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ABSTRACT

Displacement speed of a flame is a hydrodynamic concept, and it is defined as the normal com-

ponent of the velocity of the incoming flow evaluated on the unburned side of the flame. Except for

a steadily propagating flame with zero stretch (planar flame), this definition is ambiguous because

the mass flux and, consequently, the gas velocity vary across the thickness of the flame represented

by the flame/thermo-diffusive/pre-heat zone. In other words, the flame displacement speed has dif-

ferent values when evaluated at different locations within the flame zone. This has led to confusion

about the position within the flame that must be used for measuring flame speed. Additionally,

according to the hydrodynamic theory, the flame speed of weakly stretched flames is dependent

on the flame stretch and the position/isotherm chosen within the flame zone through a parameter

known as the Markstein Length. It is the objective of this study to provide a recommendation

for the position/isotherm within the flame zone for measuring gas velocity in experiments that

provides a flame speed value consistent with the hydrodynamic theory. In this regard, a premixed

flame in an axisymmetric laminar stagnation point flow is studied using the hydrodynamic theory.

First, the outer or hydrodynamic solution is obtained by solving modified Euler equations along

with jump conditions resulting from conservation laws. Thereafter, the structure of the flame zone

is resolved by rescaling the coordinate and the inner solution obtained using asymptotic theory is

presented. Having obtained the outer and inner solutions, a uniformly valid composite expression

for the mass flux across the flame is derived and presented. Finally, flame speeds are evaluated

at different isotherms/positions within the flame zone, and a recommendation for the position to

measure gas velocity in experiments is provided.
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Chapter 1

INTRODUCTION

A flame in a flow field has an ordered multi-layer structure where the different layers have dif-

ferent dominant processes. The different layers or zones and the corresponding dominant processes

are (i) the outer or hydrodynamic zone where advection is the dominant process, (ii) the flame or

thermo-diffusive zone where diffusion (thermal and molecular) is the dominant process, and (iii) the

reaction zone where chemical kinetics is the dominant process. Figure 1.1 below shows the structure

of a flame in a flow field. The length scales associated with the hydrodynamic, thermo-diffusion

and reaction layers are L, lf = Dth/SL, and lr = lf/β respectively, where Dth = λ
ρucp

, is the thermal

diffusivity, SL is the laminar flame speed and β = Ea(T̃a−T̃u)
RT̃a

2 is the Zel’dovich number (typically,

β≈10). The reaction layer is an order of magnitude smaller in size than the thermo-diffusive layer,

which in turn is an order of magnitude smaller in size compared to the characteristic length of the

hydrodynamic flow field. When viewed from a length scale relevant to the flow field, i.e. in the

limit δ =
lf
L → 0, the thermo-diffusive layer and reaction layer reduce to an interface called flame

front that separates the unburned and burned gases [1].

Figure 1.1: Structure of a Flame

Hydrodynamic theory of flame propagation treats a flame as an interface separating the un-
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burned and burned gases [2]. The mass flux and other gas properties like temperature and density

suffer jumps across this interface in order to satisfy the conservation laws. According to the theory,

the flame displacement speed or FDS is defined as the propagation speed of the flame relative to the

unburned gas. It is evaluated as the difference between the normal component of the velocity of the

unburned gas evaluated at the flame front location and velocity of the flame in a fixed coordinate

system [1]. Mathematically,

Sf = u.n̂|
n=0−
−Vf (1.1)

where u is the velocity, n̂ is the unit normal pointing towards the burned gas and Vf is propagation

speed of the flame in a fixed frame of reference.

This expression for flame speed is unique only in a hydrodynamic context or for steadily prop-

agating planar flames, and it corresponds to the laminar flame speed (SL) - a property of the

reactant mixture. By definition, a planar flame is unstretched. Flame stretch is a measure of the

flame front deformation resulting from its propagation and stresses in the flow surrounding it [1]

[3]. It is evaluated as:

K =
1

A

dA

dt
(1.2)

where A is an infinitesimal area formed by points that remain on the flame surface. Alternatively,

within the context of hydrodynamic theory (when Sf ≈SL), the stretch rate can be expressed as

[3]:

K = κSL + Ks (1.3)

where κ = −∇.n̂ is the flame front curvature, Ks = −n̂.E.n̂ is the hydrodynamic strain in flow

field and SL is the laminar flame speed - a property of the reactant mixture.

Figure 1.2 shows the essential difference between unstretched and stretched flames. Steadily

propagating planar flames are unstretched and have the same mass flux across the entire flame

zone. On the other hand, stretched flames have normal mass fluxes that change across the flame

zone due to lateral fluxes and accumulation within the flame [4]. In the figure below, there are two

normals (n1 and n2) and two isotherms (T1 and T2) at two transverse/tangential positions ’1’ and

’2’ respectively within the flames. In the planar case, there is no lateral flux or accumulation of
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mass, and the flame speeds evaluated at isotherms T1 and T2 will be the same. However, in the

stretched case, there may be lateral fluxes and accumulation of mass (as indicated by the direction

of the normals). In other words, the mass flux evaluated at isotherm T1 at transverse position ’1’

has a component that will contribute to the normal component of the mass flux at isotherm T2 at

transverse position ’2.’ Therefore, the flame speed evaluated at isotherm T1 will be different from

that evaluated at isotherm T2.

Figure 1.2: Planar and Stretched Flames

Markstein proposed a modified expression for flame speed of weakly stretched flames where a

parameter called Markstein Length (L) factors the effect of stretch on flame speed [2].

Sf = SL − LK (1.4)

Although the flame speed is conventionally defined with respect to the unburned gas, it can also

be defined with respect to the burned gas. Consequently, two Markstein Lengths Lu and Lb can be

evaluated on the unburned and burned sides respectively. Depending on the region (unburned or

burned) with respect to which the flame displacement speed is measured, the unburned or burned

side Markstein length must be used in equation (1.4) [1]. As can be seen from the equation (1.4)

above, the flame speed of weakly stretched flames varies linearly with flame stretch; in particular,
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it depends on (a) the extend of flame stretch and (b) the sign for L. Markstein Length (L) is

a parameter that is of the order of magnitude of the thickness of a flame and has been shown

to depend on Lewis number and thermal expansion parameter (σ) [5]. Typically, L is negative

for Lewis number less than approximately unity, and L is positive for Lewis numbers greater than

approximately unity [6]. Another result that follows from the above equation is that the flame speed

at zero stretch should be equal to the laminar flame speed. Even though the Markstein length is

an order δ quantity and the thickness of the flame is small, the change in Markstein length across

the flame zone may be an O(1) quantity [7]. This would lead to significantly different flame speeds

when equation (1.4) is used to evaluate the flame displacement speed (FDS) at different positions

within the flame zone.

Physically, a flame has a finite thickness. Consequently, experimentalists are faced with the

difficulty of choosing a location/isotherm within the flame for measuring the flame speed. In

addition, experimentalists measure the flame speed of stretched flames and extrapolate that to

zero stretch to estimate the laminar flame speed. A number of experimental studies showed that

depending on the isotherm or reference location chosen to measure the gas velocity, the flame speed

recovered by extrapolation to zero stretch was different [1]. These contradicting experimental results

led to confusion about the validity of equation (1.4) and the reference location that must be chosen.

This study focuses on presenting a uniformly valid composite expression for the gas velocity

across a stagnation point flame and providing a recommendation for the location to be chosen for

evaluation of flame speed. The hydrodynamic solution to the flow field on either side of the premixed

stagnation point flow flame is presented first. Thereafter, the flame zone or inner solution is

applied to the problem, and the hydrodynamic and inner solutions are matched to obtain composite

expressions for the mass flux and gas velocity valid everywhere except the reaction zone. Finally,

the density weighted flame speed is evaluated at different locations within the flame using the

composite expression for mass flux, and a recommendation is provided for the reference location

within the flame zone where measurement of gas velocity would lead to results consistent with

equation (1.4).
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Chapter 2

OUTER FLOW

2.1 SPECIFICATION

The flow being studied is that around a bluff body like a cylinder in the vicinity of the cylinder’s

upstream stagnation point. The incoming flow is axisymmetric and has a prescribed strain rate (ε).

It is assumed that a premixed flame is stabilized in the flow field at some location (d), that is yet to

be determined, before the stagnation point. Physically, such a flow field can be achieved by using

a circular burner that is kept some distance away from a flat plate. Alternatively, a counter-flow

setup where the flow of interest impinges against an opposing flow of some inert gas could be used.

After an initial transient, when the strain rate is sufficiently high, the flame detaches from the

surface of the burner and stabilizes in the flow field at a distance (d) away from the plate. The

figure below shows a schematic of the flow configuration.

Figure 2.1: Schematic Showing Flow Setup

The velocity field for the flow is described as u = uêz + vêr where u is the axial velocity and
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v is the radial velocity, and êz and êr are unit vectors in the axial and radial directions. These

velocities are prescribed as:

u = −2ε(z + a) (2.1)

v = εr (2.2)

where ε is the strain rate. This flow conforms with the general form proposed by Howarth [8].

Because of the presence of the flame, the incoming flow is offset by a distance (a) so as to

ensure that the velocity indeed goes to zero at the wall of the bluff body. For this axisymmetric

flow configuration, the unit normal, n̂ = êz, and since the flame is not moving, Vf = 0. Therefore,

from equation (1), the flame displacement speed reduces to

Sf = u

∣∣∣∣
d−

= −2ε(z + a)

∣∣∣∣
z=−d−

(2.3)

Since the flow is axisymmetric, the flame is flat, and the curvature term, κ=−∇.n̂, is identically

zero. This means that only the strain rate in the flow field contributes to flame stretch in the case

of a stagnation point flame. The hydrodynamic strain rate is evaluated as Ks = −êz.E.êz where

the strain tensor, E = 1
2 [(∇u) + (∇u)T ]. This reduces to Ks = −du

dz
= 2ε, and therefore,

K = 2ε (2.4)

As mentioned before, the hydrodynamic theory treats the flame as an interface across which the

mass flux, velocity, temperature and density suffer jumps. As a consequence of treating the flame

as an interface, the flow on each side of the flame can be solved separately and then be related

using jump conditions derived for finite thickness interfaces. In addition, the reaction terms can be

ignored because all of the reaction is confined to the flame sheet, and the density and temperature

can be treated as piecewise constant. Further, the viscosity(µ) and thermal conductivity (λ) are

evaluated as mixture averages and are assumed to be constant on either side of the flame sheet. The

governing equations on each side can be derived from the steady-state continuity and Navier-Stokes

equations:

Mass: ∇̃.ũ = 0

6



Momentum: ρ̃(ũ.∇̃)ũ = −∇̃p̃+ µ̃[∇̃2ũ] + ρ̃g

The densities and temperatures on the unburned and burned sides are related by the thermal

expansion parameter (σ).

σ =
ρu
ρb

=
Tb
Tu

(2.5)

where ρu and ρb are the densities of the unburned and burned gas respectively, and Tu and Tb are

the temperatures of the unburned and burned gas respectively. To non-dimensionalize, SL, ρu, Tu

are used as the scales for velocity, density and temperature respectively, and L = SLD
U is used as

the scale for length. Further, ε̃ is non-dimensionalized using the parameter U/D which represents

a strain rate. The resulting non-dimensionalized equations are:

∇.u = 0 (2.6)

ρ(u.∇)u = −∇p+ δPr∇2u (2.7)

Non-dimensionalizing equation (1.4) gives

Sf = 1− δαK (2.8)

where, δα is the Markstein Length L in non-dimensional form1[7]. It should be noted that equations

(2.1), (2.2) and (2.4) take the same form in the non-dimensional case. Further, the Froude number

is assumed to be large, and therefore, the gravitational force term which is multiplied by the

square of the inverse of Froude number is dropped. Although the incoming flow is prescribed to

be irrotational, vorticity is generated at the flame, and the flow of the burned gas is rotational. In

order to solve for the flow field on the burned side, all the variables are expanded asymptotically

using the non-dimensional flame thickness, δ, as the small parameter. That is,

u = u0 + δu1 +O(δ2), v = v0 + δv1 +O(δ2), a = a0 + δa1 +O(δ2)

d = d0 + δd1 +O(δ2), T = T0 + δT1 +O(δ2), ω = ω0 + δω1 +O(δ2)

and so on for all other variables.

Typical values of flame thickness for deflagrations are around 0.001m, and typical values for

1α, defined in the section 3.1, is the parameter that accounts for reactant properties through an effective Lewis
number (Leeff ).
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the laminar flame speed (SL) are of the order of 0.1m/s. This implies that the non-dimensional

flame thickness (δ) is of the order of 10−2. This study considers a flame that is stabilized at a

location well outside the viscous boundary layer next to the wall. Therefore, the non-dimensional

flame thickness (δ) should be an order of magnitude lower than the non-dimensional flame stand-off

distance (d). Unless otherwise stated, a value of δ=0.025 and ε = 2 is used for all the calculations

and plots presented hereafter.

In order to solve for the outer flow solution on the burned side of the flame sheet, jump conditions

across the flame sheet need to be derived for the quantities of interest. The section below provides

an outline of the method used to derive these jump conditions, both across the flame standoff

location (d) and leading order flame location (d0).

2.2 JUMP CONDITIONS

Jump in a quantity across a flame signifies the difference between its values on the burned and

unburned sides of the flame sheet respectively. This section presents the jumps in the flow variables

across the flame at its stand-off distance (d) and, for convenience, at the leading order stand-off

distance (d0).

2.2.1 Across the Flame (d):

The jump conditions that result from applying the conservation of momentum equations to an

interface separating fluids with negligible viscosity are known as Rankine-Hugoniot jump relations.

If viscous effects are included as O(δ) terms and the interface is assumed to be stationary (which

is the case for this study), then the resulting jump relations across the flame have correction terms

of O(δ) and are given as [9]:

[[ρ(u.n̂)]] = δ

(
σ−1

σ

)
γ1K

[[n̂× (u× n̂)]] = δ

{
−(λbPr + γ1) [[n̂×∇× u]]+Pr(λb−1)

∣∣∣∣∂u∂r +
∂v

∂z

∣∣∣∣
z=−d

}
[[
p+ ρ(u.n̂)2

]]
= δ

{
γ1 [[∇p.n̂]] + 2Pr(λb−1)Ks

}

It can be seen from the above equations that the jump relations depend on the transport
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coefficients (represented by λ) and their variation with temperature. When the thermal properties

are constant, λ = λb = 1. The general relations presented above can further be simplified for an

axisymmetric stagnation flow, and the resulting jump relations are2:

Mass flux: [[ρu]] = 2εδ

(
σ−1

σ

)
γ1 (2.9)

Tangential velocity: [[v]] = δ(λbPr + γ1)[[ω]] (2.10)

Pressure:
[[
p+ ρu2

]]
= δ

{
γ1

[[
∂p

∂z

]]
+ 4εPr(λb−1)

}
(2.11)

Since the hydrodynamic model treats density as a piecewise constant quantity, the jump in

density can be evaluated as the difference between the burned and unburned densities. In non-

dimensional form,

[[ρ]] =
1

σ
− 1 (2.12)

The jump in a product of quantities across an interface (flame) can be evaluated as the product

of one quantity evaluated on the burned side and the jump in the other quantity added to the

product of the other quantity evaluated on the unburned side and the jump in the first quantity.

That is,

[[AB]]n = A

∣∣∣∣
n+

B

∣∣∣∣
n+

−A
∣∣∣∣
n−
B

∣∣∣∣
n−

Adding and subtracting A

∣∣∣∣
n+

B

∣∣∣∣
n−
to the above equation

=⇒ [[AB]]n = A

∣∣∣∣
n+

[[B]]n +B

∣∣∣∣
n−
[[A]]n

Using this relation and equation (2.12) in equation (2.9) gives

[[ρu]] = ρ

∣∣∣∣
d+
[[u]] + u

∣∣∣∣
d−
[[ρ]]

=⇒ 2εδ

(
σ−1

σ

)
γ1 =

1

σ
[[u]]−

(
1

σ
−1

)
2ε(z + a)

∣∣∣∣
z=−d

Substituting for the non-dimensional flame speed relation (2.8) gives

2εδ

(
σ−1

σ

)
γ1 =

1

σ
[[u]] +

(
1

σ
−1

)
(1− δαK)

2γ1 is a definite integral defined in section 3.1
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Therefore,

[[u]] = σ−1 + 2εδ(σ−1)(γ1−α) +O(δ2) (2.13)

From equation (2.11), it can be seen that the jump in pressure across the flame depends on the jump

in ρu2, which can be evaluated as either
[[
ρ(u2)

]]
or [[(ρu)u]]. Evaluating

[[
u2
]]

as [[u]]2 + 2u

∣∣∣∣
d−
[[u]], we

get

[[
u2
]]

= σ2−1 + 4εδ[(σ2−σ)γ1 − (σ2−1)α] +O(δ2)

Using equation (2.11) after evaluating
[[
ρu2
]]

using the expansion shown above, we get for pressure:

[[p]] = 1− σ + δ

{
γ1

[[
∂p

∂z

]]
+ 4ε

[
(σ−1)(α−γ1) + Pr(λb−1)

]}
+O(δ2) (2.14)

Vorticity is defined as w = ∇× u = ωêθ. Since the flow is axisymmetric, it follows that

ω =
∂v

∂z
− ∂u

∂r

Thus, the jump in vorticity across the flame, [[ω]] =

[[
∂v

∂z

]]
−
[[
∂u

∂r

]]
, where the second term can be

expressed as
∂

∂r
[[u]], and since it is known from equation (2.13) that [[u]] is not a function of r, this

term is identically 0. Therefore, [[ω]]=

[[
∂v

∂z

]]
.

In order to find the jump in the axial gradient of the radial velocity, the jump in all terms of

the radial momentum equation is evaluated. The radial momentum equation can be obtained from

equation (2.7) as

ρu
∂v

∂z
+ ρv

∂v

∂r
= −∂p

∂r
+ δPr

[
∂2v

∂z2
− v

r2
+

1

r

∂

∂r

(
r
∂v

∂r

)]
Evaluating the jumps across the flame for each term in the radial-momentum equation gives:

[[
ρu
∂v

∂z

]]
=

[
1 + 2εδ

{(
σ − 1

σ

)
γ1 − α

}][[
∂v

∂z

]]
[[
ρv
∂v

∂r

]]
= ε2r

(
1− σ
σ

)
+ δ

{
ε(λbPr + γ1)

σ

[[
∂v

∂z

]]
+
εr(λbPr + γ1)

σ

∂

∂r

[[
∂v

∂z

]]}
[[
∂p

∂r

]]
=

∂

∂r
[[p]] = 0 +O(δ2)[[

Pr
∂2v

∂z2
− Pr v

r2

]]
= Pr

[[
∂2v

∂z2
− v

r2

]]
= O(δ)[[

Pr

r

∂

∂r

(
r
∂v

∂r

)]]
= 0 +O(δ)

10



It should be noted that the terms multiplied by the Prandtl number (Pr) are already O(δ), and

thus, the jumps in these terms would be O(δ2) or smaller. Solving for

[[
∂v

∂z

]]
from the above jump

relations gives for vorticity,

[[ω]] = ε2
(
σ − 1

σ

)
r − 2ε3δ

{(
σ−1

σ

)[(
σ−1

σ

)
γ1 − α

]
r +

(
σ−1

σ2

)
(λbPr + γ1)r

}
+O(δ2) (2.15)

2.2.2 Across d0:

The location of the flame is asymptotically approximated by d0 + δd1. It is convenient to express

the jump relations derived in equations (2.9) through (2.15) above as jumps over the leading order

flame stand-off position z =−d0 as opposed to evaluating them at z =−d. This is done using a

Taylor Series expansion as shown below:

[[A0 + δA1]]n0+δn1
= [[A0]]n0

+ δ

{
[[A1]]n0

+ n1

[[
∂A0

∂n

]]}
Evaluating the jumps in u, v, p and ω using the above expression and comparing with jumps

in these quantities across the flame (d) derived above (equations (2.13), (2.10), (2.14) and (2.15)

respectively) yields the following jump conditions across d0.

Axial Velocity:

[[u0]] = σ − 1 (2.16)

[[u1]] = 2ε[σ−1][γ1−α] + d1

[[
∂u0
∂z

]]
(2.17)

Transverse Velocity:

[[v0]] = 0 (2.18)

[[v1]] = (λbPr + γ1) [[ω0]] + d1

[[
∂v0
∂z

]]
(2.19)

Pressure:

[[p0]] = 1− σ (2.20)

[[p1]] = 4ε

[
(σ−1)(α−γ1) + Pr(λb−1)

]
+ (γ1+d1)

[[
∂p0
∂z

]]
(2.21)

Vorticity:

[[ω0]] = ε2
(
σ−1

σ

)
r (2.22)
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[[ω1]] = −2ε3
(
σ−1

σ2

)[
σ(γ1−α) + λbPr

]
r + d1

[[
∂ω0

∂z

]]
(2.23)

2.3 OUTER SOLUTION

As mentioned earlier, the flow on the unburned side of the flame in this study is irrotational.

Therefore, the vorticity is zero on the unburned side, and the jump conditions (2.22) and (2.23)

give the expressions for the vorticity on burned side at z=−d0. As a first step towards obtaining the

flow field on the burned side, the vorticity equation is obtained by taking the curl of the momentum

equation (2.7).

u(∇.w) + (w.∇)u− (u.∇)w =
1

ρ
δPr∇2w (2.24)

Since the flow on the unburned side is potential and vorticity exists only in the azimuthal direction,

equation (2.24) can be simplified by considering the azimuthal component with ρ = ρb. This gives

u
∂ω

∂z
+ v

∂ω

∂r
− ωv

r
= δσPr∇2ω

Dividing by r and simplifying after plugging in asymptotic expansions accurate to O(δ) for the

variables

=⇒ (u0 + δu1)
∂

∂z

(
ω0 + δω1

r

)
+ (v0 + δv1)

∂

∂r

(
ω0 + δω1

r

)
= δσPr

[
∂2ω0

∂z2
+

∂

∂r

(
1

r

∂

∂r
(rω0)

)]
Separating the terms according to order of magnitude yields:

O(1): u0
∂

∂z

(ω0

r

)
+ v0

∂

∂r

(ω0

r

)
= 0 (2.25)

O(δ): u0
∂

∂z

(ω1

r

)
+ v0

∂

∂r

(ω1

r

)
+ u1

∂

∂z

(ω0

r

)
+ v1

∂

∂r

(ω0

r

)
= σPr

[
∂2ω0

∂z2
+

∂

∂r

(
1

r

∂

∂r
(rω0)

)]
(2.26)

As suggested Eteng et al, expressing the variables u, v and ω in terms of a streamfunction

Ψ makes the mathematical derivations much more convenient [10]. The streamfunction is also

asymptotically expanded as Ψ = Ψ0 + δΨ1 +O(δ2), and the flow variables are expressed as:

u = −1

r

∂Ψ

∂r
(2.27)

v =
1

r

∂Ψ

∂z
(2.28)
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ω =
1

r

∂2Ψ

∂z2
+

∂

∂r

(
1

r

∂Ψ

∂r

)
(2.29)

From equation (2.25), it can be seen that
ω0

r
is a constant along streamlines on the burned

side of the flame. However, from the jump relation (2.22), it is known that
ω0

r
= ε2

(
σ−1

σ

)
at the

flame (z=−d0), and therefore
ω0

r
is constant everywhere on the burned side. This suggests seeking

a solution of the form Ψ0 = r2F0(z). Substituting this in equation (2.25) gives F ′′′0 (z) = 0 which

is confirmed by the fact that F ′′0 (z) = ε2
(
σ−1

σ

)
obtained from equation (2.29). Integrating twice

with respect to the axial coordinate z gives:

F0(z) =
ε2

2

(
σ−1

σ

)
z2 + c1z + c2

which can be solved subject to the following boundary conditions:

u0 at (z=−d0) = σ =⇒ F0(−d0) = −σ
2

v0 at (z=−d0) = εr =⇒ F ′0(−d0) = ε

u0 at (z=0) = 0 =⇒ F0(0) = 0

Solving this boundary value problem gives

d0 =
σ

ε(
√
σ+1)

(2.30)

F0(z) =
ε2

2

(
σ−1

σ

)
z2 + ε

√
σz (2.31)

Having obtained F0, and thereby Ψ0, all other flow variables can be calculated to the leading

order. Plugging in the value of ω0 simplifies equation (2.26) as

u0
∂

∂z

(ω1

r

)
+ v0

∂

∂r

(ω1

r

)
= 0

which means that
ω1

r
is also constant along the streamlines on the burned side. In addition,

evaluation of the jump relation (2.23) gives the expression,
ω1

r
=−2ε3

(
σ−1

σ2

)
[σ(γ1−α) + λbPr],

at the leading order position of the flame (z=−d0). Since
ω1

r
is also constant everywhere on the

burned side of the flame, a similar approach is used, and a solution of the form Ψ1 = r2F1(z) is

seeked. This results in the expression F ′′1 =−2ε3
(
σ−1

σ2

)
[σ(γ1−α) + λbPr], which when integrated

twice with respect to z gives:

F1(z) =−ε3
(
σ−1

σ2

)
[σ(γ1−α) + λbPr]z

2 + c1z + c2
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This equation can be solved subject to the following boundary conditions:

u1 at (z=−d0) = 2ε[σ−1][γ1−α] + d1

[
2ε2
(
σ−1

σ

)
d0 − 2ε

√
σ − 2ε

]
− 2ε [d1+α]

=⇒ F1(−d0) = −ε [(σ − 1)γ1 − σα− d1]

v1 at (z=−d0) = (λbPr + γ1 + d1)ε
2

(
σ−1

σ

)
r

=⇒ F ′1(−d0) = ε2
(
σ−1

σ

)
(λbPr + γ1 + d1)

u1 at (z=0) = 0 =⇒ F1(0) = 0

Solving gives

d1 =
2σ−
√
σ−1√

σ+1
γ1 −

√
σ−1√
σ+1

λbPr −
2σ√
σ+1

α (2.32)

F1(z) = −ε3
(
σ−1

σ2

)
[σ(γ1−α) + λbPr]z

2 (2.33)

Therefore, accurate to O(δ), the flame stand-off distance is given by

d =
σ

ε(
√
σ + 1)

+ δ

{
2σ−
√
σ−1√

σ+1
γ1 −

√
σ−1√
σ+1

λbPr −
2σ√
σ+1

α

}
(2.34)

Further, from the definition of the flame speed (equation (1.4)), it can be shown that a0 = d0−
1

2ε

and a1 = d1 + α. This results in the following expression for a:

a =
σ

ε(
√
σ+1)

− 1

2ε
+ δ

{
2σ−
√
σ−1√

σ+1
γ1 −

√
σ−1√
σ+1

λbPr +

(
1− 2σ√

σ+1

)
α

}
(2.35)

Having obtained the function F (z), the stream function Ψ can be evaluated and plugged in

equations (2.27) through (2.29) to solve for the flow variables on the burned side of the flame. The

equations (2.36), (2.37) and (2.38) below give the expressions for the axial velocity (u), transverse

velocity (v) and vorticity (ω) in the outer flow field that are accurate to O(δ). They are piecewise

functions that have a discontinuity or jump at the flame stand-off location z=−d.

u(z) =


−2ε(z + a) z < −d

−σ−1

σ
ε2z2−2ε

√
σz + 2ε3δ

{
σ−1

σ2

[
σ(γ1−α) + λbPr

]
z2
}

z > −d
(2.36)
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v(z, r) =


εr z < −d

σ−1

σ
ε2zr+ε

√
σr − 2ε3δ

{
σ−1

σ2

[
σ(γ1−α) + λbPr

]
zr

}
z > −d

(2.37)

ω(r) =


0 z < −d

σ−1

σ
ε2r− 2ε3δ

{
σ−1

σ2

[
σ(γ1−α) + λbPr

]
r

}
z > −d

(2.38)

Multiplying the piecewise-constant density with the axial velocity gives an expression for the

normal mass flux.

m(z) =


−2ε(z + a) z < −d

−σ−1

σ2
ε2z2− 2ε√

σ
z + 2ε3δ

{
σ−1

σ3

[
σ(γ1−α) + λbPr

]
z2
}

z > −d
(2.39)

Having obtained the outer flow field expressions for the flow variables, it is now useful to present

some of the results through plots. Several plots of the normal velocity and mass flux have been

presented below in order to draw important conclusions and results. All of the plots below have

been produced by simplifying equations (2.36) and (2.39) above by considering the case of constant

transport properties. Similar plots can easily be generated for general cases where λ=λ(θ).

Figure 2.2 shows the variation of the leading order axial velocity along the axial direction (z). It

can be seen from the figure that, as expected from equation (2.16), the leading order axial velocity

(u0) does suffer a jump of σ−1 across the flame sheet. This jump occurs at the flame sheet position

or flame stand-off distance (d0). It can also be seen that with increasing values of σ, the axial

velocity on the burned side of the flame sheet and the leading order flame standoff distance d0

increase. Lastly, it can be seen that the normal velocity becomes zero at the location z= 0 which

corresponds to the position of the object causing the stagnation.

It is important to note that all the variables must be perturbed to the same order in order for

asymptotic expressions to be consistent. For example, if the axial velocity u needs to be evaluated

accurate to O(δ), then all other variables including T, ρ, d, a etc. need to be perturbed to O(δ) as

well.
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Figure 2.2: Leading order outer axial velocity (u0) for different values of σ

Figure 2.3: Outer axial velocity (u) accurate to O(δ) for different values of σ, and l=0

16



Figure 2.3 is similar to Figure 2.2 except that it plots the axial velocity (u) accurate to O(δ).

The curves in Figure 2.3 were plotted using a value of ’0’ for the parameter l which measures the

deviation of the effective Lewis number from unity3. In this case, the O(δ) terms in equation (2.36)

serve as a correction to the jump in the quantity across the flame sheet. The jump in u is slightly

smaller than σ−1 and the flame stand-off distance (d=d0+δd1) is also slightly smaller than d0. The

correlation between the thermal expansion parameter and the jump and stand-off distance remain

the same as that for the leading order solution. The contrast between the leading order and O(δ)

accurate axial velocity can be more explicitly seen in Figure 2.4.

Figure 2.4: Outer axial velocities u0 and u for different values of l, and σ = 6

Figure 2.4 compares the flame stand-off distance and jump in axial velocity accurate to O(1)

and accurate to O(δ). The plot also shows that the O(δ) flame-standoff distance changes with the

effective Lewis number or the parameter l. From the definition of the non-dimensional Markstein

length parameter, α, given in the section 3.1, it can be seen that the Lewis number deviation

parameter (l) affects its value. It has already been discussed that L and α change sign near

Leeff = 1. The critical value of α, and thereby l, where d1 becomes zero can be found using

3l measures the deviation of Leeff from unity and has been defined in sections 3.1.
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equation (2.32). For the current case (λ=1 and σ=6), the critical value is found to be l≈−0.54.

For l values more negative than this critical value, the flame-standoff position shifts further to the

left. In addition, as seen from the figure, the jump in velocity across the flame also sees an increase

due to the change in α with l.

Figure 2.5 below contrasts the leading order and O(δ) accurate normal mass fluxes m0 and m

respectively. As suggested by the jump condition (2.9), m0 is continuous across the flame sheet

whereas m, the normal mass flux accurate to O(δ), suffers a jump because of the failure to account

for lateral fluxes and accumulation at the hydrodynamic level. Additionally, it can be seen that the

flame-standoff distance increases and the jump in mass flux decreases with more negative values of

l.

Figure 2.5: Outer normal mass fluxes m0 and m for different values of l, and σ = 6

The flow field on the unburned side of the flame is inviscid and incompressible. Therefore,

Bernoulli equation can be used to solve for the pressure field with one of the points being a virtual

stagnation point (pvs) corresponding to the location z=−a0, r = 0 and the other being any location

in the unburned flow field. This results in the following expression for pressure on the unburned

side.
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p(z, r) = pvs −
1

2
ε2r2 − 2ε2(z + a0)

2 − δ
{

4ε2a1(z + a0)
}

(2.40)

Similarly, having obtained expressions for velocities on the burned side, the Navier-Stokes equa-

tions can be used to determine the pressure field. To leading order, the flow is still inviscid, and

therefore, Bernoulli equation can also be used to obtain the leading order pressure term on the

burned side, p0.

p0(z, r) = ps −
2

σ

[
ε2

2

(
σ−1

σ

)
z2 + ε

√
σz

]2
− 1

2
ε2r2 (2.41)

where ps is the pressure at the stagnation point corresponding to z=0, r=0. The virtual stagnation

point pressure (pvs) can be related to the actual stagnation point pressure (ps) by the jump relation

(2.20).

ps = pvs −
σ−1

2
(2.42)

However, since the viscous terms materialize as O(δ) terms, the O(δ) terms from the Navier-Stokes

equations in the axial and radial directions need to be used to determine p1 on the burned side of

the flame. The O(δ) axial momentum equation is:

ρu0
∂u1
∂z

+ ρu1
∂u0
∂z

= −∂p1
∂z

+ Pr

{
∂2u0
∂z2

+
1

r

∂

∂r

(
r
∂u0
∂r

)}

Solving this gives a solution for pressure of the form

p1(z, r) =

[
2ε5

(σ−1)2

σ4
z4 + 4ε4

(σ−1)

σ2
√
σ
z3
][
σ(γ1−α) + λbPr

]
− 2Pr

[
σ−1

σ
ε2z + ε

√
σ

]
+ c1(r) + c2

where c1(r) is determined from the O(δ) radial momentum equation and the constant c2 is deter-

mined from the boundary condition p1(0, 0) = 0. The O(δ) radial momentum equation is:

ρu0
∂v1
∂z

+ ρu1
∂v0
∂z

+ ρv0
∂v1
∂r

+ ρv1
∂v0
∂r

= −∂p1
∂r

+ Pr

{
∂2v0
∂z2

− v0
r2

+
1

r

∂v0
∂r

}

Plugging in the above mentioned expression for p1 and solving the momentum equation using the

boundary condition gives c1(r)=0 and c2=2Pr[ε
√
σ]. Therefore, the O(δ) pressure term is only a

function of the axial coordinate z and is evaluated as

p1(z, r) =

[
2ε5

(σ−1)2

σ4
z4 + 4ε4

(σ−1)

σ2
√
σ
z3
][
σ(γ1−α) + λbPr

]
−2Pr

[
σ−1

σ
ε2z

]
(2.43)
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Chapter 3

INNER SOLUTION

This chapter presents a solution for flow variables that is valid in the inner zone or flame zone.

As seen from Figure 1.1, the flame zone or thermo-diffusive zone is associated with a length scale

that is much smaller in magnitude than the hydrodynamic length scale. In order to account for

the mass accumulation and flame stretch effects, the coordinate z must be rescaled accounting for

the diffusion of the reactants. Further, the inner pre-heat zone coordinate must be such that the

reaction layer thickness lr which is inversely proportional to the activation energy parameter (β) is

much smaller than unity. In the limit 1
β → 0, the reaction zone shrinks to a reaction sheet and the

chemical kinetics can be neglected.

In order to study the inner structure of the flame, a general first order, 2-species reaction of the

following form is considered [11].

νDMD + νEME → PRODUCTS

where νi represents the stoichiometric coefficients, Mi represents the reactant species and the

subscripts D and E are used to represent the deficient and excess reactants respectively. It is

assumed that the deficient reactant is completely consumed across the flame. This allows the

use of the transport properties of the deficient reactant as the limiting variable to the chemical

reaction and heat release. The reactant mixture is stoichiometric when the two reactants are in

molar proportions that lead to complete combustion; however, this may not always be the case.

Therefore, a quantity Φ is introduced as the ratio of the mass fractions of the excess reactant and

deficient reactant in the unburned mixture.

Φ =
YEu

νYDu

where ν =
νEWE

νDWD
is the mass-weighted stoichiometric coefficient-ratio and Wi is the mass of
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reactant i. Since there are two reactants (MD andME), it is necessary to define an effective Lewis

number (Leeff ) that is weighted more heavily with respect to the deficient component1.

Leeff =
LeE +ALeD
A+ 1

(3.1)

where the weight factor A = 1 + β(Φ− 1). In general, the properties are averaged in the reactant

mixture based on mass fractions so that the average mixture thermal conductivity, λ =
∑
Yiλi,

and the average mixture viscosity, µ =
∑
Yiµi. The only exception is the molecular diffusivity (Di)

of the reactants, which is considered separately for each species in the reactant mixture. It has

been shown that the transport properties mentioned above are, typically, functions of temperature

(T ), and it is assumed that the Prandtl number (Pr), Schmidt numbers (Sci) and Lewis numbers

(Lei) are constant. Therefore the following expression is valid for these properties:

λ = µ = Di = λ(θ) = θb (3.2)

where θ =
T̃

T̃u
is the leading order non-dimensional temperature, and b is a number such that 0

< b < 1.

In order to examine the structure of the pre-heat/flame zone, a coordinate stretching trans-

formation has to be introduced [11]. This transformation should also incorporate the variation in

transport properties that occurs across the flame or pre-heat zone. As suggested by reference [11],

an inner coordinate (η) is defined as

η =

∫ n/δ

0

1

λ(n′)
dn′ (3.3)

where n is the outer coordinate in the normal direction which is positive on the burned side and

negative on the unburned side. The inverse transformation for (3.3) can be expressed as

n =


δ

∫ η

0
λ(η′)dη′ η < 0

δλbη η > 0

(3.4)

1l, defined in section 3.1, measures the deviation of Leeff from unity on the scale of the inverse activation energy
[10]
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From equation (3.4), it can be seen that the reaction sheet is located at η = 0 with unburned

gas at locations where η < 0 and burned gas at locations where η > 0. Further, the co-ordinate

stretching on the burned side is uniform and does not really serve any meaningful purpose for the

analysis of the pre-heat zone which is on the unburned side of the reaction sheet. The leading order

non-dimensional temperature (T0 or θ) is expressed as [9]:

θ = T0 = 1 + (σ − 1)eη (3.5)

Since λ = λ(θ), it follows that the transformation (3.3) has an implicit dependence on η. Depending

on the the value of the exponent b in equation (3.2) the inner variable will be stretched to different

extents as shown in Figure 3.1 below. The inner coordinate is stretched the most when λ is a

constant and the least when λ=θ.

Figure 3.1: Inner coordinate η for various values of exponent b, δ=0.025 and σ=6
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3.1 DEFINITION OF INNER VARIABLES

There are several variables that appear in the inner solution; this section will define them. Lewis

number is defined as the ratio of the thermal diffusivity to molecular diffusivity and is dependent

on the properties of the reactants.

Lei =
Dth
Di

where Dth is the thermal diffusivity of the mixture, and Di is the molecular diffusivity of reactant i.

The Markstein length (L), and (its non-dimensional form δα) depend on the effective Lewis number

of the mixture and its proximity to unity. A parameter l measures the deviation of the effective

Lewis number Leeff from unity on the scale of inverse activation energy (Ea) using Zel’dovich

number (β) - the parameter dictating the thickness of the reaction zone [10]. That is,

l =
β(Leeff − 1)

σ−1

The inverse coordinate transformation from the inner coordinate (η) to the outer coordinate (n),

equation (3.3), can be expressed conveniently through an integral that factors in the variation of

transport properties of the reactant mixture across the flame. This integral can be evaluated as

I(η) =

∫ η

0
λdη

Applying a transformation using the definition of θ, it results that

η = ln

(
θ−1

σ−1

)

Using this transformation, the intergral I(η) can be expressed as

I(η) = −
∫ σ

θ

λ(x)

x− 1
dx (3.6)

There are several other integrals that appear in the inner expressions for mass flux, temperature

and axial velocity. The expressions for these integrals are obtained by solving the rescaled governing

equations (continuity, momentum and energy) in the flame zone. Firstly, J(η) is an integral that
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depends on the variation of transport coefficients within the flame zone, and it is expressed as:

J(η) =

∫ η

0
ρ0λdη

By manipulating the limits of integration, J(η) can be conveniently expressed in the following form

which involves the inverse coordinate transformation integral I(η).

J(η) = −
∫ σ

θ

λ(x)

x(x− 1)
dx =

σ−1

σ
γ1 + I(η)−

∫ θ

1

λ(x)

x
dx (3.7)

γ1 and γ2 are definite integrals that result from the flame-zone equations and are defined as:

γ1 =
σ

σ − 1

∫ σ

1

λ(x)

x
dx

γ2 =

∫ σ

1

λ(x)

x
ln

(
σ − 1

x− 1

)
dx

The parameter (α) depends on the effective Lewis number and the definite integrals γ1 and γ2

defined above, and it is defined as:

α = γ1 +
l

2
γ2 (3.8)

The non-dimensional Markstein lengths on the unburned and burned sides are respectively defined

as [1]:

Lu = δα (3.9)

Lb = δ

{
α−

∫ σ

1

λ(x)

x
dx

}
(3.10)

From equation (3.8), it can be seen that there is a critical value of l for which α changes signs.

As described in the introduction section, α, and consequently L change sign near Leeff = 1. An

indefinite integral χ2(η) appears in the expression for T1 - the O(δ) temperature term, and it is

defined as:

χ2(η) =

∫ 0

η

(
κI(η′)−KJ(η′) + λκ

)(
eη
′ − eη

)
dη′
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Since the flow under consideration is a stagnation point flow, the curvature, κ=0. Plugging in this

simplification and factoring out K gives

χ̃2(η) =
χ2(η)

K
=

∫ 0

η
J(η′)

(
eη − eη′

)
dη′

When the transport properties are constant (λ=1), the expressions for definite integrals γ1 and γ2

can be simplified. This gives the following expressions for γ1 and α.

γ̃1 =
σ lnσ

σ − 1

α = γ̃1 +
l

2

∫ σ

1

ln s

s− 1
ds

Additionally, for the case with constant transport properties, I(η)=η.

3.2 GENERAL SOLUTION

The results for mass flux and temperature presented in this section have been obtained from the

paper by Matalon and Bechtold [11]. The expressions given in the paper have been simplified for an

adiabatic flame. The expressions presented below for all the inner variables are piecewise functions

as expected from the fact that temperature varies across the pre-heat zone but is a constant on

the burned side of the adiabatic flame. The inner/flame-zone expression for the normal mass flux

across the flame accurate to O(δ) is

M(η) =


1 + δ

{
K
[
σ−1

σ
γ1−α−J(η)

]
+κI(η)

}
η < 0

1 + δ

{
K
[
σ−1

σ
γ1−α−

ηλb
σ

]
+κηλb

}
η > 0

(3.11)

where I(η) and J(η) are integrals defined in section 3.1. It can be seen that the equation (3.11)

contains correction terms of O(δ) that account for the flame stretch due to hydrodynamic strain
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and curvature. The expression for temperature accurate to O(δ) is

T (η) =


θ + δ

{
(σ−1)K

[
σ−1

σ
γ1ηe

η−αηeη+
γ1
σ

(eη−1)

]
+(σ−1)χ2(η)

}
η < 0

σ η > 0

(3.12)

where θ = 1 + (σ − 1)eη as defined before and χ2(η) is an indefinite integral defined in section 3.1.

From the ideal gas law in non-dimensional form, it follows that ρT = 1. Using equation (3.12) in

the ideal gas law and using the binomial expansion: (A0 + δA1)
−1 ≈ A0 − δA1 gives a piecewise

expression for density that is valid to O(δ).

ρ(η) =


1

θ
− δ


(σ − 1)K

[
σ−1

σ
γ1ηe

η−αηeη+
γ1
σ

(eη−1)

]
+(σ−1)χ2(η)

1+2(θ − 1)+(θ − 1)2

 η < 0

1

σ
η > 0

(3.13)

Using the definition of normal mass flux as the product of the density and normal gas velocity with

respect to a fixed coordinate system, the following expression for the normal velocity is obtained.

vn(η)− Vf =



θ + δ

{
Kθ
[
σ−1

σ
γ1−α−J(η)

]
+κθI(η)

+(σ−1)K
[
σ−1

σ
γ1ηe

η−αηeη+
γ1
σ

(eη−1)

]
+(σ−1)χ2(η)

}
η < 0

σ + δ

{
K
[
(σ−1)γ1−σα−ηλb

]
+κσηλb

}
η > 0

(3.14)

3.3 SOLUTION FOR STAGNATION POINT FLOW

For the axisymmetric stagnation point flow studied, the flame is planar and is stabilized at a stand-

off distance (d) from the stagnation point, i.e. κ = 0 and Vf = 0. Further, the flame stretch K = 2ε.

Additionally, since the flame is located at z = −d, the normal coordinate n = z + d, and this leads
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to the following coordinate transformation:

z + d =


δ

∫ η

0
λ(η′)dη′ η < 0

δλbη η > 0

3.3.1 Properties Varying with Temperature (λ = λ(θ))

When the transport properties are not constant, the integrals I(η), J(η) and χ2(η) need to be

evaluated. Since these integrals are dependent on the position η in the inner coordinate system,

and since the integrand λ is also changing with η, they cannot be substituted by simple expressions.

Plugging the stagnation point flow simplifications into equations (3.11) through (3.14) results in

the following equations for the inner variables.

M(η) =


1 + 2εδ

{
σ−1

σ
γ1−α−J(η)

}
η < 0

1 + 2εδ

{
σ−1

σ
γ1−α−

ηλb
σ

}
η > 0

(3.15)

T (η) =


1 + (σ−1)eη + 2εδ

{
(σ−1)

[
σ−1

σ
γ1ηe

η−αηeη+
γ1
σ

(eη−1)+χ̃2(η)

]}
η < 0

σ η > 0

(3.16)

ρ(η) =


1

1+(σ−1)eη
− 2εδ


(σ−1)

[
σ−1

σ
γ1ηe

η−αηeη+
γ1
σ

(eη−1)+χ̃2(η)

]
1+2(σ−1)eη+(σ−1)2e2η

 η < 0

1

σ
η > 0

(3.17)

U(η) =



1 + (σ−1)eη + 2εδ

{[
1 + (σ−1)eη

][
σ−1

σ
γ1−α−J(η)

]
+(σ−1)

[
σ−1

σ
γ1ηe

η−αηeη+
γ1
σ

(eη−1)+χ̃2(η)

]}
η < 0

σ + 2εδ

{
(σ−1)γ1−σα−ηλb

}
η > 0

(3.18)
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3.3.2 Constant Properties (λ = 1)

When the transport properties are constant, the integrals I(η), J(η) and χ2(η) in equations (3.15)

through (3.18) can be easily evaluated. In particular, the outer coordinate stretch becomes uniform,

i.e., when λ=1, the coordinate transformation is

η =
z+d

δ

This results in the following expressions for the inner variables M,T, ρ and u respectively.

M(η) =


1 + 2εδ

{
ln θ−α−η

}
η < 0

1 + 2εδ

{
lnσ−α− η

σ

}
η > 0

(3.19)

T (η) =



1 + (σ−1)eη + 2εδ

{[̃
γ1+(1−α)η− η

2

2
−I2(η)

]
(σ−1)eη

−
[
1+(σ−1)eη

]
ln

(
1+(σ−1)eη

)}
η < 0

σ η > 0

(3.20)

ρ(η) =



1

1+(σ−1)eη
− 2εδ


[
γ̃1+(1−α)η− η

2

2
−I2(η)

]
(σ−1)eη

1+2(σ−1)eη+(σ−1)2e2η

−

[
1+(σ−1)eη

]
ln

(
1+(σ−1)eη

)
1+2(σ−1)eη+(σ−1)2e2η

 η < 0

1

σ
η > 0

(3.21)

U(η) =



1 + (σ−1)eη + 2εδ

{[
1+(σ−1)eη

][
ln

(
1+(σ−1)eη

)
−α−η

]
+

[
γ̃1+(1−α)η− η

2

2
−I2(η)

]
(σ−1)eη−

[
1+(σ−1)eη

]
ln

(
1+(σ−1)eη

)}
η < 0

σ + 2εδ

{
σ lnσ−σα−η

}
η > 0

(3.22)

where I2(η) =

∫ 0

η
ln

(
1+(σ−1)eη

)
dη.
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Chapter 4

COMPOSITE SOLUTION

A composite expression for the flow variables is one that is valid in both the inner flame zone

and outer hydrodynamic zone. In other words, the composite expression is valid throughout the

domain of the problem, but it has a discontinuity in slope at the location of the reaction sheet.

Having obtained an outer solution for the normal mass flux that is valid in the hydrodynamic

unburned and burned regions (Chapter 2) and an inner solution that is valid inside the flame zone

(Chapter 3), a uniformly valid composite expression for the normal mass flux can be obtained by

matching the inner and outer solutions. In other words,

{Composite Solution} = {Outer Solution}+ {Inner Solution} − {CommonPart}

4.1 MATCHING

The inner solution should give the same result as the outer solution in the asymptotic limit where

the inner coordinate η approaches a large value in both positive (burned) and negative (unburned)

directions. Similarly, the outer solution should give the same result as the inner solution when

the outer coordinate z approaches the flame-standoff distance d from both unburned and burned

regions. In order to match the inner and outer solutions and determine the common part, the inner

solution needs to be expressed in terms of the outer variable z and the outer solution needs to be

expressed in terms of the inner variable η.

4.1.1 Properties Varying with Temperature (λ = λ(θ))

Equation (3.15) gives the inner (flame zone) expression for the normal mass flux. In the asymptotic

limit η →−∞,

θ → 1 + Exponentially Smaller Terms
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J(η)→ σ−1

σ
γ1 + I(η)

Therefore, for large η, the inner expression for mass flux becomes:

M ≈


1− 2εδ

{
α+I(η)

}
η < 0

1 + 2εδ

{
σ−1

σ
γ1−α−

ηλb
σ

}
η > 0

(4.1)

Equation (2.39) gives the expression for the outer mass flux (m). Expressing the outer coordinate

in terms of the inner coordinate gives z=−d0+δ[I(η)−d1]. Substituting this in the expression for

m gives

m ≈



−2ε

[
(a0−d0) + δ(I(η)+a1−d1)

]
z < −d

−σ−1

σ2
ε2
[
−d0+δ[I(η)−d1]

]2
− 2ε√

σ

[
−d0+δ[I(η)−d1]

]
+2ε3δ

{
σ−1

σ3

[
σ(γ1−α) + λbPr

][
−d0+δ[I(η)−d1]

]2}
z > −d

Simplifying the above equation using expressions for d0, d1, (a0−d0) and (a1−d1) gives

m ≈


1− 2εδ

{
α+I(η)

}
η < 0

1 + 2εδ

{
σ−1

σ
γ1−α−

ηλb
σ

}
η > 0

(4.2)

Comparing equations (4.1) and (4.2), it is seen that the inner and outer expressions for the

mass flux indeed match. The composite expression for the normal mass flux can be obtained by

adding the inner and outer solutions and subtracting the common part. The common part between

the outer and inner expressions is 1− 2εδ[α+I(η)] on the unburned side and the inner expression,

M(η), on the burned side, i.e.,

mc(z) =


m(z) +M(η)−

{
1− 2εδ[α+I(η)]

}
z < −d

m(z) +M(η)−
{
M(η)

}
z > −d
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Evaluating this gives the following uniformly valid composite expression for the normal mass

flux across the flame:

mc(z) =


−2ε(z + a) + 2εδ

{∫ θ

1

λ(x)

x
dx

}
z < −d

−σ−1

σ2
ε2z2− 2ε√

σ
z + 2ε3δ

{
σ−1

σ3

[
σ(γ1−α) + λbPr

]
z2
}

z > −d
(4.3)

Additionally, in the limit η →−∞,

χ2(η)→ γ1
σ

T1 → 0

Hence, in the limit of large η, the inner expression for the axial velocity reduces to:

U ≈


1− 2εδ

{
α+I(η)

}
η < 0

σ + 2εδ

{
(σ−1)γ1−σα−ηλb

}
η > 0

(4.4)

The outer expression for the axial velocity presented in equation (2.36) needs to be expanded in

terms of the inner coordinate. Using z=−d0+δ[I(η)−d1], it follows that

u ≈



−2ε

[
(a0−d0) + δ(I(η)+a1−d1)

]
z < −d

−σ−1

σ
ε2
[
−d0+δ[I(η)−d1]

]2
−2ε
√
σ

[
−d0+δ[I(η)−d1]

]
+2ε3δ

{
σ−1

σ2

[
σ(γ1−α) + λbPr

][
−d0+δ[I(η)−d1]

]2}
z > −d

which again can be simplified by plugging in values of d and a. This gives the following outer

expression for the axial velocity.

u ≈


1− 2εδ

{
α+I(η)

}
η < 0

σ + 2εδ

{
(σ−1)γ1−σα−ηλb

}
η > 0

(4.5)

Equations (4.4) and (4.5) are identical, and so the inner and outer expressions for the axial velocity

match. Following a procedure similar to the one detailed above for mass flux, a uniformly valid
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expression for axial velocity can be obtained. The composite solution for u on the unburned side

is of the form uc = −2ε(z+a) + (θ−1) + 2εδ

{
θ

∫ θ

1

λ(x)

x
dx− (θ−1)[I(η)+α] + T1

}
where T1 is the

O(δ) temperature. Expanding the variables θ, η and T1 gives

uc(z) =



−2ε(z + a) + (σ−1)exp

(
z+d

δ

)
+ 2εδ

{[
1+(σ−1)exp

(
z+d

δ

)]∫ θ

1

λ(x)

x
dx

+(σ−1)

[
γ1
σ

[
(σ−1)

z+d

δ
exp

(
z+d

δ

)
+ exp

(
z+d

δ

)
− 1

]
−α
[

exp

(
z+d

δ

)(
1− z+d

δ

)]
− I(z) exp

(
z+d

δ

)
+ χ2(z)

]}
z < −d

−σ−1

σ
ε2z2−2ε

√
σz + 2ε3δ

{
σ−1

σ2

[
σ(γ1−α) + λbPr

]
z2
}

z > −d

(4.6)

Since the inner expression for axial velocity U involves the integral χ2(η), a composite expression

for the axial velocity is more conveniently calculated using the relation:

uc =
mc

ρ
(4.7)

where ρ is given by equation (3.21).

4.1.2 Constant Properties (λ = 1)

In the case of constant transport properties, the integrals in the equations above can further be

simplified. Since this is a special case of the problem with variable properties, the inner and outer

solutions should match and this can be easily verified using a matching procedure similar to the one

described in the above section. Similarly, addition of the outer and inner solutions and subtraction

of the common part results in the following uniformly valid composite expressions for the normal

mass flux and velocity respectively.

mc(z) =


−2ε(z + a) + 2εδ

{
ln

[
1+(σ−1) exp

(
z+d

δ

)]}
z < −d

−σ−1

σ2
ε2z2− 2ε√

σ
z + 2ε3δ

{
σ−1

σ3

[
σ(γ1−α) + λbPr

]
z2
}

z > −d
(4.8)

uc(z) =


−2ε(z + a) + (σ−1)exp

(
z+d

δ

)
+ 2εδ

{
θ ln θ − (θ−1)(η+α) + T1

}
z < −d

−σ−1

σ
ε2z2−2ε

√
σz + 2ε3δ

{
σ−1

σ2

[
σ(γ̃1−α) + Pr

]
z2
}

z > −d
(4.9)
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4.2 RESULTS AND DISCUSSION

The results and discussion provided here are primarily for the case where the transport properties

are constant across the flame. However, these results can easily be extended to the general case

where the transport properties vary with temperature (λ=λ(θ)).

4.2.1 Composite Profiles Across the Flame

The composite solutions for the normal mass flux and velocity across the flame, given in equations

(4.8) and (4.9) respectively, are continuous in the entire domain. Figure 4.1 below plots the com-

posite velocity, uc, for several different values of the thermal expansion parameter. The position of

the flame in these plots can be identified by the sharp positive gradients in velocity. As can be seen

from the figure, the discontinuity or jump in velocity at the flame-standoff location d does not exist

anymore. This is because the composite solution includes correction terms from the inner solution

that account for lateral fluxes and accumulation of mass. Further, it can be seen that the flame

has a small but finite thickness (δ) over which the axial velocity encounters a rapid increase in

magnitude. However, it should be noted that the composite solution did not resolve the structure

of the reaction zone which is an order of magnitude smaller in thickness than the flame zone. This

results in a discontinuity in the slope on the burned side of the flame which can be clearly seen in

the plots. The resolution of this disparity in slope requires another rescale of the coordinate using

the Zeldovich number (β) and does not significantly affect the solution except for matching the

slope on the burned side of the flame.

Figure 4.2 depicts the variation of temperature across the flame for different values of the

thermal expansion parameter σ. As expected, the non-dimensional temperature (T ) is unity far

upstream of the flame and σ on the burned side of the flame. Additionally, as seen from the outer

solution presented in section 3.3, the flame-standoff distance increases in magnitude with increasing

values of σ. Similar to the axial velocity profiles in Figure 4.1, the temperature profiles also have a

discontinuity in slope at the reaction sheet location because chemical kinetics in the reaction zone

were ignored. Resolving the structure of the reaction zone would fix this discontinuity of slope, but

since the quantity of interest is temperature, and not the gradient of temperature, the resolution

of the reaction zone structure is not necessary for the problem studied.
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Figure 4.1: Composite axial velocity uc for different values of σ, and δ=0.025

Figure 4.2: Temperature profiles across the flame for different values of σ, and δ=0.025
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Since the composite axial velocity can be calculated either as mc/ρ or using equation (4.9), a

comparison can be made between the two. Figure 4.3 below shows that the two curves practically

lie on top of each other. Specifically, equations (4.7) and (4.9) yield very similar solutions proving

that the composite expression for uc given in equation (4.9) is indeed accurate.

Figure 4.3: Comparison of uc calculated using two methods, for σ=6 and δ=0.025

4.2.2 Markstein Length and Flame Displacement Speed Within the Flame Zone

Having obtained the composite expression for the normal gas velocity and mass flux, the flame

displacement speed defined in equation (1.1) can now be evaluated as:

Sf = uc|z=−d− =
mc

ρ

∣∣∣∣
z=−d−

This expression is unique only in the hydrodynamic sense where the entire flame zone reduces to

a surface known as the flame sheet which is located at the position z =−d. In reality, the flame

has a finite thickness (δ), and so, the expression for flame displacement speed needs to account for

the O(δ) position within the flame zone. This means that a position or isotherm within the flame
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zone (where velocity is measured) would not be at z∗=−d, instead it will be at z∗=−d + δI(η).

Therefore, the correct evaluation of the flame displacement speed would account for the flame

thickness and, for a location z∗, is given by:

S∗f = uc|z∗=−d+δI(η) =
mc

ρ

∣∣∣∣
z∗=−d+δI(η)

(4.10)

Since the density also changes throughout the flame zone from its unburned value of unity, the

flame displacement speed at any position within the flame zone is normalized using the ratio of the

density at that location (ρ∗) and the density on the unburned side (ρu=1). The density-weighted

flame displacement speed is defined as

S̃∗f =
ρ∗S∗f
ρu

= mc

∣∣∣∣
z∗=−d+δI(η)

(4.11)

and can be used to meaningfully compare the flame speed evaluated at different locations within

the flame. Using equation (4.11), the density-weighted flame displacement speed can be evaluated

at any location within the flame. Using equation (4.3) for the normal mass flux,

S̃∗f = −2ε

[
a−d+δI(η)

]
+ 2εδ

{∫ θ∗

1

λ(x)

x
dx

}

which can further be simplified using the relation between a and d.

For λ = λ(θ):

S̃∗f = 1− 2εδ

{
α−
∫ θ∗

1

λ(x)

x
dx−

∫ σ

θ∗

λ(x)

x− 1
dx

}
(4.12)

which is of the form S̃∗f =1− 2εL∗ where

L∗ = δα∗ = δ

{
α−
∫ θ∗

1

λ(x)

x
dx−

∫ σ

θ∗

λ(x)

x− 1
dx

}
(4.13)

For λ=1:

S̃∗f = 1− 2εδ

{
α+η−ln

(
1+(σ−1)eη

)}
(4.14)
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which again is of the form S̃∗f =1− 2εL∗ where

L∗ = δα∗ = δ

{
α+ η−ln

(
1+(σ−1)eη

)}
(4.15)

From the above expressions for the non-dimensional Markstein length within the flame zone (L∗), it

can be seen that the expression for Lb is regained at the location of the reaction sheet where θ∗=σ.

On the other hand, when θ∗ ≈ 1, the Markstein length becomes a large negative number. This

trend can be clearly seen in Figure 4.4 which shows the variation of Markstein number, M=
L
δ

,

with temperature.

Figure 4.4: Markstein number M as a function of temperature

Figure 4.5 below shows the variation of normal velocity, mass flux and temperature across a

flame. All three variables are continuous across the flame, and the normal velocity and mass flux go

to zero at the wall/stagnation point. In particular, the discontinuity in mass flux no longer exists

due to accountancy of the effects of lateral fluxes due to flame stretch. Figure 4.5 also includes an

inset showing the profiles in the flame zone. From the inset, it can be seen that the temperature is

significantly higher than the unburned temperature (Tu) at the location of the minimum velocity
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(z̄). In fact, for the parameters used for the plot, T (z̄)= T̄ ≈1.1.

Figure 4.5: Variation of m, u and T across the flame for σ=6 and δ=0.025

Experimentalists use three primary locations for measuring the gas velocity for determining

the flame displacement speed (FDS). They are: (i) the location of minimum velocity (z̄), (ii) the

location of maximum velocity (z∗∗), and (iii) the location where the temperature has increased

to some percentage of the unburned temperature (z∗). Since the maximum velocity occurs at a

position/iso-surface sufficiently close to the reaction sheet (T ∗≈ σ), the flame speed evaluated at

z∗∗ can be approximated by the flame speed at the reaction sheet (z∗=−d).

Figure 4.6 plots the flame speed evaluated at different locations or isotherms as a function of

the flame stretch. The curves are linear as expected, and slopes of the curves are the Markstein

lengths at those locations. As expected from equation (1.4), the non-dimensional laminar flame

speed, SL = 1, is recovered at zero flame stretch. Since L approaches large negative numbers for

locations on the unburned side where θ≈1, the flame speed evaluated at these locations increases

with stretch rate. As the choice of isotherm shifts towards the reaction sheet, L approaches a

constant value of Lb as seen from Figure 4.4. The rate of change of M, and consequently L, with

position is rapid until a location close to the reaction sheet is achieved. Therefore, in order to
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evaluate flame displacement speed of a stagnation point flame consistently, experimentalists should

measure the gas velocity at a location that is very close to the reaction sheet or the burned side of

the flame. Since the gas velocity is maximum at a location very close to the reaction sheet of the

flame, the location of maximum velocity (z∗∗) can also be used to measure FDS consistently.

Figure 4.6: Normalized FDS (S̃∗f ) as a function of the dimensionless stretch rate ε

Using the location of minimum velocity, z̄, as the upstream edge of the flame and measuring

the flame speed at this location will give erroneous results. Figure 4.7 below shows the variation of

normalized flame displacement speed measured at z̄ with stretch rate. Similar to Figure 4.6, when

the flame stretch is zero, the normalized flame displacement speed (FDS) is unity, as indicated by

the blue curve in the figure below. Even though the temperature value at the minimum velocity

location was found to be approximately 1.1 for σ = 6 and the S̃∗f versus ε plot for that case

was linear, the curve in Figure 4.7 is non-linear for small values of ε; this is a violation of the

linear trend predicted by equation (1.4). This non-linear trend can be explained by the fact that

z∗∗ varies non-linearly with flame stretch [5]. However, the non-linear trend seems to wear off as ε

becomes sufficiently large, and the normalized FDS varies linearly with flame stretch for sufficiently

large values of stretch rate. Figure 4.7 also plots the linear portion of the curve extrapolated to
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zero stretch. Experimentalists sometimes utilize a similar technique to estimate the laminar flame

speed. Nonetheless, as can be seen from the figure, the flame displacement speed evaluated by

linear extrapolation of S̃∗f to zero stretch does not correspond to the laminar flame speed due to

the initial non-linear behavior. Therefore, experimentalists should not choose the minimum gas

velocity location for estimating the flame speeds.

Figure 4.7: Normalized FDS (S̃∗f ) at position of minimum velocity as a function of ε
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Chapter 5

CONCLUSION

The flow across a premixed flame in an axisymmetric laminar stagnation point flow was studied

by resolving the structure of the pre-heat or flame zone and thereby accounting for diffusion of heat

and mass. Initially, the problem was solved in a hydrodynamic sense where the diffusion effects

were neglected and jump conditions derived from the conservation equations were used to relate the

flow variables on the burned and unburned sides. Solutions for normal mass flux m, axial velocity

u, radial velocity v, vorticity ω and pressure p were derived accurate to the order of the thickness

of the flame. From this outer solution, it was found that vorticity (ω) is generated across the flame

and that the quantity ω/r is a constant on the burned side of the flame. Additionally, expressions

for the flame-standoff distance (d) and virtual stagnation point location (a) were derived, and the

thermal expansion parameter, σ, was found to have a positive correlation with the flame-standoff

distance.

Since the outer solutions for the flow variables were discontinuous at the location of the flame,

inner solutions were presented for the variables m, T , ρ and u. The inner solutions were obtained by

resolving the structure of the flame zone, which was in turn done by rescaling the outer coordinate

by accounting for the diffusion length scale (δ). Additionally, in obtaining the inner solution,

the reaction zone was assumed to be a thin sheet and therefore chemical kinetics were ignored.

The inner and outer solutions were then matched and manipulated to obtain composite solutions

or expressions for m and u. These composite solutions are valid everywhere in the flow domain

except at the reaction sheet; hence, they have a discontinuity in slope at the position z=−d which

corresponds to the location of the reaction sheet.

The composite expression for axial velocity evaluated at the position z∗=−d+δI(η) will give the

flame displacement speed (S∗f ) at that location. However, in order to make a relevant comparison

between the flame displacement speeds (FDS) evaluated at different locations, a density weighted

FDS (S̃∗f ) was defined. The composite expression for the mass flux was used to derive an expression
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for S̃∗f , and from this, an expression for the Markstein length L∗ was derived. It was shown that

L∗ approaches a constant value near the reaction sheet and becomes negative at locations where

T ≈Tu. Subsequently, S̃∗f was plotted as a function of flame stretch and the relation was proved to

be linear at several locations within the flame zone determined by isotherms. However, the FDS

evaluated at locations close to the unburned side of the flame had positive slopes which violated

the theoretical prediction. This contradiction was explained using the variation of L across the

flame zone and the fact that L< Lb for z <−d. In addition, the normalized flame displacement

speed evaluated at the location of minimum velocity was found to have a non-linear relationship

with flame stretch. Due to these inconsistencies with measurement of FDS on the unburned side,

a recommendation was provided to measure the FDS at locations sufficiently close to the reaction

sheet in experiments.

The present study has provided results that are accurate everywhere except the reaction zone,

but it did not consider the chemical kinetics of the fuel-oxidizer mixture. In order to have a better

understanding of the chemical kinetics, a numerical simulation of the problem using a detailed

model for the chemical kinetics needs to be performed using a package such as Cantera.
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