort, they allow complex formulations with enhanced flexibil-

ity for optimization [26].

For a controlled linear time-invariant (LTI) system, the same derivative

function can be written as:

ξ̇(t) = f(ξ(t),u(t),xp, t) = Aξ(t) + Bu(t) (2.3)

where A is the state matrix and B is the input matrix. The state trajectories

for general state-space systems can be obtained using numerical simulation.

Closed-form solutions exist for LTI systems. State-space models can be gen-

erated using established modeling techniques, such as bond graph modeling.

9



State-space modeling for rail vehicle suspensions will be discussed further in

Chapter 3.

2.2.1 Sequential Design

Typically in design practice, sequential design approaches are used. The

passive physical system is designed and optimized first, and then the con-

trol variables are designed based on the optimal passive solution obtained.

Consider the following optimal physical system design model:

min
xp

ψ(ξ(t),xp, t) (2.4a)

subject to: gp(ξ(t),xp) ≤ 0, (2.4b)

ξ̇(t)− f(ξ(t),xp, t) = 0 (2.4c)

where the cost function ψ(·) is optimized with respect to the plant design

variables xp, ξ(t) are the state trajectories as defined in Eqn. (2.2), and

gp(·) define physical system constraints such as stress, deflection, packaging,

or other geometric requirements. This formulation includes both the state

trajectories along with physical design variables, accounting for system dy-

namics directly instead of assuming quasi-static behavior. The system model

must support dynamic behavior prediction with changing design variable val-

ues. This property is often not present in dynamic system models developed

for control system design.

Solutions to such problems can be obtained using inner-loop simulations,

surrogate modeling, and other indirect and direct methods of problem solu-

tion. The solution to Prob. (2.4) will provide the optimal plant design vector

xp∗, which is then used as a fixed parameter when solving the subsequent

optimal control design problem:

min
u(t)

ψ(ξ(t),u(t),xp∗) (2.5a)

subject to: gp(ξ(t),xp∗) ≤ 0, (2.5b)

ξ̇(t)− f(ξ(t),u(t),xp∗, t) = 0 (2.5c)

where u(t) are the time dependent control variable trajectories, and xp∗ is the

optimal physical system design determined during plant design optimization.
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The solution to Prob. (2.5) may provide a feasible design, but does not fully

incorporate the synergy between the plant design variables, state trajectories,

and control design vector. The design space exploration is limited due to the

sequential nature of the approach, as the control solutions are explored for a

single optimal physical design. As actively controlled systems become more

complex and performance requirements more stringent, sequential system

design may fall short, motivating the use of more integrated design methods

that can account fully for plant-control design coupling [26].

2.2.2 Open-Loop Optimal Control

Open loop optimal control or optimal control system design (OCSD) [28] is a

well-established subject of research. Applications for optimal control include

robotic manipulations, aerospace controller design, and drone manipulator

designs. An optimal control formulation is infinite-dimensional since the

control trajectories, which are the optimization variables, vary with time.

One possible OCSD formulation is:

min
u(t)

ψ =

tf∫
t0

L(ξ(t),u(t), t)dt+M(ξ(t0), ξ(tf ), t0, tf ) (2.6a)

s.t. ξ̇(t)− f(ξ(t),u(t), t) = 0. (2.6b)

C(ξ(t),u(t), t) ≤ 0 (2.6c)

φ(ξ(t0), ξ(tf ), t0, tf ) ≤ 0 (2.6d)

Important problem elements are described below:

Objective function: The objective function in Prob. (2.6) contains

two main terms, L(·), the Lagrange (or running cost) term, and and M(·),
the Mayer term. The Lagrange term is an integral calculated over the finite

time horizon, and includes any objective terms that vary with time within

the time horizon. The Mayer term includes objectives that depend on only

on the initial and final time points, t0 and tf . The initial and final time

points may also be included as optimization variables in this formulation,

for example, if the goal is to minimize the total time required to complete a

task. This two-term objective function can be converted into a single-term

objective function using the transformations: L(·) →M(·) or M(·) → L(·)

11



[28]. The former transformation requires addition of an auxiliary state.

Constraints: There are three types of constraints in the OCSD for-

mulation: 1) dynamic constraints, 2) path constraints, and 3) and boundary

constraints. The dynamic constraints ensure that the system satisfies the dy-

namics as approximated by the state-space equations presented in Prob. (2.3)

(e.g., the state trajectories satisfy physics, approximately). Path constraints,

C(·), include most traditional engineering constraints such as stress, power,

force, pressure, etc. These constraints must be satisfied at all time points

in the time horizon, thereby creating a multi-point boundary value problem

(BVP). Path constraints may switch activity multiple times throughout the

time horizon. The third type of constraint, represented using φ(·), are the

boundary constraints. These are to be satisfied only at the boundary time

points, i.e., at t0 and tf .

Control Trajectories: The function-valued control vector u(t) is opti-

mized to minimize the above objective function, while satisfying dynamic and

path constraints. The solution to this problem is a set of control trajectories

that optimize the dynamics of a given fixed physical system design.

2.3 Co-Design Strategies

Herber and Allison [34] formalized several co-design formulations, and pre-

sented two co-design strategies based on their earlier work [26].

2.3.1 Nested Co-Design

Deshmukh [30] identified that the optimal design of complex, dynamic sys-

tems is typically an iterative process involving plant and control design, and

involves exploring the strong interdependence between the two aspects. Al-

lison and Herber [35] identified Nested Co-Design as a special case of the

Multi-Disciplinary Feasibile (MDF) MDO formulation [36]. A bi-level design

methodology incorporating one outer loop and one inner loop can be used to

leverage existing OCSD methods for system optimal designs.
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Outer Loop The outer loop formulation may be defined as:

min
xp

ψ(xp)

s.t.
φp(xp) ≤ 0

F(xp) ≤ 0

}
gp(xp) ≤ 0

(2.7)

where xp is the plant design variable vector, and gp is the collection of

the outer-loop constraints. Herber and Allison [34] define φp(xp) as the

constraints that depend only on the plant design variables, and F(xp) as

an additional constraint that may be added to ensure outer-loop feasibility.

The outer loop provides a candidate solution, xp
† rather than an optimal

solution, to the inner loop. The inner-loop optimal control problem must be

solved for each plant design candidate considered by the outer-loop optimal

plant design problem.

Inner Loop The inner-loop problem may be formulated as:

min
xc

ψ(xp
†,xc)

s.t.

ξ̇(t)− f(t, ξ(t),xp
†,xc) = 0

C(t, ξ(t),xp
†,xc) ≤ 0

φc(ξ(t0), ξ(tf ),xp
†,xc) ≤ 0

 gc(xp,xc) ≤ 0
(2.8)

where xp
† is a candidate plant design vector, xc is the control design vector (a

more general form, previously referred to as u(t)), φc(·) are the constraints on

control and state trajectories. C(·) includes the traditional path constraints,

and gc is the collection of inner-loop constraints. Note that an equality

constraint may be expressed as two inequality constraints.

The inner optimization loop identifies the optimal control for each candi-

date plant design tested by the outer loop. Thus, in the above formulation,

similar to the sequential design approach, the plant design is held fixed dur-

ing the control design solution. Plant design constraints are imposed in both

loops to ensure system-level design feasibility.
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2.3.2 Simultaneous Co-Design

The simultaneous co-design problem may be formulated as:

min
xc,xp

ψ =

tF∫
t0

L(t, ξ(t),xc,xp)dt+M(ξ(t0), ξ(tf ), t0, tf ,xc,xp)

s.t. ξ̇(t)− f(t, ξ(t),xc,xp) = 0

C(t, ξ(t),xc,xp) ≤ 0

φ(ξ(t0), ξ(tf ),xc,xp) ≤ 0

(2.9)

This formulation includes all the terms from the OCSD formulation with

the addition of plant variables, xp. The above formulation accounts for all dy-

namic interactions and plant design coupling, and results in a system-optimal

design[30]. By leveraging the novel aspects of OCSD, this formulation ac-

curately captures the synergy between plant and control design, and often

provides significantly better solutions than conventional dynamic system de-

sign methods.

It must be noted that these formulations are based on open-loop optimal

control. These strategies are used to produce optimal trajectories for state

and control to aid the process of design, and to explore the limits of system

performance. More practically, closed loop control is used to design a feed-

back control. OCSD problems may be solved for finding the gain matrix in a

closed loop system, but this solution will only be subset of all possible opti-

mal trajectories. Herber [28] identified that limiting the performance of the

system should be a calculated decision, not a modeling convenience, and that

the ultimate system performance limits can only be identified when solving

the optimal control control problem in an unrestricted way.

2.4 Direct Transcription

Solution methods for the co-design formulations defined in the previous sec-

tion are identical to solution methods for OCSD. These can be classified

as:

� Indirect Methods: Based on Calculus of Variations
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� Direct Methods:

– Sequential Methods: Single Shooting, Multiple Shooting

– Simultaneous Direct Transcription: Local and Global Collocation

Sequential methods usually produce low-accuracy solutions, and face issues

with numerical convergence. They are computationally inefficient in compar-

ison to other direct methods mainly due to their inability to efficiently handle

path and boundary constraints [28].

Direct Transcription (DT) parameterizes both state and control trajecto-

ries. Feasible dynamics are ensured by adding defect constraints as equality

constraints. The optimization algorithm is task both with finding the optimal

design, as well as finding state trajectories that satisfy dynamics. The num-

ber of optimization variables increases significantly according to the number

of time steps and state and control variables.

A DT-based simultaneous co-design problem may be formulated as:

min
Ξ,U,xp

ψ(t,Ξ,U,xp) +M(ξ[t0], ξ[tf ], t0, tf ,xp)

s.t. ζ(t,Ξ,U,xp) = 0

C(t,Ξ,U,xp) ≤ 0

φ(Ξ[t0],Ξ[tf ], t0, tf ,xp) ≤ 0

(2.10)

where t is the discretized time vector with nt + 1 number of discrete time

steps:

t = [t0, t1, ...tnt] (2.11)

This may also be referred to as a grid or mesh. The mesh may be made

of equidistant points, but other spacing strategies such as Legendre-Gauss-

Lobatto (LGL) or Legendre-Gauss-Radau (LGR) may be used to improve

numerical accuracy.

Ξ represents the matrix of discretized states with size (nt+1)×nξ, where nξ

is the number of states of the system. U represents the matrix of discretized

control trajectories with size (nt + 1)× nu, where nu is the number of state

trajectories. To convert the infinite-dimensional state and control trajectories

to discretized finite-dimensional representations, approximation methods are

used. Two important types of collocation methods used with DT include:

� Local collocation: Single-step methods (e.g., Runge-Kutta methods)
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� Global collocation: Pseudospectral methods

In local methods, low-degree polynomial approximations are used to ap-

proximate trajectories, and the problem is divided into a large number of

finite elements to achieve sufficient accuracy (i.e., large nt) [28]. Explicit

Runge-Kutta methods are generally unsuitable for stiff equations. Implicit

methods are often preferred. Because DT is a simultaneous solution strategy,

implicit methods do not add the expense of inner-loop implicit equation solu-

tion, and often can improve overall solution efficiency over explicit methods.

A simple explicit first order scheme for state estimation is the forward

Euler method, which can be described as:

ξ[tk] ≈ ξ[tk−1] + hkfd[tk−1] (2.12)

This equation is converted into negative null form to form the defect con-

straints ζ(·) in Prob. 2.9. The work presented in this thesis utilizes a trape-

zoidal scheme, an implicit second-order collocation method. A defect con-

straint based on trapezoidal collocation at time tk can be described as:

ζ[tk] = ξ[tk]− ξ[tk−1]−
hk
2

(fd[tk] + fd[tk−1]) (2.13)

Other important methods for DT with local collocation include the Hermite-

Simpson rule and the classical fourth-order Runge-Kutta method.

Global collocation methods, also known as pseudospectral methods, use

a set of global trial functions with orthogonal collocation to estimate state

trajectories. They have a higher degree of accuracy compared to local col-

location methods, but require more developmental effort. Certain problem

features may also lead to preference for single-step methods.

Finally, the Lagrange (integral) term of the objective function can be ap-

proximated using quadrature methods. This thesis utilizes a trapezoidal

quadrature rule to estimate the objective function:

tF∫
t0

L(t, ξ(t),xc,xp)dt ≈ tf − t0
nt

(
L[t0]

2
+

nt−1∑
k=1

L[tk] +
L[tf ]

2

)
(2.14)
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Chapter 3

Modeling

This section deals with deriving the equations of motion for rail vehicle dy-

namics on a tangent track. Track disturbances are modeled based on linear

creep theory. Areas for appropriate use of active control are identified. Two

models with varying complexity are then formulated as state-space models

for use with co-design studies.

The weight of a rail vehicle’s car body is transmitted to rails by components

called the rail bogies. A bogie is a chassis or framework carrying multiple

wheel-axle sets attached to a vehicle, thus serving as a modular subassembly

of wheels and axles [5]. A typical rail vehicle consists of two suspension levels.

The primary suspension connects the wheelsets to the rail trucks (or bogies),

and the secondary suspension connects the rail trucks to the car body. The

car body of a rail vehicle houses the passengers, structures, and equipment.

The comfort of a passenger traveling on a train is determined by the response

of these primary and secondary suspension systems to track disturbances.

Since the rail vehicle is assumed to make constant contact with the rail

tracks, the lateral vibrations of the car body, including lateral and yaw mo-

tions, are the primary factors that determine ride comfort and quality. Rail

vehicles have conical wheels which experience large horizontal forces called

creep forces at the rail-wheel interface. These horizontal forces are responsi-

ble for steering and centering the rail vehicle, but also have undesirable ef-

fects, such as wear and energy loss [5]. Lateral instabilities can cause severe

unwanted self-oscillations in rail vehicles. This phenomenon is commonly

known as hunting.
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Table 3.1: Model Degrees of Freedom (DOF)

Passenger Car Lateral Response Model Degrees of Freedom
Component Lateral Roll Yaw
Car Body yc θc ψc
Front Truck frame yt1 θt1 ψt1
Rear Truck Frame yt2 θt2 ψt2
Front Wheelset (leading) yw1 – ψw1
Front Wheelset (trailing) yw2 – ψw2
Rear Wheelset (leading) yw3 – ψw3
Rear Wheelset (trailing) yw4 – ψw4

3.1 Equations of Motion

This thesis derives and implements a linearized model of a rigid rail vehicle,

with passive and active suspension elements, on a tangent track for lateral

stability [5, 6, 17, 18, 37]. The full vehicle is modeled as a four-axle passenger

car with two bogies. The control forces represented by Q(·) are defined in later

sections. All geometric parameters are depicted in Fig. 3.1, and are detailed

in the Nomenclature section. Review of the existing literature (c.f. Chapter

1) led to the selection of the two following models with different complexities:

� Simplified Linearized 7-DOF Model for Lateral Stability of a Bogie

� Complete Linearized 17-DOF Model for Lateral Stability of a Passenger

Railcar

The 17-DOF model includes the lateral and yaw DOF for each component

present in the typical passenger rail car, illustrated in Fig. 3.1. The 7-DOF

model is a simplified model that includes only the DOF associated with a

bogie and two wheelsets. Roll DOF of the wheelsets are not included since

the rail vehicle is assumed to maintain contact with the rail track at all times.

3.2 Rail Vehicle Dynamics

The governing equations of motion for the lateral displacement, yc, yaw dis-

placement, ψc and roll displacement, θc, are given by the following equations:

18



(a)

(b)

Figure 3.1: Representation of rail vehicle suspension elements and
geometric parameters. Side (a) and top (b) views.
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Car Body Lateral

mcÿc + (Fsylr + Fsyll + Fsytr + Fsytl) = Qyc (3.1)

where:

Fsyl = 2ksy(yc + lψc + hcsθc − yt1 + htsθt1)

+ 2csy(ẏc + lψ̇c + hcsθ̇c − ẏt1 + htsθ̇t1) (3.1a)

Fsyt = 2ksy(yc − lψc + hcsθc − yt2 + htsθt2)

+ 2csy(ẏc − lψ̇c + hcsθ̇c − ẏt2 + htsθ̇t2) (3.1b)

Fsyll = Fsylr = 1
2
Fsyl , Fsytl = Fsytr = 1

2
Fsyt

Car Body Yaw

Iczψ̈c − (Fsxlr + Fsxtr)ds + (Fsxll + Fsxtl)ds

+ (Fsylr + Fsyll)l − (Fsytr + Fsytl)l = Qψc (3.2)

where:

Fsxlr = −ksx(ψc − ψt1)ds − csx(ψ̇c − ψ̇t1)ds (3.2a)

Fsxtr = −ksx(ψc − ψt2)ds − csx(ψ̇c − ψ̇t2)ds (3.2b)

Fsxll = −Fsxlr , Fsxtl = −Fsxtr

Car Body Roll

Icxθ̈c − (Fsylr + Fsyll + Fsytr + Fsytl)hcs

− (Fszlr + Fsztr)ds + (Fszll + Fsztl)ds = Qθc (3.3)

where:

Fszlr = −kszds(θc − θt1)− cszds(θ̇c − ˙θt1) (3.3a)

Fsztr = −kszds(θc − θt2)− cszds(θ̇c − ˙θt2) (3.3b)

Fszll = −Fszlr , Fsztl = −Fsztr

There are two trucks in the rail vehicle, the leading (l) truck and trailing

(t) truck, each of which is connected to two wheelsets. The truck dynamics
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for lateral stability are also characterized by the same degrees of freedom

as the car body, namely, truck lateral displacement, yti, truck yaw displace-

ment, ψti, and truck roll displacement, θti, where the subscript i ∈ {1, 2}
indicates leading or trailing truck, respectively. For i = 1, m = 1, n = 2; for

i = 2, m = 3, n = 4, thus representing each wheelset of the system.

Truck Lateral

mtÿti − (Fsylr + Fsyll) + (Fpymr + Fpynr + Fpyml + Fpynl) = Qyti (3.4)

where:

Fpym = 2kpy(yt1 − htpθt1 + bψt1 − yw1)

+ 2cpy(ẏt1 − htpθ̇t1 + bψ̇t1 − ẏw1) (3.4a)

Fpyn = 2kpy(yt1 − htpθt1 + bψt1 − yw2)

+ 2cpy(ẏt1 − htpθ̇t1 + bψ̇t1 − ẏw2) (3.4b)

Fpyml = Fpymr = 1
2
Fpym , Fpynl = Fpynr = 1

2
Fpyn

Truck Yaw

Itzψ̈ti − (−Fsxlr + Fsxll)ds + (Fpxmr + Fpxnr)dp

− (Fpxml + Fpxnl)dp + (Fpymr + Fpyml)b− (Fpynr + Fpynl)b = Qψti
(3.5)

where:

Fpxmr = kpx(ψti − ψwm)dp + cpx(ψ̇ti − ψ̇wm)dp (3.5a)

Fpxnr = kpx(ψti − ψwn)dp + cpx(ψ̇ti − ψ̇wn)dp (3.5b)

Fpxml = −Fpxmr , Fpxnl = −Fpxnr

Truck Roll

Itxθ̈ti − (Fsylr + Fsyll)hts − (Fszlr − Fszll)ds
− (Fpymr + Fpynr + Fpyml + Fpynl)htp

− (Fpzmr + Fpznr)dp + (Fpzml + Fpznl)dp = Qθti (3.6)
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where:

Fpzmr = −kpzdpθti − cpzdpθ̇ti (3.6a)

Fpznr = −kpzdpθti − cpzdpθ̇ti (3.6b)

Fpzml = −Fpxmr , Fpznl = −Fpznr

The forces due to the rail-wheel contact are modeled based on Kalker’s

linear creep model [38] for rolling contact of two elastic bodies in the pres-

ence of dry friction. The lateral displacement ywk and yaw displacement ψwk,

where the subscript k ∈ {1, 2} for the leading bogie and k ∈ {3, 4} for the

trailing bogie:

Wheelset Lateral

mwÿwk − (Fpykr + Fpykl) +

(
+2f11

[
1

V

(
1 +

σr0
a

)
ẏwk − ψwk

])
+Kgyywk

= −(2f11

[
−σr0
V a

ẏak −
σr0

2

V a
θ̇clk

]
−Kgy(−yak − r0θclk) +Qywk

(3.7)

Wheelset Yaw

Iwzψ̈wk − (−Fpxkr + Fpxkl)dp + 2f33

[
λea

r0
ywk +

a2

V
ψ̇wk

]
−Kgψψwk

= −2f33

[
λea

r0
(−yak − r0θclk)

]
+Qψwk

(3.8)

3.3 Track Disturbances

The track disturbances are the primary dynamic inputs to the rail vehicles,

occurring at the rail-wheel contacts. Irregularities in tracks may occur due to

weld joints, misalignment, uneven rail heights, fatigue due to track loading,

and many other factors. Analytically, track disturbances are represented as

vertical, cross-level alignment and gauge irregularities.

This thesis makes use of the lateral alignment and cross-level irregularities

relevant to the lateral stability of rail vehicles [17]. They can be defined as:
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Lateral Alignment

ya =
yl + yr

2
(3.9)

Cross-level

zcl = zl + zr (3.10)

θcl =
zcl
2a

(3.11)

where yr and yl represent the lateral track irregularities of the left and right

rails respectively, zr and zl represent the vertical track irregularities of the

left and right rails, respectively, and a is half of the wheelset contact distance.

Here gauge deficiency is not considered, thus the lateral positions of the left

and right wheels on the rails are identical.

The disturbances are modeled as periodical irregularities:

θcl =
1

a

∑
n

AncosnΩx , n = 1, 3, 5, ... (3.12)

Similarly:

ya =
4Aa
π

[
1

3
cos Ωx− 1

15
cos 2Ωx+

1

35
cos 3Ωx− ...

]
(3.13)

where Aa and An are scalar factors of the periodical alignment irregularities

of the track with values in the range 0.59233× 10−6 ≤ A ≤ 1.568× 10−6. Ω

is the spatial frequency in rad/m, which may be calculated using:

ω = V Ω, Ω =
2π

L
(3.14)

where V is the velocity of the rail vehicle, ω is the angular frequency, and L

is the spatial wave length of rails.

The front wheelset will experience a disturbance excitation first, followed

by the trailing wheelsets. This delay time for each wheelset is defined as:

tw1 = 0 , tw2 =
V

2b
, tw3 =

V

2l
, tw4 =

V

2(b+ l)
(3.15)

We can now define the displacement component, w, and the velocity com-
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ponent, ẇ, of the disturbances,

w =

[
ya

θcl

]
, ẇ =

[
ẏa

θ̇cl

]
(3.16)

3.4 MR Damper

Magneto-rheological (MR) dampers typically consist of micron-sized, mag-

netically polarizable particles dispersed in a carrier medium such as mineral

or silicone oil. When a magnetic field is applied to the fluids, particle chains

form and the fluid becomes a semisolid and exhibits visco-plastic behavior,

similar to that of ER fluids. Transition to rheological equilibrium can be

achieved in a few milliseconds, allowing construction of devices with high

bandwidth [4]. This magnetic field is controlled by passing current or chang-

ing the potential difference across coils that surround the damper fluid. MR

dampers can operate through a wide range of temperatures and stress loading

conditions. Modeling MR dampers is challenging due to its strong hysteric

characteristics.

This thesis utilizes a phenomenological model based on the Bouc-Wen

hysteretic model developed by Spencer [4] that has been used extensively

by other researchers for the purpose of rail vehicle suspensions [17, 19, 39,

40]. Figure 3.2 represents the mechanical model of a typical Bouc-Wen MR

Damper. The following mathematical model is used to simulate the charac-

teristics of an MR Damper:

f = c1ẏ + k1x− x0 (3.17)

where f is the damping force, x is the displacement of the MR Damper,

x0 is the initial displacement, k1 is the stiffness of the internal accumulator

associated with the nominal damping force, and y is the internal displacement

of the damper. Further, the displacement dynamics can be modeled as:

ẏ =
1

c0 + c1
[αz + c0ẋ+ k0(x− y)] (3.18)

ż = −γ|ẋ− ẏ||z|n−1z − β(ẋ− ẏ)|z|n + Amr(ẋ− ẏ) (3.19)

where z is an evolutionary variable that determines hysteresis behavior in
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Figure 3.2: Mechanical model for the magneto-rheologoical (MR) damper
[4]

conjunction with other shape parameters, including c0, c1, α, γ, β, and Amr.

The coefficients of certain parameters in Prob. (3.18) can be given by the

following equations:

α = α(u) = αa + αbu (3.20)

c1 = c1(u) = c1a + c1bu (3.21)

c0 = c0(u) = c0a + c0bu (3.22)

where u is the output of a first order filter given by:

u̇ = −η(u− v) (3.23)

and v is the command voltage to the current driver of the damper.

3.5 System Modeling

Lateral vibrations are the most significant contributors to the undesirable

hunting phenomenon. Hunting arises from the interaction of adhesion forces

and inertial forces. At low speeds, adhesion dominates but, as the speed

increases, the adhesion forces and inertial forces become comparable in mag-
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nitude. Oscillation may occur above a critical vehicle speed. Above this

speed, the motion can be violent, damaging the track and wheels, and po-

tentially causing derailment [41]. In this thesis, active control is added to

the lateral suspension system to achieve maximum ride comfort, increase ride

quality, and mitigate hunting at higher speeds.

Three different active control phenomena are tested:

� Active control using damping force

� Semi-active control, modeled using a damping coefficient for linear

damper

� Semi-active control, modeled using the MR damper model described

above

These control techniques are tested for two models of increasing complexity

based on the equations of motion derived in Section 3.1.

3.5.1 7-DOF Model

The first model is a 7-DOF linear model that is comprised of two wheelsets

connected to one bogie through the primary suspension. The secondary

suspension is omitted in this model. This model provides a baseline for a

more complex full rail car analysis which will be analyzed subsequently. Four

controlled dampers with forces, fpylr, fpyll, fpytr, and fpytl, are added to the

primary lateral damping. The passive dampers are removed for the active

control analysis. Equations (3.4) – (3.8) are used to model this system with

i = 1, m = 1, n = 2, k = 1, 2, where the control forces, Q(·), can be defined

as:

Qyt1 = fpylr + fpyll + fpytr + fpytl (3.24a)

Qψt1 = (fpylr + fpyll)b− (fpytr + fpytl)b (3.24b)

Qθt1 = −(fpylr + fpyll + fpytr + fpytl)htp (3.24c)

Qyw1 = −fpylr − fpyll (3.24d)

Qψw1 = 0 (3.24e)

Qyw2 = −fpytr − fpytl (3.24f)

Qψw2 = 0 (3.24g)
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The equations of motion can now be rewritten as:

Mÿ + Cẏ + Ky = Fuu + Fww + Fẇẇ (3.25)

where M(∈ R7×7) is the mass matrix, C(∈ R7×7) is the damping matrix,

K(∈ R7×7) is the stiffness matrix, Fu(∈ R7×4) is the control force coefficient

matrix, Fw,Fẇ(∈ R7×2) are the track irregularities coefficient matrices, and:

y =
[
yt1 ψt1 θt1 yw1 ψw1 yw2 ψw2

]
,

u =
[
fpylr fpyll fpytr fpytl

]
, (3.26)

w =
[
ya1 ya2 θcl1 θcl2

]
, ẇ =

[
ẏa1 ẏa2 θ̇cl1 θ̇cl2

]

This allows us to define a state vector, ξ = [y ẏ]ᵀ, and using the equations

of motion, a state-space model can be formulated as:

ξ̇ = Aξ + Bu + Eww + Eẇẇ (3.27)

where,

A =

[
07×7 I7×7

M−1K M−1C

]
, B =

[
07×7

M−1Fu

]
,

Ew =

[
07×7

M−1Fw

]
, Eẇ =

[
07×7

M−1Fẇ

]
(3.28)

3.5.2 17-DOF Model

A full-scale, linearized model of a rigid rail vehicle is developed with 17-DOF,

using Eqns. (3.1)–(3.8), identically. The model contains one passenger car

body attached to two bogies, each of which is attached to two wheelsets

as illustrated in Fig. 3.1. Four controlled dampers with forces, fsylr, fsyll,

fsytr, and fsytl, are added to the secondary lateral damping, and the passive

dampers are removed for the active control analysis. Track level alignment

and cross level as described in Eqns. (3.7), (3.8), and (3.16) are regarded as

external excitations to the vehicle, given to each wheelset with time delays
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defined in Eqn. (3.15). The control force equations, Q(·), for the full-scale

model can now be defined as:

Qyc = fsylr + fsyll + fsytr + fsytl (3.29a)

Qψc = (fsylr + fsyll)ls − (fsytr + fsytl)ls (3.29b)

Qθc = −(fsylr + fsyll + fsytr + fsytl)hcs (3.29c)

Qyt1 = −fsylr − fsyll (3.29d)

Qψt1 = 0 (3.29e)

Qθt1 = −(fsylr + fsyll)hts (3.29f)

Qyt2 = −fsytr − fsytl (3.29g)

Qψt2 = 0 (3.29h)

Qθt2 = −(fsytr + fsytl)hts (3.29i)

Qywk
= 0 (3.29j)

Qψwk
= 0 (3.29k)

The equations of motion can now be rearranged and formulated as a state-

space model, similar to Eqn. (3.25). For the sake of brevity, individual com-

ponent vectors, as described in Eqn. (3.26), are omitted in this section. The

final state space matrices can be constructed as:

A =

[
017×17 I17×17

M−1K M−1C

]
, B =

[
017×17

M−1Fu

]
,

Ew =

[
017×17

M−1Fw

]
, Eẇ =

[
017×17

M−1Fẇ

]
(3.30)

where M(∈ R17×17) is the mass matrix, C(∈ R17×17) is the damping matrix,

K(∈ R17×17) is the stiffness matrix, Fu(∈ R17×4) is the control force coef-

ficient matrix, and Fw,Fẇ(∈ R17×4) are the track irregularities coefficient

matrices.
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Chapter 4

Numerical Studies

The simultaneous co-design formulation discussed in Chapter 2 is applied

to optimizing the performance of rail vehicles based on models presented

in Chapter 3. For each model, 7-DOF and 17-DOF, three different control

techniques—active control using force, semi-active control using damping co-

efficient, and semi-active control using MR dampers—are designed using the

simultaneous DT approach 2.10. The comfort of a passenger in a rail car

is dependent on the magnitude and frequencies of accelerations felt. Appro-

priate performance indices (objective functions), encapsulating the effects of

these accelerations felt over time traveled, are formulated.

The active control problem is solved first to obtain the actuator force tra-

jectory (time history) that minimizes the selected performance index. No

assumptions are made on actuator structure, and liberal force bounds are

used. This solution serves as a benchmark for maximum system perfor-

mance and other semi-active applications. The open-loop active force may

be realized using electric or pneumatic actuators, but such actuators usually

require prohibitively high power, hindering practical implementation [3].

The solution for the active control case is followed by a solution for optimal

damping trajectory using a linear damper. The damping coefficient for a

linear damping model is used as the control input. Based on velocity (state),

this coefficient determines the damping force. This idealized semi-active

control problem accounts for some realistic restrictions on realizable adaptive

dampers, and the results aid in determining appropriate selection of MR

dampers for the vehicle. Properties of MR dampers were discussed in Chapter

1.

Following the design of the control problems above, a decision can be made

regarding the voltage bounds required for the MR damper. At this step, a

semi-active control problem using the previously-modeled MR damper (see

Section 3.4) is solved using a simultaneous co-design approach. This problem
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was modeled as an NLP due to the inherent non-linearities of an MR damper.

Plant design variables are chosen appropriately for each problem, and are

included as optimization variables in the co-design formulation. The reason

for choosing simultaneous co-design will be discussed in the later sections.

4.1 MR Damper

Before solving the optimization problem, we simulate the characteristics of

the MR damper modeled in Section 3.4, for different control voltages. Force

is modeled as function of time, displacement and velocity in Figs. 4.1(a)-(c)

to observe the hysteric shape characteristics. A displacement of amplitude

of 6.35 mm and frequency of 10 Hz is used for the simulations.

Although the MR damper model is effective for any desired frequency and

amplitude combination, Fig. 4.1 shows the stability of the damper for the

selected value of parameters. For the chosen values of input voltage, the force

limits indicate that the selected damper model should be able to generate the

control force required to attenuate unwanted vehicle vibrations. Simulations

of the system using only passive elements (based on reference parameter

values [16]) were used to support the determination of these bounds for the

input voltage of the MR Damper.

4.2 Co-Design of a Reduced 7-DOF Model

The reduced model as described in Section 3.5.1 represents a typical rail

truck (bogie). The performance index, to use with the simultaneous co-

design approach defined in Prob. (2.9), is the minimization of the combined

effect of lateral, ÿ, yaw, ψ̈, and roll, θ̈, accelerations of the rail truck over

time. The simultaneous co-design formulation, assuming fully-active control,

is:

min
xc,xp

ψ =

tf∫
t0

[
ρ1ÿ

2
t1 + ρ2ψ̈

2
t1 + ρ3θ̈

2
t1

]
dt (4.1a)

s.t. ξ̇(t)− f(ξ(t),xc,xp, t) = 0. (4.1b)
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Figure 4.1: Simulating a magneto-rheological damper: (a) Hysteresis Force
vs. Time (b) Hysteresis Force vs. Displacement (c) Hysteresis Force
vs. Velocity
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Table 4.1: Comparing different control techniques for the lateral stability of
a 7-DOF system

Control Technique
Objective Plant Design Variable
Function kpx (N/m) kpy (N/m)

P1 : Force 0.0256 9.8199× 107 1.001× 105

P2 : Damping - Linear Damper 0.2180 5.6276× 107 9.0867× 105

P3 : Voltage - MR Damper 5.3903 3.6081× 106 3.5261× 107

where xc is the control force vector added to the lateral primary suspension,

and xp are the plant design variables, namely the primary lateral suspen-

sion stiffness, kpy, and longitudinal suspension stiffness, kpx. The dynamic

constraint is defined in Prob. (3.27). The objective function weights are

ρ1 = ρ2 = ρ3 = 1/3.

The states and control are discretized through time and entered as op-

timization variables. The state trajectory approximation is performed us-

ing trapezoidal collocation, and solved using defect constraints. These con-

straints are modeled as non-linear equality constraints within the NLP for-

mulation. No other constraints were used for the system except upper and

lower bounds on control, state, and plant design variables. These bounds

for state variables were based on simulations of the passive system using

ordinary differential equation solvers.

Lateral, yaw and roll accelerations trajectories for each DOF obtained

using simultaneous co-design of the 7-DOF system are shown and compared

in Figs. 4.2 and 4.3 for different control techniques. Table 4.1 shows the

objective function value and plant design variable values obtained for each

strategy. P1, the actively controlled system, has the least design restriction

and, as expected, performs the best. The next best performance is realized

via solution of P2, followed by the performance of P3. Active control P1

provides the best performance in terms of the objective function value. Semi-

active control with a variable damping coefficient, P2, provides a marginally

lower performance than P1, but provides significantly better performance

than P3. P3 is more representative of a realistic system. Better performance

might be achieved with a different MR damper.

The control trajectories are plotted in Figs. 4.4–4.6. These provide an

interesting insight about the use of active damping in primary suspensions.

It should be noted that, while the control forces are high, the control inputs in
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Figure 4.2: Simultaneous co-design of active control (P1), semi-active
control using linear dampers (P2), and semi-active control using MR
dampers (P3) for a 7-DOF system: Trajectories of truck (a) lateral
accelerations ÿ2t1 (b) yaw accelerations ψ̈2

t1

33



1 2 3 4 5 6

Time(s)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

L
a
te

ra
l 
A

c
c
e
le

ra
ti
o
n
 (

m
/s

2
)

P1

P2

P3

(a)

1 2 3 4 5 6

Time(s)

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Y
a
w

 A
c
c
e
le

ra
ti
o
n
 (

ra
d
/s

2
)

P1

P2

P3

(b)

1 2 3 4 5 6

Time(s)

-1.5

-1

-0.5

0

0.5

1

1.5

L
a
te

ra
l 
A

c
c
e
le

ra
ti
o
n
 (

m
/s

2
)

P1

P2

P3

(c)

1 2 3 4 5 6

Time(s)

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Y
a
w

 A
c
c
e
le

ra
ti
o
n
 (

ra
d
/s

2
)

P1

P2

P3

(d)

Figure 4.3: Simultaneous co-design of active control (P1), semi-active
control using linear dampers (P2), and semi-active control using MR
dampers (P3) for a 7-DOF system. Trajectories of leading wheelset: (a)
lateral accelerations ÿ2w1, and (b) yaw accelerations ψ̈2

w1. Trajectories of
trailing wheelset: (c) lateral accelerations ÿ2w2, and (d) yaw accelerations
ψ̈2
w2.
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Figure 4.5: Semi-active control (P2) for a 7-DOF system using linear
dampers: Trajectories of (a) damping force (N) provided by the lateral
semi-active controllers, and (b) damping coefficient (Ns/m).
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Figure 4.6: Semi-active control (P3) for a 7-DOF system using
magneto-rheological dampers: Trajectories of (a) voltage (V) applied and
(b) damping force (N) provided by the lateral semi-active MR dampers

P2 and P3 remain fairly constant. Thus, it may not be particularly useful

for rail engineers to use active dampers in primary suspensions, especially

because the damping requirements are very high and secondary suspension

provide more room for mechatronic systems. We will see in the following

sections that in the case of active secondary suspensions, control becomes

more critical.

The voltage trajectory for P3 remains constant at a value of approximately

5V, and the damping coefficient in P2 maintains a value close to 5060 Ns/m

throughout the time horizon. Hence, a passive damper with similar damp-

ing characteristics may be a satisficing solution for lateral primary damping

given periodical track irregularities. Although, as the randomness in track

disturbances increases this assertion may change, due to the inherent ability

of active/semi-active dampers to adapt.

4.3 Co-Design of a Full Scale 17-DOF Model

The 17-DOF problem is solved for two separate plant design variable vectors:

primary stiffness coefficients and secondary stiffness coefficients. A quadratic

performance index [18] is used to quantify ride comfort for passengers trav-
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eling in a rail vehicle:

min
xc,xp

ψ =

tf∫
t0

[
ρ1y

2
c + ρ2ψ

2
c + ρ3θ

2
c + ρ4

∑
i,j

f 2
syij ...

...+ ρ5(y
2
sl + y2sl) + ρ6

4∑
n=1

y2ptn

]
dt (4.2a)

s.t. ξ̇(t)− f(ξ(t),xc,xp, t) = 0 (4.2b)

where ρ1 = 1, ρ2 = 1, ρ3 = 10, ρ4 = 10−4, ρ5 = 107, ρ6 = 10−5, and:

ysl = yc + lψc − θchcs − (yt1 + θt1hts), (4.3a)

yst = yc − lψc − θchcs − (yt2 + θt2hts), (4.3b)

ypt1 = yt1 − θt1htp + ψt1b− yw1, (4.3c)

ypt2 = yt1 − θt1htp − ψt1b− yw2, (4.3d)

ypt3 = yt2 − θt1htp + ψt1b− yw3, (4.3e)

ypt4 = yt2 − θt1htp − ψt1b− yw4 (4.3f)

For the first set of design variables, primary suspension stiffness, a simul-

taneous DT approach is used, similar to the 7-DOF system solution, for all

three cases: active control G1, semi-active with linear dampers G2, and

semi-active with MR dampers G3. A trend similar to the 7-DOF system

is obtained. G1 provides the best performance index with G2 marginally

behind.

Yaw and lateral acceleration trajectories of the car-body are obtained via

each of these control strategies, and are plotted in Fig. 4.7. The trajecto-

ries, although delayed, appear to be identical. The control trajectories for

G2 and G3 are displayed in Figs. 4.8 and 4.9. The control trajectories of

the car body accelerations in the 17-DOF vary considerably with time due

to the lateral track disturbances and irregularities. These accelerations are

attenuated strongly with respect to the wheelset accelerations (Fig. 4.3) and

truck accelerations (Fig. 4.2) in the 7-DOF model.

Due to the configuration of a 17-DOF model, the active secondary suspen-

sions must withstand directional forces, at every time point, from the two rail

trucks connected to four wheelsets through another suspension (the primary

suspension). Compensating for these forces requires an efficient control strat-
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Figure 4.7: Active control (G1), semi-active control using linear dampers
(G2), and semi-active control using MR dampers (G3) for a 17-DOF
system: Trajectories of car body (a) lateral accelerations ÿ2c , and (b) yaw
accelerations ψ̈2

c
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Table 4.2: Comparing different control techniques for the lateral stability of
a full-scale 17-DOF rail vehicle, with primary suspension parameters as
plant design variables

Control Technique
Objective Plant Design Variable
Function kpx (N/m) kpy (N/m)

G1: Force 2.0795× 104 9.8306× 107 1.0000× 105

G2: Damping - Linear Damper 2.3459× 104 9.6332× 107 1.0002× 105

G3: Voltage - MR Damper 4.4957× 104 6.3305× 105 2.5210× 107
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Figure 4.8: Semi-active control (G2) for a 17-DOF system using linear
dampers: Trajectories of (a) damping coefficient (Ns/m) and (b) damping
force (N) provided by the lateral semi-active controllers
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Figure 4.9: Semi-active control (G3) for a 17-DOF system using
magneto-rheological dampers: Trajectories of (a) voltage (V) applied, and
(b) damping force (N) provided by the lateral semi-active MR dampers
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Table 4.3: Optimal design values for each design strategy for the problem
using the 17-DOF full-scale model, with secondary suspension stiffness as
plant design variables

Control Technique
Objective Plant Design Variable
Function ksx (N/m) ksy (N/m) ksz (N/m)

S1: Simultaneous 8.89× 102 1.68× 106 9.90× 107 5.19× 106

S1: Nested (DTQP) 1.69× 102 2.31× 105 9.99× 107 2.76× 107

S2: Simultaneous 5.46× 103 7.89× 107 7.22× 107 1.42× 105

S3: Simultaneous 2.47× 103 3.52× 107 9.99× 107 9.98× 105

S4: OLC (DTQP) 3.42× 105 3.00× 105 1.97× 105 6.87× 105

S5: Passive 1.35× 106 3.00× 105 1.97× 105 6.87× 105

egy that works reliably with the controlled dampers to provide the required

damping force and dissipate the required energy. While G1 performed the

best among the different techniques, it is difficult to implement fully-active

suspensions due to their significantly high power demands. Hence, using

semi-active dampers may prove to be fruitful for this application. Another

approach that can be explored further is limiting the control authority of the

fully-active system as detailed in [42]. This would help quantify the tradeoff

between suspension performance and actuator size and cost. Such tradeoff

curves would help determine whether the additional expense of a fully-active

system (perhaps with reduced control authority) is worth the additional cost.

The final study aims to compare the proposed co-design formulations. The

simultaneous DT approach used in each of the previous design solutions

was chosen specifically to handle the non-linearity of magneto-rheological

dampers. Non-linear programming (NLP) solver from the Matlab [43] was

used to find the local minimum for each design problem. The limitation of

such NLP solvers is the inability to guarantee global optimum.

Since the selected objective function is quadratic, S1, the fully active con-

trol problem was solved using a linear (constraints) quadratic (objective)

direct transcription based quadratic programming solver [28] (DTQP)1. A

composite trapezoidal quadrature was used for the objective function ap-

proximation, and a trapezoidal rule collocation method was used for state

estimation, similar to the nonlinear DT formulation described earlier. This

1The Direct Transcription Quadratic Programming (DTQP) solver has been developed
by Daniel Herber, Yong-Hoon Lee, and James Allison, Engineering System Design Lab,
University of Illinois Urbana-Champaign. Relevant publications and open-source code will
be available in the near future.
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Figure 4.10: Comparison of damping forces provided by the (a) leading and
(b) trailing lateral secondary suspensions using active control (S1),
semi-active control with linear dampers (S2), and semi-active control with
MR dampers (S3) for a 17-DOF system
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solution method guarantees a global optimum but, cannot be used with non-

linear constraints or elements such as MR dampers. Thus, the quadratic

programming (QP) solution strategy is limited to the fully-active control

case.

To solve the co-design problem using the DTQP solver, a nested approach

2.3.1 was implemented. The outer loop, using a basic NLP solver, supplied

plant design candidates to the inner loop problem, which was then solved

for each plant design using the DTQP solver. The DTQP solver returned a

globally optimal state and control variable vector for each plant design, and

these trajectories were used to calculate the objective function. Results are

compared in Table 4.3, including the solution of S1 using both nested (with

DTQP) and simultaneous (with nonlinear DT) co-design, as well as S2 and

S3 using simultaneous co-design. In the final case study S4, we investigate

the performance available when replacing the existing reference secondary

lateral passive suspension elements with arbitrary force trajectories that we

optimize (i.e., fully-active control elements). These results are further com-

pared against the performance of an optimal passive system design, S5. The
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parameters from this optimal passive system design for a 17-DOF passenger

rail car model [16], were used as starting points for all parameters in each of

the above mentioned solution case studies.

Table 4.3 shows that the performance of the active and semi-active sus-

pensions is orders of magnitude improved over passive suspension systems.

Adding optimal control without optimizing plant design variables, in S4, re-

sults in a 10× improvement in the performance index. Since the performance

index is based on maximizing dynamic lateral stability of the rail vehicle, such

improvements in objective function value result in enhanced stability, ride

quality, and comfort. Simultaneous and nested approaches of the synergis-

tic co-design problem, result in 103× improvements over the non-integrated

approach. The results from Table 4.3 illustrate the capabilities of posing a

linear (constraints) quadratic (objective) optimization problem while using

co-design strategies to achieve maximum system performance. The results

from simultaneous co-design can be further improved using solutions from

other design methods as starting points in an NLP solver. A main result to

observe here is that significant improvements are achieved over passive design

and sequential design using open loop control for each co-design method.
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Chapter 5

Conclusions and Future Work

In this thesis, an advanced dynamic system design approach is used to explore

the limits of performance objectives for active and semi-active rail vehicle sus-

pension systems. The thesis focused on constructing co-design formulations,

modeling reduced-order and full-scale rail vehicles, and solving co-design

problems for active and semi-active suspension systems. Magneto-rheological

(MR) fluid dampers were investigated as a reduced-cost and power/energy

alternative to fully-active suspension components. The non-linear model of

MR dampers was developed based on existing phenemenological models for

use with nonlinear co-design solution strategies.

Co-design exploits the synergy between plant (physical) and control design

to get system-optimal solutions. Direct transcription allows us to perform

simultaneous analysis and design of dynamic systems. It is used to discretize

the problem over a finite time horizon. DT was used to solve a simulta-

neous co-design problem for several cases. The states, plant, and control

variables are optimization in the simultaneous co-design problem. Local col-

location methods are used to approximate states, and a quadrature method is

used to approximate objective function values. The solutions obtained from

co-design problems are system-optimal with respect to the models and for-

mulations used. An alternative co-design formulation, nested, is used as well

to capitalize on efficient solvers for linear-quadratic optimal control problems

that can be formulated as quadratic programs using DT (as is the case with

the fully-active system).

This work lays the groundwork for exploring newer design strategies for

solving complex non-linear controlled dynamic systems such as rail vehicles.

It motivates rail engineers to consider physical and control system design as

a single cohesive problem. Integrated design methods are demonstrated to

improve overall system performance by capitalizing on design coupling. Co-

design methods can be applied to the design of systems with varying com-

44



plexities. It is observed that semi-active suspensions, specifically, those us-

ing magneto-rheological dampers, can be designed effectively using co-design

strategies. The solutions obtained also provide substantial gains in perfor-

mance with respect to passive design and sequential design strategies. While

the results involve open-loop control, the information gained provides im-

portant insights into how an implementable system should be designed to

achieve enhanced performance, including physical design and control system

architecture.

Future work should include a variety of studies, including the investigation

of co-design based on fully non-linear rail vehicle models. Investigation of

global collocation techniques should be performed to determine whether they

offer advantages over local collocation methods. Tradeoff studies between

alternative architectures of varying complexities and cost would help generate

insights into promising directions for active and semi-active rail suspension

systems. More comprehensive test cases should be employed. Future studies

should increase the level of model detail and sophistication, working toward

practical, realizable designs.
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