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ABSTRACT

This thesis is concerned with developing an efficient and scalable visualiza-

tion method for large-scale and high-dimensional single-cell data. Single-cell

analysis can uncover the mysteries in the state of individual cells and en-

able us to construct new models of heterogeneous tissues. State-of-the-art

technologies for single-cell analysis have been developed to measure the prop-

erties of single cells and detect hidden information. They are able to provide

the measurements of dozens of features simultaneously in each cell. However,

due to the high-dimensionality, heterogeneous complexity and sheer enormity

of single-cell data, its interpretation is challenging. Thus, new methods to

overcome high-dimensionality are necessary. Here, we present a computa-

tional tool that allows efficient visualization of high-dimensional single-cell

data onto a low-dimensional (2D or 3D) space while preserving the similarity

structure between single cells. We first construct a network that can rep-

resent the similarity structure between the high-dimensional representations

of single cells, and then embed this network into a low-dimensional space

through an efficient online optimization method based on the idea of neg-

ative sampling. Using this approach, we can preserve the high-dimensional

structure of single-cell data in an embedded low-dimensional space that fa-

cilitates visual analyses of the data.
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CHAPTER 1

INTRODUCTION

1.1 Single-cell Analysis

Traditionally, many biological experiments have been conducted on bulk-cell

populations [1] with an assumption that cells in the same group share homo-

geneous properties. However, some evidence [1–3] shows that heterogeneity

can exist even within a small group of cells. The assumption based on homo-

geneity of each cell group can distort averages and does not properly explain

small but critical changes in individual cells. Each cell can have different

biological properties such as cell size, gene expression level, RNA transcript,

and bio-marker expression. These variations can be very important to answer

previously unsolved questions in stem cell research, cancer biology, and im-

munology. As shown in Figure 1.1, single-cell data analysis has contributed to

understanding the various and important behaviors of individual cells [1–19].

Figure 1.1: Single-cell analysis can help us understand cellular-level
heterogeneity and cell subpopulation expression profiles.
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1.2 Single-cell Technologies

The recent development of single-cell technologies has made the analysis more

reliable and reasonable. Cytometry is a cutting-edge technology that is used

to analyze the optical characteristics of cells. It uses specifically fluorescent

light to measure specific antigen using antibodies and DNA or RNA using nu-

cleic acid-specific probes. Through these measurements, cytometry can find

various cellular features and behaviors including cell size, cell morphology

(structure and shape), DNA content, cell count and so on.

As a specific example, mass cytometry [4, 20] is a mass spectrometry that

is based on inductively coupled plasma mass spectrometry. In this technique,

isotopically pure elements are conjugated with antibodies, which are used for

annotating cellular proteins. The nebulized cells are sent to argon plasma.

In this process, the conjugated antibodies are ionized. Then, a mass spec-

trometer analyzes the metal signals. The signals are detected and recorded

as mass cytometry data having a specific format called FCS. Using this mass

cytometry, we can measure up to 60 parameters at the same time for tens of

thousands of individual cells.

Another widely used single-cell technology is single-cell RNA sequencing

(scRNA-seq) [21, 22]. This technique shown in Figure 1.2 is based on next

generation sequencing technologies, and it provides the sequence informa-

tion for individual cells including the function of each cell in the micro-

environment and high-resolution of cellar-level differences. Specifically, scRNA-

seq quantifies the expression profile of each cell. By detecting rare cell types

through clustering analyses, this technology can reveal the properties of the

subpopulation structure from cell population heterogeneity. Interestingly,

by detecting less-frequently discovered cells, scRNA-seq can find the copy-

number distribution of the mRNA population. Using this technology, we can

capture hundreds or thousands of parameters per cell.

1.3 Motivation and Related Work

Even though the advanced single-cell technologies can provide quality data,

such data sets are still difficult to analyze. Traditionally, single-cell data are

analyzed in a biaxial scatter plot for two variables at once [23]. However,
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Figure 1.2: Single-cell RNA sequencing workflow. Source from Wikipedia
(https://goo.gl/AYBEXF)

this method requires the order of dimension squared to represent all pairwise

relationships between variables, which is computationally expensive. In ad-

dition, scatter plots cannot capture multivariate relationships between more

than two variables. Thus, new computational methods have been developed

for analyzing single-cell data. For instance, SPADE [6] tries to find hierar-

chies of high-dimensional single-cell data showing cellular heterogeneity by

clustering of down-sampled cytometry data, constructing minimum span-

ning trees, and up-sampling. However, this method considers not each cell

itself but cell groups and their behaviors on average. X-shift [12] is recently

developed to discover cell subsets and visualize them based on a weighted

k-nearest neighbor density estimation.

Another approach to deal with the high-dimensionality of single-cell data

is to use dimensionality reduction techniques. Some researchers applied prin-

ciple component analysis (PCA) [24] to find low-dimensional projections of

single-cell data [25,26]. Although PCA is possibly the most popular method

of dimensionality reduction, it is a linear projection method. Thus, it cannot

capture nonlinear structures in single-cell data. In order to address this issue,

advanced methods based on nonlinear dimensionality reduction have been

3
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developed. Both viSNE [8] and ACCENSE [10] are based on an algorithm

called t-Distributed Stochastic Neighbor Embedding (t-SNE) [27]. viSNE

applies t-SNE to mass cytometry data and reveals biologically meaningful

relationships from bone marrow and leukemia data. ACCENSE combines

the results of t-SNE with kernel-based density estimation and finds subpop-

ulations of given single-cell data sets. However, the runtime complexity of

t-SNE is O(n2), and that of its accelerated version, Barnes-Hut-SNE [28], is

O(n log n) where n is the number of cells. Thus, both methods require ex-

cessive computational time for large-scale single-cell data sets with hundreds

of thousands or millions of cells.

Our method is proposed in order to mitigate the computational issue that

is raised in the current state-of-the-art methods. We aim to efficiently deal

with large-scale single-cell data and to accurately find heterogeneous sub-

populations from single-cell data sets that contain many of different types of

single cells.

1.4 Main Contributions

In this paper, we propose a scalable embedding-based visualization method

for large-scale and high-dimensional single-cell data based on a new graph

embedding algorithm, LargeVis [29]. The proposed method constructs a

k-nearest neighbor (k-NN) network to find the structure of similarities be-

tween high-dimensional single-cell data. This process is accelerated by an ap-

proximate k-NN construction method based on random projection trees [30]

and neighbor exploring [31]. And then, this approach embeds the high-

dimensional single-cell data into a low-dimensional space (2D or 3D) while

preserving the intrinsic structures between single-cell data points. To do this,

we formulate an optimization problem. The utility function of the optimiza-

tion is based on the idea from word2vec [32] and negative sampling [32]. The

optimization is solved by distributed and parallel computation [33], so it can

be easily scaled. The overall runtime complexity of our method is linear with

regard to the number of cells, which is much faster than previous single-cell

visualization tools such as viSNE [8] and ACCENSE [10]. Also, we show that

the quality of our embedding is better in the context of cell subpopulation

clustering compared to the embedding quality of viSNE.
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1.5 Thesis Organization

This thesis is organized as follows. In Chapter 2, we introduce our proposed

method and its algorithmic details. In Chapter 3, we explain the experimen-

tal details such as what kinds of single-cell data we used, how to preprocess

the data, and our implementation settings. In Chapter 4, we show the re-

sults of visualization and compare the quality of our embedding methods

with previous state-of-the-art approaches. In Chapter 5, our web-based in-

teractive visualization system is introduced with some screen shot images.

We conclude this thesis in Chapter 6.
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CHAPTER 2

METHODS

2.1 Outline of Proposed Method

We propose a new approach for visualizing high-dimensional single-cell data

via efficient dimensionality reduction based on LargeVis [29]. As shown in

Figure 2.1, the algorithm consists of two steps: constructing an approxi-

mate k-NN network to find the similarity structure between high-dimensional

single-cell data, and embedding the constructed network into a 2D or 3D

space while preserving the high-dimensional structure in an easily visualized

low-dimensional space. Pairwise similarity between single-cell data points is

determined by the distance between them in their marker expression rep-

resentation space. The core assumption is that numerical proximity in the

marker space is proportional to cell similarity.

Figure 2.1: Outline of visualization of large-scale and high-dimensional
single-cell data. (1) Construction of a k-nearest neighbor network and (2)
embedding the network into a 2D space.
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2.2 Notation

We denote a set of high-dimensional single-cell data as X = {xi | xi ∈
Rp, i ∈ [n], p > 3 } where p is the dimension of measurements and n is the

number of cells in the data; and the embedded representations of cells are

denoted as Y = { yi | yi ∈ R2 orR3, i ∈ [n] } in a low-dimensional space.

2.3 Construction of k-nearest Neighbor Network

Constructing a k-nearest neighbor (k-NN) network is a very crucial step in

many applications of machine learning such as a distance-based similarity

search, manifold learning, and topological data analysis. Finding the exact

k-NN network for large-scale single-cell data is time-consuming because it

requires O(n2) time complexity to compute all pairwise distances between

all cells in the data set. Approximate methods for constructing a k-NN

network have been developed, all of which have a tradeoff between speed

and accuracy. Common approaches include locality sensitivity hashing [34],

neighbor exploring methods [31], and partitioning methods based on random

projection trees [30], k-d trees [35] and k-means trees [35].

As suggested by LargeVis [29], we develop a fast method to construct an

approximate k-NN network. We first partition the whole high-dimensional

space into two subspaces and generate a tree having only a root node. A

set of single cells in each partitioned subspace belongs to child nodes of the

root node. Then, for the two subspaces that each set of single cells in the

child nodes belongs to, we partition each subspace into two sub-subspaces

and generate two child nodes for each child node of the root node. The single

cells in each sub-subspace are assigned to each generated child node’s child

node. By continuing to partition the space iteratively, we can build a tree

that assigns a group of single cells belonging to partitioned small subspaces

to its nodes. When the number of cells in a certain node is equal to or less

than a predefined threshold, we stop the iterations. The single cells in each

leaf node are considered to be candidates of approximate nearest neighbors.

The generated tree is called a random projection tree.

By generating many random projection trees, we can increase the accuracy

of the construction of a k-NN network, but it is time-consuming. Instead of
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building many random projection trees, we use a neighbor search method in

order to enhance both the accuracy and the efficiency. Specifically, we search

the neighbor j of the neighbor of each node i assuming that its neighbor’s

neighbor is likely to be its neighbor also [36]. If the number of neighbors of

node i is less than k, the method pushes some searched neighbor’s neighbor

j into the set of nearest neighbors of the node i. By iterating this proce-

dure, we can improve the accuracy of the construction and finally find our

approximate k-NN network. Regarding the accuracy of the k-NN network

construction, people can refer to the paper of LargeVis [29], which dealt with

several benchmark tests for the accuracy that is influenced by the accuracy of

the k-NN construction. The construction process has linear time complexity

because we build only a few random projection trees and because searching

a certain node’s neighbor’s neighbor requires just a few iterations.

We then calculate the weight of each pairwise edge that represents the

similarity structure of the constructed network by the Gaussian kernel, which

was also used by t-SNE [27, 28]. The conditional probability that the edge

from data xi to xj is observed is first computed by:

pj|i =
exp(−‖xi − xj‖2/2σ2

i )∑
(i,k)∈E exp(−‖xi − xk‖2/2σ2

i )

pi|i = 0,

(2.1)

where the parameter σi is determined by setting the perplexity, and E is the

set of all edges in the k-NN network. To make the network symmetric, the

weights are defined as:

wij =
pj|i + pi|j

2n
, (2.2)

where n is the number of input data. Since the number kn is much smaller

than the number of all pairs (n2), the constructed k-NN network is sparse.

The sparsity of the k-NN network can make us compute wij within linear time

complexity. Through the steps, our method can find the similarity structure

of high-dimensional single-cell data within linear time complexity O(kn).
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2.4 Network Embedding into a Low-dimensional Space

Embedding the constructed k-NN network is intended to preserve local and

global network topology such that neighbors in the network are near each

other in a low-dimensional space. First, for two nodes vi and vj, LargeVis [29]

defines the probability that they come from the same neighborhood, i.e. the

probability that we can observe the edge between two nodes in the k-NN

network as:

p(eij = 1 | yi, yj) = f(dist(yi, yj)), (2.3)

where f is a transformation function to map the distance between yi and yj

into a probability value.

The function f satisfies the idea that when the distance between two low-

dimensional points is small, the probability observing the connection between

them is high. After considering some candidates like a multinomial logistic

model and a sigmoid function, we chose f(x) = 1
1+αx2

where α > 0 due

to its computationally simplicity. The selected function f does not require

any normalization across the data set, thus only O(n) runtime is needed for

objective evaluation and gradient calculation in the embedding optimization

(see below). In addition, we can control the thickness of the tail of the

function f by controlling α. When α becomes smaller, its tail gets thicker.

When α = 1, f is Student’s t-distribution with degree of freedom one except

a scaling factor 1/π.

On the other hand, t-SNE [27] uses the Gaussian kernel pij of Equation

(2.1) and a t-distributed kernel qij =
(1+‖yi−yj‖2)−1∑
i6=k(1+‖yi−yk‖2)−1 to measure its high-

dimensional and low-dimensional similarity, respectively. By minimizing the

Kullback-Leibler divergence between two similarities through gradient de-

scent, t-SNE finds its low-dimensional embedding. The gradient of its cost

function contains the normalization term of qij. Computing the term requires

O(n2). To avoid inefficiency, accelerated t-SNE [28] uses the Barnes-Hut al-

gorithm [37] and reduces its time complexity from O(n2) to O(n log n). Two

versions of t-SNE are more expensive than our approach.

Like LargeVis [29], we chose Euclidean distance as a distance metric in a

low-dimensional space because computing Euclidean distance between em-

bedded single-cell data is simple. In addition, we can map each calculated

distance to one of the various probability function values since the range of
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Euclidean distance is [0,∞).

To embed our high-dimensional data, we define a log likelihood utility

function in Equation (2.4) that considers both the probabilities of all edge

connections E of the constructed k-NN network and the probabilities of all

negative edges EC . Negative edges mean that pairwise single-cell connec-

tions are not observed in the k-NN network. This idea originally comes from

noise-contrastive estimation (NCE) [38], which considers estimation that dif-

ferentiates its observed data from noise using nonlinear logistic regression.

Using the idea of NCE, we want to discriminate the same types of cells from

different types of cells. Specifically, by maximizing the first term of Equation

(2.4), we can make similar single-cells become closer to each other in a low-

dimensional space, and by maximizing the second part of Equation (2.4), we

can make dissimilar single-cells move away from each other.

J =
∑

(i,j)∈E

wij log p(eij = 1|yi, yj) +
∑

(i,j)∈EC

γ log(1− p(eij = 1|yi, yj)) (2.4)

However, considering all negative edges is computationally expensive or

even intractable when input data are very large. Thus, instead of using all

negative edges, we use the idea of negative sampling [32]. This approach

considers only a few samples drawn from a noise distribution. We assumed

Pn(j) ∼ d
3/4
j as the noisy distribution where dj is the degree of node j, which

was used in word2vec [32]. By letting M be the number of negative samples,

we can redefine the utility function as follows:

J =
∑

(i,j)∈E

wij log p(eij = 1|yi, yj) +
M∑
k=1

Ejk∼Pn(j)γ log(1− p(eijk = 1|yi, yjk))

(2.5)

Then, we optimized Equation (2.5) by applying asynchronous stochastic

gradient descent (ASGD) [33]. It is a powerful optimization technique which

can be efficiently parallelized and can make our algorithm more scalable.

ASGD can be used in this context because the network constructed by our

first step is sparse and there are few memory access conflicts between the

threads we used. The learning rate is determined by ρt = ρ(1− t/T ) where

T is the total number of edge samples [29], and the initial learning rate ρ0

is determined by considering the properties of input single-cell data. The

time complexity of each SGD step of Equation (2.5) is O(M). For a large
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number of data set, the number of SGD iterations is usually proportional

to the number of the given data set, n. Thus, the time complexity of the

optimization isO(Mn), which is linear with respect to the number of samples.

2.5 Algorithms and Implementation

In this section, we summarize our two-step algorithm in the following boxes.

Algorithm 1 First Step: Construction of k-NN networks

Input: High-dimensional single-cell data X , number of trees (nT ), number of neighbors (k), perplexity
(P ), and number of iterations (nIter)

Output: Approximate k-NN network
1: Generate nT random projection trees
2: Find nearest neighbors

for each single-cell in parallel:
Partition the high-dimensional space to build random projection trees for each cell’s k-NN
Save the results in init knn() for individual cells

end
3: Explore neighbors

while t < nIter
for each cell in parallel:

Create a heap HEAPi for each cell i
for j ∈ init knn(i):

for l ∈ init knn(j):
Compute distance(i,l)
Push single-cell l and distance(i,l) into HEAPi if card(HEAPi) < k
Pop if card(HEAPi) ≥ k

end
end
Put single-cells in HEAPi into knn(i)

end
t++

end
Calculate pairwise distance between cells in the same k-NNs

4: Compute the probabilities in in Equation 2.1 and weights in Equation 2.2

Algorithm 2 Second Step: Embedding the k-NN networks

Input: Constructed k-NN from the first step, number of negative samples (M), Rho (ρ), Gamma (γ),
and Alpha (α), number of edge samples T , and number of iteration (nIter)

Output: Low-dimensional single-cell representations Y
1: Compute a gradient of J in Equation 2.5 with respect to each yi
2: Apply ASGD for each low-dimensional single-cell representation

while t < nIter
for each single-cell in parallel:

Compute adaptive learning rate ρt = ρ(1− t/T )
Apply stochastic gradient ascent yi ← yi + ρt∇yiJ

end
end

The main algorithms are implemented using C++ to speed up, and it is

also provided as a form of the R package. The web-based system (see Chapter

5) is developed using Python.
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CHAPTER 3

EXPERIMENTS

3.1 Data and Data Preprocessing

We used mass cytometry data that are provided by X-shift [12]. They consist

of 10 data sets that contain mice bone marrow samples stained with surface

markers, and each of them has 51 parameters. Instead of using all of them,

we used 39 surface marker expressions [12, 39] that were utilized for mass

cytometry experiments of the immune system reference framework [39]. In

addition, the data was processed through noise thresholding and asinh trans-

formation, i.e. y = asinh(max (x − 1, 0) / 5) like X-shift [12] and viSNE [8]

applied. The data sets also offer 24 gating annotations of each cell, which

were used to distinguish cells in visualization and to compare clustering per-

formance of viSNE and our method.

The 39 marker expressions are related to the following 39 antigens: Ter119,

CD45.2, Ly6G, IgD, CD11c, F4/80, CD3, NKp46, CD23, CD34, CD115,

CD19, PDCA-1, CD8α, Ly6C, CD4, CD11b, CD27, CD16/32, Siglee-F,

Foxp3, B220, CD5, FcεR1α, TCRγδ, CCR7, Sca1, CD49b, cKit, CD150,

CD25, TCRb, CD43, CD64, CD138, CD103, IgM, CD44, and MHC II.

The 24 gating annotations of our single-cell data sets are as follows: B-

cell Frac A-C (pro-B cells), Basophils, CD4 T cells, CD8 T cells, Common

Lymphoid Progenitor (CLP), Common Myeloid Progenitors (CMP), Clas-

sical Monocytes, Eosinophils, Granulocyte Monocyte Progenitors (GMP),

Hematopoietic Stem Cell (HSC), IgD- IgM+ B cells, IgD+ IgM+ B cells,

IgM- IgD- B-cells, Intermediate Monocytes, Megakaryocyte Erythroid Pro-

genitors (MEP), Multi-Potent Progenitors (MPP), Macrophages, Natural

Killer (NK) cells, Natural Killer T (NKT) cells, Non-Classical Monocytes,

Plasma Cells, gd T cells, mDCs, and pDCs.

12



3.2 Baselines

We compared our method with viSNE [8] because it is a state-of-the-art

method of single-cell visualization based on nonlinear embedding like our

approach. The original viSNE is based on a distributed implementation of t-

SNE [27], and the authors released the software called cyt. However, it is still

difficult to deal with more than 100,000 single-cell data points due to their

technical computational limit. The recent version of cyt employed Barnes-

Hut-SNE [28] to speed up the method and make it scalable. We focused on

the current version of viSNE for comparison.

We also compared PCA with our method. The results of PCA visualization

were worse than those of viSNE and our method. They failed to distinguish

cell subpopulations in most data sets. However, we did not consider it as our

main baseline because it is a linear projection approach. Some of the results

from PCA are shown in Chapter 5.

3.3 Experimental Setting

3.3.1 Parameter Tuning

Before implementing viSNE [8] and our method, we need to set the parame-

ters of each method. viSNE is based on Barnes-Hut-SNE [28], which has two

parameters: perplexity and theta that controls the tradeoff between speed

and accuracy. In our experiments, we set the two as 30 and 0.5, respectively,

which were the values the authors of viSNE used. Our method allows for

more control and therefore has more parameters: number of trees, number

of neighbors, perplexity, number of negative samples, rho, gamma, and al-

pha. We set the parameters considering our input data set. The first three

parameters are related to constructing a k-NN network. The number of trees

and neighbors can determine the shapes of a k-NN network, and perplexity is

related to computing edge weights of Equation (2.2). The other parameters

are related to network embedding. The number of negative samples is M

of Equation (2.5), rho is the initial learning rate, gamma is the weight of

negative edges, and alpha determines the thickness of the tail of f . Table 3.1

and Table 3.2 show the parameters we tuned for our visualization.
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Table 3.1: Parameters for constructing k-NN networks.

Parameters for constructing k-NN networks
Number of trees 20− 100
Number of neighbors 20− 150
Perplexity 10− 50

Table 3.2: Parameters for embedding the constructed k-NN networks.

Parameters for embedding k-NN networks
Number of negative samples 1− 10
Rho 1− 10
Gamma 1− 10
Alpha < 1

3.3.2 Hardware Details

All experiments for measuring the computation time were performed on a

machine with Intel Xeon E5-2650 CPUs running at 2.30GHz and 512GB

memory. 40 threads were used, except in the experiments about the effec-

tiveness of multiple threads.
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CHAPTER 4

RESULTS

4.1 Visualization

Figure 4.1 represents the visualization result for mice bone marrow replicate

7 data set [12]. Overall, the same type of cells forms a dense subset. The

number of a certain class of cells such as hematopoietic stem cell (HSC) in

the data set was so small that they were difficult to distinguish from other

cell types and to find in our visualization. Except for these cells, we can

clearly see that cells of the same type gather together and cells of different

type move away from each other in a two-dimensional space.

We can also find some similar kinds of cells staying together in Figure

4.1. For example, similar cell types like Intermediate Monocytes (red) and

Classical Monocytes (yellow) appear close to each other. Two types of B

cells (purple and light green) also stay near with each other.
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In addition, we applied viSNE to the same data set. Figure 4.2 shows that

viSNE can also represent cell subpopulation heterogeneity very well. Cells

of the same type are grouped together and can be clearly distinguished from

different types of cells. In the context of the shape of subpopulations in the

visualization, our method tended to form denser and rounder clusters than

viSNE but to have more randomly scattered samples. We also compared our

method with other embedding methods such as PCA. Some examples of the

PCA visualization are shown when we introduce our web-based interactive

system (see Chapter 5).

Figure 4.2: Visualization of viSNE for the data set which contains mice
bone marrow replicate 7.

4.2 Computation Time

One of the main goals of our method is to make visualization of high-

dimensional single-cell data faster and more scalable. Thus, we compared

the computation time of viSNE [8] and our method for various cases. In

addition, to test the scalability and parallelizability, we measured the effec-

tiveness of speedup with respect to the number of threads.
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4.2.1 Time Comparison Depending on the Number of Data

To measure the computation time and evaluate the scalability with respect to

the size of the data sets, we constructed 8 different single-cell data sets that

contained 5,000, 10,000, 25,000, 50,000, 75,000, 100,000, 250,000, and 500,000

data points, respectively. For each data set, single-cell data points were uni-

formly sampled from the union of 10 data sets (total number: 841,644). Each

data set contained 39 parameters and was preprocessed by noise thresholding

and asinh transformation before sampling. Figure 4.3 shows that our method

was faster than viSNE for all 8 sampled data sets and our method is easier to

make scalable. In addition, our method is still efficient beyond the technical

limitation of viSNE, 100,000 samples.

Figure 4.3: Comparison of the computation time of viSNE and our method
with respect to the number of single-cell data samples.

4.2.2 Computation Time Comparison for Each Step

The total computation time of our method consists of two parts: one is for

constructing a k-NN network and the other is for embedding the network. In

18



Figure 4.4, we represent how much time is needed for each step. We can show

that the second step, embedding, requires more computational burden. The

gap between two steps is widening when the number of single-cells increases.

Figure 4.4: Separate analysis of the computation time for constructing a
k-NN network and for embedding the network with regard to the number of
single-cell data samples.

4.2.3 Effectiveness of Parallelization

In addition, we tested the parallelization of our method in the multi-core

setting. Since our method uses asynchronous stochastic gradient descent

(ASGD) [33] for training, it can be implemented in parallel by using multiple

threads and be easily accelerated. We measured the computation time of our

method when dealing with the union of all 10 single-cell data sets with respect

to the number of threads. By increasing the number of threads from 1 to 8,

we measured the effectiveness of the multiple threads for our method. When

we used 8 threads simultaneously, the speedup rate was 4.1 times faster than

the single thread implementation, which is shown in Figure 4.5. The results
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show that our method can be effectively parallelized and can be made more

scalable through a multi-core system.

Figure 4.5: Effectiveness of the multiple threads for speedup of our method.

4.3 Clustering

In this section, we compared the quality of embedding by comparing the

performance of clustering. In our experiments, we first applied one of the

off-the-shelf clustering algorithms, k-means clustering [24], to the vectorized

single-cell data points embedded by viSNE [8] and by our method. Next, we

measured the performance of clustering using hand-gated annotations of each

cell. Specifically, we followed the process of X-shift [12], which compares the

clustering results and hand-gated populations and calculates F1-measures.
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4.3.1 Evaluation of Clustering

In detail, contingency matrix C was obtained for each cluster using hand-

gated annotations. The element Cij of the matrix is the number of cells in

the ith cluster belonging to the jth population. Based on Cij values, we can

compute precision P and recall R: Pij = Cij/
∑

k Cik and Rij = Cij/
∑

k Ckj.

By combining two matrices, the F1-measure matrix can be obtained as Fij =

2PijRij/(Pij +Rij).

As the number of clusters changed from 2 to 100, we computed F1-measures

for each cluster. The F1-measures were used to find a one-to-one assign-

ment between hand-gated population and clusters using the Hungarian al-

gorithm [40], which maximized the sum of F1-measures. This process was

applied to our 10 data sets, and we obtained an average F1-measure sum. As

another performance measure, we obtained maximum F1-measures for each

data set across all the clusters and took a median.

4.3.2 Performance of Clustering

As the input of clustering, we used the two-dimensional vectors obtained by

viSNE [8] and our method. We compared an average F1-measure sum of both

methods and a median of maximum F1-measures. Figure 4.6 shows that the

clustering performance of our method is better than that of viSNE across

all the clusters with respect to an average F1-measure sum. In addition, we

compared a median of maximum F1-measures of viSNE and our method.

Our two-dimensional embedding obtained 14.68 while viSNE obtained 13.23

as its median. Our method also outperformed viSNE for this evaluation

metric.
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Figure 4.6: Comparison of the clustering performance of viSNE and our
method when using two-dimensional vectors with respect to the number of
clusters.

Since our method is developed mainly for visualization, two- or three-

dimensional vectors are usually used as a result of embedding. However, the

algorithm can embed high-dimensional single-cell data into an arbitrary low-

dimensional space other than a two- or three-dimensional space. The vectors

embedded in a higher-dimensional space than a space for visualization can

lose less intrinsic information that original high-dimensional single-cell data

have. These higher-dimensional embedded vectors can be used to enhance

the performance of clustering. Thus, we tested clustering performances of our

embedding using 5-, 10-, 15- and 20-dimensional representations obtained by

our method.

As expected, Figure 4.7 shows that the performance of clustering was im-

proved when we used the vectors with higher dimensions than two. The

performances as we used 10-, 15-, and 20-dimensional vectors are similar to

each other and better than the performance as we used two- or 5-dimensional

vectors. This empirically shows that our low-dimensional representations can
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be used for purposes other than visualization, such as classification.

Figure 4.7: Comparison of the clustering performance of viSNE and our
method when using two-dimensional vectors with respect to the number of
clusters.
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CHAPTER 5

WEB-BASED INTERACTIVE
VISUALIZATION

To better aid analysis, we also introduce an interactive web browser based vi-

sualization tool featured in Figures 5.1 and 5.2. It allows researchers to exam-

ine their own data quickly by enabling functionality like mouse-over, zoom,

pan, brushing, and linking on the embedded data. Users can color data by

quantities of marker values as well as qualitative gate information. One can

select arbitrary groups of single-cell data points, tag them, and save them for

downstream analysis. We provide code, documentation, and video demon-

strations to reproduce experiments and apply our methods to new single-cell

data through the link (https://github.com/juhokim/SVHD-Single-Cell).

All code is made available under an MIT license.

Figure 5.1 shows the comparison between different visualization methods

by using two parallel plots and the reproduced results of our method using

the web-based visualization system. The left figure is the visualization result

of PCA, which cannot properly distinguish different cell subpopulations while

the right figure, our reproduced visualization (the same result as the Figure

4.1.), works well.

Figure 5.1: Compare different visualization methods and reproduce
visualization results based on our web-based tool.

Figure 5.2 is a different example of our web-based tool. The left scatter
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plot depicts the result of our proposed method, and the middle plot is a PCA

projection of the data. The right plot describes embedded expressions of a

specific marker with respect to a certain projection. Color assignment and

data selection labeling are also available through widgets at the bottom left.

Some data statistics and the table to the right show all provided marker data

and meta data regarding the single-cell data.

Figure 5.2: Our web-based system can compare the results from different
embeddings and show visualization statistics.
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CHAPTER 6

CONCLUSION

In this thesis, we introduced a new visualization method for large-scale and

high-dimensional single-cell data based on LargeVis [29], which consists of

two parts: constructing an approximate k-NN network and embedding the

constructed network into a low-dimensional space. Since both steps have lin-

ear time complexity, our method is scalable and suitable for analyzing large-

scale single-cell data sets with hundreds of thousands or even millions of cells.

Specifically, our experiment results showed that the proposed method is much

faster than viSNE [8], a state-of-the-art single-cell visualization method. In

addition, through the experiments with clustering, we showed that the qual-

ity of our embedding is better than that of viSNE on cell identity mapping

with respect to F1-measures. We also provide a web based interactive vi-

sualization tool and all necessary code and documentation to extend this

approach to new data.
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