
© 2017 Daniel Ronald Herber

ADVANCES IN COMBINED ARCHITECTURE, PLANT, AND CONTROL DESIGN

BY

DANIEL RONALD HERBER

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Systems and Entrepreneurial Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2017

Urbana, Illinois

Doctoral Committee:

Assistant Professor James Allison
Professor Yuliy Baryshnikov
Associate Professor Carolyn Beck
Professor Harrison Kim

Abstract

The advancement of many engineering systems relies on novel design methodologies,
design formulations, design representations, and other advancements. In this dis-
sertation, we consider three broad design domains: architecture, plant, and control.
These domains cover most of the potential design decision elements in an actively-
controlled engineering system. In this dissertation, strategic aspects of this combined
problem are addressed.

The task of representing and generating candidate architectures is addressed with
methods developed based on colored graphs built by enumerating all perfect match-
ings of a specified catalog of components. The proposed approach captures all ar-
chitectures under specific assumptions. General combined plant and control design
(or co-design) problems are examined. Previous work in co-design theory imposed
restrictions on the type of problems that could be posed. Here many of those restric-
tions are lifted. The problem formulations and optimality conditions for both the
simultaneous and nested solution strategies are given along with a detailed discussion
of the two methods. Direct transcription is also discussed as it enables the solution of
general co-design problems by approximating the problem. Motivated primarily by
the need for efficient methods to solve certain control problems that emerge using the
nested co-design method, an automated problem generation procedure is developed
to support easy specification of linear-quadratic dynamic optimization problems us-
ing direct transcription and quadratic programming. Pseudospectral and single-step
methods (including the zero-order hold) are all implemented in this unified frame-
work and comparisons are made.

Three detailed engineering design case studies are presented. The results from the
enumeration and evaluation of all passive analog circuits with up to a certain num-

ii

ber of components are used to synthesize low-pass filters and circuits that match a
certain magnitude response. Advantages and limitations of enumerative approaches
are highlighted in this case study, along with comparisons to circuits synthesized via
evolutionary computation; many similarities are found in the topologies. The second
case study tackles a complex co-design problem with the design of strain-actuated
solar arrays for spacecraft precision pointing and jitter reduction. Nested co-design
is utilized along with a linear-quadratic inner loop problem to obtain solutions ef-
ficiently. A simpler, scaled problem is analyzed to gain general insights into these
results. This is accomplished with a unified theory of scaling in dynamic optimiza-
tion. The final case study involves the design of active vehicle suspensions. All
three design domains are considered in this problem. A class of architecture, plant,
and control design problems which utilize linear physical elements is discussed. This
problem class can be solved using the methods in this dissertation.

iii

To Ashley.

iv

Acknowledgments

First and foremost, it has been my honor to have been advised by Professor James T.
Allison for the past six years. His enthusiasm and guidance have provided me with
continued inspiration throughout my graduate studies. A fortuitous opportunity as
an undergraduate grader was the start of a great relationship that defined my path
and launched my successes. I would also like to thank my dissertation committee for
their time and valuable feedback.

Most importantly, my wife, Ashley, has provided unwavering support over the
past decade. She has always been right by my side through many years of schooling,
offering encouragement and the occasional copyediting. I also want to thank all my
family and friends for their support throughout this exciting and laborious journey.

I have also had the opportunity to work with many brilliant collaborators includ-
ing Prof. Soon-Jo Chung, Jack Aldrich and Oscar Alvarez-Salazar from JPL, and
Traci Spencer and Emily Horn from John Deere. There are many Engineering Sys-
tem Design Lab (ESDL) members that have contributed in numerous ways to my
success as a graduate student including: Jeff Arena, Madhav Arora, Andrew Blanco,
Christian Chilan, Anand Deshmukh, Tinghao Guo, Yong Hoon Lee, Shangting Li,
Danny Lohan, Jason McDonald, Marlon Mitchell, Yashwanth Nakka, Albert Patter-
son, Satya Peddada, Lakshmi Rao, Vedant, and many others. I am grateful to have
worked with you and I cherish our time together.

Some elements of this dissertation were produced as the result of collaborative
efforts. Tinghao contributed to parts in Chapter 2 on architecture theory and the
supporting code. Yong Hoon provided assistance in both the development of Chap-
ter 5 on linear-quadratic dynamic optimization using direct transcription and the
supporting code. The case study in Chapter 7 was a collaborative effort among a

v

number of coauthors with Christian as the primary lead and Yashwanth developing
the beam theory model.

Finally, I would like to acknowledge support from Deere & Company, the Jet
Propulsion Laboratory (JPL), the NSF center for Power Optimization of Electro-
Thermal Systems (POETS), the Department of Industrial and Enterprise Systems
Engineering, and the Mavis Future Faculty Fellow program.

vi

Contents

List of Figures .x

List of Tables .xiv

List of Algorithms .xvi

List of Symbols .xvii

List of Abbreviations .xxii

List of General Notation .xxiv

Chapter 1 Introduction . 1
1.1 Introductory Example . 1
1.2 Three Design Domains . 3
1.3 A Design Process for Complete Dynamic System Design . 8
1.4 Solution Generation Challenges. 9
1.5 Dissertation Overview . 11

Chapter 2 Candidate Architectures through Enumeration 14
2.1 Candidate Architectures with Perfect Matchings . 16
2.2 Candidate Graphs to Unique Useful Graphs. 23
2.3 Tree Search Algorithm . 30
2.4 Enumeration Case Studies . 32
2.5 Discussion . 40
2.6 Summary . 42

Chapter 3 Co-Design: Combined Plant and Control Design 44
3.1 Problem Formulation . 46
3.2 Necessary Conditions for Optimality . 51
3.3 Practical Solution Considerations . 56
3.4 Test Problems . 61
3.5 Summary . 66

vii

Chapter 4 Scaling of Dynamic Optimization Formulations 68
4.1 Introduction . 68
4.2 Theory of Scaling Dynamic Optimization Formulations . 71
4.3 Motivating Examples . 76
4.4 Summary . 88

Chapter 5 Direct Transcription and Linear-Quadratic Dynamic Opti-
mization . 90
5.1 Introduction . 90
5.2 Linear-Quadratic Dynamic Optimization . 91
5.3 Approximate Solutions with Direct Transcription . 97
5.4 Automated Problem Generation . 106
5.5 Extensions . 113
5.6 Numerical Examples . 118
5.7 Future Work . 131
5.8 Summary . 135

Chapter 6 Case Study: Design of Passive Analog Circuits 137
6.1 Introduction . 137
6.2 Enumeration-Based Synthesis Methodology . 139
6.3 Examples . 149
6.4 Discussion . 160
6.5 Summary . 163

Chapter 7 Case Study: Design of Strain-Actuated Solar Arrays 164
7.1 Introduction . 164
7.2 Modeling of the Strain-Actuated Solar Arrays and Rigid Spacecraft Bus 167
7.3 Co-Design Problem Formulation . 173
7.4 Analytical and Numerical Results for SASA System . 178
7.5 Summary . 188

Chapter 8 Case Study: Design of Vehicle Suspensions . 191
8.1 Introduction . 191
8.2 A Problem Class with Linear Physical Elements . 193
8.3 Problem Formulation . 197
8.4 Results . 199
8.5 Summary . 201

Chapter 9 Conclusions and Future Work . 205
9.1 Summary . 205
9.2 Contributions . 207
9.3 Future Work . 208

viii

Appendix A Enhancements to the Perfect Matching-based Tree Algo-
rithm for Generating Architectures . 211
A.1 Overview . 211
A.2 Replicate Ordering. 212
A.3 Avoiding Loops. 215
A.4 Avoiding Multi-Edges. 219
A.5 Avoiding Line-Connectivity Constraints . 221
A.6 Checking for Saturated Subgraphs . 225
A.7 Enumerating Subcatalogs . 230
A.8 Alternative Tree Traversal Strategies. 234
A.9 Case Studies from Chapter 2 . 237

Appendix B Additional Architectures/Graphs . 239

Appendix C Additional Material for Chapter 5 . 241
C.1 Algorithms in the Automated Problem Generation Procedure 241
C.2 Sparsity Patterns . 249
C.3 Codes . 252
C.4 Methods . 255

Appendix D Summary of Available Code . 263

Bibliography . 264

ix

List of Figures

1.1 Task description in the robotic manipulator example. 2
1.2 Some candidate robot manipulator architectures . 2
1.3 Plant variables in the robotic manipulator example. 3
1.4 Joint control trajectories in the robotic manipulator example.. 3
1.5 Proposed stages for complete dynamic system design. 8
1.6 Stage 1 details. 9
1.7 Dissertation content connections . 13

2.1 Architectures represented as graphs. 15
2.2 Complete graphs on n vertices between 1 and 5. 18
2.3 Perfect matchings for K2, K4, and K6. 20
2.4 Comparison between a PM approach and adjacency matrix approach. 27
2.5 Two different type of isomorphisms. 28
2.6 Tree structure for Case Study 1 using the basic tree search algorithm 31
2.7 GP graphs for two examples. 33
2.8 Select interconnectivity graphs for Case Study 1. 33
2.9 Select connected ports and connected component graphs for Case Study 1. . . 34
2.10 All 16 unique graphs with no additional NSCs for Case Study 1. 35
2.11 All 5 unique graphs for Case Study 1 requiring a connected graph contain-

ing B and a specified number of unique edges. 35
2.12 All 12 unique graphs for Case Study 2 requiring all components to be

connected and a specified number of unique edges. 36
2.13 Suspension architecture enumeration case study. 37
2.14 Suspension case study matrices for S7 and the tree search algorithm. 39
2.15 Two architectures for the suspension case study. 40

3.1 Two co-design solution strategies . 47
3.2 Scalar plant, scalar control problem (TP1) results . 62
3.3 Co-design transfer problem (TP2) results . 64
3.4 Simple SASA test problem (TP3) results . 65

4.1 Spring-mass system . 74
4.2 Relationships between the original and scaled problems . 76

x

4.3 Illustrations of original and simplified strain-actuated solar array systems 77
4.4 Scaled and unscaled solutions for the simple SASA problem 82
4.5 Natural period vs. tf for the simple SASA and original design study. 83
4.6 Co-design transfer problem . 84
4.7 Maximum absolute relative error vs. step size for defect constraints 87

5.1 Structure definitions. 107
5.2 Overview of the automated problem generation procedure. 110
5.3 Solution for Example 1. 120
5.4 Numerical results for Example 1. 121
5.5 Solution for Example 2. 123
5.6 Numerical results for Example 2. 124
5.7 Solutions for Example 3. 125
5.8 Numerical results for Example 3. 127
5.9 Solution for Example 4. 128
5.10 Numerical results for Example 4. 129
5.11 Solution for Example 5. 131

6.1 Enumeration-based synthesis methodology. 140
6.2 Different representations used for the same circuit. 141
6.3 14 primitive circuits for the circuit structure space defined by Eqn. (6.1). 145
6.4 Subcircuits considered for generating practical circuits (series RLC subcir-

cuits). 145
6.5 Two common template circuits.. 146
6.6 Performance vs. complexity for Frequency Response Matching example

using set 1 along with select Pareto optimal circuits. 151
6.7 Magnitude and errors over the desired frequency range using select circuits. . 152
6.8 Performance vs. complexity for Frequency Response Matching example

using set 2. 153
6.9 Performance vs. cumulative percentage for Frequency Response Matching

example. 153
6.10 Low-pass filter specifications. 154
6.11 All feasible, minimum complexity circuits and attenuation responses for

Low-Pass Filter Realizability task #1. 157
6.12 Select feasible, minimum complexity circuits and attenuation responses for

Low-Pass Filter Realizability task #2. 158
6.13 Select feasible, minimum complexity circuits and attenuation responses for

Low-Pass Filter Realizability task #3. 159
6.14 Top two closest to be feasible circuits for Low-Pass Filter Realizability task

#4. 159

7.1 Illustration of the two modeling approaches used to gain design insights. 167

xi

7.2 Illustrations of various design representations for internally actuated array
design problems for pointing. 169

7.3 Cross section of the actuated array, modeled as a composite beam. 171
7.4 Parametric study of maximum slewing angle with respect to slewing time. . . . 180
7.5 Optimal array designs. 181
7.6 Bus angle and angular rate trajectories for select values of t̄. 182
7.7 Voltage history along the array for select values of t̄. 183
7.8 Array deflection profiles for select values of t̄. 185
7.9 Comparison between the first natural period of the optimal array designs

and the slewing phase duration. 186
7.10 Scaled mode coefficient trajectories for select values of t̄. 187
7.11 Voltage trajectory metrics for select values of t̄. 190

8.1 Various vehicle suspension architectures. 192
8.2 The proposed trilevel solution strategy for combined architecture, plant,

and control design.. 196
8.3 Suspension architecture component catalog. 197
8.4 Optimal trajectories for the two passive suspensions. 202
8.5 Optimal trajectories for two suspensions. 203
8.6 Optimal trajectories for two suspensions including the current best archi-

tecture. 204

A.1 Example 1 for Algorithm A.2 (replicate ordering). 214
A.2 Example 2 for Algorithm A.2 (replicate ordering). 216
A.3 Illustration of a line-connectivity constraint. 221
A.4 Example 1 for Algorithm A.5 (line-connectivity constraints). 223
A.5 Example 2 for Algorithm A.5 (line-connectivity constraints). 225
A.6 Example 1 for Algorithm A.6 (saturated subgraphs). 228
A.7 Example 2 for Algorithm A.6 (saturated subgraphs). 229
A.8 Two tree traversal strategies. 235
A.9 Visualization of the impact of level-order isomorphism checking. 236
A.10 Parallelization example. 237

B.1 All ten minimum complexity topologies for Low-Pass Filter Realizability
task #3. 239

B.2 All 274 graphs in Case Study 2 with no additional NSCs (gray hash indi-
cates a multiedge). 240

C.1 Sparsity pattern of H matrix for all considered methods except CQHS. 249
C.2 Sparsity pattern of the off-diagonal terms of {L11,L12,L21,L22} in the H

matrix using the CQHS method. 250
C.3 Sparsity pattern of Mayer terms in H matrix. 250

xii

C.4 Sparsity pattern of Ae1 matrix for the defect constraints using a single-step
method. 251

C.5 Sparsity pattern of Ae1 matrix for the defect constraints using a pseu-
dospectral method. 251

C.6 LGL and CGL inner node locations from the roots of polynomials 257
C.7 ED, CGL, and LGL nodes for various values of Nt . 258
C.8 Lagrange polynomial interpolation with ED, LGL, and CGL nodes 258
C.9 Convergence behavior for definite integral and derivative approximations

using Lagrange interpolation with LGL nodes. 259
C.10 Differentiation error using Lagrange interpolation with LGL nodes 260

xiii

List of Tables

6.1 Computational cost of Frequency Response Matching example. 150
6.2 Performance comparison between best and arbitrary circuit transfer functions.152
6.3 Computational cost of Low-Pass Filter Realizability example. 155
6.4 Low-Pass Filter Realizability specifications and results. 156
6.5 Task #1 feasible vs. total number of circuits for different complexity levels. . 157

7.1 Problem physical parameters. 174
7.2 Summary of co-design problem formulation. 177
7.3 Summary of results for maximum slewing bounds using the PRBDM. 179
7.4 Geometric constraints for the co-design problem variations. 180

8.1 Some bond graph modeling analogies. 194
8.2 Co-design problem parameters. 199
8.3 Summary of the suspension design results. 200

A.1 Comparison (replicate ordering, Example 1). 215
A.2 Comparison (replicate ordering, Example 2). 215
A.3 Comparison (loops, Example 1). 218
A.4 Comparison (loops, Example 2). 218
A.5 Comparison (multi-edge). 221
A.6 Comparison (line-constraints, Example 1). 223
A.7 Comparison (line-constraints, Example 2). 224
A.8 Comparison (saturated subgraphs, Example 1). 228
A.9 Comparison (saturated subgraphs, Example 2). 229
A.10 Subcatalogs for Example 1. 233
A.11 Comparison (enumerating subcatalogs, Example 1). 233
A.12 Select subcatalogs for Example 2. 234
A.13 Comparison (enumerating subcatalogs, Example 2). 234
A.14 Example 1. 238
A.15 Comparison (Case Study 1). 238
A.16 Comparison (Case Study 2). 238
A.17 Comparison (Case Study 3). 238

xiv

C.1 Notation used in the algorithms. 241

xv

List of Algorithms

2.1 Creation of edge set for a specific perfect matching number. 22
2.2 Determination of the perfect matching number for a specific edge set. 23
2.3 Determination of the unique colored graphs given a set of colored graphs. . . 30
2.4 Basic tree search algorithm. 32

A.1 Original tree search algorithm. 212
A.2 Limit potential connections based on replicate ordering. 213
A.3 Limit potential connections based on loops. 217
A.4 Limit potential connections based on multi-edges. 219
A.5 Limit potential connections based on line-connectivity constraints. 222
A.6 Handle saturated subgraphs. 226
A.7 Generate set of unique, feasible graphs using subcatalogs. 232

C.1 Optimization variable index generating functions . 242
C.2 Create Hessian. 242
C.3 Create sequences for Lagrange terms. 243
C.4 Create sequences for Mayer terms. 244
C.5 Create matrices for the defect constraints using a single-step method. 245
C.6 Create matrices for the defect constraints using a pseudospectral method. . . . 246
C.7 Create matrices for the additional inequality (or equality) constraints. 247
C.8 Create sequences for path constraint terms. 248
C.9 Create sequences for boundary constraint terms.. 248

xvi

List of Symbols

Symbol Description Page
a set of additional general constraints, a are individual constraints 147
α scale factor 72
A adjacency matrix of graph G, a are individual vertices 16
A QP constraint linear term matrix 92
A state (or system) matrix 58
b damping constant 173
β translation factor 72
B line-connectivity constraint 222
B QP constraint constant term matrix 92
B input matrix 58
c QP objective constant term 92

c(x) distributed proportionality coefficient between moment and voltage 172
C colored label set representing distinct component types 17
C capacitance 149
C output state matrix 115
C path constraints, C are individual path constraints 46
d disturbance 58
δ array angle 172

d(G) degree of a graph G 17
D differentiation matrix 100
D output control matrix 115

D(n) double factorial function, (n− 1)!! 19
D(s) denominator of a transfer function 146

∆ vector of time steps, ∆k = tk+1 − tk 86
e column vector of ones of appropriate length 18
ε constraint tolerance 86

ε(x, t) array surface strain 175
er relative error 87
E edges in graph G, e are individual edges 16
E error 147
E descriptor matrix 94

xvii

Symbol Description Page
E(x) total Young’s modulus of the composite array 168
E extremum function 114
f function (derivative, map, etc.), f is a single function 14
fp passband frequency 156
fs stopband frequency 156
F discretized derivatives 98
F QP objective linear term 92
F outer-loop feasibility constraint 47
F feasible set 14
g inequality constraints, g are individual inequality constraints 47

g(ω,x) circuit model function 147
G graph or transfer function of a complete circuit 16
G parameter matrix 94
G graph structure space 19
h equality constraints, h are individual equality constraints 92
h thicknesses of the PLS, h are individual thicknesses 171
hn neutral axis 171
H Hamiltonian 52
H Hessian or QP objective quadratic term 92
I induced region 48
I integral matrix 113

I(x) total second moment of area of the composite array 168
J mass moment of inertia 168
k spring stiffness 77

Kn complete graph of size n 18
Kp passband gain 156
Ks stopband gain 156
l matrix for linear Lagrange terms 94
l lower bounds on the optimization variables 147
` array segment boundaries 171
` array length 168
L colors or labels in graph G, l are individual colors 17
L inductance 156
L matrix for quadratic Lagrange terms 94
LB lower bound structure 108
L Lagrange term or running cost 46
m mass 172
m matrix for linear Mayer terms 95

mR(x) mass per unit length of the composite array 168
M potential inner-loop controls 48
M mandatory component constraint 24

xviii

Symbol Description Page
M matrix for quadratic Mayer terms 95

M(x, t) moment applied on the solar array 168
M Mayer term or terminal cost 47
n count of some quantity 16
na number of constraints 148
nc number of components 146
np number of poles 152
ν multipliers for the boundary constraints 52
ν single-step method constants 100
nz number of zeros 152

N(s) numerator of a transfer function 146
O output weighting matrix 115
O optimality conditions 74
p time-independent parameters (sometimes control parameters) 49
ρ density 172
ρ problem parameters 72
px total number of ports for component-type x in the subcatalog 144
P problem formulation 74
P ports vector for each component type 17
P solution to algebraic Riccati equation 59
P problem class 195

P(n,m) edge set for the nth perfect matching of Km 19
q(t) dynamic coefficients for control basis functions 170
r spacecraft bus radius 168

rmax maximum rattlespace 198
rk individual residuals 147
R vector indicating the number of replicates for each component type 17
R resistance 149

Reff effective inertia ratio of the bus-array system 178
Rl load resistance 146
Rs source resistance 155
s frequency 146
s sources 193
S network structure constraint or scaling function 24
t time continuum 46

tm time duration of the first phase 173
τ tree (graph) 234
t discretized time continuum 57
θ spacecraft bus angle 77
θ single-step method variable weights 100
T1 period of the first natural frequency 77

xix

Symbol Description Page
T (n) number of permutations of an undirected adjacency matrix 26
u open-loop control variables, u are individual controls 8
u upper bounds on the optimization variables 147
U unique connections constraint 217
U discretized controls 57
UB upper bound structure 108
vs source voltage 155
V vertices in graph G, v are individual vertices 16
V voltage 172
V output parameter matrix 115
w weights (quadrature, multi-objective optimization, etc.) 49
w array width 168
x independent variable 72
x spatial variable 169
x design variables 8
x̃ expanded set of optimization variables 93
χ multipliers for the outer-loop constraints 54
X set of QP optimization variables 92
X total angular momentum 173
y dependent variable 72
y outputs 115
Y matrix for linear equality constraints 95
Y equality constraint structure 108
z0 road profile 191
Ω simultaneous method’s feasible set (or constraint region) 48
Θ augmented states 53
φ boundary constraints, φ are individual boundary constraints 46
λ costates or multipliers for the state dynamics 52
µ damping coefficient of the composite array 169

ξ(x, t) solar array deflection 168
Ξ discretized states 57

η(t) dynamic coefficients for Galerkin approximating functions 170
Ω set of ns frequency points 147

γ(x) control basis functions 170
ψ mode shapes, ψ are individual mode shapes 173
η multipliers for the outer-loop feasibility constraints 54
µ multipliers for the path constraints 52
ψ outer-loop objective function 47
Ψ objective function 8
ω frequency 147
ω natural frequencies 173

xx

Symbol Description Page
φ(x) Galerkin approximating functions 170
ξ states, ξ are individual states 46

Φ(t, τ) state-transition matrix 94
Z matrix for linear inequality constraints 95
Z inequality constraint structure 108
ζ defect constraints 57
Z graph colorings or labels 17

var variable in code 22

xxi

List of Abbreviations

Abbreviations Description Page
APGP automated problem generation procedure 91
ARE algebraic Riccati equation 59
BFS breadth-first search 235
BVP boundary value problem 56
CC Clenshaw-Curtis 103

CCW counter clockwise 168
CEF composite Euler forward 104
CGL Chebyshev-Gauss-Lobatto (nodes) 98
CLC closed-loop control 6
CNC component number constraint 23

CQHS composite quadratic Hermite-Simpson 105
CTR composite trapezoidal rule 104
DAE differential-algebraic equation 56
DCC direct connection constraint 23
DFS depth-first search 235
DO dynamic optimization 45
DT direct transcription 46
ED equidistant (nodes) 98
EF Euler forward 100
En enhancements included 211

FOC fan out constraint 24
G Gaussian 103

GNRS graph numerical representation scheme 21
HS Hermite-Simpson 100
ICC indirect connection constraint 24
ISB indexed stacked block 26

KKT Karush-Kuhn-Tucker (conditions) 53
LGL Legendre-Gauss-Lobatto (nodes) 98
LP linear program 176

LPF low-pass filter 154
LQDO linear-quadratic dynamic optimization 90

xxii

Abbreviations Description Page
LQR linear-quadratic regulator 49
LTI linear time-invariant 94
LTV linear time-varying 94

MNA modified nodal analysis 10
MPC model-predictive control 96
NG nominal geometry 180

NLDO nonlinear dynamic optimization 90
NLP nonlinear program 46
NLS nonlinear least-squares 147
NSC network structure constraint 23
ODE ordinary differential equation 71
OLC open-loop control 6
Orig original algorithm 211
PDE partial differential equation 166

PEMA piezoelectric material actuator 165
PLS piecewise linear segments 180
PM perfect matching 19

PMP Pontryagin’s minimum principle 52
PRBDM pseudo-rigid body dynamic model 166

PS pseudospectral 99
QCQP quadratically-constrained quadratic program 135

QP quadratic program 58
RK4 4th-order classical Runge-Kutta 100

SASA strain-actuated solar array 164
SISO single-input single-output (transfer function) 141

SS single-step 99
TP test problem 61
TR trapezoidal 100
VL variable length 180

ZOH zero-order hold 102

xxiii

List of General Notation

Notation Description Page
◦ Hadamard product 18
� upper bound 92
� lower bound 92
|�| absolute value or cardinality of a set 18
�̄ scaled 72
�̇ time derivative 46

�!! double factorial 142
�C or �C component 16
�P or �P port 17

�0 initial 46
�a architecture design 8
�b base array material 171
�c continuous (infinite-dimensional) 93
�c control design 8
�d design 194
�d discrete (finite-dimensional) 93
�δ array 172
�e piezoelectric actuator material 171
�e equality 92
�f final 46
�i inner loop 48
�i inequality 92

�max maximum 77
�min minimum 143
�o outer loop 47
�O output 116
�p parameter 98
�p plant or physical design 8
�+ additional 113
�PR pseudo-rigid body dynamic model 172
�R reduced 25

xxiv

Notation Description Page
�t time discretization 57
�θ spacecraft bus 168
�u control 98
�ξ states 98

�CC connected components 22
�CP connected ports 21
�† candidate 48
�I interconnectivity 21
�(i) ith candidate architecture 195
�P problem class 195
�′ general derivative 79

�QP quadratic program 94
�∗ optimal 52
�T matrix transpose 16

xxv

Chapter 1

Introduction1

“Nevertheless, the design method is as inherent to the design process as
the scientific method is to scientific exploration.”

R. J. McCrory [2, p. 12]

The advancement of many engineering systems relies on novel design methodologies, de-
sign formulations, and design representations among other parts. In this work, we consider
three broad design domains: architecture, plant, and control. These domains cover most of
the potential design elements of an engineering system (and in particular, of dynamic sys-
tems, or systems whose behavior evolves through time). Allowing design flexibility (where
appropriate) in all three of these domains is the first step for formulating, solving, and under-
standing novel and innovative design problems. Furthermore, achieving design automation
in these types of problems requires adequate theory and tools to support such considerable
scope and complexity.

1.1 Introductory Example
We begin with an introductory design problem that includes decisions that can be classified
under the architecture, plant, and control design domains. This short example will help
build some initial intuition for the types of design problems considered here.

Consider a pick-and-place task shown in Fig. 1.1 (move an object from one place to another
and return) that will be performed by a robotic manipulator (a device that can perform tasks
without direct human interaction) [3]. There are a number of “robots” that can perform such
a task. A few of these forms or architectures are shown in Fig. 1.2. Figure 1.2a displays a
two-link serial architecture. An alternative architecture could have an additional link placed
in series as is shown in Fig. 1.2b. Links can be combined in a variety of ways to create new

1Elements of this chapter are based on work completed in Ref. [1].

1

sample
placement
path

sample
return
path

Figure 1.1: Task description in the robotic manipulator example.

↷↷

end effecter

links

joints
ground

actuators

(a) Two-link serial.

↷
↷

↷

(b) Three-link serial.

↷ ↷
(c) Four-link parallel.

↷
↷

plate

(d) Four-link with a plate.

Figure 1.2: Some candidate robot manipulator architectures (red arrow indicates active
joints).

architectures such as the four-link parallel manipulator in Fig. 1.2c. Additional components
or building blocks can be added to the architectures such as the triangular plate in Fig. 1.2d.
There are other decisions to be made with respect to the architecture including the joints
that will be active (i.e., an actuator is present so a torque can be directly applied to the
joint). The potential actively actuated joints are represented by red arrows in Fig. 1.2.
From this discussion, the essence of the architecture design decisions is the selection of the
components and their connectivity.

Some potential plant design variables for this problem are shown in Fig. 1.3. The link
length, cross-section geometry, and ground spacing are all geometric plant variables. The
spacing of the ground joints relative to point A in Fig. 1.1 could also be considered plant
variables. All of these design variables are time-independent and related to the physical
form of the manipulator. The distribution of the plant variables can vary depending on
the architecture considered. If we use the two-link manipulator in Fig. 1.2a, then there will
be only two length variables versus the four length variables associated with the four-link
manipulator in Fig. 1.2c.

2

(a) Link length. (b) Cross-section geometry. (c) Ground spacing.

Figure 1.3: Plant variables in the robotic manipulator example.

joint 1
joint 2

to
rq

ue

time
Figure 1.4: Joint control trajectories in the robotic manipulator example..

The control design could involve the specification of the torque trajectories at the active
joints such that the manipulator performs the pick-and-place task shown in Fig. 1.4. These
are time-varying signals that could be chosen such that the minimum amount of time or
energy is used. The control design variables directly govern the behavior of the dynamic
system.

It is not uncommon for each design domain to be treated separately. For example, the
architecture may be assumed to be fixed while either the plant or control is developed. Recent
work has considered combined plant and control design and this system-focused approach led
to low energy consumption solutions [4]. Considering all three of the design domains could
further lead to breakthroughs in performance and completely innovative systems. There
are some potential challenges with solving this design problem including the determination
of what architectures to consider, developing models for each considered architecture, and
solving an appropriate optimization problem for each architecture to properly evaluate its
performance.

1.2 Three Design Domains
In this section, we will discuss the classification of the three design domains. The purpose
of these classifications is to help conceptualize what can we change and how can we handle
these decisions in system-level design.

3

1.2.1 Architecture
In the engineering design context, architecture is defined as the elements contained within
a system and their relationships [5]. An architecture design problem seeks to optimize
some performance measure subject to the necessary constraints by determining both the
distribution of the elements and their relationships in the system. A complementary use of
the architecture representation is during the design process (see Sec. 1.3) where the elements
and their relationships may change for reasons other than optimization of the system’s
performance. The term “element” is a very generic but appropriate term as the elements in
an architecture can be very different. Some dissimilar types of architecture elements include:

• Choosing between two elements with similar function but differing properties such as
motor A vs. motor B from a manufacturer’s catalog

• Choosing elements with different functions such as a spring vs. a damper
• Choosing elements with different assumptions/forms such as an active vs. semi-active

actuator, or feedback controller vs. open-loop controller
• Choosing elements with different levels of model fidelity such as a linear spring vs. a

nonlinear, finite element-based spring

It is important to consider that not all architecture elements are meant to be strict design
decisions. For example, seeking the best performing architecture by varying elements with
similar function but different levels of model fidelity is not particularly useful. Therefore,
a key point is that an architecture representation used during the design process does not
need to be the final, realizable architecture to still be useful. There are advantages in using
different levels of design representation which will be discussed more in Sec. 1.3. However, the
broad definition of architecture used here encompasses the whole of an engineering system
and its design representation.

Component is a common alternative term for element (and will be used frequently through-
out this dissertation). Often, an architecture is made up of a particular set of components
chosen from a set of discrete choices or a catalog. Components in the catalog may be homo-
geneous (all the same) or heterogeneous (different). The relationships between the elements
of the architecture can be frequently captured by a graph [6]. These relationships, or con-
nections, could be physics-based or general information sharing. From these definitions, we
see that architecture design primarily involves the determination of discrete concepts (rather
than the primarily continuous variables used in the remaining two design domains).

An alternative term for architecture is topology. Topology more commonly refers to the
connections between similar elements, while architecture tends to focus on the specifics. For

4

example, consider a series-parallel topology for an electrical circuit. Traditionally, such a
classification implies that replacing a particular component (e.g., swapping a capacitor for an
inductor) in the circuit would still have the same topology. There is even a particular element
type that forgos the direct specification of the component known as the general impedance
element. However, there are alternative definitions would classify these as different topolo-
gies. Another domain where topology is frequently used is in structural optimization [7,
8]. In these types of architecture design problems, the elements are typically homogeneous
(e.g., all are bars in the truss with the same type of area shape), so it does fit the definition
of the connections between similar elements. Throughout this dissertation, both may still be
used interchangeably even though this delineation between architecture and topology might
be useful.

There are many architectures with heterogeneous components, such as electrical circuits
[9–12], hybrid powertrains [13], vehicle suspensions [6], gear trains [14, 15], and biological
networks [16] that are represented by colored graphs where the colors (or labels) are the
component types. There are a large number of geometric architecture problems such as the
design of trusses [7], heat spreaders [8], and soft robotics [17]. These problems sometimes
have homogeneous elements, but a few have heterogeneous elements such as in soft robotics
where the material at different locations can have a different behavior [17]. Sometimes,
the architecture problem can be approximated with a continuum relaxation, such as with
the solid isotropic material with penalization algorithm for structural optimization [7, 8].
However, the final solution still needs discrete values to define a realizable architecture.

1.2.2 Plant
The plant design is defined by variables that are generally regarded as time independent.
Often this implies physical variables such as geometry, but may be other types such as spring
stiffness (a lumped quantity). Sometimes the distinction is made when comparing between
control and plant. Plant (sometimes called the artifact in this domain) are the quantities
fixed during the control design. For example, the variables that can modify the dynamic
equations without any control present would represent the plant.

Frequently, the variables are continuous scalars, but other types are possible. Examples of
continuous scalars plant variables include the lengths of the links in a robotic manipulator
[4] or the cross sectional area of truss elements [7]. The distributed thickness of a beam could
be a part of the plant design (an infinite-dimensional plant variable) [18]. Discrete variables
are also possible, such as the number of teeth in a gear [19].

5

1.2.3 Control
Control seeks to govern directly the behavior of a dynamic system, i.e., one which evolves
through time. Unlike the other two design domains, control is frequently considered more ad-
justable for different tasks or conditions, i.e., one system may have different control schemes
for different scenarios.

Generally speaking, there are two types of control paradigms: closed loop and open loop.
In closed-loop control (CLC), there is some type of feedback mechanism where the current
state of the system is considered when making decisions about the next action to take. In
open-loop control (OLC), there is no feedback mechanism. With no feedback mechanism,
open-loop control design variables are typically entire trajectories. An example of an OLC
variable is the torque trajectory for a rotatory actuator in a robotic manipulator [4]. For
closed-loop control, gains or other variables that modify aspects of the feedback mechanism
could be considered the control design. An example of CLC is in the infinite-horizon linear-
quadratic regulator with full state feedback [20].

1.2.4 Ambiguity in These Delineations
While descriptions were provided for each of the three design domains, there is still some
ambiguity on how to provide the appropriate classifications. There are a number of potential
reasons for this vagueness.

One of the primary reasons may simply be legacy design paradigms that treat certain parts
of the design as separate [21]. System engineers may tackle the architecture design while
the mechanical and control engineers deal with the plant and control designs, respectively
(and what is in their domain is decided by some form of management). Therefore, the
classification of the design variables may be along the lines of what is traditionally expected
for the particular type of engineer to handle during the design process. In a system-level
design approach, as is preferred in this work, this type of classification is not needed as all
domains are considered uniformly.

Another type of delineation is based on variable types. Architecture design variables are
discrete. The plant consists of continuous, time-independent variables and the control is
infinite-dimensional trajectories. This classification scheme has the advantage of utilizing
techniques specifically created to handle each of the variable types. However, the discussion
above for each design domain demonstrated that the domains contain variables of variety
types. In a similar way, the general theory or tools may be developed to handle certain parts

6

of the design domains which may provide their own classifications (e.g., multidisciplinary
design frameworks [21]).

Another difficulty comes when the approximations or better representations of design
variables in one domain are frequently classified in another domain. Consider the following
examples where a design decision in one domain is approximated in another design domain:

• Architecture → plant: the solid isotropic material with penalization approximation in
structural optimization [7, 8]

• Architecture → control: assuming a particular feedback controller form for the power
take-off in wave energy conversion so that standard control-design techniques can be
applied rather than selecting a specific power take-off architecture [22]

• Plant → architecture: using only preferred discrete component values in a circuit
(e.g., E12 series) rather than continuous values for the inductance and capacitance [23]

• Plant → control: abstracting the power take-off system in a wave energy converter to
an open-loop force trajectory rather than a physical-system with plant variables [24,
25]

• Control → plant: tuning a passive system with only physical components such as
dampers and springs instead of a full-state feedback controller

In many of these cases, the designers may not put much importance in their classification
but rather treat them as the necessary design variables for the problem at hand.

A final point is the concept of plant and control architectures. For new systems, it may
be beneficial to split up the architecture decisions that are traditionally linked to the plant
and control systems [1]. For example, candidate plant architectures for automotive hybrid
powertrains include series, parallel, and power-split, among others [26]. For the power-split
architecture (and other similar new architectures), the splitting of the power between the
energy producing components is a necessary control decision [26]. The specific controller used
to make this control decision is the control architecture and may be an open-loop trajectory,
a basic feedback controller, or any number of alternatives depending on the stage in the
design process or its performance.

7

Stage 1 Stage 2 Stage 3

Plant
Architecture

Design
Co-Design
with OLC

Control
Architecture

Design
Co-Design
with CLC

Digital
Control
Design

↻ ↻

↻Adjust Formulation

Figure 1.5: Proposed stages for complete dynamic system design.

1.3 A Design Process for Complete Dynamic System Design
Allowing flexibility in all design domains can create a number of challenges that can limit
how effectively one arrives at a suitable solution. Here we adopt the design process proposed
in Ref. [1] for complete dynamic system design that helps manage the complexity and un-
certainty found in combined architecture, plant, and control design problems. It is a three
stage process shown in Fig. 1.5. We denote the plant architecture as ap and associated plant
variables as xp. The control architecture is represented with ac and control variables xc (and
OLC variables as u). The system-level objective function is represented by Ψ.
The first stage seeks to determine the optimal plant architecture by forgoing the specifi-

cation of the control architecture. Using a specific control architecture limits creative plant
design exploration at early design stages [1]. Instead, OLC is used for the control among
other potential uses. OLC can replace some components or interfaces with optimal trajec-
tories, reducing the design problem size while still providing an optimal solution [1, 25, 27].
In addition, OLC-based studies are particularly valuable at early design stages for gaining
insights into upper system performance limits and dynamic behaviors and interactions that
lead to system-optimal performance [4, 21, 28–31]. Furthermore, combined plant and con-
trol design, or co-design, will be used to determine the performance for each candidate plant
architecture because it is a system-level optimization strategy [21, 32, 33] that will allow fair
comparisons between candidate plant architectures [26].

The specifics for stage 1 are shown in Fig. 1.6. The inputs are the information about the
system’s operating environment, objectives, constraints, and a catalog of candidate compo-
nents. A nested optimization approach is used to handle the different variable types. Here
the outer loop will change the discrete (plant) architecture design variables while the inner
loop determines the optimal performance by solving the continuous co-design problem for

8

•Environment
•System objectives
•System constraints
•Candidate components

Inputs
Inner-loop continuous optimization

Outer-loop discrete architecture optimization

*Optimal plant architecture
 •Associated plant
 •Associated OLC

Outputs

Candidate architectureOptimized performance

Figure 1.6: Stage 1 details.

the candidate architecture.
Stage 2 in Fig. 1.5 seeks to determine the best control architecture given the optimized

plant architecture from stage 1. Similar to stage 1, a nested optimization approach can
be used to vary the discrete control architecture decisions while the appropriate co-design
problem is solved to determine the optimal performance for the candidate architecture. For
example, we could consider a basic feedback, hybrid [34], or model predictive [35] controller
architectures. The final stage, stage 3, seeks to determine the digital controller design given
the plant and controller architectures from the previous stages [36].

It might be necessary to iterate between the stages if unforeseen issues appear. Information
about these issues can be passed back to the previous stage and the problem formulation can
be adjusted to address overlooked elements. Additionally, in each of the stages, a sequence of
problems may be posed and solved, each one informed by the results of the previous problem,
moving toward greater levels of system specificity.

The theory and studies in this dissertation will primarily focus on design problems in
stage 1, but it is important to understand the motivations behind these studies and how
they fit into the entire design process.

1.4 Solution Generation Challenges
There are a number of challenges associated with the design freedom found in combined
architecture, plant, and control problems. The complexity of individual problems can be
quite significant, sometimes even rendering the problem intractable, unless this complexity
is handled appropriately. Efficiently automating the key tasks in the solution generation
process is essential to arriving at desirable solutions in a practical manner. Here we highlight

9

three important generation tasks: candidate architecture generation, model generation, and
optimization problem generation.

1.4.1 (Automated) Candidate Architecture Generation
Exploring different architectures requires an appropriate conceptual framework that allows
for modifications to the appropriate elements in the architecture. A straightforward, com-
monly used representation is an adjacency matrix where the nonzero entries in the matrix
represent connections between elements in the architecture. Candidate architectures could
be a different set of nonzero values in the adjacency matrix. However, not all architecture
representations are equally useful. Some might produce many infeasible systems or too many
candidates. Others might produce many architectures with poor performance, or are not
amendable to some optimization procedure. An example alternative representation frame-
work was developed for electrical circuits where a sequence of low-level instructions are used
to generate a circuit [37]. These instructions iteratively add new elements to the circuit
in topologically different ways. A manual alternative would include experts proposing can-
didate architectures, which may be appropriate in some cases, but often may not support
comprehensive design space exploration. In many traditional engineering design problems,
the architecture is fixed so this abstract representation is not typically needed.

1.4.2 (Automated) Model Generation
Given some architecture specification (e.g., a graph), we need to create a suitable model
(some representation of the architecture that can predict performance and identify if con-
straints are satisfied) for use in the optimization problems described in Sec. 1.3. Certain
modeling methodologies support this task such as bond graph modeling [38] or block diagram-
based modeling [39]. Other techniques have been developed for specific types of problems
such as solid isotropic material with penalization for structural optimization [7] and modified
nodal analysis (MNA) for electrical circuits [40]. Nevertheless, for many design problems,
some investment will be needed to generate models efficiently and in an automated manner.
In traditional engineering design problems, the model is fixed for the given architecture, but
can vary based on the plant/control design variables.

10

1.4.3 (Automated) Optimization Problem Generation
For different candidate architectures of the same design problem, the optimization problem
that predicts its performance may vary. If the model is different, there may be different plant
and control variables. Different constraints may be present depending on the components
in the architecture (e.g., we only need control actuator bounds if the component is present).
Since all problem elements (e.g., number and types of variables, objective function form,
constraints, model) could change between architectures, forming and solving the optimiza-
tion problem automatically is important for solution efficiency. Understanding the general
optimization problem structure for any candidate architecture is key so that it can be lever-
aged to find solutions faster and more robustly. For some types of optimization problems,
such as ones with infinite-dimensional constraints and variables, additional work is need to
obtain (approximate) solutions. Frequently, only a single optimization problem form needs
to be posed and solved in traditional engineering design problems.

1.5 Dissertation Overview
This introduction has provided a discussion on the combined architecture, plant, and control
design problems including how this problem type can be used in the dynamic system design
process and some potential challenges. Due to the diverse design domains considered in
this dissertation, a variety of methodologies are presented to manage different elements in
the design process. Chapters 2–5 focus on the development of these methodologies while
Chapters 6–8 present detailed engineering design case studies that utilize the concepts. A
focus in the initial chapters is on the generality of the proposed approaches. The frameworks
presented are developed with specific consideration of what types of problems will fit under
the proposed framework.

• Chapter 2 focuses on the task of representing and generating candidate architectures.
The theory and algorithms developed in this chapter are applicable to architecture
problems where the architecture is representable by a colored graph built from a cat-
alog of components. A complete listing of all potential architectures under specific
assumptions can be generated with this approach. A number of enhancements to the
algorithms presented in this chapter are detailed in Appendix A.

• Chapter 3 focuses on a methodology for handling the other two design domains: com-
bined plant and control design or co-design. The general co-design problem formulation

11

and optimality conditions are explained for both the simultaneous and nested solution
strategies. Due to a number of challenges associated with the optimality conditions,
practical solution considerations are discussed with a focus on the motivating reasons
for using direct transcription in co-design.

• Chapter 4 concentrates on scaling in dynamic optimization (a general class of problems
found in Chapter 3). The necessary theory for scaling dynamic optimization formu-
lations is presented and a number of motivating examples are shown. Scaling can be
used to help facilitate finding accurate, generalizable, and intuitive information. The
unique structure of dynamic optimization suggests that scaling can be utilized in novel
ways to provide better analysis and formulations more favorable for efficiently gener-
ating the solution. A simpler, scaled problem is used to understand the general trends
found in the results of the case study in Chapter 7, along with minor roles in the other
two case studies.

• Chapter 5 presents the direct transcription method for finding approximate solutions
to dynamic optimization problems. The method discretizes (in time) the infinite-
dimensional quantities and creates a mathematical program that can be solved. This
method is an enabling method that allows solutions to be obtained for general co-design
problems in Chapter 4. A bulk of the chapter is focused on solving a particular subclass:
linear-quadratic dynamic optimization problems. These problems can be approximated
with quadratic programs and be efficiently constructed and solved. Problems with this
structure are particularly important when the three domains are considered because
many control problems may need to be solved, and an inefficient method could hinder
the ability to explore the solutions. The algorithms, sparsity patterns, and example
codes are in Appendix C. The case studies in Chapter 7 and 8 utilize this theory and
codes to solve the control subproblem.

• Chapter 6 presents an enumeration-based synthesis methodology for passive analog
circuits by generating and evaluating all appropriate circuits. Two design problems are
considered: frequency response matching and low-pass filter realizability. The circuit
graphs (architectures) are generated using the methods described in Chapter 2. This
problem contains both architecture and plant design decisions.

• Chapter 7 focuses on the design of strain-actuated solar arrays for spacecraft precision
pointing and jitter reduction. This problem has a variety of challenging plant and
control design variables. The nested co-design strategy described in Chapter 3 is

12

utilized, and the control subproblem is solved with the methods in Chapter 5. The
primary example from Chapter 4 provides a number of insights into the results found
in this case study.

• Chapter 8 is a case study that combines all three design domains with the design of
vehicle suspensions. The work from Chapters 2–5 all contribute in addressing this
complex design problem. This chapter also includes a discussion of a general class of
architecture, plant, and control design problems that utilize linear physical elements.

• Chapter 9 concludes the dissertation with an overall summary of the key points and
identifies future research directions.

1

9

2 3

4 5

A C

76 8{D
Code

Case Studies

Conclusion

Introduction

B

Appendices

Co-Design

Scaling

Architecture

LQDO and DT

Circuits SASAsSuspensions {
Figure 1.7: Dissertation content connections (dashed line indicates a narrower
connection).

13

Chapter 2

Candidate Architectures through Enumeration2

“Central to design is the creative act. This is not to imply that all
needs are met creatively. Some are met by found solutions, found in
handbooks, catalogues, department stores, etc. However, if a need is
met through design, then creativity is involved.”

R. A. Willem [42]

System architecture was defined as the elements or components contained within a system
and their relationships in Sec. 1.2.1 [5, 43, 44]. Designing breakthrough engineering systems
with new capabilities and new levels of performance requires innovations in system architec-
ture [45, 46]. Engineers often rely on heuristics such as design by analogy [47] and intuition
when considering system architecture, but this may result in fixation on example designs
and stifle innovation [48].

Consider the following architecture design problem formulation:

min
xa

Ψ(xa) (2.1a)

subject to: fa(xa) = a ∈ Fa (2.1b)

where xa represents architecture design variables, fa(xa) is a mapping between the ar-
chitecture design variables and the architecture a, and Ψ is a performance index. A fair
comparison between architecture candidates in the set of feasible architectures Fa requires
knowledge of the best possible performance for each candidate architecture. This requires
optimization with respect to inner-loop design variables such as plant and control design (see
Chapter 3) [1, 32]. The number design variables, constraints, models, etc. can all change
depending on the candidate architecture in the inner loop. Hence, formulating and solving
architecture design problems can be challenging. Here we focus on a method that generates
candidate architectures that may be used to determine the performance index with respect
to an architecture-dependent inner-loop design problem.

2Elements of this chapter are based on work completed in Ref. [6, 41].

14

(a) Suspension. (b) Hybrid powertrain. (c) Mechanism.

(d) Electrical circuit. (e) Molecule.

Figure 2.1: Architectures represented as graphs.

Many studies have concentrated on effective representation and generation methods, pri-
marily based on graph representations of the system architecture (see Fig. 2.1 for some
common engineering systems represented as graphs). There is a wide range of architecture
design representations typically classified along the spectrum of continuum [49, 50] vs. dis-
crete [51, 52] design domains and homogeneous [49, 50] vs. heterogeneous [51, 53] elements.
The value of these methods often is to present new valid topologies to engineers for fur-
ther evaluation (subjective or quantitative), helping to overcome design fixation. A popular
class of methods for generating architecture candidates is generative representations [46, 49,
52–57]. This class covers a range of candidate architectures in an implicit form based on
repeated application of rules that modify the graph. It has been recognized that genera-
tive approaches generate topologically simple designs, not covering the entire design space
[51]. Furthermore, the design space is sensitive to design knowledge [47, 56] and rules [49,
57]. While these designs may satisfy functional requirements elegantly, generation of more
elaborate architectures is needed in some cases.

It can be challenging to describe the design space of an architecture generation method,
partially due to the combinatorial nature of architecture design problems. A better un-
derstanding of how certain rules restrict the design space can lead to better generative
approaches, but this requires a complete design space to compare against. Furthermore, the
ultimate goal is a set of all architectures that are feasible with respect to constraints [58] and
that are unique [54]. Arriving at such a design space efficiently is a considerable challenge.

In this chapter, the design space is completely captured by a perfect matchings approach
for a certain class of architecture design problems, more specifically, problems that are rep-

15

resented by undirected colored graphs under the component/port paradigm [43, 51, 59]. The
proposed approach generates truly novel architectures (in fact all of them) but still leverages
some of the natural constraints found in architecture design problems to reduce the number
of graphs generated. This design space is found through an enumeration, i.e., a complete,
ordered listing of all the items in the collection of feasible and unique architectures. This ap-
proach leads to a number of interesting insights into the fundamental nature of architecture
design problems.

The remainder of the chapter is organized as follows. The next section outlines the some of
the basic theory behind candidate architectures with perfect matchings. Network structure
constraints and the colored graph isomorphism problem are then discussed, with the objective
of achieving feasible unique architectures. Using the insights from the previous two sections,
a tree search algorithm is developed that more efficiently covers the same design space. A
number of case studies are then presented. Finally, a discussion is given of the results and
how the proposed approaches can be used in current architecture design research.

2.1 Candidate Architectures with Perfect Matchings
First, some relevant graph theory background is given.

Definition 1 (Graph). A graph is a pair G = (V ,E) of sets satisfying E ⊂ [V]2 where the
elements of V are the vertices and the elements of E are its edges.

A simple graph is an unweighted, undirected graph containing no graph loops or multiple
edges. The adjacency matrix of G is the n× n matrix A = A(G) whose entries aij are given
by:

aij =

1 if the set (vi, vj) ∈ E
0 otherwise

For a simple graph, the adjacency matrix must have 0s on the diagonal. For an undirected
graph, the adjacency matrix is symmetric and if only a subset of the edges are present in E,
the correct A(G) can be constructed with sign(A + AT). The connectivity matrix of simple
graph G can be found with:

AC(n) = An (2.2)

where the interpretation of AC(n) is for every nonzero entry, there exists at most n undirected

16

walks required to go from vi to vj, i.e., the pair of vertices are connected in some sense [60,
p. 165]. We will assume that n is the same as the length of A giving all walks.

The degree of a vertex is the number of edges incident at the vertex and the average degree
is d(G) = 2|E|/|V | [61, p. 5]. A matching in a graph is a set of edges such that no two have a
vertex in common and a perfect matching is a matching that covers every vertex [62, p. 255].

Definition 2 (Colored Graph). A colored graph G is a three-tuple (V,E, L) where (V,E)
specifies an undirected graph and L = {Vi}ki=1 is a partition of the vertices into color sets
(Vi ∩ Vj = Φ, i 6= j, and (∪ki=1Vi) = V). For convenience, define color(v) = i if v ∈ Vi.

The graphs in Fig. 2.1 are colored graphs where each vertex represents a component. The
colored labels indicate different component types. For example, in Fig. 2.1a, K represents a
vertex with a coloring K indicating that it is a spring component type and that B represents
a damper component type. These are termed 2-port components since they can have up
to 2 unique edges if ports are connected to a single additional vertex (this port notion
is analogous to bond graph modeling [63]). However, there are fundamental limitations
with this representation. For example, if the order that the ports of a component are
connected to edges prescribed in A is important, then pure component graph representation
is not sufficient for determining a unique architecture. Consider the planetary gear P in
Fig. 2.1b. Since the planetary gear is represented by a single vertex, it is unclear which of
the connected components { E , G , M } is connected to the sun, ring, and carrier (common
names for the planetary gear ports [13]). Permutations of this decision would result in
different architectures but the same adjacency matrix. Another limitation is the unspecified
nature of parallel connections when only component-level vertices are used. If the adjacency
matrix specifies that K has three connections, it cannot be necessarily uniquely determined
what connections are incident at each specific port of K. A better representation would
determine unique graphs, motivating a pure ports graph representation of architectures.

2.1.1 Ports Graph
A port graph GP is constructed from a three-tuple (C,R, P):
• C is the colored label set representing distinct component types, whose size is denoted by
nC

• R is a column vector indicating the number of replicates for each component type
• P is a column vector indicating the number of ports for each component type

17

K1

1

K2

1

2
K3

1

2 3

K4

1

2

3

4

K5

1
2

3 4

5

Figure 2.2: Complete graphs on n vertices between 1 and 5.

Using (C,R, P) we will create the three-tuple (V,E, L) that defines a proper colored graph
(see Definition 2). The definition of an n-port component in this context is all n ports are
completely connected to each other. Therefore each component can be considered a complete
graph of its ports (see Fig. 2.2 for the first five complete graphs). The vertex and edge set
for GP is then defined as the union of these complete subgraphs:

(V,E)P =
nC⋃
k=1

Rk⋃
j=1

KPk (2.3)

where KPk is a complete graph of size Pk.
The complete label for each vertex is constructed from a naming scheme where the base

is the colored label from C, the subscript is the replicate number, and the superscript is the
port number. Then the set of colored labels for GP can be constructed as:

LP =
nC⋃
k=1

Rk⋃
j=1

Pk⋃
i=1

{
(Ck)ij

}
(2.4)

where each label is unique at this point.
There are a number of graph measures and metrics that can be computed for this class

of graphs. First, the number of vertices is given by: NP = |V P | = PTR, where |�| is the
cardinality of a set. The number of edges in Kn is n(n − 1)/2 [60, p. 22], so we can easily
calculate the number of edges in GP as:∣∣∣EP

∣∣∣ = 1
2 (P ◦ (P − 1))T R (2.5)

where ◦ denotes the Hadamard product. The total number of components is: NC = eTR

where e is a column vector of ones of appropriate length.

18

2.1.2 Interconnectivity Graph
The essence of an architecture design problem is determining the relationships between
ports. Therefore a natural question is: what are all the possible architectures? Subgraph
enumeration provides a relevant framework for determining all possible graphs satisfying
specified properties [62]. We now say that a candidate architecture in an architecture design
space described by (C,R, P) has the following properties:

1. A set of components bounded by (C,R, P) (so nP ≤ NP , where nP is the total number
of ports for the candidate architecture).

2. Each port in (V P , { }, LP), i.e., GP without edges, is connected to another port (this
implies nP is even and is also known as a complete topology since there are no open
ports [59]).

Now, a complete architecture design space described by (C,R, P) would be a set of candidate
architectures that contain all possible valid subsets of components and all possible valid edge
combinations between said subset of components. We will denote this graph structure space
(a set of all graphs that fulfill a certain set of conditions) as G1. We will now see that the
enumeration based on perfect matchings (PMs) will correspond to the complete architecture
design space.

Recall that a PM is a matching in which every vertex of the graph is incident to exactly
one edge [62]; all PMs for K2, K4, and K6 are shown in Fig. 2.3. Since a necessary condition
for a PM is an even number of vertices, we will assume NP is even (Sec. 2.2.1.1 discusses
the implications of this restriction). The number of PMs for Kn can be calculated using the
double factorial function:

D(n) = (n− 1)!! = (n− 1)× (n− 3)× · · · × 3× 1 n even (2.6)

and the first several values of this function are D(2) = 1, D(4) = 3, D(6) = 15, D(8) = 105,
D(10) = 945, D(12) = 10, 395, D(14) = 135, 135, D(16) = 2, 027, 025, D(18) = 34, 459, 425
[64]. This function grows slower than the traditional factorial function since the even elements
have been omitted. This result agrees quite well with the bound by Mittal and Frayman for
a similar problem (the bound being on order of

√
NP !) [43].

For n between 1 and D(NP), P(n,NP) denotes the edge set for the nth PM of KNP . The
uniqueness of each PM can be ensured by ordering all edges with the first element being the
larger vertex (in the sense of the index value). For example for the first graph in Fig. 2.3b,
P(1, 4) = {(4, 1), (3, 2)} 6= {(1, 4), (2, 3)}. It will be convenient to map the edge set to a
vector where sequential pairs are a single edge (e.g., {(4, 1), (3, 2)} → [4 1 3 2]. There are
two interesting properties of the set of all PMs [62]:

19

1

2

(a) 1!! perfect matchings for K2.
1

2

3

4

1

2

3

4

1

2

3

4

(b) 3!! perfect matchings for K4.
1

2

3
4

5

6
1

2

3
4

5

6
1

2

3
4

5

6
1

2

3
4

5

6
1

2

3
4

5

6

1
2

3
4

5

6
1

2

3
4

5

6
1

2

3
4

5

6
1

2

3
4

5

6
1

2

3
4

5

6

1
2

3
4

5

6
1

2

3
4

5

6
1

2

3
4

5

6
1

2

3
4

5

6
1

2

3
4

5

6

(c) 5!! perfect matchings for K6.

Figure 2.3: Perfect matchings for K2, K4, and K6.

20

1. Enumerating all PMs of KN results in a set of graphs where all possible edge combi-
nations are present where each port is connected to exactly one other port.

2. The set of PMs graphs of KN , contains all edge sets for KN−2, where N ≥ 4.
Now with these two properties in mind, consider any candidate architecture defined by the
properties above. It has nP ≤ NP and nP is even, so there exists a PM matching edge set in
the set of PM graphs of KNP that contains the subset of components and the particular edge
combination since all edge combinations of nP are found in the set NP . Therefore, because
any candidate architecture can be found in the set of PM graphs of KNP , a PM approach
captures the complete architecture design space.

A PM approach is a type of graph numerical representation scheme (GNRS) since there
is a binary relation between G1 and n ∈ [1,D(Np)]. A PM approach is left-total and left-
unique with respect to complete topologies of (C,R, P) (left implies a map from G1 to n and
these are desired properties for a GNRS) [44]. Algorithm 2.1 is useful for this direction as it
determines P(n,NP) [62, 65]3. In addition, a PM approach is right-total and right-unique
with respect to the same conditions (right implies a map from n to G1). Algorithm 2.2 is
useful for the right direction as it determines P−1(E) where E is a valid PM edge set. Based
on these two efficient algorithms, a PM approach is algorithmic in both directions [44].
The interconnectivity graph GI then is defined with V P , LP , and an edge set from the set

of PMs:

EI = P(n,NP) where n ∈ [1, 2, . . . ,D(NP)] (2.7)

The number of edges is: |EI | = NP/2.

2.1.3 Connected Ports/Components Graph
The connected ports graph is the union of the ports graph and interconnectivity graph:

GCP = GP ∪GI (2.8)

The number of vertices is still Np. There is possibility of multiple edges when combining the
graphs since edges between the already connected ports of a component may be connected
with a PM. We can simplify GCP by combining all multiple edges into a single equivalent
edge, thus creating a simple graph. Using this operation, the number of edges of GCP can

3Ref. [65] contains Matlab codes for Alg. 2.1 and more efficient recursive algorithm when all perfect
matchings are required.

21

Algorithm 2.1: Creation of edge set for a specific perfect matching number.
Input : N – number of vertices (should be even)

I – perfect matching number, integer between 1 and (N− 1)!!
Output: E – vector of edges in sequential pairs

1

2 J ←
[
1, 3, 5, . . . ,N− 1

]
/* odd numbers from 1 to N-1 */

3 P ←
[
1, cumprod(J)

]
/* cumulative double factorial */

4 V ←
[
1, 2, . . . ,N

]
/* create initial list of available vertices */

5 for j← J do
6 q ← (N + 1− j)/2 /* index for 2nd to last entry in P */

7 I ← ceil
(
I/P(q)

)
/* calculate smaller vertex index */

8 E(j) ← v(end) /* assign largest remaining value */
9 remove element V(end) /* remove largest remaining value */
10 E(j + 1) ← V(i) /* assign smaller selected value */
11 remove element V(i) /* remove the smaller selected value */

12 I ← I−
(
(i− 1)× P(q)

)
/* get index in subgraph with 2 vertices removed */

13 end

be bounded by: ∣∣∣EP
∣∣∣ ≤ ∣∣∣ECP

∣∣∣ ≤ ∣∣∣EP
∣∣∣+ ∣∣∣EI

∣∣∣ (2.9)

since each edge of EI could be a repeat of an edge in EP . GCP is a unique representation of
an architecture since a PM is between specific ports and all components are fully connected
subgraphs.

There are advantages of the component graph representation that should be utilized,
such as a reduced number of vertices and edges (and not differentiating replicates). We
now characterize simple components whose port ordering does not matter (e.g., a 2-port
spring) and structured components where it does (e.g., a 3-port planetary gear). All simple
components will be reduced to a single vertex and the appropriate edges will be created. The
labels for simple components will be modified by removing both the superscript and subscript
of LCP . Structured components will only have their subscripts removed to maintain port
discernibility. This graph representation is termed the connected component graph GCC .

To get a better sense of the structure of GCC consider all components to be simple com-
ponents. Then the number of vertices is simply NC . The number of edges of GCC can be
bounded by 0 ≤ |ECC | ≤ |EI | and the labels are:

LCC =
nC⋃
k=1

Rk⋃
j=1
{Ck} (2.10)

All graphs in the remaining sections are considered to beGCC graphs unless otherwise noted.

22

Algorithm 2.2: Determination of the perfect matching number for a specific edge
set.

Input : E – vector of edges in sequential pairs, should be properly ordered and even length
Output: I – perfect matching number, integer between 1 and (N− 1)!!

1 N ← length(E) /* total number of vertices */
2 P ← reverse elements of cumprod([1, 3, 5, · · ·N− 3]) /* array flip, cumulative double factorial */

3 V ←
[
1, 2, . . . ,N

]
/* create initial list of available vertices */

4 I ← 1 /* initialize perfect matching index */
5 for j← 1 to N/2− 1 do
6 q ← E

(
2j− 1

)
/* index of largest remaining vertex */

7 V(q) ← 0 /* zero entry, removing it */
8 i ← find index of E(2j) in the vector of nonzero elements of V
9 V

(
E(2j)

)
← 0 /* zero entry, removing it */

10 I ← I +
(
(i− 1)× P(j)

)
/* sum to get build up the index */

11 end

2.2 Candidate Graphs to Unique Useful Graphs
In the previous section an approach for enumerating architectures based on the consideration
of every potential PM was outlined. However, there are a number of deficiencies in this set
of architectures, including infeasible graphs based on practical constraints for a specific
architecture design problem, and repeated graphs in the modeling sense. The following two
subsections address architecture feasibility and uniqueness, respectively.

2.2.1 Network Structure Constraints
We define feasibility as a candidate architecture’s satisfaction of all network structure con-
straints (NSCs) for a particular architecture design problem. Similar to the rules in genera-
tive design approaches, the creation of the set of network structure constraints for a particular
architecture design problem is subject to the creativity and intuition of the designer. Some
of these constraints may be fairly self-evident while others might be vague or contentious
(Ref. [58] discusses these issues). Wyatt et al. describe four types of NSCs that are sufficient
to define almost all aspects of realizability of an architecture and are summarized briefly
(without edge coloring considerations) as [58]:
• Component number constraints (CNCs) prescribe how many components of a given

type must be present
• Direct connection constraints (DCCs) prescribe which component types may be con-

nected together by which connection types and cardinality of the connections

23

• Fan out constraints (FOCs) prescribe how many connections that components of a
certain type must have in total
• Indirect connection constraints (ICCs) prescribe how many continuous paths there

must be from every component of one type to every component of another type
Graph generating algorithms designed to always satisfy certain NSCs could be more useful

since all of the generated graphs would be feasible with respect to those certain NSCs.
Furthermore, graph generating algorithms can also be designed to produce graphs that have
a higher proportion that satisfies certain NSCs than more naive approaches. Some of the
NCSs that are not satisfied can be with edits to the graph. The only operation that will be
considered here is the removal of vertices GCC and the corresponding edges and labels as it
will maintain certain properties of the graph structure space G1. Other operations such as
vertex insertion, edge insertion, or label substitution destroy the analysis of the design space
coverage that is possible with an enumerative PM approach. Next, several common NSCs
(denoted with S) are described along with the specifics of checking their satisfaction with
available graph analysis tools.

S1 Every graph must be a connected graph (ICC). A graph is termed connected if there
is a path from any vertex to any other vertex in the graph [61, p. 18]. This can be
checked with the connectivity matrix, AC(G), in Eqn. (2.2). If all entries in this matrix
are not 1, then the graph is not connected.

S2 Every graph can only have a maximum number of a given component type (CNC).
This is defined by R in the architecture definition three-tuple so is naturally handled
by a PM approach. An example: ‘Every suspension must have less than 3 springs’.

S3 Every graph must have a specific number of certain component types (CNC). These
mandatory components will be captured with a vector M of length nC . The elements
of M are binary with a 1 indicating all replicates of the component type must be
present in the graph. An example: ‘Every hybrid powertrain must have an engine and
a vehicle’.

S4 Every graph must have specific component types connected to each other (ICC). This
can be checked with the connectivity matrix in Eqn. (2.2). If nonzeros are not present
at every location where a path must exist between component types, then the graph
is infeasible. If we require S1 and S3, then we can leverage the vector M in S3 to
satisfy both constraints by checking AC(G) such that all mandatory components are

24

connected to each other. An example: ‘Every hybrid powertrain must have an engine
connected to a vehicle’.

S5 Every graph must have vertices whose number of unique edges is within a specific range
(FOC). The values in P can define the upper bound for each vertex since components
are defined by a certain number of ports. For even port numbered component types
the lower bound is 0 and 1 for odd. This can be checked summing row-wise (or
column-wise) the symmetric adjacency matrix A(G) and comparing these sums to the
appropriate index in P . This type of NSC is sometimes termed a degree-constrained
subgraph problem [66, p. 217]. A PM approach naturally satisfies this constraint. An
example: ‘Every spring must have between 0 and 2 unique edges’.

S6 Every graph must have vertices with a specified number of unique connections (FOC).
This is a stronger form of S5 where both the upper and lower bound can be determined
by P and is sometimes termed a factors problem [66, p. 218]. An example: ‘Every
spring must have exactly 2 unique edges’.

S7 Every graph must have edges between vertices that are feasible (DCC). We can specify
that certain component types cannot be connected to other component types with
a reduced potential adjacency matrix AR. This nC × nC binary matrix will have 1
entries indicating a connection is feasible and 0 entries for infeasible. This constraint
can be checked by verifying that each 1 in A(G) has a corresponding 1 in the potential
adjacency matrix. No self-loops in a specific component type can be enforced with a
0 at the appropriate location on the diagonal of AR. A PM approach does not satisfy
this constraint as all connections between ports are considered feasible. An example:
‘Every translational spring cannot be connected to any rotational damper’.

The ordering of the constraints matters if vertices are to be removed to satisfy certain
constraints. The following procedure is assumed:

0. S2 and S5 naturally satisfied with a PM approach
1. Check S3 and S4 simultaneously using M since they can be checked without needing

to remove the removable components
2. Remove components that don’t satisfy S3 and S4; thus satisfying S1

3. Check S6

4. Check S7

5. Check any other constraints

25

The specific steps are only performed if the constraint is present in a specific architecture
design problem. The ordering of S6, S7, and the other previously undefined constraints could
be performed in an alternative order as long as they are checked after removable components
are removed. This is so that a candidate architecture is not declared infeasible if only removed
components and their connections violate the constraints.

The graph structure space defined as graphs that satisfy the present NSCs and (C,R, P)
is denoted G2 ⊆ G1. The NSCs {S1, S3 S4} are assumed to be all present or none present
to simplify the discussion as many common architecture design problems require all three.
With the NSCs outlined, a useful graph is defined as one that is feasible with respect to the
NSCs.

2.2.1.1 Comparison to Another Method

At this point, it is imperative to compare the PM approach to another graph numerical
representation scheme that can be used for enumeration: indexed stacked blocks (ISBs) [44].
This scheme is far more general than the proposed PM approach as it allows for directed
graphs, edge coloring, enumeration of potential colored label sets, and variable number of
nodes. All permutations of the candidate adjacency matrices are considered. The graph
structure space for the ISB approach is denoted G0 since G1 ⊆ G0. However with this
generality comes an enormous space, potentially too large to be useful for certain problems.

We can analyze this statement by observing how the ISB block method handles some of the
proposed NSCs. For a fair discussion, we should restrict the space to a certain block (fixed
number of vertices and color label set ordering). Then both S2 and S7 can be naturally
satisfied by removing the infeasible entries in the adjacency matrix. However, S5 is not
satisfied for large portions of G0; the degree of a vertex is not directly controlled. Once
additional NSCs are added, the probability that an index results in a feasible graph might
be so small that none are ever found.

To illustrate this consider the number of permutations of A(GCC) with NC components
[44]:

T (Nc) = 2NC (NC−1)/2 (2.11)

with the first several values being T (1) = 1, T (2) = 2, T (3) = 8, T (4) = 64, T (5) = 1, 024,
T (6) = 32, 768, T (7) = 2, 097, 152, T (8) = 268, 435, 456. Now consider the case when
NP = 30 and NC = 20, then there are 6 × 1015 PMs versus 2 × 1057 adjacency matrix
permutations. Both numbers are quite large but a clear combinatorial advantage is seen

26

Np

N
c

2

6

10

20

30

40

2 6 10 20 30 40
> 20

0

−20

−40

−60

< −80

log
(

D(Np)

T (Nc)

)

Nc = Np

D(Np) = T (Nc)

D(Np) > T (Nc)

D(Np) < T (Nc)

Figure 2.4: Comparison of number of graphs with PM approach and adjacency matrix
approach.

with the PM approach (see Fig. 2.4). This will be exacerbated when structured components
considered. However, since NP and NC can be different, there are some combinations where
T (NC) is actually smaller than D(NP). This is shown in the figure with the curved line
D(NP) = T (NC). Most architecture design problems are above this line.

A PM approach can be seen as an alternative to permuting all possible adjacency matrices
assuming the architecture design problem is based on (C,R, P) with NSC S5. The question
then becomes does every port being filled as in a PM approach result in all architectures
defined by a certain architecture design problem? Consider that we can always include 1-
port components that represent empty connections, i.e., this component type implies that
the vertex and edge can be removed from the graph without loss. We can control what
components are allowed to have empty connections with S7. Certain NSC sets such as {S1,
S3 S4, S6} would also require every port to be filled.

2.2.2 Colored Graph Isomorphisms
If we have a list of useful graphs, how many of them are truly different? Determining if
two graphs are different is known as the graph isomorphism problem. We define unique-
ness among a set of architecture graphs to mean that no two candidate architectures are
isomorphic.

27

(a) Port-type. (b) Component-type.

Figure 2.5: Two different type of isomorphisms.

Definition 3 (Isomorphism). Let G = (V,E) and G′ = (V ′, E ′). We call G and G′ iso-
morphic, and write G ' G′, if there exists a bijection f : V → V ′ with (vi, vj) ∈ E ⇔
(f(vi), f(vj)) ∈ E ′ for all vi, vj ∈ V . The map f is called an isomorphism [61].

Definition 4 (Colored Graph Isomorphism). The colored graph isomorphism problem is
to decide the existence of a color preserving isomorphism between a pair of colored graphs
G = (V,E, L) and G′ = (V ′, E ′, L′), i.e., a mapping f : V → V ′ satisfying the following
conditions:
1. f is an isomorphism by Definition 3.
2. color(v) = color(f(v)) for all v ∈ V .

We can better understand how the colored graph isomorphism problem affects the archi-
tecture design problem by looking at two different isomorphisms:
• Port-type isomorphism occurs when a component has ports that are indistinguishable

in a modeling sense and can occur when using a ports representation. We have already
termed such components as simple components. For example, consider a 2-port com-
ponent that physically represents a mechanical translational spring. The two ports can
be permuted and the resulting physical model will be equivalent. This demonstrated
in Fig. 2.5a with the simple component type G. GCC for the same graphs would be
identical since the information about specific ports is lost. We leverage this fact to
perform an initial port-type isomorphism filter to remove PMs that certainly have a
port-type isomorphism. For a given simple n-port component, there are n! ways to
arrange the ports such that a port-type isomorphism occurs.
• Component-type isomorphism occurs when switching a pair of component type repli-

cates preserves the graph. This type of isomorphism is present due to the arbitrary
subscript numbers assigned to each vertex and is demonstrated in Fig. 2.5b. The 1-
port component type R is permuted but since R1 and R2 are the same component type,

28

the graph remains the same (in the sense of Definition 4). For n replicates of a compo-
nent type, there are n! ways to arrange the components such that a component-type
isomorphism occurs.

We now define the final graph structure space G3 ⊆ G2 representing all unique useful graphs.
Assuming no NSCs except those naturally satisfied by a PM approach, we can discern a very
rough lower bound on the size of this set with:

D(NP)×
nC∏
i=1

1
Ri!× (Pi!)Ri

≤ |G3| ≤ D(NP) (2.12)

where this formula assumes all port-type and component-type isomorphisms that could oc-
cur, do occur in the set of PMs. Consider (C,R, P) = (A, 6, 1), then Eqn. (2.12) provides a
lower bound of 0.02 graphs, but we know there is exactly 1 unique graph.

Although the graph isomorphism problem is NP (nondeterministic polynomial time), there
are many efficient practical algorithms [67]. Study of the graph isomorphism problem is an
ongoing field and recent breakthroughs could lead to improved algorithms [68]. In this work,
we utilize the python package igraph using the isomorphic_vf2 function [69] based on the
VF2 algorithm [70] to solve the colored isomorphism problem.

Many architecture design studies ignore the isomorphism problem but presence of iso-
morphic graphs leads to the evaluation of non-unique options [54]. For certain problem
sizes, the complexity of checking for isomorphisms may be much greater than generating
and evaluating new, potentially non-unique graphs. But to understand the effect of problem
definition, NSCs, and candidate graph generation algorithms on G3 requires the isomorphism
checks, and can lead to insights into new algorithms that naturally avoid the isomorphism
problem [71]. Other graph generation algorithms have been developed that avoid isomorphic
graphs [72, 73]. Furthermore, for appropriately sized problems, the isomorphism check is
computationally viable.

Algorithm 2.3 was developed to determine G3 given G2. This algorithm checks a candidate
graph against bins of already found unique graphs and stops checking if an isomorphism
is found, making it parallelizable to a degree and removes unnecessary checks. There are
a number of quick preliminary checks that can be done between two graphs, as necessary
conditions for them to be isomorphic include having the same number of vertices, edges, and
color label distributions.

29

Algorithm 2.3: Determination of the unique colored graphs given a set of colored
graphs.

Input : Graphs – set of colored graphs
Nbin – number of bins (for parallel processing)

Output: UniqueGraphs – set of unique colored graphs
1 ind ← 1 /* initialize index for total unique graphs */
2 bin(1).Graphs(1) ← Graphs(1) /* first graph is always unique */
3 for i← 2 to length(Graphs) do /* check remaining graphs */
4 G1 ← Graphs(i) /* current graph to check */
5 for j← 1 to min(Nbin, ind) do in parallel /* check against each nonempty bin */
6 k ← length(bin(j).Graphs) /* unique graphs in bin */
7 IsoFlag ← 0 /* initialize flag, 0 is not isomorphic */

/* while graphs remain and isomorphism not found */
8 while (k > 0) and (IsoFlag = 0) do
9 G2 ← bin(j).Graphs(k) /* a unique graph */
10 if G1 and G2 pass preliminary isomorphism checks then
11 IsoFlag ← isomorphic_vf2(G1,G2) /* return 1 if G1 and G2 are isomorphic */
12 end
13 k ← k− 1 /* decrease index since G2 checked */

14 end
15 results(j) ← IsoFlag /* assign result for bin c */

16 end
17 if all elements of results are 0 then /* if no isomorphisms */
18 J ← mod(ind,Nbin) + 1 /* index for next smallest bin */
19 bin(J).Graphs(end + 1) ← G1 /* assign to a bin */
20 ind ← ind + 1 /* total unique graphs */

21 end
22 end
23 UniqueGraphs ← combine graphs in bin into a single set of graphs

2.3 Tree Search Algorithm
With a better understanding of the colored graph isomorphism problem in the context of
architecture design, a tree search algorithm was developed to more efficiently enumerate a
graph structure space that contains G3. This algorithm is based on the idea that for simple
components, the port ordering does not matter so we are free to always choose the first port
of a component when making edges.

Algorithm 2.4 starts with a vector for length NC where the entries are the number of
ports for every component in GCC . For example, if P = [1 2] and R = [2 3], then this vector
would be V = [1 1 2 2 2] and cVf = [2 3 5 7 9]. Recursion is then applied to enumerate
all possible edge combinations where each recursive step adds an edge. The end result is
a set of missorted PMs, i.e., the sequential pairs that define the edges need to be sorted
such that they fit the definition of a PM in Sec. 2.1.2 (but no PM will occur twice and the

30

Figure 2.6: Tree structure for Case Study 1 using the basic tree search algorithm in
Alg. 2.4.

property of naturally satisfying S2 and S5 is maintained). The end result is an algorithm
that does not produce many PM graphs that would certainly have a port-type isomorphism.
A visualization of the tree-like behavior is in Fig. 2.6 where each leaf in the tree is a new call
of the algorithm and the branches are the loops through the possible remaining edges. Not
all leaves have the same number of branches since components become completely connected
at different times. Two paths are shown in the figure for a particular architecture design
problem, each resulting in a different PM. Note that the thicker black lines indicate the
chosen edge and the gray lines are the other potential edges for the particular leaf instance.

This approach is similar to a number of reported graph enumeration algorithms [59, 73–75].
The tree algorithm shares some similarities with deletion orderly algorithms [75]. Snavely and
Papalambros developed a tree algorithm that only deals with structured components, which
limits the design space by the number of components rather than the (C,R, P) notation
in this work [59]. Faulon et al. enumerate molecules of a specific signature height with a
recursive algorithm, but do not allow for components to be removed. Thus, they do not
cover the same architecture design space [73]. Neither of these works make the connection
between PM theory and architecture enumeration which provides a number of insights and

31

Algorithm 2.4: Basic tree search algorithm.
Input : V – vector of remaining ports for each component replicate

E – vector of edges in sequential pairs, initially empty
cVf – cumulative sum of the original V plus 1
SavedGraphs – set of graphs, initially empty

Output: SavedGraphs – set of graphs
1 iL ← find(V, first) /* find first nonzero entry */
2 L ← cVf(iL)− V(iL) /* left port */

3 V
(
I(1)
)
← V(iL)− 1 /* remove port */

4 I ← find(V) /* find nonzero entries */
5 for iR← I do /* loop through all nonzero entries */
6 R ← cVf(iR)− V(iR) /* right port */
7 E2 ← [E, L,R] /* combine left, right ports for an edge */
8 V2 ← V /* local remaining ports vector */
9 V2(iR) ← V2(iR)− 1 /* remove port (local copy) */
10 if any element of V2 is nonzero then /* recursive call if any remaining vertices */
11 SavedGraphs ← Algorithm 2.4 with V2,E2, cVf,SavedGraphs
12 else
13 SavedGraphs{end + 1} ← E2 /* save missorted perfect matching */
14 end
15 end

practical functions.
We can further improve on this algorithm by adding a single line between lines 3 and 4

that will result in graphs that always satisfy S7 (feasible edge constraints). First, expand
AR such that its size is the same as GCC where 0 entries still indicate infeasible edge con-
straints. The additional line would then be: Vallow ← A(iL, :) ◦ V. By finding the nonzero
entries of Vallow instead of V, we limit the for-loop to edges that are feasible. This has the
intentional effect that certain branches of the tree will terminate before a feasible PM is
found. Therefore when S7 is present, we will utilize this ‘improved’ tree search algorithm
to more efficiently enumerate G3. Additional enhancements to the tree search algorithm are
discussed in Appendix A as well as alternative tree traversal strategies.

2.4 Enumeration Case Studies
In this section, a number of case studies are provided to demonstrate the theoretical aspects
of the previous sections4.

4Ref. [65] contains Matlab codes that replicate the results from these enumeration case studies and can
generate graphs for (C,R, P) architecture design problems.

32

R1
1

R1
2

R1
3

G1
1

G2
1

G1
2

G2
2

B1
1

B2
1

B3
1

(a) Case Study 1.
P1

1

R1
1

R1
2

G1
1

G2
1

G1
2

G2
2

B1
1

B2
1

B3
1

O1
1

O2
1

O3
1

O4
1

(b) Case Study 2.

Figure 2.7: GP graphs for two examples.

R1
1R1

2

R1
3

G1
1

G2
1 G1

2
G2

2

B1
1

B2
1

B3
1

(a) K10.

R1
1R1

2

R1
3

G1
1

G2
1 G1

2
G2

2

B1
1

B2
1

B3
1

(b) PM 1.

R1
1R1

2

R1
3

G1
1

G2
1 G1

2
G2

2

B1
1

B2
1

B3
1

(c) PM 462.

Figure 2.8: Select interconnectivity graphs for Case Study 1.

2.4.1 Case Study 1
The base three-tuple is specified as:

C = {R,G,B} , R = [3, 2, 1], P = [1, 2, 3]

This example has three different simple component types that have multiple ports and repli-
cates and is visualized in Fig. 2.7a. Then GP is:

V P = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
EP = {(4, 5), (6, 7), (8, 9), (8, 10), (9, 10)}
LP =

{
R1

1,R1
2,R1

3,G1
1,G2

1,G1
2,G2

2,B1
1,B2

1,B3
1

}
NP = 10, NC = 6, 3.28 ≤ |G3| ≤ 945

In Fig. 2.8 we see GI for two different PMs. Then in Fig. 2.9a we can see GCP for PM 1.
This can then be mapped to the equivalent GCC shown in Fig. 2.9b. The basic tree search
algorithm will have the same tree regardless of the NSCs and this tree is visualized in Fig. 2.6.

33

R1
1R1

2

R1
3

G1
1

G2
1 G1

2
G2

2

B1
1

B2
1

B3
1

(a) GCP for PM 1.

R
R

R
G

G

B

(b) GCC for PM 1.

R
R

R
G

G

B

(c) GCC for PM 462.

Figure 2.9: Select connected ports and connected component graphs for Case Study 1.

Both graphs in Figs. 2.9b and 2.9c will have a topologically equivalent graph appear in the
set of graphs generated by this algorithm. Now two different sets of NSCs will be discussed.

1. No additional NSCs. There are 32,768 adjacency matrices (G0); 945 PMs (G1); 86
candidate graphs with basic tree search algorithm; 77 remaining candidate graphs
after initial port-type isomorphism filter; and 77 feasible graphs (G2). Finally, there
are only 16 unique graphs (G3) consistent with Eqn. (2.12) and all shown in Fig. 2.10.
258 graph comparisons were needed and only 113 required a full isomorphism check.

2. NSCs S1, S3 and S4 with M = [0, 0, 1], and S6 with P as the number of unique edges.
Same as 1 above until the feasibility checks and here there are only 23 feasible graphs
due to the additional NSCs. Finally, there are only 5 unique graphs (G3) all shown
in Fig. 2.11. Note that vertices not connected to B have been removed. 37 graph
comparisons were needed and only 19 required a full isomorphism check. IfM = [1 1 1],
then only 2 unique designs are possible.

2.4.2 Case Study 2
This example has five different component types that have multiple ports including multiple
1-port component types and is visualized in Fig. 2.7b. The base three-tuple is specified as:

C = {P,R,G,B,O}, R = [1, 2, 2, 1, 1], P = [1, 1, 2, 3, 4]
NP = 14, NC = 7, 58.7 ≤ |G3| ≤ 135135

1. No additional NSCs. 2,097,152 adjacency matrices (G0); 135,135 PMs (G1); 1,119 can-
didate graphs with basic tree search algorithm; 767 remaining candidate graphs after

34

R
R

R
G

G

B

(a) PM 227

R
R

R
G

G

B

(b) PM 228

R
R

R
G

G

B

(c) PM 332

R
R

R
G

G

B

(d) PM 438

R
R

R
G

G

B

(e) PM 467

R
R

R
G

G

B

(f) PM 468
R

R

R
G

G

B

(g) PM 678

R
R

R
G

G

B

(h) PM 691

R
R

R
G

G

B

(i) PM 700

R
R

R
G

G

B

(j) PM 844

R
R

R
G

G

B

(k) PM 850

R
R

R
G

G

B

(l) PM 852
R

R

R
G

G

B

(m) PM 855

R
R

R
G

G

B

(n) PM 895

R
R

R
G

G

B

(o) PM 904

R
R

R
G

G

B

(p) PM 913

Figure 2.10: All 16 unique graphs with no additional NSCs for Case Study 1.

R
R

R

B

(a) PM 227

R
R

R
G

G

B

(b) PM 332

R
R

R
G

B

(c) PM 438

R

G
G

B

(d) PM 678

R
R

R
G

G

B

(e) PM 691

Figure 2.11: All 5 unique graphs for Case Study 1 requiring a connected graph containing
B and a specified number of unique edges.

35

P
R

R

G G

B

O

(a) PM 54923

P
R

R

G G

B

O

(b) PM 55043

P
R

R

G G

B

O

(c) PM 95560

P
R

R

G G

B

O

(d) PM 96505

P
R

R

G G

B

O

(e) PM 96506

P
R

R

G G

B

O

(f) PM 96625
P

R

R

G G

B

O

(g) PM 96626

P
R

R

G G

B

O

(h) PM 99544

P
R

R

G G

B

O

(i) PM 99547

P
R

R

G G

B

O

(j) PM 99559

P
R

R

G G

B

O

(k) PM 99562

P
R

R

G G

B

O

(l) PM 99563

Figure 2.12: All 12 unique graphs for Case Study 2 requiring all components to be
connected and a specified number of unique edges.

initial port-type isomorphism filter; 767 feasible graphs (G2); 274 unique graphs5 (G3).
41,036 graph comparisons were needed and only 11,828 required a full isomorphism
check.

2. NSCs S1, S3 and S4 with M = [1, 0, 0, 0, 0]. Same as 1 above except there are only 137
unique graphs that contain P and are connected.

3. NSCs S1, S3 and S4 withM = [1, 1, 1, 1, 1], and S6 with P as the number of unique edges.
Same as 1 above until the feasibility checks and here there are only 31 feasible graphs
due to the additional NSCs. Finally, there are only 12 unique graphs all shown in
Fig. 2.12. 102 graph comparisons were needed and all 102 required a full isomorphism
check.

4. Same as 3 except with C = {P,R,G,G,B,O} modified, M = [1, 1, 1, 0, 1, 1], and ap-
propriate changes to P and R. Therefore requiring at least one G to be present but
otherwise the same. Now there are 34 feasible graphs and 14 are unique (more than 3
since this is a less constrained problem).

2.4.3 Case Study 3
A graph representing a quarter-car suspension was introduced in Fig. 2.1a; now we will
seek graphs that have different topologies between the sprung (S) and unsprung (U) masses
represented in Fig. 2.13. These graphs could then be used with design studies that eval-

5The 274 graphs are in Fig. B.2.

36

Figure 2.13: Suspension architecture enumeration case study.

uate the performance of a particular suspension architecture (see Ref. [27] for a design
study on a particular architecture). The components considered will be additional masses,
springs, dampers, a force actuator, and parallel connections (these are schematically shown
in Fig. 2.13). The specific selection of (C,R, P) was chosen to be near the limits of what is
currently possible with the proposed enumeration methods in this article.

Some additional assumptions are also made on the component definitions. First, B is
a parallel damper and spring to ensure that there is a stable equilibrium point for the
damper. Next, both 3- and 4-port parallel components are included to facilitate more efficient
generation of the useful architectures. A 4-port parallel connection is equivalent to two 3-
port parallel connections but the 4-port component provides structure that can be utilized
with some specific NSCs. With the problem outlined, the base three-tuple is specified as:

C = {S,U,M,K,B,F,P,P}, R = [1, 1, 2, 2, 2, 1, 2, 2]
P = [1, 1, 1, 2, 2, 2, 3, 4], NP = 28, NC = 13

1.01× 107 ≤ |G3| ≤ 2.13× 1014

The NSCs for this case study are now listed with expanded details on reduced potential
adjacency matrix AR. A few of the constraints utilize insights from the physical modeling
of the suspension architectures.
• S1, S3 and S4 withM = [1, 1, 0, 0, 0, 0, 0, 0] enforcing that both the sprung and unsprung

masses must be connected and all components not connected to these two are removed.
• S6 with P as the number of unique edges.
• AR(2, 1) = 0 for S7 to avoid a direct connection between the sprung and unsprung

37

masses as it would defeat the purpose of a suspension to isolate the masses. If this
constraint was not added, 1/27 of graphs generated from a pure PM approach would
contain this connection.
• AR(3, 1) = AR(3, 2) = 0 for S7 since a feasible graph cannot have either S or U be

connected to M as there would not be a path between between S and U. Therefore,
no unique graphs are lost with this constraint. Rather, a more efficient enumeration
results.
• AR(8, 8) = AR(7, 7) = AR(8, 7) = 0 for S7 so no parallel components can be connected

to each other. This greatly reduces the number of graphs generated by providing some
specific structure on the number and type of parallel connections in the architectures.
• AR(4, 4) = AR(5, 5) = 0 for S7 so no two K or B components can be connected in series

since there are straightforward relationships to combine these series elements into a
single equivalent component. By eliminating this type of connection when generating
graphs, we have a substantially smaller number of graphs to evaluate.
• No parallel connection path can exist between a connected S or U as these masses

would not be isolated. This is slightly different than the NSCs in Sec. 2.2.1 and is
checked after S7.
• Cycles appear with single parallel components where the components in the cycle would

not appear in the dynamic model based on the properties of a parallel connection
(e.g., with the cycle P K B , neither K nor B would appear in the dynamic model).
Graphs with these cycles are declared unuseful since an isomorphic graph with the
parallel cycle removed would already appear in the set of graphs generated by the tree
algorithm.
• Many series connections between the 2-port components are interchangeable (e.g., F−K

and K− F in series are physically equivalent). Therefore, these interchangeable series
components are combined into a single equivalent component type (modifying the
graph) and checked for isomorphisms. For the previously mentioned example, the
equivalent component type would be FK based on alphabetical ordering of the original
component labels.

The complete AR is shown in Fig. 2.14a and its expansion to the potential adjacency
matrix in Fig. 2.14b noting that both of these matrices are symmetric. Figure 2.14b has
1s on the diagonal since self-connections should be allowed so the desired graph structure
space is covered. For example, we might want to consider graphs where all components are
present except a single K component and this only can occur if the detached K is connected
to itself (and later removed).

38

S U M K B F P P

S 1 · · · · · · ·
U 0 1 · · · · · ·
M 0 0 1 · · · · ·
K 1 1 1 0 · · · ·
B 1 1 1 1 0 · · ·
F 1 1 1 1 1 1 · ·
P 1 1 1 1 1 1 0 ·
P 1 1 1 1 1 1 0 0

(a) Reduced potential adjacency matrix AR.

S U M M K K B B F P P P P

S 1 · · · · · · · · · · · ·
U 0 1 · · · · · · · · · · ·
M 0 0 1 · · · · · · · · · ·
M 0 0 1 1 · · · · · · · · ·
K 1 1 1 1 1 · · · · · · · ·
K 1 1 1 1 0 1 · · · · · · ·
B 1 1 1 1 1 1 1 · · · · · ·
B 1 1 1 1 1 1 0 1 · · · · ·
F 1 1 1 1 1 1 1 1 1 · · · ·
P 1 1 1 1 1 1 1 1 1 1 · · ·
P 1 1 1 1 1 1 1 1 1 0 1 · ·
P 1 1 1 1 1 1 1 1 1 0 0 1 ·
P 1 1 1 1 1 1 1 1 1 0 0 0 1

(b) Potential adjacency matrix.

Figure 2.14: Suspension case study matrices for S7 and the tree search algorithm.

39

(a) PM 49073434464833. (b) PM 48728499790028.

Figure 2.15: Two architectures for the suspension case study.

The results are presented in similar manner to the previous case studies: 4.7 × 1021 ad-
jacency matrices6 (G0); 2.1× 1014 PMs (G1); 1.6× 108 candidate graphs generated through
the basic tree search algorithm; 3.2× 107 remaining candidate graphs after initial port-type
isomorphism filter; 1.9 × 106 feasible graphs (G2); and 13,727 unique graphs (G3). 2 × 109

graph comparisons were needed and 3× 107 required a full isomorphism check. Two unique
architectures are shown in Fig. 2.15 with Fig. 2.15a being a common architecture [27].

2.5 Discussion
It is clear in the case studies that the number of unique designs is much smaller than the
upper bounds given by either permutations of the adjacency matrix or a PM approach. We
also can directly visualize the effect of adding specific NSCs. NSCs limited the architecture
design space, but in a predictable manner. One such example was not allowing parallel
components to be connected together in Case Study 3. A 5-port parallel connection was
no longer possible (i.e., a 3-port and 4-port parallel components connected), but this NSC
greatly reduced the number of graphs generated excluding many infeasible graphs, such as
ones where parallel connection paths existed between a connected S or U. Therefore, the

6This represents the fairest comparison as the proper permutations of the ports representation of the
potential adjacency matrix in Fig. 2.14b without the parallel components. There are 5.4 × 108 adjacency
matrices with a component representation but this suffers from the unknown parallel connection issue dis-
cussed in Sec. 2.1. There are 3.0× 1023 adjacency matrices directly using the matrix in Fig. 2.14b.

40

addition of this NSC was a decision based on the tradeoff between coverage of the architecture
design space and efficiency. Case Study 3 also demonstrated that fairly large problem sizes
can be enumerated with the improved tree search algorithm provided enough constraints
are present. Also, all possible subgraphs that are connected and complete appear in the set
of unique designs without any NSCs (e.g., all graphs in Fig. 2.11 appear as subgraphs in
Fig. 2.10).

All reported unique solutions have a corresponding PM number. This number may not
be unique since other PM numbers maybe isomorphic to the resulting GCC . We see an ex-
ample of two different PMs producing isomorphic graphs (PM 462 in Fig. 2.9c and PM 678
in Fig. 2.10g). While checking for isomorphisms can be computationally demanding, there
typically is only a small subset of graphs that need the full isomorphism check as many
comparisons fail with the simple checks and filters. Algorithm 2.3 can be useful to any ar-
chitecture design problem no matter how the set of colored graphs is generated. Many of
the results and algorithms assumed simple components, but structured components (i.e., a
planetary gear) can be readily included. Replacing a simple component type with an equiv-
alent structured component type would simply have the effect of increasing the number of
unique designs.

The previous sections only considered enumeration constructing a specific graph structure
space. However, many problems are too large for the proposed enumeration algorithms
because computational limits (e.g., memory needed to store the graphs and computation time
of Alg. 2.3) and evaluation limits (i.e., too many graphs are generated and we cannot evaluate
all of them). Therefore, we need to consider methods that provide suitable exploration of
the desired design space.

Both the pure PM approach and the tree search algorithms have nice properties such as
the high likelihood of producing feasible, nonisomorphic graphs while not limiting the design
space. A stochastic sampling of the unique integers between 1 and D(NP) can produce any
arbitrary number of PM graphs. However, more structured sampling approaches may be
preferred. Consider the unique graphs in Fig. 2.10. We could have tested all PMs between
227 to 913 and found all unique graphs. A PM approach does exhibit some interesting
similarly-preserving properties (e.g., the graphs for a given PM number and the next integer
value have a high likelihood of containing similar edges). Further exploration of the structural
properties of PM graphs could lead to better sampling techniques that still cover the desired
design space.

We can further consider ways to structure the exploration space with the coupon collector’s
problem. This problem, stated in a form relevant to this article, is:

41

There are n unique graphs and at each trial, a new graph is chosen at random
(with replacement). Letm be the number of trials. What is the expected number
of trials such that all n unique graphs are selected?

The expected number of trials needed grows as O(n ln(n)) [76]. Some of the assumptions
in the problem are not directly satisfied such replacement and the probability distribution
of choosing a particular unique graph but further study on the structure of G1 may yield
exploration that ‘collects’ most of the unique graphs in a more efficient manner.

The tree search algorithms may also be used for exploration. On Line 5 of Alg. 2.3, we
can randomly select an edge to add from I instead of trying all possible edges. Therefore,
the tree can be explored stochastically. Since the number of branches from a leaf varies,
the probability of arriving at a certain final edge set is not equal (these probabilities can be
calculated by assuming the tree is a Markov chain). Since the tree search algorithms cover
the same desired graph structure space as the pure PM approach, can we selectively sample
the tree and have some predictions on when all unique designs are found? These questions
are left as future work items.

Finally, it is important to describe the specific uses of the proposed algorithms. They
are suitable for problems that are represented by undirected colored graphs under the com-
ponent/port paradigm [43, 51, 59]. Enumeration is appropriate for certain problem classes
(primarily determined by size). It may also be appropriate for searching for all possible en-
hancing structures [51]. Enumeration has been useful for generating lists of organic molecules
[73, 74, 77], finding all geometries of electrical circuits [78], identifying all biological network
architectures that achieve specific behaviors [16], enumerating different gear trains [14, 15],
and determining all hybrid powertrain configurations for a set list of components [13].

Exploration is suitable for sampling the design space for much larger problems [44]. These
samples could be used as visualizations for expert evaluation or starting points for generative
approaches. The unrestricted graphs from a PM approach could also be used in conjunction
with feature extraction algorithms to develop generative rules that are not based solely on
experience and intuition (where the features are subgraphs that provide desired benefits to
the architecture) [79].

2.6 Summary
Architecture design is a challenging problem and this chapter presents some theory for gener-
ating candidate architectures with perfect matchings. A PM approach is a graph numerical

42

representation scheme that completely covers the design space that is needed in many archi-
tecture design problems. It ensures certain frequency and degree requirements are met on
specific list of potential components. Enumeration of architecture design spaces can provide
coverage and insights not currently possible with generative design approaches since enu-
meration approaches allow the designer to make specifications that they understand such as
constraints and potential components, rather than rules for how things should be connected.

A number of general network structure constraints are fully outlined with the specifics of
checking their satisfaction with available graph analysis tools. The colored graph isomor-
phism problem is discussed in great detail including the distinction between port-type and
component-type isomorphisms. The limited number of full isomorphism checks and the effi-
ciency of Alg. 2.3 demonstrate that larger than expected architecture design spaces can be
obtained. A basic and improved tree search algorithm that avoids port-type isomorphisms
was shown and is a primary example of how constraints can be naturally satisfied without
reducing the design space.

The various case studies are initial insights into the true nature of the class of architecture
problems studied in this dissertation. Consider again that there are only 12 unique graphs in
Fig. 2.12 of 2,097,152 adjacency matrices and 135,135 PMs. For the suspension case study,
a wide variety of network structure constraints were included based on natural requirements
such as no direct connection between the sprung and unsprung masses. Other constraints
were added to avoid duplicate dynamic models such as the avoidance of parallel cycles
and series connections between the 2-port components. Moreover, constraints based on the
experience and intuition of the designer were also included which limited the design space in
a predictable manner such as the requirement that no parallel components can be connected
together.

Future graph generation algorithms can use these insights to suitably address the unique
challenges associated with architecture design problems. A number of directions are pos-
sible with the PM framework including deeper analysis of the structural properties of PM
graphs, reduction of the number of graphs generated by the tree search algorithm, and the
development of structured sampling approaches that result in nearly all unique graphs.

43

Chapter 3

Co-Design: Combined Plant and Control Design7

“If we want to solve problems effectively. . . we must keep in mind not
only many features but also the influences among them. Complexity is
the label we will give to the existence of many interdependent variables
in a given system. The more variables and the greater their
interdependence, the greater the system’s complexity. Great complexity
places high demands on a planner’s capacity to gather information,
integrate findings, and design effective actions.”

D. Dörner [80, p. 38]

Many dynamic engineering system design problems contain two groupings of the design
variables: plant (or artifact) and control. For instance, consider again the system-level
design of a robotic manipulator presented in Chapter 1. The plant design may comprise the
geometric properties of the links and the control design may be embodied by the joint torque
time trajectories for a specific task [4]. Many authors have shown the benefit of a combined
strategy rather than a sequential approach [27, 33, 81–83]. With a sequential approach, the
plant is optimized initially, followed by the controller [21, 83]. In this chapter, we focus on
two solution strategies appropriate for combined plant and controller design or co-design:
simultaneous and nested.
The simultaneous solution strategy optimizes both the plant and control variables in same

optimization formulation. With the nested strategy, an outer optimization loop optimizes
the plant design, and an inner optimization loop identifies the optimal control for each plant
design tested by the outer loop [21, 83]. These two strategies are selected for a few reasons
beyond them being the most studied and used in the literature. First, the simultaneous
strategy is the most fundamental representation of an integrated design problem [84]. On
the other hand, the nested strategy is a specific reorganization of the optimization problem
based on the plant and control disciplines. Multidisciplinary design optimization (MDO)

7Elements of this chapter are based on work completed in Ref. [32].

44

is a field of research that investigates design methods for systems with multiple disciplines
[21, 84]. However, if we are limited to single-system problems and implementations that do
not partition the system across trajectories, there are a limited number of appropriate MDO
methods suitable for co-design. One reason for this is that many MDO formulations were
developed in a way that does not explicitly address the dynamic nature of general co-design
problems [21]. This has led to partitioning schemes without full consideration of the cou-
pling in the system. Allison and Nazari developed an augmented Lagrangian coordination
method for co-design, but only accounted for unidirectional (plant) coupling [85]. The nested
approach naturally handles single-system problems, bidirectional coupling, and the various
trajectories in the problem. Another important motivating reason for reorganizing the orig-
inal problem is to employ specialized optimization algorithms to solve specific subproblems
[85, 86]. A number of efficient solution methods for specific problem forms can be utilized
with the nested strategy. However, as it will be discussed throughout this article, both of
these strategies have their drawbacks. Many of these issues are well known for simultaneous
strategy, motivating the fields of MDO and distributed optimization [84]. The nested strat-
egy is not amenable to coarse-grained parallelism and can be computationally intensive [85].
Additionally, it can have potential feasibility issues.

Here we consider co-design problems that are well-posed as dynamic optimization (DO)
problems [21, 25, 83]. Co-design theory has focused primarily on specific DO formulations;
as a result, only limited types of co-design problems fit into the existing frameworks. With a
specific problem structure, a variety of algorithms have been developed to provide numerical
solutions, and detailed analysis of the coupling and partitioning has been investigated [83,
87–93]. Such works have made considerable progress towards addressing specific challenges
found in certain co-design problems. However, there has been less attention towards the
general co-design problem (i.e., a co-design formulation with no restrictions) perhaps due
to the lack of efficient solution techniques and continuing legacy design practices that treat
certain problem elements as naturally separate [21].
Recently, numerical solution methods have been utilized to solve co-design problems that

are not captured by previous problem definitions [21, 25]. Nontraditional problem formula-
tion elements include system-level objective functions, general inequality path constraints,
and general boundary conditions [4, 18, 24, 27, 33, 81, 82, 94]. With these nontraditional
problem elements, much of the previous work in co-design theory does not apply. An essen-
tial element of engineering design optimization is an appropriate problem formulation. A
thorough analysis of the general co-design formulation is needed to better allow designers to
leverage the advantages intrinsic to the co-design methodology.

45

One of the numerical solution methods recently applied to co-design problems is known
as direct transcription (DT), which approximates the infinite-dimensional DO problem with
a finite nonlinear program (NLP) that can be solved with standard NLP solvers [27, 95–97].
DT has a number of favorable properties that supports the efficient generation of solutions
to general co-design problems [21, 25, 27].
In this chapter, we will explore the general co-design problem with a focus on the si-

multaneous and nested solution strategies. Section 3.1 provides the formulations for the
simultaneous and nested co-design solution strategies and Sec. 3.2 outlines the necessary
conditions for optimality for both. Section 3.3 discusses some practical solution consider-
ations relevant to the two strategies. Section 3.4 presents a number of test problems and
finally, Sec. 3.5 offers a summary.

3.1 Problem Formulation
Here we present the two co-design strategies. First, we state a few assumptions. Initially,
the time horizon t0 ≤ t ≤ tf is assumed to be fixed. Section 3.2.4 discusses the inclusion of
the horizon boundaries in the co-design problem formulations. Next, only general inequal-
ity constraints will directly appear in the formulations for conciseness of the formulations.
Equality constraints are captured by two inequality constraints (i.e., f(x) = 0 is equivalent
to f(x) ≤ 0 and −f(x) ≤ 0).

3.1.1 Simultaneous Formulation
The general simultaneous co-design problem formulation contains all relevant objectives and
constraints in a single optimization formulation. The DO problem formulation is:

min
xp,xc

Ψ(xp,xc) =
∫ tf

t0
L (t, ξ,xc,xp) dt + · · · (3.1a)

M (ξ(t0), ξ(tf),xc,xp) (3.1b)
subject to: ξ̇ − f (t, ξ,xc,xp) = 0 (3.1c)

C (t, ξ,xc,xp) ≤ 0 (3.1d)
φ (ξ(t0), ξ(tf),xc,xp) ≤ 0 (3.1e)

where xp are the plant variables, xc are the control variables, t is the time continuum
defined between t0 and tf , ξ are the states, Ψ is the objective function in Bolza form, L is

46

(a) Simultaneous strategy. (b) Nested strategy.

Figure 3.1: Two co-design solution strategies where è indicates an optimization problem.

the Lagrange (running cost) term,M is the Mayer (terminal cost) term, Eqn. (3.1c) enforces
the dynamics modeled as a first-order ordinary differential equation, Eqn. (3.1d) enforces any
time-varying path constraints, and Eqn. (3.1e) enforces any time-dependent constraints. See
Ref. [25] for a general discussion of this co-design formulation and the problem elements.

3.1.2 Nested Formulation
The alternative solution strategy to the simultaneous formulation in Prob. (3.1) is a nested
one where an outer optimization loop optimizes the plant design, and an inner optimization
loop identifies the optimal control for each plant design tested by the outer loop. Figure 3.1
illustrates the two strategies. This is a two-level optimization problem (a subclass of bilevel
optimization) [98–100]. The outer-loop problem is defined as:

min
xp

ψ(xp) (3.2a)

subject to: φo (xp) ≤ 0

F (xp) ≤ 0

 = go(xp) ≤ 0
(3.2b)
(3.2c)

where φo are the constraints in φ that only depend on the plant design, go is the collection
of the outer-loop constraints, and {ψ(xp),F (xp)} are two new problem formulation elements
that will be outlined after the following inner-loop formulation:

min
xc

Ψ(x†p,xc) (3.3a)

47

subject to: ξ̇ − f
(
t, ξ,xc,x

†
p

)
= 0

C
(
t, ξ,xc,x

†
p

)
≤ 0

φi
(
ξ(t0), ξ(tf),xc,x†p

)
≤ 0

= gi (·) ≤ 0

(3.3b)

(3.3c)

(3.3d)

where x†p is a candidate plant design, φi are the constraints of φ not in φo, and gi is the
collection of the inner-loop constraints. With both formulations presented, some additional
concepts relevant to two-level optimization problems need to be discussed.

The simultaneous method’s feasible set (or constraint region) is defined as:

Ω = {(xp,xc) : go(xp,xc) ≤ 0, gi(xp,xc) ≤ 0} (3.4)

For each candidate x†p, the inner-loop feasible set is defined by:

Ω(x†p) =
{
xc : gi(x†p,xc) ≤ 0

}
(3.5)

and then set of potential inner-loop optimal control designs is:

M(x†p) =
{
xc : xc ∈ arg min

{
Ψ(x†p,xc) : xc ∈ Ω(x†p)

}}
(3.6)

For a given xp, M(xp) may be empty for some values of its argument, i.e., no feasible control
design exists for the given xp. If xc ∈M(xp), then the optimal objective function value from
the inner loop is:

ψ(xp) = Ψ(xp,xc) (3.7)

which is used as the objective function of the outer loop, Eqn. (3.2a). Finally, the feasible
set of the outer loop (known as the induced region) is:

I = {(xp,xc) : (xp,xc) ∈ Ω, xc ∈M(xp)} (3.8)

and we note that Ω and I are not the same feasible region. This is the motivation behind the
addition of Eqn. (3.2c). F (xp) is an additional constraint that may be added to ensure for
all x†p, Ω(x†p) is nonempty, termed the outer-loop feasibility constraint. The two formulations
are only equivalent if Ω remains unchanged. This constraint will be discussed more in the
following discussion section.

48

3.1.3 Formulation Discussion
Here we discuss the specific problem formulation elements of both approaches, focusing on
comparisons to the current co-design literature.

3.1.3.1 Control Design Variables

While plant variables will always be time-independent, control variables may be either time-
independent or infinite-dimensional trajectories (with respect to time). We partition the
control variables into two sets as:

xc =
p
u

 (3.9)

where p are the control parameters and u are the open-loop control (OLC) variables. The
control parameters are static (time-independent) control variables (e.g., gains). The OLC
variables are infinite-dimensional trajectories through time (e.g., joint torque time profile for
a robotic manipulator). Both types of control design variables are found in the literature,
although both types are not typically in the same design problem. Even if there are no
OLC variables, the general co-design problem is still an infinite-dimensional problem due to
the dynamic and path constraints. One very special case is when the optimal OLC can be
defined with static gains such as with infinite-horizon linear-quadratic regulator (LQR) [20,
101, 102] discussed later in Sec. 3.3.2.2. See Refs. [33, 82, 90, 91, 101, 102] for examples with
p and Refs. [18, 24, 27, 81, 94] for examples with u.

3.1.3.2 Objective Function

Even though the objective function is partitioned in Eqns. (3.1a) and (3.1b), converting
between the Lagrange and Mayer terms is possible [20, 25]. Both forms are present to allow
for more natural formulations of the problem (and to be consistent with the literature).

A common form of the co-design objective function is:

min
xp,xc

Ψ = wpΨp(xp) + wcΨc (xp,xc) (3.10)

where {Ψp,Ψc} are the plant and control objective functions and {wp, wc} are objective
weights [83]. While many co-design problems are appropriately partitioned with control and
plant specific objective function terms [33, 87–89, 91–93, 102], others necessitate the general

49

objective form in Eqns. (3.1a)–(3.1b) [4, 18, 24, 33, 81]. These general objectives may only
include one term or terms that are typically only classified as “control” objective terms.

3.1.3.3 Path and Boundary Constraints

Equations (3.1d) and (3.1e) could be further generalized into a single general constraint form,
but the distinction is important for both the optimality conditions and the numerical ap-
proaches used to find solutions. The difference is primarily based on time dependence. There-
fore, path and boundary constraints could be more appropriately named time-dependent and
time-independent constraints.

Boundary constraints are common to many existing co-design formulations [21, 25, 83].
Traditional plant-only constraints such geometry or mass constraints are time-independent
constraints [27, 92, 93, 102]. Many co-design formulations explicitly require initial con-
dition constraints, but some co-design problems have unknown initial conditions or peri-
odic constraints [24]. Another set of boundary constraints is the kinematic relationships
in robotics [3]. These constraints might require an algebraic variable that depends on the
states (e.g., the end position of the robotic manipulator depends on the state joint angles
and geometric plant variables).

More recently, general path constraints have been included in co-design problems and
are infinite-dimensional constraints [4, 21, 25, 27]. Many traditional engineering constraints
can be formulated naturally as path constraints. States or outputs often need to be con-
strained between allowable bounds such as temperature, position, force, pressure, deflection,
stress, power, etc. These examples are typically inequality path constraints but equality
path constraints are also possible, such as an automobile following a prescribed drive cycle
or ensuring the steady-state optimal tip-speed ratio is followed by a horizontal axis wind
turbine [81]. The inclusion of path constraints is critical to the usefulness of many co-design
studies. Fathy et al. included mixed control-plant constraints:

C (t,u(t),xp) ≤ 0 (3.11)

but mixed state-control-plant constraints as in Eqn. (3.1d) are needed to represent many of
the engineering constraints mentioned above [83].

50

3.1.3.4 Outer-Loop Feasibility Constraint

For the two solution strategies to be equivalent,M(xp) must be nonempty for every candidate
xp [83]. Introducing an appropriate outer-loop feasibility constraint is one technique to
ensure this property is satisfied.

Consider again the design of a robotic manipulator. For certain geometric configurations,
the kinematics restrictions of the manipulator may be such that it is unable to reach the
prescribed target. To avoid a candidate xp that has no feasible control solution, we could
add a reachability constraint to F (xp) [3, 4]. However, even with this additional constraint,
mixed state-control-plant constraints may be present that cannot be satisfied with the given
plant design, such as stress or deflections [4]. This example helps illustrate that for general
co-design problems, these constraints can be quite difficult (or impossible) to determine.

An important type feasibility constraint is the classic controllability property applicable
to linear systems theory [83]. Unfortunately, controllability is not sufficient to guarantee
the nonemptiness of Ω(x†p) for general co-design problems. For example, if control bounds
are provided, then it is not guaranteed that we can move between arbitrary initial and final
positions in finite time.

It is also important to note that this outer-loop feasibility constraint may not strictly
be required to find the system-optimal solution using the simultaneous strategy. Another
strategy is to add a feasibility constraint that restricts Ω such that the desired property holds.
This is not ideal since there will be no guarantee that the nested strategy will produce
the system-level optimum, but may be a necessity for certain co-design problems. The
implications of this will be discussed in the following sections.

3.2 Necessary Conditions for Optimality
In this section, we describe the necessary conditions for optimality for the two general
co-design strategies from the previous section. Sufficient conditions will not be discussed
directly, but are the Hamiltonian minimization conditions [20, 103, 104] or second-order
conditions on the Lagrangian for finite-dimensional problems [105]. If a problem is singular,
there may be additional sufficient conditions needed [103, 104]. We also assume that the
simultaneous co-design problem is well-posed, i.e., there exists a solution. See Refs. [20, 103,
105] for discussions on constraint qualification, regularity, differentiability, and other relevant
properties for a well-posed problem. We begin with the conditions for the OLC design only.

51

3.2.1 Open-Loop Control Design
The optimal OLC design problem formulation is:

min
u

Ψ =
∫ tf

t0
L (t, ξ,u) dt+M (ξ(t0), ξ(tf)) (3.12a)

subject to: ξ̇ − f (t, ξ,u) = 0 (3.12b)
C (t, ξ,u) ≤ 0 (3.12c)
φ (ξ(t0), ξ(tf)) ≤ 0 (3.12d)

which is a subformulation of Prob. (3.1). Similar to the Lagrangian in finite-dimensional
optimization [20, 105], the infinite-dimensional constraints can be adjoined to the Lagrange
term with time-varying Lagrange multipliers, creating the Hamiltonian of the problem:

H = L+ λTf + µTC (3.13)

where λ(t) are the costates (multipliers for the state dynamics) and µ(t) are the multipliers
for C.

With this control-only formulation, we can directly apply Pontryagin’s minimum principle
(PMP) with path constraints [20, 103, 106] to arrive at the following necessary conditions
for optimality (note, �∗ is used to denote an optimal value):

λ̇∗ = −
[
∂H

∂ξ

]∗
(3.14a)

0 =
[
∂H

∂u

]∗
(3.14b)

0 =
[
µTC

]∗
, 0 =

[
νTφ

]∗
(3.14c)

µ∗ ≥ 0, ν∗ ≥ 0 (3.14d)

0 =
[
λ+ ∂M

∂ξ
+ νT∂φ

∂ξ

]∗
t0

, 0 =
[
λ− ∂M

∂ξ
− νT∂φ

∂ξ

]∗
tf

(3.14e)

where ν are the Lagrange multipliers for φ, Eqn. (3.14a) is the costate dynamics, Eqn. (3.14b)
is the control stationarity condition, Eqns. (3.14c) are the complementary slackness condi-
tions, Eqns. (3.14d) are the dual feasibility conditions, and Eqns. (3.14e) are the initial and
final time transversality conditions. The conditions in Eqn. (3.14) are in addition to the
constraints in Eqns. (3.12b)–(3.12d). The necessary conditions for both strategies can now
be derived.

52

3.2.2 Co-design—Simultaneous Strategy
Here we will derive the simultaneous co-design optimality conditions only using PMP. Others
have derived the optimality conditions for similar co-design formulations. See Ref. [107] for
early work outside the co-design context. Fathy et al. utilized a combination of the Karush-
Kuhn-Tucker (KKT) conditions and PMP [83].

Consider the following augmented state vector:

Θ =
 ξ
xp

 , Θ̇ =
f
0

 (3.15)

with the replacement of all plant variables with xp(t0) and, therefore, no dependence on
xp(tf). Now consider if unconstrained, the choice of initial and final states are, in effect,
additional decision variables that can be modified to satisfy the optimality conditions.

The ξ-dependent terms in Eqn. (3.14) are Eqns. (3.14a) and (3.14e). Applying these
conditions to the “state” plant variables, we have the following additional conditions:

−λ̇∗p =
[
∂H

∂xp

]∗
=

 ∂L∂xp + λT ∂f

∂xp
+ λT

p

�
�
��7

0
∂ẋp
∂xp

+ µT ∂C

∂xp

∗

(3.16a)

0 =
[
λp + ∂M

∂xp
+ νT ∂φ

∂xp

]∗
t0

(3.16b)

0 =

λp −
�
�
��7

0
∂M
∂xp

− νT

�
�
��7

0
∂φ

∂xp

∗

tf

= λ∗p(tf) (3.16c)

Now using the first fundamental theorem of calculus, we can combine these equations into a
single condition:

λ∗p(tf) = λ∗p(t0) +
∫ tf

t0
λ̇∗pdt (3.17a)

0 =
[
∂M
∂xp

+ νT ∂φ

∂xp

]∗
t0

+
∫ tf

t0

[
∂L
∂xp

+ λT ∂f

∂xp
+ µT ∂C

∂xp

]∗
dt (3.17b)

This condition is analogous to the condition found in other derivations of the optimal-
ity conditions [83, 107]. Note that the other conditions in Eqn. (3.14) remain unchanged.
Therefore, the simultaneous co-design optimality conditions are a combination of Eqn. (3.14)

53

and Eqn. (3.17b):

λ̇∗ = −
[
∂H

∂ξ

]∗
, 0 =

[
∂H

∂u

]∗
(3.18a)

0 =
[
µTC

]∗
, 0 =

[
νTφ

]∗
, µ∗ ≥ 0, ν∗ ≥ 0 (3.18b)

0 =
[
λ+ ∂M

∂ξ
+ νT∂φ

∂ξ

]∗
t0

, 0 =
[
λ− ∂M

∂ξ
− νT∂φ

∂ξ

]∗
tf

(3.18c)

0 =
[
∂M
∂xp

+ νT ∂φ

∂xp

]∗
t0

+
∫ tf

t0

[
∂L
∂xp

+ λT ∂f

∂xp
+ µT ∂C

∂xp

]∗
dt (3.18d)

3.2.3 Co-design—Nested Strategy
We now derive the necessary conditions for the nested strategy where the outer-loop prob-
lem is defined in Prob. (3.2) and the inner loop in Prob. (3.3). The inner-loop optimality
conditions are defined in Eqn. (3.14) with only OLC variables. If the inner loop contains p,
then the necessary conditions are analogous to the simultaneous conditions in Eqn. (3.18)
with p replacing xp.

The outer-loop problem is finite-dimensional optimization since neither the dynamics nor
path constraints are present. Therefore, we can directly utilize the KKT conditions [105].
The Lagrangian for the outer-loop problem is:

L = ψ + χTφo + ηTF (3.19)

We first express the stationarity condition:

0 = dL

dxp
= dψ

dxp
+ χTdφo

dxp
+ ηT dF

dxp
(3.20a)

=
∫ tf

t0

dL
dxp

dt+ dM
dxp

+ χTdφo
dxp

+ ηT dF

dxp
(3.20b)

Now the total derivative terms can be explicated [108]:

dL
dxp

= ∂L
∂xp

+ ∂L
∂ξ∗

dξ∗

dxp
+ ∂L
∂u∗

du∗

dxp
+ ∂L
∂p∗

dp∗

dxp
(3.21a)

dM
dxp

= ∂M
∂xp

+
[
∂M
∂ξ∗

dξ∗

dxp

]
t0

+
[
∂M
∂ξ∗

dξ∗

dxp

]
tf

+ ∂M
∂p∗

dp∗

dxp
(3.21b)

Here we see a number of coupled terms.

54

The complete set of necessary conditions for the outer loop are then:

0 = dΨ
dxp

+ χT dφo
dxp

+ ηT dF

dxp
(3.22a)

χ ≥ 0, η ≥ 0, χTφo = 0, ηTF = 0 (3.22b)

which are a set of KKT conditions. The conditions in Eqn. (3.22) are in addition to the
constraints Eqns. (3.2b) and (3.2c).

3.2.4 Free Time
The initial and final time values can be optimization variables as well [20, 25, 83, 103]. Op-
timal control problems frequently contain these terms and therefore, appropriate optimality
conditions are provided. Subsequently, these additional optimization variables are typically
included in the inner-loop problem of the nested co-design strategy [83]. However, some of
the numerical methods used jointly with certain co-design strategies lose certain properties
when the time horizon is not fixed. In these situations, perhaps, it is more beneficial to place
these additional variables in the outer loop to maintain such properties.

The simultaneous co-design strategy will need one additional equation if tf is free:

0 =
[
∂M
∂tf

+ νT ∂φ

∂tf

]∗
+
[
L+ λTf + µTC

]∗
tf

(3.23)

This is an additional transversality condition with the others in Eqn. (3.14e) [20, 103].
For a nested approach with tf free in the outer loop, the additional stationary condition

dL/dtf = 0 would include:

dL
dtf

= ∂L
∂tf

+ ∂L
∂ξ∗

dξ∗

dtf
+ ∂L
∂u∗

du∗

dtf
+ ∂L
∂p∗

dp∗

dtf
(3.24a)

dM
dtf

= ∂M
∂tf

+
[
∂M
∂ξ∗

dξ∗

dtf

]
t0

+
[
∂M
∂ξ∗

dξ∗

dtf

]
tf

+ ∂M
∂p∗

dp∗

dtf
(3.24b)

This completes the necessary conditions for optimality for the various problem formula-
tions and solution strategies. Now some of the computational and practical aspects will be
discussed.

55

3.3 Practical Solution Considerations
Obtaining solutions only using the optimality conditions in the previous section can be
challenging. Practical formulation limitations, robustness, and computational efficiency also
need to be considered when seeking solutions to co-design problems.

3.3.1 Obtaining Approximate Solutions
In the previous section, the finding an analytic solution that satisfies the optimality condi-
tions is called an indirect method [95, 96]. Although this approach can lead to important
insights into the structure of the solution, it can be quite challenging (or impossible) to
solve these equations analytically. If complicated black box functions or table interpolation
is used, analytic forms for their derivatives do not even exist. Therefore, numerical methods
are often employed that provide approximate solutions to the original problem.

Numeric indirect methods derive explicitly the optimality conditions and then use dis-
cretization to form a boundary value problem (BVP) [96]. If inequality path constraints are
present, multiple BVPs will need to be linked for each arc that a path constraint is active
since a new set of differential algebraic equations will need to be solved. The number of con-
strained subarcs and the sequence of constrained/unconstrained arcs, however, are unknown
a priori, so it is quite difficult or even impossible to construct the correct BVP.

Another issue with numeric indirect methods is standard solution procedures are not
robust. An initial guess for the costates must be given, but these are not physical quantities,
so there typically is no good way of providing a reasonable estimate [95]. Furthermore, even
with a reasonable guess, the numerical solution of the costate dynamics in Eqn. (3.14a) can
be very ill-conditioned [104].

An alternative is direct methods [95, 96]. Instead of stating the optimality conditions, the
control and/or state are parametrized using function approximation and the objective func-
tion is approximated using numerical quadrature. This creates a discrete, finite-dimensional
problem that then is optimized using large-scale NLP solvers [96].

The first class of direct methods is the sequential methods, which only parametrize the
control. Given initial conditions and a set of control parameters, the differential-algebraic
equation (DAE) model is solved through conventional DAE solvers (forward simulation)
such as a Runge-Kutta method. Due to the use of conventional DAE solvers, this approach
has the advantage of easily finding feasible solutions to the state equations, but needs to
perform a full simulation for each perturbation in the optimization algorithm. Repeated

56

numerical integration of the DAE model, however, does not guarantee convergence with
open-loop unstable systems [96] and the resulting solution can be very sensitive to the choice
of control. This strategy is the easiest to construct out of all the direct methods since reliable
and efficient codes for DAE and NLP solvers are naturally linked [96].

Sequential approaches typically produce low-accuracy solutions and are computationally
inefficient. Many of these issues are due to the inability to handle path and boundary
constraints efficiently. Since the states are calculated through a forward simulation, we
must approximate numerically how local control perturbations will affect the global state
trajectory. This leads to simultaneous approaches that forgo the nested analysis of sequential
methods for a large set of constraints8.

3.3.1.1 Direct Transcription

The simultaneous approach, also as known as direct transcription (DT), parametrizes both
the state and control trajectories. Direct transcription is the focus in Chapter 5 so it is only
discussed briefly in the context of its usefulness in solving co-design problems. Most DT
methods are represented by the following NLP formulation:

min
U ,Ξ,xp

Nt∑
k=0

wkL (tk, ξ(tk),u(tk),xp) +M (ξ(t0), ξ(tf),xp) (3.25a)

subject to: ζ (t,Ξ,U ,xp) = 0 (3.25b)
C (t,Ξ,U ,xp) ≤ 0 (3.25c)
φ (ξ(t0), ξ(tf),xp) ≤ 0 (3.25d)

where Nt + 1 is the number of discrete time points and {t,Ξ,U} are the discretized forms of
the time, states, and controls. The Lagrange term is approximated with numerical quadra-
ture with weights wk. The dynamic constraint is now enforced through a large number of
equality constraints ζ, termed defect constraints [95–97]. Also, path constraints are now
no more complicated than the dynamic constraints, a key advantage over other solution
methods [96, 109].

This new large NLP formulation has a specific structure and sparsity pattern that can be
exploited in NLP solvers to reduce total computational effort [96]. Simultaneous approaches

8The sequential and simultaneous methods in this section are entirely different than the sequential design
method mentioned at the beginning of this chapter and the simultaneous co-design method [21, 27, 96]. The
methods in this section find approximate solutions to DO problems. The design methods are alternative
solution methods for problems with plant and control design variables. For example, one could pose a
simultaneous co-design problem and solve it with a sequential method for dynamic optimization.

57

have been shown to have good convergence properties and handle unstable DAEs [110, 111].
Finally, these approaches have specific advantages for singular control problems and high-
index path constraints [110]. This collection of desirable properties makes DT a strong
candidate for finding solutions to general co-design problems.

General overviews of DT theory is available in Refs. [25, 27, 95–97, 110]. Please see
Refs. [21, 25, 27] for further discussion on using DT to find solutions to co-design problems.
In these co-design studies, DT was demonstrated to be a suitable method for finding solutions
to more general co-design problems.

3.3.2 Specific Forms
In this chapter, we have presented the most general form of the co-design problem: both
a nonlinear plant outer-loop and nonlinear control inner-loop. However, specific forms of
the control subproblem have been utilized heavily in a variety of co-design studies. The
primary motivation for these forms is the efficient generation of solutions for the inner-loop
subproblem. These two forms are linear-quadratic dynamic optimization and LQR.

3.3.2.1 Linear-Quadratic Dynamic Optimization

Consider the following specific form of the control subproblem in Prob. (3.12):

min
u

∫ tf

t0

ξ
u

T Q N

N R

ξ
u

+
q
r

T ξ
u

 dt+ · · · (3.26a)

[
ξTMξ +mTξ

]
t0

+
[
ξTSξ + sTξ

]
tf

(3.26b)

subject to: ξ̇ − (Aξ +Bu+ d) = 0 (3.26c)
C1ξ +C2u−C3 ≤ 0 (3.26d)
φ1ξ(t0) + φ2ξ(tf)− φ3 ≤ 0 (3.26e)

where tf is finite and any of the matrices (with the exception of {φ,M ,m,S, s}) can
be time-varying. This particular linear-quadratic DO problem can be approximated as a
finite-dimensional quadratic program (QP) using a DT method9. Both single-step and pseu-
dospectral DT methods can generate sparse QPs for this problem form [25, 96]. Under

9A more general form of Prob. (3.26) is present in Chapter 5 along with the methods for generating the
QP using DT.

58

certain conditions, the QP is convex and efficient to solve for even large systems and the
global optimal solution for u is guaranteed.
This form has been utilized in a number of nested co-design studies [18, 25]. The simul-

taneous strategy cannot be applied with this form since most (if not all) co-design dynamic
constraints have a nonlinear dependence on the optimization variables [83]. For example
consider the following bilinear dynamic constraint: ξ̇ = −kξ, where k is a plant optimization
variable. This dynamic constraint would need to be approximated with quadratic constraints.

3.3.2.2 Linear-Quadratic Regulator

Consider the following special form of the control-only subproblem: Prob. (3.26) containing
only time-invariant matrices {Q � 0,R � 0,A,B}, no path constraints, simple initial value
constraints (ξ(t0) = ξ0), and is infinite-horizon (tf → ∞). The optimal OLC can then be
readily computed with the solution of the algebraic Riccati equation (ARE):

PA+ATP − PBR−1BTP +Q = 0 (3.27)

where P is the unique, positive definite solution and u is:

u∗ = −R−1BTP ∗ξ∗ (3.28)

This problem form is known as the infinite-horizon, continuous-time LQR [20, 101, 102], and
is quite heavily utilized in co-design studies [33, 90, 91, 101, 102]. Solutions of this form
can be computed efficiently and have a number of favorable properties such as a closed-form
solution that can be used to create an equivalent simultaneous formulation [83]. There are
additional forms (e.g., finite-time and time-varying versions) of this type of problem [20, 104]
but the computation cost quickly becomes comparable with highly structured QPs using DT
solution methods. However, this problem structure is simply unsatisfactory in addressing
the requirements for some co-design problems (see Sec. 3.1.3).

3.3.3 Comparing the Strategies
A natural question is what solution technique should be used? This section will discuss some
of the research around this question.

59

3.3.3.1 Computation Time

Here we parameterize the solution time for each method with:

τs = T0 +NTi (simultaneous) (3.29a)
τn = T0 + N̄

(
T̄i + t0 + nti

)
(nested) (3.29b)

where N is the number of optimization algorithm iterations needed for convergence, T is a
time variable, n is the number of inner-loop iterations, t is inner-loop time, �̄ is an outer-loop
quantity, �0 is the initial time used to construct the optimization problem, and �i is the
average iteration time.

Obviously, if N̄ > N and T̄i > Ti, then the simultaneous approach is superior, but this is
unlikely as the nested strategy reduces the number of variables and constraints in the outer-
loop problem. This does highlight the computational goal of the nested approach. Ideally
we seek a nested strategy that significantly reduces both the number of iterations and time
required during each iteration in the outer-loop, while keeping the time required to solve the
nested subproblem small.

Methods for reducing total computational expense for the general co-design problem with
respect to either solution strategy are limited (other than favoring DT over other methods).
One suggestion from Ref. [112] is to treat plant variables in the simultaneous approach with
DT exactly as in Eqn. (3.15), where there is a plant variable at each time point and they are
all constrained to be equal (which keeps Jacobian of the constraints and objective function
sparse). The development of guidelines and methods to help address the computational cost
for different classes of co-design problems is left as future work.

3.3.3.2 Literature-Based Recommendations

Reyer et al. stated that the size and complexity of the simultaneous problem formulation
could make this strategy impractical [88]. A number of authors have agreed with this state-
ment, i.e., the nested strategy was better suited for their particular problem [18, 81, 101,
113]. In the case of Refs. [101, 113], the studies utilize the LQR for an extremely efficient
inner loop, i.e., t0 + nti was quite small. In Ref. [81], there was an extreme computational
expense associated with changes in the plant variables (Ti was large), hence minimizing the
number of function calls was paramount. In Ref. [18], there was both a high computational
expense for modifying the plant design and the inner-loop could be solved with a QP.

There are a limited set of studies that claim the opposite. In Ref. [27], the authors

60

state that the simultaneous strategy is better, but the inner-loop was not solved with a QP
even though it was in the Prob. (3.26) class, so it is hard to fairly compare the strategies.
However, it is still hard to make general recommendations since it is not very common for
co-design study to compare the tradeoffs between the simultaneous and nested strategies for
their particular design problem. In most design studies, only one strategy is needed if it is
producing the desired results.

There are some circumstances where the simultaneous strategy might be preferred. For
some problems, it might be the only viable method. For example, it may be impossible to
separate the domains if black-boxes are used. Also, consider the discussion of an empty Ω
for a particular candidate plant design. In this situation, the nested strategy could struggle
or fail to find the optimal solution. Another point is that the nested strategy does not follow
the steepest descent direction in the simultaneous formulation (since the control variables
are optimal for the control subproblem). A simultaneous approach may better utilize the
coupling between the plant and control design variables for faster convergence.

It remains future work to determine if there are conditions such that a well-behaved simul-
taneous co-design formulation becomes more challenging to solve with the nested strategy.

3.4 Test Problems
In this section, three co-design test problems (abbreviated TP) are defined which highlight
some of the general co-design theory concepts10. Please see also Refs. [4, 18, 24, 27, 33,
81, 82, 94] for examples of complex co-design problems that utilize nontraditional problem
elements in the general co-design problem class.

3.4.1 Test Problem 1: Scalar Plant, Scalar Control
The first TP belongs to many early co-design formulations [83, 91] including infinite time
horizon, optimization of control gains, no path constraints, and separate control and plant

10The Matlab codes for these test problems is available in Ref. [114].

61

(a) Ψ(b,K). (b) ψ(b).

Figure 3.2: Scalar plant, scalar control problem (TP1) results with q = 10, r = 1, wc = 1,
and wp = 0.3.

objectives as in Eqn. (3.10). The co-design problem is stated as:

min
b,K

wc
ξ2

0

∫ ∞
0

(
qξ2 + ru2

)
dt+ wpb (3.30a)

subject to: ξ̇ = −bξ + u (3.30b)
φ1 := ξ(0)− ξ0 = 0 (3.30c)
φ2 := − b ≤ 0, φ3 := −K ≤ 0 (3.30d)

where u = −Kξ, b ∈ xp, and K ∈ xc. The results are shown in Fig. 3.2 for one particular
set of values of the problem parameters.

For this problem, the ARE defined in Eqn. (3.27) is a single quadratic equation: 0 =
q−2bP−P 2/r. The solution to this equation defines the gains of a full-state feedback optimal
control law and therefore can be used to obtain the potential inner-loop optimal control
designs, M(xp), in a nested formulation. This is visualized in Fig. 3.2a as the solid black
curve. We note that this is a subspace of Ω, or simultaneous feasible set. Comparing Fig. 3.2a
and Fig. 3.2b, we can visualize directly the difference between Ψ(xp,xc) and ψ(xp). We also
note that the gradient of the nested solution trajectory in Fig. 3.2a is always orthogonal to
the K-axis since it is the optimal gain value for a given b.
The coupling between the plant and control design variables is also present, noting the

62

“tilt” of the level sets. Therefore, a sequential method would not be guaranteed to arrive at
the global optima (but an iterative sequential strategy would in TP1) [83]. In TP1, from all
starting conditions, both the simultaneous and nested solution strategies arrive at the global
optimum. Although this is an extremely simple co-design problem, it does help visualize a
number of important concepts.

3.4.2 Test Problem 2: Co-Design Transfer
Consider the following simple co-design problem that seeks to move a second-order system
from an arbitrary initial state to rest while minimizing control effort:

min
k,u(t)

∫ tf

0
u2dt (3.31a)

subject to: ξ̇ =
 0 1
−k 0

 ξ +
0

1

u (3.31b)

φ1 := ξ1(0)− x0 = 0, φ2 := ξ2(0)− v0 = 0 (3.31c)
φ3 := ξ1(tf) = 0, φ2 := ξ2(tf) = 0 (3.31d)

where k ∈ xp and u(t) ∈ xc. The solution for u∗(t, k) (i.e., the nested strategy) can be
obtained by scaling the problem [115] into an equivalent DO problem in Ref. [104, pp. 166–
167] (details of this procedure are in Sec. 4.3.2):

u∗(t, k) = − 2k
kt2f − sin2(

√
ktf)

(
c1(t, k)x0 + c2(t, k) v0√

k

)
(3.32a)

c1(t, k) = sin
(√

k(tf − t)
)

sin
(√

ktf
)
−
√
ktf sin

(√
kt
)

(3.32b)

c2(t, k) = − cos
(√

k(tf − t)
)

sin
(√

ktf
)

+
√
ktf cos

(√
kt
)

(3.32c)

If k = 0, then the solution above is not valid and u∗ is linear with respect to t. The original
objective function can now be computed analytically by integrating the square of Eqn. (3.32).
With this closed-form expression for the objective function, an optimality condition for k
can be derived using Eqn. (3.20).

The results for this TP are shown in Fig. 3.3 for various values of the problem parameters.
In Fig. 3.3a, there are a large number of local solutions of ψ(k) and a clear global minimum
at k∗ = 3.554. In Fig. 3.3b, for the different values of the problem parameters, there is a
single global minimum at k∗ = 6.924. Finally in Fig. 3.3c, there is a global minimum with
k∗ = 0, i.e., the plant solution is degenerate.

63

(a) TP2 results demonstrating a large number of local solutions with tf = 2, x0 = 0, and v0 = −1
(different values of k marked).

(b) TP2 results demonstrating single global minimum with tf = 1, x0 = 1, and v0 = 2 (different
values of k marked).

(c) TP2 results demonstrating degenerate plant solution with tf = 2, x0 = 5, and v0 = −5
(different values of k marked).

Figure 3.3: Co-design transfer problem (TP2) results for various values of the problem
parameters.

64

(a) k = 0. (b) k∗ = 0.8547. (c) k = 50.

Figure 3.4: Simple SASA test problem (TP3) results with J = 1, tf = 2, and umax = 1.

From these results, it is clear that caution should be used when claiming a global opti-
mal co-design solution is found. Global search algorithms could improve the confidence of
finding the true optimal solution such as a multistart approach or genetic algorithms [105].
The control solution in Eqn. (3.32) demonstrates the complicated nature of the analytical
solutions for even the simplest of co-design problems. This problem may be a particularly
useful TP as it is a well-posed co-design problem with a single system-level objective, general
boundary conditions, and a closed-form OLC solution.

3.4.3 Test Problem 3: Simple SASA
The final TP is a co-design problem that was used directly in a detailed co-design study. The
co-design study focused on developing a novel strain-actuated solar array (SASA) system
for spacecraft pointing control and jitter reduction [18] (please see Sec. 4.3.1 for a detailed
discussion of the connections to the detailed study in Chapter 7). Both the geometric
properties of the solar array and OLC voltages along the array were the design variables. To
help provide some insight into the results of the original design study, a much simpler, but
still representative, co-design problem was proposed:

min
k,u(t)

− ξ1(tf) (3.33a)

subject to: ξ̇ =
 0 1
−k/J 0

 ξ +
 0

1/J

u (3.33b)

φ1 := ξ1(0) = 0, φ2 := ξ2(0) = 0 (3.33c)
φ3 := ξ2(tf) = 0 (3.33d)
C1 := u− umax ≤ 0, C2 := − u− umax ≤ 0 (3.33e)

65

where k ∈ xp and u(t) ∈ xc. The results for this problem are shown in Fig. 3.4 for various
values of k including k∗ = 0.8547.

The OLC exhibits bang-bang behavior [20, 104], i.e., u is at either the minimum or max-
imum value. Using the control stationarity condition in Eqn. (3.14b), we can show directly
that the Hamiltonian is minimized if u exhibits bang-bang behavior, but determining the
locations of the switching is quite challenging. In a nested strategy, the number and location
of the switches vary for different values of k (see Fig. 3.4c containing five switches while the
optimal co-design solution only contains one switch in Fig. 3.4b). This is a direct example of
the discussion in Sec. 3.3.1 motivating the using of DT in co-design (see Sec. 3.3.1.1). The
nested co-design solutions were found using DT formulated as a QP with both the composite
quadrature and defect constraints based on the trapezoidal rule [25, 95, 96].

TP3 is an attractive TP as the closed-form solution for the simultaneous strategy can be
computed to a high degree of accuracy, and it exhibits challenging behavior associated with
inequality path constraints.

3.5 Summary
In this chapter, general combined plant and controller design (or co-design) problems were
examined. A large portion of existing co-design theory has focused on specific DO for-
mulations, leaving many open questions for co-design studies that do not fit the previous
definitions.

There are two basic co-design solution strategies: simultaneous and nested. The problem
formulations for both strategies were presented and a discussion of the formulation elements
was provided. The nested strategy was presented as two-level optimization problem including
a characterization of the differences in the feasibility region between the two strategies. This
motivated the outer-loop feasibility constraint as one approach for ensuring that for every
candidate plant design, the control subproblem is well-posed.

The natural next step was the presentation of the optimality conditions for both methods.
For the simultaneous strategy, the optimality conditions were derived using only Pontrya-
gin’s minimum principle and an augmented state vector. Due to a number of challenges
associated with the optimality conditions, practical solution considerations were discussed
with a focus the motivating reasons for using DT in co-design (e.g., the activity of inequal-
ity path constraints). Finally, three test problems were presented. These problems were
fairly simple but highlighted a number of key concepts including coupling, the difference

66

between the feasible regions for each strategy, general boundary conditions, inequality path
constraints, system-level objectives, and complexity of the closed-form solutions.

This chapter seeks to provide a foundation for additional advances in general co-design the-
ory. The outer-loop feasibility constraint warrants further investigation. Better comparisons
between the two strategies are needed, especially for co-design problems without a specific
form of the inner loop. Developing methods for reducing total computational expense is
also an important area such as the suggestion in Ref. [112] for treating plant variables like
dummy states (or control) or alternative general strategies such decentralized optimization
[85, 116]. Finally, development of test problems that are more realistic could help answer
some of the open questions.

67

Chapter 4

Scaling of Dynamic Optimization Formulations11

“Behind complexity, there is always simplicity to be revealed.
Inside simplicity, there is always complexity to be discovered.”

G. Yu [117]

4.1 Introduction
Dynamics play an increasingly important role in the advancement of many complex engi-
neering systems [21]. The primary goal of design studies is to find solutions and gain a
general understanding of the design trade-offs, building design knowledge for the particular
system. Here we show how scaling can facilitate finding accurate, generalizable, and intuitive
information for the design problem at hand.

At a basic level, scaling is simply the stretching, squeezing, and shifting of the problem
elements and this can include the time continuum, design variables, constraints, objective
function, etc. For example, if we have the inequality constraint ax ≤ b and b > 0, then
we can arrive at an equivalent scaled constraint ρx ≤ 1 where ρ = a/b. The mechanics of
scaling are fairly straightforward but proper utilization of scaling is heavily reliant on the
creativity and intuition of the designer [118]. This barrier may be one of the reasons why
scaling is often overlooked, but these manipulations can help define problem formulations
that are 1) better suited for analysis and 2) more favorable for solution methods (e.g., higher
quality solutions and faster convergence). In this chapter, we provide the necessary theory
to scale dynamic optimization (DO) problems and some examples of how to use scaling in
the context of a design study.

First, we review some of the previous uses of scaling focusing on examples relevant to
obtaining solutions and the analysis of engineering design problems. Some of these examples

11Elements of this chapter are based on work completed in Ref. [115].

68

are quite well-established, while others are rarely used. The context that all the examples
provide is crucial for defining the most useful scaling procedure for a particular design prob-
lem. Some authors state that the importance of scaling can only be fully appreciated through
examples [119].

4.1.1 Previous Uses of Scaling
One of the primary uses of scaling is to reduce the number of parameters in a set of equations
[118–120]. Under certain conditions, algebraic manipulations can lead to a reduced set of
parameters (e.g., consider the example above where now ρ is the only parameter). Bucking-
ham’s Pi theorem is one well-known method for reducing the number of parameters, which
applies constraints on the mathematical interaction of the fundamental units of the system
and does not necessarily need a specific mathematical expression of the system (e.g., the
equations of motion) [118, 119, 121]. However, this approach does not necessarily lever-
age the equations of motion nor does it directly consider the numerical aspects of finding
approximate solutions to the system of equations.

Another common use for scaling is to determine characteristic properties of the system.
These properties may be scalars or functions. Characteristic scalars are well studied in
many engineering domains such as fluid dynamics and heat transfer [120]. An example of
such a scalar is the Reynolds number, a dimensionless constant that relates inertial forces
to viscous forces within a fluid [120]. Other examples include intrinsic resonance frequency,
length, damping, or time constant. Such characteristic properties can be conceptually easier
to understand [118]. These properties may be well understood for classical domains but for
others, these characteristic properties may be the key to building the required knowledge of
the system.

In dynamic or spatially-defined systems, it can be advantageous to scale entire continuous
functions. For example, for an initial value problem, characteristic solutions to the differential
equation can be obtained that scale linearly with the initial condition [118]. Under certain
conditions, even the solution to optimization problems can be scaled for different parameter
values. There are some potentially restrictive issues with directly scaling optimal solutions
that are discussed in Ref. [122].

The central tool in many design studies is design optimization. Frequently, the solution of
a single optimization problem is not sufficient to address the complicated nature of a design
activity. This typically leads to variations on the problem formulation elements (e.g., para-
metric sweeps of the problem’s parameters). Both reducing the number of parameters and

69

obtaining scalable solutions can greatly improve this process.
Scaling can also be used to help decide if certain parts of a model or optimization formula-

tion are small, and therefore negligible in a consistent manner [118, 123]. This can help with
developing asymptotic solutions to differential equations, reveal multiple-time-scale struc-
tures, and simplify simulations, stability analysis, and controller design [123]. With respect
to optimization formulations, scaled forms of the constraints can help determine if certain
constraints are likely to be active or inactive based on the magnitude of their scaled forms
[105].

One common motivation for scaling in optimization is to change the order of magnitude of
the variables and constraints to be more favorable for computation [97, 105]. Large order of
magnitude differences in either the variables or function values can produce ill-conditioned
matrices such as Jacobians and Hessians; thus, algorithmic calculations may become unstable
or inefficient [105]. Systematic preconditioning methods have been developed to scale special
cases of problem elements such as linear constraints [124, 125]. This has been observed to
be especially important in DO to ensure robustness and accuracy [95, 97]. Some automatic
scaling procedures have been developed to help alleviate some of the computational issues
associated with solving dynamic optimization problems [97].

Scaling has also been directly included in some design studies. In Ref. [122], the author
develops a method for assessing the importance of scaling laws in design optimization and
approximate similitude metrics for obtaining dynamically similar optimal solutions. There
have been a number of interesting examples of controller design that utilizes scaling, including
Refs. [126, 127], but are typically limited to linear feedback controllers. Additionally, in
Ref. [18], the authors utilized scaling to understand the trends found in the solutions to
a more complete optimization formulation (and this example will be discussed in detail in
Sec. 4.3.1).

Some final uses include performing scaled tests [118, 120] and checking for dimensional
homogeneity [120]. All of the examples provide a rich history of scaling in engineering
activities.

70

4.1.2 Dynamic Optimization
In this chapter, we consider design optimization problems that are well-posed as the following
DO problem:

min
u,p

∫ tf

t0
L (t, ξ,u,p) dt +M (ξ(t0), ξ(tf),u,p) (4.1a)

subject to: ξ̇ − f (t, ξ,u,p) = 0 (4.1b)
C (t, ξ,u,p) ≤ 0 (4.1c)
φ (ξ(t0), ξ(tf),p) ≤ 0 (4.1d)

where the optimization variables are p (time-independent variables) and u (open-loop control
variables), t is the time continuum defined between t0 and tf , and ξ are the states. The
objective function in Eqn. (4.1a) is in Bolza form where L is the Lagrange (running cost)
term and M is the Mayer (terminal cost) term. Equation (4.1b) enforces the dynamics
modeled as a first-order ordinary differential equation (ODE), Eqn. (4.1c) enforces any time-
varying path constraints, and Eqn. (4.1d) enforces any time-independent constraints.

There are two approaches for finding solutions to Prob. (4.1). Indirect methods utilize
the optimality conditions of the infinite-dimensional DO problem [95, 96, 104]. It can be
quite challenging (or impossible) to solve these equations analytically. Therefore, numerical
methods are often employed that provide approximate solutions to the original problem. The
alternative solution methods are known as direct methods [95, 96]. Instead of stating the op-
timality conditions, the control and/or state are parametrized using function approximation
and the objective function is approximated using numerical quadrature. This creates a dis-
crete, finite-dimensional problem that then is optimized using large-scale nonlinear program
(NLP) solvers [25, 95–97]. Scaling can be advantageousness for both methods.

The optimality conditions will be important when scaling DO formulations and are the
same optimality conditions for the simultaneous co-design method in Eqn. (3.18).

4.2 Theory of Scaling Dynamic Optimization Formulations
Now the theory of scaling DO formulations is presented with examples to help illustrate the
concepts. The basics are described first, which are applicable to sets of differential-algebraic
equations (DAEs). Second is scaling in the context of optimization formulations.

71

4.2.1 Scaling Basics
The first step when scaling a set of equations is to introduce a change of variables. Here we
consider linear scaling with:

x = αxx̄+ βx (4.2a)
y(x) = αyȳ(x) + βy (4.2b)

where x is an independent variable, y is a dependent variable, {x̄, ȳ} are the new dimension-
less variables, and {αx, βx, αy, βy} are the user-defined scaling constants. The only restriction
on the scaling constants is α 6= 0 to avoid an ill-defined mapping between the scaled and
original variables. Other types of scaling are possible [128] but the linear scaling rule often
proves to be suitable for DO.

To substitute higher-order derivatives properly, we need to consider the chain rule and
linearity of differentiation [129]:

dny

dxn
= αy
αnx

dnȳ

dx̄n
(4.3)

where n is the order of the derivative. If integrals are present, we can use integration by
substitution when changing the integral limits [129]:∫ xf

x0
f(x)dx = αx

∫ x̄f

x̄0
f(αxx̄+ βx)dx̄ (4.4)

where f(x) is some function and the integration limits have been shifted from {x0, xf} to
{x̄0, x̄f}. With this small set of formulas, we can apply scaling to all the problem elements
of Prob. (4.1).

The original system of DAEs can have problem parameters, denoted ρ. Through suitable
choices of scaling variables, every system of DAEs with dimensional homogeneity (i.e., the
dimensions on the left and right sides are the same) can be transformed into a dimensionless
set of DAEs [118]. This will lead to the creation of dimensionless parameters, denoted
ρ̄, and will prove quite important as they are critical to many of the uses discussed in
Sec. 4.1.1. These dimensionless quantities can be the same as the dimensionless quantities
derived by using Buckingham’s Pi theorem [118, 119, 121]. Here we assume that all equations,
inequalities, and inequations have dimensional homogeneity.

72

4.2.1.1 Example: Spring-Mass System

To illustrate the concepts of the previous section, we apply scaling to a simple spring-mass
system. The first step is to write down the equations and assumptions:

mÿ(t) + ky(t) = 0 (4.5a)
y(t0) = y0, ẏ(t0) = v0 (4.5b)
m, k > 0, y0 6= 0 (4.5c)

In this system, the independent variable is t and the dependent variable is y. Now consider
the following change of variables based on simple scaling in Eqn. (4.2):

t = αtt̄+ βt, y(t) = αyȳ(t) (4.6)

The higher-order derivatives, using Eqn. (4.3), are then:

dy(t)
dt

= αy
αt

dȳ(t̄)
dt̄

,
d2y(t)
dt2

= αy
α2
t

d2ȳ(t̄)
dt̄2

(4.7)

We are free to choose the scaling constants so let’s first look at the system of DAEs with
the substitutions applied:

m
αy
α2
t

d2ȳ(t̄)
dt̄2

+ kαyȳ(t̄) = 0 (4.8a)

αyȳ

(
t0 − βt
αt

)
= y0,

αy
ct

dȳ

dt̄

(
t0 − βt
αt

)
= v0 (4.8b)

We can perform some algebraic manipulations to make the left-hand side of the equations
have unity coefficients:

d2ȳ(t̄)
dt̄2

= −kα
2
t

m
ȳ(t̄) (4.9a)

ȳ

(
t0 − βt
αt

)
= y0

αy
,

dȳ

dt̄

(
t0 − βt
αt

)
= αtv0

αy
(4.9b)

Now, consider the following choice of the scaling constants:

αt =
√
m

k
, βt = t0, αy = y0 (4.10)

Then the scaled system of DAEs is:

d2ȳ(t̄)
dt̄2

= −ȳ(t̄) (4.11a)

73

independent variable

d
ep

en
d
en

t
v
ar

ia
b
le

Figure 4.1: Spring-mass system with parameter values k = 4, m = 2, y0 = 3, v0 = −3,
t0 = 1, and tf = 11.

ȳ (0) = 1, dȳ

dt̄
(0) = v0

y0

√
m

k
:= ρ̄1 (4.11b)

We see that this choice of constants results in a differential equation with unity coefficients.
The original system had five parameters, but this scaled system now has only one, denoted ρ̄1,
and is dimensionless. Furthermore, the initial position does not depend on any parameters.
The scaling constant αt =

√
m/k is typically referred to as the characteristic time constant

for this system (also known as the reciprocal of the natural frequency).
Both the scaled and original solutions to this initial value problem are shown in Fig. 4.1.

We see the stretching, squeezing, and shifting of the trajectory based on the scaling rules.
The scaled trajectory might be more favorable to numerical approximation methods since
the average magnitude of its derivative is closer to unity and consistent across the range of
parameter values.

4.2.2 Scaling Dynamic Optimization Problems
We first denote the original problem formulation as P with optimality conditions O and
optimal solution x∗. Now the scaled formulation is denoted P̄ with optimality conditions Ō
and optimal solution x̄∗. For each problem, there may be problem parameters each denoted
ρ and ρ̄, respectively. The optimization variables are related with the scaling function S:
x = S(x̄,ρ) where for each optimization variable, a linear scaling law defined in Eqn. (4.2)
exists that may depend on the problem parameters. Now for a given value of ρ, the optimal
solution to the two problems are clearly equivalent: if x∗ solves P , then x̄∗ = S−1(x∗,ρ)
solves P̄ ; if x̄∗ solves P̄ , then x∗ = S(x̄∗,ρ) solves P [128].

74

In some design studies, finding the optimal solution with respect to a single set of param-
eter values is sufficient to complete the design task. However, many require solutions that
vary with respect to the parameters, i.e., x∗(ρ) for various values of ρ. We can utilize the
scaled problem in this task. If we are given two sets of parameters, ρ1 and ρ2, such that
ρ̄1 = ρ̄2, then we can determine the optimal solution with respect to ρ2 utilizing the solution
found with ρ1:

x∗(ρ2) = S(x̄∗(ρ̄1),ρ2) (4.12)

The condition that ρ̄1 = ρ̄2 is potentially restrictive [122], but it also can be quite useful.
This implies that we only need to generate solutions for all relevant values of ρ̄ rather than
ρ, which is favorable since typically ρ̄ contains fewer elements that the original ρ.
Additional scaling might be possible depending on what can be discerned from the activity

of the inequality constraints [105] but will be problem dependent. If certain constraints are
found to be inactive for particular ranges of the problem parameters and the reduced form
of the original optimization problem eliminates any dependence on a particular parameter,
then solutions may be scaled irrespective of that parameter (as long as the inactivity holds in
the original problem). In DO, there may be infinite-dimensional path constraints where de-
termining the activity can be challenging (one of the primary motivations for direct methods
[32]). This may lead to solutions that are widely different for minor changes in the problem
parameters, so scaling must be done carefully (this is shown in the example in Sec. 4.3.1).

To determine how the optimality conditions are related between the original and scaled
problems, additional scaling constants for the multipliers need to be introduced. Then the
correct values for these scaling constants must be determined such that a map is known
between O and Ō.

The relationships between the optimization formulations, optimality conditions, and opti-
mal solutions for both the original and scaled problems are shown in Fig. 4.2. These relations
will be discussed in the context of different paths that may be taken to obtain solutions to
a particular DO problem. Consider first the standard case where the original problem is
proposed and then an optimal solution is found (e.g., using direct transcription (DT) and
an NLP solver):

P → x∗

An alternative is to utilize the optimality conditions in Eqn. (3.18) to obtain an analytical

75

Figure 4.2: Relationships between the optimization formulations, optimality conditions,
and optimal solutions for both the original and scaled problems.

solution or using a numeric indirect method:

P → O → x∗

Now using scaling, we could instead transform to P to P̄ , and solve the scaled problem.
Then the scaled solution can be mapped back to obtain the original problem’s solution:

P → P̄ → x̄∗ → x∗

The key here is that x̄∗ can be used to generate multiple x∗ using Eqn. (4.12). One final
approach that may yield the most information from the scaling procedure is utilizing the
optimality conditions:

P → O → Ō → P̄ → x̄∗ → x∗

With this approach, all of the suggestions in this section can be explored such as constraint
activity.

The following section will use the theory in this section to illustrate scaling in DO with
some motivating examples.

4.3 Motivating Examples
In this section, a number of examples of scaling in DO are presented. Some examples
have direct application to existing design problems while others provide a more conceptual
illustration. The examples in this section and the many uses described in Sec. 4.1.1 provide
a strong foundation for using scaling in novel DO design problems.

76

original system simplified system

bus

solar array

solar array

Figure 4.3: Illustrations of original and simplified strain-actuated solar array systems in
Sec. 4.3.1.

4.3.1 Example 1: Simple SASA Problem
This first example was developed to better understand the observed trends from an existing
design study (for full details see Chapter 7). The co-design study focused on developing a
novel strain-actuated solar array (SASA) system for spacecraft pointing control and jitter
reduction [18]. In this system, distributed piezoelectric actuators were used to strain the
solar arrays, causing reactive forces that could be used to control the bus (spacecraft body)
with higher precision, higher bandwidth, and reduced vibrations.

The observed trend was an optimal constant ratio between the natural period of the first
mode, T1, and time allotted for performing the maneuver, tf (which is visualized in Fig. 10
of Ref. [18]). There was much discussion on why this ratio seemed to be constant and if
there was any significance to the value of this optimal ratio (approximately T1/tf = 4.41).
To help provide some insight into these questions, a much simpler, but still representative,
design problem was proposed. In Fig. 4.3, both the original and simplified SASA systems
are visualized. The simplified system modeled many of the fundamental phenomena present
in the original high-fidelity system using a small number of lumped parameters.

The problem formulation for the simplified system is:

min
k,u(t)

− θ(tf) (4.13a)

subject to: Jθ̈(t) + kθ(t) = u(t) (4.13b)
θ(0) = θ̇(0) = 0 (4.13c)
θ̇(tf) = 0 (4.13d)
|u(t)| ≤ umax (4.13e)

where θ is the relative displacement of the bus, J is related to the inertia ratio between the
solar arrays and bus, u is an open-loop control moment applied to the solar array and is
bounded by umax, and k is the stiffness in the solar array. The boundary constraints enforce

77

the system to start at rest with zero energy and end at rest. The optimization variables are
both k and u(t). Scaling can be applied to help analyze this DO problem.

4.3.1.1 Standard Form

First, we write the original DO problem in Eqn. (4.13) the standard form:

min
k,u(t)

− ξ1(tf) (4.14a)

subject to: ξ̇ =
 0 1
−k/J 0

 ξ +
 0

1/J

u (4.14b)

φ1 := ξ1(0) = 0, φ2 := ξ2(0) = 0 (4.14c)
φ3 := ξ2(tf) = 0 (4.14d)
C1 := u− umax ≤ 0, C2 := − u− umax ≤ 0 (4.14e)

where: ξ1 = θ, ξ2 = θ̇ (4.14f)

The Hamiltonian is then:

H = λ1ξ2 + λ2

(
−k
J
ξ1 + u

J

)
+ µ1 (u− umax) + µ2 (−u− umax) (4.15)

Now using the conditions in Eqn. (3.18), the additional conditions for optimality are:

λ̇1 = k

J
λ2, λ̇2 = −λ1 (4.16a)

0 = λ2

J
+ µ1 − µ2 (4.16b)

0 = µ1 (u− umax) , µ1 ≥ 0, 0 = µ2 (−u− umax) , µ2 ≥ 0 (4.16c)
0 = ν1ξ1(0), ν1 6= 0, 0 = ν2ξ2(0), ν2 6= 0 (4.16d)

0 = ν3ξ2(tf), ν3 6= 0 (4.16e)
0 = λ1(0)− 1 + ν1, 0 = λ2(0) + ν2 (4.16f)

0 = λ1(tf), 0 = λ2(tf)− ν3 (4.16g)

0 =
∫ tf

0
λ2
ξ1

J
dt (4.16h)

78

4.3.1.2 Scaled Form

Consider the following change of variables based on linear scaling described in Sec. 4.2.1:

t = αtt̄, u(t) = αuū(t), θ(t) = αθθ̄(t) (4.17)

Next, the differential equation in Eqn. (4.13b) is parameterized as:

J
αθ
α2
t

d2

dt̄2
θ̄ + kαθθ̄ = αuū⇒

d2

dt̄2
θ̄ := θ̄′′ = −kα

2
t

J
θ̄ + αuα

2
t

Jαθ
ū (4.18)

The three parameters in the problem are {J, umax, tf}. There are three scaling constants to
choose. The following points are considered when deciding how to scale the problem based
on some previous intuition:
• Since all initial and final state conditions are zero, we should not start with αθ
• The time horizon should be fixed, i.e., independent of tf
• The magnitude of the control force should be unity to remove dependence on umax

• It is fine to have k multiplied by some constants since k is an optimization variable
and is not directly constrained
• The natural period of this second-order system is T = 2π

√
J/k

With these considerations, we select the values of the scaling parameters as:

αt = tf
2π , αu = umax, αθ =

umaxt
2
f

4π2J
(4.19)

Note that the horizon is now fixed between 0 and 2π. Therefore, the scaled optimization
problem is:

min
k,ū(t̄)

−
umaxt

2
f

4π2J
θ̄(2π) (4.20a)

subject to: θ̄′′ = −
kt2f

4π2J
θ̄ + ū (4.20b)

θ̄(0) = θ̄′(0) = 0 (4.20c)
θ̄′(2π) = 0 (4.20d)
|ū(t̄)| ≤ 1 (4.20e)

The scaled problem has two dimensionless quantities:

ρ̄1 =
kt2f

4π2J
≡

t2f
T 2 , ρ̄2 =

umaxt
2
f

4π2J
(4.21)

First, we have
√
ρ̄1 = tf/T , the exact ratio we are investigating. We also have ρ̄1 as the only

79

part of the formulation that depends on k and since there are no constraints on k, we are
effectively designing the quantity ρ̄1 directly. Second, ρ̄2 is a positive constant linear factor
in the objective function, so it will not affect the nature of the solutions [128], and it can be
removed temporarily from the scaled formulation. Therefore, the formulation is equivalent
to the following DO problem in the standard form:

min
ρ̄1,ū(t̄)

− ξ̄1(2π) (4.22a)

subject to: ˙̄ξ =
 0 1
−ρ̄1 0

 ξ̄ +
0

1

 ū (4.22b)

φ1 := ξ̄1(0) = 0, φ2 := ξ̄2(0) = 0 (4.22c)
φ3 := ξ̄2(2π) = 0 (4.22d)
C1 := ū− 1 ≤ 0, C2 := − ū− 1 ≤ 0 (4.22e)

The dependence on the parameters ρ = {J, umax, tf} has been removed completely; therefore,
finding the single solution, x̄∗, to this scaled formulation will give all solutions for any valid
ρ! We have also derived relationships to indicate how different values for these parameters
directly affect the solution, i.e., the function S.

4.3.1.3 Equivalence of the Optimality Conditions

It is still illustrative to show that there is a linear mapping between the O and Ō for
Probs. (4.14) and (4.22). The Hamiltonian for the scaled problem is:

H̄ = λ̄1ξ̄2 + λ̄2
(
−ρ̄1ξ̄1 + ū

)
+ µ̄1 (ū− 1) + µ̄2 (−ū− 1) (4.23)

We expect some scaling of the multipliers between the two problems so we will define a
scaling rule for each:

λ1 = αλ1λ̄1, λ2 = αλ2λ̄2, µ1 = αµ1µ̄1, µ2 = αµ2µ̄2

ν1 = αν1 ν̄1, ν2 = αν2 ν̄2, ν3 = αν3 ν̄3
(4.24)

To determine the proper values of the scaling constants, we need to substitute the change of
variables into the optimality conditions in Eqn. (4.16):

αλ1

αt

˙̄λ1 = k

J
αλ2λ̄2,

αλ2

αt

˙̄λ2 = −αλ1λ̄1 (4.25a)

0 = αλ2

λ̄2

J
+ αµ1µ̄1 − αµ2µ̄2 (4.25b)

80

0 = αµ1µ̄1 (αuū− umax) , αµ1µ̄1 ≥ 0 (4.25c)
0 = αµ2µ̄2 (−αuū− umax) , αµ2µ̄2 ≥ 0 (4.25d)

0 = αν1 ν̄1αθξ̄1(0), αν1 ν̄1 6= 0 (4.25e)

0 = αν2 ν̄2
αθ
αt
ξ̄2(0), αν2 ν̄2 6= 0 (4.25f)

0 = αν3 ν̄3
αθ
αt
ξ̄2(2π), αν3 ν̄3 6= 0 (4.25g)

0 = αλ1λ̄1(0)− 1 + αν1 ν̄1, 0 = αλ2λ̄2(0) + αν2 ν̄2 (4.25h)
0 = αλ1λ̄1(2π), 0 = αλ2λ̄2(2π)− αν3 ν̄3 (4.25i)

0 = αt

∫ 2π

0
αλ2λ̄2

αθξ̄1

J
dτ (4.25j)

With the substitution applied, Eqn. (4.25) above should match the optimality conditions for
Prob. (4.22) exactly. This is accomplished with the following relationships:

αλ1 = αν1 = 1, αλ2 = αν2 = αν3 = Jαµ2 = Jαµ2 = αt (4.26)

Thus, a simple linear map exists between the optimality conditions between the original and
scaled forms. The two Hamiltonians are related by12:

H = αθαtH̄ (4.27)

4.3.1.4 Bounded Period

An additional inequality was necessary to explain further the observed results from the
original study. This constraint was in the form of a bound on the period:

T = tf√
ρ̄1
≤ Tmax (4.28)

which can be written as:
t2f
T 2

max
− ρ̄1 := ρ̄3 − ρ̄1 ≤ 0 (4.29)

where ρ̄3 is an additional dimensionless parameter. We can denote ρ̄†1 as the optimal value
for ρ̄1 without the additional constraint in Eqn. (4.29). If ρ̄3 < ρ̄†1, then the constraint is
inactive, and the previous solution is valid. However, if ρ̄3 ≥ ρ̄†1, then the constraint is

12Using the objective−ρ̄2θ̄(2π), the relationship isH = α2
θαtH̄ with all multipliers containing an additional

αθ term.

81

time

p
o

si
ti

o
n

(a) θ(t) and θ̄(t̄).
time

c
o

n
tr

o
l

(b) u(t) and ū(t̄).

Figure 4.4: Scaled and unscaled solutions for the simple SASA problem with umax = 0.5,
tf = 3, J = 3.

active and we would need to find solutions for every required value of ρ̄3 since the form
of the optimal control will vary for each value of ρ̄3. In this problem, the control remains
bang-bang in nature but the number of switches increases and the switching locations vary
(see Fig. 4.4b).

4.3.1.5 Solution

With the optimization problem, optimality conditions, and optimal solutions thoroughly
characterized, we can compare this simple SASA problem to the original design study in
Ref. [18]. Both the scaled and unscaled solutions for the simple SASA problem without the
additional bound on the period being active are shown in Fig. 4.4. There are a number of
similarities between the trajectories in Ref. [18] and in Fig. 4.4, including the bang-bang
nature of the control when the period constraint is not active, and the general shape of the
bus angle trajectories.

The primary comparison is Fig. 4.5, which includes the results from Fig. 10 of Ref. [18].
The figure plots the natural period of the first mode vs. tf . There is an observed linear trend
until a period limit seems to be reached. This is present for both design representations used:
piecewise linear segments (PLS) and variable length (VL). Both of these representations can
change the structural properties of the solar array. Although it is tough to see in the figure,
there are coinciding data points at tf = 0.12 s for both cases indicating that there is a similar
optimal value for T1 (and ratio).
Observing Fig. 4.5, there is a direct parallel between the data points and the simple SASA

82

n
at

u
ra

l
p
er

io
d
 o

f
1
st

 m
o
d
e

VL fit

VL results

PLS fit

PLS results

simple SASA

Figure 4.5: Natural period vs. tf results for the simple SASA problem and original design
study in Chapter 7.

problem. For the scaled problem, ρ̄†1 = 0.0866 while the results from Ref. [18] indicate ρ̄1

should be approximately 0.0513. The difference may be attributed to the representation and
constraints in the original design study. Initial discussions of the results tried to pin the ratio
tf/T1 to 1/4 due to the periodic resonance of a simple beam. However, the simple SASA
problem suggests that this ratio is simply an arbitrary constant dependent on the interaction
between the bang-bang controller and dynamics. Continuing with the comparisons, the Tmax

bound seems to equal about 2.19 s for the PLS case and 0.69 s for the VL case. If the
physical-system constraints could be lifted, we have a reasonable prediction for how T1

should vary.
This example illustrated how scaling can be utilized effectively to obtain insights in a

design study.

4.3.2 Example 2: Co-Design Transfer Problem
In this example, we will use scaling to transform a co-design problem into a form with a
known solution13. Consider the following co-design problem:

min
k,u(t)

∫ tf

0
u2dt (4.30a)

subject to: ÿ = −ky + u (4.30b)
y(0) = y0, ẏ(0) = v0, y(tf) = 0, ẏ(tf) = 0 (4.30c)

13This problem was also used in Sec. 3.4.2.

83

o
b
je

ct
iv

e

(a) Objective function values.

(b) u∗(t, k) for various values of k. (c) y∗(t, k) for various values of k.

Figure 4.6: Co-design transfer problem with tf = 1, x0 = 1, and v0 = 2 (with k∗ = 6.924).

where k is the time-independent, physical-system design variable and u(t) is the open-loop
control design variable. Through scaling, we can transform Prob. (4.30) above into the
problem in Ref. [104, pp. 166–167]. To accomplish this, consider the following change of
variables:

t = αtt̄, u = αuū (4.31)

We choose the following values for the scaling constants:

αt = 1√
k
, αu = k (4.32)

where k > 0. The case for k = 0 needs to be handled separately. Substituting in these

84

scaling laws results in the following problem formulation:

min
k,ū(t̄)

k3/2
∫ t̄f

0
ū2dt̄ (4.33a)

subject to: y′′ = −y + ū (4.33b)
y(0) = y0, y′(0) = v̄0 (4.33c)
y(t̄f) = 0, y′(t̄f) = 0 (4.33d)

where: t̄f =
√
ktf , v̄0 = v0/

√
k (4.33e)

The solution to Prob. (4.33) above is readily available in Ref. [104]. Using this result
and applying the scaling rules in Eqn. (4.31), we obtain the following solution for u(t) as a
function of k:

u∗(t, k) = − 2k
kt2f − sin2(

√
ktf)

(
c1(t, k)x0 + c2(t, k) v0√

k

)

c1(t, k) = sin
(√

k(tf − t)
)

sin
(√

ktf
)
−
√
ktf sin

(√
kt
)

c2(t, k) = − cos
(√

k(tf − t)
)

sin
(√

ktf
)

+
√
ktf cos

(√
kt
) (4.34)

For certain problem parameter values, the solution for various values of k is shown in Fig. 4.6.
The original objective function can now be computed analytically with Eqn. (4.34). With
this closed-form expression for the objective function, an optimality condition for k can be
derived. This property makes this problem quite suitable for investigations between nested
and simultaneous co-design methods and can be used to illustrate a number of concepts
found in many co-design problems (such as open-loop control, multiple optima, degenerate
plant designs, and a system-level objective function) [32].

For many DO problems, obtaining a closed-form solution for a portion of the design
variables may not be possible. Observing different (but equivalent) forms of the same design
optimization formulation can facilitate a better understanding of the design problem. In this
example, we see that for larger values of k, the scaled problem has a larger time horizon but
smaller initial velocity.

In addition, these different forms may be more suitable computation depending on the pa-
rameter values. In this example using the original Prob. (4.30) formulation, large values of k
would result in highly oscillatory solutions. With the time-horizon fixed, large discretization
errors would start appearing in the solutions with a fixed number of time points if a DT
solution method was utilized. This helps motivate the final example.

85

4.3.3 Example 3: Direct Transcription Discretization
DT is a popular solution method for solving DO problems and is described in more detail
in Chapter 5 [21, 27, 95, 96]. In this approach, the dynamics are approximated with a large
number of equality constraints, termed defect constraints. Equality constraints in a NLP
are typically of the form h(x) = 0. However, most numerical algorithms implement this
constraint type as two inequality constraints as:

−ε ≤ h(x) ≤ ε (4.35)

where ε is a small tolerance number (e.g., the default tolerance in Matlab’s fmincon func-
tion is ε = 10−6 [130]). In this example, we will demonstrate how the absolute magnitudes
of the state variables can greatly degrade direct transcription approximations.

Consider the simple scalar system:

ẏ = ay, y(0) = y0 (4.36)

where the solution to this set of DAEs is ŷ(t) = y0e
at. We can introduce a change of variables

as:

t = αtt̄, y = αyȳ

where the scaling constants are αt = |a| and αy = y0, resulting in the following scaled system:

ȳ′ = ȳ, ȳ(0) = 1 (4.37)

We can now see how the relative error is influenced by the different systems.
A basic single-step DT method is the trapezoidal rule and the defect constraint that

ensures accurate dynamics has the following form for a scalar ODE:

0 = yk − yk−1 −
∆k

2

(
f(tk−1, yk−1) + f(tk, yk)

)
(4.38)

where yk is the approximate value of y(t) at tk, ∆k = tk − tk−1 is the step-size parameter,
and f(tk, yk) is the value of the derivative function at tk.
We will consider the initial step, i.e., k = 1. Then the DT constraint for Eqn. (4.36) is:

0 = y1 − y0 −
∆1

2 (ay0 + ay1) (4.39)

Using the tolerances in Eqn. (4.35), we can derive the minimum and maximum values for

86

m
a
x
 a

b
s
o
lu

te
 r

e
la

ti
v

e
 e

rr
o

r

(a) y0 = 10−6 and a = 2.

m
a
x
 a

b
s
o
lu

te
 r

e
la

ti
v

e
 e

rr
o

r

(b) y0 = 102 and a = −1.

Figure 4.7: Maximum absolute relative error vs. step size for original and scaled defect
constraints.

y1 that still satisfy the constraint:

(1 + ∆1a/2) y0 − ε
(1−∆1a/2) ≤ y1 ≤

(1 + ∆1a/2) y0 + ε

(1−∆1a/2) (4.40)

Alternatively, the bounds for ȳ1 are:

(1 + sign(a)∆1/2)− ε
(1− sign(a)∆1/2) ≤ ȳ1 ≤

(1 + sign(a)∆1/2) + ε

(1− sign(a)∆1/2) (4.41)

The relative error is defined as:

er = y1 − ŷ1

ŷ1
= y1 − y0e

at1

y0eat1
, ēr = ȳ1 − esign(a)t1

esign(a)t1
(4.42)

Now, consider the following values for the problem and DT parameters: y0 = 10−6, a = 2,
ε = 10−6, ∆1 = 10−3. For these values, we have the following relative error bounds:

−9.99× 10−1 ≤ er ≤ 9.99× 10−1 (4.43a)
−9.99× 10−7 ≤ ēr ≤ 9.99× 10−7 (4.43b)

We see that the er is quite poor using the original system while ēr is right around the
expected ε tolerance. Consider one more choice of parameters: y0 = 103, a = −1, ε = 10−6,
∆1 = 10−3 and error bounds:

−1.08× 10−9 ≤ er ≤ 9.13× 10−10 (4.44a)
−1.00× 10−6 ≤ ēr ≤ 1.00× 10−6 (4.44b)

87

Now we see that the relative error bounds are tighter than ε which could lead to numerical
issues. The scaled form, however, is still right around the ε tolerance. The maximum absolute
relative error vs. step size is shown in Fig. 4.7. From these plots, we see that for a sufficiently
small step size, the scaled system has error bounds near ε.

Both of these parameter sets show the importance of scaling the dynamics to be near unity
when using a DT implementation. Since DT implementations use a large number of linked
defect constraints, the errors can compound, potentially producing highly inaccurate results.
Additionally, scaling the time horizon provides a more uniform method for selecting ∆ to
achieve suitable accuracy without too many optimization variables (note that ∆1 = 10−3 for
ēr is quite good in both plots). Finally, scaling the states to be near unity is also produces
computationally favorable matrices (Hessian/Jacobians) and finite differencing [95, 97].

4.4 Summary
In this chapter, we explored scaling in DO with a particular focus on how to leverage scaling
in design optimization. A review of the large amount of work around scaling was provided.
The necessary theory for scaling DO formulations was presented and a number of novel
motivating examples were provided. Scaling was shown to help facilitate finding accurate,
generalizable, and intuitive information.

At a basic level, scaling is simply the stretching, squeezing, and shifting of the problem ele-
ments such as the time continuum, design variables, constraints, and objective function. The
unique structure of DO suggests that scaling can be utilized in novel ways to provide better
analysis and formulations more favorable for different solution methods. The mechanics of
scaling are fairly straightforward but proper utilization of scaling is heavily reliant on the
creativity and intuition of the designer. This nebulous qualification is the primary limitation
on the use of scaling. However, scaling is also limited by the scaling law chosen, the structure
of the problem, and the number of free parameters. Furthermore, scaling does not remove
optimization; we still need to solve some form of the optimization problem. Improper use
of scaling can lead to incorrect solutions/insights or amplification of numerical issues rather
than mitigation.

Aiding the designer in constructing the appropriate scaled formulations needs compelling
examples. In the simple SASA problem, scaling was used to understand observed results
from more complete, higher-fidelity design study. The simpler scaled optimization problem
and dimensionless variables provided a number of insights. In the second example, the so-

88

lution to a co-design problem was found by leveraging a scaled formulation with the known
solution. Observing different (but equivalent) forms of the same design optimization for-
mulation can facilitate a better understanding of the design problem. In the final example,
the discretization error of one of the popular solution methods (namely direct transcription)
for DO was explored. The scaled system showed much more favorable properties than the
original. Additional work is needed to develop general guidelines to aid in balancing the
many uses of scaling.

89

Chapter 5

Direct Transcription and Linear-Quadratic Dynamic
Optimization14

“Since all the effects of Nature follow a certain law of maxima or
minima, there is no doubt that, on the curved paths, which the bodies
describe under the action of certain forces, some maximum or
minimum property ought to obtain. What this property is, nevertheless,
does not appear easy to define a priori by proceeding from the principles
of metaphysics;”

L. Euler [132, p. 106]

Direct transcription is a solution strategy discussed briefly in Chapters 3 and 4 for finding
approximate solutions to dynamic optimization problems. This chapter focuses on a par-
ticular subclass that is relevant to the two case studies in Chapters 7 and 8. Both use the
nested co-design strategy from Chapter 3 so many control subproblems need to be solved
and efficiency is paramount. The methods developed in this chapter provide a single uni-
fied description to automatically generate and solve this class of problems, even if there are
different architectures with a varying number of states and controls.

5.1 Introduction
For more than half a century, dynamic optimization, or optimization with time-varying quan-
tities, has played an integral role in the advancement of many designed systems, including
applications in chemical engineering [96], aerospace engineering [95], wave energy conversion
[133], and finance/economics [134]. Nonlinear dynamic optimization (NLDO) represents
the most general class of problems [95, 96, 104]. A subclass of NLDO is linear-quadratic
dynamic optimization (LQDO) where certain elements of the formulation are limited to
quadratic and linear functions [20, 104, 135]. Frequently, LQDO formulations used in the

14Elements of this chapter are based on work completed in Ref. [131].

90

literature are only a subclass of the general LQDO problem. The key feature shared between
the LQDO formulations is that solutions may be found via an appropriate quadratic program
(QP), a particular class of finite-dimensional mathematical programs [128]. Here we present
a unified framework for LQDO that can be solved as QPs.

In addition to providing a clear delineation of the general LQDO problem class, we de-
velop an automated problem generation procedure (APGP) to form the QPs that represent
LQDO problems. Here we define an APGP as a procedure in which, given a natural and
manageable description of the problem, one can obtain a numerical solution with little or
no user expertise. A key to minimizing the amount of knowledge needed by the user is an
automated and efficient implementation of the various solution methods. Such procedures
are available for DO (e.g., gpops-ii [136], psopt [137], propt [138], sos [139], and dircol
[140]) but typically are developed for the more general NLDO problems and therefore cannot
effectively leverage the structure of LQDO. For the APGPs that handle LQDO problems,
they are limited to specific solution methods and problem formulations (e.g., mpt3 [141] and
mpc toolbox [142]). Manual implementation of these solution methods is still quite preva-
lent in the literature, perhaps due to the lack of the necessary tools which sufficiently address
the challenges of the particular class of problems. Additionally, a wide variety of compet-
ing solution methods exist, and comparisons between them cannot typically be performed
efficiently (especially if a manual implementation is needed). These issues limit productiv-
ity and the general reach of LQDO, but can be addressed using an APGP under a unified
framework for LQDO. In addition, this unified framework also provides additional insights
into the LQDO problem class and led to additional developments in the solution methods.

The remainder of the chapter is structured as follows. Section 5.2 presents the general
problem formulation for LQDO. Next, Sec. 5.2 discusses formulating LQDO problems as
QPs with direct transcription methods. Section 5.4 details the APGP which takes a natural
and manageable description of the problem and forms the QP. Section 5.5 outlines some
extensions to the original LQDO problem formulation. Section 5.6 assesses the APGP with
a number of numerical examples. Section 5.7 discusses various future work items.

5.2 Linear-Quadratic Dynamic Optimization
In this section, we begin by describing the general NLDO formulation and then a QP is
defined. Then, with an assumed property of the solution method, we will characterize the
LQDO formulation that supports solution via QPs.

91

5.2.1 General Nonlinear Dynamic Optimization
Dynamic-system design permits the optimization of: control trajectories, u(t); static pa-
rameters, p; and the time horizon defined by the boundary values t0 and tf . Written as an
infinite-dimensional mathematical program, the NLDO formulation is:

min
u(t),p,t0,tf

Ψ =
∫ tf

t0
L
(
t, ξ(t),u(t),p

)
dt+M

(
p, t0, ξ(t0), tf , ξ(tf)

)
(5.1a)

subject to: ξ̇(t)− f
(
t, ξ(t),u(t),p

)
= 0 (5.1b)

h
(
t, ξ(t),u(t),p, t0, ξ(t0), tf , ξ(tf)

)
= 0 (5.1c)

g
(
t, ξ(t),u(t),p, t0, ξ(t0), tf , ξ(tf)

)
≤ 0 (5.1d)

where Eqn. (5.1a) defines the objective function with Lagrange L and Mayer M terms.
Equation (5.1b) enforces the first-order ordinary differential equation (ODE) that describes
the dynamic behavior of the states ξ(t). Equation (5.1c) enforces the algebraic equality
constraints, and Eqn. (5.1d) enforces the algebraic inequality constraints. Most NLDO
problems only contain certain elements of this general formulation. Many presentations of
general NLDO reorganize Eqns. (5.1c)–(5.1d) by partitioning the constraints into those which
depend on time-varying quantities and those which do not. The time-varying constraints
are termed path constraints, and time-independent constraints termed boundary constraints
(as was done in Chapters 3 and 4) [25, 95, 96]. Some formulations also include the states as
optimization variables (primarily motivated by the eventual solution method and the states
are still constrained by Eqn. (5.1b)).

5.2.2 Quadratic Program
In this chapter, we are concerned with a subclass of Prob. (5.1) that can be solved numerically
as a finite-dimensional QP. A QP is defined as:

min
X

1
2XTHX + FTX + c (5.2a)

subject to: AeX = Be (5.2b)
AiX ≤ Bi (5.2c)
X ≤ X ≤ X (5.2d)

where X is the set of optimization variables, and all other terms in the formulation are
real-valued with no dependence on X. H is known as the Hessian matrix and is symmetric.

92

We note that the QP formulation in Prob. (5.2) is decidedly more structured than NLDO
formulation in Prob. (5.1). The optimal solution to a quadratic program exists and is
the global optimum if the objective is a convex quadratic function and the feasible set of
Prob. (5.2) is nonempty [143]. There are a variety of efficient algorithms for solving QPs,
including active-set [143], interior-point [144], and augmented Lagrangian [145] methods.

5.2.3 Linear-Quadratic Dynamic Optimization Problem Formulation
In this section, a subclass of Prob. (5.1) is defined that, when combined with a solution
method, can generate a QP in the form of Prob. (5.2) that approximates the infinite-
dimensional solution. There are two aspects that determine if a particular infinite-dimensional
problem can be formulated as QP: 1) the structure of the objective function and constraints
in Prob. (5.1), and 2) the solution method that approximates the infinite-dimensional prob-
lem as a finite one. To address the latter aspect, we will only consider order-maintaining
methods. An order-maintaining method, for example, would have the following property: if
a term is linear in the infinite-dimensional problem, then it will be approximated as a set
of variables that appear linearly in the finite-dimensional problem. An equivalent property
will need to be true for quadratic terms.

First, we denote the vector of optimization variables as:

x =

u

ξ

p

 (5.3)

Both elements of the time horizon are missing because they do not permit QPs (see Sec. 5.5.8).
In addition, the states are included to support proper analysis of the problem class and the
eventual solution methods. We also see ξ(t0) and ξ(tf) directly in the formulation, so we
define an expanded set of optimization variables as:

x̃ =
xc
xd

 where: xc =
u
ξ

 :=
x1

x2

 and xd =

p

ξ(t0)
ξ(tf)

 :=

x3

x4

x5

 (5.4)

where xc and xd are collections of the continuous (infinite-dimensional) and discrete (finite-
dimensional) optimization variables, and indexed variables xi are equivalent to the variable
in the same row in the vector directly to the left in the same equation (e.g., u := x1).

93

5.2.3.1 Linear Dynamics

A good place to start is with the dynamics expressed in Eqn. (5.1b) as it is a unique feature
of DO. An appropriate choice for the state dynamics is a linear nonhomogeneous differential
equation:

f = fQP := A(t)ξ(t) +B(t)u(t) +G(t)p+ d(t) (5.5)

where {A,B,G} are the linear time-varying (LTV) state/input/parameter matrices and
d(t) is a disturbance.

Many authors consider different variations on Eqn. (5.5). The simplest form is that of a
linear time-invariant (LTI) system: f = Aξ +Bu [146, 147]. The next most common form
is the LTV system without G or d [148]. The addition of the disturbance does appear in
a number of formulations [104, 149–152]. No general formulations are seen which include
p, but this may be due to the limited number of problems where p shows up linearly in f .
However, this demonstrates that even the simplest mixed parameter-control problems are
not LQDO problems [25]. A more general form is E(t)ξ̇ = fQP , known as descriptor form
[153, 154]. Here we will only consider that case where E is nonsingular so it may be written
as ξ̇ = E−1fQP .
One may be tempted to integrate this differential equation and would arrive at the follow-

ing:

ξ(t) = Φ(t, t0)ξ(t0) +
∫ t

t0
Φ(t, τ)

(
B(τ)u(τ) +G(τ)p+ d(τ)

)
dτ (5.6)

where Φ(t, τ) is the state-transition matrix which describes the dynamics of the homogeneous
system (i.e., the integral in Eqn. (5.6) is zero) [155]. The most general transition matrix is
given by the Peano-Baker series. However, if A is time-invariant, then the state-transition
matrix is eA(t−τ). Some solution methods will utilize these properties, but in general, the
differential equation is challenging to utilize directly.

5.2.3.2 Quadratic Objective Function

The QP objective function in Eqn. (5.2a) is a polynomial with degree two; therefore, we will
choose a general quadratic cost functional containing appropriate elements of x̃:

L = LQP :=
5∑
i=1

5∑
j=1
xT
iLij(t)xj

HL = x̃TLx̃

+
5∑
j=1
lTj (t)xj

FL = lTx̃

+ cL(t) (5.7)

94

M =MQP :=
5∑
i=3

5∑
j=3
xT
iM ijxj

HM = xT
dMxd

+
5∑
j=3
mT

jxj

FM = mTxd

+ cM (5.8)

where we require that Lij = LT
ji and Mij = MT

ji so that both are symmetric since H needs
to be symmetric. We note that the Mayer term only includes the discrete optimization
variables because including any element of xc would not result in a scalar quantity15.
The Lagrange and Mayer terms in Eqns. (5.7)–(5.8) include all possible time-varying

quadratic and linear terms in the most general expression. While most of the applications
utilize a few select time-variant and time-invariant terms for their performance index [149,
150, 153, 154, 156–158], there are a few applications in the literature which include all the
time-varying xc dependent terms in the linear and quadratic terms, but only includes ξ(tf)
terms in linear and quadratic Mayer terms [148, 152, 159]. Constants in Lagrange and Mayer
terms (cL and cM) are not widely used, but cM term appears in a few references [153]. We
also note that if there are no quadratic terms (i.e., L = 0 and M = 0), then the LQDO
problem can be solved with linear programming (a special case of quadratic programming)
[128].

5.2.3.3 Additional Linear Constraints

In most DO problems there are additional constraints that need to be enforced. In the
context of LQDO, these can all be expressed as the following general linear equality and
inequality constraint forms:

h = hQP :=
5∑
j=1
Y j(t)Txj − Ŷ (t) = Y Tx̃− Ŷ = 0 (5.9)

g = gQP :=
5∑
j=1
Zj(t)Txj − Ẑ(t) = ZTx̃− Ẑ ≤ 0 (5.10)

This representation of the constraints mixes the path and boundary definitions mentioned
in Sec. 5.2.1. In Sec. 5.4.3.3 it will be shown that a straightforward procedure exists to
determine which class (path or boundary) is most appropriate for a specified constraint.

As with the previous LQDO elements, there are a number of common constraint types
seen in literature that are captured by these general linear constraints. There is a broad

15We can also note that since the time horizon is fixed in LQDO, M is redundant since Mij/(tf − t0)
could be added to Lij for the appropriate indices. To facilitate more natural descriptions, all terms are
considered.

95

class of boundary condition constraints that only contain the initial and final states [153]
including prescribed initial conditions [104, 135, 146, 148, 152, 156, 159], prescribed final or
terminal conditions [104, 146, 157, 158], and periodic conditions [25]. Initial and final state
conditions need not be only equality constraints [157]. Mixed control-state constraints are
also possible [104, 152, 153, 157, 159]. This type of constraint commonly includes only xc
terms, but the whole collection x̃ is possible and necessary such as when a parameter is used
to represent maximum or absolute values (see Sec. 5.5.3 and Sec. 5.5.2).

There is a special subclass of Eqn. (5.10) which contains only single linear term:

x(t)− xj ≤ 0 (5.11a)
xj − x(t) ≤ 0 (5.11b)

This subclass is mentioned because it fits the form of Eqn. (5.2d) more so than either
Eqn. (5.2b)–(5.2c). If x and x are not time-varying (see Ref. [146] where they can be time-
varying), these constraints are commonly called saturation constraints or simple bounds
[158].

5.2.3.4 Comparison to Similar Formulations

With all elements of the LQDO problem, we will briefly compare with some other common
formulations found in the literature. Perhaps the most ubiquitous LQDO problem is the
finite-horizon linear-quadratic regulator (LQR) problem [20]:

min
u(t)

∫ tf

t0

(
ξT(t)L22ξ(t) + uT(t)L11u(t)

)
dt+ ξT(tf)M55ξ(tf) (5.12a)

subject to: ξ̇(t)−
(
Aξ(t) +Bu(t)

)
= 0 (5.12b)

ξ(t0)− ξ0 = 0 (5.12c)

We note that the problem is time-invariant with no path constraints or mixed terms. This
problem structure is still amenable to deriving a set of reasonably simple optimality condi-
tions in the form of a boundary value problem [20, 104]. The optimality conditions for differ-
ent variations on Prob. (5.12) have also been studied by Bryson and Ho [104]. These varia-
tions include an LTV system with ξTL21u terms, exactly zero terminal error (i.e., ξ(tf) = 0),
and the nonhomogeneous equation f = A(t)ξ(t) + B(t)u(t) + d(t). Since these problem
structures do not have path constraints, it is fairly straightforward to derive the optimality
conditions.

Many model-predictive control (MPC) paradigms utilize Prob. (5.12) [160]. The following

96

additional constraints are also common in MPC formulations:

x(t) ∈ X , u(t) ∈ U , ∀t ≥ 0 (5.13)

where the sets X and U are polyhedra. These sets can be represented by sets of linear
constraints of form Eqns. (5.9)–(5.10), or even as simple bounds (see Sec. 5.5.7). These
polyhedra constraints are possible for more general forms of linear constraints, such as mixed
input and state constraints [160].

An LQDO formulation with many similar elements is studied by Sideris and Rodriguez [159]
with the notation slightly amended to be consistent with this work:

min
u(t)

∫ tf

t0

 2∑
i=1

2∑
j=1
xT
iLij(t)xj +

2∑
j=1
lTj (t)xj

 dt+ ξT(tf)M55ξ(tf) + ξT(tf)m5 (5.14a)

subject to: ξ̇(t)−
(
A(t)ξ(t) +B(t)u(t)

)
= 0 (5.14b)

ξ(t0)− ξ0 = 0 (5.14c)

h =
2∑
j=1
Yj(t)Txj − Ŷ (t) = 0 (5.14d)

Here we see an LTV system, an objective function with mixed and linear terms, and mixed
linear equality conditions. However, there are no inequality constraints nor general boundary
conditions. Han et al. [152] include inequality constraints and the disturbance, along with
most of the problem elements in Prob. (5.14). From these select examples, we can see a
diversity of formulations in the literature, and all fit with the given LQDO framework.

5.3 Approximate Solutions with Direct Transcription
The method used here to obtain approximate solutions to the LQDO problem is the previ-
ously mentioned direct transcription (DT) method. A collection of desirable properties make
DT a strong candidate for use in solving the LQDO problem over other methods such as
Pontryagin’s maximum principle, numeric indirect methods, and sequential direct methods
(see Sec. 3.3.1). Furthermore, DT methods frequently have the order-maintaining prop-
erty previously described. After some preliminaries, a number of common DT methods are
described in the context of their ability to approximate certain elements of LQDO problems.

97

5.3.1 Preliminaries
We start by creating a vector of discretized time values, t, such that:

t0 < t1 < · · · < tnt−1 < tnt = tf

where Nt = nt + 1 is the number of discrete time points. These discrete values of t are
also known as node points, and t is termed the mesh [95, 96]. There are a variety of
methods for determining the values of t, but certain numerical schemes require a specific
class of t. The four mesh schemes considered here are arbitrary user-defined nodes, equidis-
tant (ED) nodes, Legendre-Gauss-Lobatto (LGL) nodes [109, 161], and Chebyshev-Gauss-
Lobatto (CGL) nodes (see Sec. C.4.1) [109, 162]. The time step for the kth segment is
denoted ∆k = tk+1 − tk, and the vector of time steps is ∆. The horizon length is denoted
∆ = tf − t0.
For clarity, function arguments may be shortened with the presumption that all time-

varying quantities are evaluated at the specified time index. For example:

fk = f(tk) = f(tk, ξ(tk),u(tk),p)

Intermediary values of functions between node points will be required and are denoted with
a bar:

fk = f(t̄k) = f
(
tk + tk+1

2

)
(5.15)

We define the following matrices that contain some discretized components of Prob. (5.1):

Ξ =

ξ(t0)
...

ξ(tnt)

 =

ξ1(t0) · · · ξnξ(t0)

...
ξ1(tnt) · · · ξnξ(tnt)

 , U =

u(t0)
...

u(tnt)

 =

u1(t0) · · · unu(t0)

...
u1(tnt) · · · unu(tnt)

p =
[
p1 · · · pnp

]
, F =

f(t0)
...

f(tnt)

 =

f1(t0) · · · fnξ(t0)

...
f1(tnt) · · · fnξ(tnt)

(5.16)

where nξ is the number of states, nu is the number of controls, and np is the number of
parameters. Earlier both x and X were defined as the sets of infinite-dimensional and QP
optimization variables, respectively. For convenience when describing the methods, xi will
denote a single variable (i.e., a single state, control, or parameter) and Xi will denote the
vector containing its corresponding discretization described above. Finally, we will need to

98

concatenate matrix columns into a single column vector with the vec(·) function.

5.3.2 Defect Constraints
Following the same order as Sec. 5.2.3, we will begin with DT methods that approximate
the linear dynamics in Eqn. (5.5). Defect constraints have the general form:

ζ (t,Ξ,U ,p) = 0 (5.17)

There is a wide variety of methods to construct the defect constraints including pseu-
dospectral [97, 109, 136, 162–164], multistage [97, 165–168], multistage with centers [169,
170], multistep [97, 165], central difference [137], zero-order hold [171, 172], general Hermite-
differentiation [170, 173], block pulse function [174], Gegenbauer [175], and Fourier-Galerkin
[176]. In this chapter, we focus on some of the most commonly used methods that are clas-
sified as either pseudospectral (PS) or single-step (SS) methods. It remains future work to
integrate other DT methods into the general solution method if applicable (see Sec. 5.7.4).

5.3.2.1 Pseudospectral Methods

The PS methods used here are embodied as a literal form of Eqn. (5.1b), commonly called the
differential form of the defect constraint [177]. An accurate representation of the dynamics
is ensured by requiring the approximation for the state derivatives to be equal to the true
derivative function values given by the dynamics in Eqn. (5.5). Our approximation for ξ̇ will
come from the derivative of an interpolating polynomial that represents ξ. The interpolating
polynomial considered here is defined as:

ξ(t) ≈ P (t) =
nt∑
k=0
ξ(tk)φk(t) (5.18)

where φk are continuous basis polynomials that are typically constructed such that the
interpolation property holds [137]. Therefore, the polynomial approximation is exact at
the node points and an approximation at all other values of t. Efficiently calculating the
derivative of this polynomial (among other considerations) typically requires a specific form
of the mesh. Here, we utilize a scaled time horizon, τ ∈ [−1, 1], achieved through the
following transformation:

τ = 2
tf − t0

t− tf + t0
tf − t0

(5.19)

99

This is a bijective function for t→ τ such that ξ(t) = ξ(τ) and ξ̇(t) = 2
∆

d
dτ
ξ(τ). Therefore,

the approximation of the state derivative at the node points is:

ξ̇(tk) ≈
2
∆

d

dτ
P (τk) = 2

∆

nt∑
i=0
Dkiξ(ti) (5.20)

where the matrix D is termed the differentiation matrix. This matrix depends only on the
values of τ and the type of interpolating polynomial, so we have an approximation for ξ̇ that
depends only on ξ. The defect constraints in matrix form are now constructed as the error
between the derivative of P and the true derivative function value:

ζ = vec
(2

∆DΞ− F
)

= 0 (5.21)

which comprises the linear constraint we will use in Eqn. (5.2b).
The two particular PS schemes considered in this chapter are based on Lagrange basis

polynomials. The first uses LGL nodes for τ and is described in Refs. [109, 163, 164]. The
second uses CGL nodes and is described in Refs. [109, 162, 164]. Section C.4.1 provides
additional details on both PS schemes. Recent work has implemented PS methods as QPs
for certain LQDO problems [178].

5.3.2.2 Single-Step Methods

This class of methods is constructed using information enclosed by tk and tk+1. The first
fundamental theorem of calculus provides the general equation for this class of integration
schemes:

ξ(tk+1) = ξ(tk) +
∫ tk+1

tk

f
(
s, ξ(s),u(s),p

)
ds (5.22)

With our discretization scheme, the integral term only has values for state and control at
the boundaries. Therefore, the SS methods considered here can be written in the following
form:

ζk = θ1,ku
T
k + θ2,ku

T
k+1 + θ3,kξ

T
k + θ4,kξ

T
k+1 + θ5,kp

T − νk = 0 (5.23)

where k = 0, 1, . . . , nt − 1, and when combined into vector form, they form the linear con-
straint we will use in Eqn. (5.2b).

A popular family of SS methods is the Runge-Kutta method, which is a class of multistage
methods [95]. Four common schemes are Euler forward (EF), trapezoidal (TR), Hermite-
Simpson (HS), and 4th-order classical Runge-Kutta (RK4) (see Sec. C.4.2 for their general

100

formulas). Both EF and TR are commonly found in QP formulations [25, 95, 96] but in fact,
HS and RK4 can be utilized to form QPs as well, specifically for the linear dynamic system
of interest. The higher-order Runge-Kutta methods require stages at interior points on the
time interval. For parity with EF and TR controls variables, we will assume the control is
piecewise linear16:

uk = uk + uk+1

2 (5.24)

We could have made the collection of uk as additional optimization variables, but the benefits
of these higher-order methods will still be seen with the piecewise linear assumption. The
Eqn. (5.23) coefficients for all four methods are then:

Euler
Forward

(EF)

θ1,k = −∆kBk

θ2,k = 0

θ3,k = −I −∆kAk

θ4,k = I

θ5,k = −∆kGk

νk = ∆kdk

(5.25a)

Trapezoidal
Rule
(TR)

θ1,k = −∆kBk
2

θ2,k = −∆kBk+1
2

θ3,k = −I − ∆kAk
2

θ4,k = I − ∆kAk+1
2

θ5,k = −∆k

(
Gk
2 + Gk+1

2

)
νk = ∆k

(
dk
2 + dk+1

2

)
(5.25b)

Hermite-
Simpson

(HS)

θ1,k = −∆k

(
Bk
6 + Bk

3 + ∆kAkBk
12

)
θ2,k = −∆k

(
Bk+1

6 + Bk
3 −

∆kAkBk+1
12

)
θ3,k = −I −∆k

(
Ak
6 + Ak

3 + ∆kAkAk
12

)
θ4,k = I −∆k

(
Ak+1

6 + Ak
3 −

∆kAkAk+1
12

)
θ5,k = −∆k

(
Gk
6 + 2Gk

3 + Gk+1
6 + ∆kAkGk

12 − ∆kAkGk+1
12

)
νk = ∆k

(
dk
6 + 2dk

3 + dk+1
6 + ∆kAkdk

12 − ∆kAkdk+1
12

)
(5.25c)

16Multistage methods with centers are also quite common and these methods use additional optimization
variables for the controls in the interior of the interval [169, 170].

101

Classical
4th-order

Runge-Kutta
(RK4)

F1(Q) = ∆k

(
Qk
3 + Qk

6 + ∆kAkQk
6 + ∆kAkQk

12 + ∆kAk+1Qk
12 + · · ·

∆2
kA

2
kQk

12 + ∆2
kAk+1AkQk

24 + ∆3
kAk+1A

2
kQk

24

)
F2(Q) = ∆k

(
Qk
3 + Qk+1

6 + ∆kAkQk
12 + ∆kAk+1Qk

12 + ∆2
kAk+1AkQk

24

)
θ1,k = −F1(B)

θ2,k = −F2(B)

θ3,k = −I −F1(A)−F2(A)

θ4,k = I

θ5,k = −F1(G)−F2(G)

νk = F1(d) + F2(d)

(5.25d)

Another popular SS method is the zero-order hold (ZOH) [160]. This method assumes
the control is piecewise constant, i.e., u(t) = u(tk) for t ∈ [tk, tk+1), allowing for u(tk) to
be brought outside of the integral in Eqn. (5.22) and no dependence on u(tk+1) in ζk. The
Eqn. (5.23) coefficients for the ZOH method are then:

Zero-Order
Hold

(ZOH)

θ1,k = −
∫ tk+1
tk eA(tk+1−τ)B(τ)dτ

θ2,k = 0

θ3,k = −eA(tk+1−tk)

θ4,k = I

θ5,k = −
∫ tk+1
tk eA(tk+1−τ)G(τ)dτ

νk =
∫ tk+1
tk eA(tk+1−τ)d(τ)dτ

(5.26)

for the special case where A is a time-invariant matrix. Therefore, the defect constraints are
exact for the assumed control scheme. It is important to note that the control assumption
is fundamentally different than what is used in the other SS and PS methods. This defect
constraint method is frequently used in discrete-time problems and for model predictive
control, typically as QPs [152, 160, 172]. To the author’s knowledge, no software packages
support easy comparison between the performance of the ZOH method and other continuous-
time methods.

102

5.3.3 Objective Function Terms
Some of the general quadratic objective function terms in Eqns. (5.7)–(5.8) need to be ap-
proximated. The Mayer terms only depend on boundary values of the discretized components
of Prob. (5.1), so it may be evaluated exactly by utilizing the appropriate optimization vari-
ables. The Lagrange terms require quadrature or approximate numerical evaluation of a
definite integral [179]. Three different types of quadrature schemes are now discussed, and
each is typically associated with a particular defect constraint approximation method.

5.3.3.1 Gaussian Quadrature

This type of quadrature scheme seeks to maximize the accuracy of the numerical integration
by carefully choosing the node points in a specific time horizon (commonly, the previously
mentioned scaled time horizon, τ ∈ [−1, 1]). Then, the form of this quadrature scheme is:∫ 1

−1
L(τ)dτ ≈

nt∑
k=0

wkL(τk) (5.27)

where wk are predetermined quadrature weights; note that L(τk) appears linearly in the
approximation. These weights depend only on the values of τ and the type of interpolating
polynomial. For the PS method utilizing LGL nodes, these node points result in orthogonal
collocation. Therefore, the quadrature approximation is extremely accurate, and is exact for
polynomials up to degree 2nt − 1 [97]. For the values of these weights see Sec. C.4.1.1 or
Refs. [109, 164].

5.3.3.2 Clenshaw-Curtis Quadrature

This quadrature scheme is specific for the PS method utilizing CGL nodes and has the same
form as Eqn. (5.27). Although a Gaussian (G) quadrature scheme can be constructed for
CGL nodes with Lagrange basis polynomials, it suffers from certain numerical issues [180].
Therefore, it is common to use Clenshaw-Curtis (CC) quadrature which is exactly accurate
for polynomials up to degree nt [180]. For the values of these weights see Sec. C.4.1.2 or
Refs. [109, 180, 181].

103

5.3.3.3 Composite Quadrature

The final quadrature scheme will be motivated by the following transformation:

ξ̇0 = L (t, ξ,u,p) and ξ0(t0) = 0, then
∫ tf

t0
L (t, ξ,u,p) dt ≡ ξ0(tf) (5.28)

This transformation adjoins an additional state variable ξ0 with the dynamics equivalent
to L with an arbitrary initial value for the ODE [20]. Now the final value ξ0(tf) can then
be included as a Mayer term. We can subsequently apply the EF method to the ODE in
Eqn. (5.28) and arrive at the following composite Euler forward (CEF) quadrature method:

∫ tf

t0
L (t) dt ≈

nt−1∑
k=0

∆kL(tk) (5.29)

This is a composite quadrature method since we are using a set of points inside the time
horizon to better approximate the definite integral [179]. Similar to Eqn. (5.27), the CEF
method is linear in L(tk). We can similarly derive the composite trapezoidal rule (CTR) using
the TR method. Both CEF and CTR are quite commonly used with their corresponding
defect constraint methods. In addition, the ZOH method typically utilizes CEF even though
the controls are only specified as piecewise constant [160, 172].
Continuing with the same line of reasoning, we can use the HS method. The composite

quadrature formula is then:∫ tf

t0
L(t)dt ≈ 1

6

(
∆0L0 +

nt−1∑
k=1

(
4∆kLk + (∆k+1 −∆k)Lk

)
+ ∆ntLnt

)
(5.30)

Consequently, we need to approximate Lk. We can consider the integrand L = xi(t)L(t)xj(t)
since L has at a maximum quadratic terms. If xi is a parameter or boundary value, then
xi(t̄k) is the same throughout the time horizon. If xi is a control, then Eqn. (5.24) defines
piecewise linear controls. If xi is a state, then the HS rule approximates xi(t̄k) as:

xi(t̄k) = 1
2 (xi(tk) + xi(tk+1)) + ∆k

8 (fi(tk)− fi(tk+1)) (5.31)

However, there are some potential issues with directly using Eqn. (5.31). Unlike the CEF
and CTR methods, the approximated state would create zeroth and first-order terms and
formulas that depend on the particular class of xi (these are not necessarily an erroneous
approximation, but can complicate implementation). Here we pose an alternative implemen-
tation that still only includes second-order terms by assuming that the states are piecewise
linear, same as the controls. In the context of Eqn. (5.31), this approximation becomes
more accurate as ∆k decreases and as |fi(tk)− fi(tk+1)| decreases. Now using the quadratic

104

integrand, the center term Lk is:

Lk = xi(t̄k)L(t̄k)xj(t̄k) (5.32a)

= Lk
4 (xi(tk)xj(tk) + xi(tk)xj(tk+1) + xi(tk+1)xj(tk) + xi(tk+1)xj(tk+1)) (5.32b)

We note that cross terms such as xi(tk)xj(tk+1) are present, so this is not a standard quadra-
ture method [179]. Furthermore, since this requires an additional assumption on the states,
we will term this quadrature method as the composite quadratic Hermite-Simpson (CQHS)
method as it is primarily applicable to quadratic objective functions. To the author’s knowl-
edge, this method has not been utilized yet in the literature to construct the Hessian for
LQDO problems; its accuracy will be discussed in Sec. 5.6. It remains future work to imple-
ment the QP form of the composite Hermite-Simpson method using Eqn. (5.31).

It is important to note the differences between the CEF, CTR, and CQHS methods by
looking at the conditions for which exact integration occurs over each segment [tk, tk+1]:

CEF Exact if deg (xi(t)L(t)xj(t)) = 0
CTR Exact if deg (xi(t)L(t)xj(t)) ≤ 1

CQHS Exact if deg (xi(t)) ≤ 1, deg (xj(t)) ≤ 1, and deg (xi(t)L(t)xj(t)) ≤ 3

where deg yields the highest degree of its terms (with respect to t) when the polynomial is
expressed in its canonical form consisting of a linear combination of monomials. So, com-
paratively, we see a higher-order of accuracy for CQHS. We can also try the same procedure
using RK4, but this results in the same approximation scheme as the CQHS method since
the linear approximation is used.

Finally, for quadratic terms with each term having time dependence, the composite quadra-
ture schemes can be nicely summarized as indexed sparse matrices. These quadrature
schemes with quadratic terms have the form:∫ tf

t0
xi(t)L(t)xj(t)dt ≈ XT

i HXj (5.33)

where H is a symmetric Nt ×Nt matrix. Then each of the composite quadrature rules can
be written as:

CEF H(i, j) =

∆iLi i = j 6= nt

0 otherwise
(5.34a)

105

CTR H(i, j) = 1
2

∆0L0 i = j = 0
∆nt−1Lnt i = j = nt

∆i−1Li + ∆iLi i = j 6= {0, nt}
0 otherwise

(5.34b)

CQHS H(i, j) = 1
6

∆0
(
L0 + L0

)
i = j = 0

∆nt−1
(
Lnt−1 + Lnt

)
i = j = nt

∆i−1Li−1 i− j = 1
∆iLi i− j = −1
∆i−1

(
Li + Li−1

)
+ ∆i

(
Li + Li

)
i = j 6= {0, nt}

0 otherwise

(5.34c)

These matrix formulas can also be utilized to derive the gradient and constant expressions
for linear and constant objective function terms.

5.3.4 Additional Linear Constraints
The additional linear constraints in Eqns. (5.9)–(5.10) are handled by utilizing the discretized
components of Prob. (5.1). Constraints with time dependence (i.e., path constraints) are
approximated with a set of Nt constraints, one for each node point. However, the satisfaction
of the path constraints at time points other than the node points is not guaranteed [96].
Boundary constraints only need one constraint for accurate representation as there is no
issue with potential infeasibility between node points.

5.4 Automated Problem Generation
With the discussion of the general problem class for LQDO in Sec. 5.2 and DT methods
in Sec. 5.3, we can now describe the automated problem generation procedure (APGP) for
a variety of DT methods used to create a QP approximation. Unlike general NLDO, all
elements of the approximated LQDO problem are associated with constant matrices in the
QP, so there is no need for finite-differencing or automatic differentiation to compute the
Hessian or Jacobian [97]. The matrices in the QP problem tend to be large sparse matrices.
A sparse matrix is one in which when many of the elements are zero [95]. In particular, the

106

(integer)left
(integer)right
(matrix)matrix

objective (structure)

(a) Objective structure.

(structure)linear
(integer)right
(matrix)matrix

constraint (structure)

(scalar)b
(b) Constraint structure.

bound (structure)
(integer)right
(matrix)matrix

(c) Bound structure.

Figure 5.1: Structure definitions.

solution methods exhibit some form of a banded sparsity (and some localized dense blocks).
From the given formulas, it is straightforward to a determine the nonzero elements. This
motivates the sequence-based approach used to generate the triples (row locations, column
locations, and values) that define a sparse matrix.

5.4.1 Structure-Based Problem Definition
The first piece of the APGP is a natural description framework that describes LQDO prob-
lems. Here we use three different structure arrays to represent different problem elements,
and they are outlined in a c-like notation in Fig. 5.1. These structures are an easy-to-use
interface between the user and the APGP.

First, the structure definition in Fig. 5.1a captures all of the objective terms outlined
in Eqns. (5.7)–(5.8). The objective structure is either L and M to account for Lagrange
and Mayer terms, respectively. Each entry in the structure is another term in the ob-
jective function. The fields left and right can take on an integer value between 0 and 5,
where 0 indicates a singleton dimension (useful for linear and constant terms) and the
remaining values correspond to the index of the expanded set of optimization variables
introduced in Eqn. (5.4). Finally, matrix is the potentially time-varying matrix of the ap-
propriate size. To illustrate this notation, consider the following LQ objective function:∫ tf
t0 [sin(t)u2

1(t) + ξ2(t0)ξ1(t)] dt+ ξ1(tf)− 2ξ2(tf). The objective function can then be repre-
sented by the following17:∫ tf

t0
sin(t)u2

1(t)dt ⇐⇒ L〈1〉.left = 1, L〈1〉.right = 1, L〈1〉.matrix = sin(t) (5.35a)
∫ tf

t0
ξ2(t0)ξ1(t)dt ⇐⇒ L〈2〉.left = 4, L〈2〉.right = 2, L〈2〉.matrix =

0 0
1 0

 (5.35b)

17This example assumes nξ = 2, nu = 1.

107

ξ1(tf)− 2ξ2(tf) ⇐⇒M〈1〉.left = 0, M〈1〉.right = 5, M〈1〉.matrix =
 1
−2

 (5.35c)

We now move onto the representation of the additional linear constraints in Eqns. (5.9)–
(5.10). The constraint structure is either Y or Z to account for equality and inequality terms,
respectively. The field linear can have multiple values to represent the summation needed for
certain constraints. The fields right and matrix are analogous to their use in the objective
function terms. The value for b is the potentially time-varying function. To illustrate this
notation, consider the following linear constraints: ξ2(tf) = 1, ξ1(t) − 2ξ2(t) ≤ 0, and
u1(t)− p1 ≤ sin(t). These linear constraints can then be represented by the following18:

ξ2(tf) = 1 ⇐⇒

Y〈1〉.linear〈1〉.right = 5, Y〈1〉.linear〈1〉.matrix =

0

1

Y〈1〉.b = 1

(5.36a)

ξ1(t)− 2ξ2(t) ≤ 0 ⇐⇒

Z〈1〉.linear〈1〉.right = 2,Z〈1〉.linear〈1〉.matrix =

 1

−2

Z〈1〉.b = 0

(5.36b)

u1(t)− p1 ≤ sin(t) ⇐⇒

Z〈2〉.linear〈1〉.right = 1, Z〈2〉.linear〈1〉.matrix = 1

Z〈2〉.linear〈2〉.right = 3, Z〈2〉.linear〈2〉.matrix = −1

Z〈2〉.b = sin(t)

(5.36c)

The bound structure is used to represent additional linear constraints that can be written
as simple upper and lower bounds as in Eqn. (5.11). Then the structure is either UB or
LB to account for upper and lower terms, respectively. The fields right and matrix are used
analogously as the previous structures, with the exception that the values of matrix can
be ±∞ to indicate no bounds when appropriate. To illustrate this notation, consider the
following simple bounds: u1(t) ≥ sin(t) and ξ2(t) ≤ π. Then these bounds can be represented
by the following19:

u1(t) ≥ sin(t) ⇐⇒ LB〈1〉.right = 1, LB〈1〉.matrix = sin(t) (5.37a)

ξ2(t) ≤ π ⇐⇒ UB〈1〉.right = 1, UB〈1〉.matrix =
∞
π

 (5.37b)

18This example assumes nξ = 2, nu = 1, np = 1.
19This example assumes nξ = 2, nu = 1.

108

5.4.2 Procedure Overview
A schematic overview of the APGP is shown in Fig. 5.2. The user provides the problem
structure using the notation defined in the previous section along with their choices for the
mesh, quadrature, and defect constraints (these options are colored red). These options
are related to the acronyms used in Sec. 5.3. We note that in addition to ED, LGL, and
CGL mesh schemes, a user-defined mesh is also possible. First, the mesh is generated and
a number of initialization tasks are performed. Next, the algorithms in the dashed box
are presented in a modular format as the problem elements in LQDO are separate, and
are utilized only when necessary as they approximate specific problem elements. Once all
elements of the problem are approximated, the set of matrices that define the QP are passed
to an appropriate QP solver to find the solution.

5.4.3 Algorithms
Here we briefly describe the algorithms with the full pseudocodes in Sec. C.1. The first
algorithm outlines two functions used to get index sequence of the variable’s location in
both the continuous and discrete problems. The function GetContIndex takes an integer
between 0 and 5, used to denote a set of optimization variables in x̃, and returns the sequence
defining all the locations of that particular class of optimization variables in Eqn. (5.3). The
second function, findQPindex, requires three inputs: 1) x is the specific number of the
optimization variable that is selected, 2) xtype is the same optimization variable classification
as before, and 3) idx are the necessary indices to return. For example, if nu = 2, nξ = 3, and
np = 1, then x could be valued from 0 to 6 since there are 6 total optimization variables.
Continuing with this example, if x = 4, xtype = 2, and idx = 1 to Nt, then we are requesting
the indices of the discretization of ξ2(t), i.e., X(I) = ξ2(t). Both of these functions will be
useful when creating the objective function terms and additional linear constraints.

5.4.3.1 Objective Function Terms

There are three main algorithms are used to implement the five methods for approximating
objective function terms in Sec. 5.3.3. The Lagrange terms are approximated by quadrature
in Alg. C.3. The input is a structure L of type objective and for each substructure, the
relevant sequences are created. Both the GetContIndex and GetQPIndex are used to
generate the appropriate row and column locations in the Hessian. While the CQHS method

109

Problem structure

Initialize Create t

ED, LGL,

CGL, USER

Hessian term
(see Alg. C.2)

Gradient term
(∼ to Alg. C.2)

Constant term
(∼ to Alg. C.2)

LQP terms (see Alg. C.3)

CEF, CTR,

CQHS, G, CC

MQP terms
(see Alg. C.4)

Defect constraints
(see Algs. C.5–C.6)

ZOH, EF, TR,

HS, RK4, PS

Add. eq. constraints
(see Alg. C.7)

C terms (see Alg. C.8)

Inequality constraints
(see Alg. C.7)

φ terms (see Alg. C.9)

Simple bounds
(∼ to Alg. C.7)

To QP solver

min
X

1
2XTHX + FTX + c

subject to:
[
Ae1
Ae2

]
X =

[
Be1
Be2

]
AiX ≤ Bi

X ≤ X ≤ X

H

F

c

Ae1,Be1

Ae2,Be2

Ai,Bi

X, X

O
b j
ec
tiv

e
fu
nc
tio

n

C
on

st
ra
in
ts

Figure 5.2: Overview of the automated problem generation procedure.

110

is shown specifically, the other quadrature schemes can readily be implemented with the same
pseudocode with modifications to lines 25–26 pertaining to the values of the diagonal and
off-diagonal entries. To visualize the process being used in Alg. C.3, the sparsity pattern for
different Lij is shown in Fig. C.1. Each concatenation of I on line 11 in the algorithm is the
addition of a single diagonal in Fig. C.1b or column in Fig. C.1d.
Compact and efficient formulas for the quadrature methods are achieved by the creation

of H (and similar terms) and the use of the rshift function. Consider the CTR method:

H = [∆0 ∆1 · · · ∆nt−1 0]
rshift(H) = [0 ∆0 · · · ∆nt−2 ∆nt−1]

Q = [A(t0) A(t1) · · · A(tnt−1) A(tnt)]
CTR = [∆0A(t0) (∆0 + ∆1)A(t1) · · · (∆nt−2 + ∆nt−1)A(tnt−1) ∆nt−1A(tnt)]

(5.38)

We see the formula (H⊕ rshift(H)) � Q/2 produces the appropriate entries for the CTR
method in Eqn. (5.34b).

The sequences for the Mayer terms are created with Alg. C.4, which is similar to the
algorithm for the Lagrange terms. The approximation of Mayer terms is the same across the
quadrature methods as previously mentioned.

To create the sparse Hessian matrix, Alg. C.2 takes the sequences from both Algs. C.3–
C.4. The creation of the gradient and constant terms in Eqn. (5.2a) requires some minor
modifications to Alg. C.2 but requires no modifications of Algs. C.3–C.4.

5.4.3.2 Defect Constraints

The algorithms for creating the defect constraints are shown in Alg. C.5 (SS methods) and
Alg. C.6 (PS methods). We will first describe the approach used for the SS methods based
on Eqns. (5.25)–(5.26). All required defect constraints for a particular state are generated
inside the for-loop on line 3. In order, the appropriate entries in the matrix Ae1 are generated
for the controls, states, and parameters based on their θ term expressions (see Eqn. (5.23)).
The sparsity pattern for this matrix is shown in Fig. C.4. The row and column locations
are generated through the appropriate sequences based on the number of variables and node
points. The values of the matrix entries are computed with element-wise formulas, similar
to the approach used in the objective function terms (see Sec. 5.4.3.1). The indexing vector
T allows us to extract matrix values on different time grids shifted by one index which are
present due to the shifting of k and k + 1 values in the formulas. Using this approach, all

111

time-varying functions are evaluated only once on a particular time grid.
The kron function[182] used on line 1 generates a matrix that efficiently implements

I in the equations (see its usage on lines 20–21). For the states and controls, values are
calculated for the lower and upper diagonals in their respective blocks. For the controls,
the lower diagonal values (θ1 terms) are computed on line 10 and the upper diagonal (θ2

terms) are computed on the following line. These diagonals are visualized in Figs. C.4c–d.
Once the row, columns, and values for each state’s defect constraints are generated, they are
combined into a single sparse matrix of size nξnt×nX . The disturbance in Eqn. (5.23) is the
only part of the dynamics that appears in the Be1 term. It is created in a similar fashion as
the parameters (except there is only a single column in the resulting matrix). The algorithm
presented specifically implements the TR method, but can be readily adapted to the other
SS methods (the formulas for V would need to be updated).
For PS methods (both with LGL or CGL nodes) in Alg. C.6, there is one more defect

constraint per state than for an equivalent SS method. Overall, the procedure is very similar
to the one for SS methods. The indexing vector T is not needed since the matrix values
only require the derivative function values at a single point in time in each row of the defect
constraint (see the sparsity pattern in Figs. C.5b–d). Instead of K, a PS method requires
the differentiation matrix D to be provided. This matrix is appropriately copied and shifted
so that it coincides with the defect constraint rows and columns for the current state (see
line 26). This is visualized with the block dense matrices in Fig. C.5a.

5.4.3.3 Additional Linear Constraints and Bounds

Both the additional inequality and equality constraints are created using Alg. C.7 taking in
a structure of type constraint. For each substructure (i.e., for each different constraint), we
need to determine if its type is either path or boundary. There are two conditions such that
a constraint can be considered a path constraint: 1) any of the variable types in right are
controls or states; 2) any of the matrices are time-varying (e.g., Z3(t) or Ẑ(t)).
If it is determined that the constraint is a path constraint, then Alg. C.8 is utilized to

create the sparse matrix sequences. Otherwise, Alg. C.9 is utilized. These two algorithms
are quite similar, the primary difference being how many constraints are created (Nt vs.
one). Both utilize GetContIndex and GetQPIndex in a similar fashion to the objective
function terms in Sec. 5.4.3.1. After all sequences are created and combined, the sparse
matrix is generated.

For simple bounds in Eqn. (5.11), the bound structure type is used. The same algorithms

112

are applicable but the entries are initialized as either −∞ or ∞ depending on if it is a lower
or upper bound. This ensures that unconstrained variables remain unconstrained.

5.5 Extensions
In this section, a number of extensions are described that still fit under the LQDO problem
form using either some type of transformation or a simple application of the APGP.

5.5.1 Integral Constraints
Due to the equivalence between L and M, frequently the integral part of Eqn. (5.1a) is
converted to an equivalent dynamic constraint [95, 104, 140]. Since the dynamic constraints
are linear in LQDO, there can only be integral terms with a linear dependence. Therefore, we
cannot utilize the transformation with quadratic objective terms and still have a QP. However
we still can use this transformation if linear integral constraints are present. Consider the
following inequality integral constraint [140]:∫ tf

t0

[
IT(t)x̃

]
dt− Î ≤ 0 (5.39)

where I(t) is the integral matrix and Î is a scalar. We can add an equivalent state ξnξ+1 := ξ+

that has the same rate of change:

ξ̇+ = IT(t)x̃ (5.40)

Then we add the following initial value equality and final value inequality constraints:

ξ+(t0) = 0, ξ+(tf) ≤ Î (5.41)

An similar procedure can be used for an equality constraint and additional states can be
added for each linear integral constraint present in the problem.

5.5.2 Min-Max Objectives
A min-max objective function for Prob. (5.1) has the form [140]:

Ψ = min
x

max
t∈[t0,tf]

E
(
t, ξ(t),u(t),p, t0, ξ(t0), tf , ξ(tf)

)
(5.42)

113

where E is the extremum function. We can introduce an additional parameter pnp+1 := p+

to transform this min-max problem into Mayer form by introducing an additional inequality
constraint:

E
(
t, ξ(t),u(t),p, t0, ξ(t0), tf , ξ(tf)

)
− p+ ≤ 0 (5.43)

and modifying the objective to:

min
x,p+

p+ (5.44)

This type of transformation is one of the common uses of parameters in LQDO problems
assuming the extremum function is of the appropriate form. This appropriate form of E
(linear terms) was already discussed in Sec. 5.5.1 as we are transforming part of the objective
to Mayer form. The structure of this transformation also allows for the extremum function
to consist of multiple expressions such as the following:

min
x

max
t∈[t0,tf]

{u1(t), ξ1(t) + ξ2(t)} (5.45)

which would be approximated with two additional constraints using the same parameter
(i.e., u1(t)−p+ ≤ 0 and ξ1(t)+ξ2(t)−p+ ≤ 0). The requirement only is that each expression
in the maximization can be properly written as a linear inequality constraint bounded by
the additional parameter.

5.5.3 Absolute Values in the Objective (and Constraints)
Consider the following finite-dimensional optimization problem:

min
z1,z2

|F1(z1)|+ F2(z2) (5.46a)

subject to: g(z1, z2, |F1(z1)|) ≤ 0 (5.46b)

Since the absolute value term is being minimized and contains a distinct set of the opti-
mization variables, we can add an additional parameter pnp+1 := p+ and two inequality

114

constraints to arrive at the following equivalent problem:

min
z1,z2,p+

p+ + F2(z2) (5.47a)

subject to: g(z1, z2, p+) ≤ 0 (5.47b)
F1(z1)− p+ ≤ 0 (5.47c)
−F1(z1)− p+ ≤ 0 (5.47d)

An alternative reformulation utilizes the sum of two positive parameters for the absolute
value. As with the previous two extensions, this extension introduces additional constraints
that are linear with respect to the added parameter; so as long as F1 is linear, the additional
constraints will be linear. For example, min |ξ1(tf) + ξ2(tf)|. We can also have F1 in the
Lagrange term, i.e.,

∫ tf
t0 |F1|dt. Recall that the quadrature approximations for linear terms

for all the methods in Sec. 5.3.3 are the sum of the products of a positive step size (or weight)
and the value at every node point. Therefore, each point in the quadrature approximation
is in the form of Eqn. (5.46a). However, we now need a parameter for each point in time to
accurately capture that integral behavior. An example objective is min

∫ tf
t0 |u1(t)|dt.

Absolute value constraints with linear terms can readily be handled as well if they form a
convex feasible region. For example, |ξ1(t) + ξ2(t)| ≥ 1 would not be convex.

5.5.4 Output Tracking
Tracking a reference signal, either a set point or reference trajectories, can be a critical
measure for control-system performance [104, 135]. Generally, the tracking error in the
reference is computed against an output signal of the following form:

y(t) = C(t)ξ(t) +D(t)u(t) + V (t)p+E(t)d(t) (5.48)

where {C,D,V ,E} are the LTV output matrices. The output equation is similar to the
dynamics in Eqn. (5.5), but no derivatives appear. Let us denote the reference signals as
ỹ = ỹ(t), then a suitable output tracking error quadratic objective function is:

Ψ =
∫ tf

t0

[
(y − ỹ)TO(t) (y − ỹ)

]
dt (5.49)

where O is a symmetric weighting matrix. This objective function can be put into the same

115

form as Eqn. (5.7):

Ψ ≡
∫ tf

t0

[
xTLOx+ lTOx+ cO

]
dt (5.50a)

where: LO =

CTOC CTOD CTOV

DTOC DTOD DTOV

V TOC V TOD V TOV

 (5.50b)

lTO =
(
2ỹTO + 2dTETO

)
C

D

V

T

, cO = ỹTOỹ + ỹTOEd (5.50c)

Therefore, output tracking can be easily incorporated into the previous quadratic objective.
Bryson and Ho provide a boundary value problem (BVP) solution to a simpler output
tracking problem [104].

5.5.5 Higher-Order Differential Equations
Equation (5.5) is a first-order linear differential equation. In general, there may be higher-
order derivatives present. Consider the following third-order differential equation with
E3(t) 6= 0:

E3(t)
...
ξ 1 + E2(t)ξ̈1 + E1(t)ξ̇1 = A(t)ξ1 +B(t)u (5.51)

To convert this into a first-order differential equation, we can add an additional state for each
higher-order derivative present [140]. The dynamics of these state variables will be state of
one order less. For the example above, we would have:

ξ̇1

ξ̇2

ξ̇3

 =

0 1 0
0 0 1

A/E3 −E1/E3 −E2/E3

ξ1

ξ2

ξ3

+

0
0

B/E3

u (5.52)

which is in the form of fQP and therefore, these types of higher-order differential equations
can be readily handled by LQDO.

116

5.5.6 Control Rate Constraints
In some problems, we want to include the rate at which the control changes u̇ in our objective
function or as a constraint such as [96]:

u̇(t) ≤ u̇max (5.53)

This situation can be handled in a similar manner as the higher-order differential equations
in Sec. 5.5.5. We treat the control as another state variable ξnξ+1 := ξ+ = u with dynamics of
ξ̇+ = u̇. Now u̇ is the independent input the system. Both u and u̇ can be naturally handled
using path constraints, objective function terms, etc. This transformation also works with
higher-order control derivatives such as ü.

5.5.7 Polyhedra Constraints
A common constraint in convex optimization is that the optimization variables must lie in
some convex region. In general, this region cannot be directly handled in LQDO, but an
approximation can be constructed with a polyhedron using the convex hull of a finite set of
points on the region’s boundary. This polyhedron is characterized by a set of linear inequality
constraints and any point that is found to be feasible in the polyhedron would be feasible in
the original region. An example is u2

1(t) +u2
2(t) ≤ 1, which is an elliptical region that can be

approximated (see Ref. [183]). Each additional linear constraint would be either a boundary
or path constraint, so they would greatly add to the total number of constraints. Polyhedral
regions are also used in piecewise affine systems (systems with different dynamics depending
on the specific location in the state-input space) [160].

5.5.8 Bilevel Optimization and Minimum Time Problems
Bilevel optimization is where one optimization problem is embedded (nested) within another
[98]. In some problems, the embedded problem has the form of LQDO, such as some nested
co-design problem formulations as was discussed in Chapter 3 [18, 32]. For example, the outer
loop may consist of variables that modify the matrices such as A and B (see Chapters 7
and 8 for examples that use LQDO and the APGP on a problem with this property).

Minimum time problems directly include t0 and tf in the objective function. For example,
if M = tf , then it might seem possible to treat tf as an optimization variable and have
a linear term in the objective function. However, treating tf as an optimization variable

117

results in nonlinear defect constraints and L approximations. Observing Eqn. (5.21) and
Eqn. (5.25), we see direct dependence on ∆ in the defect constraint formulas. Therefore,
minimum time problems cannot be solved directly with a QP. One solution approach for
minimum time problems that still uses the LQDO framework is to solve a bilevel (nested)
optimization problem. The outer loop solves the single variable problem optimization for tf
with the QP formulation (for a fixed value of tf) as the inner-loop solution. If we expand
to quadratically-constrained QPs (see Sec. 5.7.7), we can directly represent some minimum
time problems.

5.5.9 Use in Nonlinear Optimal Control Problems
In some problems, there might be a quadratic objective but nonlinear dynamics or a nonlinear
objective and linear dynamics. If certain problem elements fit the LQDO form, then the
appropriate matrices can be generated (recall Fig. 5.2 where the algorithms for generating
the QP matrices are modular). These matrices then can be combined with the nonlinear
elements of the problem and solved with nonlinear programming solvers. Many of these
solvers have special categorizations in order to efficiently leverage the problem structure
such as for linear equality or inequality constraints.

5.6 Numerical Examples
In this section, we will use five numerical examples to demonstrate the efficacy of the proposed
APGP. The first four examples have known solutions that can be used to compute the
optimal trajectories and objective function value to high precision. Therefore, we can directly
compare the different solution methods based on their deviation from the known solution.
The errors are reported as local maximum/minimum values (i.e., as a forward-looking moving
maximum/minimum) in order to discuss the converge behavior independent of fortuitous
meshes (e.g., the nodes points happen to be exactly at the time value where a path constraint
should change activity). In addition to comparing the absolute error, we will look at the
time to create the QP with the APGP and the total QP time (creation plus solver time).
Other performance metrics include local and global error, robustness to initial guess20, and
problem size or memory needed [170, 184]. Please see Refs. [133, 170, 184] for numerical

20The chosen solver does not require an initial guess.

118

comparisons between some of the DT methods. It remains future work to perform these
additional comparisons.

All tests were performed on a personal computer with an i7-6800K at 3.8 GHz (up to 12
threads available), 32 GB DDR4 3200 MHz RAM, Windows 10 64-bit, and Matlab 2017a.
The QP solver used was the standard solver quadprog in Matlab using the interior-point-
convex algorithm [185]. All tolerances were set to 10ε, where ε is the machine precision
number, in order to obtain the best solution possible for a particular QP. The complete set
of codes from the APGP and examples are available at Ref. [186].

5.6.1 Example 1

5.6.1.1 Description

For the first example, we will consider the problem on pp. 166–167 from Ref. [104]:

min
u(t)

1
2

∫ tf

0
u2dt (5.54a)

subject to: ξ̇ =
 0 1
−1 0

 ξ +
0

1

u (5.54b)

ξ1(0) = x0, ξ2(0) = v0, ξ1(tf) = 0, ξ2(tf) = 0 (5.54c)

Although there are no path constraints, both the initial and final state values are fully con-
strained. As a result, this problem does not fit many traditional LQDO problem definitions
such as Prob. (5.12). The structure-based problem description for this example is:

L〈1〉.left = 1, L〈1〉.right = 1, L〈1〉.matrix = 1/2 (5.55a)

A =
 0 1
−1 0

 , B =
0

1

 (5.55b)

LB〈1〉.right = 4, LB〈1〉.matrix =
[
x0 v0

]T
(5.55c)

LB〈2〉.right = 5, LB〈2〉.matrix =
[
0 0

]T
(5.55d)

UB〈1〉.right = 4, UB〈1〉.matrix =
[
x0 v0

]T
(5.55e)

UB〈2〉.right = 5, UB〈2〉.matrix =
[
0 0

]T
(5.55f)

The Matlab code is in Sec. C.3.1.

119

(a) Control. (b) States.

Figure 5.3: Solution for Example 1.

5.6.1.2 Solution

It can be shown that the control trajectory that minimizes the objective while satisfying the
constraints is:

u∗(t) = − 2
t2f − sin2(tf)

x0

v0

T sin(tf − t) sin(tf)− tf sin(t)
− cos(tf − t) sin(tf) + tf cos(t)

 (5.56)

with an optimal objective function value of:

Ψ∗ = tf (v0
2 + x0

2) + 2tf 2v0x0 − cos (tf) sin (tf) (v0
2 − x0

2)
tf

2 − sin (tf)2 − 2v0x0 (5.57)

The problem parameters used are t ∈ [0, 20], x0 = −1/2, and v0 = 1. With these parameter
values, Ψ∗ = 0.059842. The optimal trajectories for both the control and states is shown in
Fig. 5.3.

5.6.1.3 Numerical Results

The convergence results for the eight tested schemes are shown in Fig. 5.4a (objective) and
Fig. 5.4b (controls). The best scheme in terms of overall convergence rate was LGL-PS-G
(7), and it is nearly linear. However, once the scheme’s accuracy was near machine epsilon,
an accuracy threshold was reached and even started to slowly diverge (perhaps due to small
errors in the calculation of the differentiation matrix, weights, etc.). The next best scheme
was CGL-PS-CC (8). It seemed to have a similar convergence rate as the other PS-based
scheme, but it eventually achieves a sublinear rate of convergence until it reaches the precision
threshold (for the objective value).

The SS-based schemes now remain. The best was ED-HS-CQHS (5), although ED-RK4-
CQHS (6) was only slightly worse. These are the two schemes that utilize the proposed CQHS

120

Local maximum values (local minimum values are in a thinner, translucent color):

(a) Objective error. (b) Control error.

(c) QP creation time vs. Nt. (d) Objective error vs. total QP solve time.

Figure 5.4: Numerical results for Example 1.

quadrature method. The convergence rate seemed to be sublinear, and an objective value
accuracy threshold was reached for both schemes. The control error between these schemes
was nearly identical. Next, perhaps surprisingly, was ED-ZOH-CEF (1). Even though this
scheme assumed piecewise constant control, it performed better than some of the more
classical SS-based schemes. Some of this accuracy may be due to the exact approximation
of the objective function (i.e., only u2 terms). ED-HS-CTR (4) was slightly better than
ED-TR-CTR (3), indicating that the higher-order HS method did indeed provide additional
accuracy for the same number of nodes. Finally, ED-ZOH-CEF (1) was the worst scheme
tested.

The time to create the QP vs. Nt for each scheme is shown in Fig. 5.4c. Here we see
two distinct groups: one for the PS-based schemes, and one for the SS-based schemes. The
PS-based schemes take a longer amount of time for a specific Nt because the sparse matrices
are much denser (cf. Fig. C.5 and Fig. C.4). The primary cost is the construction of the
sparse matrices from the sequences. The SS-based schemes do vary in their creation time

121

with the schemes, with more matrix calculations and denser defect constraint matrices being
slower to create. Therefore, we observe that (1) is the fastest and (6) is the slowest. All
creation times for this problem are under 0.13 s, even for larger Nt.
A fairer comparison between the schemes considers the tradeoffs between accuracy and

total solve time. The time to create and solve the QP vs. the error in the objective function
is shown in Fig. 5.4d. The ordering is generally the same as the error plots, and (7) is clearly
the preferred scheme for this problem. Schemes (5) and (6) are slightly more attractive as
the computation time for a given error is only slightly slower than the PS-based schemes.

5.6.2 Example 2

5.6.2.1 Description

For the second example, we will consider the problem on pp. 120–122 from Ref. [104] and in
Ref. [187]:

min
u

1
2

∫ 1

0
u2dt (5.58a)

subject to: ξ̇ =
ξ2

u

 (5.58b)

ξ1(0) = 0, ξ1(1) = 0, ξ2(0) = 1, ξ2(1) = −1 (5.58c)
ξ1(t) ≤ 1/9 (5.58d)

This problem is similar to Example 1 but, now has a path constraint. The structure-based
problem description for this example is:

L〈1〉.left = 1, L〈1〉.right = 1, L〈1〉.matrix = 1/2 (5.59a)

A =
0 1

0 0

 , B =
0

1

 (5.59b)

LB〈1〉.right = 4, LB〈1〉.matrix =
[
0 1

]T
(5.59c)

LB〈2〉.right = 5, LB〈2〉.matrix =
[
0 −1

]T
(5.59d)

UB〈1〉.right = 4, UB〈1〉.matrix =
[
0 1

]T
(5.59e)

UB〈2〉.right = 5, UB〈2〉.matrix =
[
0 −1

]T
(5.59f)

UB〈3〉.right = 2, UB〈3〉.matrix =
[
` ∞

]T
(5.59g)

122

(a) Control. (b) States.

Figure 5.5: Solution for Example 2.

The Matlab code is in Sec. C.3.2.

5.6.2.2 Solution

It can be shown that the control trajectory that minimizes the objective while satisfying the
constraints when 0 < ` ≤ 1/6 is:

u∗(t) =

− 2

3`

(
1− t

3`

)
0 ≤ t < 3`

0 3` ≤ t < 1− 3`
− 2

3`

(
1− 1−t

3`

)
0 ≤ t ≤ 3`

(5.60)

with an optimal objective function value of:

Ψ∗ = 4
9` (5.61)

A problem parameter value of ` = 1/9 will be used, and with this value, Ψ∗ = 4. The
optimal trajectories for both the control and states are shown in Fig. 5.5.

5.6.2.3 Numerical Results

The convergence results for the eight tested schemes are shown in Fig. 5.6. All schemes,
including the PS-based schemes, achieve similar sublinear convergence rates, and this is due
to the path constraint. For the ED meshes, if Nt − 1 was a multiple of 3, then nodes values
of 1/3 and 2/3 would be directly included in the mesh. Otherwise, the locations where the
path constraint changes activity (in the true solution) would not be included. Therefore,
there is slow convergence due to errors around these points. However, when Nt = 4 with ED-
HS-CQHS (5) or ED-RK4-CQHS (6), all relevant quantities (states, control, and objective

123

Local maximum values (local minimum values are in a thinner, translucent color):

(a) Objective error. (b) Control error.

(c) ξ1 error. (d) ξ2 error.

Figure 5.6: Numerical results for Example 2.

value) are accurate within the machine precision! Such accuracy with a minimal number
of node points was previously only possible with specifically constructed multiple-interval
PS methods [109]. Since the optimal control policy is piecewise linear, the CQHS method is
exactly accurate for u2 terms. Furthermore, the states are piecewise quadratic and cubic and
both the HS and RK4 methods exactly approximate these dynamics. Therefore, schemes
(5,6) exactly represent the original problem.

Ignoring the favorable meshes and looking at the local worst errors, we still see (5,6)
performing the best along with ED-ZOH-CEF (1) (except with respect to the controls).
These are followed closely by the other methods except for ED-EF-CEF (2), which was the
worst method again. These results for the PS-based schemes demonstrate the potentially
issue with using a single global polynomial when path constraints are present [188, 189].
Multiple-interval PS methods would be more suitable for this type of problem (see Sec. 5.7.1).

124

(a) Control. (b) State.

Figure 5.7: Solutions for Example 3.

5.6.3 Example 3

5.6.3.1 Description

For the third example, we will consider the problem on pp. 109–110 of Ref. [104]:

min
u(t)

a2

2 [ξ(tf)]2 + 1
2

∫ tf

0
u2dt (5.62a)

subject to: ξ̇ = b(t)u (5.62b)
ξ(0) = ξ0 (5.62c)
|u(t)| ≤ 1 (5.62d)

This problem has time-varying matrices, path constraints, and both Lagrange and Mayer
terms. The structure-based problem description for this example is:

M〈1〉.left = 5, M〈1〉.right = 5, M〈1〉.matrix = a2/2 (5.63a)
L〈1〉.left = 1, L〈1〉.right = 1, L〈1〉.matrix = 1/2 (5.63b)

A = 0, B = b(t) (5.63c)
UB〈1〉.right = 4, UB〈1〉.matrix = ξ0, LB〈1〉.right = 4, LB〈1〉.matrix = ξ0 (5.63d)
UB〈2〉.right = 1, UB〈2〉.matrix = 1, LB〈2〉.right = 1, LB〈2〉.matrix = −1 (5.63e)

The Matlab code is in Sec. C.3.3.

125

5.6.3.2 Solution

The optimal control is:

u∗(t) = −sat
[
a2b(t)ξ(tf)

]
(5.64)

where ξ(tf) is computed from the implication equation:

ξ(tf) = ξ0 −
∫ tf

0
b(t)sat

[
a2b(t)ξ(tf)

]
dt (5.65)

The problem parameters used are tf = 1, ξ0 = 1, and b(t) = t cos(20πt) − 1/4. Both a = 1
and a = 2 will be tested. For a = 1, Ψ∗ = 0.406759 and ξ∗(tf) = 0.813517. For a = 2,
Ψ∗ = 1.150647 and ξ∗(tf) = 0.649528. The optimal trajectories for control and state for
both values of a are shown in Fig. 5.7. With a = 1, the path constraints are never active,
but with a = 2, the path constraints switch activity frequently.

5.6.3.3 Numerical Results

The convergence results for the eight tested schemes and both values of a are shown in
Fig. 5.8. When a = 1 (where the path constraints are not active), the results are somewhat
similar to Example 1. The best methods are the two PS-based schemes (7,8), but unlike the
previous example, the gap between them is negligible. Although the SS-based schemes are
converging to the true solution, the ranking of the schemes depends highly on the relative
preference between the objective, control, or state errors. The two CQHS-based schemes
have lower state error, but higher control error. ED-TR-CTR (3) has much lower control
error, but higher state error. With respect to the objective error, (3) begins with lower error
but there is a transition point around Nt = 200 where (5,6) exhibit less error. We also see
ED-HS-CTR (4) performing worse than (3), differing from the previous examples.

With a = 2, the results are quite different with more sporadic convergence behavior
(especially for the control). We observe that (3) is now the best scheme. Combining the
results from both values of a, (3) appears to be the best option if high accuracy is required in
both problem versions. These unexpected results might be explained by the fact that there
is no A in this example (a fairly uncommon property in LQDO). As a result, this example
may prove to be a useful, challenging test problem in the future. As a result, this example
may prove to be a useful, challenging test problem in the future. Fully understanding these
results is left as future work.

126

Local maximum values (local minimum values are in a thinner, translucent color):

(a) Objective error with a = 1. (b) Objective error with a = 2.

(c) Control error with a = 1. (d) Control error with a = 2.

(e) State error with a = 1. (f) State error with a = 2.

Figure 5.8: Numerical results for Example 3.

127

(a) Control. (b) States.

Figure 5.9: Solution for Example 4.

5.6.4 Example 4

5.6.4.1 Description

For the fourth example, we will consider the finite-horizon LQR problem in Prob. (5.12) [20,
104]:

min
u(t)

[
ξTMξ

]
t=tf

+
∫ tf

t0

[
ξTQξ + uTRu

]
dt (5.66a)

subject to: ξ̇ = Aξ +Bu (5.66b)
ξ(t0) = ξ0 (5.66c)

where M and Q are symmetric positive semidefinite and R is symmetric positive definite.
The structure-based problem description for this example is:

M〈1〉.left = 5, M〈1〉.right = 5, M〈1〉.matrix = M (5.67a)
L〈1〉.left = 2, L〈1〉.right = 2, L〈1〉.matrix = Q (5.67b)
L〈2〉.left = 1, L〈2〉.right = 1, L〈2〉.matrix = R (5.67c)

UB〈1〉.right = 4, UB〈1〉.matrix = ξ0, LB〈1〉.right = 4, LB〈1〉.matrix = ξ0 (5.67d)

The Matlab code is in Sec. C.3.4.

5.6.4.2 Solution

The optimal control has the following form [20, 104]:

u∗ = −R−1BTPξ (5.68)

128

Local maximum values (local minimum values are in a thinner, translucent color):

(a) Objective error. (b) Control error.

(c) State error. (d) Objective error vs. total QP solve time.

Figure 5.10: Numerical results for Example 4.

where P is symmetric positive semidefinite matrix that is a solution to the following differ-
ential equation and boundary condition:

Ṗ = −Q−ATP − PA+ PBR−1BTP , P (tf) = M (5.69)

The specific problem parameters are shown in Sec. C.3.4 (nξ = 20 and nu = 10 with generated
matrices). The optimal trajectories for controls and states are shown in Fig. 5.9, and were
determined by numerically solving the BVP problem with a relative error tolerance at 10−10.

5.6.4.3 Numerical results

The convergence results for the eight tested schemes are shown in Fig. 5.10. The numerical
results for this example are quite similar to Example 1 (see Fig. 5.4). The PS-based methods
(7,8) performed the best, followed by the CQHS-based methods (5,6). Then was (1,3,4) and
finally (1) was the worst again. The primary discussion point for this example is the efficiency

129

at which the LQR problem was solved. The objective error vs. total QP solve time is shown
in Fig. 5.10d. LGL-PS-G (7) with Nt = 23 took only 0.2 s to create and solve the QP with an
accuracy in states, controls, and objective value at the tolerance used (10−10) when generating
the BVP solution in Sec. 5.6.4.2. These results demonstrate that DT approximations of the
finite-horizon LQR problem can be a competitive solution strategy.

5.6.5 Example 5

5.6.5.1 Description

The final example is a constructed problem that will help demonstrate some of the problem el-
ements and extensions in Sec. 5.5 not seen in the previous examples. The infinite-dimensional
problem formulation is:

min
u(t)

∫ 1

0

[
u2

1/10 + u2
2/10 + u1ξ1 + u1ξ2 + 5 (ξ2 − g(t))2

]
dt+ max

0≤t≤1
ξ3(t) (5.70a)

subject to: ξ̇ =

−1 2 0
3 −4 0
1 2 −1

 ξ +

1 0
−1 0
0 1/20

u (5.70b)

ξ1(0) = 2, ξ3(0) = 1/2 (5.70c)
ξ2(0)− ξ2(1) = 0 (5.70d)∫ 1

0
ξ1(t)dt = 0 (5.70e)

− ξ1(t) + u2(t)/12 ≤ 0 (5.70f)
ξ2(t) ≤ g(t) (5.70g)
|u2| ≤ 10 (5.70h)

where 5 (ξ2 − g(t))2 is an output tracking term (resulting in time-varying quadratic, linear,
and constant objective function terms, see Sec. 5.5.4), max ξ3(t) is a min-max objective term
(that will be approximated with a parameter, see Sec. 5.5.2), ξ2(0)− ξ2(1) = 0 is a periodic
constraint (that will be implemented as a linear equality constraint),

∫ 1
0 ξ1(t)dt = 0 is an

integral constraint (which will be approximated with an additional state, see Sec. 5.5.1),
−ξ1(t) +u2(t)/12 ≤ 0 is a mixed control-state path constraint, ξ2(t) ≤ g(t) is a time-varying
simple bound, and |u2| ≤ 10 is a linear absolute value constraint (that will be implemented
with two constraints, see Sec. 5.5.3). For brevity, the structure-based implementation is only

130

(a) States. (b) Controls.

(c) Integral and mixed state-control path constraint.

Figure 5.11: Solution for Example 5.

shown in the Matlab code in Sec. C.3.5.

5.6.5.2 Solution

This example, like many LQDO problems, does not have a straightforward solution, so we
can instead use DT to obtain an approximate solution. Here we set g(t) = sin(2πt) + 1/2.
The optimal trajectories for the states and controls are shown in Fig. 5.11 along with the
trajectories for the integral and mixed control-state constraints. This solution was found
using ED-HS-CQHS (5) with 5,000 node points and Ψ∗ = 6.368153. All constraints are
satisfied, and all the path constraints enter and exit activity during the time horizon.

5.7 Future Work
The proposed APGP and unified LQDO problem description can provide a strong basis for a
number of future developments that could improve the effectiveness and the user experience.

131

5.7.1 Multiple-Interval Pseudospectral Methods and Multiphase Problems
The current implementation of the PS methods utilizes a single interpolating polynomial over
the entire time horizon to approximate the states and controls. Since the interpolating poly-
nomials are continuous basis functions, approximated quantities at the time values between
node points may contain significant inaccuracy with any of discontinuity or non-smoothness
imposed in the optimal function shape. In addition, since the particular PS method requires
a specific form of the mesh (e.g., LGL or CGL meshes), which is stretched in the middle
range, having enough resolution at certain location enforces excessive resolution in both end
regions.

These problems could be addressed by implementing multiple intervals in our computa-
tional domain [109, 136, 190]. Each interval in the time horizon would contain an interpo-
lating polynomial and continuity between the states would be ensured with the following
continuity constraint:

ξ(i−1)(t(i−1)
f) = ξ(i)(t(i)0), where: t(i−1)

f = t
(i)
0 (5.71)

which is a linear equality constraint; thus, is possible in LQDO. This multiple-interval ap-
proach can also be implemented along with the hp-adaptive mesh refinement technique de-
scribed the following section [190–192].

Conceptually similar, multiphase problems could be proposed [136]. In a multiphase prob-
lem, various continuity constraints (which need not be the same form as Eqn. (5.71)) are
present to ensure consistency across the phases. The problem elements between the phases
may be different (e.g., different constraints present or the dynamics change). Unlike the
multiple-interval approximation method, multiphase problems can be solved with all the
methods listed here.

5.7.2 Mesh Refinement
The accuracy assessments in Sec. 5.6 were performed on problems with known exact solu-
tions. However, for many LQDO problems, such solutions are unavailable (and is a primary
reason for using DT). Resolution of mesh nodes and location of each node affect the overall
solution accuracy and mesh refinement (iteratively solving the problem on a specific mesh
and then updating the mesh with changes in the mesh resolution and node locations) is a
viable technique for obtaining high accuracy solutions to continuous-time dynamic optimiza-
tion problems [169, 190]. Such techniques are particularly useful when there is discontinuity

132

or non-smoothness in the solution (e.g., when path constraints change activity).
There are two common types of mesh refinement: h- and p-adaptive methods [193]. For

the SS methods, the h-adaptive methods could be employed to minimize the local and global
discretization error [169, 194, 195]. For the multiple-interval PS methods, the combined hp-
or ph-adaptive methods could be applied to get the benefit of spectral convergence within
local time interval while accommodating discontinuities between neighboring time intervals
[189, 190, 192, 196]. Since mesh refinement is performed offline (not when solving the QP),
it can readily be incorporated into the APGP.

5.7.3 Costate Approximation and First-Order Necessary Conditions
Alternative methods to DT are the indirect methods which derive a set of first-order necessary
conditions for optimality for the DO problem (e.g., these conditions were used to derive the
BVP in Example 4). Even though there are a number of challenges associated with using
indirect methods [25, 95, 96, 104], it still can be useful to utilize the concepts from the indirect
methods. For example, the costate variables are the time-varying multipliers associated with
the dynamics in the augmented Hamiltonian. Similar to the states and controls, these have
optimal values as well. Errors in the costates can be assessed in a similar manner to states and
controls to help determine the convergence properties of each of the methods. In addition,
computing the Hamiltonian given the DT solution can help verify the quality of the solution.

Determining the values of the costates and other multipliers is done through a map-
ping from the Karush-Kuhn-Tucker (KKT) multipliers of the finite-dimensional optimization
problem [111, 177]. Estimations of costate have been studied for finite and infinite time hori-
zons with direct optimal control methods [111, 177, 197, 198]. Approximating costates with
discontinuous trajectories requires a jump condition between discontinued segments [197,
198] and is especially important when the multiple intervals are considered for problems
with discontinuous dynamic behavior, described in Sec. 5.7.1. Various dynamic optimiza-
tion software tools have provided these estimates [136, 137]. Computing these estimates for
LQDO would be no different than the general NLDO problems and might, in fact, be simpler
due to the structured form of the objective and dynamics.

5.7.4 Additional Methods
A large number of methods to construct the defect constraints were listed in Sec. 5.3.2. Only
a small subset of these available methods have been implemented, and it remains future work

133

to implement (as long as they are order-maintaining methods) and assess the effectiveness
of these methods in LQDO. Different quadrature schemes may also be considered, such as
the true HS quadrature scheme that uses Eqn. (5.31).

5.7.5 Customized QP Solvers
The numerical results in Sec. 5.6 were found using one solver available in Matlab. There
are a number of other QP solvers available (e.g., ooqp [199] and cvx [200]) that may be
more suitable for this class of problems (both in computational efficiency and convergence).
An effective solver should be able to handle large matrices, the specific sparsity patterns,
and ill-conditioned matrices. Perhaps a custom QP solver could be created that handles
this type of ill-conditioned problems [201–204]. Some recent QP methods have used LQDO
problems with specific DT methods as one of their test problems [203, 204].
Some of these numerical difficulties were illustrated in the results using the LGL-PS-G

(7) scheme. This scheme typically exhibited a tendency of divergence after exponential
convergence up to a specific polynomial order. A rapid growth of condition number along
with a growth of the differential operator order causes this instability, which makes the
problem nonconvex and may sacrifice the expected spectral accuracy of the solution [205,
206].

5.7.6 Scaling
It has been established that properly-scaled optimization problems are easier to solve than a
poorly-scaled problem [97]. In general, this is embodied by the constraints and optimization
variables being close to O(1) [207]. Affine transformations of both the optimization variables
and time horizon can be utilized to accomplish this task [97, 115]. An example of this type of
transformation is the similarity transform applied to linear systems [155]. The constraints can
be directly scaled by the row norms of the matrices [97]. Systematic preconditioning methods
have been developed for linear constraints [124, 125]. Properly-scaled defect constraints
are particularly important to ensure the accuracy of the approximation [115]. Using these
concepts, among other techniques, automatic scaling procedures have been developed for
DO problems [97].

134

5.7.7 Quadratically-Constrained Quadratic Programs
A more general class of optimization problems that includes QPs as a special case are
quadratically-constrained quadratic programs (QCQPs) [128]. The objective is the same
as in Eqn. (5.2a), but we now include constraints with up to quadratic dependence:

1
2XTPeX + AeX = Be (5.72a)
1
2XTPiX + AiX ≤ Bi (5.72b)

In general, a QCQP is an NP-hard problem [208]. However, if all inequality constraints
are convex and only linear equality constraints are present, then the QCQP can be solved
with semidefinite programming or second-order cone programming [128]. Modifying the
algorithms in Sec. 5.4 to generate QCQPs and understanding the structural properties of
the generated matrices is future work. There are many interesting items that could be
represented with QCQPs, including quadratic terms in the dynamics [209], MTPs, simple
co-design problems (e.g., ξ̇ = kξ, where k is also an optimization variable) [32], power and
energy terms (e.g., ξu) [25, 133], and the conversion of quadratic Lagrange terms to Mayer
form as quadratic equality constraints (discussed in Sec. 5.5.1).

5.8 Summary
In this chapter, a unified framework for solving general linear-quadratic dynamic optimiza-
tion (LQDO) problems was proposed. This class of dynamic optimization problems contains
problem elements such as a linear nonhomogeneous differential equation, quadratic objective
function terms, and additional linear constraints where the optimization variables include
the controls, states, parameters, initial state values, and final states values.

A class of numerical methods known as direct transcription (DT) was utilized to find ap-
proximate solutions to the LQDO problem. The DT methods parameterize both the state
and control trajectories and include them as optimization variables. A large number of
equality constraints (termed defect constraints) are used to ensure feasible dynamics. Both
pseudospectral (PS) and single-step (SS) methods are utilized to construct the defect con-
straints. A variety of SS methods are implemented including Euler forward (EF), trapezoidal
rule (TR), Hermite-Simpson (HS), 4th-order classical Runge-Kutta (RK4), and zero-order
hold (ZOH). HS and RK4 are frequently utilized on NLDO problems, but rarely with LQDO.
ZOH is a commonly used method, particularly within the MPC framework. A number of

135

quadrature schemes are implemented including a new composite quadratic Hermite-Simpson
(CQHS) method. This method is derived in a similar manner as the composite HS method,
but uses linear interpolation between node points for each term in the quadratic objective
function.

An automated problem generation procedure (APGP) is fully outlined that makes it rel-
atively straightforward to obtain a DT solution to an LQDO problem. A structure-based
scheme is used to represent the problem. The algorithms for efficiently generating the se-
quences that define the sparse matrices is also described. Full Matlab codes are available
at Ref. [186]. Five examples are shown to demonstrate the efficacy of the APGP. Including a
variety of DT methods allowed for direct comparisons between the methods. The PS-based
methods had extremely fast convergence in problems with no path constraints, and had a
smooth optimal solution in general. When the nonsmoothness was present in the optimal
solutions, the higher-order SS methods performed better, with the HS and RK4 being the
best. The CQHS-based methods generally performed as good as or better than the other SS
methods, demonstrating the relative effectiveness of the new quadrature scheme.

A number of extensions are described including integral constraints, min-max objectives,
absolute values, output tracking, control rate constraints, and polyhedra constraints, demon-
strating that a diverse set of problems fit under the LQDO framework. There are a number
of methods and features that can be implemented in the future including multiple-interval
PS methods, multiphase problems, mesh refinement, costate approximation, additional de-
fect and quadrature methods, customized QP solvers, scaling, and quadratically-constrained
QPs.

136

Chapter 6

Case Study: Design of Passive Analog Circuits21

“It will be remarked that no attention is paid to the actual values of the
resistances, but only to the forms in which they can be combined. The
enumeration of the forms of combinations of a given number of
resistances is of considerable interest.”

P. A. Macmahon [9]

6.1 Introduction
Synthesis of analog electric circuits is a complex and resource-intensive task. Circuit-level
synthesis involves two major attributes: 1) the topology (i.e., what components are present
and how they are connected or the circuit structure) and 2) sizing (i.e., the selection of the
component values). Both attributes are required for a fully-defined circuit. While there exist
many computer-aided tools for performing network analysis and simulation [210] as well as
circuit sizing [211], there is still a need for high-quality synthesis methods that perform well
on a variety of circuit synthesis problems.

Any synthesis method must navigate the immense potential design space present in circuit
synthesis design problems [212]. Often this vast design space leads to the reliance on experts
and domain-specific knowledge [23]. Alternatively, formal design methodologies have been
developed for specific problem classes (e.g., linear frequency-domain filters) [213]. While
these human-focused and specific formal approaches can be suitable for some applications,
they often fail at finding desirable solutions for unfamiliar and complex design problems. To
address some of these issues, there has been considerable research to try to leverage existing
design knowledge by formally incorporating heuristics [214] and knowledge bases [215] into
various tools.

21Elements of this chapter are based on work completed in Ref. [12].

137

More recent efforts have moved toward methods with minimal initial design knowledge
[23, 37, 210, 211, 216]. Methods that adopt this principle can better generate truly novel
topologies and nonexperts can more easily parse the required inputs for the automation tool
[37, 210, 211, 213, 217]. Both evolutionary computation [23, 37, 210, 211, 213, 216–218]
and simulated annealing [219] are concepts that have been utilized to generate and select
fully-defined circuits with minimal knowledge. Evolutionary-based methods, in particular,
have received significant attention due to their relative success at balancing between minimal
initial knowledge, design space freedom, and computational expense [211].

In evolutionary computation, an initial population (set of candidate solutions) is gener-
ated and iteratively updated through metaheuristics and stochastic operators [220]. While
these approaches can produce ‘semi-optimal’ solutions [211], they still have some draw-
backs. First, the underlying algorithms have a number of parameters that must be selected
(e.g., crossover probability and population size) [37, 210, 217, 218, 220]. Often values are
given, but the sensitivity of these parameters is not thoroughly investigated, or better yet,
optimal recommendations. Secondly, a poor initial population can result in delayed conver-
gence [211]. Since these approaches are inherently stochastic, robustness is an important
issue. Even with a favorable initial population, using standard metaheuristics can be in-
efficient (although some recent work has started to address this issue with custom genetic
algorithms [211]). It has also been observed that overly complex solutions (i.e., too many
components) are often selected [210, 213, 217]. In general, a target response is more easily
satisfied with a complex circuit than a simple one [210]. Finally, the global solution is not
guaranteed, and it is hard to determine how far we are from the global optimum. Addressing
these shortcomings could lead to a truly efficient and effective synthesis tool.

All of the previously mentioned synthesis methods have aimed to navigate the vast design
space by selectively sampling from the complete design space. An infrequently utilized
approach is to actually test all topologies. In an enumerative synthesis approach, we generate
and evaluate a complete listing of all possible circuit topologies under certain specifications.
Then we can simply select the best one with confidence in its optimality. The obvious reason
to not test all topologies is the rate at which such a complete listing grows with the number
of candidate system components. Here we make a case for the proposed enumeration-based
synthesis methodology to solve certain types of synthesis problems, as well as to generate
knowledge that could aid more general and scalable solution of synthesis problems.

Enumeration has been utilized previously for electrical circuit design. Macmahon, among
others, have considered the enumeration of series-parallel networks [9–11]. Foster provided
the enumeration of geometrical circuits classified according to their nullity and rank [78].

138

Bruccoleri et al. systematically generated all the wide-band amplifier circuits with two MOS
transistors [221, 222]. Enumeration has also been useful in other synthesis problems such
hybrid powertrains [13], gear trains [15], and biological networks [16].

Before the enumeration-based methodology is described, it is important to visit the main
motivations for this work, including the questions:

• Under what specifications/complexity is enumeration still feasible?

• Have previous methods found the “best” circuit? How close was the found circuit to
the “best” circuit?

• What are the properties of the complete circuit structure space (e.g., how many unique
circuits are there with up to a certain number of components)?

• Are stochastically sampled (rather than enumerative) topologies generated with the
proposed approach more useful for initial populations due to their structural proper-
ties?

• Can a complete listing of circuits (both good and bad) be used to adapt an evolutionary
approach to better address the synthesis task, perhaps through online learning or new
metaheuristics?

These points will be addressed in Sec. 6.4.
The remainder of the chapter is organized as follows. Section 6.2 describes the proposed

enumeration-based synthesis methodology. Section 6.3 provides some examples for both
frequency response and low-pass filter synthesis problems. Section 6.4 is a discussion of the
results and methodology. Section 6.5 provides the conclusions.

6.2 Enumeration-Based Synthesis Methodology
In this section, the procedure used to synthesize passive analog circuits is described. At the
core of this approach is evaluating a set of circuits generated through an enumerative proce-
dure. Figure 6.1 illustrates the overall flow of the enumeration-based synthesis framework.

6.2.1 Representing Circuits as Colored Graphs
Fundamental to this approach is the representation of circuits as colored graphs. A colored
(or labeled) graph is an extension of an undirected graph with an additional set defining

139

Determine performance
with circuit sizing

Analyze
results

Circuit
structure

space

Network
structure

constraints

Circuit
synthesis

specifications

Generate
netlist

Generate
primitive
topologies

Generate
transfer
functions

Circuit
generation

Circuit
library

Preselection

Generate
circuits
graphs

Primitive
library

Figure 6.1: Enumeration-based synthesis methodology.

140

I N4Z

Z

Z

Z

G

ON3

(a) Primitive circuit.

I R L

L

L

R

R

N4 N3
C

C G

O

(b) Practical circuit.

1

3

4

5
2

6 7
0

I
R

R
R

C

CL

L

L

O

(c) Circuit schematic.

7 0 C
7 6 L
6 4 R
5 4 C
5 2 L
4 3 L
4 2 R
3 1 R

(d) Netlist.

Figure 6.2: Different representations used for the same circuit.

the vertex or edge colors [223]. Colored graphs in this chapter will always be vertex-colored
graphs. A properly defined colored graph will capture the topology of an electrical circuit.

In a vertex-colored graph, circuit components such as resistors, capacitors, inductors, etc.
can be represented as different vertex colors as is shown in Fig. 6.2b. For example, every
resistor in a circuit is labeled with R and is indistinguishable from one another. If we are
only concerned with the topology of the circuit network, not the specific components used,
then we can use general impedance colors Z (see Fig. 6.2a for an example). We will use
the terms primitive circuit if only general impedance elements are used and practical circuit
if specific components are present (such as the standard two-ports passive elements). In
this chapter, we will only consider two-port impedance elements, although the extension to
multi-port impedance elements is possible.

In addition to the impedance elements, additional voltage nodes in the circuit [40] will
be labeled with N. These are 0-junctions in bond graph modeling where the voltage is
constant [38]. Voltage nodes are further categorized by their number of connections (e.g., 3-
port voltage node vs. 4-port voltage node). Two n-port voltage nodes are then considered
indistinguishable. The distribution of voltage nodes in the circuit will vary (in Fig. 6.2a,
there is one 3-port and one 4-port N). Similarly, the ground voltage node is labeled with G.
One advantage of a colored graph representation is colors can be used to represent a

variety of concepts. Many synthesis problems directly involve the input/output behavior of
the synthesized circuit (e.g., single-input single-output (SISO) transfer function) [211]. We

141

can use different colors to represent to location of the input and output nodes in the circuit
(see Fig. 6.2a with colors I and O).

To summarize, circuits defined by colored graphs will contain colors representing two-port
impedance elements, a variety of n-port voltage nodes, the ground node, the input node,
and the output node. With all relevant information included in the colored graphs, we can
determine if two colored graphs are unique with respect to permutations of the vertices of the
graphs [6, 224]. This is known as the colored graph isomorphism problem and is important
to handle so that redundant circuits are not reused.

There are other graph representations of circuits. A more common representation is an
edge-colored graph with all vertices representing voltage nodes and edge colors representing
different impedance types [23]. Vertex coloring will be needed if the input and output nodes
need to be identified. The motivations behind the chosen representation is the ability to
define intuitively the set of circuits that will be enumerated and leverage existing work in
enumerating colored graphs [6]. These properties will become apparent in the following
sections.

6.2.2 Generating Primitive Circuits
Enumeration of the primitive circuits is performed using a perfect matching-inspired algo-
rithm where all ports of every component are connected to exactly one other port [6]. In
the worst case scenario, the growth of the number of graphs is (N − 1)!! where N is the
total number of ports and !! represents the double factorial function. However, this bound
is extremely conservative as many of the generated graphs are isomorphic (not unique) or
do not satisfy network structure constraints (NSCs). Satisfaction of all NSCs defines the
feasibility for a particular graph. Many enhancements to the original algorithm have been
made in Ref. [41], further leveraging the structure of the enumeration task and allowing
reasonably large graph structure spaces to be enumerated. Here we will refer to the graph
structure space covered by this approach as the circuit structure space22.

The required information for the enumeration approach is the following designer-defined
elements:

• C is the colored label sequence representing distinct component types

• P is a vector indicating the number of ports for each component type
22For more details on the enumeration approach used see Chapter 2 and Appendix A.

142

• Rmin is a vector indicating the minimum number of replicates for each component type

• Rglsfoo[noindex]max is a vector indicating the maximum number of replicates for each
component type

where we define R as a matrix containing both Rmin and Rmax. For a circuit synthesis task,
we could choose these elements as:

C = {I,O,G,Z,N3,N4}, P = [1 1 1 2 3 4] (6.1a)
Rmin = [1 1 0 1 0 0] , Rmax = [1 1 1 3 2 1] (6.1b)

where we have included the input node, output node, ground node, general two-port impedance
elements, 3-port voltage nodes, and 4-port voltage nodes. The input/output nodes and at
least one impedance element are mandatory in any feasible graph. In a feasible circuit, there
can be up to three impedance elements, two 3-port voltage nodes, and one 4-port voltage
node. The choice of these elements is a major design decision and will be discussed further
along with the examples presented in Sec. 6.3.
The addition of network structure constraints not only improves the quality of the gener-

ated graphs, but also decreases the computation time required for enumeration [6, 41]. The
first NSC is the requirement that every feasible graph has no loops or multi-edges. Next,
we require that each graph is a connected graph so the input/output are guaranteed to be
connected and there are no isolated components.

The next set of NSCs limit the structure of the graph’s adjacency matrix by ensuring zeros
in certain locations:

• No ports from {I,O,G} can be connected. If any of these are connected directly, then
the transfer function for the circuit will be trivial and useless.

• No ports from {Z} can be connected. This would create series general impedance which
is undesired during the generation of primitive circuits.

• No ports from {N3,N4, · · · ,Nx} can be connected. This simply creates larger voltage
nodes and we already restricted the maximum port size.

A final set of NSCs are some line-connectivity constraints [41]. Each constraint is specified
as a triple of integers: [#1,#2,#3] where each triple is interpreted as: if #1 and #2 are
connected, don’t ever connect #2 to #3. For example, if we have [1, 5, 2] and use Eqn. (6.1),
then we are enforcing if I is connected to N3, then N3 should not be connected to O. If
we had I − N3 − O present in a graph, the transfer function between the input and output

143

would be unity. To prevent such situations, we have that no voltage node (Nx) should be
connected directly between any of the 1-port components {I,O,G}.
Based on these NSCs, we can filter out subcatalogs of (C,P,R) that we know will not

contain any feasible graphs; thus, reducing the computational expense when generating
primitive circuits. A subcatalog is a set of component replicates bounded by (C,P,R) [41].
Since no voltage node can be connected to another, their ports must be connected to the
other component types. The same is true for {I,O,G} and {Z}. The 1-port components
may be connected to either Z or Nx, resulting in two possible cases: one where all 1-port
components are connected to Z, and another only to Nx. Then a necessary condition for a
feasible graph to exist in a certain subcatalog under the NSCs is:

pN < pZ + (pI + pO + pG) ∧ pN > pZ − (pI + pO + pG) (6.2)

where px indicates the total number of ports for component-type x in the subcatalog. For
example for Eqn. (6.1), the subcatalog R1 = Rmax is infeasible due to the left condition
(10 ≮ 9), and the subcatalog R2 = [1 1 0 3 1 0] is infeasible due to the right condition
(3 ≯ 4).

With the desired circuit structure space fully defined, we use enumeration to generate all
possible unique graphs that satisfy the requirements above (see Ref. [65] for the Matlab
code for enumeration). This set of graphs is termed the primitive library and can be saved
for future reuse. For Eqn. (6.1) with all the previously mentioned NSCs, there are 14 unique,
feasible primitive graphs. Each one of these primitive circuits is shown in Fig. 6.3. Here we
see many common topologies including parallel, series-parallel, L-section, and T-section. All
topologies that can be constructed with respect to (C,P,R) and the NSCs will be present.

6.2.3 Generating Practical Circuits
For every primitive circuit in the primitive library, we want to transform the general impedance
elements into practical components. The designer must specify the potential subcircuits for
these general impedance elements. Here we will consider subcircuits defined by series con-
nections between {R, L,C} components, visualized in Fig. 6.4. This set of subcircuits was
chosen since the primitive graphs capture different “parallel” topologies and these subcircuits
contain different “series” variations.

It is important to understand the growth during this step so if there are N potential
subcircuits and n general impedance components in the primitive circuit, then there are
(2N − 1)n practical circuits. If N = 7 and n = 4, then there are 2,401 practical circuits for

144

Key: Input node Output node Impedance

Figure 6.3: 14 primitive circuits for the circuit structure space defined by Eqn. (6.1).

C

L

R C R L

R
Z

CL

R CL

Figure 6.4: Subcircuits considered for generating practical circuits (series RLC
subcircuits).

a single primitive circuit. These permutations do not guarantee that each practical circuit
is unique, so isomorphic checks must be performed. Note that a practical circuit generated
from primitive circuit A will not be isomorphic to a practical circuit generated from primitive
circuit B, so we only need to compare practical graphs from the same primitive circuit.

6.2.4 Model Construction
In many synthesis problems, there is a predefined template circuit (or embryonic circuit)
that contains some fixed circuit elements and their relation to the input node, output node,
and ground [23, 37, 211, 217, 218]. Two common template circuits are shown in Fig. 6.5. A
complete circuit combines a practical circuit and the template circuit.
For a complete circuit, a model is constructed by obtaining the transfer function between

145

circuit
synthesis
domain

(a) Frequency response.

circuit
synthesis
domain

(b) Filter.

Figure 6.5: Two common template circuits.

the input and output nodes, denoted G. This transfer function will depend on the frequency
s and parameters from the template circuit ρ such as Rl in Fig. 6.5b. Additionally, optimiza-
tion variables x for the circuit are the coefficients for the two-port elements. The distribution
of the optimization variables will vary depending on the practical circuit.

To generate G(s,ρ,x), we use scam [225], a Matlab tool that derives and solves circuit
equations symbolically using the modified nodal analysis method [40]. This tool requires a
netlist representation of the circuit, which is a set of triples that define the interconnections
of circuit elements relative to numbered voltage nodes (see Fig. 6.2d for an example). It
is fairly straightforward to generate the netlist from the colored graph representation. The
only exception is when voltage nodes are connected to any of the 1-port elements since these
components are conceptually voltage nodes (and therefore are collapsed to a single voltage
node).

The collection of all complete circuits and their models is termed the practical circuit
library, and can be saved for future reuse. Using the primitive library in the previous section
and the subcircuits from Fig. 6.4, there are 207 unique complete circuits.

6.2.5 Preselection
Preselection is an optional step that can be performed before the complete circuits are
optimized for the particular synthesis task. The designer can limit the circuits that are
evaluated based on their preferences/constraints. Some examples include:

• Bounds on the degrees of the polynomials N(s) and D(s), where G(s) = N(s)/D(s)

• Bounds on the total number of components, nc, sometimes considered a complexity
measure [217]

146

• Bounds on the distribution of the components (e.g., limit to a maximum of three
resistors and two capacitors)

• Bounds on the total number of circuits to evaluate, potentially selecting a fixed number
of random circuits (although the coverage properties would no longer be present)

These preferences could be utilized to explore lower-complexity circuits first, checking
whether higher complexity circuits are needed to satisfy the requirements of the synthesis
task. Since this approach uses a predefined library of circuits, these preferences/constraints
can be handled readily.

6.2.6 Evaluation
With the desired set of complete circuits, we now need to determine how well the circuits
satisfy a given synthesis problem. Here we consider synthesis tasks that seek to minimize
the error between desired transfer function properties and the circuit’s physical response.
This involves sizing the circuit optimization variables x. Consider a set of ns frequency
points, denoted Ω, with desired values defined by f(ωk). Using a model function g(ωk,x),
the synthesis task is posed as the following curving fitting problem:

min
x

E =
∑
|rk(x)|2 (6.3a)

subject to: a(x) ≤ 0 (6.3b)
l ≤ x ≤ u (6.3c)

where: rk = g(ωk,x)− f(ωk) (6.3d)

where E is the error, rk are the individual residuals, a is the set of additional general
constraints, and {l,u} are the lower and upper bounds on the optimization variables, re-
spectively. If there are no additional general constraints, then this is a standard nonlinear
least-squares (NLS) problem and suitable solvers are utilized [226]. Otherwise, general non-
linear program (NLP) solvers will be used [130].
One suitable residual function for matching a circuit transfer function to a desired mag-

nitude response is:

rk = log|G(ωk,x)| − log|F (ωk)| = log
∣∣∣∣∣G(ωk,x)
F (ωk)

∣∣∣∣∣, k = 1, . . . , ns (6.4)

i.e., we want to minimize the pointwise decibel error (ignoring the constant for simplicity since
it does not effect the optimal curve fit). Alternative residual functions have been suggested

147

in the literature. Staying within the NLS framework, rk = G − F or rk = N − FD [227].
Others utilized normalized versions [211, 216] or the sum of the absolute errors [217]. The
chosen function has been shown to produce solutions similar to the other residual functions
but frequently is much smoother, improving convergence [228].

Another useful residual function is when only feasibility is sought, i.e., find a suitable x
such that Eqns. (6.3b)–(6.3c) are satisfied. This feasibility problem can be posed as a NLS
using the following residual function:

rk = max
(
0, ak(x)

)
, k = 1, . . . , na (6.5)

where na is the number of constraints. This results in a common penalty method used with
NLP [229].

Some studies also introduce heuristic penalty functions to help penalize higher-complexity
circuits [210, 213]. Complexity penalization is not needed in the optimization formulation as
it can be readily computed offline because the distribution of circuit elements is not changing,
as is the case in an evolutionary approach.

Two other aspects of the evaluation procedure are a possible weight function and linear
frequency scaling. A weight function may be defined as E = ∑

w(ωk)|rk(x)|2 where w is
the weight function that may be used to give less attention to high frequencies, provide
greater weight to specific regions of interest, or combine multiobjectives [211, 216]. We will
also use simple linear scaling of the frequency, i.e., s = αs̄ where α > 0. This is done for
numerical stability reasons and we will use the following recommendation from Ref. [230]:
α =

(
min(Ω) + max(Ω)

)
/2.

Due to the complexity of the proposed nonlinear program, it may be challenging to find a
feasible solution or solutions near the global optimum. To help remedy this issue, a multi-
start approach is utilized [231]. Here a large number of stratified random samples (100,000)
were initially tested and the best five were used as initial points in independent optimization
runs.

When the performance of all the circuits has been evaluated, the results can be analyzed.
Unlike other synthesis approaches, there are potentially a large number of feasible circuits to
choose from. Having many alternatives is a significant advantage. Tradeoffs in complexity vs.
performance can readily be observed. For example, we can find the lowest complexity feasible
circuit. Alternatively, if no feasible circuits are found, we have gained some insights into the
types of circuits that will be required to satisfy the synthesis task. These post-processing
analysis tasks will be discussed more in the Discussion section.

148

6.3 Examples
Two different kinds of passive analog synthesis problems (frequency response matching and
low-pass filter realizability) have been chosen as the design examples. Both of these problem
types have been studied previously, so we can readily make comparisons to previous results.
All runs were performed on a single computer with an i7-6800K at 3.8 GHz (up to 12 threads
available), 32 GB DDR4 3200 MHz RAM, Windows 10 64-bit, and Matlab 2017a. All
aspects of the synthesis tool are coded in the Matlab language23.

6.3.1 Frequency Response Matching

6.3.1.1 Synthesis Task

The first example is based on Ref. [210]. Here we wish to synthesize circuits that match the
following frequency response:

|F (jω)| =
√

2π
10ω (6.6)

over the frequency range:

0.2 ≤ ω

2π ≤ 5

with 500 logarithmically spaced evaluation points. Since we have a desired magnitude re-
sponse, not an explicit transfer function, traditional design methods cannot accommodate
this synthesis task [210].

We will consider two sets of simple bounds on the coefficients of the resistors and capacitors:

(set 1) R ∈ [10−2, 100] Ω, C ∈ [10−2, 100] F
(set 2) R ∈ [10−2, 105] Ω, C ∈ [10−10, 100] F

and there are no additional general constraints. The residual function is the pointwise decibel
error in Eqn. (6.4).

23The synthesis codes are available at Ref. [232].

149

6.3.1.2 Circuit Structure Space

The desired circuit structure space is “all topologies that have up to 6 impedance subcircuits
and a required connection to the ground.” Such a space is captured by:

C = {I,O,G,Z,N3,N4,N5,N6,N7,N8,N9} (6.7a)
P = [1 1 1 2 3 4 5 6 7 8 9] (6.7b)

Rmin = [1 1 1 1 0 0 0 0 0 0 0] (6.7c)
Rmax = [1 1 1 6 5 3 3 2 1 1 1] (6.7d)

and includes all the NSCs from Sec. 6.2.2. Only nine different orders of voltage nodes are
used, as any higher-order nodes would not produce feasible topologies. The specific values
of Rmax are the maximum number of replicates needed to still capture all possible feasible
subcatalogs with respect to Eqn. (6.2). The subcircuits for generating practical circuits
will be series connections between {R,C} components to replicate the elements available in
Ref. [210]. The primitive circuit library then has 393 unique graphs, and these graphs are
expanded to 104,235 unique practical circuit graphs (see Table 6.1).

Step t (s) N

Circuit generation
Primitive circuits 78 393
Practical circuits 131 104,235

Transfer functions 14,379 43,249

Evaluation Ref. [210], set 1 29,303 43,249
Ref. [210], set 2 28,739 43,249

Table 6.1: Computational cost of Frequency Response Matching example.

This synthesis task will utilize the template circuit in Fig. 6.5a. Of the 104,235 practi-
cal circuit graphs, 43,249 were found to have unique transfer functions. This difference is
attributed to cases where two circuits that have the same transfer function but different
colored graph representations. For example, in some practical circuits, components do not
show up in the transfer function (due to a functional short between the input and output
nodes). In these cases, the lower complexity circuit is always kept. With the desired circuit
library, we can now perform the sizing task to determine which circuits better satisfy the
requirements of the synthesis task.

150

0.5815

0.6841

0.2395

0.2356

0.6149

0.3047

0.5569

1.0000
0.3673

0.9492

0.9315

1.0000

0.8127

0.0765

0.1697

0.9955

0.4986
0.4299

0.2165

0.4673

0.6586

0.7488

0.3878

0.0609

(b)

(c)

(d)

0.2724

0.4583

0.6276
0.0787

0.3579

0.8292

0.2650

(f)0.0374

0.2747

0.6818
0.3379

0.5225

0.3793

0.5574

(e)

(g)

(a)

Figure 6.6: Performance vs. complexity (# of components) for Frequency Response
Matching example using set 1 along with select Pareto optimal circuits (units are Ω and F).

6.3.1.3 Results

The results for set 1 are summarized in Fig. 6.6a where the performance for every circuit
is shown, stratified by the complexity (or number of components). Select Pareto-optimal
(performance cannot be improved without an increase in complexity) circuits are also shown
in Figs. 6.6a–g. The desired magnitude response can be seen in Fig. 6.7a along with |G| for
select circuits in Fig. 6.6.

In fact, the included circuits are not unique Pareto-optimal circuits. For complexity levels
of {4, 5, 6, 7, 9}, there are {5, 22, 57, 200, 2} different circuits that produce the same level of
performance. This is due to each having nearly identical transfer functions using different
circuit topologies. For a specified number of poles and zeros, there is a lower bound on the
performance (nonzero in this task) defined by a transfer function where the coefficients are
tuned directly (sometimes called complex-curve fitting [227]). Therefore, a set of circuits
perform as well as possible under the pole/zero limitations defined by the circuit structure
space and complexity level. For example, consider the circuit in Fig. 6.6b where G contains 2
zeros and 3 poles, and produces a performance level of 7.3×10−2. If we instead designed the
polynomial coefficients directly, the lower bound on the performance is 2.9× 10−2; which is

151

(a) Both desired and circuit magnitude
response.

(b) Errors.

Figure 6.7: Magnitude and errors over the desired frequency range using select circuits
from Fig. 6.6.

similar to the synthesized circuit but smaller. See Table 6.2 for this comparison at additional
complexity levels and note the trend in the optimal orders of nz and np.

Performance
nc n∗z n∗p Best circuit G Best G
4 2 3 7.3× 10−2 2.9× 10−2

5 3 3 5.7× 10−3 3.4× 10−3

6 3 4 4.1× 10−4 4.0× 10−4

7 4 4 1.3× 10−4 4.8× 10−5

8 4 5 1.3× 10−4 5.6× 10−6

9 5 5 4.8× 10−5 6.6× 10−7

Table 6.2: Performance level comparison between best circuit transfer function and best
arbitrary transfer function for various complexity levels.

In a similar manner as set 1, the results for set 2 are summarized in Fig. 6.8. In this set of
results, an interesting pattern emerges, namely more discrete groupings of the performance
levels and similarly valued groups are shared between different complexity levels. With in-
creased flexibility in the values of the passive component’s coefficients, transfer functions
with similar properties (e.g., the same order for nz and np) are attracted to similar perfor-
mance levels during sizing. This is further illustrated in Fig. 6.9 where the performance is
plotted by cumulative percentage of circuits that have at least the given performance level.
For set 1 we see little pattern in the performance curve but with set 2, we see more discrete
performance levels. In this figure we also see more circuits achieving a specified level of

152

Figure 6.8: Performance vs. complexity (# of components) for Frequency Response
Matching example using set 2.

(a) All circuits. (b) Best circuits.

Figure 6.9: Performance vs. cumulative percentage for Frequency Response Matching
example.

performance with the increased variable ranges in set 2 (i.e., the curve for set 2 is always
below set 1). In addition, many more circuits achieve the best performance level, but there
is only a minor reduction of the objective compared to circuits sized using set 1.

A circuit of particular interest is the one found in Fig. 6.6e, as it has the same topology
as the circuit reported in Ref. [210]. Since the topology and sizing tasks were performed
simultaneously using an evolutionary approach in Ref. [210], it could have been challenging
to converge to the local optimum (something gradient-based methods do well). However, it is
extremely impressive that the synthesized circuit in Ref. [210] was close to the Pareto frontier
(same topology, slightly worse performance level at 3.0 × 10−4 with the error visualized in
Fig. 6.7b).

153

Figure 6.10: Low-pass filter specifications.

While the circuit in Fig. 6.6g has the best performance level (under the enumerated circuit
structure space), it would be up to the designer to decide if the increase in complexity is
worth the performance improvement. Having a large number of options provides the designer
with additional flexibility when selecting a final circuit.

6.3.2 Low-Pass Filter Realizability

6.3.2.1 Synthesis Task

The second example is the synthesis of a low-pass filter (LPF). A LPF attenuates signals
above a certain frequency and passes all other signals. The design specification of a LPF is
shown in Fig. 6.10. There are many classical synthesis methods for LPFs such as Butterworth,
Chebyshev I, Chebyshev II, Elliptic, Legendre-Papoulis, etc. [233]. LPFs are also frequently
used as examples for evolutionary-based synthesis methods [23, 37, 211, 213, 217, 218, 234].
Here we will try to synthesize four LPFs with their specifications and variable bounds shown
in Table 6.4.

154

6.3.2.2 Circuit Structure Space

The desired circuit structure space is “all topologies that have up to 7 passive components
with an optional connection to the ground”. Such a space is captured by:

C = {I,O,G,Z,N3,N4,N5,N6,N7,N8,N9} (6.8a)
P = [1 1 1 2 3 4 5 6 7 8 9] (6.8b)

Rmin = [1 1 0 1 0 0 0 0 0 0 0] (6.8c)
Rmax = [1 1 1 7 5 4 3 2 2 2 1] (6.8d)

and includes all the NSCs from Sec. 6.2.2. This is very similar to Eqn. (6.7), except Z now
has up to seven replicates, G is optional, and some of the Nx maximum replicate numbers
have changed based on what is needed for Eqn. (6.2). The subcircuits for generating prac-
tical circuits will be series connections between {L,C} components to replicate the elements
typically used in LPFs. The primitive circuit library then has 5,300 unique graphs and these
graphs are expanded to 1,804,496 unique practical circuit graphs (see Table 6.3).

Step t (s) N

Circuit generation
Primitive circuits 2,694 5,300
Practical circuits 6,330 1,804,496

Transfer functions 20,460 123,156

Evaluation

Task #1 235,810 123,156
Task #2 80,788 38,172
Task #3 83,231 38,172
Task #4 606 281

Table 6.3: Computational cost of Low-Pass Filter Realizability example.

This synthesis task will utilize the template circuit in Fig. 6.5b with parameters {vs, Rs, Rl}
valued at {2V, 1kΩ, 1kΩ}. Of the 1,804,496 practical circuit graphs, 123,156 were found to
have less than 7 components and remain unique transfer functions. The practical circuit
graph representation can be used directly to count the number of components before the
transfer function is constructed.

6.3.2.3 Results

The results for this example are summarized in Table 6.4 with the number of synthesized
feasible circuits, the percentage of circuit topologies that were feasible after sizing, and the

155

c.f. fp (Hz) fs (Hz) Kp (dB) Ks (dB) L bounds (H) C bounds (F)
1 [37, 217] 925 3200 3.01 22.0 [0.1m, 1.5] [0.1p, 200µ]
2 [23] 1000 2000 1.00 60.0 [0.01m, 10] [0.1p, 100µ]
3 [211] 800 2000 0.60 68.0 [0.1m, 1] [100p, 1µ]
4 [37, 217] 1000 2000 0.01 63.5 [0.1m, 1.5] [0.1p, 200µ]

(a) Specifications.
feasible % feasible minnc
1 38172 30.99 3
2 280 0.23 6
3 197 0.16 6
4 0 0 > 7

(b) Results.

Table 6.4: Summary of Low-Pass Filter Realizability specifications and results.

minimum number of components needed to satisfy the synthesis specifications. The tasks
had increasingly more difficult to satisfy specifications.

The first study is based on examples in Refs. [37, 217], and the specifications were chosen
such that they could be satisfied using a third-order Butterworth filter [37]. This implies
that there should be at least one three-component topology that satisfies the specifications
(ignoring the variable bounds). In fact, there are six different three-component topologies
that satisfy the requirements, all shown in Figs. 6.11a–6.11f. The circuits in Fig. 6.11a and
Fig. 6.11b are topologically similar to one another, as well as Fig. 6.11c and Fig. 6.11d.
The other two are well known topologies; Fig. 6.11e is a π-section, and Fig. 6.11f is a T-
section. Their attenuation responses are shown in Fig. 6.11g; all responses are within the
specifications.

The best circuit for task #1 found in Ref. [217] is Fig. 6.11b; thus, their evolutionary
approach did find one of the minimum-complexity circuits. The best circuit from Ref. [37]
had seven components; it is not reported as it is not a minimum-complexity topology. Since
enumeration was used, we can look at the likelihood that certain topologies would have been
feasible. For topologies with up to seven components, 30.99% of the topologies are feasible
(see Table 6.5 for the percentage for each complexity level).
The specifications for task #2 are more stringent. Because of this, we can take the 38,204

feasible circuits from task #1 as the starting set of circuits since any circuit that is not
feasible in task #1 will not be feasible in task #2. From this, only 280 circuits are found
to be feasible with the minimum nc being six components. Two of the eleven minimum-

156

106.4

9.5 350.4

(a)

14.9294.6

113.3

(b)

152.2
1.8

314.6

(c)

246.6

1.3

235.6

(d)

309.0212.7

74.9

(e)

329.7 34.9

185.5

(f)

(g)

Figure 6.11: All feasible, minimum complexity circuits and attenuation responses for
Low-Pass Filter Realizability task #1 (units are mH and nF).

Circuits
nc Feasible Total %
1 0 2 0.0
2 0 12 0.0
3 6 60 10.0
4 62 338 18.3
5 534 2,192 24.4
6 4,240 14,685 28.9
7 33,330 105,867 31.5

Table 6.5: Task #1 feasible vs. total number of circuits for different complexity levels.

157

218.3

25.6
329.7 324.5174.4

199.0

(a)

455.6348.1 266.8

152.1

31.1

174.4

(b) (c)

Figure 6.12: Select feasible, minimum complexity circuits and attenuation responses for
Low-Pass Filter Realizability task #2 (units are mH and nF).

complexity circuits are shown in Figs. 6.12a–6.13b. Their attenuation responses are shown
in Fig. 6.12c (note the magnified region to highlight constraint satisfaction in the passband).

In Ref. [23], the reported circuit had eight components. A direct comparison is not a fair
assessment, as their study limited the preferred (discrete) component values (E12 series).
However, we can see that Fig. 6.12a is the same as their reported topology when C4 and C5
are removed. An alternative complexity metric is the number of inductors as inductors can
be bulky, heavy, and expensive compared to capacitors [233]. Under this metric, Fig. 6.12a
is the minimum inductor solution (with two alternatives). A similar discussion can be had
with the task #1 results, where only one inductor is needed in three of the circuits, such as
in Fig. 6.11a.

The next task had slightly more stringent Kp and Ks limits, but the transition region
was slightly larger. Furthermore, the variables bounds are the tightest of the four tasks.
Only 197 topologies where found to be feasible, which is less than with task #2. In this
task, six components was the minimum number required, and four of the ten minimum
complexity topologies are shown in Figs. 6.13a–6.13d (all ten circuits are shown in Fig. B.1).
The minimum inductor topology is illustrated in Fig. 6.13a. Their attenuation responses are
shown in Fig. 6.13e, and all responses are within the specifications. The circuit in Fig. 6.13c
is the same topology found in Ref. [211], which is another case of an evolutionary approach
arriving at a minimum complexity circuit.

Task #4 had the toughest specifications, primarily due to Kp = 0.01. Since the require-
ments were equal to or more stringent than those in task #2, only the 280 feasible circuits
from task #2 were tested, greatly reducing the computational cost. None of the topologies

158

 177.7

31.5
518.3 258.7321.1

277.2

(a)

355.4
198.9

484.3

217.6 304.1
28.1

(b)

201.9 280.4

23.1

238.1
528.7361.3

(c)

345.0 453.3 311.4

233.5194.4 12.3

(d)

(e)

Figure 6.13: Select feasible, minimum complexity circuits and attenuation responses for
Low-Pass Filter Realizability task #3 (units are mH and nF).

242.5

152.0 282.3 241.0
44.5

129.9
281.9

(a) {0.0875, 63.08}.

128.4
28.3

264.2 246.4

282.4 154.0
202.7

(b) {0.1222, 62.92}.

Figure 6.14: Top two closest to be feasible circuits for Low-Pass Filter Realizability task
#4 and realized gains {Kp, Ks} with respect to fp = 1000 Hz and fs = 2000 Hz (units are
mH and nF).

159

produced a feasible circuit, so we come to the conclusion that at least eight components are
needed. In Ref. [37], 21 components were needed, but in Ref. [217], only 12 components.
Therefore, we now know that between 8 and 12 components are required to produce a feasible
design.

The top two circuits (in terms of performance) are shown in Fig. 6.14. As expected, they
both include seven components, which was the limit. The topologies are similar to minimum
complexity topologies found in the previous tasks. Fig. 6.14a is similar to Fig. 6.13b, and
Fig. 6.14b is similar to Fig. 6.13a. For the best circuit, the gains {Kp, Ks} were found to be
{0.0875, 63.08}, which are a substantial improvement compared to task #2, but still do not
meet this task’s stringent specifications.

6.4 Discussion
In this section we address the motivating questions introduced in Sec. 6.1, and summarize
what we have learned about the enumeration-based synthesis methodology.

Both of examples in Sec. 6.3 show that enumeration is feasible for certain commonly-
used synthesis problems. LPF task #4, on the other hand, demonstrates that sufficiently
demanding synthesis problems can be a challenge to solve with enumeration, primarily due
to the required computational cost. Even though no acceptable solution was found in task
#4, valuable insights were gained and a number of good circuits were found that nearly
satisfy the specifications. One way these nearly-feasible designs could be useful is as data
for evolutionary computing methods that can leverage known good topologies to improve
effectiveness [217].

The primary drawback of an enumeration-based synthesis methodology is simply the com-
putational cost and its exponential growth with system size. Most of the resource-intensive
tasks can be performed in parallel, such as generating the transfer functions and evaluating
the circuits. All reported costs were for a single machine, but with increasing computational
resources, larger and more complex synthesis problems can be solved within an acceptable
duration using enumeration than in the past. We acknowledge that while enumeration
strategies have clear limits, the methods presented here, based on perfect matching and effi-
cient algorithms that eliminate isomorphisms and topologies that are infeasible with respect
to NSCs, can enumerate all unique, feasible topologies for larger synthesis problems than
those solved previously via enumeration. Furthermore, reusability is inherent to the pro-
posed methodology, a property not typically associated with evolutionary approaches. Only

160

a single set of circuits and associated transfer functions was generated for all the tasks in
the Low-Pass Filter Realizability example. In addition, we can use results from a previous
synthesis task to evaluate a different synthesis study more efficiently, without comprising the
enumerative properties of the approach. This was demonstrated in tasks #1 → #2 → #4,
where only the previous task’s feasible circuits were used, greatly reducing the computational
cost. So even if the initial investment is high, the data and knowledge gained can be used
for similar design tasks.

Three circuit structure spaces were discussed in this chapter, providing insights into circuit
properties that satisfy (C,P,R) specifications. The growth for Eqn. (6.8) is shown in Ta-
ble 6.5. Using an exponential regression on this data, we can predict the number of circuits
for larger values of nc. From this, for eight and nine components, we predict ∼540,320 and
∼3,274,300 circuits, respectively.

Another compelling result was the observation that a number of previous studies using
evolutionary-based approaches did find at least one minimum complexity or Pareto-optimal
circuit. Principally, the evolutionary approaches can arrive at such a circuit with a lower
computational cost compared to an enumerative approach. However, typically only a single
solution is presented with an evolutionary approach (or multiple runs are needed), but since
all circuits are evaluated in an enumerative approach, a large set of alternatives and a larger
set of insights is available to the designer. In the Frequency Response Matching example,
the Pareto-optimal topology in Fig. 6.6e is the same as the circuit reported in Ref. [210]. In
the Low-Pass Filter Realizability example, the minimum complexity topology in Fig. 6.13c
is the same as the circuit reported in Ref. [211]. However, some previous studies produced
overly-complex solutions [37].

Another relevant point of discussion is whether circuit sizing is performed simultaneously
with or nested within the topology exploration task. Many previous approaches utilize
simultaneous sizing and synthesis [37, 211]. An alternative—employed here, in Refs. [213,
217], and on the first generation in Ref. [211]—is to nest the optimal circuit component
sizing task within synthesis by solving the sizing problem for each candidate topology. Here
the sizing problem is solved only for unique, feasible topologies. The nested approach can
converge much faster and involve fewer objective function evaluations [213]. This work also
demonstrates that only a few circuits need to be sized if there is a high probability of a
feasible topology. For a 99.94% chance of finding a feasible topology, only 20 circuits in task
#1 need to be tested, or 3,200 circuits for task #2 in the LPF example. Enumeration using
a nested approach looks even more favorable for certain problems if only one satisfactory
circuit is desirable. Table 6.5 is direct evidence that it is easier to satisfy specifications with

161

more components [210].
Another use for the circuit generation framework in Sec. 6.2 is to provide diverse starting

circuits for other synthesis approaches. The perfect-matching graph generation approach can
be modified to produce stochastically sampled graphs, even for catalogs where enumeration
is impractical [6]. Many authors state the importance of the initial set of circuits, including
properties such as diversity and feasibility that can be assessed using the proposed enumer-
ation method [23, 211]. The circuits generated from Ref. [65] are extremely diverse and
likely feasible (e.g., there will never be an unconnected branch) but stay within a prescribed
circuit structure space (such as a maximum number of components). Additionally, isomor-
phic topologies are minimized (or completely removed if checked directly) when compared
to circuit sets generated from only random connections or other similar graph generation
methods.

Looking forward, enumeration-based approaches could be leveraged to improve existing
methods or help define new ones. Enumeration-based results provide a wealth of information
for a particular synthesis problem. Using a set of results, feature extraction algorithms could
be used to develop different metaheuristics that are based less on legacy forms or intuition
(descriptive knowledge), but actual results for the problem at hand [79] to provide more
normative synthesis strategies and accelerate the creation, analysis, and understanding of
unprecedented systems. Enumeration could also be used in a multi-step process where
smaller catalogs are initially explicated. From these results, potentially useful subcircuits
could be identified and be used as components in a new circuit structure space or as in done
in Fig. 6.4.

Recent work has employed machine learning strategies to scale to synthesis problems larger
than the training data set generated using enumeration [235], for the simpler case of non-
colored graphs. Extending the use of data from enumeration to larger synthesis problems
described by colored graphs is an important topic for future work.

Finally, there are a number of general improvements that could be made to the proposed
methodology. Continuous values for x were assumed, but there are standardized preferred
component values (such as E12 series) that are frequently desirable [23]. Solving the sizing
task using a nested approach will require a different optimization technique than NLS (such as
a genetic algorithm [217]). Further improvements to the graph generation code and the sizing
procedure could expand the scope of problems for which enumeration is practical. Topologies
including active and multi-port components are possible under the graph generating code,
but modifications to the model generation and evaluation for these synthesis problems would
be needed.

162

6.5 Summary
Here an enumeration-based synthesis methodology for passive analog circuits is described. In
the enumerative approach, all circuit topologies under certain graph structure specifications
are generated and tested. With a complete set of results, the most desirable circuit can be
selected with guarantees on its optimality. This methodology requires minimal initial knowl-
edge, maintains complete design space coverage, and produces reusable information. Both
presented examples (frequency response matching and low-pass filter realizability) demon-
strated that enumeration is feasible for certain commonly-used synthesis problems, but is
also a challenge to use for sufficiently demanding synthesis tasks. The results are compared
to existing approaches and show that some evolutionary approaches have produced minimum
complexity or Pareto-optimal topologies. Future work is to adapt the approach for additional
synthesis tasks and better understand the types of synthesis problems that enumeration is
an appropriate design methodology.

163

Chapter 7

Case Study: Design of Strain-Actuated Solar Arrays24

“What we usually consider are impossible are simply engineering
problems. . . there’s no law of physics preventing them.”

M. Kaku [236]

7.1 Introduction
Advancements in spacecraft technology accelerate discovery in Earth and space sciences;
faster reorientation and ultra-quiet jitter-free operation for space observatories and optical
links have the potential to transform the rate and quality of data obtained for scientific
investigation [237, 238]. Scientific needs drive exceptionally stringent spacecraft pointing
and control requirements, which in turn demand new strategies for space vehicle design and
control [239, 240]. The strategy proposed here uses existing appendages (solar arrays) with
distributed actuation to achieve high-precision attitude control. Strain-actuated solar arrays
(SASAs), which employ distributed piezoelectric material actuators, provide high accuracy
and bandwidth for spacecraft attitude control, thereby supporting quiet operation for high-
precision scientific instruments. Additionally, the dual use of the same spacecraft component,
i.e., solar arrays, for power generation and precision attitude control reduces payload delivery
costs.

A unique capability of the proposed SASA pointing architecture is to perform attitude
slewing maneuvers in addition to suppressing structural vibrations. Although the current
bending limit of the arrays bounds the magnitude of the attitude maneuvers to the order of
milli-radians or arc minutes, these advancements are important for high precision pointing.
After the pointing target has been acquired, the SASA control system performs small-scale
reorientations and pointing stability in the presence of jitter disturbances.

24Elements of this chapter are based on work completed in Ref. [18].

164

Strain-actuated solar arrays for precision pointing will require the arrays to behave more
like a flexible structure than a rigid one. Space structures by necessity are extremely
lightweight and flexible, but vibrations from reaction wheel assemblies, reorientation ma-
neuvers, and other disturbances degrade performance. There has been previous work to
handle this issue, including the extensively-studied topic of control-structure interaction
[240, 241]. However, most of these works have led to design guidelines based on the primary
goal of damping out vibrations [242, 243]. In contrast, the primary goal here is to control
the spacecraft orientation. In the integrated design and control study presented here we
seek to utilize the flexible body dynamics to our advantage to provide new levels of system
performance.

Piezoelectric material actuators (PEMAs) [244–246] are a proven solution for distributed
actuation [247, 248]. Applying voltage across PEMAs bonded to or embedded within struc-
tures induces strain, causing the structure to deform (bend, twist, elongate, or contract
depending on design). PEMA-based intelligent structures outperform conventional point-
actuated structures [240, 249], in terms of mass, fast dynamic response, and high precision
[250]. Although piezoelectric actuators have been used for structural active damping, they
have not been used for slewing control of structures due to their small stroke. The proposed
SASA architecture, however, does not slew the array structure about a revolute joint, but
bends it to slew the bus using conservation of angular momentum. In this way, the SASA
system implements the novel functionality of small-scale attitude control. Since there are
small strain limits on array bending, the small PEMA stroke does not limit this applica-
tion. Furthermore, the use of piezoelectric actuators allows for quiet operation for sensitive
instruments.

The distributed actuation of intelligent structures provides tremendous design flexibility.
This opens up new opportunities for system performance, but also increases design difficulty
[250, 251]. The co-design work presented here considers not only the design of the actuator
system, but also of a distributed structure for optimal active performance. Furthermore, the
use of open-loop distributed control allows us to obtain insights for actuator placement and
to investigate limits of performance.

In most previous co-design studies, the physical aspects of the system design have been
managed in a very simplified manner. For example, physical system (plant) design decisions
have often been limited to actuator placement [252, 253]. Many co-design studies have used
simplified plant models [4, 249, 254, 255] that do not support exploration of changes to
distributed geometric structural design, preventing full exploitation of the design synergy
between structural tailoring and distributed control system design. A more ideal co-design

165

method supports changes to distributed structural properties (e.g., changing structural shape
affects how inertial and stiffness properties vary spatially). Structural tailoring coupled with
control design has long been recognized as an important, yet formidable problem [101].
Although there are examples of tailoring passive system dynamics to work optimally with
active control using lumped plant stiffness, damping, and mass parameters as design variables
[254], these methods cannot be extended to distributed parameter systems.

To summarize, much is known regarding the design of control systems and actuators for
intelligent structures, but only if the structural design is held fixed. A few examples of fully-
integrated design exist, but only with simplified treatment of structural design. Since the
proposed SASA pointing architecture involves inherent dynamic coupling between control
actuation and flexible structural dynamics, it is a good case for a co-design study. In this
work, distributed geometry—specifically, distributed array structure thickness—is optimized
simultaneously with distributed moment control of the array structure.

An initial study of the SASA concept was performed previously, focusing on attitude con-
trol, to demonstrate its feasibility. It was shown that the spacecraft bus orientation can
be controlled by the appropriate bending of the arrays using a pseudo-rigid body dynamic
model (PRBDM). A more recent study has further developed realistic feedback control sys-
tems suitable for SASA architectures [256–258]. An earlier version [259] of this work intro-
duced the use of Euler-Bernoulli beam theory for a physically consistent description of the
array dynamics, and the nonlinear partial differential equation (PDE) model is implemented
using Galerkin approximating functions [260–262]. In the model, piezoelectric actuation is
represented by a distributed moment on the array. The model also accounts for the elastic
and inertial properties of the actuators. In the spacecraft slewing and pointing maneuvers
considered here, the array bending displacement is small. This enables reasonable accuracy
when using a linearized bus-array model. Based on this linear model, we present parametric
studies that 1) help determine performance limits, and 2) provide insight into the resulting
array designs.

The use of open-loop controls and distributed optimization parameters, e.g., voltage and
array thickness, allows for solutions that make limited assumptions on the control or physical
architecture. This aids in the exploration of ultimate system performance limits [27]. Al-
though there may be practical constraints for feedback control system implementation, the
resulting co-design solutions can provide important insights into how to design the physical
array structure such that it performs optimally as an actively controlled system, capitalizing
on synergy between physical- and control-system design [1].

The primary objectives of this work are to demonstrate the feasibility of the SASA attitude

166

(a) Beam theory model. (b) Lumped parameter model.

Figure 7.1: Illustration of the two modeling approaches used to gain design insights.

control architecture on a representative spacecraft system, to determine the optimal designs
of the distributed array structure and controls, and to reveal qualitative design insights for
intelligent structures with distributed geometric design.

This chapter is organized as follows. The models for the bus-array system, distributed
composite array structure, distributed control, and PRBDM are presented in Sec. 7.2. The
formulation for the combined design of the distributed array structure and distributed control
is presented in Sec. 7.3. Analytical results based on PRBDM theory and numerical results
of the co-design studies are discussed in Sec. 7.4. Results include the analysis of the optimal
design tradeoff for the array structure, the optimal placement of segmented piezoelectric
actuators, and parametric studies on passive damping and jitter disturbance.

7.2 Modeling of the Strain-Actuated Solar Arrays and Rigid
Spacecraft Bus

The modeling approach used here is based on the recent work on aircraft dynamics with
flexible, articulated wings [263] (see Ref. [264] for details). The spacecraft motion is modeled
as an ordinary differential equation (ODE) of a simple cylinder, and the solar array structure
is modeled as a PDE of a composite beam with thickness that can vary along its length.

7.2.1 Partial Differential Equation Model
Here we assume that actuation is effected only through solar array strain actuators that
produce strain at the solar array structure surface, resulting in array bending and a dis-
tributed moment due to strain actuator surface forces. The strain actuators do not interact
with anything external to the spacecraft system, so the total system momentum must be

167

conserved. Therefore, for a generally counter clockwise (CCW) movement of the solar array,
the bus (θ) will rotate in the opposing CW direction allowing for attitude changes. This is
evident in both the illustration of the beam theory coordinate system in Fig. 7.1a and its
comparable PRBDM lumped parameter model in Fig. 7.1b.

7.2.1.1 Coupled ODE-PDE Dynamic Model

The coordinate systems used for the derivation of the Lagrangian of the system are shown
in Fig. 7.1a. The model has two arrays with asymmetric actuation. Let the radius of the
spacecraft body be r, and the spacecraft body rotation angle about origin O be θ. In deriving
the equations of motion, it is assumed that the deflections ξ(x, t) due to bending are small
and the beam has no longitudinal velocity.

The mass moment of inertia of the spacecraft bus is Jθ. The total length and width of
the solar array are represented by ` and w. The mass per unit length of the composite beam
is denoted mR(x) and the total rigidity is E(x)I(x). The further details of the structural
model are discussed in Sec. 7.2.1.3.

The moment applied on the array is M(x, t) over the locations where a piezoelectric
actuator is bonded; a small actuation gap (0.5 cm) was applied at the root and the tip to
satisfy the boundary conditions. Using the explicit generalization for the hybrid coordinate
systems approach, the equations of motion were derived in Refs. [18, 264]. The applied
boundary conditions specify zero deflection and slope of the deflected beam at the root, and
no external force or moment at the free end.

The proposed SASA architecture is envisioned for high-precision pointing control. To
maintain the structural integrity of the arrays and to take into account actuator limitations,
bounds are defined for the array strain and control magnitude, which in turn limit array
displacements to small values. Therefore, a linearized bus-array system can still predict the
dynamics with sufficient accuracy (see Ref. [18] for details). While the linear model does
not approximate large array displacements accurately, displacements in our tests are small,
and linearization makes the integrated structural and control optimization problem more
tractable. This allows to conduct various parametric studies, which support the focus of
this work on design methods and design insight. The following linearized equations are now

168

(a) Continuously distributed internal moment
on a uniform thickness array.

(b) Piecewise constant distributed internal
moment on a uniform thickness array.

(c) Piecewise linear distributed array thickness.

Figure 7.2: Illustrations of various design representations for internally actuated array
design problems for pointing.

used, and the boundary conditions remain the same:
∫ `

0
[Msl]

θ̈
ξ̈

 dx+
 0∫ `

0 (2EIξ′′ + 2µEIξ̇′′)′′dx

 =
 d∫ `

0 2M ′′
dx

 (7.1)

where: [Msl] =
m11(ξ) m12

m12 m22

 =
(Jθ/`+ 2

(
mR (x+ r)2

))
2mR (x+ r)

2mR (x+ r) 2mR

The term µ is used to model the structural damping in the solar array. A disturbance d(t)
acts on the bus as a torque input.

169

7.2.1.2 Galerkin Formulation

To approximate numerically the PDE in Eqn. (7.1), we use a Galerkin formulation [261–263].
A linear combination of approximating functions is used to represent the array dynamic
state [261] and distributed moment. These functions are chosen such that they satisfy the
boundary conditions of the array, i.e., the fixed-free condition. The jth approximating
functions used for spatially distributed deflection and moment representations, respectively,
are defined as [261]:

φj(x) = 1− cos
(
jπx

`

)
+ 1

2(−1)j+1
(
jπx

`

)2
, γj(x) = φj(x) + xj + 1 (7.2)

The array deflection and distributed moment are then approximated as:

ξ(x, t) = φ(x)Tη(t), M(x, t) = γ(x)Tq(t) (7.3)

For the co-design studies here, four approximating functions are used. This approximation
parameterizes the control as a spatially-varying distributed moment, but the actual control
input on a piezoelectric segment is normally a uniform voltage [265]. Comparing both of
these representations in Figs. 7.2a and 7.2b, we may think of the spatially-varying distributed
moment as the limiting case of the piecewise uniform moment (segment length approaching
zero). The applicability of this approximation to a real implementable physical system will
be discussed in Sec. 7.4.4.
A system of ODEs that approximate the PDE given above is derived [264] by minimizing

weighted residual of the ξ dynamics. Using the above formulation and defining additional
matrices we obtain:

[Mg]

 θ̈
η̈

+
 0

2[e](η + µη̇)

 =
 d∫ `

0 2φM ′′
dx

 (7.4)

where: [Mg] =
Jθ + 2

∫ `
0 mR (x+ r)2 dx 2[B]

2[B]T 2[A]

[A] =

∫ `

0
mRφφ

Tdx, [B] =
∫ `

0
mR(x+ r)φTdx, [e] =

∫ `

0
φ
(
EIφ

′′T
)′′
dx

7.2.1.3 Structural Model of Composite Array

The structural geometry of the array is also designed with the distributed moment. In this
work, the length of the array and the distributed thickness are optimized. The spatially
varying array thickness design is represented using piecewise linear segments. The length

170

Figure 7.3: Cross section of the actuated array, modeled as a composite beam.

of the array is divided into multiple segments as shown in Fig. 7.2c. Segment lengths and
slopes can be changed. The distributed array thickness design is parameterized using the
absolute locations of the segment boundaries (quantified by the vector `), and the thickness
at the segment boundaries (quantified by the vector h). On the segment j, the thickness
varies linearly with respect to x as follows:

hj(x) = (hj+1 − hj)
x− `j
`j+1 − `j

+ hj, x ∈ [`j, `j+1] (7.5)

The array is laminated with a layer of piezoelectric material on the top surface which acts
as an actuator and has the same width as the beam. It is also assumed that the entire
top surface of the array is covered with a piezoelectric layer of constant thickness he. The
neutral axis of the composite beam is not at the center due to the inhomogeneous structural
properties. Consider the cross section of the composite beam shown in Fig. 7.3. The distance
from the neutral axis and the top surface of the array with piezoelectric material is hn. The
thickness of the base array and the piezoelectric layer are hb(x) and he, respectively. Note
that hb(x) can vary spatially. The neutral axis location hn, for each position 0 ≤ x ≤ `, can
be obtained by balancing the forces across the cross section and solving for hn:

hn = 0.5Eeh2
e + Ebhb (0.5hb + he)
Eehe + Ebhb

(7.6)

The area moments of inertia of the array, Ib, and the piezoelectric layer, Ie, about the neutral
axis are:

Ib = wh3
b

12 + whb (he + 0.5hb − hn)2 , Ie = wh3
e

12 + whe (hn − 0.5he)2 (7.7)

The total array rigidity is given by:

EI = EbIb + EeIe (7.8)

The mass per unit length of the composite array is mR(x) = mRb(x)+mRe(x), where mRb(x)

171

and mRe(x) are the mass per unit length of the base array and the piezoelectric material,
respectively. The application of a voltage V across the piezoelectric layer induces a moment
M . This moment, due to only internal actuation, can be calculated by applying force balance
across the cross section of the composite array [264]:

M(x, t) = c(x)V (x, t), (7.9)

where: c(x) = d31E
2
bwh

3
bEehb(hb + he)

2(E2
bh

4
b + 4EbEeh3

bhe + 6EbEeh2
bh

2
e + 4EbEehbh3

e + E2
eh

4
e)

and d31 is the ratio of the strain and the electric field applied across the piezoelectric layer
when all the external forces are held constant [265]. Observe that the moment is proportional
to the applied voltage.

7.2.2 Pseudo-Rigid Body Dynamic Model
A PRBDM was developed for the spacecraft system for the purpose of performing additional
numerical studies that complement those based on the PDE model, including studies that
yield qualitative insights that are difficult to obtain via the more sophisticated PDE model.
The flexible solar arrays were modeled both with single and multi-link approximations. The
single link model is presented here, where each array is modeled as a single rigid link con-
nected to the spacecraft body via a revolute joint and a torsional spring (see Fig. 7.1b).
This is a lumped compliance approximation of the distributed compliance of the actual solar
array. However, these models only describe the behavior at a component level rather than
the specific point-to-point variations, while Euler-Bernoulli beam in Sec. 7.2.1 does capture
these variations.

Applying the Euler-Lagrange equation to the system in Fig. 7.1b we arrive at the following
equations of motion:

MPR

θ̈
δ̈

+BPR

θ̇
δ̇

+KPR

θ
δ

 = τ (7.10)

where: MPR =
Jθ + 2Jδ + 2mr2 + 1

2m`
2 + 2`mr cos(δ) 2Jδ +mr` cos(δ) + 1

2m`
2

2Jδ +mr` cos(δ) + 1
2m`

2 2Jδ + 1
2m`

2

BPR =

−2`mrδ̇ sin(δ) −`mrδ̇ sin(δ)
`mrθ̇ sin(δ) 2b

 , KPR =
0 0

0 2k

 , τ =
 d

2M

m = ρ`wh, Jδ = 1

12m
(
`2 + h2

)

172

and where k is the torsional spring stiffness and b is the damping constant at the revolute
joints. Solving the eigenvalue problem (M−1

PRKPR = ω2) gives the natural frequencies of the
system:

ω2
1 = 0 (7.12a)

ω2
2 = k

2m`2 + 8m`r cos (δ) + 8mr2 + 4Jθ + 8Jδ
−2`2m2r2cos (δ)2 + 2`2m2r2 + Jθ`2m+ 8Jδmr2 + 4JθJδ

= k

Jeff (δ, `, h, w) (7.12b)

One of the eigenfrequencies is zero since the system permits a rigid body mode. The two
mode shapes are:

ψ =
[
ψ1 ψ2

]
=
1 − m`2+2mr` cos(δ)+4Jδ

m`2+4mr` cos(δ)+4mr2+2Jθ+4Jδ
0 1

 (7.13)

We note that the nonrigid mode eigenfrequency (ω2) and eigenvector (ψ2) are not constant
but depend on the path of the array. The total angular momentum of the system is:

X =
(1

2`
2m+ 2`mr cos(δ) + 2mr2 + Jθ + 2Jδ

)
θ̇ +

(1
2`

2m+ `mr cos(δ) + 2Jδ
)
δ̇ (7.14)

Since internal moments cannot change the total angular momentum of the system, the only
mode that is present in the absence of external moments is the momentum conserving mode
ψ2.

7.3 Co-Design Problem Formulation
The objective of the co-design study is to provide insights into how the actively-controlled
solar array should be designed to optimize the performance in terms of attitude slewing and
jitter reduction. A balanced co-design approach is utilized where physical-system (geometric
specification of the solar array) and control-system (open-loop voltage trajectories) design
are considered in an equally comprehensive manner [27]. A general simultaneous co-design
formulation (with a fixed time horizon) is in Prob. (3.1). Here the physical system design xp
is parameterized by h and ` with eight distinct linear segments. The control system design
variable is defined here as xc := q(t); these control trajectories are used to compute M(x, t)
and V (x, t).

The spacecraft control task is divided into two consecutive phases; tm is the time duration
of the first phase. The first phase (slewing) concentrates on rotating the bus from an initial
angular displacement θ(t0) back to θ = 0 at time tm. In the second phase (pointing) the

173

(a) Bus parameters.
Parameter Value

Jθ 372.49 kg m2

r 1.02 m

(b) Array and piezoelectric material parameters.
Parameter Value
`nominal 1.575 m
hnominal 0.018 m
wnominal 1.862 m
hp 2× 10−4 m
Eb 1.57 GPa
ρb 332.03 kg/m3

Ep 62 GPa
ρp 7800 kg/m3

µ 10−4 s

Table 7.1: Problem physical parameters.

bus is held inertially fixed for precision pointing. Any vibrations generated during slewing
must be damped out during the pointing phase. The objective function is to maximize the
slewing angle, demonstrating the maximum capability of the SASA attitude control system:

Ψ = −θ(t0) (7.15a)

where t ∈ [t0, tf] = [0 s, tm + 1 s] and tm is solved at various values between 0.12 s and 4 s.
This parametric sweep on tm helps quantify the tradeoff between the competing objectives
of slew angle maximization and slew time minimization. The dynamic constraint uses the
linear ODE defined in Eqn. (7.4) with 4 approximating functions. The physical parameters
for the bus, array, and piezoelectric layer are shown in Table 7.1. A disturbance moment
d(t) on the bus is present during the slewing and pointing phases. It consists of a jitter
component (e.g., vibrations similar to those that arise from moving parts such as pumps)
and a bias component (e.g., due to solar radiation pressure, atmospheric drag):

d(t) = 10−4 Nm + 2× 10−3 sin(50t) Nm (7.15b)

The initial configuration is stationary with an initial bus orientation θ0 = θ(t0) 6= 0. The
initial states25 are:

ξ(t0) =

θ(t0)
θ̇(t0)
η(t0)
η̇(t0)

 =

θ0

0
0

0

 (7.15c)

25The states ξ include the deflection ξ of the array in Fig. 7.1a through η.

174

The bus angle and angular rate are constrained to 0 during the pointing phase. This simul-
taneously meets the pointing task and eliminates jitter if a feasible solution is found:

|θ(t)| = 0, t ∈ [tm, tf] (7.15d)
|θ̇(t)| = 0, t ∈ [tm, tf] (7.15e)

Numerical experiments indicate these constraints can be satisfied in all but very unusual
cases. PEMA actuation magnitude is constrained to satisfy maximum voltage restrictions:

|V (x, t)| =
∣∣∣∣∣M(x, t)
c(x)

∣∣∣∣∣ ≤ 300 V (7.15f)

The array surface strain is constrained to be less than 0.1% to maintain structural integrity:

|ε(x, t)| =
∣∣∣(hb(x) + he − hn(x)) ξ′′(t)

∣∣∣ ≤ 10−3 (7.15g)

Traditional silicon-based solar cells can withstand strain levels on the order of 0.1% [266].
However, recent advances allow the manufacturing of flexible solar cells that can achieve
strain levels on the order of 10% [267], as well as fiber-shaped solar cells that can be woven
into textiles [268].

The total array length, linear array segment lengths, and array thickness values have
manufacturing and operational constraints:

0.5 m ≤ `n ≤ 2.5 m
0.05 m ≤ `i+1 − `i ≤ 1 m
0.009 m ≤ hi ≤ 0.055 m

i = 0, 1, . . . , n (7.15h)

The array volume is constrained to be less than the nominal value in order to avoid increasing
the payload mass and delivery costs. This is proportional to the array structure cross-
sectional area:

n∑
i=1

w

2 (hi−1 + hi)(`i − `i−1) ≤ 0.054 m3 (7.15i)

Array planform area is constrained to the nominal value to maintain the same level of power
generation:

`nw = 2.932 m2 (7.15j)

Direct orientation of the solar arrays towards the sun requires the attitude rotation axis
to be normal to the sun-spacecraft vector. Solar power generation is a function of array

175

area and orientation (and other factors). The planform area constraint is intended to be
large enough to ensure adequate overall power generation even when arrays are not oriented
directly toward the sun. A more sophisticated and accurate approach would model power
generation directly across a range of maneuvers and insolation conditions. An investigation
of the tradeoff between power generation and attitude control is a topic for future work.

This completes the exposition of the co-design problem formulation; objective and con-
straint functions are summarized in Table 7.2. Note that some optimization variables (states
and controls) are linear while other variables (plant parameters) are nonlinear in the co-design
formulation. A traditional approach to solve this type of problems is to use nested co-design
[27, 32, 83]. This approach consists of an outer-loop that finds the optimal plant parameters,
while the inner-loop finds the optimal states and controls histories for each point in the plant
parameter space sampled by the outer-loop. In this way, the inner-loop can return the cost
of a particular plant design to the outer-loop. Since the the optimal control problem in the
inner-loop is linear, it can be formulated and solved as a linear program (LP) using a direct
transcription method [25, 95, 96, 269]. Direct transcription has been used traditionally in
trajectory optimization [95, 270, 271]. The custom transcription code in Chapter 5 was
used to transform the infinite dimensional optimal control problem into a finite dimensional
optimization problem. The structure-based description is in the following section.

A feasible solution for the inner-loop problem is globally-optimal because it is formulated as
an LP program. However, the nonlinear dependencies on the plant parameters in the outer-
loop require special attention to ensure that the global optimum is found. The outer loop
is implemented using Matlab patternsearch [272], while the inner-loop is implemented
using Matlab quadprog [185]. Matlab patternsearch was configured to use complete
search (Latin hypercube sampling) and polling options to help find the global solution.

In an earlier version of this work [259], the nonlinear dynamics were directly used. There-
fore, the methods from Chapter 5 were not applicable. A nonlinear dynamic optimization
software package was instead used to solve the problem using the simultaneous co-design
method from Chapter 3. However, there were a number of problems with this strategy. The
computation time was extremely large, making it impossible to perform tests on a variety of
starting points or problem parameters, so there was less confidence in the global optimality
of the solution and less information gained. One reason for this large computation time
was the fact that the plant-dependent quantities needed to be updated frequently when the
simultaneous approach was used. The nested approach, on the other hand, typically tests a
smaller number of candidate plant designs. Additionally, the control was not guaranteed to
be the global optimum, as is the case here.

176

Linear w.r.t.
Name Eqn. # ξ xc xp Level

Max. Slew Amount Eqn. (7.15a) Yes Both
Dynamics Eqn. (7.4) & Eqn. (7.15b) Yes Yes No Inner

Initial Conditions Eqn. (7.15c) Yes Inner
Pointing Eqn. (7.15d) & Eqn. (7.15e) Yes Inner

Voltage Limits Eqn. (7.15f) Yes No Inner
Strain Limits Eqn. (7.15g) Yes No Inner

Geometry Bounds Eqn. (7.15h) Yes Outer
Array Volume Eqn. (7.15i) No Outer
Planform Area Eqn. (7.15j) No Outer

Table 7.2: Summary of co-design problem formulation.

The results for a number of minor variations of this formulation will be discussed next
after a short study on the fundamental limits of a slewing maneuver with SASA utilizing a
reduced form of this co-design formulation and the PRBDM model.

7.3.1 Inner-Loop Structure-Based Description
Here we present the structure-based description for the LQDO problem. The approach from
Chapter 5 is utilized twice, once for each phase. Then the LPs created for each phase are
linked with linear continuity constraints (see Sec. 5.7.1) for the states.

The maximum slew objective in Eqn. (7.15a) is implemented with a single Mayer term:

M〈1〉.left = 0, M〈1〉.right = 4, M〈1〉.matrix =
[
−1 0

]
(7.16)

The initial conditions in Eqn. (7.15c) are implemented with simple bounds in the first phase:

UB〈·〉.right = 2, UB〈·〉.matrix =
[
∞ 0

]T
(7.17a)

LB〈·〉.right = 2, LB〈·〉.matrix =
[
−∞ 0

]T
(7.17b)

The bus angle and angular rate equality constraints in Eqns. (7.15d)–(7.15e) are implemented
with simple upper and lower bounds only in the second phase:

UB〈·〉.right = 2, UB〈·〉.matrix =
[
0 0 ∞

]T
(7.18a)

LB〈·〉.right = 2, UB〈·〉.matrix =
[
0 0 −∞

]T
(7.18b)

The absolute value limits on the voltage in Eqn. (7.15f) are implemented with linear inequal-

177

ity at each test point xi in both phases:

Z〈·〉.linear〈1〉.right = 1, Z〈·〉.linear〈1〉.matrix = γ(xi), Z〈·〉.b = Vmaxc(xi) (7.19a)
Z〈·〉.linear〈1〉.right = 1, Z〈·〉.linear〈1〉.matrix = −γ(xi), Z〈·〉.b = Vmaxc(xi) (7.19b)

The absolute value limits on the strain in Eqn. (7.15g) are implemented with linear inequality
at each test point xi in both phases:

Z =
[
0 0 (hb(xi) + he − hn(xi))φ′′(xi) 0

]T
(7.20a)

Z〈·〉.linear〈1〉.right = 2, Z〈·〉.linear〈1〉.matrix = Z, Z〈·〉.b = εmax (7.20b)
Z〈·〉.linear〈1〉.right = 2, Z〈·〉.linear〈1〉.matrix = −Z, Z〈·〉.b = εmax (7.20c)

7.4 Analytical and Numerical Results for SASA System

7.4.1 Maximum Slewing Bounds using the PRBDM
The momentum of the PRBDM system is given in Eqn. (7.14), and it must be conserved if
no external disturbance acts on the spacecraft (d ≡ 0). Assuming zero initial momentum,
we can integrate the momentum equation to determine the relationship between θ and δ:

0 =
(1

2`
2m+ 2`mr cos(δ) + 2mr2 + Iθ + 2Iδ

)
θ̇ +

(1
2`

2m+ `mr cos(δ) + 2Iδ
)
δ̇

:= I1(`, h, w, δ)θ̇ + I2(`, h, w, δ)δ̇

θ̇ = −I2(δ, ·)
I1(δ, ·) δ̇

θ(tf)− θ(t0) = −
∫ tf

t0

I2(δ, ·)
I1(δ, ·) δ̇dt (7.21)

The question we are trying to answer requires an upper bound on |θ(tf) − θ(t0)|. We can
find a reasonable upper bound by determining the maximum value of the integrals. Recall
that m and Iδ are dependent on the geometric physical design variables. Since the geometric
variables are positive and it is reasonable to assume cos(δ) > 0 (panel angle must be smaller
than |δ| < π/2), then we see that the following difference is strictly positive: I1 − I2 =
`mr cos (δ) + 2mr2 + Iθ > 0. Therefore, the effective inertia ratio, Reff := I2/I1, must be
between 0 and 1.
If |δ(t)| ≤ δmax is small, then Reff is nearly time-independent. Observe also that the

178

Study Reff,max Reff,maxδmax Actual
Nominal Geometry 0.12 0.0108 rad (0.62◦) > 0.0063 rad (0.36◦)

Maximal ` 0.22 0.0301 rad (1.73◦) > 0.0176 rad (1.01◦)

Table 7.3: Summary of results for maximum slewing bounds using the PRBDM.

effective inertia ratio is maximized when δ = 0. Therefore, we will use this maximal value,
denoted Reff,max, as a time-independent value to arrive at the following inequality:

|θ(tf)− θ(t0)| ≤ Reff,max

∣∣∣∣− ∫ tf

t0
δ̇dt

∣∣∣∣
≤ Reff,max|δ(t0)− δ(tf)| (7.22)

Assuming δ(t0) = 0, θ(tf) = 0, and that the prescribed bound on δ is hit at tf , then we have:

|θ0| ≤ Reff,maxδmax ≤ δmax (7.23)

Therefore we expect the maximum change for the bus angle to be bounded above by the
allowable change in panel angle using only internal actuation of the solar array. This implies
that if only milli-radian deflections of the array are feasible, we can only achieve, at most,
milli-radian changes in bus orientation. Additional novel solutions for SASA such as revolute
joints that allow for large changes in the effective inertia ratio without violating conservation
of momentum may extend this limit.

A comparable δmax condition for a continuous array is a strain bound. If we want the largest
value for δ, analogously the strain will be at its maximum possible value at each point on the
arrays. Using the constant thickness solar array in Fig. 7.1b, we can calculate this bound as
δmax = (`/h)εmax. With this relationship, we can calculate the predicted maximum slewing
bound. Two cases are shown in Table 7.3: nominal geometry and maximum allowable value
for `. The latter case achieves the maximum value of the slew bound since both Reff,max

and δmax are maximized. We can also determine the actual maximum slew bound using the
optimal control problem in Sec. 7.3 (i.e., fixed geometry) without the voltage constraint.
This result is also shown in Table 7.3 and indeed the bound is verified. The bound is not
tight because the optimal voltage trajectories did not strain all of the array to the prescribed
bound but only most of the array; thus, this assumption was only partially valid. In the next
section, the study will consider the other design constraints and allow piecewise-linear array
thickness changes. The bounds in this section do not consider all the design constraints and
therefore are only approximate indications of the maximum possible slewing performance.

179

Array Property
Variation Length (m) Thickness (m) Volume (m3)

NG 1.575 0.018 0.054
VL 0.5 ≤ ` ≤ 2.5 0.018 0.054
PLS 0.5 ≤ ` ≤ 2.5 0.009 ≤ h(x) ≤ 0.055 ≤ 0.054

Table 7.4: Geometric constraints for the co-design problem variations.

Figure 7.4: Parametric study of maximum slewing angle with respect to slewing time.

7.4.2 Maximum Slewing Bounds using the Co-Design Problem Formulation
In this section we study three variations of geometric design representation in the co-design
problem introduced in Sec. 7.3. These are denoted nominal geometry (NG), variable length
(VL), and piecewise linear segments (PLS). The geometric constraints for each case are
summarized in Table 7.4. The NG case does not involve physical-system design since it is
fixed and is only included in this study as a performance baseline. For the VL case, ` is the
sole physical-system design variable (see Fig. 7.2a). Finally, the PLS case varies total array
length, segment lengths, and spatially-varying thickness to modify distributed geometric
design of the array structure (see Fig. 7.2c). The array volume (or mass) in the PLS case
can be smaller than the nominal, whereas in the VL case, the volume is fixed to the nominal
value of the NG case. Since the array planform area is constrained to a nominal value in
each case, the array width is determined by the array length. Several values of the slewing
time, tm, between 0.12 s and 4 s were studied to investigate the relationship between slew
time, the maximum slew angle, and corresponding optimal array designs. The final time of
the simulation is given by tf = tm + 1.

The maximum slewing results for each of the three variations are summarized in Fig. 7.4.
As expected, the NG case achieved the smallest maximum slewing angle (0.9 mrad) for all

180

(a) Array design with maximal array inertia (drawn to scale).
Not Drawn to Scale, y axis ≈ 25× magnification

(b) Array designs for both Variable Length (dashed) and Piecewise Linear Segments (solid)
studies.

Figure 7.5: Optimal array designs.

the tested slewing times. This result indicates that the performance level desired may not be
achievable through control design alone. Furthermore, the peak maximum achievable slewing
angles for the VL and PLS cases (2.6 mrad and 7.2 mrad, respectively) are consistent with
the results of Sec. 7.4.1. The optimal array designs are shown in Fig. 7.5b. We observed
that the optimal PLS geometries for slewing times ≥ 0.5 s were similar. In addition, optimal
VL designs for slewing times ≥ 0.25 s are equal. The optimal trajectories for the bus angle
and angular rate for the PLS and VL cases are shown in Fig. 7.6. These figures show that,
through only internal actuation of the solar arrays, the slew maneuvers were performed and
then the bus was held fixed (i.e., θ ≡ 0 and θ̇ = 0) for 1.0 sec all while managing jitter.

Note that for the VL case with slewing times of 0.25 sec and 1.0 sec, the bus angle
trajectories are different, but the same slewing angle is achieved. Additional control-design-
only problem formulations were conducted with tm up to 30 s and with the array design
fixed as the optimal design from the 4 s slew time PLS solution. It was found that the
maximum slewing angle remained equal to 7.2 mrad, indicating that a fundamental limit
was reached. The limiting factor preventing larger slew angles here is the actuator voltage
limit, as opposed to momentum limitations as detailed in Sec. 7.4.1. Figure 7.7 illustrates
that the actuator voltage is saturated during the pointing phase.

The array displacements for the PLS and VL cases are shown in Fig. 7.8. Results from
slewing and pointing phases are shown separately. Conservation of angular momentum with
negligible material damping in the bus-array system provides a natural explanation of these
numerical results. For example, rotating the bus in the clockwise direction requires the array

181

(a) Piecewise Linear Segments (PLS).

(b) Variable Length (VL).

Figure 7.6: Bus angle and angular rate trajectories for select values of t̄.

182

(a) Piecewise Linear Segments (PLS).

(b) Variable Length (VL).

Figure 7.7: Voltage history along the array for select values of t̄.

183

to displace in the opposite direction (counter-clockwise) (see Fig. 7.1a). This is particularly
evident in the VL case with slewing time of 1.0 sec, which shows the effect of CW and CCW
array displacements on the bus angle trajectory in Figs. 7.8b and 7.6b.

Figure 7.5b shows the array physical design evolution with respect to the slewing time. For
longer slewing times (≥ 0.5 s for the PLS case and ≥ 0.25 s for the VL case), the optimal
array design maximizes the effective inertia ratio between the bus and the arrays subject
to the given constraints. This array shape also corresponds to the maximum slew limits
seen in the parametric study confirming the general result shown in Sec. 7.4.1. With this
observation, we could define a cost proxy function for maximizing array inertia when we have
long slewing times [4]. With shorter slewing times, however, we see more complex designs
that do not maximize inertia. Since the analysis using the PRBDM model did not take
into account the control system, we need an alternate explanation for these optimal arrays
designs. To this end, an integrated analysis is performed that considers the synergy between
natural passive dynamics (natural modes of the array, no control) and active (controlled)
dynamics.

7.4.3 Optimal Design Tradeoff for Array Structure
The periods of the first natural modes for the array designs of the PLS and VL cases are
shown in Fig. 7.9 (the NG case is not considered as it does not involve any modifications of
the physical array design). The dashed line is a reference that indicates whether one quarter
of the period of the first natural frequency, denoted T1/4, is longer (above) or shorter (below)
than the given slewing time. We use the T1/4 line as a reference but the true relationship
for this particular co-design formulation appears to be closer to T1/4.2, and likely varies
slightly based on problem parameters. Consider now the array design that maximizes the
array moment of inertia, subject to the given constraints, for a given problem variation with
a particular value for T1. If this particular value for T1/4 is shorter than the slewing time,
the maximum inertia design will be optimal and the optimal controller will utilize primarily
the passive dynamics of the first structural mode to achieve an optimal slewing maneuver
(and use higher-order modes partially). If T1/4 is longer than the given slewing time, the
maximal inertia array design can only make partial use of the first mode dynamics in the
slewing direction during the given slewing horizon. In other words, the array dynamics now
need to be faster to work synergistically with the active controller when the slewing time
is reduced, and the relationship between tm and T1 is approximately linear due to simple
scaling of the problem based on the time horizon (see Sec. 4.3.1 for the scaled problem

184

(a) Piecewise Linear Segments (PLS).

(b) Variable Length (VL).

Figure 7.8: Array deflection profiles for select values of t̄.

185

Figure 7.9: Comparison between the first natural period of the optimal array designs and
the slewing phase duration.

and a discussion on this finding). Co-design studies are ideal for determining this tradeoff
since allowing simultaneous structural and control design freedom provides access to higher
performance levels through synergistic structural and control design tailoring without major
assumptions, i.e., the parameters for the array structure and open-loop control design are
distributed. These results also reveal that the proxy objective function of maximizing inertia
is not accurate for faster slew times.

In the cases where the optimal tradeoff is active, the optimal control trajectories include
a bang-bang control near the root during the slewing phase, and the optimal array structure
changes according to the given design freedom in Table 7.4. For the VL case, the only
mechanism available for changing inertia and the first natural frequency is to adjust `,
explaining the observed shorter array when tm = 0.12 s (see Fig. 7.5b). For the PLS case,
the inertia and the first natural frequency are changed by redistributing the mass and/or
reducing the array length to utilize more fully a combination of the array’s elastic and
inertial properties. Observe that the array mass is not reduced, i.e., the mass constraint
in Eqn. (7.15i) is active. In addition to using the first natural mode, results indicate that
the optimal solutions with shorter tm also tend to leverage the use of the second natural
mode (refer to the increase in the coefficient of the second mode in Fig. 7.10). Tailoring of
the structural design to best use the second mode is evident by the placement of a segment
with local minimum thickness near the midpoint of the array length in Fig. 7.5b. The
additional structural design freedom provided by the PLS formulation vs. the VL formulation
demonstrates the ability of a co-design formulation with more plant design freedom to tailor
the passive dynamics of the system to achieve better performance [4].

186

(a) Piecewise Linear Segments (PLS) design results.

(b) Variable Length (VL) design results.

Figure 7.10: Scaled mode coefficient trajectories for select values of t̄.

7.4.4 Optimal Placement of Segmented Piezoelectric Actuators
A continuously variable, spatially distributed voltage is not a physically realizable actuation
strategy, but these optimal trajectories provide insights into performance limits, as well as
how a physically realizable strain actuation system should be designed. Continuous voltage
variation can be approximated using several piezoelectric segments as shown in Fig. 7.2b,
where a constant voltage Vi(t) is applied to each segment. An analysis of optimal volt-
age trajectories for the PLS and VL cases was performed to provide insight into actuator
placement. Figure 7.11 illustrates for each spatial position along the array 1) the maximum
voltage amplitude across all time, 2) the mean voltage amplitude during slewing, and 3)
the mean voltage amplitude during pointing. The maximum allowable voltage magnitude is
300 V . For small tm, the actuators are nearly saturated during the slewing phase, and the
voltage limit is reached at some point during the maneuver across most of the array. When

187

the slewing times are longer, the lower average voltage magnitude during the slewing phase
is due to the use of modal resonance.

We see that a physical implementation would benefit from placing piezoelectric segments
over most of the array area with the exception of the tip. Since each piezoelectric segment
can only be actuated with a voltage that is constant in space (not in time), a large number
of individual segments translates into more degrees of freedom for the control, which in turn
can allow higher performance. However, the voltage metrics suggest that at a minimum two
piezoelectric segments should be placed at the two points of local maximum average voltage
(which are located near the root and the length midpoint), to take advantage of the natural
passive dynamics. These locations are near the critical points of the shapes of the first and
second natural modes, which are the dominant modes during the slewing phase as shown in
Fig. 7.10. The scaled mode coefficients in this figure indicate the relative contribution of each
mode in their linearly combined effect on the array deflection. Future studies can include
model actuation using individual piezoelectric segments with constant spatial voltage and
limited length to determine their optimal placement location.

7.5 Summary
In this chapter, we investigated the integrated structural and control system design of a
strain-actuated solar array for spacecraft pointing control and jitter reduction. Slew ma-
neuvers on the order of milli-radians or arc minutes have been achieved in simulations for a
representative spacecraft system without increasing the total array mass or reducing the array
planform area. A parametric study was conducted with different levels of design freedom and
slewing times. Results show that separately designing the control system or the structural
system alone cannot achieve the higher performance levels that are possible through the pro-
posed combined design of the structural and control systems. Furthermore, adding degrees of
freedom to the structural design—specifically, distributed geometric design—improved per-
formance further by tailoring the passive dynamics of the array with the active controller.
This study also indicated the relative effectiveness of the nested co-design strategy over the
simultaneous one for certain design problems.

Since the SASA system is based on internal actuation, the angular momentum of the bus-
array system must be conserved in the absence of material or joint damping. A desired bus
rotation requires array deflection in the opposite direction. Results showed that in addition
to accomplishing the required slewing and pointing maneuvers, the optimal array design

188

is driven by the interaction between active and natural passive dynamics. Conservation
analysis indicates that increasing the array moment of inertia helps improve the maximum
slewing angle. An array design with maximum mass moment of inertia subject to the given
constraints will be optimal if the slewing horizon is larger than a problem-dependent scaling
of the first natural mode period of the array (approximately one quarter of this period), and
the optimal controller will use modal resonance for an efficient slewing maneuver. For faster
slew maneuvers, however, structural dynamics analysis reveals that it is beneficial to choose
a tailored design that reduces inertia somewhat, but provides faster passive dynamics that
interact with active control to increase the maximum slew angle. The optimal design here
occurs when approximately one quarter of the period of the first natural mode is equal to
the slewing time. This allows the passive dynamics to contribute to the maximization of the
displacement of the first natural mode in the given slewing horizon, which in turn maximizes
the slewing angle. In these cases, the resulting control design includes a bang-bang control
near the root during the slewing phase. Results also show that the dynamic behavior of the
array may be approximated by a PRBDM system with rigid links and joints. This connection
helped provide qualitative insights into the design and behavior of intelligent structures with
distributed actuation.

189

(a) Piecewise Linear Segments (PLS) design results.

(b) Variable Length (VL) design results.

Figure 7.11: Voltage trajectory metrics for select values of t̄.

190

Chapter 8

Case Study: Design of Vehicle Suspensions

“Systems engineering should be, first and foremost, a state of mind and
an attitude taken when dealing with complexity.”

J.-L. Wippler [273, p. 208]

8.1 Introduction
The design of vehicle suspensions has been of considerable interest ever since the invention of
the automobile. A suspension transfers forces in the system to provide a smooth ride for the
passenger and good handling characteristics among other objectives. Fundamentally, it is a
type of vibration isolator [274–276] . Different types of suspensions can typically be classified
into the three categories of passive [274–279], semi-active [1, 276, 280, 281], or active [27,
33, 275, 276, 282, 283] depending on the external energy flow into the system. There has
been considerable research interest in analyzing and optimizing all types of suspensions,
particularly utilizing tools from dynamics and controls. However, much of this research has
focused on a select few canonical suspensions such as the ones shown in Figs. 8.1a–8.1d. Here
we will consider architecture changes in the suspensions, i.e., different components connected
in new ways, such as the suspensions shown in Figs. 8.1e–8.1f. In all the suspensions, an
unsprung mass U is connected to the road profile z0, and there is some mechanical path
between the sprung mass S and U.
In addition to architecture design changes, both the physical and control system designs

will also be considered. This leads to a complex, challenging design problem that is typically
not treated in a systematic fashion in engineering design practice. Here we will describe
a particular problem class of combined architecture, plant, and control problems that can
leverage a number of previously developed tools to provide solutions to this design problem.
Due to the breadth of this design study, many simplifying assumptions must be made to

191

(a) Canonical passive [277,
279].

(b) Pure active [275, 276]. (c) Canonical active [27, 33,
278, 282, 283].

(d) Active with dynamic
absorber [275, 276].

(e) Active candidate. (f) Passive candidate.

Figure 8.1: Various vehicle suspension architectures.

192

keep the problem tractable, but still makes it possible to reveal various design insights. It
has been observed by experts in the field that even simple suspension models and studies
have had a “profound impact on the practical implementations some 15–20 years later [276]”.
In addition, suspension design problems have proven to be an interesting area for research in
combined plant and control design or co-design [27, 33, 282]. It is important to note that the
purpose of the early-stage studies proposed in this chapter is not to supplant the detailed,
rigorous, robust previous research, but rather seeks to identify new architectures that could
be investigated in the same level of detail that the few canonical architectures have received.

The remainder of this chapter is organized as follows. Section 8.2 outlines the considered
problem class with linear physical elements. Section 8.3 provides the combined architecture,
plant, and control vehicle suspension design problem formulation. Section 8.4 presents the
results of this case study.

8.2 A Problem Class with Linear Physical Elements

8.2.1 Linear Physical Elements
A useful framework for describing linear physical elements is bond graph modeling with power
port nodes (or simply power nodes) [38]. Power nodes are characterized by constitutive
parameters and follow some constitutive relation (typically a fundamental physical law).
They can be classified as source nodes (Se, Sf), storage nodes (C, I), resistive nodes (R),
reversible transducers (TF, GY), and junction nodes (0, 1). Some analogies for these power
nodes in different energy domains are in Table 8.1. An example of a TF (transformer) is
a lever, gear, or hydraulic cylinder. The GY (gyrator) typically describes the conversion
between energy domains, such as with an electrical DC motor or mass accelerometer. The
0 -junction is analogous to Kirchhoff’s current law and the 1 -junction is analogous to the
voltage law in electrical systems. For more details on bond graph modeling, see Refs. [38,
284, 285]

The key property for systems represented by bond graphs with linear time-invariant (LTI)
elements is that the equations of motion can be represented as a linear descriptor model. If
we denote the set of all constitutive parameters for a particular bond graph as p, the model
is of the form:

E(p)ξ̇ = A(p)ξ +B(p)s (8.1)

193

Linear Mechanical
Label Intuitive Topology Preserving Electrical

Se Force Velocity Voltage
Sf Velocity Force Current
C 1/K M C
I M 1/K I
R B 1/B R

Table 8.1: Some bond graph modeling analogies.

where ξ are the states and s are the sources. The matrix E is invertible if there are
no algebraic loops in the system [38, 286]. Here we assume that all algebraic loops are
appropriately removed (e.g., see Ref. [286]) so that we have an explicit first-order ordinary
differential equation (ODE) with only {A,B}.

The architecture design decisions will include what power nodes to include in the system
and their connections. The constitutive parameters will be the plant design variables (but
the plant design could consist of more realistic variables such as the geometry of spring with
a mapping back to the appropriate constitutive parameter). The control decisions will come
in the form of certain source types. The sources may also be used to add various disturbances
to the system.

8.2.2 Problem Class Definition
We would like to solve architecture design problems of the following form:

min
xa

Ψa(xa) + Ψd (f p(xa), fc(xa)) (8.2a)

subject to: fa(xa) = a ∈ Fa (8.2b)

where xa represents architecture design variables, fa(xa) is a mapping between the archi-
tecture design variables and the architecture a, and Fa is the feasible set of architectures.
Ψa is the architecture-only objective function (such as a complexity metric that counts the
number of additional components [12]), while Ψd is the general design objective function
that includes dependence on the plant and control design. This dependence is represented
by the mapping functions fp and fc between the architecture and the plant xp and open-loop
control (OLC) u design variables.

A fair comparison between architecture candidates requires knowledge of the best possible
performance for each candidate architecture. To determine the value of Ψd we must solve a

194

suitable co-design problem. This problem has the following form:

min
x

(i)
p ,u(i)

Ψd =
∫ tf

t0
LP

(
t,y,x(i)

p

)
dt+MP

(
y(t0),y(tf),x(i)

p

)
(8.3a)

subject to:
[
ξ̇ = fP (t, ξ,u,xp)

](i)
(8.3b)

hP
(
t,y,x(i)

p

)
= 0 (8.3c)

gP
(
t,y,x(i)

p

)
≤ 0 (8.3d)

where: y = yP
(
t, ξ(i),u(i),x(i)

p

)
(8.3e)

where �(i) indicates a problem formulation element appropriate for the ith candidate ar-
chitecture from Prob. (8.2), t is the time continuum between t0 and tf , and y are the
(architecture-independent) outputs. The problem elements {L,M,f ,h, g} represent the
Lagrange term, Mayer term, dynamics, equality constraints, and inequality constraints.

The subscript P indicates a particular problem class that the problem elements must
be in. Here we will consider a class whose specific structure can lead to efficient solution
strategies, but still covers the combined architecture, plant, and control design problems
of interest. Consider a function, fP , in the problem class P with type f (e.g., the type
might be Lagrange term or inequality constraints). Then fP must be a function where for
fixed values of x(i)

p , fP has an equivalent linear-quadratic dynamic optimization (LQDO)
problem element described in Chapter 5. With this specification of P , Prob. (8.3) is a strong
candidate for the nested co-design solution strategy for the reasons discussed in Chapter 3,
namely an efficient inner-loop strategy for LQDO. This leads to the following trilevel solution
approach.

8.2.3 A Trilevel Solution Approach
The trilevel solution approach used here is illustrated in Fig. 8.2. Each one of the three
levels is now described.

8.2.3.1 Architecture Design: Level a

The topmost level is responsible for taking the problem definition, a user-defined component
catalog, and network structure constraints and providing candidate architectures for the
other levels. Many architectures can be represented by colored graphs as the nodes in this
representation scheme can be used to represent a variety of concepts. Therefore, the approach

195

candidate architecture

candidate plant optimal control
optimal dynamics

optimal architecture

optimal plant

level a

level c

level p

problem definition
component catalog

network structure constraints

⟲

⟲

nested co-design

Figure 8.2: The proposed trilevel solution strategy for combined architecture, plant, and
control design.

used here will be the perfect matching-based algorithm for generating all architectures in
Chapter 2. The different labels in the graphs will correspond to the power nodes in Sec. 8.2.1.

8.2.3.2 Plant Design: Level p

The next level takes the candidate architecture and performs the outer-loop co-design tasks
for the plant design [32]. The appropriate optimization problem needs to be automatically
created and solved. Since these types of problems can be highly nonconvex (see Chapter 3),
global search algorithms are utilized to help improve the confidence of finding the true
optimal solution (in this chapter, a multistart approach is used, but an alternative is a
genetic algorithm [105, 220, 231]).
An automated model generation procedure (see Sec.1.4.2) was developed to take the gen-

erated graphs and produce the appropriate (linear) model. This procedure utilizes the
Simulink/Simscape modeling environment to generate the appropriate diagram. Each
time a plant variable is updated, the model is regenerated through a linearization procedure.
This is a relatively expensive operation; a better method would generate an analytical rep-
resentation of A(xp) and the other matrices so that it only needs to be performed once per
candidate architecture. Generating these equations is a task for future work.

196

Figure 8.3: Suspension architecture component catalog.

8.2.3.3 Control Design: Level c

The deepest level takes the candidate plant and model to formulates the appropriate LQDO
problem in Chapter 5 [131]. The structured-based description makes it relatively straight-
forward to handle a varying number of states and controls along with the output definitions.
Since this inner-loop co-design problem has a special structure, it can be solved with low
computational expense and is guaranteed to be the global optimal control [32]. We also note
that the number of times level c is solved is much greater than level p, which is much greater
than level a.

8.3 Problem Formulation
In this section, the problem formulation for the combined architecture, plant, and control
design of a quarter-car vehicle suspension is described.

8.3.1 Architecture Specification
The component catalog and NSCs will be the same as the case study in Sec. 2.4.3. The
(C,R, P) specification is:

C = {S,U,M,K,B,F,P3,P4} (8.4a)
R =

[
1, 1, 2, 2, 2, 1, 2, 2

]
(8.4b)

P =
[
1, 1, 1, 2, 2, 2, 3, 4

]
(8.4c)

197

The catalog is represented in Fig. 8.3. Each of the component types fits in the bond graph
modeling paradigm: {S,U,M} are I-type storage nodes, K is a C -type storage node, B is a
subsystem containing a spring and damper in parallel (see Fig. 8.3), and F is an Se-type effort
source. The remaining component types represent 1 -junctions with a differing connection
numbers.

The architecture-only objective function term is the sum of the additional physical com-
ponents (i.e., everything but S, U, and Px):

Ψa = wa (nM + nK + nB + nF) (8.5)

where wa is the weighting coefficient. This just one metric for complexity that we can use
to look at tradeoffs between complexity and performance.

8.3.2 Co-Design Problem
Three outputs will be needed to capture the co-design problem formulation:

y =

zU

z̈S

zS

u

 (8.6)

namely the unsprung mass position, sprung mass acceleration, unsprung mass position, and
control. The co-design objective function is the sum of several performance metrics:

Ψd =
∫ tf

t0

(
w1 (y1 − z0)2 + w2y

2
2 + w3y

2
4

)
dt (8.7a)

where the term w1 (y1 − z0)2 captures the handling objective, w2y
2
2 represents the passenger

comfort objective, and w3y
2
4 control effort objective (see Refs. [27, 33, 282]).

Next, the states of the system are initialized to their zero equilibrium position with the
following simple bound constraint:

ξ(i)(t0) = 0 (8.7b)

To ensure that the separation between the sprung and unsprung masses remains tolerable,
the following rattlespace constraint is necessary [27, 33, 276, 277, 283]:

|y3 − y1| ≤ rmax (8.7c)

198

Parameter Value Parameter Value
w1 105 kt 232× 103 N/m
w2 0.5 bt 0 Ns/m
w3 10−5 rmax 0.03 m
t0 0 s tf 9 s

mmin 0.001 kg mmax 5 kg
bmin 103 Ns/m bmax 106 Ns/m
kmin 103 N/m kmax 107 N/m
mU 65 kg mS 325 kg

Table 8.2: Co-design problem parameters.

This constraint can be converted into two linear constraints as is shown in Sec. 5.5.3. The
rattlespace constraint is commonly included in the objective function but is more appropri-
ately included as a constraint. The LQDO problem class can readily handle linear inequality
constraints unlike other solution strategies [27, 131].

All the previous constraints are necessary for the inner-loop co-design problem. The outer-
loop specific plant constraints are simple bounds on the linear coefficients:

mmin ≤ x(i)
m ≤ mmax (8.7d)

bmin ≤ x(i)
b ≤ bmax (8.7e)

kmin ≤ x(i)
k ≤ kmax (8.7f)

where the subscripts {m, b, k} indicate the additional mass, damper, and spring plant vari-
ables for the candidate architecture.

The problem parameters used in this study are shown in Table 8.2 (many of the parameters
are based the study in Ref. [27]). A rough road input is used from Refs. [27, 279].

8.4 Results
In this section, we summarize the results of the vehicle suspension case study. We utilize the
code from Ref. [186] to solve the control subproblem. The defect constraints are formed using
the trapezoidal (TR) and the chosen quadrature the composite quadratic Hermite-Simpson
(CQHS) method (see Chapter 5). It was determined that 2000 time points were needed to
approximate sufficiently the problem. The results for the first four architectures in Fig. 8.1
are presented in Table 8.3, along with the other two novel candidate suspensions. A variety
of stochastically generated suspensions were evaluated in the graph structure space defined

199

(a) Maximum control and optimal plant variables.
Figure Ψa/wa Ψd w1 (y1 − z0)2 w2y

2
2 w3y

2
4

1 Fig. 8.1a 2 10.96 6.60 4.36 0.00
2 Fig. 8.1b 1 7.79 3.10 1.51 3.18
3 Fig. 8.1c 3 7.52 3.25 1.99 2.28
4 Fig. 8.1d 4 7.79 3.09 1.51 3.19
5 Fig. 8.1e 7 6.58 2.48 2.43 1.68
6 Fig. 8.1f 7 9.69 5.27 4.42 0.00

(b) Maximum control and optimal plant variables.
Figure max |u| k1 k2 k3 b1 b2 m1 m2
1 Fig. 8.1a 0 1.77e4 − − 1.88e3 − − −
2 Fig. 8.1b 598 − − − − − − −
3 Fig. 8.1c 634 1.47e4 − − 1.00e3 − − −
4 Fig. 8.1d 611 6.89e6 − − 6.04e5 − 1.02e-3 −
5 Fig. 8.1e 478 9.55e4 6.67e3 8.83e4 1.46e4 2.01e3 3.11e-3 −
6 Fig. 8.1f 0 7.28e4 8.54e3 2.51e5 1.00e3 2.27e3 3.21e0 1.10e0

Table 8.3: Summary of the suspension design results.

by Prob. (8.4), and the two reported novel architectures were the among the best performing
for an active or passive suspension system.

As expected, the worst-performing suspension of the six in Fig. 8.1 was the canonical
passive design (some of the optimal position trajectories and the rattlespace are shown in
Fig. 8.4a). Here we see fairly large fluctuations in zS, and the rattlespace constraint is
satisfied. The alternative passive suspension in Fig. 8.1f (results in Fig. 8.4b) achieved a
12% reduction in the objective function. The primary improvement was in the handling
objective. However, this architecture is more complex with seven additional components
compared the original two.

The results for the pure active suspension are shown in Fig. 8.5a. Compared to the passive
suspensions, the performance index is significantly lower, demonstrating the potential value
of an active component. Since there are no passive components naturally keeping the sprung
mass near the equilibrium position in this architecture, we see a drift in the sprung mass
position (but the rattlespace constraint is still satisfied). The canonical active suspension in
Fig. 8.1c does not have this issue. From the results in Fig. 8.5b, we see a very different profile
for zS. Since this architecture has some plant design flexibility, we expected an improvement
in performance over the pure active design. A 3.5% decrease in the objective function value
is observed indicating that the addition of the two passive components does result in a minor

200

improvement in performance. The distribution of the individual objective function terms in
Eqn. (8.7a) is quite different between the two suspensions.

The addition of the dynamic absorber to the pure active suspension in Fig. 8.1d is supposed
to improve handling without compromising the comfort objective [276]. However, the results
in Fig. 8.6a indicate no performance benefit for this architecture change with respect to the
specific problem parameters used in this study. This is most readily observed with the
value of the additional mass near the lower bound of 0.001 kg (effectively removing it from
the system). It is also the only architecture where the rattlespace constraint is active at
some point during the time horizon. The final architecture had the best overall performance
with a 13% reduction compared to the canonical active suspension. The results are shown in
Fig. 8.4b, and this design had the smallest maximum control effort. Once again, the dynamic
absorber subcomponent (now attached to the sprung mass) is ineffective with a mass value
near the lower bound. This design did need seven additional components to achieve this
performance improvement.

8.5 Summary
The results in this case study demonstrate that changes to the vehicle suspension archi-
tecture can result in improved performance. The purpose of these early-stage studies is to
identify new architectures that could be investigated in the same level of detail that the few
canonical architectures have received. This case study utilized a newly developed paradigm
for combined architecture, plant, and control design that can be applied to systems with
linear physical elements.

It remains future work to evaluate the entire set of possible 13,727 unique suspension ar-
chitectures from Prob. (8.4) [6]. In addition, there are a number of improvements that can be
made to the problem formulation. Multiple road inputs should be considered simultaneously
to give a better representation of all the environments the suspension will need to function
in. Frequency domain properties, such as suspension quality spectral density and control
energy spectral density, could also be utilized for a more effective problem formulation [33].

201

(a) Canonical passive in Fig. 8.1a. (b) Passive candidate in Fig. 8.1f.

Figure 8.4: Optimal trajectories for the two passive suspensions.

202

(a) Pure active in Fig. 8.1b. (b) Canonical active in Fig. 8.1c.

Figure 8.5: Optimal trajectories for two suspensions.

203

(a) Active with dynamic absorber in Fig. 8.1d. (b) Active candidate in Fig. 8.1e.

Figure 8.6: Optimal trajectories for two suspensions including the current best
architecture.

204

Chapter 9

Conclusions and Future Work

“Design, on the other hand, is concerned with how things ought to
be. . . ”

H. A. Simon [287, p. 114]

9.1 Summary
The design of actively-controlled, dynamic engineering systems is a grand task. While there
are a number of approaches that can be used to address these design problems, a formal
systematic design automation approach can lead to innovations in many different areas. In
this dissertation, three design domain classifications were explored: architecture, plant, and
control. The necessary theory and tools were developed to handle various aspects of this
integrated design paradigm and a number of case studies were provided to illustrate the
proposed design process.

Chapter 2 focused on the task of representing and generating (all) candidate architectures
for a particular architecture problem class define by colored graphs built from a catalog of
components. The growth rate of the complete listing was shown to be bounded by the double
factorial function on the number of ports, but the practical examples with suitable NSCs
demonstrated the number of unique, feasible architectures is frequently manageable.

The next chapter focused the general co-design problem, or combined plant and control
design. The dynamic optimization problem formulation and optimality conditions for both
the simultaneous and nested solution strategies were presented. The test problems in this
chapter highlighted a number of key concepts including coupling, the difference between the
feasible regions for each strategy, general boundary conditions, inequality path constraints,
system-level objectives, the complexity of the closed-form solutions, and nonconvexity. Due
to a number of challenges associated with the optimality conditions, practical solution con-
siderations were discussed with a focus on the motivating reasons for using DT in co-design.

205

An investigation was done with scaling in dynamic optimization problems to help manage
the complexity and develop design insights. The mechanics of scaling are fairly straightfor-
ward, but proper utilization of scaling relies heavily on the creativity and intuition of the
designer. In the simple SASA problem, scaling was used to understand observed results from
more complete, higher-fidelity design study in Chapter 7.
A bulk of the next chapter focused on solving a particular subclass of DO, namely LQDO

problems. These problems can be approximated with quadratic programs and be constructed
and solved efficiently. A class of numerical methods known as DT was utilized to find
approximate solutions to the LQDO problem. Including a variety of DT methods allowed
for direct comparisons between the methods. The PS-based methods had extremely fast
convergence in problems with no path constraints and that were generally smooth. When
nonsmoothness was present in the optimal solutions, the higher-order SS methods performed
better, with the HS and RK4 being the best. The CQHS-based methods generally performed
as well as or better than the other SS methods, demonstrating the relative effectiveness of
the new quadrature scheme.

The first detailed case study undertook the design of passive analog circuits through the
enumeration of all relevant circuits generated using the methods presented in Chapter 2.
Both presented examples (frequency response matching and low-pass filter realizability)
demonstrated that enumeration is feasible for certain commonly-used synthesis problems,
but is also a challenge to use for sufficiently demanding synthesis tasks. The results were
compared to existing approaches. Enumeration showed that some evolutionary approaches
have produced minimum complexity or Pareto-optimal topologies. In addition, the results
provided initial insights into the computational expense required to solve architecture design
problems with enumeration.

The second case study tackled a sophisticated co-design problem with the design of SASAs
for spacecraft precision pointing and jitter reduction. Single-axis slew maneuvers of 7.2
milliradians were achieved for a representative spacecraft model without increasing array
mass or reducing array planform area. From additional tradeoff studies, a design criteria was
revealed for the array structure and control strategy based on the optimal design tradeoff
between large array inertia and fast structural dynamics. This study also indicated the
relative effectiveness of the nested co-design strategy over the simultaneous one for certain
design problems.

The final case study considered the design of vehicle suspensions with design decisions in
all three domains. It was shown that changes in the suspension architecture can result in
improvements to the suspension quality when compared to the few canonical representations.

206

A problem class with combined architecture, plant, and control design using linear physical
elements was presented. This class can be solved using the methods in this dissertation, but
special attention is still needed to keep the problems manageable. The sentiment remains
true for any design problem that attempts to determine the optimal architecture, plant, and
control.

9.2 Contributions
1. A method for enumerating all architectures represented by colored graphs under certain

assumptions was developed. This perfect matching-based approach also included a
number of enhancements which cover the same set of graphs more efficiently. It was
shown that reasonably large problems can be enumerated when NSCs and isomorphism
checking are included when compared to other approaches such as adjacency matrix
enumeration. The examples and case studies demonstrated that this approach can
provides architectures that are useful in various engineering design studies.

2. Previous work in co-design theory imposed restrictions on the type of problems that
could be posed. The work in this dissertation lifted many of those restrictions. The
problem formulations and optimality conditions for both the simultaneous and nested
solution strategies are given, along with a general discussion on the practical solution
strategies. Three test problems were developed to illustrate the differences between
the two co-design strategies.

3. A unified approach to the scaling of dynamic optimization formulations was developed
with a particular focus on how to leverage scaling in design studies. The necessary
theory for scaling dynamic optimization formulations was presented, and a number of
motivating examples were shown.

4. A unified framework for solving linear-quadratic dynamic optimization problems was
developed. The considered problem class is very general, covering many previously
studied linear-quadratic problems. An automated problem generation procedure is
developed that generates the matrices for the quadratic program given a natural
structure-based description. A new composite quadratic Hermite-Simpson method
that uses linear interpolation between node points for each term in the quadratic ob-
jective function was developed as one available quadrature scheme.

207

5. Several engineering design examples were presented. Each one of the case studies
handles a complex, relevant design problem with some combination of architecture,
plant, and control design decisions. The code for most of the content in this dissertation
is made available in an effort to make these contributions and examples available for
replication and as a foundation for future work (see Appendix D).

9.3 Future Work
• Design Process for Complete Dynamic System Design—Many of the contri-

butions in this dissertation support various aspects of the complete dynamic system
design process described in Sec. 1.3. However, there are still many gaps that limit
the influence of the proposed design process. The two case studies that included con-
trol are stage 1 studies. To create a realizable system, the control architecture (both
continuous and digital) need to be developed in a satisfactory way, as well as using
sufficiently accurate models and robust problem formulations. Additional theory and
tools are needed to address the remaining design tasks such as bridging the gap be-
tween open-loop and closed-loop control [1]. Furthermore, compelling examples are
needed to provide testimony for the benefits of the prosed approach.

• Effective Utilization of Enumerative Methods in Architecture Design—The
perfect matching-based enumerative scheme in Chapter 2 allowed for the generation of
all architectures under certain assumptions. However, any enumerative method (with
some open-ended nature) will reach a point where too many architectures need to
be generated and tested, as was shown in the simple examples and the case studies.
Therefore, determining when enumeration is appropriate is an important task in any
architecture design problem. Developing new NSCs that capture real feasibility re-
quirements can help push this limit. An alternative is to utilize enumeration in novel
ways with strategies that better scale with larger architecture problem sizes, such as
evolutionary computation or machine learning. Recent work has employed machine
learning strategies to scale to synthesis problems larger than the training data set gen-
erated using an enumeration [235] of spatially defined, uncolored graphs. Extending
the use of data from enumeration to larger synthesis problems described by general
colored graphs is an important topic for future work.

• Choosing between Nested and Simultaneous Co-Design Solution Strate-

208

gies—The discussion on the two co-design solution strategies in Chapter 3 was lacking
complete information on how to choose between either strategy (or another strategy
appropriate for co-design problems). Additional work is needed to provide clear guide-
lines with supporting evidence. The development of appropriate test problems could
aid in this endeavor. General reductions in the computational expense of either strat-
egy will also be important so that fair comparisons can be made.

• Future Work in Linear-Quadratic Dynamic Optimization—In Sec. 5.7, a num-
ber of future work items for the automated problem generation procedure for solv-
ing linear-quadratic dynamic optimization problems were outlined. This included
multiple-interval PS methods, multiphase problems, mesh refinement, costate approx-
imation, additional defect and quadrature methods, customized QP solvers, scaling,
and quadratically-constrained QPs programs. Implementing these can improve the
LQDO by providing additional problem types and better quality solutions.

• Combined Architecture, Plant, and Control Design with Linear Physical
Elements—The problem class presented in Chapter 8 is lacking theory and tools
in some areas. An efficient and automated method for generating the state-space
equations as an analytical function of the plant design variables should greatly reduce
the computational expense over linearization of a block-diagram model. This may
be possible with advanced bond graph modeling tools [288, 289], or the conversion
of the system into an equivalent electrical circuit [290]. Understanding the different
problem elements that can be effectively handled would be useful such as frequency
domain constraints or certain types of plant constraints. Techniques to filter out poor
performing topologies before the full inner-loop co-design problem is solved may be
possible.

• Further Development of the Case Studies—The three case studies in this dis-
sertation were constructed to provide the initial design solutions and insights needed
to handle the complex nature of their design problems. However, additional work is
needed so these applications do not remain only in the early stages of development.
Although seemingly closest to realizability, the design of passive analog circuits should
include layout design and restriction of using the preferred component values. The de-
sign of SASAs has different elements that can be improved. A continuously distributed
internal moment is hard to realize on actual hardware, so piecewise constant actua-
tion is preferred. Determining design guidelines for this control architecture, such as
actuator placement and a suitable (closed-loop) control system that can provide the

209

performance and robustness required for space missions, is essential. The final vehicle
suspension case study used simplified plant models and a single problem formulation
with one road profile. Furthermore, open-loop control was utilized, so a closed-loop
controller should be developed. The usefulness of the optimal designs at this stage
is limited until more suitable design problems are solved. Insights from the simpler
studies can provide an initial basis for the comprehensive studies.

210

Appendix A

Enhancements to the Perfect Matching-based Tree
Algorithm for Generating Architectures26

A.1 Overview
In Chapter 2, a tree search algorithm was developed to generate a set of colored graphs
covering the graph structure space defined by (C,R, P) and various additional network
structure constraints. This algorithm is shown in Alg. A.1 with some minor changes to
the variable names and the feasible edge improvement directly included. In this appendix,
a number of enhancements are proposed to either more efficiently cover the same graph
structure space or allow additional network structure constraints to be defined.

Each one of the enhancements will be discussed in the following format. First, the the-
ory behind the enhancement will be presented with a focus on showing the desired graph
structure space is still covered. Second, the implementation of the enhancement will be
discussed with pseudocode. Finally, some examples are provided comparing the original al-
gorithm to the enhancement. Both visualizations or other aides and computational tests are
provided27. En is an abbreviation for enhancements included, Orig is an abbreviation for
original algorithm (see Alg. A.1), and 12T is an abbreviation for 12 threads.

There are six enhancements proposed in this report: replicate ordering, avoiding loops,
avoiding multi-edges, avoiding line-connectivity constraints, checking for saturated sub-
graphs, and enumerating subcatalogs. The final section discusses the effect of the enhance-
ments on the case studies in Chapter 2.

26Elements of this chapter are based on work completed in Ref. [41].
27A tests were performed on a personal computer with an i7-6800K at 3.8 GHz (up to 12 threads available),

32 GB DDR4 3200 MHz RAM, windows 10 64-bit, and Matlab 2017a.

211

Algorithm A.1: Original tree search algorithm.
Input : V – vector of remaining ports for each component replicate

E – vector of edges in sequential pairs, initially empty
A – expanded potential adjacency matrix
cVf – cumulative sum of the original V plus 1
SavedGraphs – set of graphs, initially empty

Output: SavedGraphs – set of graphs
1 iL← find(V, first) /* find first nonzero entry */
2 L ← cVf(iL)− V(iL) /* left port */
3 V(iL) ← V(iL)− 1 /* remove port */
4 Vallow ← V ◦ A(iL,:) /* zero infeasible edges */
5 I ← find(Vallow) /* find nonzero entries */
6 for iR← I do /* loop through all nonzero entries */
7 R ← cVf(iR)− V(iR) /* right port */
8 E2← [E, L,R] /* combine left, right ports for an edge */
9 V2← V /* local remaining ports vector */
10 V2(iR) ← V2(iR)− 1 /* remove port (local copy) */
11 A2← A /* local expanded potential adjacency matrix */
12 if any element of V2 is nonzero then /* recursive call if any remaining vertices */
13 SavedGraphs ← Algorithm A.1 (tree) with V2,E2,A2, cVf,SavedGraphs
14 else
15 SavedGraphs{end + 1} ← E2 /* save missorted perfect matching */
16 end
17 end

A.2 Replicate Ordering
This enhancement is based on replicate ordering and is similar to the port-ordering modifica-
tion that the original tree algorithm is based on [6]. Now, we eliminate some component-type
isomorphisms during the graph generation process.

A.2.1 Theory
Consider a single component type and its set of N replicates. Now, consider a single replicate
numbered n and n 6= 1. During an iteration of the tree algorithm (Alg. A.1), a single edge is
added. If replicate n−1 still has no ports connected, then adding this edge to n will produce
a graph isomorphic to the graph created when adding the edge to n− 1. This claim is based
on the component-type isomorphism issue where we have two identical replicates currently
with no edges. Therefore, we only need to allow a connection to n− 1 and not to n, and the
tree algorithm will continue generating the desired graph structure space. When n = 1, an
edge will always be allowed since there is no other replicate to compare against.

212

This enhancement is general since it does not rely on any network structure constraints
(NSCs) being present.

A.2.2 Implementation

Algorithm A.2: Limit potential connections based on replicate ordering.
Input : V – vector of remaining ports for each component replicate

Vf– initial vector of ports available for each component replicate
iInitRep – indices of the initial replicate for each component type

Output: Vordering – binary vector where 1 indicates an edge is possible, 0 if it is not
1 Vordering ← circshift(V, [1]) 6= Vf /* check if left neighbor has a connection */
2 Vordering(iInitRep) ← 1 /* initial replicates are always 1 */

Algorithm A.2 is the pseudocode for the implementation of this enhancement. The imple-
mentation is centered around the creation of a binary vector (Vordering) with length equal
to the total number of components where unity indicates a connection is allowed and zero
indicates it is not. This enhancement is implemented efficiently with the circshift(v, k)
function. This function circularly shifts the elements in array v by k positions [291]. Based
on the discussion above, we want to determine if n − 1 has been connected to any other
vertex. Using the initial vector of ports available for each component replicate (Vf), we
circshift the vector of remaining ports for each component replicate (V) by one position
to the right and compare these vectors (see line 1). A pair that is not equal indicates n− 1
has at least one edge, so we now need to allow connections to n.
The procedure above will produce incorrect results for the initial replicates. However, we

have that these initial replicates should never have their connection disallowed so we simply
ensure that their index in Vordering is always unity (see line 2). The indices of the initial
replicate for each component type (iInitRep) is calculated before the tree algorithm is called
since it does not change throughout the graph generation procedure.

This enhancement is inserted between lines 3 and 4 of Alg. A.1 and line 4 is changed to:

Vallow = V ◦ A(iL,:) ◦ Vordering (A.1)

Now, Vordering can disallow connections in the same way as A(iL,:).

213

A.2.3 Examples

A.2.3.1 Example 1

The base three-tuple and NSCs for this example are specified as:

C = {X}, R = [4], P = [2], no additional NSCs (A.2)

The second and third inputs for Algorithm A.2 are:

Vf = [2 2 2 2], iInitRep = [1] (A.3)

We will consider two different V, one at the initial iteration of the tree algorithm and one
at some intermediate iteration. Figure A.1a goes through the operations in Algorithm A.2
for the different V. The example iterations are also visualized in Figs. A.1b and A.1c.

Table A.1 compares the original algorithm with the enhancement for this example. There
is a reduction in candidate graphs generated while the number of unique graphs remains the
same.

Initial Intermediate
V [1 2 2 2] [0 0 1 2]

circshift(V[0 1]) [2 1 2 2] [2 0 0 1]
Vf [2 2 2 2] [2 2 2 2]

circshift(V[0 1]) 6= Vf [0 1 0 0] [0 1 1 1]
Vordering(iInitRep)← 1 [1 1 0 0] [1 1 1 1]

Removed/total branches 2/4 0/2

(a) Algorithm operations.

(b) Initial iteration. (c) Intermediate iteration.

Figure A.1: Example 1 for Algorithm A.2 (replicate ordering).

214

Orig En Orig/En
Candidate Graphs 26 8 3.25

Unique Graphs 5 5 1
Generation Time (s) 0.0052 0.0033 1.58

Total Time (s) 0.0095 0.0060 1.58

Table A.1: Comparison (replicate ordering, Example 1).

A.2.3.2 Example 2

The base three-tuple and NSCs for this example are specified as:

C = {W,X,Y,Z}, R = [3 4 2 1], P = [1 2 2 3], no additional NSCs (A.4)

The second and third inputs for Algorithm A.2 are:

Vf = [1 1 1 2 2 2 2 2 2 3], iInitRep = [1 4 8 10] (A.5)

We will consider two different V, one at the initial iteration of the tree algorithm and one
at some intermediate iteration. Figure A.2a goes through the operations in Algorithm A.2
for the different V. The example iterations are also visualized in Figs. A.2b and A.2c.

Table A.2 compares the original algorithm with the enhancement for this example. There
is a reduction in candidate graphs generated while the number of unique graphs remains the
same.

Orig En Orig/En
Candidate Graphs 456766 14359 31.8

Unique Graphs 1657 1657 1
Generation Time (s) 16.26 0.69 23.6

Total Time (s) 3577 145 24.7

Table A.2: Comparison (replicate ordering, Example 2).

A.3 Avoiding Loops
Under specific NSCs, we can exclude loops during the graph generation process. A loop is
an edge that connects a vertex to itself [61, p. 25].

215

Initial Intermediate
V [0 1 1 2 2 2 2 2 2 3] [0 0 0 0 1 2 2 1 2 3]

circshift(V[0 1]) [3 0 1 1 2 2 2 2 2 2] [3 0 0 0 0 1 2 2 1 2]
Vf [1 1 1 2 2 2 2 2 2 3] [1 1 1 2 2 2 2 2 2 3]

circshift(V[0 1]) 6= Vf [1 1 0 1 0 0 0 0 0 1] [1 1 1 1 1 1 0 0 1 1]
Vordering(iInitRep)← 1 [1 1 0 1 0 0 0 1 0 1] [1 1 1 1 1 1 0 1 1 1]

Removed/total branches 5/9 1/6

(a) Algorithm operations.

(b) Initial iteration. (c) Intermediate iteration.

Figure A.2: Example 2 for Algorithm A.2 (replicate ordering).

A.3.1 Theory
Consider a component type that is both mandatory (S3) and each edge is required to be
unique (S6). Then a feasible graph cannot have any loops for this component type since the
number of edges would not be unique. We cannot make the same assumption if a component
type needs to have each edge be unique but is not a mandatory component. Consider a two-
port, nonmandatory component type with one replicate. Now, if we want a connected graph
with all components except this specific two-port component, then a loop is required since
each port must be filled. Therefore, this enhancement can be implemented with NAND
logic where only a mandatory component type with each connection required to be unique
is excluded from having loops.

This is not a general enhancement since it requires specific NSCs.

A.3.2 Implementation
Algorithm A.3 is the pseudocode for the implementation of this enhancement. The imple-
mentation is centered around modifying the expanded potential adjacency matrix (A) before
the graph generation algorithm is called. The total number of components is found and

216

Algorithm A.3: Limit potential connections based on loops.
Input : A – expanded potential adjacency matrix

M – vector indicating if a component replicate is mandatory
U – vector indicating if a component replicate requires unique connections

Output: A – expanded potential adjacency matrix
1 if any(M ∧ U) then /* some loops should be excluded */
2 N ← length(M) /* total number of component replicates */

3 iDiag ← [1 : N + 1 : N2] /* indices for the diagonal elements */
4 A(iDiag) ← ! (M ∧ U) /* assign NAND between M and U to the diagonal */

5 end

then the linear index values for the diagonal of expanded potential adjacency matrix are
computed. Finally, in line 4, NAND logical operator between M and U is assigned to the
diagonal of A.

A.3.3 Examples

A.3.3.1 Example 1

The base three-tuple and NSCs for this example are specified as:

C = {X,Y}, R = [2 2], P = [2 2], S3 with M = [0 1], S6 with U = [1 1] (A.6)

We will consider an all unity A but this could be any expanded potential adjacency matrix.
The second and third inputs to Alg. A.3 are:

M = [0 0 1 1], U = [1 1 1 1], ! (M ∧ U) = [1 1 0 0] (A.7)

Now, Alg. A.3 modifies the expanded potential adjacency matrix as:

A =

X X Y Y

X 1 1 1 1
X 1 1 1 1
Y 1 1 1 1
Y 1 1 1 1

A(iDiag)←!(M∧U)−−−−−−−−−−→ A =

X X Y Y

X 1 1 1 1
X 1 1 1 1
Y 1 1 0 1
Y 1 1 1 0

(A.8)

where Y is mandatory and unique connections are required so corresponding diagonal entries
in A were zeroed. Table A.3 compares the original algorithm with the enhancement for this
example. There is a reduction in candidate graphs generated while the number of unique
graphs remains the same.

217

Orig En Orig/En
Candidate Graphs 26 16 1.63

Unique Graphs 3 3 1
Generation Time (s) 0.0024 0.0022 1.09

Total Time (s) 0.0086 0.0070 1.23

Table A.3: Comparison (loops, Example 1).

A.3.3.2 Example 2

The base three-tuple and NSCs for this example are specified as:

C = {X,Y}, R = [2 2], P = [2 2], S3 with M = [1 1], S6 with U = [1 1] (A.9)

We will consider an all unity A but this could be any expanded potential adjacency matrix.
The second input to Alg. A.3 is:

M = [1 1 1 1], U = [1 1 1 1], ! (M ∧ U) = [0 0 0 0] (A.10)

Now, Alg. A.3 modifies the expanded potential adjacency matrix as:

A =

X X Y Y

X 1 1 1 1
X 1 1 1 1
Y 1 1 1 1
Y 1 1 1 1

A(iDiag)←!(M∧U)−−−−−−−−−−→ A =

X X Y Y

X 0 1 1 1
X 1 0 1 1
Y 1 1 0 1
Y 1 1 1 0

(A.11)

Since both component types are mandatory and unique connections are required, the entire
diagonal is zeroed. Table A.4 compares the original algorithm with the enhancement for this
example. There is a reduction in candidate graphs generated while the number of unique
graphs remains the same.

Orig En Orig/En
Candidate Graphs 26 11 2.36

Unique Graphs 2 2 1
Generation Time (s) 0.0024 0.0022 1.09

Total Time (s) 0.0086 0.0060 1.43

Table A.4: Comparison (loops, Example 2).

218

A.4 Avoiding Multi-Edges
Under specific NSCs, we can exclude multi-edges during the graph generation process. A
multi-edge is two or more edges that are incident to the same two vertices [61, p. 25].

A.4.1 Theory
Consider when each edge is required to be unique (S6). Due to the sequential nature of the
tree algorithm, a single edge must be added between two components before a second edge
is added; thus, creating a multi-edge. Therefore, when the first edge is added between two
components, we can utilize the expanded potential adjacency matrix to disallow any further
connections between the components. Since a feasible graph would not have any multi-edges
when each edge is required to be unique, the tree algorithm with this enhancement will
continue generating the desired graph structure space.

This enhancement should not be applied on loops since loops are occasionally needed to
remove components (see Sec. A.3 for the handling of loops). Also, this is not a general
enhancement since it requires specific NSCs.

A.4.2 Implementation

Algorithm A.4: Limit potential connections based on multi-edges.
Input : A – expanded potential adjacency matrix

U – vector indicating if a component replicate requires unique connections
iR – component index for right port
iL – component index for left port

Output: A – expanded potential adjacency matrix
1 if U(iL) ∨ U(iR) then /* either component requires unique connections */
2 if iR 6= iL then /* don’t do for self loops */
3 A(iR, iL) ← 0 /* limit this connection */
4 A(iL, iR) ← 0 /* limit this connection */

5 end
6 end

Algorithm A.4 is the pseudocode for the implementation of this enhancement. The imple-
mentation is centered around modifying the expanded potential adjacency matrix (A) when
a new edge is created. This enhancement is only called if either component replicate in the
edge requires unique connections. Additionally, this enhancement is only called if the edge is

219

not a loop (see Sec. A.3 for the handling of loops). If both of these conditions are met, then
the corresponding entries in the expanded potential adjacency matrix are zeroed in lines 3
and 4.

This enhancement is inserted between lines 11 and 12 of Alg. A.1 using the local copy A2.

A.4.3 Example
The base three-tuple and NSCs for this example are specified as:

C = {W,X,Y,Z}, R = [1 1 1 1], P = [3 3 3 3], S6 with U = [1 1 1 1] (A.12)

Consider one path during the graph generation process when the reduced potential adjacency
matrix is initially all ones:

W X Y Z

W 1 1 1 1
X 1 1 1 1
Y 1 1 1 1
Z 1 1 1 1

︸ ︷︷ ︸
Iter. 0, V = [3 3 3 3]

→

W X Y Z

W 1 0 1 1
X 0 1 1 1
Y 1 1 1 1
Z 1 1 1 1

︸ ︷︷ ︸
Iter. 1, V = [2̄ 2̄ 3 3]

→

W X Y Z

W 1 0 0 1
X 0 1 1 1
Y 0 1 1 1
Z 1 1 1 1

︸ ︷︷ ︸
Iter. 2, V = [1̄ �2 2̄ 3]

→

→

W X Y Z

W 1 0 0 0

X 0 1 1 1
Y 0 1 1 1
Z 0 1 1 1

︸ ︷︷ ︸
Iter. 3, V = [0̄ �2 �2 2̄]

→

W X Y Z

W 1 0 0 0
X 0 1 0 1
Y 0 0 1 1
Z 0 1 1 1

︸ ︷︷ ︸
Iter. 4, V = [0 1̄ 1̄ 2]

→

W X Y Z

W 1 0 0 0
X 0 1 0 0

Y 0 0 1 1
Z 0 0 1 1

︸ ︷︷ ︸
Iter. 5, V = [0 0̄ �1 1̄]

where the matrix above represents A, �̄ indicates this component was selected for an edge,
and ��� indicates the connection was disallowed. Each iteration added a pair of zeros to the
potential adjacency matrix.

Table A.5 compares the original algorithm with the enhancement for this example. There
is a reduction in candidate graphs generated while the number of unique graphs remains the
same.

220

Orig En Orig/En
Candidate Graphs 211 46 4.59

Unique Graphs 1 1 1
Generation Time (s) 0.0086 0.0037 2.32

Total Time (s) 0.015 0.0070 2.14

Table A.5: Comparison (multi-edge).

A.5 Avoiding Line-Connectivity Constraints
On line 4 of Alg. A.1, we utilize the expanded potential adjacency matrix (A) to disallow
connections between components. This is also phrased as every graph must have edges
between vertices that are feasible. These are termed vertex-connectivity constraints, denoted
S7. A similar type of NSC can be included between the lines of the graph, termed line-
connectivity constraints.

A.5.1 Theory
The line graph of a graph G is the graph with the edges of G as its vertices, and where two
edges of G are adjacent in the line graph if and only if they are incident in G [60, p. 10].
Consider the graph in Fig. A.3a and its corresponding line graph in Fig. A.3b with three
component types. If component type 1 is connected to component type 2, we can specify if
a connection between component types 2 and 3 is allowed. This is equivalent to specifying
if line type (1, 2) can be connected to line type (2, 3).
This enhancement is a new type of NSC and is designated S8.

31 2
(a) G.

1,2 2,3
(b) Line graph of G.

Figure A.3: Illustration of a line-connectivity constraint.

A.5.2 Implementation
Since this enhancement is a new type of NSC, it is specified before the graph generation
procedure. For each line-connectivity constraint, a triple of integers is supplied defining the
component types in Fig. A.3a. They are supplied in increasing order, i.e., [#1,#2,#3].

221

Therefore, each triple is interpreted as: if #1 and #2 are connected, don’t ever connect #2
to #3. These triples help construct the reduced 3-D array with line-connectivity constraint
information, B. They are indexed in reverse order to facilitate extracting column vectors,
i.e., B(#3,#2,#1) = 0. Given a set of triples, a function creates the expanded N × N ×
N matrix where N is the total number of component replicates where a zero indicates a
connection is not allowed and one indicates it is allowed.

Algorithm A.5: Limit potential connections based on line-connectivity constraints.
Input : A – expanded potential adjacency matrix

iR – component index for right port
iL – component index for left port
B – 3-D array with line-connectivity constraint information

Output: A – expanded potential adjacency matrix
1 if there are any line-connectivity constraints then
2 A(:, iR) ← A(:, iR) ◦ B(:, iR, iL) /* potentially limit connections */
3 A(:, iL) ← A(:, iL) ◦ B(:, iL, iR) /* potentially limit connections */

4 A([iR, iL], :) ← A(:, [iR, iL])T /* make symmetric */

5 end

Algorithm A.5 is the pseudocode for the implementation of this enhancement. This
enhancement is only called if there are any line-connectivity constraints, S8. First using
the component index of the right port, we extract a vector from the 3-D array with line-
connectivity constraint information (B) when #1 = iL and #2 = iR. This vector is multiplied
element-wise with the correct row of the expanded potential adjacency matrix (A), poten-
tially limiting connections. This step then performed again switching the roles of component
indices, i.e., #1 = iR and #2 = iL. Finally, the changes to A are applied to the symmetric
location, ensuring A remains symmetric.
This enhancement is inserted between lines 11 and 12 of Alg. A.1 using the local copy A2.

A.5.3 Examples

A.5.3.1 Example 1

The base three-tuple and NSCs for this example are specified as:

C = {X,Y,Z}, R = [1 2 2], P = [2 2 2], S8(1) = [1, 2, 3] (A.13)

The reduced (B) and expanded (B) 3-D arrays with line-connectivity constraint information
are:

222

B(:, :, 1) =

X Y Z

X 1 1 1
Y 1 1 1
Z 1 0 1

, B(:, :, 1) =

X Y Y Z Z

X 1 1 1 1 1
Y 1 1 1 1 1
Y 1 1 1 1 1
Z 1 0 0 1 1
Z 1 0 0 1 1

(A.14)

Figure A.4a goes through the operations in Algorithm A.5 for a certain line type. The
limiting of potential edges is visualized in Fig. A.4b.
Table A.6 compares the original algorithm with the enhancement for this example. There

is a reduction in candidate graphs generated while the number of unique graphs remains the
same.

Line Type 1
iL 1
iR 2

B(:, iR, iL) [1 1 1 0 0]T
B(:, iL, iR) [1 1 1 1 1]T

(a) Algorithm operations. (b) Line Type 1.

Figure A.4: Example 1 for Algorithm A.5 (line-connectivity constraints).

Orig En Orig/En
Candidate Graphs 146 98 1.49

Unique Graphs 26 26 1
Generation Time (s) 0.004 0.005 0.80

Total Time (s) 0.036 0.034 1.06

Table A.6: Comparison (line-constraints, Example 1).

A.5.3.2 Example 2

The base three-tuple and NSCs for this example are specified as:

C = {X,Y,Z}, R = [2 2 3], P = [2 2 2]
S8(1) = [1, 2, 2], S8(2) = [2, 1, 2], S8(3) = [3, 3, 3]

(A.15)

223

The reduced 3-D array with line-connectivity constraint information (B) is:

B(:, :, 1) =

X Y Z

X 1 1 1
Y 1 0 1
Z 1 1 1

, B(:, :, 2) =

X Y Z

X 1 1 1
Y 0 1 1
Z 1 1 1

B(:, :, 3) =

X Y Z

X 1 1 1
Y 1 1 1
Z 1 1 0

(A.16)

The expanded 3-D arrays with line-connectivity constraint information (B) for S8(3) are:

B(:, :, 5) = B(:, :, 6) = B(:, :, 7) =

X X Y Y Z Z Z

X 1 1 1 1 1 1 1
X 1 1 1 1 1 1 1
Y 1 1 1 1 1 1 1
Y 1 1 1 1 1 1 1
Z 1 1 1 1 0 0 0
Z 1 1 1 1 0 0 0
Z 1 1 1 1 0 0 0

(A.17)

Figure A.5a goes through the operations in Algorithm A.5 for two line types. The limiting
of potential edges is visualized in Figs. A.5b and A.5c.
Table A.7 compares the original algorithm with the enhancement for this example. There

is a reduction in candidate graphs generated while the number of unique graphs remains the
same.

Orig En Orig/En
Candidate Graphs 8316 5120 1.62

Unique Graphs 119 119 1
Generation Time (s) 0.184 0.183 1.01

Total Time (s) 2.361 2.096 1.13

Table A.7: Comparison (line-constraints, Example 2).

224

Line Type 1 Line Type 2
iL 1 5
iR 3 6

B(:, iR, iL) [1 1 0 0 1 1 1]T [1 1 1 1 0 0 0]T
B(:, iL, iR) [1 1 0 0 1 1 1]T [1 1 1 1 0 0 0]T

(a) Algorithm operations.

(b) Line Type 1. (c) Line Type 2.

Figure A.5: Example 2 for Algorithm A.5 (line-connectivity constraints).

A.6 Checking for Saturated Subgraphs
This enhancement is based on the work in Ref. [73] for enumerating molecules. In their work,
all atoms are mandatory in the graph. Therefore, the detection of a saturated subgraph
before all atoms have been connected indicates the candidate graph will be infeasible and
can be discarded.

A.6.1 Theory
A subgraph of a graph G is another graph formed from a subset of the vertices and edges
of G [61, p. 3]. A saturated subgraph is a subgraph with no empty ports and may contain
multiple connected subgraphs [73]. Since a saturated subgraph has no empty ports, no
components other than the components currently in this subgraph will be connected to this
subgraph during further iterations of the graph generation procedure. If we determine that
the current iteration of the tree algorithm has created a saturated subgraph, then there are
three scenarios to consider.

First, if all mandatory components are contained in the saturated subgraph, then no addi-
tional iterations are needed. Since all components not connected to a mandatory component
will be removed, all components not currently in the saturated subgraph will be removed.
Therefore, the topology of the remaining components is negligible. Since the topology is neg-

225

ligible, we can assign an arbitrary topology to the remaining components, save the graph,
and terminate the iteration.

The second scenario is if none of the mandatory components are in the saturated subgraph.
This provides no additional information so we allow the current iteration to continue. The
final scenario is when some, but not all, mandatory components are in the saturated sub-
graph. Since at least one pair of mandatory components will not be connected, this graph
will be infeasible. Therefore, we can terminate this iteration without saving the graph.

This is not a general enhancement since it requires specific NSCs, namely at least one
mandatory component (S3).

A.6.2 Implementation

Algorithm A.6: Handle saturated subgraphs.
Input : V – vector of remaining ports for each component replicate

E – vector of edges in sequential pairs
Vf– initial vector of ports available for each component replicate
M – vector indicating if all replicates of the component type must be present
cVf – cumulative sum of the original V plus 1
SavedGraphs – set of graphs

Output: SavedGraphs – set of graphs
1 if there are any necessary components then
2 iNonSat ← find(V) /* find the nonsaturated components */
3 if V(iNonSat) = Vf(iNonSat) then /* check for saturated subgraph */
4 nUncon ← sum(M(iNonSat)) /* # of mandatory comps not in saturated subgraph */
5 if nUncon = 0 then /* all mandatory components are in saturated subgraph */
6 for j ← 1 to sum(V) do /* add remaining edges in arbitrary order */
7 k ← find(V, 1) /* find first nonzero entry */
8 LR ← cVf(k)− V(k)
9 V(k) ← V(k)− 1 /* remove port */

10 E ← [E, LR] /* add port */

11 end
12 SavedGraphs{end + 1} ← E /* missorted perfect matching */
13 continue /* stop iteration, graph has been added */

14 else if nUncon = sum(M) then /* no mandatory comps are in saturated subgraph */
/* continue with this iteration */

15 else /* some but not all mandatory components are in saturated subgraph */
16 continue /* stop iteration, this graph is infeasible */
17 end
18 end
19 end

Algorithm A.6 is the pseudocode for the implementation of this enhancement. This en-

226

hancement is only called if there are some mandatory components (S3). First, the unsatu-
rated components are found by checking the vector of remaining ports for each component
replicate, V. A component is saturated if all ports are filled. To determine if the current
graph is a saturated subgraph, we compare the remaining ports of the unsaturated compo-
nents to the original number of ports available (see line 3).

If the current graph is indeed a saturated subgraph, then we compute the number of
mandatory components not in the saturated subgraph, nUncon. If all mandatory components
are in the saturated subgraph, then this graph is feasible. We assign an arbitrary ordering
to the remaining components, save the graph, and terminate the iteration (see lines 6 to
13). If no mandatory components are in the saturated subgraph, then we allow the current
iteration to continue (see line 14). Finally, if some but not all mandatory components are in
the saturated subgraph, we stop the iteration since the graph is infeasible (see lines 15 and
16).

This enhancement is inserted between lines 11 and 12 of Alg. A.1 since the current edge
needs to be added but before the recursion call. With this enhancement, the else statement
on line 14 of Alg. A.1 will never be reached if there are any mandatory components. The
if condition is only untrue when a saturated subgraph is present (every component’s port
being filled).

A.6.3 Examples

A.6.3.1 Example 1

The base three-tuple and NSCs for this example are specified as:

C = {X,Y}, R = [2 3], P = [2 2], S3 with M = [1 0] (A.18)

Some of the other inputs are then:

Vf = [2 2 2 2 2], M = [1 1 0 0 0] (A.19)

We will consider two different V, one after an initial edge is added and one at some interme-
diate iteration. Figure A.6a goes through the operations in Algorithm A.6 for the different
V. These example iterations are also visualized in Figs. A.6b and A.6c.
Table A.8 compares the original algorithm with the enhancement for this example. There

is a reduction in candidate graphs generated while the number of unique graphs remains the

227

same.
Iteration Initial Intermediate

V [1 1 2 2 2] [0 0 2 0 2]
iNonSat ← find(V) [1 2 3 4 5] [3 5]

V(iNonSat) [1 1 2 2 2] [2 2]
Vf(iNonSat) [2 2 2 2 2] [2 2]

V(iNonSat) = Vf(iNonSat) False True
M(iNonSat) − [0 0]

nUncon ← sum(M(iNonSat)) − 0
Feasible − Yes

(a) Algorithm operations.

(b) Initial iteration. (c) Intermediate iteration.

Figure A.6: Example 1 for Algorithm A.6 (saturated subgraphs).

Orig En Orig/En
Candidate Graphs 146 91 1.60

Unique Graphs 6 6 1
Generation Time (s) 0.0056 0.0046 1.22

Total Time (s) 0.023 0.015 1.53

Table A.8: Comparison (saturated subgraphs, Example 1).

A.6.3.2 Example 2

The base three-tuple and NSCs for this example are specified as:

C = {X}, R = [9], P = [2], S3 with M = [1] (A.20)

Some of the other inputs are then:

Vf = [2 2 2 2 2 2 2 2 2], M = [1 1 1 1 1 1 1 1 1] (A.21)

228

We will consider two different V, one after an initial edge is added and one at some interme-
diate iteration. Figure A.7a goes through the operations in Algorithm A.6 for the different
V. These example iterations are also visualized in Figs. A.7b and A.7c.
Table A.9 compares the original algorithm with the enhancement for this example. There

is a reduction in candidate graphs generated while the number of unique graphs remains the
same.

Intermediate 1 Intermediate 2
V [0 0 0 1 2 1 2 2 2] [0 0 0 0 2 0 2 2 2]

iNonSat ← find(V) [4 5 6 7 8 9] [5 7 8 9]
V(iNonSat) [1 2 1 2 2 2] [2 2 2 2]
Vf(iNonSat) [2 2 2 2 2 2] [2 2 2 2]

V(iNonSat) = Vf(iNonSat) False True
M(iNonSat) − [1 1 1 1]

nUncon ← sum(M(iNonSat)) − 4
Feasible − No

(a) Algorithm operations.

(b) Intermediate 1 iteration. (c) Intermediate 2 iteration.

Figure A.7: Example 2 for Algorithm A.6 (saturated subgraphs).

Orig En Orig/En
Candidate Graphs 852316 460872 1.85

Unique Graphs 1 1 1
Generation Time (s) 29.83 19.23 1.55

Total Time (s) 58.57 33.11 1.77

Table A.9: Comparison (saturated subgraphs, Example 2).

229

A.7 Enumerating Subcatalogs
Leveraging some of the properties of the graph structure space and some NSCs, we can break
the graph generation procedure into subtasks that more efficiently generate the same graph
structure space.

A.7.1 Theory
A candidate architecture in an architecture design space described by (C,R, P) has the
following properties [6]:

1. A set of component replicates bounded by (C,R, P). This set of component replicates
is termed a subcatalog of (C,R, P).

2. Each port in (V P , {}, LP), i.e., GP without edges, is connected to another port (this
implies an even number of ports).

The original tree algorithm in Alg. A.1 generated all candidate architectures in this archi-
tecture design space since the set of perfect matchings (PMs) graphs of KN contains all edge
sets for KN−2, where N ≥ 4 [6]. Instead of relying on this property, an alternative would be
an enumeration of all possible subcatalogs of (C,R, P). This property is no longer strictly
needed since the edge sets of the PMs of KN for each subcatalog is enough to generate all
the desired graphs. However, this approach on its own provides no general improvements to
the graph generation procedure.

If we require every graph to be a connected graph (S1), we can enforce the following:
A feasible graph for a specific subcatalog must have every component replicate connected
(i.e., all the replicates are mandatory). This is due to the tree algorithm being utilized on
every subcatalog. Enumerating subcatalogs only provides general improvements to the graph
generation procedure if the property that all replicates are mandatory in each subcatalog is
effectively utilized.

Two of the previously discussed enhancements utilize this property: 1) checking for sat-
urated subgraphs in Sec. A.6 and 2) avoiding loops in Sec. A.3. A greater proportion of
mandatory component types improves the effectiveness of these enhancements. Another
benefit is isomorphism checks only need to be performed between graphs in their respective
subcatalog. Since every component type is mandatory in the subcatalog, the colored label
sets will be different between graphs in different subcatalogs. Therefore, graphs from dif-
ferent subcatalogs are definitely not isomorphic. This reduces the number of isomorphism

230

checks and allows for further parallelization. Finally, the generation of graphs for each sub-
catalog can be performed in parallel. However, each subcatalog will take varying amounts of
time to complete so the benefit will vary depending on the particular (C,R, P) and NSCs.
The original tree algorithm does not leverage parallelization during the graph generation
procedure.

This enhancement also allows for an improved representation of the number of replicates for
each component type. Instead of the original vector R, where each entry was the maximum
number of replicates for the specific component type, minimum and maximum values can
be specified. The maximum values, denoted Rmax, is equivalent to the previous R. The
minimum values, denoted Rmin, can naturally capture mandatory components and nonzero
lower bounds. Every nonzero element of Rmin indicates a mandatory component type. If
Rmin and Rmax for a component type is 2 and 5, then there must be between 2 and 5 replicates
in a feasible graph.

The set of subcatalogs contains all possible combinations of integers values for each com-
ponent type bounded by Rmin and Rmax. Therefore, the total number of subcatalogs is:

Nsubcatalogs =
|Rmax|∏
k=1

[
Rmax(k)−Rmin(k) + 1

]
(A.22)

Some of these subcatalogs may be invalid, e.g., the subcatalog has an odd number of ports
or is empty.

A.7.2 Implementation
Algorithm A.7 is the pseudocode for the implementation of this enhancement. This enhance-
ment is only called if we require every graph to be a connected graph (S1)
First, the potential number of replicates for each component type is stored in a cell array,

Rlist. All subcatalogs are then generated with ndgrid using Rlist. This function creates a
rectangular grid in N-D space [292]. Next, the subcatalogs are filtered for subcatalogs with
an odd number of ports or are empty. Additional user-specified filters can all be applied
here. Once all the filters have been applied, the number of subcatalogs is calculated. The
final step before generating the graphs is to create a local copy of the network structure
constraints since they are modified for each subcatalog.

Generating graphs for each subcatalog can now be performed in parallel (see line 8).
Before a subcatalog is used, a number of items need to be updated to properly define the
subcatalog. We find the locations of the nonzero replicates on line 10. Then the colored

231

Algorithm A.7: Generate set of unique, feasible graphs using subcatalogs.
Input : Rmin – vector indicating min number of replicates for each component type

Rmax – vector indicating the max number of replicates for each component type
C – colored label set
P – ports vector
NSC – structure for the network structure constraints

Output: FinalGraphs – set of unique, feasible graphs
1 for k ← 1 to length(Rmax) do /* for each component type */
2 Rlist{k} ← Rmin(k) : 1 : Rmax(k) /* list of potential number of replicates */
3 end
4 Subcatalogs ← matrix form of the cell array from ndgrid(Rlist) /* generate subcatalogs */
5 Subcatalogs ← filter Subcatalogs (empty, odd port, custom filters)
6 Nsubcatalogs ← number of rows in Subcatalogs /* number of subcatalogs */
7 nsc ← NSC /* local NSC structure */
8 for k ← 1 to Nsubcatalogs do in parallel
9 r ← Subcatalogs(k, :) /* extract R vector for this subcatalog test */
10 I ← r 6= 0 /* nonzero replicate locations */
11 c ← C(I) /* extract colored labels */
12 r ← r(I) /* extract replicates vector */
13 p← P(I) /* extract ports vector */
14 nsc.U← NSC.U(I) /* extract unique connections vector */
15 nsc.A ← NSC.A(I, :) /* extract reduced potential adjacency matrix */
16 nsc.A(:, I) ← NSC.A(:, I) /* symmetric */
17 nsc.B ← extract appropriate line-connectivity triples using NSC.B and I
18 nsc.M← ones(size(r)) /* all component types are mandatory */
19 Graphs{k} ← generate feasible graphs for this subcatalog using c, r, p, and nsc
20 end
21 for k ← 1 to Nsubcatalogs do in parallel /* obtain unique graphs */
22 Graphs{k} ← determine set of unique graphs in Graphs{k}
23 end
24 FinalGraphs ← combine unique graphs from each subcatalog using Graphs

labels, replicates vector, and ports vector are updated for this subcatalog, only including
component types with at least one replicate. In addition, both the unique connections
vector, reduced potential adjacency matrix, and line-connectivity triples need to be updated
to include only the relevant constraints for this subcatalog. Some component types may
not be present in a particular subcatalog, so any NSCs with these component types are not
needed. Since all component types are mandatory in this approach, we set each component
type as mandatory on line 18. Finally, we generate feasible graphs for this subcatalog using
the same method used for a single catalog.

After the feasible graphs have been found, each subcatalog can be analyzed for the set of
unique graphs. Again, this task can be performed in parallel as each subcatalog is indepen-
dent. The final step is to combine all the unique graphs into a single set.

232

A.7.3 Examples
These examples are tested using this enhancement and the handling of saturated subgraphs
in Sec. A.6.

A.7.3.1 Example 1

The base three-tuple and NSCs for this example are specified as:

C = {X,Y}, Rmin = [1 0], Rmax = [1 8], P = [2 2] (A.23)

All 9 subcatalogs for this example are shown in Table A.10.
Table A.11 compares the original algorithm with the enhancement for this example. There

is a reduction in feasible graphs generated while the number of unique graphs remains the
same. The enhancement with 12 threads (12T) and 1 thread (1T) available is shown.

r c p Feasible Graphs
1 [1] {X} [2] 1
2 [1 1] {X,Y} [2 2] 1
3 [1 2] {X,Y} [2 2] 1
4 [1 3] {X,Y} [2 2] 3
5 [1 4] {X,Y} [2 2] 12
6 [1 5] {X,Y} [2 2] 60
7 [1 6] {X,Y} [2 2] 360
8 [1 7] {X,Y} [2 2] 2520
9 [1 8] {X,Y} [2 2] 20160

Table A.10: Subcatalogs for Example 1.

Orig En En (12T) Orig/En Orig/En (12T)
Feasible Graphs 96940 23118 23118 4.19 4.19
Unique Graphs 9 9 9 1 1

Generation Time (s) 29.857 27.385 26.371 1.09 1.13
Total Time (s) 39.604 29.943 29.721 1.32 1.33

Table A.11: Comparison (enumerating subcatalogs, Example 1).

233

A.7.3.2 Example 2

The base three-tuple and NSCs for this example are specified as:

C = {W,X,Y,Z}, Rmin = [1 0 0 0], Rmax = [1 2 3 3], P = [1 1 2 3] (A.24)

A select number of the 48 subcatalogs for this example are shown in Table A.12.
Table A.13 compares the original algorithm with the enhancement for this example. There

is a reduction of feasible graphs generated while the number of unique graphs remains the
same. The enhancement with 12 threads (12T) available is also shown.

r c p Feasible Graphs
1 [1 0 0 0] {W} [1] − (odd)
2 [1 1 0 0] {W,X} [1 1] 1
3 [1 2 0 0] {W,X} [1 1] − (odd)
4 [1 0 1 0] {W,Y} [1 2] − (odd)
5 [1 1 1 0] {W,X,Y} [1 1 2] 1
...

44 [1 1 2 3] {W,X,Y,Z} [1 1 2 3] − (odd)
45 [1 2 2 3] {W,X,Y,Z} [1 1 2 3] 1548
46 [1 0 3 3] {W,Y,Z} [1 2 3] 1683
47 [1 1 3 3] {W,X,Y,Z} [1 1 2 3] − (odd)
48 [1 2 3 3] {W,X,Y,Z} [1 1 2 3] 11844

Table A.12: Select subcatalogs for Example 2.

Orig En En (12T) Orig/En Orig/En (12T)
Feasible Graphs 45015 16235 16235 2.77 2.77
Unique Graphs 489 489 489 1 1

Generation Time (s) 8.940 12.903 11.216 0.69 0.80
Total Time (s) 60.977 49.285 44.291 1.24 1.38

Table A.13: Comparison (enumerating subcatalogs, Example 2).

A.8 Alternative Tree Traversal Strategies
Visualized in Fig. 2.6, the main algorithm in Alg. A.1 for enumerating the graph structure
space of interest is functionally equivalent to visiting all nodes in a tree, denoted τ . Here we

234

will further characterize the tree structure and alternative strategies for traversing it. All
the enhancements discussed in this appendix can be readily incorporated into the alternative
tree traversal strategies discussed here.

A tree is an undirected graph in which any two vertices are connected by a unique path
[66, p. 27]. A rooted tree is a tree in which one vertex has been designated the root [61, p. 13].
A directed rooted tree is a rooted tree where the edges are assigned a natural orientation,
either away from or towards the root [66, p. 29]. Algorithm A.1 traverses a directed rooted
tree. Here the root of τ is GP without edges (or a graph with all the ports, see Sec. 2.1) and
every vertex in τ represents some undirected labeled graph. The edges in τ are naturally
directed away from the root because the algorithm produces new graphs in this direction by
adding edges. Each directed edge (parent → child) in τ represents the addition of a single
edge to the parent graph to create the child graph. The height of a vertex in a rooted tree
is the length of the longest downward path to the vertex from the root. Then the height of
τ is equal to half the number of ports (or the number of edges needed to create a perfect
matching). Only the set of vertices in τ with maximal height comprise the graph structure
space of interest.

1

0
10

2 11
12

14
8

5
6

19

3
2520

74
262317 282115

9 1813 24 272216 29Ed
ge

s
A

va
ila

bl
e

1

0

2

3

4

(a) Depth-first search.

1

0

2
4 6

13
7

12
5

11

3

10
98

2120
181715 191614

22 2523 27 282624 29Ed
ge

s
A

va
ila

bl
e

1

0

2

3

4

(b) Breadth-first search.

Figure A.8: Two tree traversal strategies (numbers indicate order the vertices are visited).

A.8.1 Depth-First vs. Breadth-First Search
Section 2.3 was titled Tree Search Algorithm, but we can be more descriptive of the particular
algorithm implementation. There are two basic methods of tree traversal (the process of
visiting each vertex in a directed rooted tree): depth-first search (DFS) or breadth-first
search (BFS) [293, 294]. The primary difference the two methods is the order in which the
vertices are explored [293]. DFS explores a particular path in the tree to the maximum
height possible before backtracking and continuing down an alternative, unexplored path
[294]. This process is visualized in Fig. A.8a. There are both stack-based and recursive

235

implementations of the DFS [293, pp. 169–172]. From these definitions, Alg. A.1 can be
classified as a recursive DFS algorithm. While the current implementation works fairly
well, the other tree traversal method, BFS, may be better suited for enumerating the graph
structure space of interest.

1

0

2
4 6

13
7

12
5

11

3

10
98

2120
181715 191614

22 2523 27 282624 29 31 checks

(a) Without level-order isomorphism checking.

1

0

2
4 6

11
7

10
5

9

3

8
14

1312
15 1816 17

3 checks
6 checks
11 checks
10 checks

(b) With level-order isomorphism checking.

Figure A.9: Visualization of the impact of level-order isomorphism checking during the
graph generation process for (C,R, P) = ({G,B}, [1 2], [2 3]).

A BFS method traverses the tree by visiting each vertex in a particular level first before
moving to larger levels through the use of a queue [293, 294]. Levels are defined by sets of
vertices with the same height. This process is visualized in Fig. A.8b and note the difference
between DFS. The potential advantage of a BFS implementation would be the ability to
include isomorphism checking at each level. In the current implementation, this is not
possible so (potentially) many intermediate graphs that are isomorphic to other intermediate
graphs are enumerated. By identifying isomorphic intermediate graphs, we can remove these
vertices (and their subtree) from the tree traversal process. Thus, there would be a reduction
the number of graphs generated while covering the same graph structure space. However,
there is a considerable computational cost associated with checking if a set of graphs is
isomorphic (see Sec. A.9), so there may be cases where the overall computational expense is
larger with a BFS implementation with level-order isomorphism checking.

Consider the example in Fig. A.9 comparing the BFS method with and without level-
order isomorphism checking. The desired set of unique graphs (colored green) is covered by
both approaches, but different trees are traversed. There is a reduction from a total of 29
generated graphs to 18, but the number of graph comparisons needed only decreases from 31
to 30. With the overhead associated with calling the isomorphism checking function, level-
order isomorphism checking may actually increase computation time. This is even more
likely with the enhancements included because some of the vertices would be removed faster
through the enhancements rather than direct isomorphism checking. It is future work to
both implement this enhancement and determine its impact on the overall computational
expense.

236

A.8.2 Parallelized Tree Traversal
We can further leverage our knowledge of the tree structure by parallelizing the traversal
process. There has been considerable work in parallelizing various graph algorithms [295,
296]. The enhancement in Sec. A.7 for enumerating subcatalogs was a type of parallelized
tree traversal, but it is more or less unpredictable in how it partitions the original tree (which
was acceptable since it covers the same graph structure space). There are additional parallel
traversal strategies that could be implemented in conjunction with the other enhancements
such as the one below.

1

0

2
1a 1b

3b
2b

5a
2a

4a

3

3a
2c1c

7a6a
5c4c5b 6c3c4b

8a 8b6b 8c 9c7c7b 10c
Task a Task b Task c

Figure A.10: Parallelization example.

Consider a tree with N levels. We can proceed as normal on a single worker using the BFS
method up to level n ≤ N . At this point, the task of traversing the subtree of each vertex in
level n is a parallelizable task (assuming no level-order isomorphism checking). Level-order
isomorphism checking could still be utilized in each of the tasks, but the collected graphs
from each of the tasks would still need to be checked for uniqueness. An example of this
approach is shown in Fig. A.10 with three tasks and assuming perfect parallelization of the
generation task, a reduction from 29 to 13 effective algorithm calls (3 plus the maximum of
the tasks).

A.9 Case Studies from Chapter 2
In Figs. A.15–A.17, the results from the case studies in Chapter 2 are compared with the
enhancements in this chapter. All enhancements are present in the comparisons. No parallel
computing was used in Case Study 1/2 and in Case Study 3, 12 threads were used for any
parallel computing tasks. The python isomorphism checking method was used.

237

Example 1 Example 2
Orig En Orig/En Orig En Orig/En

Candidate Graphs 86 41 2.10 − − −
Feasible Graphs 77 39 1.97 23 11 2.09
Unique Graphs 16 16 1 5 5 1

Generation Time (s) 0.010 0.006 1.67 0.013 0.009 1.44
Total Time (s) 0.039 0.022 1.77 0.189 0.176 1.07

Table A.15: Comparison (Case Study 1).

(a) Examples 1 and 2.
Example 1 Example 2

Orig En Orig/En Orig En Orig/En
Candidate Graphs 1119 633 1.77 − − −

Feasible Graphs 767 442 1.74 767 212 3.62
Unique Graphs 274 274 1 140 140 1

Generation Time (s) 0.082 0.051 1.61 0.111 0.107 1.04
Total Time (s) 1.514 1.211 1.25 0.352 0.322 1.09

(b) Examples 3 and 4.
Example 1 Example 2

Orig En Orig/En Orig En Orig/En
Feasible Graphs 31 22 1.41 34 25 1.36
Unique Graphs 12 12 1 14 14 1

Generation Time (s) 0.137 0.008 17.13 0.134 0.009 14.89
Total Time (s) 0.156 0.024 6.50 0.153 0.027 5.67

Table A.16: Comparison (Case Study 2).

(a) Formulations changes with enhancements.

Rmin = [1 1 0 0 0 0 0 0], Rmax = [1 1 2 2 2 1 2 2]
S8(1) = [1, 7, 2], S8(2) = [2, 7, 1], S8(3) = [1, 8, 2], S8(4) = [2, 8, 1]

(b) Results.
Orig En Orig/En

Feasible Graphs 1943862 48408 40.16
Unique Graphs 13727 13774 0.997

Generation Time (s) 10872.7 251.8 43.18
Total Time (s) 17903.2 688.1 26.02

Table A.17: Comparison (Case Study 3).

238

Appendix B

Additional Architectures/Graphs

 177.7

31.5
518.3 258.7321.1

277.2

(a)

255.2

21.8
457.7 183.7428.4

223.7

(b)

355.4

330.4

245.2
248.4

22.4
314.2

(c)

345.0 453.3 311.4

233.5194.4 12.3

(d)

355.4
198.9

484.3

217.6 304.1
28.1

(e)
206.6 276.2

257.0

16.5

527.3

369.8

(f)

281.5 222.4

13.3

417.6
400.1206.7

(g)

201.9 280.4

23.1

238.1
528.7361.3

(h)
361.1 239.1

20.8

327.2

266.7

277.2

(i)

367.1 295.2

21.1

265.0
315.9

234.2

(j)

Figure B.1: All ten minimum complexity topologies for Low-Pass Filter Realizability task
#3 (units are mH and nF).

239

Figure B.2: All 274 graphs in Case Study 2 with no additional NSCs (gray hash indicates
a multiedge).

240

Appendix C

Additional Material for Chapter 528

C.1 Algorithms in the Automated Problem Generation Procedure
Some notation used in the algorithms is shown in Table C.1.

Notation Description
nX number total QP variables, i.e., Nt (nu + nξ) + np
∅ empty sequence

⊕,	,� elementwise summation, difference, and product
1 to n sequence defined by

[
1, 2, . . . , n

]
where n is an integer

S〈i〉 ith element of the sequence S
|S| number of elements in S (length or cardinality)

blkdiag(A,B, . . .) construct block diagonal matrix from input arguments [297]
combine(S,R) concatenation of sequences S and R

eye(n) n× n identity matrix
kron(A,B) Kronecker tensor product of matrices A and B [182]
ones(n1, n2) n1 × n2 matrix of ones

repmat(A, n1, n2) repeat copies of A with n1 row-wise and n2 column-wise copies
rshift(S) circularly shifts the elements in S by 1 position to the right

sparse(i, j, v, n,m) sparse matrix A(i, j) = v with size n by m
zeros(n1, n2) n1 × n2 matrix of zeros

Table C.1: Notation used in the algorithms.

28Elements of this chapter are based on work completed in Refs. [109].

241

Algorithm C.1:Optimization variable index generating functions (both continuous
and discrete problems).
1 function GetContIndex(xtype) /* index sequence of variable locations in continuous problem */
2 switch xtype do
3 case 0 or empty do /* singleton dimension */
4 X ← 0
5 case 1 do /* controls */
6 X ← 1 to nu
7 case 2 or 4 or 5 do /* states, initial states, and final states */
8 X ← nu + 1 to nu + nξ
9 case 3 do /* parameters */
10 X ← nu + nξ + 1 to nu + nξ + np
11 end
12 end
13 return X /* sequence of variable locations */

14 end
15 function GetQPIndex(x, xtype, idx) /* index sequence of variable locations in QP */
16 switch xtype do
17 case 0 or empty do /* singleton dimension */
18 I ← ones(1,Nt)
19 case 1 or 2 do /* states or controls */
20 I ← (x − 1)Nt + 1 to xNt
21 case 3 do /* parameters */
22 I ← (x + nunt + nξnt) ones(1,Nt)
23 case 4 do /* initial states */
24 I ← ((x − 1)Nt + 1) ones(1,Nt)
25 case 5 do /* final states */
26 I ← xNt ones(1,Nt)
27 end
28 end
29 I ← I〈idx〉 /* extract necessary indices */
30 return I /* sequence of variable locations */

31 end

Algorithm C.2: Create Hessian.
Require: structures L andM of type objective

1 [IL, JL,VL] ← Algorithm C.3 using L /* Lagrange term sequences */
2 [IM, JM,VM] ← Algorithm C.4 usingM /* Mayer term sequences */
3 I ← combine(IL, IM)
4 J ← combine(JL, JM)
5 V ← combine(VL, VM)
6 H ← sparse(I, J, V, nX , nX) /* sparse matrix with nX by nX size */

7 H ← H + HT /* make symmetric for XTHX/2 form */
8 return H /* Hessian */

242

Algorithm C.3: Create sequences for Lagrange terms.
Require: structure L of type objective

1 ∅ ← I, J, H, Q, Qmid /* initialize sequences */
2 for k ← 1 to |L| do
3 L ← L〈k〉 /* obtain current substructure */
4 A ← L.matrix /* obtain current submatrix */
5 R ← GetContIndex(L.left) /* rows (continuous), see Alg. C.1 */
6 C ← GetContIndex(L.right) /* columns (continuous), see Alg. C.1 */
7 for i ← 1 to |R| do
8 for j ← 1 to |C| do
9 r ← GetQPIndex(R〈i〉, L.left, 1 to Nt) /* rows (QP), see Alg. C.1 */
10 c ← GetQPIndex(C〈j〉, L.right, 1 to Nt) /* columns (QP), see Alg. C.1 */
11 I ← combine(I, r) /* rows in main diagonal */
12 J ← combine(J, c) /* columns in main diagonal */
13 H ← combine(H, ∆, 0) /* vector of time steps */
14 Q ← combine(Q, evaluate A〈i,j〉 on t)
15 Qmid ← combine(Qmid, evaluate A〈i,j〉 on t̄, 0)
16 end
17 end
18 end
19 IU ← remove every Nt element from I starting with element Nt /* rows in upper diagonal */
20 IL ← remove every Nt element from I starting with element 1 /* rows in lower diagonal */
21 JU ← remove every Nt element from J starting with element 1 /* columns in upper diagonal */
22 JL ← remove every Nt element from J starting with element Nt /* columns in lower diagonal */
23 Hoff ← remove every Nt element from H starting with element Nt /* remove the added zeros */
24 Qoff ← remove every Nt element from Qmid starting with element Nt /* remove the added zeros */
25 V ← (H⊕ rshift(H))� Q/6⊕ (H� Qbar/6)⊕ rshift (H� Qbar/6)
26 Voff ← Hoff � Qoff/6
27 I ← combine(I, I, IU, IL)
28 J ← combine(J , J, JU, JL)
29 V ← combine(V, V, Voff, Voff)
30 return I, J , V /* sequences that define Lagrange terms in H */

/*

method V (line 25) Voff (line 26)
CEF H� Q ∅
CTR (H⊕ rshift(H))� Q/2 ∅

G & CC (∆/2)W� Q ∅

*/

/* replace line 13 with W ← combineW, w (see Eqn. (5.27)) */

243

Algorithm C.4: Create sequences for Mayer terms.
Require: structureM of type objective

1 ∅ ← I, J , V /* initialize sequences */
2 for k ← 1 to |M| do
3 M ← M〈k〉 /* obtain current substructure */
4 A ← M.matrix /* obtain current submatrix */
5 R ← GetContIndex(M.left) /* rows (continuous), see Alg. C.1 */
6 C ← GetContIndex(M.right) /* columns (continuous), see Alg. C.1 */
7 for i ← 1 to |R| do
8 for j ← 1 to |C| do
9 r ← GetQPIndex(R〈i〉, M.left, 1) /* rows (QP), see Alg. C.1 */
10 c ← GetQPIndex(C〈j〉, M.right, 1) /* columns (QP), see Alg. C.1 */
11 I ← combine(I, r)
12 J ← combine(J , c)
13 V ← combine(V, A〈i,j〉)
14 end
15 end
16 end
17 return I, J , V /* sequences that define Mayer terms in H */

244

Algorithm C.5: Create Ae1 and Be1 matrices for the defect constraints using a
single-step method.

Require: A, B, G /* matrices that define the dynamics in Eqn. (5.5) */
1 K ← kron(eye(nξ),ones(nt, 1))
2 ∅ ← I, J , V /* initialize sequences */
3 for i ← 1 to nξ do
4 DefectIdx ← (i− 1)nt + 1 to int /* current defect constraint row locations */

/* . controls */
5 I ← repmat(DefectIdx,1,nu) /* current defect constraint row indices */
6 J ← 1 to nuNt but remove every Nt /* optimization variable column indices */
7 T ← 1 to nuNt but remove every Nt /* time indexing vector */
8 H ← repmat(∆,nu,1) /* vector of time steps */
9 B ← evaluate B〈i,:〉 on t
10 V3 ← −H/2� B〈T〉 /* θ1 for the TR method */
11 V4 ← −H/2� B〈T+1〉 /* θ2 for the TR method */
12 I ← combine(I, I, I)
13 J ← combine(J , J, J+1)
14 V ← combine(V, V3, V4)

/* . states */
15 I ← repmat(DefectIdx,1,nξ) /* current defect constraint row indices */
16 J ← nuNt + 1 to (nu + nξ)Nt but remove every Nt /* optimization variable column indices */
17 T ← 1 to nξNt but remove every Nt /* time indexing vector */
18 H ← repmat(∆,nξ,1) /* vector of time steps */
19 A ← evaluate A〈i,:〉 on t
20 V1 ← −K〈:,i〉 	 H/2� A〈T〉 /* θ3 for the TR method */
21 V2 ← K〈:,i〉 	 H/2� A〈T+1〉 /* θ4 for the TR method */
22 I ← combine(I, I, I)
23 J ← combine(J , J, J+1)
24 V ← combine(V, V1, V2)

/* . parameters */
25 I ← repmat(DefectIdx,1,np) /* current defect constraint row indices */
26 J ← kron(Nt(nu + nξ) + (1 to np),ones(1, nt)) /* optimization variable column indices */
27 T ← 1 to npNt but remove every Nt /* time indexing vector */
28 H ← repmat(∆,nξ,1) /* vector of time steps */
29 G ← evaluate G〈i,:〉 on t
30 V ← −H/2 � (G〈T〉 ⊕ G〈T+1〉) /* θ5 for the TR method */
31 I ← combine(I, I) and J ← combine(J , J) and V ← combine(V, V)
32 end
33 Ae1 ← sparse(I, J , V, nξnt, nX) /* sparse matrix */
34 ∅ ← I, V /* initialize sequences */
35 for i ← 1 to nξ do
36 I ← (i− 1)nt + 1 to int /* current defect constraint row indices */
37 T ← 1 to nt /* time indexing vector */
38 d ← evaluate d〈i〉 on t
39 V ← H/2 � (d〈T〉 ⊕ d〈T+1〉) /* ν for the TR method */
40 I ← combine(I, I) and V ← combine(V, V)
41 end
42 Be1 ← sparse(I, 1, V, nξnt, 1) /* sparse matrix */
43 return Ae1, Be1 /* matrices */

245

Algorithm C.6: Create Ae1 and Be1 matrices for the defect constraints using a
pseudospectral method.

Require: A, B, G, D /* matrices that define the dynamics in Eqn. (5.5) and differentiation
matrix in Eqn. (5.20) */

1 ∅ ← I, J , V /* initialize sequences */
2 for i ← 1 to nξ do
3 DefectIdx ← (i− 1)Nt + 1 to iNt /* current defect constraint row locations */

/* . controls */
4 I ← repmat(DefectIdx,1,nu) /* current defect constraint row indices */
5 J ← 1 to nuNt /* current optimization variable column indices */
6 B ← evaluate B〈i,:〉 on t
7 V ← −(∆/2)B
8 I ← combine(I, I)
9 J ← combine(J , J)
10 V ← combine(V, V)

/* . states */
11 I ← repmat(DefectIdx,1,nu) /* current defect constraint row indices */
12 J ← nuNt + 1 to (nu + nξ)Nt /* current optimization variable column indices */
13 A ← evaluate A〈i,:〉 on t
14 V ← −(∆/2)A
15 I ← combine(I, I)
16 J ← combine(J , J)
17 V ← combine(V, V)

/* . parameters */
18 I ← repmat(DefectIdx,1,np) /* current defect constraint row indices */
19 J ← kron(Nt(nu + nξ) + (1 to np),ones(1, Nt)) /* current optimization variable column

indices */
20 G ← evaluate G〈i,:〉 on t
21 V ← −(∆/2)G
22 I ← combine(I, I)
23 J ← combine(J , J)
24 V ← combine(V, V)
25 end
26 D ← combine(zeros(nξNt,nuNt), blkdiag(D, · · · ,D), zeros(nξNt,np)) /* nξ copies of D to

blkdiag */
27 Ae1 ← D ⊕ sparse(I, J , V, nξNt, nX) /* sparse matrix */
28 ∅ ← I, V /* initialize sequences */
29 for i ← 1 to nξ do
30 I ← (i− 1)Nt + 1 to iNt /* current defect constraint row indices */
31 d ← evaluate d〈i〉 on t
32 V ← (∆/2)d /* ν for the TR method */
33 I ← combine(I, I)
34 V ← combine(V, V)
35 end
36 Be1 ← sparse(I, 1, V, nξNt, 1) /* sparse matrix */
37 return Ae1, Be1 /* matrices */

246

Algorithm C.7: Create matrices for the additional inequality (or equality) con-
straints.

Require: structure Z of type constraint
1 ∅ ← IA, IB , JA, VA, VB /* initialize sequences */
2 for i ← 1 to |Z| do
3 Z ← Z〈i〉 /* obtain current substructure */
4 PathFlag ← 0 /* initialize as a boundary constraint */
5 for j ← 1 to |Y| do
6 if Z.linear〈j〉.right < 3 then
7 PathFlag ← 0 /* set as a path constraint */
8 else if Z.linear〈j〉.matrix is time varying then
9 PathFlag ← 0 /* set as a path constraint */

10 end
11 if Z.b is time varying then
12 PathFlag ← 0 /* set as a path constraint */
13 end
14 end
15 N ← |IB | /* current number of constraints */
16 if PathFlag = 1 then
17 [I, J,V,B] ← Algorithm C.8 using Z /* path constraint */
18 IB ← combine(IB ,N + (1 to Nt)) /* Nt constraints */

19 else
20 [I, J,V,B] ← Algorithm C.9 using Z /* boundary constraint */
21 IB ← combine(IB ,N + 1) /* single constraint */

22 end
23 IA ← combine(IA, I + N)
24 JA ← combine(JA, J)
25 VA ← combine(VA,V)
26 VB ← combine(VB ,B)
27 end
28 Ai ← sparse(IA,JA,VA, |IB |, nX) /* sparse matrix */
29 Bi ← sparse(IB , 1,VB , |IB |, 1) /* sparse matrix */
30 return Ai, Bi /* matrices */

247

Algorithm C.8: Create sequences for path constraint terms.
Require: structure YZ of type constraint

1 ∅ ← I, J , V /* initialize sequences */
2 for j ← 1 to |YZ.linear| do
3 A ← YZ.linear〈j〉.matrix /* obtain current submatrix */
4 C ← GetContIndex(YZ.linear〈j〉.right) /* columns (continuous), see Alg. C.1 */
5 for i ← 1 to |C| do
6 r ← 1 to Nt /* add Nt rows for a path constraint */
7 c ← GetQPIndex(C〈i〉, YZ.linear〈j〉.right, 1 to Nt) /* columns (QP), see Alg. C.1 */
8 I ← combine(I, r)
9 J ← combine(J , c)

10 V ← combine(V, evaluate A〈i〉 on t)
11 end
12 end
13 B ← evaluate YZ.b on t
14 return I, J , V, B /* sequences for path constraint terms */

Algorithm C.9: Create sequences for boundary constraint terms.
Require: structure YZ of type constraint

1 ∅ ← I, J , V /* initialize sequences */
2 for j ←1 to |YZ.linear| do
3 A ← YZ.linear〈j〉.matrix /* obtain current submatrix */
4 C ← GetContIndex(YZ.linear〈j〉.right) /* columns (continuous), see Alg. C.1 */
5 for i ← 1 to |C| do
6 r ← 1 /* add 1 row for a boundary constraint */
7 c ← GetQPIndex(C〈i〉, YZ.linear〈j〉.right, 1) /* columns (QP), see Alg. C.1 */
8 I ← combine(I, r)
9 J ← combine(J , c)

10 V ← combine(V, A〈i〉)
11 end
12 end
13 B ← YZ.b
14 return I, J , V, B /* sequences for boundary constraint terms */

248

C.2 Sparsity Patterns
In this section, a number of sparsity patterns (a visualization of the potential nonzero entries
in a matrix) are shown for the QP matrices (see Fig. 5.2). The symbol • indicates a potential
nonzero entry in the matrix and • indices a potential nonzero entry if we only look at the
specific term mentioned. In all the figures, {nu, nξ, np, Nt} are {1, 2, 2, 7}.

u1

u1

ξ1

ξ1

ξ2

ξ2

p1

p1

p2

p2

•••••••••••••••••••••

••••••••••••••••••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•
• ••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•
• •••••••
•
•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•
• •••••••
•
•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•
• •••••••
•
•
•

•

•

•

•

•

•

•

••

• ••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•
• ••••

•

•
•
•

•••••••

(a) L11 terms.

u1

u1

ξ1

ξ1

ξ2

ξ2

p1

p1

p2

p2

•••••••••••••••••••••

••••••••••••••••••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•
• ••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•
• •••••••
•
•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•
• •••••••
•
•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•
• •••••••
•
•
•

•

•

•

•

•

•

•

••

• ••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•
• ••••

•

•
•
•

••••••••••••••

••••••••••••••

(b) L22 terms.

u1

u1

ξ1

ξ1

ξ2

ξ2

p1

p1

p2

p2

•••••••••••••••••••••

••••••••••••••••••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•
• ••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•
• •••••••
•
•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•
• •••••••
•
•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•
• •••••••
•
•
•

•

•

•

•

•

•

•

••

• ••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•
• ••••

•

•
•
•••••

(c) L33 terms.
u1

u1

ξ1

ξ1

ξ2

ξ2

p1

p1

p2

p2

•••••••••••••••••••••

••••••••••••••••••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•
• ••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•
• •••••••
•
•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•
• •••••••
•
•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•
• •••••••
•
•
•

•

•

•

•

•

•

•

••

• ••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•
• ••••

•

•
•
•

•

•

•

•

•

•

•

•
•

•
•
• •••••••
•
•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•
• •••••••
•
•
•

•

•

•

•

•

•

•

•

•

•

(d) L4j and Li4 terms.

u1

u1

ξ1

ξ1

ξ2

ξ2

p1

p1

p2

p2

•••••••••••••••••••••

••••••••••••••••••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•
• ••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•
• •••••••
•
•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•
• •••••••
•
•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•
• •••••••
•
•
•

•

•

•

•

•

•

•

••

• ••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•
• ••••

•

•
•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•
• •••••••
•
•
•

•

•

•

•

•

•

•

••

• ••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•
• ••••

•

•
•
•

(e) L5j and Li5 terms.

u1

u1

ξ1

ξ1

ξ2

ξ2

p1

p1

p2

p2

•••••••••••••••••••••

••••••••••••••••••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•
• ••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•
• •••••••
•
•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•
• •••••••
•
•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•
• •••••••
•
•
•

•

•

•

•

•

•

•

••

• ••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•
• ••••

•

•
•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•
• ••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

(f) Remaining terms.

Figure C.1: Sparsity pattern of H matrix for all considered methods except CQHS.

249

u1

u1

ξ1

ξ1

ξ2

ξ2

p1

p1

p2

p2

•••••••••••••••••••••

••••••••••••••••••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•
• ••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•
• •••••••
•
•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•
• •••••••
•
•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•
• •••••••
•
•
•

•

•

•

•

•

•

•

••

• ••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•
• ••••

•

•
•
•

•• •• •• •• •• •• •• •• •• •• •• •••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•• •• •• •• •• ••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Figure C.2: Sparsity pattern of the off-diagonal terms of {L11,L12,L21,L22} in the H
matrix using the CQHS method.

u1

u1

ξ1

ξ1

ξ2

ξ2

p1

p1

p2

p2

•

•

•

•

••

•

•

•

•

•

• ••

•

••

•

•

• •
•

•

• ••••

•

•

•

••

•

•

•••••

(a) M33 terms.

u1

u1

ξ1

ξ1

ξ2

ξ2

p1

p1

p2

p2

•

•

•

•

••

•

•

•

•

•

• ••

•

••

•

•

• •
•

•

• ••••

•

•

•

••

•

•

•

•

•

•

•

(b) M44 terms.

u1

u1

ξ1

ξ1

ξ2

ξ2

p1

p1

p2

p2

•

•

•

•

••

•

•

•

•

•

• ••

•

••

•

•

• •
•

•

• ••••

•

•

•

••

•

•

•

•

•

•

•

(c) M55 terms.

Figure C.3: Sparsity pattern of Mayer terms in H matrix.

250

u1 ξ1 ξ2 p1p2

ζ1

ζ2

••••••••••••••••••••••••

••••••••••••••••••••••••

••••••••••••••••••••••••

••••••••••••

••••••••••••

••••••••••••

••••••••••••

(a) θ1 terms.

u1 ξ1 ξ2 p1p2

ζ1

ζ2

••••••••••••••••••••••••

••••••••••••••••••••••••

••••••••••••••••••••••••

••••••••••••

••••••••••••

••••••••••••

••••••••••••

(b) θ2 terms.

u1 ξ1 ξ2 p1p2

ζ1

ζ2

••••••••••••••••••••••••

••••••••••••••••••••••••

••••••••••••••••••••••••

••••••••••••

••••••••••••

••••••••••••

(c) θ3 terms.
u1 ξ1 ξ2 p1p2

ζ1

ζ2

••••••••••••••••••••••••

••••••••••••••••••••••••

••••••••••••••••••••••••

••••••••••••

••••••••••••

••••••••••••

(d) θ4 terms.

u1 ξ1 ξ2 p1p2

ζ1

ζ2

••••••••••••••••••••••••

••••••••••••••••••••••••

••••••••••••••••••••••••

••••••••••••

••••••••••••

••••••••••••

••••••••••••

(e) θ5 terms.

Figure C.4: Sparsity pattern of Ae1 matrix for the defect constraints using a single-step
method.

u1 ξ1 ξ2 p1p2

ζ1

ζ2

••••••••••••••

••••••••••••••

••••••••••••••

•••••••

•••••••

•••••••

•••••••

•••••••

•••••••

••••••••••••••

•••••••

•••••••

•••••••

•••••••

•••••••

•••••••

••••••••••••••

••••••••••••••

•••••••

•••••••

•••••••

•••••••

•••••••

•••••••

••••••••••••••

•••••••

•••••••

•••••••

•••••••

•••••••

•••••••

(a) D terms.

u1 ξ1 ξ2 p1p2

ζ1

ζ2

••••••••••••••

••••••••••••••

••••••••••••••

•••••••

•••••••

•••••••

•••••••

•••••••

•••••••

••••••••••••••

•••••••

•••••••

•••••••

•••••••

•••••••

•••••••

••••••••••••••

••••••••••••••

••••••••••••••

••••••••••••••

(b) A terms.

u1 ξ1 ξ2 p1p2

ζ1

ζ2

••••••••••••••

••••••••••••••

••••••••••••••

•••••••

•••••••

•••••••

•••••••

•••••••

•••••••

••••••••••••••

•••••••

•••••••

•••••••

•••••••

•••••••

•••••••

••••••••••••••

••••••••••••••

••••••••••••••

(c) B terms.
u1 ξ1 ξ2 p1p2

ζ1

ζ2

••••••••••••••

••••••••••••••

••••••••••••••

•••••••

•••••••

•••••••

•••••••

•••••••

•••••••

••••••••••••••

•••••••

•••••••

•••••••

•••••••

•••••••

•••••••

••••••••••••••

••••••••••••••

••••••••••••••

••••••••••••••

(d) G terms.

Figure C.5: Sparsity pattern of Ae1 matrix for the defect constraints using a
pseudospectral method.

251

C.3 Codes

C.3.1 MATLAB Code for Example 1

% problem parameters

p.t0 = 0; p.tf = 20; % time horizon

p.x0 = −0.5; p.v0 = 1;

% system dynamics

A = [0 1;−1 0]; B = [0;1];

% Lagrange term

L(1).left = 1; L(1).right = 1; L(1).matrix = 1/2; % 1/2*u^2

% simple bounds

UB(1).right = 4; UB(1).matrix = [p.x0;p.v0]; % initial states

LB(1).right = 4; LB(1).matrix = [p.x0;p.v0];

UB(2).right = 5; UB(2).matrix = [0;0]; % final states

LB(2).right = 5; LB(2).matrix = [0;0];

% combine structures

setup.A = A; setup.B = B; setup.L = L; setup.UB = UB; setup.LB = LB; setup.p = p;

% solve

[T,U,Y,P,F,p,opts] = DTQP_solve(setup,[]);

C.3.2 MATLAB Code for Example 2

% problem parameters

p.t0 = 0; p.tf = 1; % time horizon

p.ell = 1/9;

% system dynamics

A = [0 1;0 0]; B = [0;1];

% Lagrange term

L(1).left = 1; L(1).right = 1; L(1).matrix = 1/2; % 1/2*u^2

% simple bounds

UB(1).right = 4; UB(1).matrix = [0;1]; % initial states

LB(1).right = 4; LB(1).matrix = [0;1];

UB(2).right = 5; UB(2).matrix = [0;−1]; % final states

LB(2).right = 5; LB(2).matrix = [0;−1];
UB(3).right = 2; UB(3).matrix = [p.ell;Inf]; % states

% combine structures

setup.A = A; setup.B = B; setup.L = L; setup.UB = UB; setup.LB = LB; setup.p = p;

% solve

[T,U,Y,P,F,p,opts] = DTQP_solve(setup,[]);

252

C.3.3 MATLAB Code for Example 3

% problem parameters

p.t0 = 0; p.tf = 1; % time horizon

p.x0 = 1; p.a = 2;

g = @(t) t.*cos(20*pi*t) − 1/4;

% system dynamics

A = 0; B{1,1} = g;

% Lagrange term

L(1).left = 1; L(1).right = 1; L(1).matrix = 1/2; % 1/2*u^2

% Mayer term

M(1).left = 5; M(1).right = 5; M(1).matrix = p.a^2/2; % a^2/2*xf^2

% simple bounds

UB(1).right = 4; UB(1).matrix = p.x0; % initial state

LB(1).right = 4; LB(1).matrix = p.x0;

UB(2).right = 1; UB(2).matrix = 1; % control

LB(2).right = 1; LB(2).matrix = −1;
% combine structures

setup.A=A; setup.B=B; setup.L=L; setup.M=M; setup.UB=UB; setup.LB=LB; setup.p=p;

% solve

[T,U,Y,P,F,p,opts] = DTQP_solve(setup,[]);

C.3.4 MATLAB Code for Example 4

rng(393872382) % specific random seed

% problem parameters

p.ns = 20; p.nu = 10; % number of states and controls

p.t0 = 0; p.tf = 10; % time horizon

p.x0 = linspace(−5,5,p.ns)'; % initial states

% system dynamics

A = sprand(p.ns,p.ns,0.5,1); B = sprand(p.ns,p.nu,1,1);

% Lagrange term

Qi = sprand(p.ns,p.ns,0.2); Qi = (Qi*Qi')/100;

L(1).left = 1; L(1).right = 1; L(1).matrix = eye(p.nu); % u'*R*u

L(2).left = 2; L(2).right = 2; L(2).matrix = Qi; % x'*Q*x

% Mayer term

M(1).left = 5; M(1).right = 5; M(1).matrix = 10*eye(p.ns); %xf'*M*xf

% initial states, simple bounds

UB(1).right = 4; UB(1).matrix = p.x0; % initial states

LB(1).right = 4; LB(1).matrix = p.x0;

% combine structures

setup.A=A; setup.B=B; setup.L=L; setup.M=M; setup.UB=UB; setup.LB=LB; setup.p=p;

% solve

[T,U,Y,P,F,p,opts] = DTQP_solve(setup,[]);

253

C.3.5 MATLAB Code for Example 5

% problem parameters

g = @(t) sin(2*pi*t) + 0.5;

p.t0 = 0; p.tf = 1; % time horizon

% system dynamics

A = [−1,2,0,0;3,−4,0,0;1,2,−1,0;1,0,0,0]; B = [1,0;−1,0;0,1/20;0,0]; G = zeros(4,1);

% Lagrange term

L(1).left = 1; L(1).right = 1; L(1).matrix = eye(2)/10; % u1^2 + u2^2

L(2).left = 1; L(2).right = 2; L(2).matrix = [1,1,0,0;0,0,0,0]; % u1*y1 + u1*y2

L(3).left = 2; L(3).right = 2; L(3).matrix = zeros(4); L(3).matrix(2,2) = 5; % 5*y2^2

L(4).left = 0; L(4).right = 2; L(4).matrix = {0,@(t) −5*2*g(t),0,0}; % −5*2*g*y2
L(5).left = 0; L(5).right = 0; L(5).matrix{1} = @(t) 5*(g(t)).^2; % 5*g^2

% Mayer term

M(1).left = 0; M(1).right = 3; M(1).matrix = 1; % p1

% y2(t0)−y2(tf) = 0, equality constraint

Y(1).linear(1).right = 4; Y(1).linear(1).matrix = [0;1;0;0]; % y2(t0)

Y(1).linear(2).right = 5; Y(1).linear(2).matrix = [0;−1;0;0]; % −y2(tf)
Y(1).b = 0;

% −y1 + u2/12 < 0, inequality constraint

Z(1).linear(1).right = 2; Z(1).linear(1).matrix = [−1;0;0;0]; % −y1
Z(1).linear(2).right = 1; Z(1).linear(2).matrix = [0;1/12]; % u2/12

Z(1).b = 0;

% y3 < p, inequality constraint

Z(2).linear(1).right = 2; Z(2).linear(1).matrix = [0;0;1;0]; % y3

Z(2).linear(2).right = 3; Z(2).linear(2).matrix = −1; % −p1
Z(2).b = 0;

% initial states, simple bounds

UB(1).right = 4; UB(1).matrix = [2;inf;0.5;0];

LB(1).right = 4; LB(1).matrix = [2;−inf;0.5;0];
% final states, simple bounds

UB(2).right = 5; UB(2).matrix = [inf;inf;inf;0];

LB(2).right = 5; LB(2).matrix = −[inf;inf;inf;0];
% abs(u2) < 10, simple bounds

UB(3).right = 1; UB(3).matrix = [inf;10];

LB(3).right = 1; LB(3).matrix = −[inf;10];
% y2 < g(t), simple bounds

UB(4).right = 2; UB(4).matrix= {inf;@(t) g(t);inf;inf};

% combine structures

setup.A = A; setup.B = B; setup.G = G; setup.L = L; setup.M = M;

setup.Y = Y; setup.Z = Z; setup.UB = UB; setup.LB = LB; setup.p = p;

% solve

[T,U,Y,P,F,p,opts] = DTQP_solve(setup,[]);

254

C.4 Methods

C.4.1 Pseudospectral Methods
This section outlines how to determine the nodes, differentiation matrix, and quadrature
weights for use in pseudospectral methods.

C.4.1.1 Legendre Pseudospectral Method with LGL Nodes

Let LN(τ) denote the Legendre polynomial of order N , which may be generated from:

LN(τ) = 1
2NN !

dN

dτN

(
τ 2 − 1

)N
(C.1)

The Lagrange-Gauss-Lobatto (LGL) nodes are defined as:

τk =

−1 if k = 0
kth root of L̇Nt(τ) if k = {1, 2, . . . , Nt − 1}
1 if k = Nt

(C.2)

where L̇N = dLN
dτ

. We note that the nodes are always between [−1, 1] and contain both
endpoints (Ref. [298] codes from Ref. [161]).

We define the basis polynomials needed in Eqn. (5.18) for the Legendre-based method as
Lagrange basis polynomials:

φk(τ) =
Nt∏

i=0,i6=k

τ − τi
τk − τi

(C.3)

With LGL nodes, φk(τ) can be written in the following alternative form [163]:

φk(τ) = 1
Nt (Nt + 1)LNt(τk)

(τ 2 − 1)L̇Nt(τ)
τ − τk

(C.4)

The differentiation matrix needed in Eqn. (5.20) for the Legendre-based method is:

Dki =

LNt (τk)
LNt (τi)

1
τk−τi

if k 6= i

Nt(Nt + 1)/4 if k = i = 0
−Nt(Nt + 1)/4 if k = i = Nt

0 otherwise

(C.5)

255

Further numerical enhancements can be made to improve stability in the presence of rounding
errors (expression from Ref. [163], Ref. [298] codes from Ref. [161]).

The quadrature weights wk needed in Eqn. (5.27) for the Legendre-based method are:

wk = 2
Nt(Nt + 1)

1
(LNt(τk))

2 , k = {0, 1, . . . , Nt} (C.6)

These are Gaussian quadrature weights that are exactly accurate for polynomials of degree
up to degree 2Nt − 1 (expression from Ref. [164], Ref. [298] codes from Ref. [161]).

C.4.1.2 Chebyshev Pseudospectral Method with CGL Nodes

Let TN(τ) denote the Chebyshev polynomial of order N , which may be generated from:

TN = cos
(
N cos−1 (τ)

)
(C.7)

The Chebyshev-Gauss-Lobatto (CGL) nodes are defined as the roots of ṪNt = dTNt
dτ

and the
additional endpoints. All CGL nodes can be computed conveniently by:

τk = − cos
(
πk

Nt

)
k = {0, 1, . . . , Nt} (C.8)

We note that the nodes are always between [−1, 1] and contain both endpoints.
We define the basis polynomials needed in Eqn. (5.18) for the Chebyshev-based method

as Lagrange basis polynomials previously defined in Eqn. (C.3). With CGL nodes, φk(τ)
can be written in the following alternative form [162]:

φk(τ) = (−1)k+1

N2
t ak

(1− τ 2)ṪNt(τ)
τ − τk

where: ak =

2 if k = {0, Nt}

1 otherwise
(C.9)

The differentiation matrix needed in Eqn. (5.20) for the Chebyshev-based method is:

Dki =

ak
ai

(−1)k+i

(τk−τi)
if k 6= i

− τk
2(1−τ2

k
) if 1 ≤ k = i ≤ Nt − 1

2N2
t +1
6 if k = i = 0

−2N2
t +1
6 if k = i = Nt

(C.10)

Further numerical enhancements can be made to improve stability in the presence of rounding
errors (expression from Ref. [162], Ref. [298] codes from [299, p. 54]).

256

The quadrature weights wk needed in Eqn. (5.27) for the Chebyshev-based method are:

wk = ck
Nt

1−
bNt/2c∑
j=1

bj
4j2 − 1 cos (2jτk)

 (C.11)

where: bj =

1 if j = Nt/2
2 if j < Nt/2

, ck =

1 if k = {0, Nt}

2 otherwise

These are Clenshaw-Curtis quadrature weights that are exactly accurate for polynomials of
degree up to degree Nt (expression from Ref. [300], Ref. [298] codes from Ref. [299, p. 128]).

C.4.1.3 Visualizations for Specific Pseudospectral Implementations

This sections contains a number of visualizations devoted to explaining the various aspects
of the specific pseudospectral methods outlined in Secs. C.4.1.1 and C.4.1.2. Many of the
figures are similar to the ones found in Refs. [137, 163] so please refer to them for further
analysis.

N
t
=
1

0

N
t
=
2

0

N
t
=
3

0

N
t
=
7

0

N
t
=
1
6

0

−1 0.5 0 0.5 1

τ

(a) Inner LGL nodes based on L̇Nt(τ).

N
t
=
1

0

N
t
=
2

0

N
t
=
3

0

N
t
=
7

0

N
t
=
1
6

0

−1 0.5 0 0.5 1

τ

(b) Inner CGL nodes based on ṪNt(τ).

Figure C.6: LGL and CGL inner node locations from the roots of polynomials.

257

16

10

7

4

3

2

1

N
t

−1 0.5 0 0.5 1

τ

ED CGL LGL

Figure C.7: ED, CGL, and LGL nodes for various values of Nt.

f(τ) = 1
1+τ+15τ2

0

1

f
(
τ
)

f
(
τ
)

0

1

τ

f
(
τ
)

0

1

−1 0.5 0 0.5 1

τ

−1 0.5 0 0.5 1

τ

−1 0.5 0 0.5 1

actual interpolated nodes

max |error| = 0.29 max |error| = 0.46 max |error| = 0.5

max |error| = 1.1 max |error| = 0.094 max |error| = 0.1

max |error| = 3.5 max |error| = 0.033 max |error| = 0.036

Figure C.8: Lagrange polynomial interpolation with ED, LGL, and CGL nodes for
various values of Nt.

258

10
−16

10
−12

10
−8

10
−4

10
0

1 10 20 30 40 50 60

Nt

a
b
s
o
lu
t
e
e
r
r
o
r

f(τ) =
2048

14175
τ
10
−

256

315
τ
8
+

128

45
τ
6
−

16

3
τ
4
+ 4τ

2

max |Ṗ (τ)− ḟ(τ)|

|
∫
1

−1
P (τ)dτ −

∫
1

−1
f (τ)dτ |

(a) Polynomial example.

10
−16

10
−12

10
−8

10
−4

10
0

1 10 20 30 40 50 60

Nt

a
b
s
o
lu
t
e
e
r
r
o
r

f(τ) = sin
(

5τ
2
)

max |Ṗ (τ)− ḟ(τ)|

|
∫
1

−1
P (τ)dτ −

∫
1

−1
f (τ)dτ |

(b) Nonpolynomial example.

Figure C.9: Convergence behavior for definite integral and derivative approximations
using Lagrange interpolation with LGL nodes.

259

f(τ) = 2048
14175τ

10 − 256
315τ

8 + 128
45 τ

6 − 16
3 τ

4 + 4τ 2

0

1

−1 0.5 0 0.5 1
τ

f
(
τ
)

actual interpolated nodes

−2

0

2

−1 0.5 0 0.5 1
τ

df
/
d
τ

actual interpolated max |error| = 1.037

−2

0

2

−1 0.5 0 0.5 1
τ

a
b
s
o
lu
t
e
e
r
r
o
r Nt = 5

0

1

−1 0.5 0 0.5 1
τ

f
(
τ
)

actual interpolated nodes

−2

0

2

−1 0.5 0 0.5 1
τ

df
/
d
τ

actual interpolated max |error| = 0.1065

−2

0

2

−1 0.5 0 0.5 1
τ

a
b
s
o
lu
t
e
e
r
r
o
r Nt = 7

0

1

−1 0.5 0 0.5 1
τ

f
(
τ
)

actual interpolated nodes

−2

0

2

−1 0.5 0 0.5 1
τ

df
/
d
τ

actual interpolated max |error| = 7.55 × 10

−15

−2

0

2

−1 0.5 0 0.5 1
τ

a
b
s
o
lu
t
e
e
r
r
o
r Nt = 10

Figure C.10: Differentiation error using Lagrange interpolation with LGL nodes for
various values of Nt.

260

C.4.2 Single-Step Methods
Here we provide the general forms of the single-step (SS) methods in Sec. 5.3.2.2.

C.4.2.1 Euler Forward

The Euler forward method is an explicit first-order method:

ζ(tk) = ξ(tk+1)− ξ(tk)−∆kf(tk) (C.12)

C.4.2.2 Trapezoidal Rule

The trapezoidal rule is an implicit second-order method:

ζ(tk) = ξ(tk+1)− ξ(tk)−
∆k

2 (f(tk) + f(tk+1)) (C.13)

C.4.2.3 Hermite-Simpson

The Hermite-Simpson is an implicit third-order method:

ζ(tk) = ξ(tk+1)− ξ(tk)−
∆k

6
(
f(tk) + 4f(t̄k) + f(tk+1)

)
(C.14a)

f(t̄k) = f
(
t̄k, ξ(t̄k),u(t̄k),p

)
(C.14b)

ξ(t̄k) = 1
2 (ξ(tk+1) + ξ(tk)) + ∆k

8 (f(tk)− f(tk+1)) (C.14c)

u(t̄k) = 1
2 (u(tk+1) + u(tk)) (C.14d)

(Derivation of Defect Constraints in LQDO) Recall that the state dynamics in LQDO is a
linear nonhomogeneous differential equation:

f(tk) = Akξk +Bkuk +Gkp+ dk (C.15)

The intermediate state value using Eqn. (C.14c) is approximated as:

ξ(t̄k) = 1
2 (ξk+1 + ξk) + ∆k

8 (Akξk +Bkuk +Gkp+ dk + · · · (C.16)

−Ak+1ξk+1 −Bk+1uk+1 −Gk+1p− dk+1)

261

The intermediate derivative function value in Eqn. (C.14b) is approximated with:

f(t̄k) = Ākξ(t̄k) + B̄ku(t̄k) + Ḡkp+ d̄k (C.17a)

=
(
B̄k

2 + ∆k

8 ĀkBk

)
uk +

(
B̄k

2 −
∆k

8 ĀkBk+1

)
uk+1 + · · ·(

Āk

2 + ∆k

8 ĀkAk

)
ξk +

(
Āk

2 −
∆k

8 ĀkAk+1

)
ξk+1 + · · ·(

Ḡk + ∆k

8 ĀkGk −
∆k

8 ĀkGk+1

)
p+

(
d̄k + ∆k

8 Ākdk −
∆k

8 Ākdk+1

)
(C.17b)

Combining this with the HS defect constraint formula in Eqn. (C.14a):

ζ(tk) = ξ(tk+1)− ξ(tk)− ∆k

6
(
f(tk) + 4f(t̄k) + f(tk+1)

) (C.18a)

=
(
−∆k

6 Bk −
∆k

3 B̄k −
∆2
k

12 ĀkBk

)
uk +

(
−∆k

6 Bk+1 −
∆k

3 B̄k + ∆2
k

12 ĀkBk+1

)
uk+1 + · · ·(

−I − ∆k

3 Āk −
∆2
k

12 ĀkAk −
∆k

6 Ak

)
ξk +

(
I − ∆k

3 Āk + ∆2
k

12 ĀkAk+1 −
∆k

6 Ak+1

)
ξk+1 + · · ·(

−∆k

6 Gk −
2∆k

3 Ḡk −
∆2
k

12 ĀkGk + ∆2
k

12 ĀkGk+1 −
∆k

6 Gk+1

)
p+ · · ·(

−∆k

6 dk −
2∆k

3 d̄k −
∆2
k

12 Ākdk + ∆2
k

12 Ākdk+1 −
∆k

6 dk+1

)
(C.18b)

which is the same equation as the SS step formula in Eqn. (5.23) with the coefficients for
the HS method in Eqn. (5.25c).

C.4.2.4 Classical 4th-Order Runge-Kutta

This is another popular explicit scheme given by:

ζ(tk) = ξ(tk+1)− ξ(tk)−
∆k

6 (k1 + 2k2 + 2k3 + k4) (C.19a)

k1 = f(tk) (C.19b)

k2 = f

(
t̄k, ξ(tk) + ∆k

2 k1,u(t̄k),p
)

(C.19c)

k3 = f

(
t̄k, ξ(tk) + ∆k

2 k2,u(t̄k),p
)

(C.19d)

k4 = f (tk+1, ξ(tk) + ∆kk3,u(tk+1),p) (C.19e)

u(t̄k) = 1
2 (u(tk+1) + u(tk)) (C.19f)

262

Appendix D

Summary of Available Code

Here we summarize the available code developed as a part of this dissertation. All code is
primarily written in the Matlab language.
• (pm architectures project) Ref.[65] contains the code for Chapter 2 and Ap-

pendix A. It generates the set of unique useful graphs with a perfect matching-based
approach. Ref. [301] is used in Ref. [65] and contains a recursive algorithm for the
(n− 1)!! perfect matchings of Kn and incomplete listings for large n.
• (co-design examples repository) Ref. [114] contains the code for the examples

in Chapters 3, 4, and 7 including the SASA case study.
• (dt qp project) Ref. [186] contains the code for Chapter 5, the automated problem

generation for linear-quadratic dynamic optimization using direct transcription and
quadratic programming. Refs. [298, 302] are useful teaching aids for direct methods of
optimal control.
• (pm circuits) Ref. [232] contains the code for Chapter 6, the passive analog circuits

case study including the automated model generator for creating the transfer function
given the graph and automated optimization problem generation for the sizing task.
• (pm suspensions) Ref. [303] contains the code for Chapter 8 including the automated

model generator for creating the linearized state-space system given the graph and
automated optimization problem generation utilizing Ref. [186].

263

Bibliography

[1] A. P. Deshmukh, D. R. Herber, and J. T. Allison, “Bridging the Gap between Open-Loop and Closed-
Loop Control in Co-Design: A Framework for Complete Optimal Plant and Control Architecture
Design,” in American Control Conference, Chicago, IL, USA, Jul. 2015, pp. 4916–4922. doi: 10.
1109/ACC.2015.7172104 (see pp. 1, 7, 8, 14, 166, 191, 208)

[2] R. J. McCrory, “The Design Method in Practice,” in The Design Method, S. A. Gregory, Ed., 1st ed.
Springer, 1966, pp. 11–18. doi: 10.1007/978-1-4899-6331-4_1 (see p. 1)

[3] M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot Modeling and Control, 1st ed. Wiley, 2005,
isbn: 978-0471649908 (see pp. 1, 50, 51)

[4] J. T. Allison, “Plant-Limited Co-Design of an Energy-Efficient Counterbalanced Robotic Manipula-
tor,” Journal of Mechanical Design, vol. 135, no. 10, p. 101 003, Aug. 2013. doi: 10.1115/1.4024978
(see pp. 3, 5, 6, 8, 44, 45, 50, 51, 61, 165, 184, 186)

[5] E. Crawley, O. d. Weck, S. Eppinger, et al., “The Influence of Architecture in Engineering Systems,”
Massachusetts Institute of Technology, Engineering Systems Monograph, Mar. 2004 (see pp. 4, 14)

[6] D. R. Herber, T. Guo, and J. T. Allison, “Enumeration of Architectures with Perfect Matchings,”
Journal of Mechanical Design, vol. 139, no. 5, p. 051 403, May 2017. doi: 10.1115/1.4036132 (see
pp. 4, 5, 14, 142, 143, 162, 201, 212, 230)

[7] M. P. Bendsøe and O. Sigmund, Topology Optimization. Springer, 2004, isbn: 978-3642076985. doi:
10.1007/978-3-662-05086-6 (see pp. 5, 7, 10)

[8] D. J. Lohan, E. M. Dede, and J. T. Allison, “Topology Optimization for Heat Conduction Using Gen-
erative Design Algorithms,” Structural and Multidisciplinary Optimization, vol. 55, no. 3, pp. 1063–
1077, Aug. 2016. doi: 10.1007/s00158-016-1563-6 (see pp. 5, 7)

[9] P. A. Macmahon, “The Combinations of Resistances,” Discrete Applied Mathematics, vol. 54, no. 2–3,
pp. 225–228, Oct. 1994, Reprinted from The Electrician, 1892. doi: 10.1016/0166-218X(94)90024-8
(see pp. 5, 137, 138)

[10] Z. A. Lomnicki, “Two-Terminal Series-Parallel Networks,” Advances in Applied Probability, vol. 4,
no. 1, pp. 109–150, Apr. 1972. doi: 10.2307/1425808 (see pp. 5, 138)

[11] Y. Isokawa, “Series-Parallel Circuits and Continued Fractions,” Applied Mathematical Sciences,
vol. 10, no. 27, pp. 1321–1331, 2016. doi: 10.12988/ams.2016.63103 (see pp. 5, 138)

[12] D. R. Herber and J. T. Allison, “Passive Analog Circuit Synthesis through Enumeration,” to be
submitted, (see pp. 5, 137, 194)

[13] A. E. Bayrak, Y. Ren, and P. Y. Papalambros, “Topology Generation for Hybrid Electric Vehicle
Architecture Design,” Journal of Mechanical Design, vol. 138, no. 8, p. 081 401, Jun. 2016. doi:
10.1115/1.4033656 (see pp. 5, 17, 42, 139)

264

http://dx.doi.org/10.1109/ACC.2015.7172104
http://dx.doi.org/10.1109/ACC.2015.7172104
http://dx.doi.org/10.1007/978-1-4899-6331-4_1
http://dx.doi.org/10.1115/1.4024978
http://dx.doi.org/10.1115/1.4036132
http://dx.doi.org/10.1007/978-3-662-05086-6
http://dx.doi.org/10.1007/s00158-016-1563-6
http://dx.doi.org/10.1016/0166-218X(94)90024-8
http://dx.doi.org/10.2307/1425808
http://dx.doi.org/10.12988/ams.2016.63103
http://dx.doi.org/10.1115/1.4033656

[14] E. Pennestri and P. P. Valentini, “Kinematics and Enumeration of Combined Harmonic Drive Gear-
ing,” Journal of Mechanical Design, vol. 137, no. 12, p. 122 303, Dec. 2015. doi: 10.1115/1.4031590
(see pp. 5, 42)

[15] J. M. del Castillo, “Enumeration of 1-DOF Planetary Gear Train Graphs Based on Functional Con-
straints,” Journal of Mechanical Design, vol. 124, no. 4, pp. 723–732, Dec. 2002. doi: 10.1115/1.
1514663 (see pp. 5, 42, 139)

[16] W. Ma, A. Trusina, H. El-Samad, et al., “Defining Network Topologies That Can Achieve Biochemical
Adaptation,” Cell, vol. 138, no. 4, pp. 760–773, Aug. 2009. doi: 10.1016/j.cell.2009.06.013 (see
pp. 5, 42, 139)

[17] N. Cheney, R. MacCurdy, J. Clune, et al., “Unshackling Evolution: Evolving Soft Robots with Mul-
tiple Materials and a Powerful Generative Encoding,” in Genetic and Evolutionary Computation
Conference, Amsterdam, The Netherlands, Jul. 2013 (see p. 5)

[18] C. M. Chilan, D. R. Herber, Y. K. Nakka, et al., “Co-Design of Strain-Actuated Solar Arrays for
Spacecraft Precision Pointing and Jitter Reduction,” AIAA Journal, vol. 55, no. 9, pp. 3180–3195,
Sep. 2017. doi: 10.2514/1.J055748 (see pp. 5, 45, 49, 50, 59–61, 65, 70, 77, 82, 83, 117, 164, 168)

[19] R. G. Budynas and K. J. Nisbett, Shigley’s Mechanical Engineering Design, 10th ed. McGraw-Hill,
2014, isbn: 978-0073398204 (see p. 5)

[20] D. Liberzon, Calculus of Variations and Optimal Control Theory: A Concise Introduction, 1st ed.
Princeton University Press, 2012, isbn: 978-0691151878 (see pp. 6, 49, 51, 52, 55, 59, 66, 90, 96, 104,
128)

[21] J. T. Allison and D. R. Herber, “Multidisciplinary Design Optimization of Dynamic Engineering
Systems,” AIAA Journal, vol. 52, no. 4, pp. 691–710, Apr. 2014. doi: 10.2514/1.J052182 (see
pp. 6–8, 44–46, 50, 57, 58, 68, 86)

[22] J. Falnes, Ocean Waves and Oscillating Systems, 1st ed. Cambridge University Press, 2002, isbn:
978-0521782111 (see p. 7)

[23] Z. Gan, Z. Yang, T. Shang, et al., “Automated Synthesis of Passive Analog Filters Using Graph
Representation,” Expert Systems with Applications, vol. 37, no. 3, pp. 1887–1898, Mar. 2010. doi:
10.1016/j.eswa.2009.07.013 (see pp. 7, 137, 138, 142, 145, 154, 156, 158, 162)

[24] D. R. Herber and J. T. Allison, “Wave Energy Extraction Maximization in Irregular Ocean Waves Us-
ing Pseudospectral Methods,” in International Design Engineering Technical Conferences, Portland,
OR, USA, Aug. 2013. doi: 10.1115/DETC2013-12600 (see pp. 7, 45, 49, 50, 61)

[25] D. R. Herber, “Dynamic System Design Optimization of Wave Energy Converters Utilizing Direct
Transcription,” Master’s thesis, University of Illinois at Urbana-Champaign, Urbana, IL, USA, May
2014. url: http://hdl.handle.net/2142/49463 (see pp. 7, 8, 45–47, 49, 50, 55, 58, 59, 66, 71, 92,
94, 96, 101, 133, 135, 176)

[26] A. Bayrak, “Topology Considerations in Hybrid Electric Vehicle Powertrain Architecture Design,”
PhD dissertation, The University of Michigan, Ann Arbor, MI, USA, May 2015. url: http://hdl.
handle.net/2027.42/111412 (see pp. 7, 8)

[27] J. T. Allison, T. Guo, and Z. Han, “Co-Design of an Active Suspension Using Simultaneous Dynamic
Optimization,” Journal of Mechanical Design, vol. 136, no. 8, p. 081 003, Jun. 2014. doi: 10.1115/
1.4027335 (see pp. 8, 37, 40, 44–46, 49, 50, 57, 58, 60, 61, 86, 166, 173, 176, 191–193, 198, 199)

[28] H. Son and K.-M. Lee, “Open-Loop Controller Design and Dynamic Characteristics of a Spherical
Wheel Motor,” IEEE Transactions on Industrial Electronics, vol. 57, no. 10, pp. 3475–3482, Oct.
2010. doi: 10.1109/tie.2009.2039454 (see p. 8)

265

http://dx.doi.org/10.1115/1.4031590
http://dx.doi.org/10.1115/1.1514663
http://dx.doi.org/10.1115/1.1514663
http://dx.doi.org/10.1016/j.cell.2009.06.013
http://dx.doi.org/10.2514/1.J055748
http://dx.doi.org/10.2514/1.J052182
http://dx.doi.org/10.1016/j.eswa.2009.07.013
http://dx.doi.org/10.1115/DETC2013-12600
http://hdl.handle.net/2142/49463
http://hdl.handle.net/2027.42/111412
http://hdl.handle.net/2027.42/111412
http://dx.doi.org/10.1115/1.4027335
http://dx.doi.org/10.1115/1.4027335
http://dx.doi.org/10.1109/tie.2009.2039454

[29] S. Schaal and C. G. Atkeson, “Open Loop Stable Control Strategies for Robot Juggling,” in IEEE
International Conference on Robotics and Automation, Atlanta, GA, USA, May 1993. doi: 10.1109/
robot.1993.292260 (see p. 8)

[30] S. van Mourik, H. Zwart, and K. J. Keesman, “Integrated Open Loop Control and Design of a Food
Storage Room,” Biosystems Engineering, vol. 104, no. 4, pp. 493–502, Dec. 2009. doi: 10.1016/j.
biosystemseng.2009.09.010 (see p. 8)

[31] M. Karkee and B. L. Steward, “Study of the Open and Closed Loop Characteristics of a Tractor and
a Single Axle Towed Implement System,” Journal of Terramechanics, vol. 47, no. 6, pp. 379–393,
Dec. 2010. doi: 10.1016/j.jterra.2010.05.005 (see p. 8)

[32] D. R. Herber and J. T. Allison, “Nested and Simultaneous Solution Strategies for General Com-
bined Plant and Controller Design Problems,” in ASME International Design Engineering Technical
Conferences, Cleveland, OH, USA, Aug. 2017 (see pp. 8, 14, 44, 75, 85, 117, 135, 176, 196, 197)

[33] H. K. Fathy, P. Y. Papalambros, A. G. Ulsoy, et al., “Nested Plant/Controller Optimization with
Application to Combined Passive/Active Automotive Suspensions,” in American Control Conference,
vol. 4, Denver, CO, USA, Jun. 2003, pp. 3375–3380. doi: 10.1109/ACC.2003.1244053 (see pp. 8, 44,
45, 49, 50, 59, 61, 191–193, 198, 201)

[34] J. Lygeros, S. Sastry, and C. Tomlin, Hybrid Systems: Modeling, Analysis and Control, Dec. 2008
(see p. 9)

[35] F. Borrelli, A. Bemporad, and M. Morari, Predictive Control for Linear and Hybrid Systems, 1st ed.
Cambridge University Press, 2017, isbn: 978-1107652873 (see p. 9)

[36] I. D. Landau and Z. Gianluca, Digital Control Systems. Springer, 2006, isbn: 978-1846280559. doi:
10.1007/978-1-84628-056-6 (see p. 9)

[37] J. D. Lohn and S. P. Colombano, “A Circuit Representation Technique for Automated Circuit De-
sign,” IEEE Transactions on Evolutionary Computation, vol. 3, no. 3, pp. 205–219, Sep. 1999. doi:
10.1109/4235.788491 (see pp. 10, 138, 145, 154, 156, 160, 161)

[38] W. Borutzky, Bond Graph Methodology, 1st ed. Springer, 2010, isbn: 978-1848828827. doi: 10.1007/
978-1-84882-882-7 (see pp. 10, 141, 193, 194)

[39] The MathWorks. Simulink: Simulation and Model-Based Design, url: https://www.mathworks.com/
help/simulink/index.html (visited on 10/17/2016) (see p. 10)

[40] C.-W. Ho, A. Ruehli, and P. Brennan, “The Modified Nodal Approach to Network Analysis,” IEEE
Transactions on Circuits and Systems, vol. 22, no. 6, pp. 504–509, Jun. 1975. doi: 10.1109/tcs.
1975.1084079 (see pp. 10, 141, 146)

[41] D. R. Herber and J. T. Allison, “Enhancements to the Perfect Matching-based Tree Algorithm for
Generating Architectures,” Engineering System Design Lab, Tech. Rep. preprint-v2, 2017. url: http:
//systemdesign.illinois.edu/publications/Her17d.pdf (see pp. 14, 142–144, 211)

[42] R. A. Willem, “Design and Science,” Design Studies, vol. 11, no. 1, pp. 43–47, Jan. 1990. doi: 10.
1016/0142-694X(90)90013-3 (see p. 14)

[43] S. Mittal and F. Frayman, “Towards a Generic Model of Configuration Tasks,” in International Joint
Conference on Artificial Intelligence, Detroit, MI, USA, Aug. 1989, pp. 1395–1401 (see pp. 14, 16,
19, 42)

[44] D. F. Wyatt, D. C. Wynn, and P. J. Clarkson, “A Scheme for Numerical Representation of Graph
Structures in Engineering Design,” Journal of Mechanical Design, vol. 136, no. 1, p. 011 010, Jan.
2014. doi: 10.1115/1.4025961 (see pp. 14, 21, 26, 42)

266

http://dx.doi.org/10.1109/robot.1993.292260
http://dx.doi.org/10.1109/robot.1993.292260
http://dx.doi.org/10.1016/j.biosystemseng.2009.09.010
http://dx.doi.org/10.1016/j.biosystemseng.2009.09.010
http://dx.doi.org/10.1016/j.jterra.2010.05.005
http://dx.doi.org/10.1109/ACC.2003.1244053
http://dx.doi.org/10.1007/978-1-84628-056-6
http://dx.doi.org/10.1109/4235.788491
http://dx.doi.org/10.1007/978-1-84882-882-7
http://dx.doi.org/10.1007/978-1-84882-882-7
https://www.mathworks.com/help/simulink/index.html
https://www.mathworks.com/help/simulink/index.html
http://dx.doi.org/10.1109/tcs.1975.1084079
http://dx.doi.org/10.1109/tcs.1975.1084079
http://systemdesign.illinois.edu/publications/Her17d.pdf
http://systemdesign.illinois.edu/publications/Her17d.pdf
http://dx.doi.org/10.1016/0142-694X(90)90013-3
http://dx.doi.org/10.1016/0142-694X(90)90013-3
http://dx.doi.org/10.1115/1.4025961

[45] J. Cagan, M. I. Campbell, S. Finger, et al., “A Framework for Computational Design Synthesis:
Model and Applications,” Journal of Computing and Information Science in Engineering, vol. 5,
no. 3, pp. 171–181, Sep. 2005. doi: 10.1115/1.2013289 (see p. 14)

[46] A. Chakrabarti, K. Shea, R. Stone, et al., “Computer-Based Design Synthesis Research: An
Overview,” Journal of Computing and Information Science in Engineering, vol. 11, no. 2, p. 021 003,
Jun. 2011. doi: 10.1115/1.3593409 (see pp. 14, 15)

[47] J. Chan, K. Fu, C. Schunn, et al., “On the Benefits and Pitfalls of Analogies for Innovative De-
sign: Ideation Performance Based on Analogical Distance, Commonness, and Modality of Examples,”
Journal of Mechanical Design, vol. 133, no. 8, p. 081 004, Aug. 2011. doi: 10.1115/1.4004396 (see
pp. 14, 15)

[48] J. S. Linsey, I. Tseng, K. Fu, et al., “A Study of Design Fixation, Its Mitigation and Perception in
Engineering Design Faculty,” Journal of Mechanical Design, vol. 132, no. 4, p. 041 003, Apr. 2010.
doi: 10.1115/1.4001110 (see p. 14)

[49] A. Hooshmand, M. I. Campbell, and K. Shea, “Steps in Transforming Shapes Generated With Gen-
erative Design Into Simulation Models,” in International Design Engineering Technical Conferences,
vol. 3, Chicago, IL, USA, Aug. 2012, pp. 883–892. doi: 10.1115/DETC2012-71056 (see p. 15)

[50] A. Khetan, D. J. Lohan, and J. T. Allison, “Managing Variable-dimension Structural Optimization
Problems Using Generative Algorithms,” Structural and Multidisciplinary Optimization, vol. 52, no. 4,
pp. 695–715, Jun. 2015. doi: 10.1007/s00158-015-1262-8 (see p. 15)

[51] C. Münzer, B. Helms, and K. Shea, “Automatically Transforming Object-Oriented Graph-Based
Representations Into Boolean Satisfiability Problems for Computational Design Synthesis,” Journal
of Mechanical Design, vol. 135, no. 10, p. 101 001, Jul. 2013. doi: 10.1115/1.4024850 (see pp. 15,
16, 42)

[52] T. Guo, “Design of Genetic Regulatory Networks,” Master’s thesis, University of Illinois at Urbana-
Champaign, Urbana, IL, USA, 2014. url: http://hdl.handle.net/2142/49667 (see p. 15)

[53] L. C. Schmidt and J. Cagan, “GGREADA: A Graph Grammar-based Machine Design Algorithm,”
Research in Engineering Design, vol. 9, no. 4, pp. 195–213, Dec. 1997. doi: 10.1007/BF01589682 (see
p. 15)

[54] L. C. Schmidt, H. Shetty, and S. C. Chase, “A Graph Grammar Approach for Structure Synthesis of
Mechanisms,” Journal of Mechanical Design, vol. 122, no. 4, pp. 371–376, Dec. 2000. doi: 10.1115/
1.1315299 (see pp. 15, 29)

[55] G. S. Hornby, H. Lipson, and J. B. Pollack, “Generative Representations for the Automated Design of
Modular Physical Robots,” IEEE Transactions on Robotics and Automation, vol. 19, no. 4, pp. 703–
719, Aug. 2003. doi: 10.1109/TRA.2003.814502 (see p. 15)

[56] C. R. Bryant, D. A. McAdams, R. B. Stone, et al., “A Computational Technique for Concept Gener-
ation,” in International Design Engineering Technical Conferences, vol. 5a, Long Beach, CA, USA,
Sep. 2005, pp. 267–276. doi: 10.1115/DETC2005-85323 (see p. 15)

[57] A. C. Starling and K. Shea, “A Parallel Grammar for Simulation-Driven Mechanical Design Synthe-
sis,” in International Design Engineering Technical Conferences, vol. 2, Long Beach, CA, USA, Sep.
2005, pp. 427–436. doi: 10.1115/DETC2005-85414 (see p. 15)

[58] D. F. Wyatt, D. C. Wynn, J. P. Jarrett, et al., “Supporting Product Architecture Design Using Com-
putational Design Synthesis with Network Structure Constraints,” Research in Engineering Design,
vol. 23, no. 1, pp. 17–52, Apr. 2012. doi: 10.1007/s00163-011-0112-y (see pp. 15, 23)

[59] G. L. Snavely and P. Y. Papalambros, “Abstraction as a Configuration Design Methodology,” in
Advances in Design Automation, vol. 65, Albuquerque, NM, USA, Sep. 1993, pp. 297–305 (see pp. 16,
19, 31, 42)

267

http://dx.doi.org/10.1115/1.2013289
http://dx.doi.org/10.1115/1.3593409
http://dx.doi.org/10.1115/1.4004396
http://dx.doi.org/10.1115/1.4001110
http://dx.doi.org/10.1115/DETC2012-71056
http://dx.doi.org/10.1007/s00158-015-1262-8
http://dx.doi.org/10.1115/1.4024850
http://hdl.handle.net/2142/49667
http://dx.doi.org/10.1007/BF01589682
http://dx.doi.org/10.1115/1.1315299
http://dx.doi.org/10.1115/1.1315299
http://dx.doi.org/10.1109/TRA.2003.814502
http://dx.doi.org/10.1115/DETC2005-85323
http://dx.doi.org/10.1115/DETC2005-85414
http://dx.doi.org/10.1007/s00163-011-0112-y

[60] C. Godsil and G. Royle, Algebraic Graph Theory, 1st ed. Springer, 2001, isbn: 978-1461301639. doi:
10.1007/978-1-4613-0163-9 (see pp. 17, 18, 221)

[61] R. Diestel, Graph Theory, 2nd ed. Springer, 2000, isbn: 978-0387950141 (see pp. 17, 24, 28, 215, 219,
225, 235)

[62] F. J. Rispoli, Applications of Discrete Mathematics; ch. Applications of Subgraph Enumeration, up-
dated edition. McGraw-Hill, 2007 (see pp. 17, 19, 21)

[63] Z. Wu, M. I. Campbell, and B. R. Fernández, “Bond Graph Based Automated Modeling for Computer-
Aided Design of Dynamic Systems,” Journal of Mechanical Design, vol. 130, no. 4, p. 041 102, Apr.
2008. doi: 10.1115/1.2885180 (see p. 17)

[64] N. J. A. Sloane. (Nov. 3, 2017). Sequence A001147, The On-Line Encyclopedia of Integer Sequences,
url: https://oeis.org/A001147 (see p. 19)

[65] D. R. Herber, T. Guo, and J. T. Allison. PM Architectures Project, GitHub, url: https://github.
com/danielrherber/pm-architectures-project (see pp. 21, 32, 144, 162, 263)

[66] E. L. Lawler, Combinatorial Optimization: Networks and Matroids, 1st ed. Holt, Rinehart and Win-
ston, 1976, isbn: 978-0486414539 (see pp. 25, 235)

[67] B. D. McKay and A. Piperno, “Practical Graph Isomorphism, II,” Journal of Symbolic Computation,
vol. 60, pp. 94–112, Jan. 2014. doi: 10.1016/j.jsc.2013.09.003 (see p. 29)

[68] L. Babai. (2016). Graph Isomorphism in Quasipolynomial Time. version 2, url: https://arxiv.org/
abs/1512.03547 (see p. 29)

[69] G. Csárdi and T. Nepusz, “The igraph Software Package for Complex Network Research,” InterJour-
nal, vol. Complex Systems, p. 1695, 2006. url: http://igraph.org (see p. 29)

[70] L. P. Cordella, P. Foggia, C. Sansone, et al., “An Improved Algorithm for Matching Large Graphs,”
in IAPR TC-15 Workshop on Graph-based Representations in Pattern Recognition, Ischia, Italy, May
2001, pp. 149–159 (see p. 29)

[71] C. Königseder and K. Shea, “Comparing Strategies for Topologic and Parametric Rule Applica-
tion in Automated Computational Design Synthesis,” Journal of Mechanical Design, vol. 138, no. 1,
p. 011 102, Jan. 2016. doi: 10.1115/1.4031714 (see p. 29)

[72] R. C. Read, “Every One a Winner or How to Avoid Isomorphism Search When Cataloguing Combi-
natorial Configurations,” Annals of Discrete Mathematics, vol. 2, pp. 107–120, 1978. doi: 10.1016/
S0167-5060(08)70325-X (see p. 29)

[73] J.-L. Faulon, C. J. Churchwell, and D. P. Visco Jr., “The Signature Molecular Descriptor. 2. Enu-
merating Molecules from Their Extended Valence Sequences,” Journal of Chemical Information and
Modeling, vol. 43, no. 3, pp. 721–734, Mar. 2003. doi: 10.1021/ci020346o (see pp. 29, 31, 42, 225)

[74] R. E. Carhart, D. H. Smith, H. Brown, et al., “Applications of Artificial Intelligence for Chemical
Inference. XVII. Approach to Computer-Assisted Elucidation of Molecular Structure,” Journal of the
American Chemical Society, vol. 97, no. 20, pp. 5755–5762, Oct. 1975. doi: 10.1021/ja00853a021
(see pp. 31, 42)

[75] C. J. Colbourn and R. C. Read, “Orderly Algorithms for Generating Restricted Classes of Graphs,”
Journal of Graph Theory, vol. 3, no. 2, pp. 187–195, Jun. 1979. doi: 10.1002/jgt.3190030210 (see
p. 31)

[76] P. Flajolet, D. Gardy, and L. Thimonier, “Birthday Paradox, Coupon Collectors, Caching Algorithms
and Self-organizing Search,” Discrete Applied Mathematics, vol. 39, no. 3, pp. 207–229, Nov. 1992.
doi: 10.1016/0166-218X(92)90177-C (see p. 42)

268

http://dx.doi.org/10.1007/978-1-4613-0163-9
http://dx.doi.org/10.1115/1.2885180
https://oeis.org/A001147
https://github.com/danielrherber/pm-architectures-project
https://github.com/danielrherber/pm-architectures-project
http://dx.doi.org/10.1016/j.jsc.2013.09.003
https://arxiv.org/abs/1512.03547
https://arxiv.org/abs/1512.03547
http://igraph.org
http://dx.doi.org/10.1115/1.4031714
http://dx.doi.org/10.1016/S0167-5060(08)70325-X
http://dx.doi.org/10.1016/S0167-5060(08)70325-X
http://dx.doi.org/10.1021/ci020346o
http://dx.doi.org/10.1021/ja00853a021
http://dx.doi.org/10.1002/jgt.3190030210
http://dx.doi.org/10.1016/0166-218X(92)90177-C

[77] L. Ruddigkeit, R. v. Deursen, L. C. Blum, et al., “Enumeration of 166 Billion Organic Small Molecules
in the Chemical Universe Database GDB-17,” Journal of Chemical Information and Modeling, vol. 52,
no. 11, pp. 2864–2875, Nov. 2012. doi: 10.1021/ci300415d (see p. 42)

[78] R. M. Foster, “Geometrical Circuits of Electrical Networks,” Electrical Engineering, vol. 51, no. 1,
pp. 309–317, Jan. 1932. doi: 10.1109/EE.1932.6429606 (see pp. 42, 138)

[79] M. Berlingerio, F. Bonchi, B. Bringmann, et al., “Mining Graph Evolution Rules,” in Machine Learn-
ing and Knowledge Discovery in Databases. Springer, 2009, vol. 5781, pp. 115–130. doi: 10.1007/978-
3-642-04180-8_25 (see pp. 42, 162)

[80] D. Dörner, The Logic Of Failure: Recognizing And Avoiding Error In Complex Situations, revised
edition. Basic Books, 1997, isbn: 978-0201479485 (see p. 44)

[81] A. P. Deshmukh and J. T. Allison, “Multidisciplinary Dynamic Optimization of Horizontal Axis Wind
Turbine Design,” Structural and Multidisciplinary Optimization, vol. 53, no. 1, pp. 15–27, Jan. 2016.
doi: 10.1007/s00158-015-1308-y (see pp. 44, 45, 49, 50, 60, 61)

[82] H.-S. Yan and G.-J. Yan, “Integrated Control and Mechanism Design for the Variable Input-Speed
Servo Four-bar Linkages,” Mechatronics, vol. 19, no. 2, pp. 274–285, Mar. 2009. doi: 10.1016/j.
mechatronics.2008.07.008 (see pp. 44, 45, 49, 61)

[83] H. K. Fathy, J. A. Reyer, P. Y. Papalambros, et al., “On the Coupling between the Plant and
Controller Optimization Problems,” in American Control Conference, vol. 3, Arlington, VA, USA,
Jun. 2001, pp. 1864–1869. doi: 10.1109/ACC.2001.946008 (see pp. 44, 45, 49–51, 53, 55, 59, 61, 63,
176)

[84] J. R.R. A. Martins and A. B. Lambe, “Multidisciplinary Design Optimization: A Survey of Architec-
tures,” AIAA Journal, vol. 51, no. 9, pp. 2049–2075, Sep. 2013. doi: 10.2514/1.j051895 (see pp. 44,
45)

[85] J. T. Allison and S. Nazari, “Combined Plant and Controller Design Using Decomposition-Based
Design Optimization and the Minimum Principle,” in ASME International Design Engineering Tech-
nical Conferences, Montreal, Canada, Aug. 2010, pp. 765–774. doi: 10.1115/DETC2010-28887 (see
pp. 45, 67)

[86] A. Kusiak and N. Larson, “Decomposition and Representation Methods in Mechanical Design,” Jour-
nal of Mechanical Design, vol. 117, no. B, pp. 17–24, Jun. 1995. doi: 10.1115/1.2836453 (see p. 45)

[87] B. D. Frischknecht, D. L. Peters, and P. Y. Papalambros, “Pareto Set Analysis: Local Measures of
Objective Coupling in Multiobjective Design Optimization,” Structural and Multidisciplinary Opti-
mization, vol. 43, no. 5, pp. 617–630, Nov. 2011. doi: 10.1007/s00158-010-0599-2 (see pp. 45,
49)

[88] J. A. Reyer, H. K. Fathy, P. Y. Papalambros, et al., “Comparison of Combined Embodiment Design
and Control Optimization Strategies Using Optimality Conditions,” in Design Engineering Technical
Conference, Pittsburgh, PA, USA, Sep. 2001 (see pp. 45, 49, 60)

[89] A. L. Hale, R. J. Lisowski, and W. E. Dahl, “Optimal Simultaneous Structural and Control Design of
Maneuvering Flexible Spacecraft,” AIAA Journal of Guidance, Control, and Dynamics, vol. 8, no. 1,
pp. 86–93, Jan. 1985. doi: 10.2514/3.19939 (see pp. 45, 49)

[90] F. Eastep, N. Khot, and R. Grandhi, “Improving the Active Vibrational Control of Large Space
Structures through Structural Modifications,” Acta Astronautica, vol. 15, no. 6-7, pp. 383–389, 1987.
doi: 10.1016/0094-5765(87)90174-3 (see pp. 45, 49, 59)

[91] M. Sunar and S. S. Rao, “Simultaneous Passive and Active Control Design of Structures Using
Multiobjective Optimization Strategies,” Computers & Structures, vol. 48, no. 5, pp. 913–924, Sep.
1993. doi: 10.1016/0045-7949(93)90513-D (see pp. 45, 49, 59, 61)

269

http://dx.doi.org/10.1021/ci300415d
http://dx.doi.org/10.1109/EE.1932.6429606
http://dx.doi.org/10.1007/978-3-642-04180-8_25
http://dx.doi.org/10.1007/978-3-642-04180-8_25
http://dx.doi.org/10.1007/s00158-015-1308-y
http://dx.doi.org/10.1016/j.mechatronics.2008.07.008
http://dx.doi.org/10.1016/j.mechatronics.2008.07.008
http://dx.doi.org/10.1109/ACC.2001.946008
http://dx.doi.org/10.2514/1.j051895
http://dx.doi.org/10.1115/DETC2010-28887
http://dx.doi.org/10.1115/1.2836453
http://dx.doi.org/10.1007/s00158-010-0599-2
http://dx.doi.org/10.2514/3.19939
http://dx.doi.org/10.1016/0094-5765(87)90174-3
http://dx.doi.org/10.1016/0045-7949(93)90513-D

[92] D. L. Peters, P. Y. Papalambros, and A. G. Ulsoy, “Control Proxy Functions for Sequential Design
and Control Optimization,” Journal of Mechanical Design, vol. 133, no. 9, p. 091 007, Sep. 2011. doi:
10.1115/1.4004792 (see pp. 45, 49, 50)

[93] D. L. Peters, P. Y. Papalambros, and A. G. Ulsoy, “On Measures of Coupling Between the Artifact and
Controller Optimal Design Problems,” in International Design Engineering Technical Conferences,
vol. 2, San Diego, CA, USA, 2009, pp. 1363–1372. doi: 10.1115/DETC2009-86868 (see pp. 45, 49,
50)

[94] S. Maraniello and R. Palacios, “Optimal Vibration Control and Co-Design of Very Flexible Actuated
Structures,” Journal of Sound and Vibration, vol. 377, pp. 1–21, Sep. 2016. doi: 10.1016/j.jsv.
2016.05.018 (see pp. 45, 49, 61)

[95] J. T. Betts, Practical Methods for Optimal Control and Estimation Using Nonlinear Programming,
2nd ed. SIAM, Jan. 2010, isbn: 978-0898716887. doi: 10.1137/1.9780898718577 (see pp. 46, 56–58,
66, 70, 71, 86, 88, 90, 92, 98, 100, 101, 106, 113, 133, 176)

[96] L. T. Biegler, Nonlinear Programming, 2nd ed. SIAM, Jan. 2010, isbn: 978-0898717020. doi: 10.
1137/1.9780898719383 (see pp. 46, 56–58, 66, 71, 86, 90, 92, 98, 101, 106, 117, 133, 176)

[97] A. V. Rao, “Survey of Numerical Methods for Optimal Control,” Advances in the Astronautical
Sciences, vol. 135, no. 1, pp. 497–528, 2010 (see pp. 46, 57, 58, 70, 71, 88, 99, 103, 106, 134)

[98] B. Colson, P. Marcotte, and G. Savard, “An Overview of Bilevel Optimization,” Annals of Operations
Research, vol. 153, no. 1, pp. 235–256, Sep. 2007. doi: 10.1007/s10479-007-0176-2 (see pp. 47,
117)

[99] L. N. Vicente and P. H. Calamai, “Bilevel and Multilevel Programming: A Bibliography Review,”
Journal of Global Optimization, vol. 5, no. 3, pp. 291–306, 1994. doi: 10.1007/BF01096458 (see p. 47)

[100] T. Tanino and T. Ogawa, “An Algorithm for Solving Two-level Convex Optimization Problems,”
International Journal of Systems Science, vol. 15, no. 2, pp. 163–174, 1984. doi: 10 . 1080 /
00207728408926552 (see p. 47)

[101] W. K. Belvin and K. C. Park, “Structural Tailoring and Feedback Control Synthesis: An Interdisci-
plinary Approach,” Journal of Guidance, Control, and Dynamics, vol. 13, no. 3, pp. 424–429, May
1990. doi: 10.2514/3.25354 (see pp. 49, 59, 60, 166)

[102] S. S. Rao, “Combined Structural and Control Optimization of Flexible Structures,” Engineering
Optimization, vol. 13, no. 1, pp. 1–16, Jan. 1988. doi: 10.1080/03052158808940943 (see pp. 49, 50,
59)

[103] B. Chachuat. (2007). Nonlinear and Dynamic Optimization: From Theory to Practice. version IC-32:
winter semester 2006/2007, Automatic Control Laboratory, url: https://infoscience.epfl.ch/
record/111939/files/Chachuat_07(IC32).pdf (see pp. 51, 52, 55)

[104] A. E. Bryson Jr. and Y.-C. Ho, Applied Optimal Control, revised edition. Talylor & Francis, 1975,
isbn: 978-0891162285 (see pp. 51, 56, 59, 63, 66, 71, 84, 85, 90, 94, 96, 113, 115, 116, 119, 122, 125,
128, 133)

[105] P. Y. Papalambros and D. J. Wilde, Principles of Optimal Design, 3rd ed. Cambridge University
Press, 2017, isbn: 978-1107132672 (see pp. 51, 52, 54, 65, 70, 75, 196)

[106] L. S. Pontryagin, The Mathematical Theory of Optimal Processes. Interscience, 1962 (see p. 52)
[107] J. Doležal, “On the Solution of Optimal Control Problems Involving Parameters and General Bound-

ary Conditions,” Kybernetika, vol. 17, no. 1, pp. 71–81, 1981 (see p. 53)
[108] E. W. Weisstein. Total Derivative, MathWorld–A Wolfram Web Resource, url: http://mathworld.

wolfram.com/TotalDerivative.html (visited on 12/06/2016) (see p. 54)

270

http://dx.doi.org/10.1115/1.4004792
http://dx.doi.org/10.1115/DETC2009-86868
http://dx.doi.org/10.1016/j.jsv.2016.05.018
http://dx.doi.org/10.1016/j.jsv.2016.05.018
http://dx.doi.org/10.1137/1.9780898718577
http://dx.doi.org/10.1137/1.9780898719383
http://dx.doi.org/10.1137/1.9780898719383
http://dx.doi.org/10.1007/s10479-007-0176-2
http://dx.doi.org/10.1007/BF01096458
http://dx.doi.org/10.1080/00207728408926552
http://dx.doi.org/10.1080/00207728408926552
http://dx.doi.org/10.2514/3.25354
http://dx.doi.org/10.1080/03052158808940943
https://infoscience.epfl.ch/record/111939/files/Chachuat_07(IC32).pdf
https://infoscience.epfl.ch/record/111939/files/Chachuat_07(IC32).pdf
http://mathworld.wolfram.com/TotalDerivative.html
http://mathworld.wolfram.com/TotalDerivative.html

[109] D. R. Herber, “Basic Implementation of Multiple-Interval Pseudospectral Methods to Solve Optimal
Control Problems,” Engineering System Design Lab, University of Illinois at Urbana-Champaign,
Urbana, IL, USA, Tech. Rep. UIUC-ESDL-2015-01, 2015. url: http://hdl.handle.net/2142/77888
(see pp. 57, 98–100, 103, 124, 132, 241)

[110] L. T. Biegler, “An Overview of Simultaneous Strategies for Dynamic Optimization,” Chemical En-
gineering and Processing: Process Intensification, vol. 46, no. 11, pp. 1043–1053, Nov. 2007. doi:
10.1016/j.cep.2006.06.021 (see p. 58)

[111] D. Garg, “Advances in Global Pseudospectral Methods for Optimal Control,” PhD dissertation,
University of Florida, Gainesville, FL, USA, 2011. url: http://ufdc.ufl.edu/UFE0043196/00001
(see pp. 58, 133)

[112] M. P. Kelly. (2015). Transcription Methods for Trajectory Optimization, Cornell University, url:
http://www.matthewpeterkelly.com/research/MattKelly__Transcription_Methods_for_
Trajectory_Optimization.pdf (see pp. 60, 67)

[113] J. Onoda and R. T. Haftka, “An Approach to Structure/Control Simultaneous Optimization for Large
Flexible Spacecraft,” AIAA Journal, vol. 25, no. 8, pp. 1133–1138, Aug. 1987. doi: 10.2514/3.9754
(see p. 60)

[114] D. R. Herber and J. T. Allison. Co-Design Examples Repository, GitHub, url: https://github.
com/danielrherber/co-design-examples-repository (see pp. 61, 263)

[115] D. R. Herber and J. T. Allison, “Unified Scaling of Dynamic Optimization Design Formulations,”
in ASME International Design Engineering Technical Conferences, Cleveland, OH, USA, Aug. 2017
(see pp. 63, 68, 134)

[116] T. Liu, S. Azarm, and N. Chopra, “On Decentralized Optimization for a Class of Multisubsystem
Codesign Problems,” Journal of Mechanical Design, vol. 139, no. 12, p. 121 404, Oct. 2017. doi:
10.1115/1.4037893 (see p. 67)

[117] G. Yu. (2004). Syllabus for Algorithm Design and Implementations (see p. 68)
[118] M. H. Holmes, Introduction to the Foundations of Applied Mathematics, 1st ed. Springer, 2009, isbn:

978-0387877495. doi: 10.1007/978-0-387-87765-5 (see pp. 68–70, 72)
[119] E. v. Groesen and J. Molenaar, “Dimensional Analysis and Scaling,” in Continuum Modeling in the

Physical Sciences. SIAM, 2007, pp. 1–29, isbn: 978-0898716252 (see pp. 69, 72)
[120] Y. A. Çengel and J. M. Cimbala, Fluid Mechanics: Fundamentals and Applications, 1st ed. McGraw-

Hill, 2006, isbn: 0072472367, isbn: 978-0073380322 (see pp. 69, 70)
[121] E. Buckingham, “On Physically Similar Systems; Illustrations of the Use of Dimensional Equations,”

Physical Review, vol. 4, no. 4, pp. 345–376, Oct. 1914. doi: 10.1103/PhysRev.4.345 (see pp. 69, 72)
[122] B. Kittirungsi, “A Scaling Methodology for Dynamic Systems: Quantification of Approximate Simil-

itude and Use in Multiobjective Design,” PhD dissertation, The University of Michigan, Ann Arbor,
MI, USA, May 2008. url: http://hdl.handle.net/2027.42/58383 (see pp. 69, 70, 75)

[123] H. K. Khalil, Nonlinear Systems, 3rd ed. Prentice Hall, May 2002, isbn: 0130673897, isbn: 978-
0130673893 (see p. 70)

[124] L. Bergamaschi, J. Gondzio, and G. Zilli, “Preconditioning Indefinite Systems in Interior Point Meth-
ods for Optimization,” Computational Optimization and Applications, vol. 28, no. 2, pp. 149–171, Jul.
2004. doi: 10.1023/B:COAP.0000026882.34332.1b (see pp. 70, 134)

[125] M. Benzi, “Preconditioning Techniques for Large Linear Systems: A Survey,” Journal of Computa-
tional Physics, vol. 182, no. 2, pp. 418–477, Nov. 2002. doi: 10.1006/jcph.2002.7176 (see pp. 70,
134)

271

http://hdl.handle.net/2142/77888
http://dx.doi.org/10.1016/j.cep.2006.06.021
http://ufdc.ufl.edu/UFE0043196/00001
http://www.matthewpeterkelly.com/research/MattKelly__Transcription_Methods_for_Trajectory_Optimization.pdf
http://www.matthewpeterkelly.com/research/MattKelly__Transcription_Methods_for_Trajectory_Optimization.pdf
http://dx.doi.org/10.2514/3.9754
https://github.com/danielrherber/co-design-examples-repository
https://github.com/danielrherber/co-design-examples-repository
http://dx.doi.org/10.1115/1.4037893
http://dx.doi.org/10.1007/978-0-387-87765-5
http://dx.doi.org/10.1103/PhysRev.4.345
http://hdl.handle.net/2027.42/58383
http://dx.doi.org/10.1023/B:COAP.0000026882.34332.1b
http://dx.doi.org/10.1006/jcph.2002.7176

[126] M. Ghanekar, D. Wang, and G. Heppler, “Scaling Laws for Linear Controllers of Flexible Link Manip-
ulators Characterized by Nondimensional Groups,” IEEE Transactions on Robotics and Automation,
vol. 13, no. 1, pp. 117–127, Feb. 1997. doi: 10.1109/70.554352 (see p. 70)

[127] S. Brennan and A. Alleyne, “Robust Scalable Vehicle Control via Non-Dimensional Vehicle Dynam-
ics,” Vehicle System Dynamics, vol. 36, no. 4-5, pp. 255–277, Nov. 2001. doi: 10.1076/vesd.36.4.
255.3551 (see p. 70)

[128] S. Boyd and L. Vandenberghe, Convex Optimization, 7th ed. Cambridge University Press, 2009, isbn:
978-0521833783 (see pp. 72, 74, 80, 91, 95, 135)

[129] G. Strang, Calculus, 1st ed. Wellesley-Cambridge Press, 1991 (see p. 72)
[130] The MathWorks. fmincon: Find Minimum of Constrained Nonlinear Multivariable Function, url:

https://www.mathworks.com/help/optim/ug/fmincon.html (visited on 10/16/2016) (see pp. 86,
147)

[131] D. R. Herber, Y. H. Lee, and J. T. Allison, “Unified Framework for Solving General Linear-Quadratic
Dynamic Optimization Problems Utilizing Direct Transcription and Quadratic Programming,” to be
submitted, (see pp. 90, 197, 199)

[132] H. H. Goldstine, A History of the Calculus of Variations from the 17th through the 19th Century,
1st ed. Springer, 1980, isbn: 978-1461381082. doi: 10.1007/978-1-4613-8106-8 (see p. 90)

[133] N. Faedo, S. Olaya, and J. V. Ringwood, “Optimal Control, MPC and MPC-like Algorithms for Wave
Energy Systems: An Overview,” IFAC Journal of Systems and Control, vol. 1, pp. 37–56, Sep. 2017.
doi: 10.1016/j.ifacsc.2017.07.001 (see pp. 90, 118, 135)

[134] Optimal Control and Dynamic Games, ed. by C. Deissenberg and R. F. Hartl. Springer, 2005. doi:
10.1007/b136166 (see p. 90)

[135] B. D. O. Anderson and J. B. Moore, Optimal Control: Linear Quadratic Methods. Dover, 2007, isbn:
978-0486457666 (see pp. 90, 96, 115)

[136] M. A. Patterson and A. V. Rao, “GPOPS–II: A MATLAB Software for Solving Multiple-Phase
Optimal Control Problems Using hp-Adaptive Gaussian Quadrature Collocation Methods and Sparse
Nonlinear Programming,” ACM Transactions on Mathematical Software, vol. 41, no. 1, pp. 1–37, Oct.
2014. doi: 10.1145/2558904 (see pp. 91, 99, 132, 133)

[137] V. M. Becerra, PSOPT Optimal Control Solver User Manual, release 4 build 2015, 2015. url: https:
/ / github . com / PSOPT / psopt / blob / master / PSOPT / doc / PSOPT _ Manual _ R4 . pdf (visited on
10/12/2017) (see pp. 91, 99, 133, 257)

[138] P. E. Rutquist and M. M. Edvall, PROPT - Matlab Optimal Control Software, Pullman, WA, USA:
TOMLAB Optimization, Apr. 2010 (see p. 91)

[139] J. T. Betts, Sparse Optimization Suite (SOS), Release 2015.11, 2015 (see p. 91)
[140] O. von Stryk, User’s Guide for DIRCOL: A Direct Collocation Method for the Numerical Solution

of Optimal Control Problems, version 2.1 edition, Technische Universität Darmstadt, Nov. 1999 (see
pp. 91, 113, 116)

[141] M. Herceg, M. Kvasnica, C. N. Jones, et al., “Multi-Parametric Toolbox 3.0,” in European Control
Conference, Zürich, Switzerland, Jul. 2013, pp. 502–510. url: http://control.ee.ethz.ch/~mpt
(see p. 91)

[142] The MathWorks. Model Predictive Control Toolbox: Design and Simulate Model Predictive Con-
trollers, url: https://www.mathworks.com/help/mpc/index.html (visited on 10/02/2017) (see
p. 91)

272

http://dx.doi.org/10.1109/70.554352
http://dx.doi.org/10.1076/vesd.36.4.255.3551
http://dx.doi.org/10.1076/vesd.36.4.255.3551
https://www.mathworks.com/help/optim/ug/fmincon.html
http://dx.doi.org/10.1007/978-1-4613-8106-8
http://dx.doi.org/10.1016/j.ifacsc.2017.07.001
http://dx.doi.org/10.1007/b136166
http://dx.doi.org/10.1145/2558904
https://github.com/PSOPT/psopt/blob/master/PSOPT/doc/PSOPT_Manual_R4.pdf
https://github.com/PSOPT/psopt/blob/master/PSOPT/doc/PSOPT_Manual_R4.pdf
http://control.ee.ethz.ch/~mpt
https://www.mathworks.com/help/mpc/index.html

[143] J.-S. Pang, “Methods for Quadratic Programming: A Survey,” Computers & Chemical Engineering,
vol. 7, no. 5, pp. 583–594, Jan. 1983. doi: 10.1016/0098-1354(83)80004-0 (see p. 93)

[144] A. Altman and J. Gondzio, “Regularized Symmetric Indefinite Systems in Interior Point Methods for
Linear and Quadratic Optimization,” Optimization Methods and Software, vol. 11, no. 1–4, pp. 275–
302, Jan. 1999. doi: 10.1080/10556789908805754 (see p. 93)

[145] F. Delbos and J. C. Gilbert, “Global Linear Convergence of an Augmented Lagrangian Algorithm to
Solve Convex Quadratic Optimization Problems,” Journal of Convex Analysis, vol. 12, no. 1, pp. 45–
69, 2005 (see p. 93)

[146] G. Lack and M. Enns, “Optimal Control Trajectories with Minimax Objective Functions by Linear
Programming,” IEEE Transactions on Automatic Control, vol. 12, no. 6, pp. 749–752, Dec. 1967. doi:
10.1109/tac.1967.1098752 (see pp. 94, 96)

[147] A. Sala, “Improving Performance Under Sampling-Rate Variations via Generalized Hold Functions,”
IEEE Transactions on Control Systems Technology, vol. 15, no. 4, pp. 794–797, Jul. 2007. doi: 10.
1109/tcst.2006.890302 (see p. 94)

[148] S.-K. Wang and M. L. Nagurka, “Linear Quadratic Optimal Control Design Using Chebyshev-Based
State Parameterization,” Carnegie Mellon University, Tech. Rep., 1992 (see pp. 94–96)

[149] R. D. Hampton, C. R. Knospe, and M. A. Townsend, “A Practical Solution to the Deterministic
Nonhomogeneous LQR Problem,” Journal of Dynamic Systems, Measurement, and Control, vol. 118,
no. 2, p. 354, Jun. 1996. doi: 10.1115/1.2802329 (see pp. 94, 95)

[150] M. Popescu, “Fundamental Solution for Linear Two-point Boundary Value Problem,” Journal of
Applied Mathematics and Computing, vol. 31, no. 1–2, pp. 385–394, Sep. 2009. doi: 10.1007/s12190-
008-0219-0 (see pp. 94, 95)

[151] G. Li, “Nonlinear Model Predictive Control of a Wave Energy Converter Based on Differential Flatness
Parameterisation,” International Journal of Control, vol. 90, no. 1, pp. 68–77, Sep. 2015. doi: 10.
1080/00207179.2015.1088173 (see p. 94)

[152] L. Han, M. K. Camlibel, J.-S. Pang, et al., “A Unified Numerical Scheme for Linear-Quadratic
Optimal Control Problems with Joint Control and State Constraints,” Optimization Methods and
Software, vol. 27, no. 4–5, pp. 761–799, Oct. 2012. doi: 10 . 1080 / 10556788 . 2011 . 593624 (see
pp. 94–97, 102)

[153] M. Gerdts, “A Survey on Optimal Control Problems with Differential-Algebraic Equations,” in Sur-
veys in Differential-Algebraic Equations II, Springer, 2015, pp. 103–161, isbn: 978-3319110493. doi:
10.1007/978-3-319-11050-9_3 (see pp. 94–96)

[154] S. L. Campbell and P. Kunkel, “On the Numerical Treatment of Linear–Quadratic Optimal Control
Problems for General Linear Time-Varying Differential-Algebraic Equations,” Journal of Computa-
tional and Applied Mathematics, vol. 242, pp. 213–231, Apr. 2013. doi: 10.1016/j.cam.2012.10.011
(see pp. 94, 95)

[155] C.-T. Chen, Linear System Theory and Design, 3rd ed. Oxford University Press, 1999, isbn: 978-
0195392074 (see pp. 94, 134)

[156] G.-Y. Tang, Y.-D. Zhao, and B.-L. Zhang, “Optimal Output Tracking Control for Nonlinear Sys-
tems Via Successive Approximation Approach,” Nonlinear Analysis: Theory, Methods & Applications,
vol. 66, no. 6, pp. 1365–1377, Mar. 2007. doi: 10.1016/j.na.2006.01.021 (see pp. 95, 96)

[157] J. L. Jerez, G. A. Constantinides, and E. C. Kerrigan, “An FPGA Implementation of a Sparse
Quadratic Programming Solver for Constrained Predictive Control,” in International Symposium on
Field-Programmable Gate Arrays, Monterey, CA, USA: ACM Press, 2011. doi: 10.1145/1950413.
1950454 (see pp. 95, 96)

273

http://dx.doi.org/10.1016/0098-1354(83)80004-0
http://dx.doi.org/10.1080/10556789908805754
http://dx.doi.org/10.1109/tac.1967.1098752
http://dx.doi.org/10.1109/tcst.2006.890302
http://dx.doi.org/10.1109/tcst.2006.890302
http://dx.doi.org/10.1115/1.2802329
http://dx.doi.org/10.1007/s12190-008-0219-0
http://dx.doi.org/10.1007/s12190-008-0219-0
http://dx.doi.org/10.1080/00207179.2015.1088173
http://dx.doi.org/10.1080/00207179.2015.1088173
http://dx.doi.org/10.1080/10556788.2011.593624
http://dx.doi.org/10.1007/978-3-319-11050-9_3
http://dx.doi.org/10.1016/j.cam.2012.10.011
http://dx.doi.org/10.1016/j.na.2006.01.021
http://dx.doi.org/10.1145/1950413.1950454
http://dx.doi.org/10.1145/1950413.1950454

[158] G. Bashein, “A Simplex Algorithm for On-line Computation of Time Optimal Controls,” IEEE Trans-
actions on Automatic Control, vol. 16, no. 5, pp. 479–482, Oct. 1971. doi: 10.1109/tac.1971.1099776
(see pp. 95, 96)

[159] A. Sideris and L. A. Rodriguez, “A Riccati Approach to Equality Constrained Linear Quadratic
Optimal Control,” in American Control Conference, Baltimore, MD, USA, 2010, pp. 5167–5172. doi:
10.1109/acc.2010.5530688 (see pp. 95–97)

[160] F. Borrelli, A. Bemporad, and M. Morari, Predictive Control for Linear and Hybrid Systems, 1st ed.
Cambridge University Press, 2017, isbn: 978-1107016880 (see pp. 96, 97, 102, 104, 117)

[161] J. Shen, T. Tang, and L.-L. Wang, Spectral Methods: Algorithms, Analysis and Applications, 1st ed.
Springer, 2011, isbn: 978-3540710400. doi: 10.1007/978-3-540-71041-7 (see pp. 98, 255, 256)

[162] F. Fahroo and I. M. Ross, “Direct Trajectory Optimization by a Chebyshev Pseudospectral Method,”
Journal of Guidance, Control, and Dynamics, vol. 25, no. 1, pp. 160–166, 2002. doi: 10.2514/2.4862
(see pp. 98–100, 256)

[163] V. M. Becerra and R. K. H. Galvão, “Um Tutorial Sobre Métodos Pseudo-Espectrais Para Controle
Ótimo Computacional,” Sba: Controle & Automação Sociedade Brasileira de Automatica, vol. 21,
no. 3, pp. 224–244, Jun. 2010. doi: 10.1590/s0103-17592010000300002 (see pp. 99, 100, 255–257)

[164] F. Fahroo and I. M. Ross, “Advances in Pseudospectral Methods for Optimal Control,” in AIAA
Guidance, Navigation and Control Conference and Exhibit, Honolulu, HI, USA, Aug. 2008. doi: 10.
2514/6.2008-7309 (see pp. 99, 100, 103, 256)

[165] J. T. Betts, “Survey of Numerical Methods for Trajectory Optimization,” Journal of Guidance, Con-
trol, and Dynamics, vol. 21, no. 2, pp. 193–207, Mar. 1998. doi: 10.2514/2.4231 (see p. 99)

[166] M. Bittner, “Utilization of Problem and Dynamic Characteristics for Solving Large Scale Optimal
Control Problems,” PhD dissertation, Technical University of Munich, Munich, Germany, Apr. 2017.
url: http://nbn- resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91- diss- 20170511-
1343164-1-1 (see p. 99)

[167] D. Pardo, L. Moller, M. Neunert, et al., “Evaluating Direct Transcription and Nonlinear Optimization
Methods for Robot Motion Planning,” IEEE Robotics and Automation Letters, vol. 1, no. 2, pp. 946–
953, Jul. 2016. doi: 10.1109/lra.2016.2527062 (see p. 99)

[168] D. Sonawane, M. Pathak, and V. R. Subramanian, “Convergence Rates for Direct Transcription
of Optimal Control Problems Using Second Derivative Methods,” in American Control Conference,
Boston, MA, USA: IEEE, Jul. 2016, pp. 215–220. doi: 10.1109/acc.2016.7524918 (see p. 99)

[169] J. T. Betts and W. P. Huffman, “Mesh Refinement in Direct Transcription Methods for Optimal
Control,” Optimal Control Applications and Methods, vol. 19, no. 1, pp. 1–21, Jan. 1998. doi: 10.
1002/(sici)1099-1514(199801/02)19:1<1::aid-oca616>3.0.co;2-q (see pp. 99, 101, 132, 133)

[170] P. Williams, “A Comparison of Differentiation and Integration Based Direct Transcription Methods,”
in AAS/AIAA Space Flight Mechanics Meetings, vol. 120, Copper Mountain, CO, USA, Jan. 2005,
pp. 389–408 (see pp. 99, 101, 118)

[171] R. Amrit, J. B. Rawlings, and L. T. Biegler, “Optimizing Process Economics Online Using Model
Predictive Control,” Computers & Chemical Engineering, vol. 58, pp. 334–343, Nov. 2013. doi: 10.
1016/j.compchemeng.2013.07.015 (see p. 99)

[172] J. Hals, J. Falnes, and T. Moan, “Constrained Optimal Control of a Heaving Buoy Wave-Energy
Converter,” Journal of Offshore Mechanics and Arctic Engineering, vol. 133, no. 1, p. 011 401, Feb.
2011. doi: 10.1115/1.4001431 (see pp. 99, 102, 104)

274

http://dx.doi.org/10.1109/tac.1971.1099776
http://dx.doi.org/10.1109/acc.2010.5530688
http://dx.doi.org/10.1007/978-3-540-71041-7
http://dx.doi.org/10.2514/2.4862
http://dx.doi.org/10.1590/s0103-17592010000300002
http://dx.doi.org/10.2514/6.2008-7309
http://dx.doi.org/10.2514/6.2008-7309
http://dx.doi.org/10.2514/2.4231
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20170511-1343164-1-1
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20170511-1343164-1-1
http://dx.doi.org/10.1109/lra.2016.2527062
http://dx.doi.org/10.1109/acc.2016.7524918
http://dx.doi.org/10.1002/(sici)1099-1514(199801/02)19:1<1::aid-oca616>3.0.co;2-q
http://dx.doi.org/10.1002/(sici)1099-1514(199801/02)19:1<1::aid-oca616>3.0.co;2-q
http://dx.doi.org/10.1016/j.compchemeng.2013.07.015
http://dx.doi.org/10.1016/j.compchemeng.2013.07.015
http://dx.doi.org/10.1115/1.4001431

[173] P. Williams, “Hermite-Legendre-Gauss-Lobatto Direct Transcription in Trajectory Optimization,”
Journal of Guidance, Control, and Dynamics, vol. 32, no. 4, pp. 1392–1395, Jul. 2009. doi: 10.2514/
1.42731 (see p. 99)

[174] C. Hwang, D.-H. Shih, and F.-C. Kung, “Use of Block-Pulse Functions in the Optimal Control of
Deterministic Systems,” International Journal of Control, vol. 44, no. 2, pp. 343–349, Aug. 1986. doi:
10.1080/00207178608933603 (see p. 99)

[175] K. T. Elgindy and K. A. Smith-Miles, “Fast, Accurate, and Small-Scale Direct Trajectory Optimiza-
tion Using a Gegenbauer Transcription Method,” Journal of Computational and Applied Mathematics,
vol. 251, pp. 93–116, Oct. 2013. doi: 10.1016/j.cam.2013.03.032 (see p. 99)

[176] G. Bacelli and J. V. Ringwood, “Numerical Optimal Control of Wave Energy Converters,” IEEE
Transactions on Sustainable Energy, vol. 6, no. 2, pp. 294–302, Apr. 2015. doi: 10.1109/tste.2014.
2371536 (see p. 99)

[177] C. C. Françolin, D. A. Benson, W. W. Hager, et al., “Costate Approximation in Optimal Control
Using Integral Gaussian Quadrature Orthogonal Collocation Methods,” Optimal Control Applications
and Methods, vol. 36, no. 4, pp. 381–397, Feb. 2014. doi: 10.1002/oca.2112 (see pp. 99, 133)

[178] P. Williams, “Application of Pseudospectral Methods for Receding Horizon Control,” Journal of
Guidance, Control, and Dynamics, vol. 27, no. 2, pp. 310–314, Mar. 2004. doi: 10.2514/1.5118 (see
p. 100)

[179] M. T. Heath, Scientific Computing: An Introductory Survey, 2nd ed. McGraw Hill, 2002, isbn: 978-
0072399103 (see pp. 103–105)

[180] L. N. Trefethen, “Is Gauss Quadrature Better than Clenshaw–Curtis?” SIAM Review, vol. 50, no. 1,
pp. 67–87, Jan. 2008. doi: 10.1137/060659831 (see p. 103)

[181] Q. Gong, I. M. Ross, and F. Fahroo, “Costate Computation by a Chebyshev Pseudospectral Method,”
Journal of Guidance, Control, and Dynamics, vol. 33, no. 2, pp. 623–628, Mar. 2010. doi: 10.2514/
1.45154 (see p. 103)

[182] The MathWorks. kron: Kronecker Tensor Product, url: https://www.mathworks.com/help/matlab/
ref/kron.html (see pp. 112, 241)

[183] D. R. Herber. Approximating an Elliptical Region with Linear Constraints, Mathworks File Exchange,
url: https://www.mathworks.com/matlabcentral/fileexchange/56519 (visited on 10/12/2017)
(see p. 117)

[184] Q. Wang and J. S. Arora, “Several Simultaneous Formulations for Transient Dynamic Response
Optimization: An Evaluation,” International Journal for Numerical Methods in Engineering, vol. 80,
no. 5, pp. 631–650, Oct. 2009. doi: 10.1002/nme.2655 (see p. 118)

[185] The MathWorks. quadprog: Quadratic Programming, url: https://www.mathworks.com/help/
optim/ug/quadprog.html (visited on 10/03/2017) (see pp. 119, 176)

[186] D. R. Herber, Y. H. Lee, and J. T. Allison. DT QP Project, GitHub, url: https://github.com/
danielrherber/dt-qp-project (see pp. 119, 136, 199, 263)

[187] A. E. Bryson, W. F. Denham, and S. E. Dreyfus, “Optimal Programming Problems with Inequality
Constraints I: Necessary Conditions for Extremal Solutions,” AIAA Journal, vol. 1, no. 11, pp. 2544–
2550, Nov. 1963. doi: 10.2514/3.2107 (see p. 122)

[188] C. L. Darby, “hp-Pseudospectral Method for Solving Continuous-Time Nonlinear Optimal Control
Problems,” PhD dissertation, University of Florida, Gainesville, FL, USA, 2009. url: http://ufdc.
ufl.edu/UFE0042778/00001 (see p. 124)

275

http://dx.doi.org/10.2514/1.42731
http://dx.doi.org/10.2514/1.42731
http://dx.doi.org/10.1080/00207178608933603
http://dx.doi.org/10.1016/j.cam.2013.03.032
http://dx.doi.org/10.1109/tste.2014.2371536
http://dx.doi.org/10.1109/tste.2014.2371536
http://dx.doi.org/10.1002/oca.2112
http://dx.doi.org/10.2514/1.5118
http://dx.doi.org/10.1137/060659831
http://dx.doi.org/10.2514/1.45154
http://dx.doi.org/10.2514/1.45154
https://www.mathworks.com/help/matlab/ref/kron.html
https://www.mathworks.com/help/matlab/ref/kron.html
https://www.mathworks.com/matlabcentral/fileexchange/56519
http://dx.doi.org/10.1002/nme.2655
https://www.mathworks.com/help/optim/ug/quadprog.html
https://www.mathworks.com/help/optim/ug/quadprog.html
https://github.com/danielrherber/dt-qp-project
https://github.com/danielrherber/dt-qp-project
http://dx.doi.org/10.2514/3.2107
http://ufdc.ufl.edu/UFE0042778/00001
http://ufdc.ufl.edu/UFE0042778/00001

[189] C. L. Darby, W. W. Hager, and A. V. Rao, “An hp-Adaptive Pseudospectral Method for Solving
Optimal Control Problems,” Optimal Control Applications and Methods, vol. 32, no. 4, pp. 476–502,
2011. doi: 10.1002/oca.957 (see pp. 124, 133)

[190] C. Darby and A. Rao, “A State Approximation-Based Mesh Refinement Algorithm for Solving Opti-
mal Control Problems Using Pseudospectral Methods,” in AIAA Guidance, Navigation, and Control
Conference, AIAA 2009-5791, Chicago, IL, USA: American Institute of Aeronautics and Astronautics,
Aug. 2009. doi: 10.2514/6.2009-5791 (see pp. 132, 133)

[191] Q. Gong, F. Fahroo, and I. M. Ross, “Spectral Algorithm for Pseudospectral Methods in Optimal
Control,” Journal of Guidance, Control, and Dynamics, vol. 31, no. 3, pp. 460–471, May 2008. doi:
10.2514/1.32908 (see p. 132)

[192] T. Fujikawa and T. Tsuchiya, “Enhanced Mesh Refinement in Numerical Optimal Control Using
Pseudospectral Methods,” SICE Journal of Control, Measurement, and System Integration, vol. 7,
no. 3, pp. 159–167, May 2014. doi: 10.9746/jcmsi.7.159 (see pp. 132, 133)

[193] J. Zhao and S. Li, “Modified Multiresolution Technique for Mesh Refinement in Numerical Optimal
Control,” Journal of Guidance, Control, and Dynamics, 2017. doi: 10.2514/1.g002796 (see p. 133)

[194] J. T. Betts, N. Biehn, S. L. Campbell, et al., “Compensating for Order Variation in Mesh Refinement
for Direct Transcription Methods,” Journal of Computational and Applied Mathematics, vol. 125,
no. 1–2, pp. 147–158, Dec. 2000. doi: 10.1016/s0377-0427(00)00465-9 (see p. 133)

[195] S. Jain and P. Tsiotras, “Trajectory Optimization Using Multiresolution Techniques,” Journal of
Guidance, Control, and Dynamics, vol. 31, no. 5, pp. 1424–1436, Sep. 2008. doi: 10.2514/1.32220
(see p. 133)

[196] M. A. Patterson, W. W. Hager, and A. V. Rao, “A ph Mesh Refinement Method for Optimal Control,”
Optimal Control Applications and Methods, vol. 36, no. 4, pp. 398–421, Jul. 2015. doi: 10.1002/oca.
2114 (see p. 133)

[197] C. L. Darby, D. Garg, and A. V. Rao, “Costate Estimation using Multiple-Interval Pseudospectral
Methods,” Journal of Spacecraft and Rockets, vol. 48, no. 5, pp. 856–866, Sep. 2011. doi: 10.2514/
1.a32040 (see p. 133)

[198] M. Schori, T. J. Boehme, T. Jeinsch, et al., “Costate Approximation from Direct Methods for Switched
Systems with State Jumps,” in European Control Conference, 7330583, Linz, Austria, Jul. 2015. doi:
10.1109/ecc.2015.7330583 (see p. 133)

[199] E. M. Gertz and S. J. Wright, “Object-Oriented Software for Quadratic Programming,” ACM Trans-
actions on Mathematical Software, vol. 29, no. 1, pp. 58–81, Mar. 2003. doi: 10.1145/641876.641880
(see p. 134)

[200] M. C. Grant and S. P. Boyd, “Graph Implementations for Nonsmooth Convex Programs,” in Lecture
Notes in Control and Information Sciences, ed. by V. Blondel, S. Boyd, and H. Kimura. Springer,
2008, vol. 371, pp. 95–110. doi: 10.1007/978-1-84800-155-8_7 (see p. 134)

[201] J. J. Torsti and A. M. Aurela, “A Fast Quadratic Programming Method for Solving Ill-Conditioned
Systems of Equations,” Journal of Mathematical Analysis and Applications, vol. 38, no. 1, pp. 193–
204, Apr. 1972. doi: 10.1016/0022-247x(72)90127-8 (see p. 134)

[202] N. I. M. Gould, “Iterative Methods for Ill-Conditioned Linear Systems from Optimization,” in Applied
Optimization. Springer, 2000, vol. 36, pp. 123–141. doi: 10.1007/978-1-4757-3226-9_7 (see p. 134)

[203] B. O’Donoghue, G. Stathopoulos, and S. Boyd, “A Splitting Method for Optimal Control,” IEEE
Transactions on Control Systems Technology, vol. 21, no. 6, pp. 2432–2442, Nov. 2013. doi: 10.1109/
tcst.2012.2231960 (see p. 134)

276

http://dx.doi.org/10.1002/oca.957
http://dx.doi.org/10.2514/6.2009-5791
http://dx.doi.org/10.2514/1.32908
http://dx.doi.org/10.9746/jcmsi.7.159
http://dx.doi.org/10.2514/1.g002796
http://dx.doi.org/10.1016/s0377-0427(00)00465-9
http://dx.doi.org/10.2514/1.32220
http://dx.doi.org/10.1002/oca.2114
http://dx.doi.org/10.1002/oca.2114
http://dx.doi.org/10.2514/1.a32040
http://dx.doi.org/10.2514/1.a32040
http://dx.doi.org/10.1109/ecc.2015.7330583
http://dx.doi.org/10.1145/641876.641880
http://dx.doi.org/10.1007/978-1-84800-155-8_7
http://dx.doi.org/10.1016/0022-247x(72)90127-8
http://dx.doi.org/10.1007/978-1-4757-3226-9_7
http://dx.doi.org/10.1109/tcst.2012.2231960
http://dx.doi.org/10.1109/tcst.2012.2231960

[204] E. Ghadimi, A. Teixeira, I. Shames, et al., “Optimal Parameter Selection for the Alternating Direction
Method of Multipliers (ADMM): Quadratic Problems,” IEEE Transactions on Automatic Control,
vol. 60, no. 3, pp. 644–658, Mar. 2015. doi: 10.1109/tac.2014.2354892 (see p. 134)

[205] L.-L. Wang, M. D. Samson, and X. Zhao, “A Well-Conditioned Collocation Method Using a Pseu-
dospectral Integration Matrix,” SIAM Journal on Scientific Computing, vol. 36, no. 3, A907–A929,
2014. doi: 10.1137/130922409 (see p. 134)

[206] L. N. Trefethen and M. R. Trummer, “An Instability Phenomenon in Spectral Methods,” SIAM
Journal on Numerical Analysis, vol. 24, no. 5, pp. 1008–1023, 1987. doi: 10.1137/0724066 (see
p. 134)

[207] P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization. Academic Press, 1981, isbn: 978-
0122839528 (see p. 134)

[208] A. M.-C. So, “Semidefinite Optimization Applications,” inWiley Encyclopedia of Operations Research
and Management Science. John Wiley & Sons, 2011. doi: 10.1002/9780470400531.eorms0755 (see
p. 135)

[209] C. Sun and R. Dai. (2016). An Iterative Method for Nonconvex Quadratically Constrained Quadratic
Programs. Submitted to IEEE Transactions on Automatic Control, url: https://arxiv.org/abs/
1609.02609 (see p. 135)

[210] J. B. Grimbleby, “Automatic Analogue Network Synthesis Using Genetic Algorithms,” in Genetic
Algorithms in Engineering Systems: Innovations and Applications, IET, Sep. 1995. doi: 10.1049/cp:
19951024 (see pp. 137, 138, 148–150, 153, 161, 162)

[211] A. Das and R. Vemuri, “An Automated Passive Analog Circuit Synthesis Framework using Genetic
Algorithms,” in Computer Society Annual Symposium on VLSI, IEEE, 2007. doi: 10.1109/isvlsi.
2007.22 (see pp. 137, 138, 141, 145, 148, 154, 156, 158, 161, 162)

[212] O. Mitea, M. Meissner, L. Hedrich, et al., “Automated Constraint-Driven Topology Synthesis for
Analog Circuits,” in Design, Automation & Test in Europe Conference & Exhibition, IEEE, 2011.
doi: 10.1109/date.2011.5763264 (see p. 137)

[213] J. B. Grimbleby, “Automatic Analogue Circuit Synthesis Using Genetic Algorithms,” IEE Proceedings
- Circuits, Devices and Systems, vol. 147, no. 6, pp. 319–323, Dec. 2000. doi: 10.1049/ip- cds:
20000770 (see pp. 137, 138, 148, 154, 161)

[214] G. Sussman and R. Stallman, “Heuristic Techniques in Computer-Aided Circuit Analysis,” IEEE
Transactions on Circuits and Systems, vol. 22, no. 11, pp. 857–865, Nov. 1975. doi: 10.1109/tcs.
1975.1083985 (see p. 137)

[215] R. Harjani, R. A. Rutenbar, and L. R. Carley, “OASYS: A Framework for Analog Circuit Synthesis,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 8, no. 12,
pp. 1247–1266, Dec. 1989. doi: 10.1109/43.44506 (see p. 137)

[216] A. Das and R. Vemuri, “Topology Synthesis of Analog Circuits Based on Adaptively Generated
Building Blocks,” in Design Automation Conference, Anaheim, CA, USA, Jun. 2008 (see pp. 138,
148)

[217] C. Goh and Y. Li, “GA Automated Design and Synthesis of Analog Circuits with Practical Con-
straints,” in Congress on Evolutionary Computation, IEEE, May 2001. doi: 10.1109/cec.2001.
934386 (see pp. 138, 145, 146, 148, 154, 156, 160–162)

[218] J. R. Koza, F. H. Bennett, D. Andre, et al., “Automated Synthesis of Analog Electrical Circuits by
Means of Genetic Programming,” IEEE Transactions on Evolutionary Computation, vol. 1, no. 2,
pp. 109–128, Jul. 1997. doi: 10.1109/4235.687879 (see pp. 138, 145, 154)

277

http://dx.doi.org/10.1109/tac.2014.2354892
http://dx.doi.org/10.1137/130922409
http://dx.doi.org/10.1137/0724066
http://dx.doi.org/10.1002/9780470400531.eorms0755
https://arxiv.org/abs/1609.02609
https://arxiv.org/abs/1609.02609
http://dx.doi.org/10.1049/cp:19951024
http://dx.doi.org/10.1049/cp:19951024
http://dx.doi.org/10.1109/isvlsi.2007.22
http://dx.doi.org/10.1109/isvlsi.2007.22
http://dx.doi.org/10.1109/date.2011.5763264
http://dx.doi.org/10.1049/ip-cds:20000770
http://dx.doi.org/10.1049/ip-cds:20000770
http://dx.doi.org/10.1109/tcs.1975.1083985
http://dx.doi.org/10.1109/tcs.1975.1083985
http://dx.doi.org/10.1109/43.44506
http://dx.doi.org/10.1109/cec.2001.934386
http://dx.doi.org/10.1109/cec.2001.934386
http://dx.doi.org/10.1109/4235.687879

[219] E. S. Ochotta, R. A. Rutenbar, and L. R. Carley, “Synthesis of High-performance Analog Circuits in
ASTRX/OBLX,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 15, no. 3, pp. 273–294, Mar. 1996. doi: 10.1109/43.489099 (see p. 138)

[220] A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computing, 1st ed. Springer, 2003, isbn:
978-3642072857. doi: 10.1007/978-3-662-05094-1 (see pp. 138, 196)

[221] F. Bruccoleri, E. A. M. Klumperink, and B. Nauta, “Generating All Two-MOS-transistor Amplifiers
Leads to New Wide-band LNAs,” IEEE Journal of Solid-State Circuits, vol. 36, no. 7, pp. 1032–1040,
Jul. 2001. doi: 10.1109/4.933458 (see p. 139)

[222] E. A. M. Klumperink, “Transconductance Based CMOS Circuits: Circuit Generation, Classification
and Analysis,” PhD dissertation, Universiteit Twente, Enschede, Netherlands, Mar. 1997 (see p. 139)

[223] Handbook of Graph Theory, 2nd ed., ed. by J. L. Gross, J. Yellen, and P. Zhang. CRC Press, 2014,
isbn: 978-1439880180 (see p. 141)

[224] M. Meissner, O. Mitea, L. Luy, et al., “Fast Isomorphism Testing for a Graph-based Analog Circuit
Synthesis Framework,” in Design, Automation & Test in Europe Conference & Exhibition, Mar. 2012.
doi: 10.1109/date.2012.6176570 (see p. 142)

[225] E. Cheever. Symbolic Circuit Analysis in Matlab, Mathworks File Exchange, url: https://www.
mathworks.com/matlabcentral/fileexchange/3443 (see p. 146)

[226] The MathWorks. lsqnonlin: Solve Nonlinear Least-Squares (Nonlinear Data-Fitting) Problems, url:
https://www.mathworks.com/help/optim/ug/lsqnonlin.html (see p. 147)

[227] E. C. Levy, “Complex-Curve Fitting,” IRE Transactions on Automatic Control, vol. AC-4, no. 1,
pp. 37–43, 1959. doi: 10.1109/tac.1959.6429401 (see pp. 148, 151)

[228] J. R. F. Arruda, “Objective Functions for the Nonlinear Curve Fit of Frequency Response Functions,”
AIAA Journal, vol. 30, no. 3, pp. 855–857, Mar. 1992. doi: 10.2514/3.11001 (see p. 148)

[229] J. W. Chinneck, Feasibility and Infeasibility in Optimization: Algorithms and Computational Methods,
1st ed. Springer, 2008, isbn: 978-0387749310. doi: 10.1007/978-0-387-74932-7 (see p. 148)

[230] R. Pintelon, P. Guillaume, Y. Rolain, et al., “Parametric Identification of Transfer Functions in the
Frequency Domain-A Survey,” IEEE Transactions on Automatic Control, vol. 39, no. 11, pp. 2245–
2260, 1994. doi: 10.1109/9.333769 (see p. 148)

[231] R. Martí, “Multi-Start Methods,” in Handbook of Metaheuristics, G. F. and K. G. A., Eds. Springer,
2003, vol. 57, pp. 355–368, isbn: 978-1402072635. doi: 10.1007/0-306-48056-5_12 (see pp. 148,
196)

[232] D. R. Herber. PM Circuits, GitHub, url: https://github.com/danielrherber/pm-circuits (see
pp. 149, 263)

[233] L. Wanhammar, Analog Filters using MATLAB, 1st ed. Springer, 2009, isbn: 978-0387927664. doi:
10.1007/978-0-387-92767-1 (see pp. 154, 158)

[234] J. R. Koza, F. H. Bennett III, D. Andre, et al., “Synthesis of Topology and Sizing of Analog Elec-
trical Circuits by Means of Genetic Programming,” Computer Methods in Applied Mechanics and
Engineering, vol. 186, no. 2-4, pp. 459–482, Jun. 2000. doi: 10.1016/s0045-7825(99)00397-7 (see
p. 154)

[235] T. Guo, D. J. Lohan, R. Cang, et al., “An Indirect Design Representation for Topology Optimization
Using Variational Autoencoder and Style Transfer,” in AIAA 2018 Science and Technology Forum
and Exposition, to appear, Kissimmee, FL, USA, Jan. 2018 (see pp. 162, 208)

[236] A. Jha. (Jun. 2009). Science Weekly with Michio Kaku: Impossibility is Relative, The Guardian,
url: https://www.theguardian.com/science/audio/2009/jun/11/michio- kaku- physics-
impossible (visited on 10/30/2017) (see p. 164)

278

http://dx.doi.org/10.1109/43.489099
http://dx.doi.org/10.1007/978-3-662-05094-1
http://dx.doi.org/10.1109/4.933458
http://dx.doi.org/10.1109/date.2012.6176570
https://www.mathworks.com/matlabcentral/fileexchange/3443
https://www.mathworks.com/matlabcentral/fileexchange/3443
https://www.mathworks.com/help/optim/ug/lsqnonlin.html
http://dx.doi.org/10.1109/tac.1959.6429401
http://dx.doi.org/10.2514/3.11001
http://dx.doi.org/10.1007/978-0-387-74932-7
http://dx.doi.org/10.1109/9.333769
http://dx.doi.org/10.1007/0-306-48056-5_12
https://github.com/danielrherber/pm-circuits
http://dx.doi.org/10.1007/978-0-387-92767-1
http://dx.doi.org/10.1016/s0045-7825(99)00397-7
https://www.theguardian.com/science/audio/2009/jun/11/michio-kaku-physics-impossible
https://www.theguardian.com/science/audio/2009/jun/11/michio-kaku-physics-impossible

[237] S. Arnon, S. Rotman, and N. S. Kopeika, “Optimum Transmitter Optics Aperture for Satellite Optical
Communication,” IEEE Transactions on Aerospace and Electronic Systems, vol. 34, no. 2, pp. 590–
596, Apr. 1998. doi: 10.1109/7.670339 (see p. 164)

[238] A. H. de Ruiter, C. Damaren, and J. R. Forbes, Spacecraft Dynamics and Control: An Introduction,
1st ed. John Wiley & Sons, 2013, isbn: 978-1118342367 (see p. 164)

[239] S. W. Sirlin, “Vibration Isolation for Spacecraft Using the Piezoelectric Polymer PVF2,” The Journal
of the Acoustical Society of America, vol. 82, no. S13, Nov. 1987. doi: 10.1121/1.2024666 (see p. 164)

[240] S. S. Rao and M. Sunar, “Piezoelectricity and Its Use in Disturbance Sensing and Control of Flexible
Structures: A Survey,” Applied Mechanics Reviews, vol. 47, no. 7, pp. 113–123, Apr. 1994. doi: 10.
1115/1.3111074 (see pp. 164, 165)

[241] P. H. Meckl and R. Kinceler, “Robust Motion Control of Flexible Systems Using Feedfoward Forcing
Functions,” IEEE Transactions on Control Systems Technology, vol. 2, no. 3, pp. 245–254, Sep. 1994.
doi: 10.1109/87.317981 (see p. 165)

[242] E. F. Crawley and J. D. Luis, “Use of Piezoelectric Actuators as Elements of Intelligent Structures,”
AIAA Journal, vol. 25, no. 10, pp. 1373–1385, Oct. 1987. doi: 10.2514/3.9792 (see p. 165)

[243] R. A. Manning, “Optimum Design of Intelligent Truss Structures,” in Structures, Structural Dynam-
ics, and Materials Conference, Structures, Structural Dynamics, and Materials, Baltimore, MA, USA,
Apr. 1991, pp. 528–533. doi: 10.2514/6.1991-1158 (see p. 165)

[244] J. Pan, C. H. Hansen, and S. D. Snyder, “A Study of the Response of a Simply Supported Beam
to Excitation by a Piezoelectric Actuator,” Journal of Intelligent Material Systems and Structures,
vol. 3, no. 1, pp. 3–16, Jan. 1992. doi: 10.1177/1045389X9200300101 (see p. 165)

[245] J. E. Hubbard Jr. and S. E. Burke, “Distributed Transducer Design for Intelligent Structural Com-
ponents,” in Intelligent Structural Systems, H. S. Tzou and G. L. Anderson, Eds., 1st ed. Springer,
1992, vol. 13, pp. 305–324, isbn: 978-9048141920. doi: 10.1007/978-94-017-1903-2_8 (see p. 165)

[246] W. Hwang and H. C. Park, “Finite Element Modeling of Piezoelectric Sensors and Actuators,” AIAA
Journal, vol. 31, no. 5, pp. 930–937, May 1993. doi: 10.2514/3.11707 (see p. 165)

[247] O. S. Alvarez-Salazar and K. Iliff, “Destabilizing Effects of Rate Feedback on Strain Actuated Beams,”
Journal of Sound and Vibration, vol. 221, no. 2, pp. 289–307, Mar. 1999. doi: 10.1006/jsvi.1998.
2010 (see p. 165)

[248] T. Bailey and J. E. Hubbard Jr., “Distributed Piezoelectric-Polymer Active Vibration Control of a
Cantilever Beam,” Journal of Guidance, Control, and Dynamics, vol. 8, no. 5, pp. 605–611, Sep. 1985.
doi: 10.2514/3.20029 (see p. 165)

[249] E. K. Dimitriadis, C. R. Fuller, and C. A. Rogers, “Piezoelectric Actuators for Distributed Vibration
Excitation of Thin Plates,” Journal of Vibration and Acoustics, vol. 113, no. 1, pp. 100–107, Jan.
1991. doi: 10.1115/1.2930143 (see p. 165)

[250] J. L. Pinkerton, A.-M. R. McGowan, R. W. Moses, et al., “Controlled Aeroelastic Response and Airfoil
Shaping Using Adaptive Materials and Integrated Systems,” in Symposium on Smart Structures and
Materials, San Diego, CA, USA, Feb. 1996, pp. 166–177 (see p. 165)

[251] R. M. Fowler, “Investigation of Compliant Space Mechanisms with Application to the Design of
a Large-Displacement Monolithic Compliant Rotational Hinge,” Master’s thesis, Brigham Young
University, Provo, UT, USA, Aug. 2012. url: http://hdl.lib.byu.edu/1877/etd5391 (see p. 165)

[252] J. L. Fanson and T. K. Caughey, “Positive Position Feedback Control for Large Space Structures,”
AIAA Journal, vol. 28, no. 4, pp. 717–724, Apr. 1990. doi: 10.2514/3.10451 (see p. 165)

279

http://dx.doi.org/10.1109/7.670339
http://dx.doi.org/10.1121/1.2024666
http://dx.doi.org/10.1115/1.3111074
http://dx.doi.org/10.1115/1.3111074
http://dx.doi.org/10.1109/87.317981
http://dx.doi.org/10.2514/3.9792
http://dx.doi.org/10.2514/6.1991-1158
http://dx.doi.org/10.1177/1045389X9200300101
http://dx.doi.org/10.1007/978-94-017-1903-2_8
http://dx.doi.org/10.2514/3.11707
http://dx.doi.org/10.1006/jsvi.1998.2010
http://dx.doi.org/10.1006/jsvi.1998.2010
http://dx.doi.org/10.2514/3.20029
http://dx.doi.org/10.1115/1.2930143
http://hdl.lib.byu.edu/1877/etd5391
http://dx.doi.org/10.2514/3.10451

[253] W. P. Li and H. Huang, “Integrated Optimization of Actuator Placement and Vibration Control for
Piezoelectric Adaptive Trusses,” Journal of Sound and Vibration, vol. 332, no. 1, pp. 17–32, Jan.
2013. doi: 10.1016/j.jsv.2012.08.005 (see p. 165)

[254] M. J. Smith, K. M. Grigoriadis, and R. E. Skelton, “Optimal Mix of Passive and Active Control
in Structures,” Journal of Guidance, Control, and Dynamics, vol. 15, no. 4, pp. 912–919, 1992. doi:
10.2514/3.20924 (see pp. 165, 166)

[255] R. V. Grandhi, “Structural and Control Optimization of Space Structures,” Computers & Structures,
vol. 31, no. 2, pp. 139–150, 1989. doi: 10.1016/0045-7949(89)90222-8 (see p. 165)

[256] D. R. Herber, J. W. McDonald, O. S. Alvarez-Salazar, et al., “Reducing Spacecraft Jitter During
Satellite Reorientation Maneuvers via Solar Array Dynamics,” in AIAA/ISSMO Multidisciplinary
Analysis and Optimization Conference, Atlanta, GA, USA, Jun. 2014. doi: 10.2514/6.2014-3278
(see p. 166)

[257] O. S. Alvarez-Salazar, J. B. Aldrich, N. Filipe, et al., “Strain Actuated Solar Arrays for Precision
Pointing of Spacecraft,” in AAS Guidance, Navigation, and Control Conference, Breckenridge, CO,
USA, Feb. 2016 (see p. 166)

[258] Y.-Q. Yu, L. L. Howell, C. Lusk, et al., “Dynamic Modeling of Compliant Mechanisms Based on the
Pseudo-Rigid-Body Model,” Journal of Mechanical Design, vol. 127, no. 4, pp. 760–765, Aug. 2005.
doi: 10.1115/1.1900750 (see p. 166)

[259] C. M. Chilan, D. R. Herber, Y. K. Nakka, et al., “Co-Design of Strain-Actuated Solar Arrays for
Precision Pointing and Jitter Reduction,” in Science and Technology Forum and Exposition, San
Diego, CA, USA, Jan. 2016. doi: 10.2514/6.2016-0162 (see pp. 166, 176)

[260] R. L. Bisplinghoff, H. Ashley, and R. L. Halfman, Aeroelasticity, 1st ed. Dover, 1996, isbn: 978-
0486691893 (see p. 166)

[261] J. L. Junkins and Y. Kim, Introduction to Dynamics and Control of Flexible Structures, 1st ed. AIAA,
1993, isbn: 9781563470547. doi: 10.2514/4.862076 (see pp. 166, 170)

[262] A. A. Paranjape, J. Guan, S.-J. Chung, et al., “PDE Boundary Control for Flexible Articulated
Wings on a Robotic Aircraft,” IEEE Transactions on Robotics, vol. 29, no. 3, pp. 625–640, Jun. 2013.
doi: 10.1109/TRO.2013.2240711 (see pp. 166, 170)

[263] A. A. Paranjape, S.-J. Chung, H. H. Hilton, et al., “Dynamics and Performance of Tailless Micro
Aerial Vehicle with Flexible Articulated Wings,” AIAA Journal, vol. 50, no. 5, pp. 1177–1188, May
2012. doi: 10.2514/1.J051447 (see pp. 167, 170)

[264] Y. K. Nakka, S.-J. Chung, J. T. Allison, et al., “Nonlinear ODE-PDE Control of Strain Actuated
Solar Arrays for High Precision Spacecraft Attitude Control,” Journal of Guidance, Control, and
Dynamics (to be submitted), (see pp. 167, 168, 170, 172)

[265] S. O. M. Moheimani and A. J. Fleming, Piezoelectric Transducers for Vibration Control and Damping,
1st ed. Springer, 2006, isbn: 978-1846283314. doi: 10.1007/1-84628-332-9 (see pp. 170, 172)

[266] J. Lindmayer and W. C.Y., “Development of a High Efficiency Thin Silicon Solar Cell,” Solarex
Corporation, Rockville, MD, USA, Tech. Rep. NASA-CR-157078, SX/105/F, Sep. 1977 (see p. 175)

[267] J. Lee, J. Wu, M. Shi, et al., “Stretchable GaAS Photovoltaics With Designs That Enable High Areal
Coverage,” Advanced Materials, vol. 23, no. 8, pp. 986–991, Feb. 2011. doi: 10.1002/adma.201003961
(see p. 175)

[268] L. Qiu, S. He, J. Yang, et al., “Fiber-Shaped Perovskite Solar Cells With High Power Conversion
Efficiency,” Small, vol. 12, no. 18, pp. 2419–2424, May 2016. doi: 10.1002/smll.201600326 (see
p. 175)

280

http://dx.doi.org/10.1016/j.jsv.2012.08.005
http://dx.doi.org/10.2514/3.20924
http://dx.doi.org/10.1016/0045-7949(89)90222-8
http://dx.doi.org/10.2514/6.2014-3278
http://dx.doi.org/10.1115/1.1900750
http://dx.doi.org/10.2514/6.2016-0162
http://dx.doi.org/10.2514/4.862076
http://dx.doi.org/10.1109/TRO.2013.2240711
http://dx.doi.org/10.2514/1.J051447
http://dx.doi.org/10.1007/1-84628-332-9
http://dx.doi.org/10.1002/adma.201003961
http://dx.doi.org/10.1002/smll.201600326

[269] P. J. Enright and B. A. Conway, “Discrete Approximations to Optimal Trajectories Using Direct
Transcription and Nonlinear Programming,” Journal of Guidance, Control, and Dynamics, vol. 15,
no. 4, pp. 994–1002, 1992. doi: 10.2514/3.20934 (see p. 176)

[270] C. M. Chilan and B. A. Conway, “Automated Design of Multiphase Space Missions Using Hybrid
Optimal Control,” Journal of Guidance, Control, and Dynamics, vol. 36, no. 5, pp. 1410–1424, Sep.
2013. doi: 10.2514/1.58766 (see p. 176)

[271] D. Morgan, S.-J. Chung, and F. Y. Hadaegh, “Model Predictive Control of Swarms of Spacecraft
Using Sequential Convex Programming,” Journal of Guidance, Control, and Dynamics, vol. 37, no. 6,
pp. 1725–1740, Nov. 2014. doi: 10.2514/1.G000218 (see p. 176)

[272] The MathWorks. patternsearch: Find Minimum of Function Using Pattern Search, url: https://
www.mathworks.com/help/gads/patternsearch.html (visited on 10/29/2017) (see p. 176)

[273] D. Luzeaux, J.-R. Ruault, and J.-L. Wippler, Eds., Large Scale Complex Systems and Systems of
Systems Engineering: Case Studies. Wiley, 2013, isbn: 978-1848212534. doi: 10.1002/9781118601495
(see p. 191)

[274] P. Kasturi and P. Dupont, “Constrained Optimal Control of Vibration Dampers,” Journal of Sound
and Vibration, vol. 215, no. 3, pp. 499–509, Aug. 1998. doi: 10.1006/jsvi.1998.1661 (see p. 191)

[275] D. Hrovat, “Survey of Advanced Suspension Developments and Related Optimal Control Applica-
tions,” Automatica, vol. 33, no. 10, pp. 1781–1817, Oct. 1997. doi: 10.1016/S0005-1098(97)00101-5
(see pp. 191, 192)

[276] ——, “Applications of Optimal Control to Advanced Automotive Suspension Design,” Journal of
Dynamic Systems, Measurement, and Control, vol. 115, no. 2B, pp. 328–342, Jun. 1993. doi: 10.
1115/1.2899073 (see pp. 191–193, 198, 201)

[277] M. Gobbi and G. Mastinu, “Analytical Description and Optimization of the Dynamic Behaviour of
Passively Suspended Road Vehicles,” Journal of Sound and Vibration, vol. 245, no. 3, pp. 457–481,
Aug. 2001. doi: 10.1006/jsvi.2001.3591 (see pp. 191, 192, 198)

[278] Y. He and J. McPhee, “Multidisciplinary Design Optimization of Mechatronic Vehicles with Active
Suspensions,” Journal of Sound and Vibration, vol. 283, no. 1-2, pp. 217–241, May 2005. doi: 10.
1016/j.jsv.2004.04.027 (see pp. 191, 192)

[279] J. T. Allison, “Optimal Partitioning and Coordination Decisions in Decomposition-based Design
Optimization,” PhD dissertation, The University of Michigan, Ann Arbor, MI, USA, May 2008. url:
http://hdl.handle.net/2027.42/58449 (see pp. 191, 192, 199)

[280] G. Koch and T. Kloiber, “Driving State Adaptive Control of an Active Vehicle Suspension System,”
IEEE Transactions on Control Systems Technology, vol. 22, no. 1, pp. 44–57, Jan. 2014. doi: 10.
1109/tcst.2013.2240455 (see p. 191)

[281] A. Bourmistrova, I. Storey, and A. Subic, “Multiobjective Optimisation of Active and Semi-Active
Suspension Systems with Application of Evolutionary Algorithm,” in International Conference on
Modelling and Simulation, Melbourne, Australia, Dec. 2005, pp. 1217–1223 (see p. 191)

[282] S. F. Alyaqout, P. Y. Papalambros, and A. G. Ulsoy, “Combined Design and Robust Control of a Ve-
hicle Passive/Active Suspension,” in European Control Conference, Kos, Greece, Jul. 2007, pp. 1264–
1270 (see pp. 191–193, 198)

[283] A. G. Ulsoy, D. Hrovat, and T. Tseng, “Stability Robustness of LQ and LQG Active Suspensions,”
Journal of Dynamic Systems, Measurement, and Control, vol. 116, no. 1, pp. 123–131, Mar. 1994.
doi: 10.1115/1.2900666 (see pp. 191, 192, 198)

[284] J. A. Kypuros, System Dynamics and Control with Bond Graph Modeling. CRC Press, 2013, isbn:
978-1466560758 (see p. 193)

281

http://dx.doi.org/10.2514/3.20934
http://dx.doi.org/10.2514/1.58766
http://dx.doi.org/10.2514/1.G000218
https://www.mathworks.com/help/gads/patternsearch.html
https://www.mathworks.com/help/gads/patternsearch.html
http://dx.doi.org/10.1002/9781118601495
http://dx.doi.org/10.1006/jsvi.1998.1661
http://dx.doi.org/10.1016/S0005-1098(97)00101-5
http://dx.doi.org/10.1115/1.2899073
http://dx.doi.org/10.1115/1.2899073
http://dx.doi.org/10.1006/jsvi.2001.3591
http://dx.doi.org/10.1016/j.jsv.2004.04.027
http://dx.doi.org/10.1016/j.jsv.2004.04.027
http://hdl.handle.net/2027.42/58449
http://dx.doi.org/10.1109/tcst.2013.2240455
http://dx.doi.org/10.1109/tcst.2013.2240455
http://dx.doi.org/10.1115/1.2900666

[285] D. C. Karnopp, D. L. Margolis, and R. C. Rosenberg, System Dynamics: Modeling, Simulation, and
Control of Mechatronic Systems, 5th ed. Wiley, 2012, isbn: 978-0470889084 (see p. 193)

[286] G. Gonzalez and R. Galindo, “Removing the Algebraic Loops of a Bond Graph Model,” Proceedings
of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering,
vol. 222, no. 6, pp. 543–556, Sep. 2008. doi: 10.1243/09596518jsce559 (see p. 194)

[287] H. A. Simon, The Sciences of the Artificial, 3rd ed. The MIT Press, 1996, isbn: 978-0262691918 (see
p. 205)

[288] J. J. Granda and J. Reus, “New Developments in Bond Graph Modeling Software Tools: The Com-
puter Aided Modeling Program Camp-G and MATLAB,” in IEEE International Conference on Sys-
tems, Man, and Cybernetics, Orlando, FL, USA, Oct. 1997. doi: 10.1109/ICSMC.1997.638215 (see
p. 209)

[289] C. Kleijn, M. A. Groothuis, and H. G. Differ, 20-sim 4.6 Reference Manual, Controllab Products
B.V., 2017 (see p. 209)

[290] C. Sullivan. (2004). System Analogies. Handouts from ENGS 22, Systems, Dartmouth College,
url: http://www.dartmouth.edu/~sullivan/22files/System_analogy_all.pdf (visited on
10/31/2017) (see p. 209)

[291] The MathWorks. circshift, url: https://www.mathworks.com/help/matlab/ref/circshift.html
(visited on 04/03/2017) (see p. 213)

[292] ——, ndgrid, url: https://www.mathworks.com/help/matlab/ref/ndgrid.html (visited on
04/10/2017) (see p. 231)

[293] S. S. Skiena, The Algorithm Design Manual, 2nd ed. Springer, 2008, isbn: 978-1848000698. doi:
10.1007/978-1-84800-070-4 (see pp. 235, 236)

[294] T. H. Cormen, C. E. Leiserson, R. L. Rivest, et al., Introduction to Algorithms, 3rd ed. The MIT
Press, 2009, isbn: 978-0262033848 (see pp. 235, 236)

[295] M. J. Quinn and N. Deo, “Parallel Graph Algorithms,” Computing Surveys, vol. 16, no. 3, pp. 319–
348, Sep. 1984. doi: 10.1145/2514.2515 (see p. 237)

[296] E. Reghbati and D. G. Corneil, “Parallel Computations in Graph Theory,” SIAM Journal on Com-
puting, vol. 7, no. 2, pp. 230–237, May 1978. doi: 10.1137/0207020 (see p. 237)

[297] The MathWorks. blkdiag: Construct Block Diagonal Matrix from Input Arguments, url: https :
//www.mathworks.com/help/matlab/ref/blkdiag.html (visited on 10/03/2017) (see p. 241)

[298] D. R. Herber. Basic Implementation of Multiple-Interval Pseudospectral Methods to Solve Optimal
Control Problems, GitHub, url: https://github.com/danielrherber/basic-multiple-interval-
pseudospectral (see pp. 255–257, 263)

[299] L. N. Trefethen, Spectral Methods in MATLAB, 1st ed. SIAM, 2000, isbn: 978-0898714654. doi:
10.1137/1.9780898719598 (see pp. 256, 257)

[300] J. Waldvogel, “Fast Construction of the Fejér and Clenshaw–Curtis Quadrature Rules,” BIT Numer-
ical Mathematics, vol. 46, no. 1, pp. 195–202, Mar. 2006. doi: 10.1007/s10543-006-0045-4 (see
p. 257)

[301] D. R. Herber. Perfect Matchings of a Complete Graph, GitHub, url: https : / / github . com /
danielrherber/perfect-matchings-of-a-complete-graph (see p. 263)

[302] ——, Optimal Control Direct Method Examples, GitHub, url: https://github.com/danielrherber/
optimal-control-direct-method-examples (see p. 263)

[303] ——, PM Suspensions, GitHub, url: https://github.com/danielrherber/pm-suspensions (see
p. 263)

282

http://dx.doi.org/10.1243/09596518jsce559
http://dx.doi.org/10.1109/ICSMC.1997.638215
http://www.dartmouth.edu/~sullivan/22files/System_analogy_all.pdf
https://www.mathworks.com/help/matlab/ref/circshift.html
https://www.mathworks.com/help/matlab/ref/ndgrid.html
http://dx.doi.org/10.1007/978-1-84800-070-4
http://dx.doi.org/10.1145/2514.2515
http://dx.doi.org/10.1137/0207020
https://www.mathworks.com/help/matlab/ref/blkdiag.html
https://www.mathworks.com/help/matlab/ref/blkdiag.html
https://github.com/danielrherber/basic-multiple-interval-pseudospectral
https://github.com/danielrherber/basic-multiple-interval-pseudospectral
http://dx.doi.org/10.1137/1.9780898719598
http://dx.doi.org/10.1007/s10543-006-0045-4
https://github.com/danielrherber/perfect-matchings-of-a-complete-graph
https://github.com/danielrherber/perfect-matchings-of-a-complete-graph
https://github.com/danielrherber/optimal-control-direct-method-examples
https://github.com/danielrherber/optimal-control-direct-method-examples
https://github.com/danielrherber/pm-suspensions

	List of Figures
	List of Tables
	List of Algorithms
	List of Symbols
	List of Abbreviations
	List of General Notation
	Chapter 1 Introduction
	1.1 Introductory Example
	1.2 Three Design Domains
	1.3 A Design Process for Complete Dynamic System Design
	1.4 Solution Generation Challenges
	1.5 Dissertation Overview

	Chapter 2 Candidate Architectures through Enumeration
	2.1 Candidate Architectures with Perfect Matchings
	2.2 Candidate Graphs to Unique Useful Graphs
	2.3 Tree Search Algorithm
	2.4 Enumeration Case Studies
	2.5 Discussion
	2.6 Summary

	Chapter 3 Co-Design: Combined Plant and Control Design
	3.1 Problem Formulation
	3.2 Necessary Conditions for Optimality
	3.3 Practical Solution Considerations
	3.4 Test Problems
	3.5 Summary

	Chapter 4 Scaling of Dynamic Optimization Formulations
	4.1 Introduction
	4.2 Theory of Scaling Dynamic Optimization Formulations
	4.3 Motivating Examples
	4.4 Summary

	Chapter 5 Direct Transcription and Linear-Quadratic Dynamic Optimization
	5.1 Introduction
	5.2 Linear-Quadratic Dynamic Optimization
	5.3 Approximate Solutions with Direct Transcription
	5.4 Automated Problem Generation
	5.5 Extensions
	5.6 Numerical Examples
	5.7 Future Work
	5.8 Summary

	Chapter 6 Case Study: Design of Passive Analog Circuits
	6.1 Introduction
	6.2 Enumeration-Based Synthesis Methodology
	6.3 Examples
	6.4 Discussion
	6.5 Summary

	Chapter 7 Case Study: Design of Strain-Actuated Solar Arrays
	7.1 Introduction
	7.2 Modeling of the Strain-Actuated Solar Arrays and Rigid Spacecraft Bus
	7.3 Co-Design Problem Formulation
	7.4 Analytical and Numerical Results for SASA System
	7.5 Summary

	Chapter 8 Case Study: Design of Vehicle Suspensions
	8.1 Introduction
	8.2 A Problem Class with Linear Physical Elements
	8.3 Problem Formulation
	8.4 Results
	8.5 Summary

	Chapter 9 Conclusions and Future Work
	9.1 Summary
	9.2 Contributions
	9.3 Future Work

	Appendix A Enhancements to the Perfect Matching-based Tree Algorithm for Generating Architectures
	A.1 Overview
	A.2 Replicate Ordering
	A.3 Avoiding Loops
	A.4 Avoiding Multi-Edges
	A.5 Avoiding Line-Connectivity Constraints
	A.6 Checking for Saturated Subgraphs
	A.7 Enumerating Subcatalogs
	A.8 Alternative Tree Traversal Strategies
	A.9 Case Studies from Chapter 2

	Appendix B Additional Architectures/Graphs
	Appendix C Additional Material for Chapter 5
	C.1 Algorithms in the Automated Problem Generation Procedure
	C.2 Sparsity Patterns
	C.3 Codes
	C.4 Methods

	Appendix D Summary of Available Code
	Bibliography

