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Abstract

In this thesis, we discuss the development of high fidelity multiscale methods to understand fluid flow

past solid interfaces. Because of the dominant surface effects at the nanoscale, the classical field based

continuum models break down. Particle-based methods offer accurate insights into the flow physics but are

computationally expensive. Also, the ratio of pertinent to total information (particle trajectories) from these

simulations is minimal. This research entails bridging these two descriptions of the flow physics at different

scales to a unified, field-based quasi-continuum framework that can provide atomic level accuracy with

continuum level efficiency. First, we discuss the construction of the transport model where fluid density and

transport parameters such as viscosity are assumed to be varying across the confinement. These are, in turn,

incorporated using Empirical Quasicontinuum Theory (EQT) and Local Average Density Model (LADM).

We elucidate the failure of the “no-slip” boundary condition at the nanoscale and its estimation using

the collective diffusion coefficient from Equilibrium Molecular Dynamics (EMD) calculations. Further, we

reinterpret the slip phenomenon originating from liquid-solid interfacial friction. In this context, we discuss

the Generalized Langevin Equation (GLE) based single particle dynamical framework that is consistent with

the EMD simulations. Our adsorption based understanding of the flow physics elucidated that the slip length

does not change with the slit width. Next, the methodology of multiscale dynamical “coarse-grained” (CG)

framework is further refined to incorporate multi-physics to make it viable for a variety of fluid flow situations,

such as Poiseuille flow of binary mixtures and nanochannel electroosmosis. The resultant suite of multiscale

models significantly reduced the computational burden from tens of thousands of hours to seconds, without

trading off the accuracy of the conventional transport parameters. Finally, we demonstrate the failure

of local constitutive laws in fluids when strain-rate changes appreciably compared to the fluid molecular

diameter, under extreme confinement. Here, a genuinely non-local constitutive relationship between the

stress and strain-rate is more appropriate, and the viscosity is interpreted as a non-local kernel instead of a

material property defined pointwise. The results indicate that a non-local model performs appreciably well

in capturing the strain-rate sign reversals observed from Non-Equilibrium Molecular Dynamics calculations.
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Chapter 1

Introduction

1.1 Motivation

Understanding the behavior of fluids with different reagents, chemicals, and surfaces is imperative due to its

role in biological and industrial processes. With the growing impetus of nanotechnology research, physics of

confined fluid has generated tremendous curiosity, ranging from studying water flow in naturally occurring

transmembrane protein channels like aquaporins [159, 8] to artificially manufactured graphene/graphite slits

and Carbon Nano Tubes (CNT) [94, 178, 93, 69, 160, 72, 81, 80, 79]. The potential applications include

water purification [148, 157, 158, 79], biological flows in membranes [159, 8, 146], energy harvesting [118],

and many others. These applications have instigated the need to understand the fundamental mechanism

of fluid transport under confinement, both from experimental and theoretical standpoint [20].

The nature of interaction between the surface and the fluid is central to understand the flow physics [108,

31, 37], and it affects the flow in two different ways. First, competing surface and fluid interactions result

in structural inhomogeneity of the fluid [137, 141, 142, 100, 98]. This structural inhomogeneity leads to

spatially inhomogeneous viscosity [162, 163, 166, 27, 28]. Viscous contribution is dominant for flows in

naturally occurring hydrophilic channels such as silicates [23, 52]. Second, the lattice structure and the

chemical properties of the surface could result in the motion of the fluid molecules relative to the surface,

a phenomenon more commonly known as slip [174, 97, 168, 25]. Several experimental [94, 93, 178, 69] and

Molecular Dynamics (MD) [72, 160, 79, 81] studies have reported high enhancement, slip dominant flow in

engineered hydrophobic surfaces. Therefore, an accurate account of both of these phenomena is critical for

the development of a transport model for confined fluids.

1.2 Particle and hybrid particle-continuum based methods

Molecular dynamics (MD) simulations can provide detailed fundamental insights into the flow physics at the

nanoscale. Since the pioneering work of Rahman to study liquid Argon [138], they have evolved tremendously
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over the past five decades in terms of their performance, partly due to advances in computing power. In these

simulations, fluid (and solids alike) are modeled as discrete particles interacting typically via an accurate

albeit approximate pairwise potential field, and their trajectories are evolved using Hamilton’s equations

of motion. The interparticle potentials are representative of different interaction mechanisms such as Born

repulsion, van der Waals dispersion, electrostatics, bonds etc. Combined with appropriate spatial and tem-

poral sampling techniques, MD can be used to study fluid structure, dynamics, and transport. Despite its

rigor and accuracy, usage of MD as a predictive tool for transport phenomena is comparatively limited due to

high computational requirements (massive parallelization), resulting from high degrees of freedom (number

of particles) in the system. In addition, the requirement of small time steps for integrating the equations of

motion due to stiff potentials restricts one to probe hydrodynamic time scales in a reasonable computational

time.

The limitations of MD in probing hydrodynamic time scales can be alleviated to some extent by using

softer interparticle interactions and performing a so-called “coarse-grained” dynamical simulations such as

Dissipative Particle Dynamics (DPD), first proposed by Hoogerbrugge and Koelman [70]. It is an approach

similar to MD regarding preserving Galilean, translational, and rotational invariance, and is widely used

to perform simulations of fluid and complex systems at the mesoscale, when hydrodynamics and thermal

fluctuations play a role, along with retaining the discrete nature of the interacting particles. Despite its ad-

vantages, DPD has few drawbacks. First, the softening of the pairwise interaction potential term by a linear

function in typical DPD simulation leads to an unphysical equation of state [59] for liquids. Furthermore,

softening of the pairwise force also leads to faster dynamics, and the challenge is to address this deficiency

by introducing artificial friction between the particles using a pairwise dissipative and random forces that

obey the fluctuation-dissipation relationship.

Since molecular nature manifests predominantly at the liquid-solid interface, hybrid MD-continuum meth-

ods can also be utilized in context to study fluid flow problems [112, 61]. In these methods, MD is used to

simulate the interfacial phenomenon, while the continuum based modeling approach is undertaken at the

bulk-like region. The consistency of mass and momentum exchange between the two domains is maintained

by introducing a buffer region, typically of the order of one molecular diameter. The attractiveness of these

methods is lost due to the added complexity by adding constraints and convergence issues.

Due to the limitations mentioned above of particle-based and particle-continuum hybrid methods, there

is an imperative need to address them from a continuum standpoint. Continuum field-based methods with

strong foundations from atomistic or mesoscopic dynamics offer significant advantages over MD. It provides

the user flexibility over the spatial resolutions, which can significantly reduce the degrees of freedom. Also,
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a plethora of numerical methods (finite element, finite difference, spectral methods, etc.) can be leveraged

to provide numerical solutions. For this exercise, the classical continuum-based models should be revised by

embedding the microscopic physics in two ways. First, by introducing the liquid structure by incorporating

particle spatial correlations such as radial distribution function, and dynamical time correlations information

to ensure that the interparticle friction manifesting in the form of transport coefficients such as viscosity,

diffusion, and liquid-solid interfacial friction are accurate.

1.3 Review of Transport Models

1.3.1 Constitutive relationships and viscosity models

The formulation of accurate constitutive laws governing the relationship between the stress and strain-rate

is quite involved and active area of research. The earliest and simplest framework of intermolecular collision

mediated momentum exchange was provided by Chapman and Cowling [39]. It relies on the Chapman-

Enskog solution to the Boltzmann equation, that can describe the kinetic theory of gases in bulk. Although

the kinetic theory is extremely useful for computation of transport coefficients such as viscosity, diffusion,

and thermal conductivity, its usage is rather limited to monoatomic gases at low density. This is because it

neglects the ternary collisions, that become important at high density cases. Also, the calculation of temper-

ature dependent collision integrals becomes difficult for complex molecules. Application of different variants

of kinetic theory to compute inhomogeneous transport coefficients has met with limited success [126, 127, 1].

Besides the above outlined attempts based on the kinetic theory to rigorously determine the inhomo-

geneous transport coefficients, heuristic models such as the Local Average Density Model (LADM) can be

utilized for the same purpose [28, 20]. The underlying motivation of formulating LADM originates from early

efforts to construct excess free energy functionals for inhomogeneous fluids in classical Density Functional

Theory (c-DFT). With a specified equation of state for homogeneous (bulk) fluid, the LADM is used to

obtain transport properties corresponding to the local point of interest in the homogeneous fluid. Several

models for computing local average density exist in literature, such as generalized van der Waals model,

hard-rod model, Tarazona model etc. The LADM has provided reasonably satisfactory estimation of the

velocity profiles of confined fluids under shear driven situations [28, 125]. However, the accuracy of LADM

is still debated due to the lack of an explicit comparison of the local transport property provided by the

LADM with the one directly obtained from the MD simulations.

At molecular length scales, however, the notion of local transport properties may not always be an accu-

rate one. Close examination of the confined fluid flow velocity profiles obtained performing gravity driven
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MD simulations have confirmed the nature of non-quadratic velocity profiles near the interface [1, 166, 164].

Furthermore, under certain circumstances, the velocity profile showed local extrema while local shear stress

being a non-zero quantity, thereby challenging the validity of pointwise stress and strain-rate relationship.

The viscous momentum transfer mechanism, in strictest sense, has to be reinterpreted as non-local mecha-

nism instead of a local one [47]. Further studies in this context were able to characterize the non-local kernel

for homogeneous fluids [63]. However, computation of a truly non-local viscous kernel for confined fluid is

still an open problem [36].

1.3.2 Interfacial slip models

A general first order slip boundary condition for hydrodynamics prevalent in the literature is given as

ls
dux(z)

dz

∣∣∣∣∣
z=δ

= us, (1.1)

where z is the direction perpendicular to the confining walls, ux is the velocity field, ls is the slip length,

dux/dz is the strain rate, us is the slip velocity, which is the velocity of the fluid layer relative to the

adjoining wall, and δ is the distance from the surface to the location where the boundary condition is

applied, also known as the slip plane. Slip length is defined as the distance from the slip plane where the

linearly extrapolated value of the velocity is zero. Navier [107] proposed a similar form of the aforementioned

slip boundary condition where the slip length depends upon the interfacial friction coefficient ζ0 and the

fluid viscosity µ0 as ls = Aµ0/ζ0, where A is the interfacial area. This relationship stems naturally from an

interfacial force balance, where the viscous force balances the wall-fluid friction force. Although significant

progress has been made to understand the interfacial friction coefficient [64, 30, 121], the common approach

is to ignore the inhomogeneity in the density and the viscosity across the confinement. Huge variations in

the velocity gradient in the interfacial region can also lead to uncertainties in the computed value of slip

length [88], thereby limiting the applicability of Non-Equilibrium Molecular Dynamics (NEMD) as a reliable

tool to compute slip length. An exhaustive mention of these issues is given recently by Kannam et al. [90, 82],

where significant differences in the reported values of slip length have been highlighted.

Bhatia et al. have performed an array of studies targeting slip in meso and nano scale pores [76, 77, 22, 18].

They have developed an oscillator model for computing transport diffusion under special case of Maxwell’s

boundary condition, which is exact for low density fluids [76]. Viscous and diffusive components of flow are

superimposed over each other to obtain the effective transport flux. This approach, although promising,

relies on an approximation of diffuse wall boundary condition with the pore which is not always the correct
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representation of the wall. To apply their work to a defect free, rigid surfaces, Smoluchowski correction

factor is introduced [4], which is a complicated function of the thermodynamic state of the fluid and wall

structure, and till date, only limited studies exist for its calculation [151, 155].

Bocquet and Barrat have presented a statistical mechanical based model using Green-Kubo relations

for calculating slip length [30, 9]. This model computes the slip length as a ratio of a phenomenological

parameter, friction factor to the shear viscosity. This model can then be used in conjunction with Navier

slip boundary condition [31] to obtain the velocity profile. The friction factor is inherently related to the

fluctuations of wall-fluid interaction force, which can be computed from EMD simulations. Hydrodynamic

location of the wall is also computed using EMD correlations, where the Navier slip condition has been

applied. However, their expression for friction factor has been a subject of debate whether it does or

does not include fluid-fluid viscous effects as the expression involves cross-correlations between two solvent

particles [121].

Hansen et al. [64] have sought to mitigate the aforementioned deficiencies by considering the motion of

interfacial region from a collective dynamics point of view. The slip boundary condition in their work is

replaced by an integral boundary condition, which represents the average velocity on a slab of finite width,

unlike on the liquid-solid interfacial plane. The wall-fluid friction force, therefore, balances the viscous

shear forces and the additional body force. The friction coefficient is obtained using time autocorrelation of

COM force, and COM force–COM velocity cross-correlations on the slab. Their transport model, however,

neglects the density and viscosity variation across the confinement, and therefore results in a channel width

dependent slip length, even for planar surfaces.

Recently, Huang and Szlufarska [71] have developed a Green-Kubo like expression to obtain friction

coefficient from EMD simulations. They have argued that interfacial friction is not a collective quantity, but

a single-particle one. The resulting expression for the friction coefficient does not involve cross-particle time

correlations. The total wall-fluid friction experienced by the fluid is assumed additive from the contributions

of all the interfacial particles. This hypothesis can, in principle, allow one to use single particle dynamical

framework to evolve the trajectory of a representative interfacial particle that is consistent with the EMD

simulations, and indeed we have leveraged this point of view to explore dynamical coarse-grained methods

like GLE to compute interfacial friction.
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1.4 Thesis layout

The remainder of the thesis is organized as follows. In Chapter 2, we describe the construction of a multiscale,

quasi-continuum framework to predict the velocity profile of a fully developed, confined fluid, driven by a

constant gravity (or acceleration) field in the streamwise direction under isothermal conditions. Unlike the

classical approach (Stokes equation) where the material properties are assumed to remain constant, we

allow for a continuous variation of density and viscosity fields. In this context, we briefly discuss the EQT

framework to accurately predict density profile of a confined fluid by simulating Lennard-Jones (LJ) fluids

confined inside slit-like channels. The viscosity variations are incorporated using the LADM approach that

takes density variation as an input. The interfacial slip is modeled using the time autocorrelation of the

collective wall-fluid force acting on the center of mass of the fluid, that is calculated using EMD simulations.

We demonstrate the applicability of the transport model to predict the velocity profile of LJ fluids confined in

low and high interfacial friction conditions. In Chapter 3, we further improve the computational efficiency of

the transport model by discussing a stochastic, non-Markovian, GLE based framework to compute interfacial

friction. We demonstrate the accuracy of this approach by predicting the velocity profiles of gravity-driven

flow of confined water. In Chapter 4, we extend our multiscale framework to study the gravity-driven

flow of binary mixtures, where species-specific momentum equations account for the interspecies diffusive

momentum transfer. In Chapter 5, we use the transport model to investigate EOF, which incorporates the

solvent polarization, the reduction in interfacial mobility of ions to model the viscosity enhancement near the

interface. In Chapter 6, we reinterpret the viscous momentum transfer mechanism by including non-local

effects in the constitutive relationship between the stress and the strain-rate. Finally, concluding remarks of

this thesis are drawn in Chapter 7.
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Chapter 2

A Quasi-Continuum Hydrodynamic
Model for Slit shaped Nanochannel
Flow
In this chapter, we present a hydrodynamic model which includes both the lateral and longitudinal surface

effects. Spatially varying shear viscosity in the confining direction is determined using the existing correla-

tions for viscosity. Slip effects are modeled using a static Langevin equation describing the center of mass

(COM) motion of fluid particles [152, 153], with its stochastic force being the total wall-fluid interaction

force in the streamwise direction computed from an EMD simulation. We observe that, under the same ther-

modynamic state, only one EMD simulation is required to obtain parameters of Langevin model for different

channel widths. The model is used to study hydrodynamics for three systems, with differing surface-fluid

friction due to relative motion between surface and fluid for slit shaped nanochannels.

The rest of the chapter is organized as follows: in Sec. 2.1 we present the hydrodynamic transport

model. We briefly discuss the EQT method used to calculate density profiles of fluid under confinement

in slit channels. Local average density method (LADM) proposed by Bitsanis et al. [27, 28] is used with

viscosity correlations presented by Woodcock [170] to obtain spatial variations of fluid viscosity as a func-

tional of density. We also present the development of a generic boundary condition using Langevin type

model. In Sec. 2.2, necessary details of MD simulations are provided. In Sec. 2.3 results obtained from the

hydrodynamic model are discussed and compared with NEMD simulations.

2.1 Transport model

The starting point of the transport model is the Cauchy momentum equation, which relates inertial flux to

the diffusive flux and is given by

Dρmu

Dt
= −∇P +∇ · τ + f (2.1)

where D/Dt = ∂/∂t + u · ∇ is the material derivative, u is the velocity field, ρm is the mass density of the

fluid, P is the hydrostatic pressure, f is the body force per unit volume. τ is the deviatoric stress tensor,

which relates to strain rate constitutive relation to obtain the Navier–Stokes equation for incompressible
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fluids

Dρmu

Dt
= −∇P +∇ · (µ∇u) + f (2.2)

where µ is the dynamic viscosity. This can be further approximated for one-dimensional gravity driven low

Reynolds number flow (see Fig. 2.1) as

d

dz

[
µ(z)

dux(z)

dz

]
+mρ(z)gx = 0 (2.3)

with boundary conditions

ux

(
−L

2
+ δ

)
= ux

(
+
L

2
− δ
)

= us (2.4)

where ux(z) is the unknown streaming direction velocity, z is the direction of confinement, x is the streaming

direction, m is the molecular mass of the fluid, ρ(z) is the number density (which relates to mass density

ρm(z) = mρ(z), and is referred as density from now on), L is the channel width and gx is the gravity field

applied in the streaming direction. Continuity equation is already satisfied under the assumption that uz

is identically zero. Closure to the governing equations is provided by Dirichlet boundary condition at a

fixed distance δ from the surface. Inputs required for this framework are density, viscosity, magnitude of

slip velocity us and the distance δ from the actual position of the wall, where slip condition is applied. The

methods to obtain these inputs are discussed below.

2.1.1 Density profiles

We first calculate density variations along the confinement to facilitate computation of viscosity profile in

the slit. Here, we use Empirical-potential based Quasicontinuum Theory (EQT) to compute the density

profiles [137, 141, 142, 100, 99]. EQT is a multiscale framework for fast and accurate prediction of density

profile of confined fluid. It uses a continuum formulation to model the wall-fluid and fluid-fluid interaction

between the atoms, and solves for the density and total potential of mean force (PMF) inside a channel

in a self-consistent manner. The inputs to the EQT framework are wall-fluid, and fluid-fluid interaction

parameters, average density of fluid in the slit, and channel wall density. In EQT, for a slit like channel,

as shown in Fig. 2.1, density variation in the channel is modeled as a one-dimensional continuum variable

expressed by 1D steady-state Nernst–Planck equation,

d

dz

(
dρ(z)

dz
+
ρ(z)

kBT

dU(z)

dz

)
= 0, (2.5)
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with boundary conditions and integral constraint on average channel density as

ρ

(
−L

2

)
= ρ

(
+
L

2

)
= 0, (2.6a)

1

L

+L/2∫
−L/2

ρ(z)dz = ρavg, (2.6b)

where U(z) is the total PMF, T is the fluid temperature, kB is the Boltzmann constant, and ρavg is the

average number density of the fluid in the slit, which depends upon the thermodynamic state of the fluid,

i.e., operating temperature and pressure.

The total PMF has two components, namely wall-fluid (Uwf) and fluid-fluid (Uff) PMF, resulting from

interactions of wall-fluid and fluid-fluid particles, respectively, and is given by U = Uwf + Uff. Wall-fluid

PMF is computed from the continuum approximation of the wall, obtained by suitable integration taking

into account the wall structure and density (ρwall), and wall-fluid interaction parameters [156], as shown in

Eq. (2.7a). Similarly, fluid-fluid PMF in EQT can be computed by integrating the potential between the

fluid particles, weighted by the fluid density, as in Eq. (2.7b),

Uwf(z) =

∫
V

uwf(|z − r|)ρwall(r)dV, (2.7a)

Uff(z) =

∫
V

uff(|z − r|)ρ(r)dV, (2.7b)

where uwf and uff are wall-fluid and fluid-fluid pair potentials, dV is the infinitesimal volume element centered

at r, and ρ(r) is the fluid number density in the volume V , outside of which, interactions between particles

is neglected. A Lennard–Jones (LJ) pair potential that describes interaction between two particles, i and j

of same or different species (wall and fluid), separated at distance r is written as

uijLJ(r) =
Cij12

r12
− Cij6

r6
, (2.8)

where C12 = 4εijσ
12
ij and C6 = 4εijσ

6
ij are LJ potential parameters. Since LJ potential is highly repulsive

at small distances, computation of fluid–fluid potential may suffer from numerical singularities, leading to

spurious results, or may be rendering a very stiff, and in many cases unsolvable system of equations. To

avoid this, the repulsive core is “softened” by the introduction of structurally consistent smooth potential

functions and bridging them with the usual 12–6 form of the LJ potential. The fluid–fluid interactions used
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in this work can be summarized as [141]

uff(r) =



0 r < Rcrit

2∑
n=0

anr
n Rcrit ≤ r < Rmin

uff
LJ(r) Rmin ≤ r < Rcut

0 r ≥ Rcut

(2.9)

Rcrit and Rmin are parameters that define the softer repulsion and truncated core and can be obtained

using an optimization algorithm. C2 type continuity, which implies the two bridge potentials, and their first

and second derivatives have the same value at Rmin is ensured to uniquely identify the parameters an, as

discussed in Ref. [141]. Further discussion on these parameters and their values are provided in the results

section.

2.1.2 Viscosity profiles

In this section, we discuss the incorporation of viscosity variation into the hydrodynamic model. Since

density in the slit channel varies with position, we capture the viscosity as a density dependent property.

Density variations are used to estimate the local thermodynamic state of the fluid in confinement, and

correlations for shear viscosity for bulk fluid are mapped to obtain the local viscosity. Bitsanis et al. were

among the first to investigate from MD simulations the effect of density variation in velocity profiles obtained

from Couette flow [27]. Few salient features of their work are

1. Viscosity must be a local function of position in the confining direction to account for the observed

non-linearity in velocity profiles.

2. Density variation along the confining direction is correlated to the observed velocity profile.

3. Density profiles do not change significantly for a transport (NEMD) simulation as compared to an

equilibrium (EMD) simulation for the amount of shear rates of practical interest.

Based on the above observations, the authors proposed LADM which states that the local shear viscosity,

instead of being a direct function of density ρ(z), is a function of the local average number density ρ̄(z),

which is defined as

ρ̄(r) =
6

πσ3
ff

∫
|r−r′|<σff/2

ρ(r′)d3r′. (2.10)

This “coarse-grained” local average density identifies a unique homogeneous (bulk) state of confined inho-

mogeneous fluid at a particular location in the confinement. Further accurate modeling for local average
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density involves averaging density profile at each point with appropriate weight functions [68], where the

definition of local average density becomes

ρ̄(r) =

∫
|r−r′|<σff/2

ω(|r− r′|)ρ(r′)d3r′, (2.11)

where the weight function ω can take various forms to deal with different thermodynamic properties of

interest [44, 62], and satisfies the normalization condition

∫
|r−r′|<σff/2

ω(|r− r′|)d3r′ = 1. (2.12)

In this work, we choose hard-rod model using which the local average density equation is written in one

dimensional form as [167]

ρ̄(z) =
6

σ3
ff

∫
|z−z′|<σff/2

[(σff

2

)2

− (z − z′)2

]
ρ(z′)dz′, (2.13)

which can then be used to obtain viscosity using suitable models for equation of state of shear viscosity. En-

skog has provided a closed form expression for viscosity of fluids interacting with a hard sphere potential.[39]

Similarly for LJ fluids, once an effective hard sphere diameter is calculated [60], Enskog theory can be used to

predict shear viscosity. While suitable correlations such as those given in Ref. [41] exist, there are limitations

on their applicability to different thermodynamic states. Corrections based on an accurate equation of state

for LJ fluid have been proposed in Ref. [103], but they require empirical constants, which are different for

different fluids [75].

In this work, we adopt the method proposed by Woodcock to calculate viscosity from local average den-

sity [170]. A one parameter model which is valid for nearly all equilibrium states of liquid and gaseous phase

for LJ fluid is used. The correlation calculates viscosity as

µ(ρ̄∗, T ∗) = µ0(T )
[
1 +B∗µρ̄

∗ + CAH(1/T ∗)1/3(ρ̄∗)4
]
, (2.14)

where ρ̄∗ = ρ̄σ3
ff and T ∗ = kBT/εff are reduced local average density and temperature respectively, and kB

is the Boltzmann constant. µ0 is the zero density limit viscosity and is computed as

µ0 =
5

16σ2
ff

√
mkBT

π

fµ
Ω∗(2,2)

, (2.15)
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where Ω∗(2,2) is collision integral, and fµ is dependent upon collision integrals, which follow recursion relation

as discussed in Ref. [117]. For finite densities, additional corrections for first order dependence of viscosity

on density over µ0 is done through the addition of Rainwater-Friend coefficient [50] (B∗µ) as

B∗µ =
√

2(1− (T ∗)−4 − T ∗/8). (2.16)

CAH is the Ashurst-Hoover coefficient [6] and its value is taken as 3.025. For further details on the correlation,

readers are referred to the original text in Refs. [170, 117].

2.1.3 Boundary condition: Langevin model

To close the model, boundary conditions are needed. In macro-scale hydrodynamics, the use of “no-slip”

condition is widely accepted, in which the relative motion between the surface and the fluid is not assumed.

But at smaller scales, this phenomenological relation fails to hold. Fluid flow past a surface can exhibit

relative motion between the surface and the fluid, a phenomenon known as slip [179, 161]. The degree of

slippage depends on the nature of physical interaction between the surface and the fluid molecules. When

fluid particles try to move past a surface, a friction force tries to retard their relative motion due to the

trapping and hopping mechanism in surface-fluid potential energy map [174, 97, 168], such that the shear

stress in the fluid is balanced at the interface. Topology of the surface and strength of the surface-fluid

interaction relative to the applied shear gradient (Couette flow) or driving force (Poiseuille flow) dictates

the slip velocity [5, 31, 130, 109, 131]. We propose a model for computation of slip velocity for isothermal

gravity driven flow using Langevin dynamics [180, 152, 153], which incorporates these effects into a time

autocorrelation function of surface-fluid force in the streaming direction. We assume that the fluid slip is a

collective motion of particles, which can be modeled as a lumped Brownian particle in the dissipative force

field of the surface. This can be written in the form of Langevin equation [152, 153] as

M
duc

dt
= −ηu+ F (t), (2.17)

where M = Nm is the mass of the lumped Brownian particle, N is the number of particles in the simulation

box, uc is the collective velocity and F (t) is the random force acting on the particle due to the surface in

the absence of any non-equilibrium force and relates to the dissipative coefficient η from the fluctuation-

dissipation theorem as

η =
1

kBT

∞∫
0

〈F (0)F (t)〉dt. (2.18)
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Using Einstein relation [89], collective diffusion coefficient Dc of the Brownian particle can be written as

Dc =
kBT

η
, (2.19)

which can be related to slip velocity, us, in NEMD via mobility, µmob and diffusion relationship

µmob =
us

Mgx
=

Dc

kBT
, (2.20)

where gx is the applied gravity. The final expression for slip velocity can be written as

us =
DcMgx
kBT

= kBTNmgx

 ∞∫
0

〈F (0)F (t)〉dt

−1

. (2.21)

Time autocorrelation of the total surface-fluid interaction force in the streaming direction can be computed

using an equilibrium MD simulation, which is computationally less expensive to perform as compared to

non-equilibrium MD simulation [30, 9]. Computation of force autocorrelation is independent of width of the

nanochannel, provided they are at the same thermodynamic state. This model serves as a fast and accurate

tool for calculation of the slip velocity. Slip boundary condition is applied at the location of first density

peak, which is the location of PMF minimum [22].

2.2 MD Simulation

We consider three types of systems to represent differing levels of friction between the surface and the

fluid. The working fluid in all cases is single site methane, represented as a LJ particle. For the first (low

friction) system, methane confined between rigid graphene sheets is considered. For the second system,

we consider rigid graphene like structure, with the wall interaction parameter changed to that of methane

(εww/kB = 148.1 K). This case is similar to the one presented by Sokhan et al. [155], and results in a

moderate friction type of a flow situation. For the third system, four layers of a rigid silicon wall oriented

in [111] direction as presented in Ref. [132] is considered with εww/kB = 294.93 K, and is representative

of high friction (no-slip) type boundary. All MD simulations considered here are performed at constant

temperature of 300 K with a timestep of 1 fs. Lorentz-Berthelot combination rule is used to calculate the

interaction parameters of surface and fluid. The number of particles in a channel is estimated using the

linear superposition approximation [150, 43], which provides a simpler way of computing the average density

in a nanochannel. Center to center distance between the first layer of wall atoms, closest to the fluid atoms

13



from top and bottom walls, is defined as the channel width, and this definition is used for computing the

average density in the nanochannel. Simulations are performed for channel widths 20σff to 3σff, for all the

systems studied here.

MD simulations are performed with LAMMPS [123], with working fluid as single site methane molecule.

Both wall–fluid and fluid–fluid interactions are modeled with 12–6 LJ potential (see Eq. (2.8)), with param-

eters reported in Table 2.1. For EMD simulations, systems are equilibrated for 5 ns by simulating an NVT

ensemble with Nosé–Hoover thermostat [110] with time constant of 0.4 ps. After that, production run for 10

ns is performed, with data collected every 0.02 ps for calculating force autocorrelation. This data is divided

into 1000 similar samples of 10 ps each, and the resultant force autocorrelation is averaged by the number

of samples.

NEMD simulations are performed with the same force field parameters as for EMD simulations. In

addition, a uniform gravity field is applied in the x-direction, with their magnitude 4 × 10−4 nm/ps2 (for

graphene wall), 2× 10−3 nm/ps2 (for modified graphene wall), and 2× 10−3 nm/ps2 (for silicon wall, except

for 3σff channel in this case, where 5 × 10−3 nm/ps2 is used for better signal to noise ratio). To control

the temperature, we again make use of the NVT ensemble with Nosé–Hoover thermostat, only this time the

thermostat is coupled to y and z directions, so that it does not interfere with the flow dynamics. We also

checked that the thermostat follows the equipartition theorem, by comparing the thermal kinetic energy

(computed using peculiar velocity) per particle in each direction to be equal to kBT/2. This ensures that

the thermostat effect is observed in each direction due to inter-particle interactions, despite not explicitly

coupling it with x-direction. Simulations are performed for 20 ns, the first 10 ns data is discarded to allow for

a fully developed flow profile, and the next 10 ns data is collected at every 0.2 ps. Ten identical simulations

are performed with initial velocities of particles drawn from a Maxwell distribution with different seeds, to

get an error estimate on the mean velocity profile. Bins of width 0.1σff are used to compute the density

and 0.2σff are used to sample velocity profiles. For reliable statistics, a minimum of 500 fluid particles were

simulated in MD system, with box lengths suitably adjusted to account for the correct average density in

the channel.

2.3 Results

To test the proposed hydrodynamic model, we present here the results for three different types of systems

with differing surface–fluid interaction and corrugation. We calculate the density profiles from EQT, which

are used in calculating viscous component of the flow. Slip component of the flow is incorporated using
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Eq. (2.21). For the low friction system (C–CH4), fluid inside the slit is in equilibrium with a bath of bulk

density (ρb) 2.138 atoms/nm3, whereas moderate friction system (C∗– CH4) is in equilibrium with bulk

fluid with density ρb = 2.936 atoms/nm3. Lastly, the high friction case (Si–CH4) is at thermodynamic state

corresponding to a bulk density ρb = 2.97 atoms/nm3. To obtain the values of parameters Rmin and Rcrit

in Eq. (2.9), we adopt the linear scaling relations proposed in Ref. [141] as a first approximation. These

parameters are then fine tuned to obtain the present results. EQT parameters are reported in Table 2.2.

Comparison of the density profiles in Fig. 2.2 between EQT and MD shows that there is a very good quan-

titative match between the two methods.

Variation of the local average density (ρ̄) computed from EQT profile using Eq. (2.13) is also plotted in

Fig. 2.2. We see that the average density is weighted average form of the density, and hence shows less un-

dulations in its profile. There is not much shift in the peak position between the average density and density

peaks because of the nature of the chosen weight function, which provides a higher bias for |z − z′| → 0 as

evident from Eq. (2.13). A representative plot of viscosity profile is presented for Si–CH4 system in Fig. 2.3.

It should be noted that viscosity in the limit of zero average density (ρ̄→ 0) is µ→ µ0, which is the dilute

gas viscosity.

The autocorrelation integral
∞∫
0

〈F (0)F (t)〉dt is computed from the autocorrelation data 〈F (0)F (t)〉 ob-

tained from EMD simulation. We assume that the autocorrelation follows exponential relaxation. A two

parameter exponential function is fitted to MD autocorrelation data, and further calculations for computing

the integral is done on the fitted function. This process is needed for only one slit, since they are indepen-

dent of slit size, and the results presented in Fig. 2.4 are for 20σff channel. As evident from the plots, the

maximum value of force autocorrelation 〈F (0)F (0)〉 increases from lowest friction (C–CH4) case to highest

friction case (Si–CH4), indicating that magnitude of slip velocity should be highest in C–CH4 system and

lowest in Si–CH4 system, as understood from Eq. (2.21). The parameters for exponential fit are reported in

Table 2.3.

2.3.1 Low wall-fluid friction: Methane confined between graphene surfaces

Since the surface energy parameter of graphene is very low (εww/kB = 28 K) and it possesses a hexagonal

closed pack structure of sp2 hybridized carbon with bond length of 0.142 nm compared to its diameter of 0.34

nm, its surface landscape is very smooth. Therefore, this weakly corrugated surface results in a high degree

of specular reflections of fluid particles after interaction with the wall, leading to a very little resistance to

the collective motion of fluid under gravity driven flow. This physics is well captured in the results presented

in Fig. 2.5 for various slit sizes, which demonstrate that there is a considerable amount of slip flow, reflected
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by the plug-like nature of velocity profiles. It can be deduced that the viscous effects are not so important in

this type of low wall-fluid friction systems. However, the contribution of slip flow decreases with increase in

the slit size, where the effect of the wall subsides in the region far away from the interface, and the viscous

contribution starts to increase. Slip velocity boundary condition is applied at the first peak of the density

profile, which is at a distance of 0.3619 nm from the wall.

2.3.2 Moderate wall-fluid friction: Methane confined between modified

graphene surfaces

For this system, the LJ potential energy parameter εww of the wall was set equal to that of the fluid, thereby

making the wall–fluid (slip) and fluid–fluid (viscous) effects comparable to each other. The amount of slip

observed in response to applied gravity is less than that of graphene-methane system (as applied gravity

value for the slip case is about one order of magnitude less than that of the other two cases), but still there

is a considerable amount of slip present in the velocity profiles as shown in Fig. 2.6. This can be explained

by increased corrugation of the surface potential, responsible for the degree of slippage. Enhanced value of

the wall-fluid interaction energy parameter results in more friction and therefore provides more resistance to

the moving fluid, as compared to the low friction case. In this case, a prominent parabolic shaped velocities

superimposed on a considerable amount of slip flow for larger slit size is observed (see Fig. 2.6(a)). We

again observe that the effect of slip contribution increases with decreasing slit size, similar to slip case (see

Figs. 2.6(a)-2.6(d)). This is due to the wall effects becoming dominant in the smaller slit size channels,

because the confining surfaces are closer. Again, slip velocity boundary condition is applied at the first peak

of the density profile, which is at a distance of 0.3619 nm from the wall.

2.3.3 High wall-fluid friction: Methane confined between silicon surfaces

In this case, surface structure (FCC 111, rougher than that of graphene lattice) and wall-fluid interaction

energy parameter result in increased corrugation of the potential, which is non-conducive for facilitating

slip. A very little amount of slip is observed as shown in Fig. 2.7. This case is representative of the viscous

effects dominating over slip. The velocity profiles show a parabolic type nature in larger size slits as shown

in Fig. 2.7(a), while a non-parabolic velocity profile in clearly evident in Fig. 2.7(b) for a slit size of 9σff,

which shows undulations near the interface. Reducing the slit size further to 4σff, where no bulk type region

is observed in the density profile (see Figs. 2.2(c) and 2.3), shows significant deviation from parabolic profile

as seen from Fig. 2.7(c) which one would obtain using a constant density and viscosity. Thus, a spatially

varying density and viscosity formulation of hydrodynamic problem is important especially in smaller slit
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sizes. Again, the slip velocity boundary condition is applied at 0.3239 nm, which is the first density peak

location. It is observed that the match between continuum and MD results is not so good for 3σff wide

channel. This can be attributed to assumption of exponential relaxation for autocorrelation of wall–fluid

interaction force (see Fig. 2.4(c)). A better approximation would capture the backscattering effects in the

autocorrelation, thereby reducing the value of the integral and enhanced value of slip, which currently lacks

in the present approximation.

2.3.4 Mass flow rate

To test the relative contribution of slip and viscous effects in different systems, we calculate the mass flow

rate, ṁ, as

ṁ =

+L/2−δ∫
−L/2+δ

mρ(z)ux(z)dz (2.22)

The above equation assumes unit length in y-direction. To compute the slip contribution to the mass flow

rate ṁs, the profile ux(z) is replaced by a constant value of us obtained from Eq. (2.21). The ratio ṁs/ṁ

is calculated for all systems and it is observed from Fig. 2.8, that the contribution of slip in mass flow rate

is highest in narrower slits. Similar trends are also observed by Bhatia et al. in Ref. [21], where the effect

of contribution of viscous flow decreases in narrower SWNT (10,10) as compared to larger SWNT (60,60).

While viscous effects are important in larger slits and slip starts to become a dominant flow mechanism

in narrower slits, the contribution of viscous effects still cannot be neglected since they account for about

30 percent of flow rate in high friction system at slit size of 4σff (see Fig. 2.8(b)). A constant density

and viscosity based transport model would result in a very different value of mass flow rate, therefore the

importance of density and viscosity variations cannot be overlooked in these cases.

In this chapter, we have developed a quasi-continuum hydrodynamic transport model for gravity driven

flow in slit shaped nanopores. We have demonstrated the importance of both viscous and slip components

in the velocity profile by considering three different types of systems which elucidate competition between

the two phenomenon. Density profiles are used to calculate space dependent viscosity profile, using LADM

method. This variation is necessary to capture the non-parabolic nature of velocity profiles as it would have

been for constant density and viscosity case. A general boundary condition which takes into account the

total wall-fluid interactions modeled into the static Langevin equation describing center of mass motion of

fluid inside the slit is used. It is demonstrated that this boundary condition works for a spectrum of wall-fluid

interaction type, and its parameters are constant for fluids confined in slit under same thermodynamic state.

Furthermore, it is revealed from the velocity profiles that the slip contribution in mass flow rate increases in
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all cases when the confining length is decreased, which indicates that wall-fluid effects become more dominant

compared to fluid-fluid effects for smaller slit sizes. Overall, the model results in good agreement with the

velocity profiles obtained from NEMD simulations, and is valid for reasonable thermodynamic states that

are studied in experiments for a variety of wall-surface interactions.
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Table 2.1: LJ interaction parameters for surface and fluid atoms. C is carbon atom, C∗ is carbon atom with
methane LJ energy parameter and Si is silicon atom. Fluid is LJ methane denoted by CH4.

Atoms σ (nm) ε (kJ/mol)
CH4–CH4 0.3810 1.2314
C–C 0.3400 0.2328
C∗–C∗ 0.3400 1.2314
Si–Si 0.3385 2.4522
CH4–C 0.3605 0.5354
CH4–C∗ 0.3605 1.2314
CH4–Si 0.3597 1.7377

Table 2.2: EQT parameters for computing density profiles.
System Rcrit (nm) Rmin (nm) a0 (kJ/mol) a1 (kJ/mol/nm) a2 (kJ/mol/nm2)
C–CH4 0.24 0.4125 87.1561 -417.4426 492.9563

C∗– CH4 0.19 0.4095 99.1396 -475.7608 563.9083
Si–CH4 0.19 0.4170 71.4594 -341.7384 401.6761

Table 2.3: Parameters for exponential fit 〈F (0)F (t)〉 ≈ A exp(−Bt).
System A (kJ/mol/nm)2 B (1/ps)
C–CH4 2.256× 103 15.710

C∗– CH4 1.186× 104 12.484
Si–CH4 5.722× 105 16.350
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Figure 2.1: Schematic plot of the gravity driven flow considered in present work.
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Figure 2.2: Density (ρ(z), top plot) and average density profiles (ρ̄(z), bottom plot) computed using LADM
for select cases of (a) C–CH4 (8σff and 3σff), (b) C∗–CH4 (7σff and 3σff), and (c) Si–CH4 (9σff and 4σff)
type systems. For density subplot, line (blue) represents EQT results, while circles (red) represent profiles
from MD simulation.
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Figure 2.3: Average density (dashed, left-axis) and viscosity (bold, right-axis) for 4σff wide Si–CH4 system.
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Figure 2.4: Surface-fluid total force autocorrelation from MD simulation (circles, blue) and exponential fits
(bold line, red) for (a) C–CH4, (b) C∗–CH4 and (c) Si–CH4 system.
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Figure 2.5: Velocity profiles for methane confined in graphene slits of size (a) 20σff, (b) 11σff, (c) 7σff and
(d) 4σff. Continuum results are in solid line (blue), while MD results are represented by error bars (red).
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Figure 2.6: Velocity profiles for methane confined in modified graphene [C∗] slits of size (a) 20σff, (b) 10σff,
(c) 5σff and (d) 3σff. Continuum results are in solid line (blue), while MD results are represented by error
bars (red).
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Figure 2.7: Velocity profiles for methane confined in silicon slits of size (a) 20σff, (b) 9σff, (c) 4σff and (d)
3σff. Continuum results are in solid line (blue), while MD results are represented by error bars (red).
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Figure 2.8: Percent contribution of slip to mass flow rate (a) C–CH4 system marked with open circles (black)
and C∗–CH4 system with open squares (red) (b) Si–CH4 system with bold circles. The lines are drawn as a
guide to the data points.
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Chapter 3

Interfacial Friction based
Quasi-Continuum Hydrodynamical
Model
In this chapter, we formulate a one-dimensional isothermal hydrodynamic transport model for water, which

is an extension to the previous chapter. Viscosity variations in confinement are incorporated by the local

average density method. Dirichlet boundary conditions are provided in the form of slip velocity that depends

upon the macroscopic interfacial friction coefficient. The value of this friction coefficient is computed using

a novel generalized Langevin Equation (GLE) formulation that eliminates the use of equilibrium molecular

dynamics (EMD) simulation. Gravity driven flow of SPC/E water confined between graphene and silicon slit

shaped nanochannels are considered as examples for low and high friction cases. The proposed model yields

good quantitative agreement with the velocity profiles obtained from non-equilibrium molecular dynamics

(NEMD) simulations.

3.1 Transport model

The starting point of a one-dimensional gravity driven flow in a slit channel is the Stokes equation

d

dz

[
µ(z)

dux(z)

dz

]
+mρ(z)gx = 0, (3.1)

with boundary conditions

ux

(
−L

2
+ δ

)
= ux

(
+
L

2
− δ
)

= us, (3.2)

where (x, z) are the streaming direction (direction of the flow) and the confined direction, respectively; ux(z)

is the unknown streaming velocity, m is the molecular mass of the fluid, gx is the applied gravity in the

streaming direction, ρ(z) is the number density, µ(z) is the shear viscosity, and L is the channel width. The

channel walls are located at −L/2 and +L/2. Dirichlet boundary conditions are provided at a distance δ

from the wall, where the first fluid layer starts to develop after the void region near the interface, with us

as the slip velocity. The continuity equation is satisfied under the assumption that uz is identically zero. A
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mathematically equivalent set of boundary conditions for the current problem can also be written as

Aµ(z)
dux(z)

dz

∣∣∣∣∣
z=−L/2+δ

= ζ0us, (3.3a)

dux(z)

dz

∣∣∣∣∣
z=0

= 0, (3.3b)

where A is the interfacial area and ζ0 is the macroscopic interfacial friction coefficient. Eq. (3.3a), although

similar to the slip boundary condition presented in Eq. (1.1), describes the force balance at the interface.

At the interface, the wall shear force is balanced by the interfacial friction force, which is proportional to

the relative velocity between the wall and the fluid (slip velocity). The second condition in Eq. (3.3b) is

representative of the symmetry of the velocity profile at the center point of the slit channel. Integrating the

Stokes equation (Eq. (3.1)) once in the region (−L/2 + δ, 0) and using Eq. (3.3b), we get

− µ(z)
dux(z)

dz

∣∣∣∣∣
z=−L/2+δ

+mgx

0∫
−L/2+δ

ρ(z)dz = 0. (3.4)

Now, making use of Eq. (3.3a) and observing that ρ (−L/2,−L/2 + δ) = 0, Eq. (3.4) can be reformulated

to obtain an expression for the slip velocity (us) as

us = A
mgx
ζ0

0∫
−L/2

ρ(z)dz. (3.5)

This value of slip velocity can be used as a Dirichlet boundary condition in Eq. (3.2). Inputs required for this

framework are density, viscosity, and the interfacial friction coefficient ζ0. Density can be obtained from the

EQT framework discussed in chapter 2. The methods to obtain the remaining inputs are discussed below.

3.1.1 Viscosity profiles

Similar to our previous approach, we compute the shear viscosity of the confined fluid using the LADM

[167]. It coarse-grains the local density over one molecular diameter size, and effectively identifies a state of

homogeneous fluid (ρ̄, T ), for each location z in the confinement. The 1D local average density is calculated

as

ρ̄(z) =
6

σ3
ff

∫
|z−z′|<σff/2

[(σff

2

)2

− (z − z′)2

]
ρ(z′) dz′, (3.6)
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where σff is the Lennard-Jones (LJ) diameter of the fluid, and for SPC/E water its value is 0.317 nm.

The properties of homogeneous fluids are well understood and can easily be calculated from MD. Although

equations of state for these properties exist for LJ type of fluids [41, 103, 170], no comprehensive database

or formulae exist for the shear viscosity of bulk water. Therefore, we performed EMD simulations for bulk

water and used Green-Kubo formulation to compute the shear viscosity of SPC/E water [49]. Further com-

putational details are provided in Sec. 3.2.

3.1.2 Interfacial friction coefficient

To compute the interfacial friction coefficient ζ0, we follow the linear response theory approach presented by

Huang and Szlufarska in Ref. [71]. We first compute the friction coefficient ζj0 of an individual fluid particle

j near the interface. Using linear response theory in conjunction with generalized Langevin equation (GLE),

the Green-Kubo relation for ζj0 can be expressed in terms of equilibrium time correlation functions as

ζj0 =

∞∫
0

〈fwf
x,j(0)fwf

x,j(t)〉dt

kBT +

∞∫
0

〈vx,j(0)fwf
x,j(t)〉dt

, (3.7)

where fwf
x,j and vx,j are the instantaneous streaming direction wall-fluid force and velocity of the particle j near

the solid wall. The time correlation in the numerator is the single-particle wall-fluid force autocorrelation

function (FACF) and denominator contains wall-fluid force–velocity cross-correlation function (FVCCF).

Then, we sum the contributions from all the interfacial fluid particles to obtain the total interfacial friction

coefficient ζ0 as

ζ0 =
∑
j

ζj0 . (3.8)

The FACF and FVCCF in Eq. (3.7) can be evaluated either from EMD simulation or any other particle

sampling method that can simulate the single-particle dynamical motion of confined fluids in equilibrium.

Once the friction coefficient is known, the slip velocity is computed from Eq. (3.5), thereby rendering the

model closed.

In this work, we discuss a GLE based simulation approach to compute the interfacial friction coefficient.

The description of a particle’s motion by a GLE provides a powerful coarse-grained multiscale approach to

study its equilibrium correlation functions. GLE describes the motion of a test particle in terms of dissipative
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and thermal forces (thermal noise), which are coupled via fluctuation-dissipation (FD) relation [11, 33]. The

practical use of GLE can be made to study physical systems provided the memory function that characterizes

the dissipative force and the thermal noise autocorrelation, is known apriori. Sanghi and Aluru [143, 144]

recently demonstrated that the thermal noise properties in confined fluids do not change significantly across

the confinement. Further, thermal noise characteristics in confined fluids are not found to be significantly

different than that of the same fluid in the corresponding bulk state. Therefore, the dynamics of confined fluid

can be modeled using the noise characteristics of the bulk fluid; and confinement effects can be modeled

by a position dependent mean force, which can be obtained from EQT. Using this GLE approach, they

simulated the single-particle motion along the confined direction and computed several dynamical quantities

(mean-squared displacement, survival probability, velocity autocorrelation function, etc.) at different spatial

regions of confined slit channels. The computed quantities were found in good quantitative agreement with

those obtained from EMD simulations. With this knowledge, to compute the interfacial friction coefficient,

we formulate a two-dimensional (2D) GLE model as

m
dvz,j(t)

dt
= −m

t∫
0

K(t− t′)vz,j(t′)dt′ + f tot
z,j (zj(t)) +Rz(t), (3.9a)

m
dvx,j(t)

dt
= −m

t∫
0

K(t− t′)vx,j(t′)dt′ + f tot
x,j (xj(t), zj(t)) +Rx(t), (3.9b)

dzj(t)

dt
= vz,j(t),

dxj(t)

dt
= vx,j(t). (3.9c)

Here m is the mass of the fluid particle j, while vz,j , vx,j are, respectively, the velocities in the confined

(z) and streaming (x) directions. Time dependent memory function K(t) characterizes the dissipative force,

f tot
z,j and f tot

x,j are the instantaneous forces in z and x directions, respectively, experienced by the particle

due to the structural inhomogeneity, while Rz(t) and Rx(t) are the random forces in confined and streaming

directions, respectively. The random force satisfies the following statistical properties

〈Rα(t)〉 = 0, (3.10a)

〈vα,j(0)Rβ(t)〉 = 0, (3.10b)

〈f tot
α,j(0)Rβ(t)〉 = 0, (3.10c)

〈Rα(0)Rβ(t)〉 = mkBTK(t)δαβ , (3.10d)
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where α and β are the directions in the 2D system (x and z), and δαβ is the Kronecker delta, which is

unity only when α = β and zero otherwise. The memory function K(t) in both confined (Eq. (3.9a)) and

streaming (Eq. (3.9b)) direction equations is the same. Since the memory function is same in the two

directions, the thermal force also has identical statistical properties in both directions (noise is assumed

isotropic, Eq. (3.10d)). Also, the memory function for this confined system is assumed to be the same

as the memory function of the corresponding bulk water state. To justify this assumption, we compare

the memory function K(t) of bulk water and water confined within the first interfacial layer of 4σff wide

silicon slit channel in Fig. 3.2(a). The confined water is in equilibrium with bulk water at density 33.46

molecules/nm3. It can be observed from the plot that the time decay characteristics and the correlation time

of the memory function is not significantly different from corresponding bulk state even under high degree of

confinement. The data for the memory function for bulk water is provided in the supplementary information

of Ref. [17]. The instantaneous force values on particle j, i.e., f tot
z,j and f tot

x,j , are realized from the static

mean force maps F tot
z (z) and F tot

x (x, z). Since the magnitude of F tot
z is very large near the interface, its

variation along x is ignored, and it is directly obtained from EQT as F tot
z (z) = −dU tot(z)/dz. This means

that the dynamics along the confined direction is primarily dictated by a 1D GLE formulation (Eq. (3.9a)),

as demonstrated by Sanghi and Aluru [143, 144]. However, it is necessary to consider the variation of F tot
x

in both directions, since its variation in the streaming direction is necessary to capture the effect of surface

corrugations on the friction coefficient, and its magnitude changes very sharply along the confined direction

near the interface. Also, the total mean force map along the streaming direction can be approximated as

the wall-fluid force map (F tot
x (x, z) ≈ Fwf

x (x, z)). This approximation means that the spatial inhomogeneity

in the fluid density profile in the streaming direction primarily results due to the variation in the wall-fluid

potential. Figures 3.2(b) and 3.2(c) show the comparison of the streaming direction total force and the wall-

fluid force profile for graphene-water and silicon-water interfaces, calculated using EMD, at the location of

the first density peak. It can be observed that the wall-fluid force profile does not differ significantly from

the total force profile near the interface. The advantage of this approximation is that the two-dimensional
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wall-fluid force map can be computed analytically using the structure of the wall as

Uwf
3D(x, y, z) =

∑
ri<Rcut

uwf
LJ(ri), (3.11a)

dUwf
3D

dx
=
∑

ri<Rcut

duwf
LJ

dri
· x− xi

ri
, (3.11b)

Fwf
x (x, z) = −

Ly∫
0

dUwf
3D

dx
exp(−βUwf

3D) dy

Ly∫
0

exp(−βUwf
3D) dy

, (3.11c)

where ri = ((x−xi)2+(y−yi)2+(z−zi)2)1/2 is the distance between the wall particle centered at (xi, yi, zi) to

the point of interest (x, y, z), uwf
LJ is the 12–6 LJ wall-fluid interaction potential, Uwf

3D is the three dimensional

wall-fluid interaction energy, β = 1/kBT , and Ly is the box length in the y direction. The wall particles

which are inside the cutoff length Rcut = 1.4 nm are considered in the summation, similar to the confined

MD simulations. Therefore, all the inputs needed to compute the interfacial friction coefficient are obtained

without using computationally expensive EMD. The numerical details to solve 2D GLE model are discussed

in Sec. 3.2. We will compare the accuracy of our proposed GLE approach versus the EMD in the results

section.

3.2 Simulation Details

Different types of MD simulations are performed in the present work. We used the LAMMPS [123] package in

all of our computations. Water-water interactions are described by the SPC/E model [10]. To calculate the

electrostatic interactions between water molecules, Particle-Particle Particle-Mesh (PPPM) method is used.

First, EMD simulations of bulk water are performed to evaluate the shear viscosity using the Green-Kubo

method as [66]

µ =
V

6kBT

∞∫
0

∑
α

∑
β 6=α

〈Pαβ(0)Pαβ(t)〉dt, (3.12)

where V is the volume of the simulation box, Pαβ is the off-diagonal stress component, and α, β are the

directions in the Cartesian coordinate system (x, y, z). These computations are performed for a range of

reduced densities ρσ3
ff = 0.1 − 1.6 in a NVE ensemble. After that, we computed the time autocorrelation

of the off-diagonal stress components and fitted the results to a Gaussian-exponential form to capture the

two stage relaxation process of the autocorrelation [49]. We used the resultant fit to compute the integral in
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Eq. (3.12). Our computed viscosity values around the state point ρσ3
ff = 1.0 were found in good agreement

(maximum 4% deviation) with the published data for SPC/E model [7]. The density versus viscosity data

is then fitted to a cubic Hermite polynomial. The viscosity data along with the coefficients of the cubic

Hermite polynomial are provided in the supplementary information of Ref. [17] The resultant fit is then used

in conjunction with LADM to estimate viscosity in the confinement by interpolation. The EMD data points

and the fit are plotted in Fig. 3.3.

EMD simulations of confined water are performed with two different surfaces representing contrasting

levels of interfacial friction. Wall-fluid interactions are modeled by the 12–6 LJ potential. The first system

consists of water confined in graphene sheets at 298 K [100], and serves as a low friction case. The carbon-

water LJ interaction force-field is taken from Gordillo and Marti [56]. For this force-field, the interactions

between the hydrogens of water and carbon are ignored. We also studied the graphene-water and graphite

water systems with carbon-water interaction force-field provided by Wu and Aluru [173], which is realistic

in terms of reproducing the experimental contact angle between water and graphite surface. The motivation

behind the usage of different force-fields is two-fold, which is to test the fidelity of the transport model and

to understand the effects of wall-fluid interaction parameters on the flow characteristics. For the second

system, water is confined inside a two four-layered rigid silicon walls oriented in [111] direction at 300 K [99],

and is representative of high friction type surface. The total number of particles in confined simulations

correspond to a reference bulk state of 33.46 molecules/nm3, and are estimated using the linear superposition

approximation [150, 43]. Channel width is defined as the center to center distance between the first layer

of wall atoms closest to the fluid. This definition is used to calculate the average channel density ρavg.

The channel widths considered in this work are 20σff, 10σff, 7σff, and 4σff to test the model accuracy for

various length scales. In confined EMD simulations, systems are equilibrated for 5 ns by simulating an NVT

ensemble with Nosé–Hoover thermostat [110] with a time constant of 0.2 ps. After that, production run for

10 ns is performed, with data collected every 0.02 ps for calculating the necessary correlations. This data is

divided into 1000 similar samples of 10 ps, which serve as ensembles under the ergodic hypothesis, and the

resultant correlations are averaged by the number of samples.

For confined NEMD simulations, different magnitudes of gravity field are considered to demonstrate

the applicability of the continuum method under the linear response regime, i.e. the velocity profile scales

linearly with the applied gravity, and the slip length is independent of the applied gravity [161]. To control

the temperature in NEMD simulations, thermostat is only applied to non-streaming directions to prevent

any artifacts in the simulation. To perform the ensemble average, 15 identical simulations are performed,

differing only in their initial velocity distribution. Each ensemble is simulated for 20 ns, with first 10 ns

34



discarded to obtain the fully developed, steady-state velocity profile.

In the transport model, the slip plane location (δ) is defined to be the distance from the surface until

which the density value is less than 10−3 molecules/nm3. For graphene-water [56] system, this value is 0.27

nm, while for silicon-water system, it is 0.24 nm. The location of the slip plane is dependent upon the

thermodynamic state and the force-fields used in the MD simulation. Density profiles are obtained from

EQT and its implementation details can be found in Ref. [99]. To compute the interfacial friction, 2D GLE

simulations are performed with a time step of 0.01 ps, with the production trajectory of 400 ps, with data

saved every other step (0.02 ps). The numerical procedure to obtain the memory function K(t) and the time

integration of the GLE are discussed in Ref. [144]. First 100 ps of the simulation trajectory was discarded to

allow the equilibration of the fluid particle. We used ∼ 2× 104 instances of particle trajectories to compute

the time correlations in Eq. (3.7).

A typical GLE simulation for 100 ps equilibration and 400 ps production run takes about 144 seconds

in CPU time. In contrast, a typical EMD simulation is orders of magnitude slower (approximately 24 CPU

hours to simulate a 500 ps run for graphene water 10σff system). Also, as GLE is a single particle formulation,

it can be run on a personal workstation, as opposed to EMD/NEMD, which require suitable parallelization

and High Performance Computing Cluster environments to reduce the wall-time. The continuum formulation

typically takes 3-4 seconds as compared to NEMD, where meaningful data for velocity profiles requires 53350

CPU hours of production runs. Therefore, our GLE/continuum framework provides a massive speedup over

NEMD to obtain the velocity profiles.

3.3 Results

In this section, we test the efficacy of the current framework by comparing the velocity profiles predicted from

the model with those obtained from NEMD simulations. We also compare the accuracy of the correlation

functions obtained using the proposed GLE approach with the EMD results.

3.3.1 Interfacial friction coefficient

For EMD calculations of the friction coefficient, a perpendicular distance of 1σff from the wall in the confined

direction is chosen as cutoff distance, and the region between the wall and the cutoff distance is defined as

interfacial region. Initial time occupancy based tagging [122, 143] is used to compute the time correlations.

This means that only the particles that are present in the interfacial region at an initial time contribute to

the interfacial friction. This is done because for large cutoff lengths, the friction coefficient will include both
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the viscous and the slip effects and therefore will not remain an intrinsic property of the wall-fluid interface,

as assumed in the formulation. This point has been discussed in detail by Hansen et al. [64] Also, Huang

and Szlufarska [71] have acknowledged the issue, and have verified the formulation by computing the friction

coefficient inside 2 molecular diameter wide channel, where the entire body of the fluid becomes a wall-fluid

interface. In GLE, the single particle friction is multiplied by the average number of particles in the cutoff

region instead of the summation, which is obtained from the 1D density profiles. We show the comparison

of the single-particle force autocorrelation function (FACF) calculated from EMD and GLE formulations

for graphene [56] and silicon walls in Figs. 3.4(a) and 3.4(b), respectively. It can be observed from these

figures that the correlations computed from the GLE trajectories are in good quantitative agreement to their

EMD counterpart. Silicon interface offers higher friction than graphene [13], which is clearly evident from

the FACF plots where its variance is significantly higher in the case of silicon. Figure 3.4(c) displays the

comparison of the FVCCF for the two interfaces as obtained from GLE and EMD simulations. It can be

observed from the plot that the silicon interface presents a strong short-time force–velocity cross-correlation

which is captured accurately by GLE based dynamics. However, the FVCCF for graphene water interface

is almost negligible. As a result, the contribution to the friction coefficient from the FVCCF term is only

significant (in comparison to the thermal energy kBT ≈ 2.5 kJ/mol) for the silicon interface (with integral

value −0.536 kJ/mol), as compared to graphene interface (with integral value −0.018 kJ/mol). The reason

for this difference can be understood from Figs. 3.2(b) and 3.2(c), which show the variation of the streaming

direction wall-fluid force for the two interfaces. It can be observed that both the magnitude and the period

of the wall-fluid force is smaller for graphene in comparison to silicon, leading to a very small residence time

of the water molecule near the graphene interface (∼ 0.2 ps). Therefore, the motion of water molecule in the

streaming direction for graphene interface is thermal noise dominant, giving rise to a significantly smaller

contribution to the FVCCF. Table 3.1 shows the comparison of the friction coefficient computed using the

GLE approach with those obtained from EMD simulations. Assuming the EMD value as a benchmark,

the deviation in the friction coefficient calculated from the GLE is within 3%. Thus, the proposed GLE

formulation provides a robust and computationally efficient alternative to compute the interfacial friction.

3.3.2 Poiseuille flow velocity profiles

To compare the accuracy of our transport model, NEMD simulations of confined water in graphene and

silicon surfaces are used as a benchmark. Using our approach, we first seek to address the important ques-

tion of relative contributions of viscous and slip flow in the velocity profile. After the friction coefficient is
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calculated, we compute the slip velocity us by using Eq. (3.5) and solve the transport model. As expected,

smooth surfaces (low interfacial friction) will enhance the relative motion between the wall and the adjoining

fluid layer, rendering slip as the dominant transport mechanism. This is reflected in the plug-like velocity

profiles of water in graphene nanochannels as shown in Figs. 3.5(a)-3.5(d). For atomistically rough surfaces

(high interfacial friction), such as water confined within silicon walls, the role of viscosity becomes more

important as seen from Figs. 3.6(a)-3.6(d). Increased corrugations on silicon surface hinder the motion of

adjacent fluid layer considerably, and transport is dominated by viscous flow. Density and viscosity varia-

tions in the current framework capture the non-parabolic velocity profiles, which is more pronounced near

the interface and can be seen clearly in narrower channels such as 7σff (Fig. 3.6(c)), and 4σff (Fig. 3.6(d)). It

can also be observed that for 4σff wide channel, significant velocity gradient reversals are present in NEMD

profile, which are not captured accurately using the LADM calculated viscosity. For smaller channels with

dominant viscous contributions, the use of LADM to capture non-local effects of viscosity might not suffice.

In such instances, a transport model with strict non-local constitutive relationship between the stress and

strain rate can be utilized to rectify these discrepancies [162, 163, 53, 42]. Approximating density and vis-

cosity as a constant value would fail to capture this non-parabolic behavior, and therefore should be avoided.

3.3.3 Slip length

We computed the slip length ls using the velocity profiles obtained from the continuum model, defined

through Eq. (1.1) for graphene (from force-fields of Gordillo and Marti [56]) and silicon, and report these

values in Table 3.2. We also compare these values to the one obtained from EMD method. We observe that

the computed slip length is nearly constant for a specific liquid-solid interface at a particular thermodynamic

state. This observation can be utilized to identify slip length as a single parameter capable of characterizing

the surface-fluid transport properties. The value of slip length of water on graphene surface is in accordance

with the previous findings summarized by Kannam et al. in Table 1 of Ref. [82]. Using the force-field provided

by Wu and Aluru [173], it is observed that the slip length decreases from 45 nm to 32 nm (ζ0 = 180.26

kJ-ps/mol/nm2) for the graphene-water interface. This is due to the increased hydrophilic nature of the

interaction parameters resulting in higher interfacial friction, and is clear from Fig. 3.7(a), where the same

value of applied gravity (10−4 nm/ps2) in 20σff channel yields a smaller value of slip velocity (compare to

Fig. 3.5(a)). The slip length further decreases to 27 nm (ζ0 = 221.79 kJ-ps/mol/nm2) for graphite water

interface (see Fig. 3.7(b) for velocity profile), owing to the increased attraction between the wall and the

fluid due to the addition of an extra wall layer. Based on these observations, we conclude that the wall-fluid
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interaction parameters significantly affect the slip length and the velocity profile, and the proposed interfacial

friction based model is able to capture this phenomenon with high fidelity.

Contrary to our findings, there are studies that report slip length dependence on channel width [154, 64,

90], which saturates to a constant slip length value for channel widths greater than 20σff. We interpret that

these findings might stem from treatment of the problem keeping the pore average density ρavg as a constant

while varying the channel width, which changes the thermodynamic state of the fluid across the channels.

We argue that the slip length would remain constant when the following conditions are met

1. The thermodynamic state of the fluid inside the channels is consistent, i.e., the chemical potential

across the confinement is constant for all channel widths.

2. Density and viscosity variations are accounted appropriately in the transport model.

3. The applied gravity value does not drive the flow out of the linear response regime [161].

In addition to the above requirements, caution must be exercised while studying very small channel widths.

A typical limit on the applicability of our method would be the cases where the wall-fluid potentials from the

two confining walls overlap considerably. As discussed in detail by Kumar and Bhatia in Ref. [2], when the

channel width is decreased, the wall-fluid potential well becomes deeper to a minimum, after which it rises

again. A so called “levitation effect” occurs at the transition point, where the assistance to the transport is

maximum, i.e., the fluid particle achieves super-mobility. Below this critical size of the channel, the particle

motion is hindered. A rough estimate of this critical dimension neglecting the effects of kinetic energy is

given as L ∼ 2(21/6)σwf. Since the channel widths considered here are above this critical dimension, we have

not observed this effect in the present study.

3.3.4 Couette flow velocity profile

For shear driven (Couette) flow, the flow is induced by moving the confining walls in the streamwise direction.

In this case, the governing equation reduces to

d

dz

[
µ(z)

dux(z)

dz

]
= 0, (3.13)

with boundary conditions

ux

(
−L

2
+ δ

)
= us1, (3.14a)

ux

(
+
L

2
− δ
)

= us2. (3.14b)
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Following a force balance on the two interfaces, the following expression for the slip velocities us1 and

us2 is obtained

us1 =
(1 + Iµζ0/A)uw1 + uw2

2 + Iµζ0/A
, (3.15a)

us2 =
(1 + Iµζ0/A)uw2 + uw1

2 + Iµζ0/A
, (3.15b)

where uw1 and uw2 are the velocities of the wall and Iµ =
∫ +L/2−δ
−L/2+δ

1/µ(z)dz. We plot and compare the

shear driven flow velocity profiles for a 20σff wide graphene channel obtained from the model with those from

NEMD simulations in Fig. 3.8, and observe a good agreement. Here, we have used the value of interfacial

friction obtained using the GLE simulation. This means that the liquid-solid interfacial friction is an intrinsic

property of the interface, and is independent of the flow situation.

In this chapter, we have developed a continuum based hydrodynamic transport model for gravity driven

flow of water in slit shaped nanochannels. The boundary condition is formulated in the form of a slip velocity,

which is dependent on the interfacial friction coefficient. The friction coefficient provides the atomistic to

continuum bridge by incorporating the effect of the lattice structure and the nature of wall-fluid interactions.

It is estimated using the wall-fluid force autocorrelation and force-velocity cross-correlation functions, which

are computed using a GLE based dynamical framework. The correlations computed using the GLE model are

in good agreement with those computed using EMD simulations of confined fluid. Furthermore, it is revealed

from the velocity profiles that the slip length is invariant with channel width under certain conditions, and

therefore it can serve as the single transport parameter characterizing the surface-fluid interaction for a fixed

thermodynamic state.
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Table 3.1: Friction coefficient ζ0 (kJ-ps/mol/nm2)
Surface EMD GLE
Graphene Water [56] 123.73 125.14
Silicon Water 4.05× 104 3.93× 104

Table 3.2: Slip lengths (nm) of water on different interfaces. CVG is an abbreviation for Continuum Velocity
Gradient method (Eq. (1.1)), and EMD value is computed using ls = Aµ(−L/2 + δ)/ζ0

System 20σff 10σff 7σff 4σff

CVG EMD CVG EMD CVG EMD CVG EMD

Graphene [56] 44.52 45.19 44.50 45.19 44.47 45.19 44.60 45.27
Silicon 0.33 0.32 0.33 0.32 0.33 0.32 0.36 0.34

Graphene [173] 31.32 31.77 — — — — — —
Graphite [173] 26.31 26.69 — — — — — —
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Figure 3.1: Schematic plot of the 1D transport problem illustrating slip velocity us and slip length ls.
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Figure 3.2: Memory function of SPC/E bulk water (blue line) at 298 K and density 33.46 molecules/nm3.
Also plotted are memory function of water in the streaming (green dash-dot line) and confined (red dashed
line) direction for 4σff wide Silicon-water system. Mean wall-fluid (solid blue line) and total (red open
circles) force in the streaming direction for (b) graphene-water, and (c) silicon-water interface.
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circles (red) represent EMD data points, while solid line (blue) represents Cubic Hermite interpolation.
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Figure 3.5: Velocity profiles of water in graphene slits of size (a) 20σff for gx = 1× 10−4 nm/ps
2
, (b) 10σff

for gx = 2 × 10−4 nm/ps
2
, (c) 7σff for gx = 5 × 10−4 nm/ps

2
and (d) 4σff for gx = 5 × 10−4 nm/ps

2
using

force-field of carbon-water from Gordillo and Marti [56]. Continuum results are in solid line (blue), while
MD results are represented by error bars (red).

45



z(σ)
-10 -5 0 5 10

u
x
(n
m
/
p
s)

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

(a) 20σff

z(σ)
-5 0 5

u
x
(n
m
/
p
s)

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

(b) 10σff

z(σ)
-3 -2 -1 0 1 2 3

u
x
(n
m
/p

s)

×10
-3

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

(c) 7σff

z(σ)
-2 -1 0 1 2

u
x
(n
m
/p

s)

×10
-3

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

(d) 4σff

Figure 3.6: Velocity profiles of water in silicon slits of size (a) 20σff for gx = 2× 10−3 nm/ps
2
, (b) 10σff for

gx = 5×10−3 nm/ps
2
, (c) 7σff for gx = 2×10−3 nm/ps

2
and (d) 4σff for gx = 5×10−3 nm/ps

2
. Continuum

results are in solid line (blue), while MD results are represented by error bars (red).
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Figure 3.7: Velocity profiles of water in 20σff wide (a) graphene, and (b) graphite slits using force-field of

carbon-water from Wu and Aluru [173], for gx = 10−4 nm/ps
2
. Continuum results are in solid line (blue),

while MD results are represented by error bars (red).
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Chapter 4

Gravity Driven Transport of Binary
Mixtures Confined in Nanochannel

In this chapter, we propose a one-dimensional isothermal hydrodynamic transport model for non-reacting

binary mixtures in slit shaped nanochannels. The coupled species momentum equations contain viscous

dissipation and interspecies friction term of Maxwell-Stefan form. Species partial viscosity variations in the

confinement are modeled using the van der Waals one fluid approximation and the local average density

method. Species specific macroscopic friction coefficient based Robin boundary conditions are provided to

capture the species wall slip effects. The value of this friction coefficient is computed using a species specific

generalized Langevin formulation. Gravity driven flow of methane-hydrogen and methane-argon mixtures

confined between graphene slit shaped nanochannels are considered as examples. The proposed model

yields good quantitative agreement with the velocity profiles obtained from the non-equilibrium molecular

dynamics simulations. The mixtures considered are observed to behave as single species pseudo fluid, with

the interfacial friction displaying linear dependence on molar composition of the mixture. The results also

indicate that the different species have different slip lengths, which remain unchanged with the channel

width.

4.1 Species momentum conservation

The 1D momentum equation for an arbitrary species α of an isothermal, non-reacting binary mixture can

be written as [84, 86, 24, 19, 85]

d

dz

[
µP
α

duα
dz

]
+mαραgα +

2∑
β=1
β 6=α

kBTραρβ
ρtDαβ

(uβ − uα) = 0, (4.1)

where z is the direction of the confinement, uα(z) and uβ(z) are the unknown streaming direction (x) velocity

fields, while ρα(z) and ρβ(z) are the concentration fields of the species α = 1, 2; β = 1, 2 inside the slit

channel, ρt(z) =
∑
α ρα(z) is the mixture density, mα is the molecular mass, gα is the applied gravity in the

streaming direction of the species α, kB is the Boltzmann constant and T is the temperature. The partial
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viscosity µP
α(z) is used to characterize the intra-species momentum transfer. The variable Dαβ(z) is the

binary Maxwell-Stefan diffusivity, the inverse of which is understood as interspecies friction between species

α and β. It should be noted that the interspecies friction term in Eq. (4.1) contains the total contribution of

all pairs of α and β species, in a generalized multicomponent case. The binary diffusivities are symmetric, i.e.,

they follow Dαβ = Dβα, so therefore for a two component system there is only one diffusivity characterizing

the interspecies friction. The derivation of the 1D transport equation from a complete 3D form is presented

in Appendix A. The FBC’s are applied at the slip plane located at z = −L/2 + δ, where δ = max(δ1, δ2),

and δ1 and δ2 denote the nearest distance from the wall where species number densities are greater than a

specified tolerance value ρtol. The FBC can be written as

AµP
α(z)

duα(z)

dz

∣∣∣∣∣
z=−L/2+δ

= ζαuαs, (4.2)

where A is the interfacial area and ζα is the macroscopic interfacial friction coefficient for species α. The FBC

describes the species force balance at the interface, where the wall shear force is balanced by the interfacial

friction force that is proportional to the relative velocity between the wall and the fluid (slip velocity). In

addition to the FBC, a second condition that is representative of the symmetry of the velocity profiles at

the center point of the slit channel can be written as

duα(z)

dz

∣∣∣∣∣
z=0

= 0. (4.3)

Inputs required for this framework are density, viscosity, Maxwell-Stefan diffusivity, and the interfacial

friction coefficient for both components. The methods to obtain these inputs are discussed below.

4.1.1 Viscosity and Maxwell-Stefan diffusivity

To capture the viscosity variation along the confined direction, we use the LADM [27, 28, 167] on species

density profiles to obtain the coarse grained density as

ρ̄α(z) =
6

σ3
αα

∫
|z−z′|<σαα/2

[(σαα
2

)2

− (z − z′)2

]
ρα(z′) dz′, (4.4)

where σαα is the LJ diameter of species α. The coarse grained density ρ̄α along with temperature T

provides an equivalent thermodynamic state of the species in a locally homogeneous mixture. The potential

parameters of a pseudo LJ fluid, which has the same thermodynamic properties (excess potential energy and
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compressibility) as that of the homogeneous mixture, are computed using the vdW1 approximation [29], as

mf =

2∑
α=1

χαmα, (4.5a)

σ3
f =

2∑
α=1

2∑
β=1

χαχβσ
3
αβ , (4.5b)

εfσ
3
f =

2∑
α=1

2∑
β=1

χαχβεαβσ
3
αβ , (4.5c)

where χα = ρ̄α/ρ̄ is the molar fraction of species α, ρ̄ =
∑
α ρ̄α being the total homogeneous mixture

density; and mf, σf and εf are the mass, LJ diameter and LJ energy parameter of the pseudo LJ fluid.

Lorentz-Berthelot (LB) combination rules are used to obtain the cross parameters σαβ and εαβ . Once

the homogeneous pseudo fluid state of the mixture is characterized, we computed its viscosity to use as

mixture viscosity following the correlations provided by Galliéro et al. [51], that have strong foundation of

the comprehensive dataset provided by Meier et al. [104]. These correlations are summarized as

µf = µ0 + ∆µ∗ (T ∗, ρ̄∗)
σ2

f√
mfεf

, (4.6a)

µ0 =
5

16σ2
f

√
mfkBT

π

fµ
Ω(2,2)

, (4.6b)

∆µ∗ = b1[eb2ρ̄
∗
− 1] + b3[eb4ρ̄

∗
− 1] +

b5
(T ∗)2

[eb6ρ̄
∗
− 1]. (4.6c)

The dilute gas viscosity µ0 is at the vanishing density limit, and density dependent residual viscosity ∆µ∗

is added to get the mixture viscosity µf. LADM and vdW1 methods are used to evaluate the reduced

homogeneous density ρ̄∗ = ρ̄σ3
f and reduced temperature T ∗ = kBT/εf. The collision integral Ω(2,2), and

variable fµ are discussed in Ref. [117]. The coefficients bγ , where γ = 1, 2 . . . 6, are provided in Table 1 of

Ref. [51]. To compute the local partial viscosities µP
α, we adopt the approach of Bhatia and Nicholson [24, 19].

In their method, the shear stress of the homogeneous mixture is assumed to be equal to the sum of species

stresses, yielding the relation µP
α = ωαµf, where ωα is the mass fraction of species α, and is computed using

the species coarse grained density ρ̄α from Eq. (4.4). There also exist alternative semi-empirical methods to

compute partial viscosities of a binary mixture [169, 85], with limited accuracy for mixtures of heavy and

light gases [26].

To compute the interspecies diffusion coefficient D12, we adopt the method proposed by Reis et al. [139].

Their correlations are generic for LJ chain fluids, so we provide a simplified expression for monoatomic LJ
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fluids as

D12 =
D0 g(ρ̄)

R(ρ̂, T̂ )
+

0.04

T̂ 1.5


; (4.7a)

D0 =
3

8ρ̄σ2
12

(
kBT

2πm12

)
; (4.7b)

g(ρ̄) =
1

1− ξ3
+

3σ11σ22

(σ11 + σ22)

ξ2
(1− ξ3)2

+ 2

[
σ11σ22

(σ11 + σ22)

]2
ξ2
2

(1− ξ3)3
; (4.7c)

ξl =
π

6
ρ̄

2∑
α=1

χασ
l
αα, for l = 2, 3; (4.7d)

R(ρ̂, T̂ ) =

(
1− ρ̂

1.12T̂ 0.2

)[
1 + 0.97ρ̂0.5 + 5.1ρ̂2 +

3.1ρ̂− 2.9ρ̂0.5

T̂ 1.5

]
exp

(
− ρ̂

2T̂

)
; (4.7e)

T̂ = kBT/ε̂; ε̂ =

2∑
α=1

2∑
β=1

χαχβεαβ , (4.7f)

where a reduced mixture density is defined as ρ̂ =
∑
α ρ̄ασ

3
αα, where ρ̄α is the usual local average density of

species α. The reduced mass is defined as m12 = m1m2/(m1 +m2), and is used to calculate the low density

kinetic theory limit (D0) of the interspecies diffusion [39]. Further corrections to the low density estimate

of diffusion are incorporated using the hard sphere radial distribution function at the contact g(ρ̄) [96], and

finite density polynomial correction using R(ρ̂, T̂ ) [140]. At this stage, all confinement effects along the

confined direction are accounted for. Next we would discuss the streaming direction slip effects.

4.1.2 Surface friction: boundary conditions

In this section, we discuss the method to compute the species-specific friction coefficients ζ1 and ζ2. Similar

to the single component case, the species interfacial friction is additive [71, 17]. Therefore, we first compute

the friction coefficient of a single particle j of species α using the expression

ζj0 =

∞∫
0

〈fwf
x,j(0)fwf

x,j(t)〉dt

kBT +

∞∫
0

〈vx,j(0)fwf
x,j(t)〉dt

; j ∈ α, (4.8)

52



where ζj0 is the friction coefficient of the particle, fwf
x,j and vx,j are the instantaneous streaming direction wall-

fluid force and velocity of the particle near the solid wall. The angular brackets 〈· · · 〉 denote the ensemble

average. The time correlation appearing in the numerator is the well known single-particle wall-fluid force

autocorrelation function (FACF), while the denominator consists of wall-fluid force–velocity cross-correlation

function (FVCCF). The total value of the macroscopic friction coefficient is obtained by adding contributions

from all interfacial particles as ζα =
∑
j∈α ζ

j
0 . This value of the macroscopic friction coefficient is used in

the FBC described by Eq. (4.2), which closes the transport model.

Similar to our previous work [17], we generate the trajectory of the representative particle j using the

GLE. The coarse-grained phenomenological dynamical framework of GLE allows one to evolve the dynamics

of the single particle sandwiched between the atomically rough surfaces by taking the streaming and confined

direction force fields into account. The dissipative and thermal motion of the particle is accounted by

incorporating a non-Markovian friction force and its corresponding random force. The equations of motion

can be written as

mα
dvz,j(t)

dt
= −mα

t∫
0

Kα(t− t′)vz,j(t′)dt′ + f tot
z,j (zj(t)) +Rz,j(t), (4.9a)

mα
dvx,j(t)

dt
= −mα

t∫
0

Kα(t− t′)vx,j(t′)dt′ + f tot
x,j (xj(t), zj(t)) +Rx,j(t), (4.9b)

dzj(t)

dt
= vz,j(t),

dxj(t)

dt
= vx,j(t), (4.9c)

where mα is the mass of the particle j representing species α, while vz,j and vx,j are the velocities of the

particle in the confined and streaming direction, respectively. The random forces Rz,j(t) and Rx,j(t) in the

corresponding directions have zero mean, and are only auto-correlated by virtue of the fluctuation-dissipation

theorem as 〈Rx,j(0)Rz,j(t)〉 = mαkBTKα(t)δxz, with δxz being the Kronecker delta. The corresponding

structure based instantaneous force values on particle, i.e., f tot
z,j and f tot

x,j , are sampled using the static mean

force maps F tot
z (z) and F tot

x (x, z), that can be analytically calculated as explained in Ref. [17]. The presented

equations are quite similar to that of the single species case, with one exception being the memory function

Kα(t) in Eqs. (4.9a) and (4.9b) does not correspond to the pure component. Instead, it describes the noise

characteristics of species α for its thermodynamic state in the mixture. The non-Markovian dissipative

effects from other species are implicitly accounted in this representation. More explicit representations of

memory function are discussed for colloidal mixtures by Chávez-Rojo et al. [40], where it is expressed in

terms of the partial intermediate scattering functions involving the inter and intra-species contributions; but

are not attractive due to their complexity and approximate nature.
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To calculate the species specific memory function in the mixture, we use the corresponding memory

function equation (MFE) [144], that can be written as

dψj(t)

dt
= −

t∫
0

Kα(t− t′)ψj(t′)dt′, (4.10a)

ψj(t) =
〈vj(t) · vj(0)〉
〈vj(0) · vj(0)〉

; j ∈ α, (4.10b)

where ψj(t) is the input velocity autocorrelation function (VACF) of species α from a bulk EMD simulation

of the corresponding homogeneous mixture. Note that a vector value of particle velocity vj(t) is used

because noise is isotropic in the homogeneous mixture. Also, being a bulk homogeneous case, the FVCCF

term does not appear in Eq. (4.10a). The numerical method to solve Volterra type integro-differential

equation (Eq. (4.10a)) is discussed in Ref. [12]. Further discussion on the memory function at different

molar compositions of the mixture, along with comments on the accuracy of the corresponding confined

GLE simulations versus EMD is provided in Sec. 4.3.

4.2 Simulation Details

Different types of MD simulations are performed in the present work using the LAMMPS package [123].

All molecules are modeled as single site LJ particles, with their interactions described using the LJ 12–6

potential force fields. The majority of the examples in the present work comprise of methane and hydrogen

mixtures at variable molar fractions. To test the robustness of the continuum method, additional calculations

are performed for methane and argon mixture at a fixed molar fraction. For methane-hydrogen mixtures,

an integration time step of 0.5 fs is used, while for methane-argon mixture, a time step of 1 fs is used in MD

simulations. The cut-off parameter for all simulations is 1.5 nm, and the interaction parameters are listed

in Table 4.1. All cross parameters are obtained using the LB combination rule. All EMD simulations are

performed for 12 ns, where the first 2 ns data is discarded to allow system equilibration, and the trajectory

data is saved at every 20 fs. We use the convention “X–Y α-β” to identify the bulk state molar composition.

For example, a 30–70 methane-hydrogen mixture would mean a binary mixture consisting of 30% methane

by molar fraction.

We first perform a series of EMD simulations of methane-hydrogen mixture in bulk homogeneous envi-

ronment using a isothermal-isobaric (NPT) ensemble at variable molar fractions. The temperature is set to

300 K using a Nosé–Hoover thermostat [110] with a time constant of 0.2 ps, and the pressure to 1580 bar

using a Parrinello-Rahman barostat [119]. The values of chosen temperature and pressure correspond to a
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supercritical thermodynamic state of the mixture. The total number of particles in each molar composition

is kept constant at 1660; only to be redistributed to fix the molar fraction of the species. The volume is

allowed to fluctuate to fix the species densities. We perform 5 statistically identical NPT runs for every mo-

lar fraction case. The fluctuations in the box volume in these statistically identical NPT runs are averaged

to compute the species bulk densities at a given molar fraction. The resulting species and mixture bulk

densities for methane-hydrogen cases are plotted in Fig. 4.1, where it can be seen that the density of the

mixture decreases with increasing molar fraction of methane at constant pressure. Further, a NVT run using

the averaged box dimensions from NPT calculations is performed for each molar fraction, where the output

pressure value is confirmed equal to the target value. These simulations are used for computing and verifying

bulk dynamical properties, e.g. VACF to obtain the species memory function Kα(t) using Eq. (4.10). The

procedure is identical for 70–30 methane-argon mixture at 3680 bar and 300 K.

Next, confined EMD runs of the mixture sandwiched between two rigid graphene surfaces (channel width

6.34 nm) are performed keeping the lateral pressure equal to the target pressure. Channel width is defined

as the center to center distance between the first layer of wall atoms, and is used to calculate the average

channel density ρavg. The other channel widths considered in this work are 3.21 nm, 2.25 nm, and 1.28 nm to

test the model accuracy for various length scales, and are only simulated for 30–70 methane-hydrogen mix-

ture. For smaller channel widths, the number of species particles are estimated using the linear superposition

approximation that ensures the confined fluid pressure is constant under variable channel width [150, 43].

The simulation trajectory is divided into 1000 samples of 10 ps, which under ergodic hypothesis serve as

ensembles to compute the necessary correlations for friction coefficient.

For confined NEMD simulations, we apply different magnitudes of gravity to test and demonstrate the

applicability of the continuum formulation under the linear response regime, where the velocity profile scales

linearly with the applied gravity, and the slip length is independent of the applied gravity [161]. The ther-

mostat controlling the temperature is only applied to non-streaming directions to prevent any artifacts in

the simulation, i.e., bias in the velocity profiles. To perform the ensemble average, 10 identical simulations

are performed, differing only in their initial velocity distribution. Each ensemble is simulated for 30 ns, with

the first 10 ns discarded to obtain the fully developed, steady-state velocity profiles.

In the transport model, the slip plane location (δ) is defined to be the larger of the distances δ1 and

δ2, which correspond to the respective positions where the fluid layers of the two species start to develop.

They (δ1 and δ2) are estimated using the tolerance on the species densities as 10−3 molecules/nm3. For

methane-hydrogen system, this value is approximately 0.24 nm for all molar fraction cases, while for 70–30

methane-argon system, it is 0.3 nm. Its precise location is dependent upon the thermodynamic state and
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the force-fields used in the MD simulation. To compute the species interfacial friction, 2D GLE simulations

are performed with a time step of 0.01 ps, with the production trajectory of 400 ps, with data saved at

every other step (0.02 ps). The numerical method for time integration of the GLE is discussed in Ref. [144].

First 100 ps of the simulation trajectory was discarded to allow the equilibration of the species GLE parti-

cle. Approximately 2 × 104 instances of particle trajectories were generated to compute the relevant time

correlations in Eq. (4.8).

To compare the time estimates, we compared the Central Processing Unit (CPU) time, which is wall-

clock time multiplied by the number of parallel processors in a simulation. A single process GLE simulation

for 100 ps equilibration and 400 ps production run takes about 120 seconds in CPU time. In comparison, a

typical EMD simulation is orders of magnitude slower (approximately 540 CPU hours to simulate a 12 ns

run for largest system size). Also, GLE can be run on a personal workstation as it uses a single CPU process,

and it does not scale with particle number, as compared to EMD/NEMD simulation, which require massive

parallelization to curtail the wall-time. The continuum formulation for a binary mixture typically takes 300

seconds as compared to NEMD, where meaningful data for velocity profiles requires 33230 CPU hours of

production runs. Therefore, our GLE/continuum framework provides a massive speedup over NEMD to

obtain the velocity profiles.

4.3 Results

In this section, we test the accuracy of the continuum framework by comparing the predicted velocity profiles

against the ones provided by the NEMD simulations. Using the species density profiles ρα, presented in

Fig. 4.2(a) for 30–70 methane-hydrogen mixture in 6.34 nm wide slit channel, we first calculate the local

average density ρ̄α of the species using Eq. (4.4) and plot them in Fig. 4.2(b). It can be observed that (a)

hydrogen being smaller in size than methane, has density peak closer to the wall, and (b) the coarse grained

local average density is a homogenized version of local density and contains non-local effects due to the

spatial averaging of the latter. The local average density of the mixture is then obtained as the sum of local

average density of the species and is used to compute the shear viscosity of mixture as a pseudo LJ fluid

using Eqs. (4.5) and (4.6) as shown in Fig. 4.2(c). This is further divided by the local mass fraction ωα(z) of

the species to obtain the species partial viscosities. Although the number density of the hydrogen is higher

than that of methane in the center of the slit channel, the partial viscosity of methane is higher as it is

approximately 8 times heavier than hydrogen. We then calculate interspecies diffusion coefficient D12 using

Eq. (4.7) and plot it in Fig. 4.2(d). We also compared the value of D12 obtained in the center of the channel
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with one obtained from the corresponding bulk homogeneous EMD simulation using the method outlined

by Heyes in Ref. [67] and found good agreement with the values predicted by empirical correlations [139].

Next, we compare the effectiveness of the GLE framework to provide species friction coefficient, by

comparing the time correlations appearing in Eq. (4.8) with EMD calculations. As explained previously [17],

we only consider a small interfacial region (about 0.4 nm from the wall) contribution towards the interfacial

friction, in conjunction with initial time occupancy based tagging method [122, 144]. This is necessary to

exclude the viscous effects from the friction computations [64, 71]. In order to obtain the memory function,

we use the MFE in Eq. (4.10), with bulk EMD simulation VACF. We plot the resultant memory function

of methane (Fig. 4.3(a)) and hydrogen (Fig. 4.3(b)) for a homogeneous mixture at 1580 bar and 300 K for

different molar fractions. As a consistency check, we performed bulk GLE simulations (in the absence of

structure based mean forces) of methane and hydrogen to reproduce the input VACF from EMD. It can be

understood from the plots that the noise relaxation (memory of dissipation) of hydrogen is faster than that

of methane, and change in molar fraction does not alter the noise relaxation time significantly. However,

the variance of the thermal force, which is proportional to K(0) as understood by the fluctuation-dissipation

theorem, increases with increase in molar fraction of methane, with reversing trends for increase in hydrogen

composition. Therefore, one can conclude that methane rich mixtures are more dissipative in nature as

compared to hydrogen rich mixtures. We show the comparison of the species FACF calculated from EMD

and GLE formulations for 30–70 methane-hydrogen mixture in Figs. 4.4(a) and 4.4(b). We observe that

there is a good agreement between the two approaches, again validating our choice of using the implicit

memory function to compute the transport properties. The contribution of FVCCF to friction coefficient

on graphene surface was found to be negligible, in accordance with our previous observations of water on

graphene surface [17].

We now compare the species velocity profiles predicted by the continuum/GLE framework with the

ones obtained from NEMD simulations. Figures 4.5(a) and 4.5(b) depict the comparison for methane and

hydrogen velocities respectively for 30–70 methane-hydrogen mixture for different gravity values and channel

widths, where a good agreement is observed between the two methods. Similar accuracy is obtained for

all molar compositions of the mixture, including the limiting cases comprising of only one species. The

momentum equation (Eq. (4.1)) in the limiting case appropriately reduces to that of one component fluid

transport because in the limit ρβ → 0, the interspecies friction term vanishes and µP
α → µf. Also, the pseudo

fluid viscosity in Eq. (4.6) obtained from vdW1 approximation (Eq. (4.5)) reduces to pure component

viscosity, thereby providing an internal consistency of this formulation for limiting cases. We also tested the

framework for 70–30 methane-argon mixture confined in graphene and observed similar fidelity for velocity
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profiles as depicted in Figs. 4.6(a) and 4.6(b) for methane and argon. By construction, the model includes

both viscous and slip effects that are superimposed. The relatively dominant contribution of slip in graphene

nanochannels results in plug type of velocity profiles instead of the parabolic type. A systematic analysis of

high to low degree of slip with different wall types has been presented before [13, 17], which demonstrate

the transition from slip to no-slip type of velocity profiles.

In order to check the accuracy of the framework with differing value of gravity for the two species, we

compared the results with g1 = 1× 10−4 nm/ps2, and g2 = 2× 10−4 nm/ps2, for 30–70 methane-hydrogen

mixture in a 6.34 nm wide graphene slit as shown in Figs. 4.7(a) and 4.7(b). Even under the action of

different force per unit mass, the faster species drags the slower species with itself, giving rise to very similar

velocity profiles that are corroborated from NEMD and theoretical framework.

Next, we discuss the mixture barycentric velocities. In principle, they can be obtained by taking the

mass weighted average of species velocity profiles, but an approximate single fluid representation can also

be provided. We start with adding the momentum equation of two species to obtain

d

dz

[
µP

1

du1

dz
+ µP

2

du2

dz

]
+m1ρ1g1 +m2ρ2g2 = 0, (4.11)

where the last two terms represent the total body force on the mixture, and the term inside the square

brackets is the sum of the shear stresses of the species that can be approximated by the mixture shear

stress as µf duf/dz. Then, the resulting formulation transforms to an equivalent one component transport

problem involving pseudo fluid, and can be solved with FBC Aµf duf/dz = ζfuf at the slip plane. The

effective friction for the mixture ζf can be apportioned as the sum of species friction as ζf = ζ1 + ζ2, by

utilizing its additive nature. As an alternative to the FBC to solve Eq. (4.11), one can also use the Dirichlet

type boundary condition discussed in our previous work for single component transport [17]. We carried

out the calculations for the mixture barycentric velocity profile and observed good agreement with the

NEMD computed mixture velocity. Next, we computed the value of mixture friction coefficient at different

molar concentrations for methane-hydrogen mixture, and observed a linear variation as shown in Fig. 4.8.

Therefore, once the pure component friction coefficients of the species are known at a fixed temperature

and pressure, the molarity dependent mixture friction coefficient can be predicted by utilizing the linear

relationship, without necessitating additional GLE or EMD computations.

Last, we calculate the species slip length lαs using the continuum velocity profiles from the expression

lαs
duα(z)

dz

∣∣∣∣∣
z=−L/2+δ

= uαs, (4.12)
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and observed that the species slip length remains unchanged for different channel widths with the same mix-

ture composition (with reference cases being 30–70 methane-hydrogen and 70–30 methane-argon). However,

it varies with the mixture composition, and is not same for the two species (see Table 4.2), despite seemingly

similar velocity profiles. To understand this, we write the expression for the ratio of the slip lengths

l1s

l2s
=
ζ2
ζ1

µP
1 (z)

µP
2 (z)

∣∣∣∣∣
z=−L/2+δ

=
ζ2
ζ1

ω1(z)

ω2(z)

∣∣∣∣∣
z=−L/2+δ

, (4.13)

where we utilize the aforementioned relationship of partial viscosities to pseudo fluid viscosity as µP
α = ωαµf.

It is clear that the equal slip lengths would require the ratio ζ1/ζ2 equal to ω1/ω2, which is not strictly

satisfied.

In this chapter, we have developed a continuum based hydrodynamic transport model for isothermal,

non reacting mixture transport in slit shaped nanochannels. We have focused on species transport equation

instead of mixture motion as a whole. Viscous contributions are incorporated using partial viscosities, which

are evaluated using vdW1 and LADM formulation. A Maxwell-Stefan type term is included to characterize

the interspecies friction. The boundary conditions are provided in the form of a friction based condition that

contains the species-specific interfacial friction coefficient. The friction coefficient is computed using a refined

GLE based dynamical framework for mixtures. The species-specific memory function for the GLE is obtained

implicitly by utilizing the corresponding MFE of the single particle VACF. The resulting correlations show

good agreement with their EMD counterparts. Under application of gravity, the species velocity profiles

are predicted that are in excellent agreement with NEMD velocities. The accuracy of the model remains

unchanged in cases of species driven by different gravity fields. In the cases considered, the mixture was

observed to behave as a pseudo fluid, that can be solved with preexisting one component transport models.

Furthermore, it is also revealed from the calculations that the effective friction coefficient of the mixture

varies linearly with molar composition at constant pressure and temperature, and therefore can be directly

predicted from the pure component friction coefficients. The slip lengths of the species are observed to be

different from each other.
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Table 4.1: LJ parameters of different species used to study mixture transport.
Type σ (nm) ε/kB (K) mass (g/mol)

Carbon (C) 0.3400 28.0 12.0107
Methane (CH4) 0.3810 148.1 16.0429
Hydrogen (H2) 0.2915 38.0 2.0160

Argon (Ar) 0.3410 119.8 39.9480

Table 4.2: Slip lengths (nm) of species on graphene interfaces for select methane-hydrogen mixtures.
Molar Fraction Methane Hydrogen

0-100 — 6.6354
30-70 13.8585 3.5225
50-50 12.7025 2.7957
70-30 11.9140 2.0656
100-0 10.5062 —
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Figure 4.1: Mixture (green line, solid) and species bulk density at 1580 bar pressure and 300 K temperature
for different molar compositions of a methane-hydrogen mixture. Methane is represented by blue dashed
line, while hydrogen is orange dash dot line. Results are averaged over 5 NPT ensembles and errorbars are
smaller than the size of the symbols.
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Figure 4.2: Variation of (a) local density, (b) local average density, (c) shear viscosity, and (d) interspecies
diffusion for 30–70 methane-hydrogen mixture in a 6.34 nm wide graphene slit. Mixture is represented by
solid blue line, while methane is orange dash line and hydrogen is green dash dot line. The dotted red line
in (d) is from bulk homogeneous EMD calculations outlined in Ref [67].
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Figure 4.3: Memory function at 300 K and 1580 bar of (a) methane in 30–70 (blue line, solid), 50–50 (red
line, dash), 70–30 (green, dash-dot), and 100–0 (purple, dot), and (b) hydrogen in 70–30 (blue line, solid),
50–50 (red line, dash), 30–70 (green, dash-dot), and 0–100 (purple, dot) methane-hydrogen mixture.
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Figure 4.4: Wall-fluid FACF from GLE (bold line, blue) and EMD (circles, red) for (a) methane, and (b)
hydrogen in 30% methane rich mixture composition.
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Figure 4.5: Methane, and (b) Hydrogen velocity profiles for 30-70 methane-hydrogen mixture. Continuum
results are in solid line (blue), while MD results are represented by error bars (red).
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Figure 4.6: Methane, and (b) Argon velocity profiles for 70-30 methane-argon mixture. Continuum results
are in solid line (blue), while MD results are represented by error bars (red).
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Figure 4.7: Methane and Hydrogen velocity profiles of 30-70 methane-hydrogen mixture with methane
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line (blue), while MD results are represented by error bars (red).

67



0 20 40 60 80 100

χ1 (% methane)

16

18

20

22

24

26

28

30

32

34

ζ f
(k
J
-p
s/
m
o
l/
n
m

2
)

Figure 4.8: Friction factor of mixture dependence on methane molar concentration in methane-hydrogen
mixtures at 1580 bar and 300 K. GLE computed data points are displayed in blue open circles, while the
red line is the linear least squares fit.
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Chapter 5

Nanochannel electroosmotic flow:
effects of discrete ion, enhanced
viscosity and surface friction
When ions are dissolved in a solvent confined between charged solid surfaces, an electric double layer (EDL)

is formed that consists of spatially varying charge in the liquid-solid interface. Under the application of an

external electric field tangential to the confined direction, the ions experience a driving force. The resultant

migration of ions drags the solvent along, resulting in electroosmotic flow (EOF). The EOF has received

significant attention, especially at micro- and nano-scale systems, primarily due to its ease of manipulation

and control that make it usable in a multitude of areas, including but not limited to biological flows in

transmembrane protein channels such as α-hemolysin [111], proton exchange membrane based fuel cells [35],

and micro- and nano-fluidic field effect rectification [147, 83].

In “extreme” cases when the surface charge density of the solid wall exceeds a critical value [95], the

co-ion density becomes higher than that of counter-ion in a certain region of EDL resulting in a phenomenon

known as “charge-inversion” [133]. The charge inversion in mainly manifested due to the discrete nature of

ions and solvent. Simultaneously, the counter-ion may also undergo contact adsorption at the liquid-solid

interface and render itself unable to transfer momentum to the solvent [133, 176, 175]. Further away from the

surface, where the surface charge effects are minimal, the co-ion is mobile and has a higher number density

due to charge inversion. A combination of this physics drags the solvent in the opposite direction than the

one predicted by the classical electroosmotic transport theory, resulting in EOF reversal phenomenon.

Recently, Yoshida et al. [176, 175] have applied the Onsager’s generalized irreversible thermodynamics

framework to nanochannel electrokinetic flows. In their work, relevant fluxes (i.e. species mass flow, electric

current etc.) are described equal to the linear combination of the corresponding forces (gravity, electric field

etc.) by a force-flux relationship. The prefactor of this force-flux relationship are the transport coefficients

that obey Onsager reciprocal relation [113, 114]. These transport coefficients, in turn, can be evaluated using

the Green-Kubo framework in conjunction with Equilibrium Molecular Dynamics (EMD). The framework

is successful in predicting flow reversal, by virtue of negative electroosmotic collective transport coefficients.

However, it is unable to describe the EOF velocity profiles as the treatment of the problem is not local.

The classical treatment of EOF uses the Gouy-Chapman (GC) theory for predicting the charge concen-
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tration profile, which in turn provides the measure of the electrical driving force in the Navier-Stokes (NS)

equations. The GC theory, being a mean field approach that does not take into account the discrete nature

of ions and assumes a constant dielectric permittivity of the solvent, predicts a charge distribution that is

exponential in nature. Because of these limitations, the GC model cannot describe the charge-inversion effect

even in a qualitative manner, and consequently, is inaccurate in predicting flow reversal [133]. Therefore,

correct charge distribution that incorporates electrochemical potential of mean force (PMF) on the ions [102],

along with appropriate space dependent solvent polarization [54] is necessary for EOF predictions.

In addition to the inhomogeneous charge concentration, a correct viscosity variation is central to the suc-

cess of the EOF model. It has been previously demonstrated that the solvent interfacial viscosity is enhanced

in the presence of ions and charged surface [65, 92, 135]. Several mechanisms of viscosity enhancement have

been identified, including increased hydrogen bonding [134] and reduced mobility of the ions in the interfacial

region due to contact-adsorption at the wall [172]. Finally, the assumption of no-slip condition also leads to

serious quantitative errors in the predicted EOF velocity profile. At the nanoscale, the fluid layer next to

the wall acquires a relative “slip” velocity with respect to the wall. Near charged surfaces, quantities such as

solvent interfacial friction and slip length are affected due to combined electro-hydrodynamic effects [78, 15].

In this chapter, we propose an isothermal, one-dimensional, electroosmotic flow model for slit-shaped

nanochannels. Nanoscale confinement effects are embedded into the transport model by incorporating the

spatially varying solvent and ion concentration profiles that correspond to the electrochemical potential of

mean force. Local viscosity is dependent on the solvent local density and is modeled using the local average

density method. The excess component of the local solvent viscosity is modeled by the local application

of Onsager and Fouss theory, and Hubbard-Onsager electro-hydrodynamic equation based dielectric friction

theory. A Dirichlet-type boundary condition is provided in the form of the slip velocity that is dependent

on the macroscopic interfacial friction. This solvent-surface specific interfacial friction is estimated using

a dynamical generalized Langevin equation based framework. The electroosmotic flow of Na+ and Cl− as

single counterions and NaCl salt solvated in SPC/E water confined between graphene and silicon slit-shaped

nanochannels are considered as examples. The proposed model yields good quantitative agreement with the

solvent velocity profiles obtained from the non-equilibrium molecular dynamics simulations, including the

cases of anomalous transport such as EOF reversal.
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5.1 Electroosmotic Flow model

The relevant 1D formulation for an isothermal, low Reynolds number, electroosmotic flow in a slit channel

can be written as a Stokes equation [134, 135]

d

dz

[
µ(z)

dueo

dz

]
+
∑
i ∈ ±

ρi(z)z̃ieE
ext
x = 0, (5.1)

with boundary conditions

ueo

(
−L

2
+ δ

)
= ueo

(
+
L

2
− δ
)

= us, (5.2)

where L is the channel width, with confining walls located at ±L/2, and (x, z) are the streaming and confined

directions, respectively. ueo(z) is the EOF velocity field in the streaming direction, e is the electronic charge,

Eext
x is the applied electric field in the direction parallel to the wall, ρi(z) is the ion concentration field, and

z̃i is the valency of the ion i, which may be a cation (+) or anion (−). The summation runs over all ionic

species (i ∈ ±) to compute the total electroosmotic driving force. Spatial variation of the solvent viscosity

µ(z) is considered to reflect its dependence on inhomogeneous properties along the confined direction such

as solvent and ion densities, solvent permittivity and ion conductivity. Dirichlet type boundary conditions

are provided at a distance δ from the wall, which is the first location where the solvent density (ρ0) satisfies

ρ0 > ρ0,tol, with us as the electroosmotic slip velocity. The boundary conditions are expressed in FBC form

as

Aµ(z)
dueo(z)

dz

∣∣∣∣∣
z=−L/2+δ

= ζ0us, (5.3)

where A is the interfacial area and ζ0 is a macroscopic parameter known as the interfacial friction coefficient

of the solvent. In addition, a symmetry boundary condition at the center point of the channel can be written

as

dueo(z)

dz

∣∣∣∣∣
z=0

= 0. (5.4)

As discussed previously [17], we can recast Eqs. (5.1), (5.3) and (5.4) to provide an expression for the

electroosmotic slip velocity as

us =
AeEext

x

ζ0

∑
i ∈ ±

z̃i

0∫
−L/2+δ

ρi(z)dz. (5.5)

This value of the electroosmotic slip velocity is used as boundary condition in Eq. (5.2). Inputs required

for this framework are the ion concentration, solvent viscosity, and the interfacial friction coefficient for the

solvent. The methods to obtain these inputs are discussed below.
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5.1.1 Ion concentration and solvent viscosity variation

In this section, we discuss methodologies to capture inhomogeneities of the fluid properties in the confined

direction. Due to the presence of charged confining walls, the electrochemical PMF of ions and the polar

solvent (SPC/E water in our case) shows oscillations normal to the wall. Consequently, the density profiles

exhibit significant layering in the confined direction. Variations in the ion/solvent densities can be quantified

using MD simulations with appropriate spatial binning. Alternatively, one can utilize continuum based

theories such as EQT [137, 141, 142, 99, 100, 101, 106, 102], which a multiscale formulation to compute

density and the corresponding PMF profiles in the nanochannel. The advantages of using EQT over particle-

based methods are significant in terms of computing speed since it is orders of magnitude faster. Recently,

the approach has also been used to calculate various thermodynamic properties in confined systems, e.g.,

lateral and confined direction pressure, surface tension, solvation force, and adsorption isotherms [101]. The

EQT framework has also been extended to study multicomponent systems such as a binary Lennard-Jones

(LJ) mixture [106], and ion/solvent systems with charged walls [102]. Since our objective in this work is

to calculate the EOF velocity profiles, we have used the density and PMF profiles obtained from EMD

simulations.

Due to the inhomogeneities of the solvent density and the presence of mobile ions and charged walls,

solvent viscosity is not a constant value, instead it varies along the confinement. The total viscosity variation

due to both of these effects can be apportioned separately as

µ(z) = µp(z) + µex(z), (5.6)

where µp(z) is the pure-component viscosity profile, and it only models the effects of solvent density variation

on the total viscosity, while µex(z) is the variation of the excess part of the viscosity due to the presence of

charges (ions and charged walls). We use the LADM [27, 28, 167] to predict the pure-component viscosity

profile. Here, the 1D solvent density profile ρ0(z) is first weight-averaged to obtain a coarse-grained density

profile as

ρ̄0(z) =
6

σ3
0

∫
|z−z′|<σ0/2

[(σ0

2

)2

− (z − z′)2

]
ρ0(z′) dz′, (5.7)

where the average is performed over the length scale of solvent LJ diameter σ0. The coarse grained solvent

density ρ̄0 along with temperature T provides an equivalent homogeneous, pure-component thermodynamic

state of the solvent, which can then be utilized to compute the local pure-component viscosity µp(z) using

an appropriate equation of state [17].
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The corresponding change in the excess viscosity µex(z) of the solvent is dependent on the concentration

of the ions. The preliminary estimates of the excess term were provided by Falkenhagen [48] that are valid

for symmetrical electrolytes, and later extended by Onsager and Fouss [115] to account for asymmetrical

electrolytes. More rigorous, microscopic expressions for the excess viscosity have also been derived by

Chandra and Bagchi [38], where they have used the mode coupling theory (MCT) to account for the realistic

ion-ion transverse stress correlations. Their expression also reduces to that of Falkenhagen in the limit of low

ionic concentration. However, their formulation involves the computation of additional parameters such as

ionic structure factors and the frequency dependent van Hove functions. In this work, the excess contribution

µex due to the layering of the charges can be expressed as

µex(z) =
∑
i ∈ ±

[
a

√
2I(z)

εr(z)T

ρ̄i(z) |z̃i|3

2I(z)λi(z)
+ µp(z)Bi(z)ρ̄i(z) + 1.6µp(z)B2

i (z)ρ̄2
i (z)

]
. (5.8)

The first term on the right in Eq. (5.8) represents the Onsager and Fuoss expression for excess viscosity

due to long range Coulombic interactions among ions in a dielectric medium, and the second term is due

to solute-solvent interactions [120]. The last term appearing in Eq. (5.8) represents higher order solute-

solute association effects, and cannot be interpreted unambiguously [45]. Therefore, we have considered

it to be dependent on its preceding term as an ansatz proposed by Breslau and Miller [34]. The relative

permittivity of solvent εr, ion conductivities λi, and viscosity B-coefficient of ion i (Bi) are considered to be

inhomogeneous in the confinement. The ionic strength is defined as I = 0.5
∑
i ρ̄iz̃

2
i , where ρ̄i is the local

average ion concentration calculated using the LADM on ion concentration profile, and T is the operating

temperature. The prefactor a = Fe2108
√
NA/480π

√
103ε0kB = 0.3645 provides viscosity in Pa-s when ρ̄

is expressed in mol/L and λ in Ω−1mol−1cm2. Here, F is the Faraday’s constant, ε0 is the permittivity of

vacuum, kB is the Boltzmann constant, T is the operating temperature, and NA is the Avogadro’s constant.

5.1.2 Solvent permittivity: Polarization model

To capture the spatial variation of relative permittivity of solvent (εr), we utilize the polarization model

as [54, 55]

εr(z) = 1− P (z)

ε0φ′(z)
, (5.9)

where ε0 is the vacuum permittivity, P (z) is the variation of solvent polarization, φ(z) is the electrostatic

potential, and φ′(z) = dφ/dz. The solvent polarization is calculated as

P (z) = ρ0(z)µd〈cos θ(z)〉, (5.10)
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where µd is the magnitude of the solvent dipole moment, and 〈cos θ(z)〉 is the mean cosine of the angle of

the solvent dipole vector with the z-axis. Its variation in the confinement is calculated using the Langevin

point dipole model as [54]

〈cos θ(z)〉 = −L(βµdφ
′(z)), (5.11)

where L = (coth(x)−1/x) is the Langevin function, and β = 1/kBT . To calculate the electrostatic potential

φ(z), we solve a 1D Poisson equation

d

dz

(
εr(z)

dφ

dz

)
= − 1

ε0

∑
i ∈ ±

ρi(z)z̃ie, (5.12)

with boundary conditions

dφ

dz

∣∣∣∣
z=±L/2

= ±σwall

ε0
, (5.13a)

φ(z = 0) = 0, (5.13b)

where σwall is the wall-charge density. Ion concentration values from the EMD simulation are used to

solve the Poisson equation. Eqs. (5.9), (5.10), (5.11), and (5.12) are solved self consistently to obtain

the variation of the relative permittivity εr(z), polarization P (z), average dipole angle 〈cos θ(z)〉, and 1D

electrostatic potential φ(z). Here, the value of the solvent dipole moment is calculated by taking the limit

φ′(z)→ 0 in Eq. (5.9) as

εr,b = 1 +
ρ0,bµ

2
dβ

3ε0
, (5.14)

where εr,b is the bulk value of relative permittivity of the solvent (in the absence of an external electric

field), and ρ0,b is the bulk density of the solvent. Further details on the polarization model are presented in

Refs. [54, 55, 102].

5.1.3 Ionic conductivity

The variation of ionic conductivity in the confinement is modeled using a modified Nernst-Einstein model

as

λi =

(
F 2

RT

)
D0
i γ
αi
i (5.15)

where R = kBNA is the universal gas constant. The ion diffusivity in the solvent at infinite dilution limit

D0
i is calculated by integrating the velocity autocorrelation of the ion in the solvent. The activity coefficient
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γi is modeled with the extended Debye-Hückel model [171] as

log10γi = − Ã|z̃i|2
√
I

1 + B̃
◦
a|z̃i|
√
I
, (5.16a)

◦
a =

∑
i∈±

ρ̄i|z̃i|2σi
2I

, (5.16b)

Ã =
1.8247× 106

(εrT )3/2
M−1/2, (5.16c)

B̃ =
502.901

(εrT )1/2
M−1/2 nm−1. (5.16d)

It should be noted that in the infinite dilution limit, i.e. ρ± → 0, the activity coefficient γi → 1 and

Eq. (5.15) reduces to the Nernst-Einstein equation. For finite ion concentration, an ion-ion correlation based

correction factor is introduced via the parameter αi that is parameterized as [3]

αi =


0.6/|z̃i|0.5, if I < 0.36 M

√
I/|z̃i|, otherwise.

(5.17)

5.1.4 Viscosity B-coefficient

The local B-coefficients are estimated using the local application of dielectric friction based model developed

by Ibuki and Nakahara as [74]

Bi = yiR
3
i + exp

[
2.631 +

4∑
k=1

ak

(
Ri
RHO

)k]
, (5.18)

where Ri is the hydrated ion radius estimated using ion-solvent radial distribution function, yi is chosen as

10π/3 for counter-ions to model contact-adsorption at the interface and 4π/3 for co-ions. The values of the

constants ak are presented in Ref. [74]. The parameter RHO is the Hubbard-Onsager radius of the solvent,

and is expressed as

R4
HO = e2 (εr − ε∞)τD

64π2ε0ε2
r

, (5.19)

where ε∞ is the high frequency dielectric constant and τD is the Debye relaxation time, which is approximated

by the expression provided by Powles [124] as τD = [3εr/(2εr − ε∞)]τp. The microscopic dipole relaxation

time of the solvent τp is calculated as

τp =

∞∫
0

〈p(0) · p(t)〉
〈p(0) · p(0)〉

dt. (5.20)
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The expression in Eq. (5.20) involves estimating the dipole-dipole correlation function 〈p(0)·p(t)〉, which was

computed using a bulk EMD simulation. Additionally, the high frequency dielectric constant ε∞ � εr, and

is therefore neglected in present calculations, resulting in τD ≈ 1.5τp. We plot the dependence of Hubbard-

Onsager radius with reduced density of SPC/E water at 300 K in Fig. 5.1, where it can be seen that RHO

decreases with increasing water density. These observations are consistent with previously reported trends

of RHO vs. water density at higher temperatures (400 K and 600 K) [73]. At this stage, all inhomogeneities

of material properties due to confinement effects have been included in the model. In the next section we

discuss the GLE based friction model for electroosmotic slip.

5.1.5 Solvent interfacial friction due to charged wall: boundary conditions

In this section, we present the methodology to estimate the friction ζ0 between charged wall and a polar

solvent. We begin with the analysis first presented by Huang and Szlufarska [71] that was later adapted for

SPC/E water near uncharged wall [17] and binary mixtures [14]. The friction contribution ζj0 from a single

solvent particle j in the interfacial region can be expressed as

ζj0 =

∞∫
0

〈fwf
x,j(0)fwf

x,j(t)〉dt

kBT +

∞∫
0

〈vx,j(0)fwf
x,j(t)〉dt

, (5.21)

where fwf
x,j and vx,j are the instantaneous streaming direction wall-solvent force and velocity of the solvent

particle near the solid wall. The time correlation appearing in the numerator is the wall-solvent FACF,

while the denominator contains wall-solvent FVCCF. The angular brackets 〈.〉 denote the ensemble average

of the quantities. Exploiting the additive nature of the friction, the total value of the macroscopic friction

coefficient is obtained by adding the contributions from all interfacial solvent particles as ζ0 =
∑
j ζ

j
0 . This

value of solvent friction is further used to calculate the EOF slip velocity described by Eq. (5.5), resulting

in the closure of the EOF model.

The trajectory of the representative solvent particle j is generated using the coarse-grained phenomenolog-

ical dynamical framework of GLE [17, 14, 15, 145, 16]. The relevant equations of motion of the representative

particle include a dissipative, non-Markovian friction force and its corresponding random force that is orthog-

onal to the particle velocity, as explained in the Mori-Zwanzig projection operator formalism [105, 180, 58].
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The equations of motion can be written as

m0
dvz,j(t)

dt
= −m0

t∫
0

K0(t− t′)vz,j(t′)dt′ + f tot
z,j (t) +Rz,j(t), (5.22a)

m0
dvx,j(t)

dt
= −m0

t∫
0

K0(t− t′)vx,j(t′)dt′ + f tot
x,j (t) +Rx,j(t), (5.22b)

dzj(t)

dt
= vz,j(t),

dxj(t)

dt
= vx,j(t), (5.22c)

where m0 is the mass of the particle j representing the solvent molecule, vz,j and vx,j are its instan-

taneous velocities, and fz,j and fx,j are the structure based forces acting on the particle in the con-

fined and streaming direction, respectively. The random forces Rz,j(t) and Rx,j(t) in the corresponding

directions have zero mean, i.e., 〈Rx/z,j(t)〉 = 0, and they follow the fluctuation-dissipation theorem as

〈Rx,j(0)Rz,j(t)〉 = m0kBTK0(t)δxz, with δxz being the Kronecker delta. In addition to that, being orthogo-

nal to the velocity [58], they also satisfy 〈vx/z,j(0)Rx/z,j(t)〉 = 0. The memory function of the solvent K0(t)

is assumed to be isotropic and therefore ensures the identical statistical properties of the thermal noise in

both streaming and confined directions. The memory function is assumed to be same as that of the bulk

water at density 33.46 molecules/nm3.

The structure based instantaneous force values on the particle are sampled using the static mean force

maps as f tot
z,j (t) = F tot

z (zj(t)), and f tot
x,j (t) = F tot

x (xj(t), zj(t)). It has been demonstrated earlier by Sanghi

and Aluru [144], that the GLE formulation in Eq. (5.22a) is sufficient in accurately describing the dynamics of

the representative particle in the confined direction. In their work, the 1D variation of structure based force

is calculated as F tot
z (z) = −dU tot

1D (z)/dz, where U tot
1D (z) is the 1D variation of the solvent total PMF. The

total PMF, in turn, can be evaluated from the density profile of solvent as U tot
1D (z) = −kBT log(ρ0(z)/ρ0,b),

where ρ0,b is the density of the solvent in the bulk like center region of the confinement.

The streamwise force map (F tot
x (x, z)) is periodic in the x-direction, reflecting the lattice structure of

the wall on the solvent. Additionally, its amplitude decays in the z-direction, and becomes zero beyond the

interfacial region as the solvent is homogenized. Therefore, 2D maps of F tot
x (x, z) and Fwf

x (x, z) are required

to capture the effects of lattice structure on the solvent friction coefficient. We compare the force maps com-

puted using the EMD simulations, at the location of the solvent density peak, for NaCl and SPC/E water

system confined between silicon walls, in Fig. 5.2. It can be noted that near the interface, the wall-solvent

forces are dominant and they approximate the total forces on the solvent as F tot
x (x, z) ≈ Fwf

x (x, z). Further,

the wall-solvent electrostatic contribution to the streamwise forces is also found to be negligible. Based on

these observations, one can deduce that the wall-solvent LJ forces are the pertinent forces for simulating the
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GLE based interfacial dynamics. Their 2D map can be analytically computed as discussed in Chapter 3,

and is used to solve the streamwise direction GLE (Eq. (5.22b)). Details to solve the GLE framework are

provided in Sec. 5.2, and the accuracy of the correlations computed using GLE framework with respect to

the EMD simulations is discussed in Sec. 5.3.

5.2 Simulation Details

We perform different types of MD simulations in the present work using the LAMMPS package [123]. Water

is modeled using the SPC/E model [10]. Ions are considered as monovalent (z̃± = ±1), and modeled as 12–6

LJ spheres with point charges at their center. LJ interaction parameters for unlike particles are estimated

using the Lorentz-Berthelot combination rules and are truncated at 1.4 nm. In this work, we consider sodium

and chloride ions as cation and anion, respectively, with the ion-water force-field parameters provided by

Smith and Dang [149], which have yielded good estimates of transport properties such as viscosity [116].

Water and graphene carbon interactions are modeled using the force field of Gordillo and Marti [56]. A

summary of the simulation force field parameters is provided in Table 5.1. First, bulk EMD simulations of

single ions in water are performed to calculate the limiting value of ionic diffusivity. Here, only short-range

electrostatic interactions are considered using a cutoff value of 0.9 nm, to avoid the interaction of the ion with

its periodic image. The exclusion of long-range electrostatics for single ion in bulk water EMD simulations

does not introduce significant errors in computation of ionic diffusivities [91, 87]. The limiting ionic diffusion

coefficient is computed using the integral of the velocity autocorrelation function (VACF) of the ion and is

further used to calculate the ionic conductivity in Eq. (5.15).

In this work, we primarily consider six examples of EOF in semi-infinite slit channels made up of two

different surfaces that highlight contrasting level of friction experienced by the solvent. The first class

of systems consist of two single layers of graphene(Gr) separated by 3.804 nm, while the other has two

four-layered silicon(Si) sheets oriented in [111] direction and separated by 3.49 nm. Additionally, to study

electroosmotic flow reversal, we consider a 1.2 M solution of NaCl confined between two silicon walls with high

wall charge density (σwall = −0.2852 C/m2). Channel separation width is defined as the distance between

the innermost layers of top and bottom walls. For each wall, only the innermost layer in contact with the

fluid is charged, with a wall charge value of qw = −(N+ − N−)e/Nw, where N+ is the number of cation

particles, N− is the number of anion particles, and Nw is the number of innermost wall particles. The slit

systems are periodic in x and y directions. In the z direction, a vacuum layer of size five times of the channel

width separates the periodic images to exclude their interactions. Out of the six cases considered, four consist
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only of single ions (cation or anion) solvated in the confined water. In these cases, the charge neutrality

is not achieved in the center region of the channel, leading to a large EDL and consequently high Debye

lengths. In addition to pure counter-ion cases, we also consider the presence of co-ions in confined water to

understand the EOF in small Debye length situations. Subsequently, confined MD (both equilibrium and

non-equilibrium) simulations are performed to compute the relevant quantities as a benchmark. For all of

the MD simulations involving multiple ions in water, long range electrostatic interactions are considered via

Particle-Particle Particle-Mesh (PPPM) method to ensure accuracy in computed forces. The temperature of

the fluid (both ion and solvent) is set at 300 K using the Nosé–Hoover thermostat [110] with a time constant

of 0.2 ps. In the NEMD simulations, the thermostat is not coupled to the streaming direction to avoid any

artifacts in the simulation. The equations of motion are integrated using the velocity-Verlet algorithm with

a timestep of 1 fs. Table 5.2 provides the values of wall charge density, the applied electric field to generate

EOF, along with nomenclature of the cases under consideration for brevity.

For EMD simulations, systems are equilibrated for 5 ns. After that, a production run of 10 ns is

performed. Data is stored at every 5 fs for the computation of VACF in the bulk EMD simulations, and

every 20 fs in confined EMD cases for computing the relevant time correlations in Eq. (5.21). For NEMD

simulations, the EOF is allowed to develop for 10 ns, and subsequently, a production run is performed for

15 ns to obtain the fully-developed, steady state velocity profiles, with data stored at every 0.1 ps. The

macroscopic quantities from each case are ensemble averaged over 10 statistically identical MD simulations,

which differ by the initial configuration of particles and seed of Maxwellian velocity distribution.

In the transport model, the slip plane location (δ) is defined using the tolerance on the solvent density

as 10−3 molecules/nm3, and it is approximately one solvent molecular diameter (1σ0) away from the wall.

To compute the species interfacial friction, 2D GLE simulations are performed with a time step of 0.01

ps. About 5 × 104 instances of particle trajectories of 500 ps are generated to compute the relevant time

correlations. Data is saved at every other step (0.02 ps) and the first 100 ps are discarded to allow for

equilibration. The numerical method for the time integration of the GLE is outlined elsewhere [144].

As a metric of speedup, we compare the Central Processing Unit (CPU) time, which is real wall-clock time

times the number of parallel processors in a simulation. A representative GLE simulation for 100 independent

particles (single processor task) for 100 ps equilibration and 400 ps production run takes about 20 seconds of

CPU time. Such small computation time permits us to perform GLE calculations on a personal workstation

in contrast to MD simulations, which require massive parallelization. The continuum formulation typically

takes 5 seconds, where meaningful data for velocity profiles from NEMD simulation requires 11520 CPU

hours of production runs.
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5.3 Results

In this section, we compare the accuracy of the proposed multiscale transport model for EOF by comparing

its predicted velocity profiles against the NEMD simulation results. We first elucidate the limitations of the

classical model for the 1D EOF that uses the mean-field Gouy-Chapman model for the ion concentration

profiles, in conjunction with a constant viscosity based 1D Stokes equation with no-slip boundary conditions

for the solvent velocity profile. In the classical model, Neumann boundary condition of the wall charge

density are applied at the slip plane. The classical EOF model is different from the multiscale transport

model in several aspects. First, since it assumes a mean-field distribution of ions, it leads to a different

measure of the driving force on the solvent (see second term in Eq. (5.1)). Second, due to the assumption of

a constant value of the solvent viscosity, the effects of viscosity enhancement due to the interfacial layering

of the solvent and ions is not captured. Finally, the effects of interfacial slip are also absent in the classical

model. The limitations of the classical model in predicting the velocity profile of a nanoscale EOF can be

understood from Figs. 5.3(a) and 5.3(b), where we compare its results with the NEMD calculations for the

NaCl-Si case for conventional (σwall = −0.0621 C/m2) and reversed (σwall = −0.2852 C/m2) EOF. For low

wall charge case, it can be clearly observed that although the general features of the nanoscale EOF are

resolved using the classical model, it lacks the quantitative accuracy. However, for high wall charge case,

the flow reversal phenomena is completely misrepresented by the classical model as it does not account for

the aforementioned attributes.

The proposed multiscale transport model seeks to correct the deficiencies of classical EOF model. Here,

we first estimate the viscosity variation in the nanochannel. To compute the viscosity profile, we calculate

the relative dielectric permittivity profile εr(z) of SPC/E water using the polarization model (Eq. (5.9)).

We plot the resultant permittivity profile for NaCl-Si system (σwall = −0.0621 C/m2) in Fig. 5.4(a) and

compare it with the EMD value computed using the method illustrated in Ref. [32]. A reasonable agreement

between the two profiles is observed, and therefore the polarization model is subsequently used to estimate

the variation of the relative permittivity in all the cases considered. Next, we estimate the inhomogeneity in

the ionic conductivity. To this end, we first calculate the limiting value of the ion diffusion using ion VACF

obtained from bulk ion EMD simulations described in Sec. 5.2 as

D0
± =

1

3

∞∫
0

〈v±(0) · v±(t)〉dt, (5.23)

where the vector value of ion velocity is used to calculate the VACF as it is isotropic in a bulk system. We

obtain the values D0
+ = 1.26 ×10−3 nm2/ps and D0

− = 2.28 ×10−3 nm2/ps. The resultant ionic conductivity
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profiles of Na+and Cl− ions computed using Eqs. (5.16) and (5.17) for the NaCl-Si (σwall = −0.0621 C/m2)

system are plotted in Fig. 5.4(b). It can be understood from the plot that the ionic conductivities in

the interfacial region show oscillations due to the interfacial layering of the ions, and the location of their

minimum value is consistent with the location of the peaks of the ionic strength profile (Fig. 5.4(c)).

The phenomenon of interfacial solvent thickening can be understood from Eq. (5.8) that displays an

inverse relationship between ionic conductivities and solvent viscosity. As the ion mobility in the interfacial

region is significantly hindered, the resultant interfacial viscosity of the surrounding solvent is increased [135,

172]. For confirmation, we also plot the variation of the excess part of the viscosity due to the electrostatic

effects µex(z) for the NaCl-Si system (σwall = −0.0621 C/m2) in Fig. 5.4(d) where it can be seen that it

closely resembles the ionic strength profile. For higher wall charge case of NaCl-Si system (σwall = −0.2852

C/m2), the separate pure-component and excess components of the viscosity are plotted in Fig. 5.5(a),

where the excess contribution to the viscosity is very high near the interface reflecting its dependence on

the Na+ concentration peak. Around z = −1.5 nm, the excess component (µex) is minimum while the pure

component contribution (µP) is maximum. Here, µex and µP are also comparable in magnitude and, as we

will demonstrate later, have significant effects on the EOF velocity profile in this region. For this case, we

also calculated the viscosity using the Stokes-Einstein (SE) relationship as

µ(z) =
kBT

3πdsD(z)
, (5.24)

where D(z) is the self-diffusion coefficient of the solvent calculated using EMD simulations with the method

of Předota et al. [129, 128], and ds = 0.24 nm is the Stokes diameter. We compare the EMD+SE computed

viscosity with the viscosity model predictions in Fig. 5.5(b). A semi-quantitative agreement between the two

methods is observed, with the SE method also predicting two distinct regions of viscosity enhancement in

the interfacial region. This can be understood by the non-monotonic variation of water diffusion coefficient

in the interfacial region as shown in Fig. 5.5(c). We would comment on the effect of the viscosity variation

on the subsequent velocity profiles later in the text.

We now compare the friction coefficient defined in Eq. (5.21) and the intermediate time correlations ob-

tained using GLE versus EMD calculations. We consider the contributions from the representative solvent

particles in the small interfacial region [64, 71], which is defined as the region spanned from the wall up to

a cutoff distance of 1σ0 normal to the wall. We use the initial time occupancy based method to compute

the time correlations, where all particles present in the interfacial region at an initial time are considered in

the computation of total friction, regardless of their final location [122]. We present the FACF for Na-Gr
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(Fig. 5.6(a)), Cl-Gr (Fig. 5.6(b)), and NaCl-Gr (Fig. 5.6(c)) systems, where a good comparison between

GLE and EMD computed correlations is observed. It can also be inferred from the plots that the variance of

FACF is higher for the positively charged wall system (Cl-Gr), as compared to the negatively charged wall

systems (Na-Gr and NaCl-Gr). Also, the relaxation time of the FACF in Cl-Gr system is slightly higher

than the other two cases. Due to the preferred orientation of the SPC/E water near a positively charged

surface, the oxygen atom in the water molecule is closer to the wall compared to hydrogen atoms, leading

to a higher value of attractive LJ forces. Similar observations have been presented in Ref. [78], where they

have split the contributions of the FACF into LJ–LJ, LJ–ES, and ES–ES, where ES stands for electrostatic

contributions. Further, they have argued that the contributions from the LJ–ES term is significantly higher

than ES–ES. Therefore, the orientational effects contribute significantly to the variance of FACF. A slight

increase in the relaxation time also indicates that the water molecule stays close to the positively charged

wall a little longer before being re-thermalized. A similar pattern is also observed in the silicon wall cases.

Also, for silicon walls −0.0621 C/m2, the increased value of LJ energy parameter of wall-solvent pair poten-

tial along with its lattice structure gives rise to a significantly higher force variance (Fig. 5.7(a)) than those

observed for graphene systems. In addition to that, a significant coupling between wall-solvent force and

velocity is present as depicted by a non-zero value of FVCCF function (Fig. 5.7(b)). This phenomenon is

not uniquely associated with the presence of wall charges and has been observed for a pure water case [17],

where both FACF and FVCCF contribute to the interfacial friction in the case of silicon wall, compared

to the graphene wall where the FVCCF is negligible. Increasing the wall charge density to −0.2852 C/m2

also increases the friction coefficient, as understood from Figs. 5.7(c) and 5.7(d). The values of the friction

coefficient for different cases are reported in Table 5.2, where the friction parameter is higher for silicon wall

as compared to graphene. Also, for a similar magnitude of wall charges, its value is systematically higher

for positively charged walls (compare Na-Gr with Cl-Gr and their respective silicon counterparts).

Next, we discuss the EOF velocity profiles obtained from the multiscale transport model and compare

them with NEMD profiles. The EOF velocity profiles for Na-Gr and Cl-Gr cases are plotted in Figs. 5.8(a)

and 5.8(b). These exhibit plug type flow and are in contrast with the EOF profiles obtained for Na-Si

(Fig. 5.9(a)) and Cl-Si (Fig. 5.9(b)), where viscous contributions to the flow are apparent. This is because

the friction parameter for graphene walls is almost two orders of magnitude smaller than silicon walls. The

lattice structure of the graphene wall and low wall-solvent LJ energy parameter collectively provide a smooth

landscape for solvent particles. Although accounted in the transport model, the viscous features of the EOF

are obscured for graphene systems due to a high degree of hydrodynamic slip (see insets in Figs. 5.8(a)

and 5.8(b)). Among the silicon systems, the viscous effects are more pronounced in the Cl-Si case compared
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to Na-Si, which is consistent with the previous observations [135]. Since the charge neutrality is not achieved

in the region far away from the wall (specifically due to the absence of co-ions), the shear stress is non-zero

except at the center of the channel from symmetry considerations. This results in a non-zero strain rate,

resulting in a viscosity mediated parabolic velocity profile.

For the NaCl-Si (σwall = −0.0621 C/m2) case (Fig. 5.10(a)), because of high interfacial friction (less

slip) and charge neutrality in the bulk like region of the channel, a conventional form of the EOF profile

is observed where velocity gradients are pronounced in the EDL region along with a plug like behavior in

the center region of the channel. The NaCl-Gr system, owing to large slip contribution again exhibits a slip

dominant profile as understood from Fig. 5.10(b). However, closer inspection of the velocity profile shown

in the inset displays similar viscous features as NaCl-Si system. We also studied the NaCl-Gr case with the

water-graphene force-field provided by Wu and Aluru [173], for identical driving electric field (Eext
x = +0.015

V/nm) in Fig. 5.10(c). The parameters of this force field are developed from the ab-initio calculations and

predict the graphite-water contact angle in close agreement with experimental results. It is observed that

the slip velocity decreases due to the hydrophilic nature of graphene wall resulting in a higher value of

interfacial friction (ζ0 = 9.361 × 102 kJ-ps/mol/nm2). Based on these observations, one can conclude that

the wall-solvent interaction parameters affect the flow profile in a significant manner, and our EOF model

is able to capture these effects accurately.

Next, we check the model accuracy for flow reversal situations. The top subplot in Fig. 5.11 shows the

concentration profiles of water and ions across the nanochannel half width calculated using the MD sim-

ulation of confined NaCl solution. Due to the phenomenon of charge inversion, the driving force becomes

negative. Next, plot the streaming direction velocity profile for the NaCl-Si (σwall = −0.2852 C/m2) with

Eext
x = +0.55 V/nm calculated using the multiscale EOF model and compare it against the NEMD profiles

in Fig. 5.12(a), where a good quantitative agreement is observed. For comparison, we also plot the velocity

profiles obtained from the integration of the Stokes equation with the spatial viscosity computed using the

SE method. The velocity profile predicted using the SE viscosity is more accurate than the one obtained

using the theoretical model for viscosity in the region −1.53 nm < z < −1.2 nm, where the electrical driving

force is positive. This can be explained by comparing the viscosity profiles in Fig. 5.5(b). In the region

−1.53 nm < z < −1.4 nm, the EMD viscosity is higher than that predicted from the theoretical model. As

a result, the theoretical viscosity model based velocity profile rises sharply as compared to the one obtained

from EMD viscosity. Further, into the confinement, the theoretical model predicts a larger value of the

viscosity in the region −1.4 nm < z < −1.2 nm, resulting in a steeper decline of the velocity profile. Beyond

z > −1.2 nm, the velocity profiles predicted from the two viscosities are in excellent quantitative agreement
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with the NEMD profile. In the region −0.48 nm < z < 0 nm, the net charge density goes to zero resulting

in vanishing electrical driving force (see Fig. 5.11), leading to the plug-like velocity in that region. Similar

qualitative trends are also observed in the KCl solution (replacing Na+ by K+, keeping the same wall-charge

density) as shown in Fig. 5.5(b), where we plot the EOF profile for Eext
x = +0.25 V/nm. The quantitative

differences in the velocity profiles of the two cases can be primarily attributed to the decreased value of

the interfacial friction coefficient for the KCl solution (ζ0,KCl = 4.0233× 105 kJ-ps/mol-nm2), which leads a

higher value of slip velocity. Therefore, the presented multiscale model is applicable to both low and high

wall charge density channels.

In this chapter, we have presented an interfacial friction based multiscale transport model for electroos-

motic flow. Spatial inhomogeneity in the solvent viscosity is modeled with separate contributions due to

the layering of solvent density and ion densities. Local viscosity variations include contributions from the

solvent structure using LADM and ion concentration dependent excess contributions by the local applica-

tion of Fuoss-Onsager theory, and Hubbard-Onsager electro-hydrodynamic equation based dielectric friction

theory. Interfacial friction dependent slip velocity is used as the boundary condition. The friction param-

eter depends upon the time correlations, which are in turn computed using a refined GLE framework that

uses the electrochemical wall-solvent force map as an input, and is observed to compare well with their

EMD computed values. The segregation of flow profile into the slip and viscous contributions allows us to

separately predict the phenomenon of interfacial thickening of the solvent and enhanced interfacial friction

due to the coupling of LJ and electrostatic forces. It is inferred that the interfacial friction for a positively

charged wall is higher as compared to the negatively charged wall of equal charge density magnitude. The

proposed model shows good agreement of EOF velocity profiles against NEMD computed ones for a variety

of input parameters such as wall-type, surface charge densities and applied electric fields, including the cases

of anomalous transport such as EOF reversal.
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Table 5.1: LJ interaction parameters in MD simulations of EOF.
Atom σ (nm) ε (kJ/mol)

H 0.0 0.0
O 0.317 0.6503

Na+ 0.235 0.5439
Cl− 0.44 0.4184
C 0.339 0.2334
Si 0.3385 2.447

Table 5.2: Summary of the systems considered to study nanochannel EOF.
System Wall type σwall (C/m2) Eext

x (V/nm) ζ0 (kJ-ps/mol/nm2)
Na-Gr Graphene −0.1527 +0.015 7.95× 102

Cl-Gr Graphene +0.1527 −0.02 1.131× 103

NaCl-Gr Graphene −0.1018 +0.015 5.13× 102

Na-Si Silicon −0.1242 +0.25 6.293× 104

Cl-Si Silicon +0.1242 −0.15 4.692× 105

NaCl-Si Silicon −0.0621 +0.2 3.872× 104

NaCl-Si Silicon −0.2852 +0.55 3.458× 107

85



0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 5.1: Density dependence of Hubbard-Onsager radius of SPC/E water at 300 K (blue circles) computed
via EMD simulations using Eq. (5.19). Also shown (red solid line) is the 7th order polynomial fit to the data.
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Figure 5.2: Comparison of solvent streamwise forces for NaCl and SPC/E water system confined in silicon
walls (σwall = −0.0621 C/m2). Total force (squares) contains contributions from ion-solvent, solvent-solvent,
and wall-solvent interactions. Wall-solvent (circles) include LJ and electrostatic (green dashed-dot line)
contributions. Also plotted is the analytical LJ force map (red solid line) computed using the method
discussed in Ref. [17].
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Figure 5.3: Classical model predictions(using µ(z) = 0.65 centiPoise) of EOF velocity profiles of NaCl-Si
system for wallcharge (a) −0.0621 C/m2, and (b) −0.2852 C/m2. Classical results are in solid line (red),
while MD results are represented by error bars (blue).
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Figure 5.4: (a) Relative permittivity from polarization model (red line, using εr,b = 60 and µd = 4.18 Debye),
and its comparison with EMD computed values (blue circles), (b) ionic conductivities, (c) ionic strength,
and (d) excess viscosity for the NaCl-Si (σwall = −0.0621 C/m2) system.
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Figure 5.5: (a) Pure component (µP, left axis) and excess (µex, right axis) contributions to the local vis-
cosity of the solvent predicted from the model for NaCl-Si (σwall = −0.2852 C/m2). Figure (b) shows the
comparison between the model predicted (LADM + Eq. (5.8)) and EMD computed (using Stokes-Einstein
relation in Eq. (5.24)) local viscosities. (c) Variation of water diffusion coefficient computed using EMD
simulations. Only half-width is shown because of symmetry of profiles in the z-direction.
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Figure 5.6: Wall-solvent FACF from GLE (bold line, red) and EMD (circles, blue) for (a) Na-Gr, (b) Cl-Gr,
and (c) NaCl-Gr systems.
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Figure 5.7: Wall-solvent (a) FACF, (b) FVCCF calculated using GLE (bold line, red) and EMD (circles,
blue) for NaCl-Si (σwall = −0.0621 C/m2) system, and (c) FACF, (d) FVCCF calculated using GLE (bold
line, red) and EMD (circles, blue) for NaCl-Si (σwall = −0.2852 C/m2) system.
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Figure 5.8: EOF velocity profiles for (a) Na-Gr, and (b) Cl-Gr systems. Continuum results are in solid line
(red), while MD results are represented by error bars (blue). Insets show the viscous contributions from
multiscale transport model to the EOF in more detail.
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Figure 5.9: EOF velocity profiles for (a) Na-Si, and (b) Cl-Si systems. Continuum results are in solid line
(red), while MD results are represented by error bars (blue).
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Figure 5.10: EOF velocity profiles for (a) NaCl-Si (σwall = −0.0621 C/m2), (b) NaCl-Gr, and (c) NaCl-Gr
using the force-field of carbon-water from Wu and Aluru [173]. Continuum results are in solid line (red),
while MD results are represented by error bars (blue). Inset in (b) shows the viscous contributions from
multiscale transport model to the EOF in more detail.
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Figure 5.11: (top) Water (right axis) and ion (left axis) concentration profiles, and (bottom) electrical driving
force across the confinement. Only half-width is shown because of symmetry of profiles in the z-direction.
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Figure 5.12: (a) Comparison of multiscale transport model EOF velocity (solid red line) with the NEMD
simulations (blue circles) for NaCl-Si (σwall = −0.2852 C/m2) with Eext

x = +0.55 V/nm. Also plotted is the
result of the transport model using EMD computed viscosity (green dash-dot line) using the Stokes-Einstein
method from Eq. (5.24). Inset enhances the interfacial region. (b) Same as (a), but for KCl solution with
Eext
x = +0.25 V/nm.
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Chapter 6

Non-local continuum model for
nanochannel flow

In this chapter, we present a non-local multiscale transport model to describe the confined flow in nanochan-

nels. The point-wise constitutive relationship between the fluid shear stress and strain-rate is revised to be

characterized by a viscous kernel that incorporates strain rate contributions from the neighboring points,

as proposed by Evans and Morriss [Statistical Mechanics of Nonequilibrium Liquids (Cambridge University

Press, 2008)]. The viscous kernel is parameterized from an isotropic bulk system using Sinusoidal Transverse

Force (STF) methodology, first presented by Gosling et al. [57]. The slip effects are treated separately by

computing Green-Kubo like expressions for the interfacial friction coefficient. The interfacial particle trajec-

tories are, in turn, generated by a recently proposed Generalized Langevin Equation-based framework. The

proposed model can accurately describe the velocity profiles where the length scales of strain-rate variation

are of the order of the molecular diameter of the fluid. It is also able to resolve the pathological issue in the

local constitutive relationship in gravity driven channel flows, where strain-rate is zero, but the shear stress

is non-zero.

6.1 Background

6.1.1 Non-local constitutive relationship

In general, the non-local constitutive relationship between the stress and strain rate can be expressed as

τ(r, t) =

+∞∫
−∞

+∞∫
0

µ(r, t, r′, t′)ε̇(r′, t′)dt′dr′, (6.1)

where τ(r, t) and ε̇(r, t) are stress and strain-rate at a arbitrary point r and time t, and are related via

the viscous kernel µ(r, t, r′, t′) via a convolution relationship. The temporal non-locality manifests in the

form of viscoelastic effects where memory effects are important. For steady state situations, the temporal
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dependence is dropped, and the non-locality becomes purely spatial. It can be expressed as

τ(r) =

+∞∫
−∞

µ(r, r′)ε̇(r′)dr′. (6.2)

For a homogeneous fluid, the viscous kernel in Eq. (6.2) can be assumed isotropic, and therefore only

dependent on the separation distance |r − r′|, so the constitutive relationship becomes

τ(r) =

+∞∫
−∞

µ(|r − r′|)ε̇(r′)dr′. (6.3)

Todd et al. have performed numerous studies [63, 177, 36] to extract the isotropic kernel in bulk and

confinement. It should be noted that, by construction, the isotropic kernel in real space is an even function

and its integration in the space gives total viscosity

µ0 =

+∞∫
−∞

µ(r)dr, (6.4)

where µ0 is the viscosity of the fluid. In the Fourier (k) space, the convolution relationship can be expressed

as a multiplication of Fourier coefficients of stress and strain-rate as

τ̃(k) = µ̃(k)˜̇ε(k), (6.5)

where the Fourier transform of stress is defined as

τ̃(k) =

+∞∫
−∞

eik·rτ(r)dr, (6.6)

and in similar manner for viscous kernel and strain rate. It should be noted that Fourier transform of the

viscous kernel returns k-space viscosity, which is a measure of relaxation of different modes of momentum

perturbations of the fluid. The viscosity of the fluid, therefore can be interpreted as the long wavelength

limit of the k-space viscosity as µ0 = µ̃(k → 0). If the information about the stress and strain-rate is known,

the k-space viscosity can be easily computed from Eq. (6.5), and inverted back to real space to obtain the

viscous kernel.
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6.1.2 Parameterization of viscous kernel: STF Method

The STF method [57], is a robust approach to extract transport properties. In the present context, we discuss

it to calculate wave-vector dependent viscosities. Here, a homogeneous fluid is subjected to a sinusoidal shear

by the application of sinusoidal gravity that is modulated in the direction transverse to the flow direction as

gx(z) = g0 sin(kzz), (6.7)

where x is the streamwise direction, and z is arbitrarily chosen as the transverse direction, kz is the wave-

vector in the z-direction, and can be represented as kz = 2nπ/Lz for n = 1, 2, 3 . . . representing the fun-

damental and higher order modes of gravity perturbation. For the remainder of the paper, we drop the

subscript from kz, noting the conclusions remain valid for isotropic fluid.

The steady state momentum conservation equation can be represented as

dτ(z)

dz
+mρ0g(z) = 0, (6.8)

where m is the mass, and ρ0 is the bulk density of the fluid. In k-space, the momentum conservation

equation can be recast as τ̃(k) = −imρ0g̃(k)/k. Since the strain rate is the gradient of the velocity field

(ε̇(z) = du(z)/dz), therefore ˜̇ε(k) = −ikũ(k). Further, using Eq. (6.5), one can write the expression for

k-space viscosity as

µ̃(k) =
mρ0g̃(k)

k2ũ(k)
. (6.9)

For the choice of the gravity field in Eq. (6.7), g̃(k) = g0. When the shear rate is small, no additional

harmonics are present in the velocity profile. The Fourier coefficient of the velocity field ũ(k) can be

computed using a NEMD simulation of the unconfined fluid with the sinusoidal gravity perturbation. It can

be represented as

ũ(k) =
2

N

N∑
i=0

sin(kzi)vx,i, (6.10)

where zi is the position of the particle i, and vx,i is the streaming direction velocity. The summation runs

over all particles N inside the box. Eq. (6.8) results in the efficient computation of the k-space viscosity,

which can then be fitted into suitable analytic functional form and inverted to obtain real space viscous

kernel. The question whether the k-space viscosity is analytic about k = 0 is an open problem. Mode-

coupling theory of viscosity predicts that k-space viscosity is non-analytic about k = 0, and therefore the

higher order Burnett coefficients do not exist. Non-analyticity of the k-space viscosity is also supported
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by the computer simulations of soft spheres performed by Evans [46]. However, subsequent simulations of

Travis et al. [165] have shown that the data can be fitted to both analytic and non-analytic forms. We

choose a two Gaussian form, first proposed in Ref. [63] that is analytic. The attractive feature of using this

functional form is that it avoids performing a numerical inverse Fourier transform of the k-space viscosity

to compute the real space viscous kernel. The k-space viscosity functional form can be represented as

µ̃(k) =
µ0

2

(
exp

(
−k2

2s2
1

)
+ exp

(
−k2

2s2
2

))
, (6.11)

for which the real space kernel becomes

µ(z) =
µ0

2
√

2π

(
s1 exp

(
−z2s2

1

2

)
+ s2 exp

(
−z2s2

2

2

))
. (6.12)

Here, s1 and s2 are the parameters of the fit, and have the units of inverse length. The viscous kernel can

also be rewritten as µ(z) = µ0f(z), where the weight function f(z) satisfies the normalization condition∫ +∞
−∞ f(z)dz = 1. The usefulness of separating the viscous kernel in this form would be leveraged in the

non-local transport model for channel geometries, discussed in the next section.

6.2 Transport model

6.2.1 Non-local formulation in slit channel

In this section, we investigate the feasibility of utilizing the non-local constitutive relationship to solve for

the velocity profiles. The system of interest is fluid confined between slit-shaped nanochannel, where the

two walls are separated by the distance L in the z-direction. A constant gravity force gx is applied in the

streamwise (x) direction. The momentum conservation equation in the steady state can be written as

dτ(z)

dz
+mgxρ(z) = 0, (6.13)

where the density is considered to be varying across the confinement due to the molecular nature of the

fluid. The above equation can be readily integrated to obtain the stress profile

τ(z) = −mgx

z∫
0

ρ(z′)dz′. (6.14)
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Here, we have assumed that shear stress at the center of the channel is zero due to the symmetry consid-

erations. Once the shear stress is known, we can utilize its variation to solve for the velocity profiles by

invoking the non-local constitutive relationship

τ(z) =

z+∆∫
z−∆

µ(z, z′ − z) du

dz′
dz′, (6.15)

where ∆ is the support of viscous kernel, and it depends upon the choice of the fluid and the thermodynamic

state. It is typically of the order of two to three molecular diameters for simple fluids. The viscous kernel

in the confinement, unlike bulk, is not isotropic. This is because the local density is variable in the channel,

and as a result it locally alters the thermodynamic state of the fluid. Like bulk, we further separate the

inhomogeneous viscous kernel as

µ(z, z′ − z) = µ0(z)f(z, z′ − z), (6.16)

where it is assumed the local viscosity varies across the confinement. This assumption is similar in spirit

of the variable separable form proposed by Cadusch et al. [36] (µ(z, z′ − z) = W (z)µ(z′ − z)), with subtle

differences. First, their choice of the function W (z) as a top-hat function Π(z) is motivated by finite size of

the domain in the confined direction, and therefore it cannot be parameterized with a physical motivation.

Second, we still retain the position dependence in weight function f(z, z′−z). This is because the parameters

of the functional form of homogeneous kernel in Eq. (6.12) have been shown to be density dependent in bulk

systems [63].

It can be understood that the above equation can be recast into a higher order differential equation in

streaming velocity by a suitable change of variable in the integral, and subsequently performing a Taylor

series expansion of strain-rate. The coefficients of the higher order velocity gradient terms are moments of

the viscous kernel. This approach, however, is not amenable to solve for the velocity profile as typically a

Dirichlet or Robin type boundary condition is known. In what follows, we discuss a Jacobi like iterative

scheme to solve for the velocity profile.

We first decompose the shear stress into local and non-local constituents as

τ(z) = τL(z) + τNL(z), (6.17)

where the local shear stress is represented by the typical point-wise stress strain-rate relationship

τL(z) = µ0(z)
du

dz
, (6.18)
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and consequently, the non-local local contribution is represented by subtracting the local shear stress from

the total shear stress

τNL(z) = µ0(z)

 +∆∫
−∆

f(z, θ)
du

dθ

∣∣∣∣∣
z+θ

dθ − du

dz

 , (6.19)

where we have used z′ − z = θ in Eq. (6.15). To start the iterative scheme, we neglect the non-local

contribution and solve the Stokes equation with slip boundary condition to obtain the zeroth-iterate velocity

profile (u(0)(z)) using the slip boundary condition

u

(
±L

2
∓ δ
)

= us, (6.20)

where us is the slip velocity and can be related to the interfacial friction coefficient ζ0 as

us =
Amgxρavg

2ζ0
. (6.21)

The friction can be computed using the GLE formulation discussed previously. Once u(0)(z) is estimated,

the non-local shear stress can be evaluated from Eq. (6.19) and the iterative scheme can be continued by

solving

µ0(z)
du(k+1)

dz
= −mgx

z∫
0

ρ(z′)dz′ − τ
(k)
NL(z), (6.22a)

τ
(k)
NL(z) = µ0(z)

 +∆∫
−∆

f(z, θ)
du(k)

dθ

∣∣∣∣∣
z+θ

dθ − du(k)

dz

 , (6.22b)

successively by using the slip velocity boundary condition (Eq. (6.20)).

6.2.2 Viscosity model

To model the variation of local viscosity µ0(z), we adopt the local average density method (LADM) proposed

by Bitsanis et al. [28]. In this approach, the density profile is first averaged with a weight function to obtain

a local average density. This local average density, along with the operating temperature, identifies as an

equivalent homogeneous bulk like system. The viscosity of this bulk system can be estimated using EMD

simulations in conjunction with Green-Kubo relations. Alternatively, one can also use equation of state for

viscosity where the literature is available. The local average density in this work is computed by utilizing
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Tarazona weight functions as

ρ̄(z) =

∫
ω(z′ − z, ρ̄(z))ρ(z′)dz′, (6.23a)

ω(z′ − z, ρ̄(z)) = ω0(z′ − z) + ω1(z′ − z)ρ̄(z) + ω2(z′ − z) [ρ̄(z)]
2
, (6.23b)

where ωi=0,1,2(z) are given in Ref. [167]. Once the homogeneous state of the fluid is characterized, we

computed its viscosity following the correlations provided by Galliéro et al. [51], that have strong foundation

by using the comprehensive dataset provided by Meier et al [104].

6.3 Simulation Details

Bulk MD simulations are performed in this work to compute the homogeneous viscous kernel. The fluid is

modeled using purely repulsive Weeks-Chandler-Anderson (WCA) potential, which is expressed as

uWCA(rij) =


4εff

(
σ12
ff

r12ij
− σ6

ff

r6ij

)
+ εff, rij ≤ 21/6σff,

0, rij > 21/6σff,

(6.24)

where εff and σff are the depth of the LJ potential well and the diameter of the fluid, respectively. They

are chosen to be equal to εff = 148.1kB, and σff = 0.381 nm to correspond to that of LJ Methane. The

operating temperature is chosen to be 107.52 K, and density 12.62 atoms/nm−3, which corresponds to a

reduced temperature of 0.726 and reduced density of 0.698. The box length in z-direction Lz is chosen to

be 6.7 nm, which corresponds to a minimum kσff = 0.3567 in the STF simulation.

In NEMD simulations, we consider WCA fluid confined between two silicon walls. Each wall is made

up of four layers of silicon atoms arranged in the [111] direction, with lateral dimensions 4.655 nm × 4.224

nm. The interaction between the fluid atoms and the wall particles is modeled using 12–6 LJ potential,

with εwf = 1.7358 kJ/mol and σwf = 0.3597 nm. In NEMD simulations, the value of gx is applied in the

streaming direction.

6.4 Results

In this section, we examine the accuracy of the proposed non-local framework for bulk and confined fluids.

We first compute the viscous kernel using the STF method. Different values of gravity magnitude g0 is

chosen for different modes to keep the k-space shear rate ˜̇ε(k) = kũ(k) to a maximum value of 0.15 ps−1.
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Since the k-space obtained from the STF simulation should be interpreted at the limit of zero shear rate, we

first compute the zero shear rate limiting value of k-space viscosity by fitting the results to Quentrec local

order theory as [136]

µ̃(k, ε̇) = µ̃(k, ε̇→ 0) +
aε̇2

b+ ε̇2
. (6.25)

We plot the shear rate dependence of the k-space viscosity for first eight modes along with the fits described

by Quentrec local order theory in Fig. 6.1. It can be inferred from the plot that the long wavelength modes

(k near zero) have the highest viscosity, and the dependence of the shear rate is also more distinct in long

wavelength modes. Higher order modes have successively lower zero shear rate k-space viscosity, and the

shear rate dependence on the viscosity is weak.

Once the limiting value of k-space viscosity is computed, we plot the variation of the k-space viscosity

with respect to the wavevector k alongside the Gaussian fit in Fig. 6.2. From the fit, we are able to obtain

s1 = 5.4365 nm−1, and s2 = 11.6136 nm−1. Our values are very similar to the ones obtained in Ref. [63] for

the same thermodynamic state of the fluid. We also plot corresponding real space viscous kernel Fig. 6.3 by

using Eq. (6.12). From the plot, we are able to estimate the support of the viscous kernel to be ∆ = 2σff.

We have also verified that changing the support from 2σff to 3σff does not alter our subsequent results

significantly.

6.4.1 Bulk fluid

For the bulk fluid, we first examine the accuracy of the local and non-local constitutive relationship by

calculating the shear stress using the velocity profiles obtained from the STF-MD simulations and comparing

them against the shear stress obtained by solving the conservation equation (Eq. (6.8)). We pick two distinct

cases, with kσff equal to 0.3567 and 1.784, corresponding to the fundamental mode n = 1, and n = 5,

respectively. In solving the conservation equation, we use τ(Lz/4) = 0 as a boundary condition. The

STF-MD velocity profiles are fitted to a functional form u(z) = u0 sin(kz) for derivative evaluations. We

compare the resultant shear stress profiles from the local and non-local constitutive relationship in Fig. 6.4.

It can be seen from the plots that for the fundamental mode, both local and non-local formulation perform

equally well (see Fig. 6.4(a)). This is because the strain-rate gradients in the fundamental mode do not

vary appreciably over the width of the viscous kernel. As a result, the effect of the viscous kernel is akin

to that of a delta function µ(z) = µ0δ(z). Plugging this delta-function definition of viscous kernel reduces

the non-local relation into a local one. However, when the strain-rate variations are of the order of the

width of the kernel, and the non-local model is superior to the local model in predicting shear stress (see

Fig. 6.4(b)). Thus, we can conclude that the non-local constitutive relation is a generic one, and only under
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special circumstances becomes equivalent to the local relation.

Next, we examine the performance of the proposed iterative scheme to predict the velocity profiles of

the STF simulation, provided the viscous kernel and the stress profile. As explained earlier, we begin the

iterative scheme by solving the Stokes equation, which assumes a local relationship between the stress and

strain-rate. Subsequent iterations are progressed by using equations similar to Eq. (6.22), with constant

density ρ(z) = ρ0 and viscosity µ(z) = µ0, but variable gravity g(z) = g0 sin(kz). We use u(0) = u(Lz) = 0,

as a boundary condition while solving the Stokes equation. The convergence is evaluated by defining the

normalized residual using the successive iterates of the velocity profile as

Normalized residual =

∥∥uk+1(z)− uk(z)
∥∥

‖uk(z)‖
, (6.26)

where ‖. . .‖ denotes the 2-norm. The velocity profile is assumed to be converged when the normalized

residual becomes smaller than 10−6. We plot the residual versus number of iterations in Fig. 6.5, where it

can be seen that the convergence of the iterative method is linear. We also plot the velocity profiles obtained

using the non-local formulation in Fig. 6.6, where excellent agreement is observed between them and their

STF-MD computed counterparts. As expected, the local model behaves accurately for n = 1, but deficient

to predict the velocity profile n = 5.

6.4.2 Confined fluid

We now examine the performance of inhomogeneous viscous kernel in the confinement. As explained earlier,

we hypothesize that the inhomogeneities in the viscous kernel enter in two ways. First, the local viscosity

varies across the confinement. Additionally, the parameters s1 and s2 in the Gaussian fit show dependence

on the thermodynamic state in bulk systems. Similar to the bulk case, we begin with checking the validity

of local and non-local constitutive relationship in the confinement. For this exercise, we use the velocity

profiles obtained from the NEMD simulation. We first smoothen the NEMD velocity profile using the

quadratic-cosine functional form provided in Ref. [164], and evaluate the derivative using the fitted data.

The inhomogeneous viscosity variation, modeled using LADM, is also provided as an input. We consider

two channels of width 20σff with gx = 5× 10−4 nm/ps2 and 6σff gx = 8× 10−3 nm/ps2. The larger width of

20σff channel provides a large bulk like region where local and non-local constitutive relations are expected

to perform equally well. This is confirmed by plotting the shear stress in Fig. 6.7(a), although the local

model changes sign within 1σff distance away the interface, reflecting the change in the sign of strain rate

due to local extremas in the velocity profile. These sign reversals of stress are absent in the non-local model
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stress predictions, as the use of the kernel homogenizes the effective non-local strain-rate (bare strain rate

convoluted with the function f(z)), compared to the bare strain rate. Nevertheless, the differences between

the two definitions are minimal beyond 1σff, and they compare well with the NEMD data beyond 2σff.

We interpret these deficiencies arising from the lack of information about the velocity profile in the region

beyond the wall location, which results in a truncated calculation of the convoluted strain rate.

The smaller width of 6σff channel, however, is able to highlight the differences between the two approaches.

As expected, the predicted shear stress using the local model displays sign reversals consistent with the

20σff case. Additionally, the local model is not able to capture the shear stress quantitatively except near

the mid-point of the channel. The use of non-local model rectifies the sign-reversal, but still lacks the

quantitative accuracy compared to the NEMD data in the region up to 1.5σff away from the wall. We further

refine our estimates in of shear stress in 1σff region by considering a density dependence of parameter s1,

using the empirical correlations developed in Ref. [63] for bulk fluids. The variation can be represented as

s1(ρ̄) = (3.15/σff)(ρ̄σ3
ff)0.98, where we have used local average density as an input instead of the local density,

consistent with the method of calculating viscosity profile. It should also be noted that the variation of s2

does not change appreciably with density. However, both s1 and s2 are expected to change with respect to

temperature, and therefore should be re-quantified for a different operating temperatures.

We now calculate and compare the velocity profiles obtained using the non-local framework (Eq. (6.22))

against NEMD simulations. For 20σff channel width, we plot the velocity profiles in Fig. 6.8(a), where it

can be seen that both non-local and local (Stokes) model perform equally well in predicting the velocity

profiles, which is expected. On closer inspection, the non-local velocity profile shows oscillatory features near

the interface (see inset), consistent with the NEMD velocity profile. Both models, however, are not able

to capture the exact NEMD velocity profile near the interface. These deficiencies can be attributed to the

theoretical model for calculating the viscosity profile. The choice of a variable kernel parameter s1(ρ̄) does

not significantly alter the non-local velocity profile. For 6σff channel width, however, the differences between

the Stokes and non-local formulation are noteworthy (see Fig. 6.8(b)). The Stokes flow velocity profile,

as expected, is unable to capture velocity gradients accurately both very close to the interface where the

strain-rate changes sign, and around the center of the nanochannel. The non-local model (constant kernel)

is able to capture the local extrema accurately but predicts negative velocity in the interfacial region. This

behavior can be rectified by choosing a variable kernel (Fig. 6.8(c)). Similar to the 20σff case, the mismatch of

non-local model predicted velocity profiles against the NEMD ones in the interfacial region can be attributed

to the viscosity model.

In this chapter, we have presented a multiscale, non-local transport model for nanochannel flow. The
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non-local model postulates that the point-wise shear stress depends upon the strain-rate in its neighborhood.

This dependence is characterized by a viscous kernel, which is isotropic in bulk but non-isotropic in confined

systems. The non-isotropic viscous kernel can easily be parameterized by using the LADM to estimate

the viscosity profile, and bulk STF simulations to characterize the shape of the weight function. We also

discuss a Jacobi like iterative scheme to solve for the velocity profiles, which does not require additional

boundary conditions other than the slip velocity in Dirichlet form. The presented model marks a significant

improvement in capturing the short wavelength hydrodynamic effects and shows better agreement with the

velocity profiles obtained from NEMD simulations, in comparison to the Stokes equation.
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Figure 6.1: Shear rate dependence of k-space viscosity for first eight modes n = 1 to n = 8.
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Figure 6.2: Variation of zero shear rate k-space viscosity. STF computed data is represented by blue circles,
while the red line shows a Gaussian fit.
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Figure 6.3: Real space viscous kernel plotted using a Gaussian function. The red vertical lines are spaced
at one molecular diameter apart to interpret the support of the kernel.
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Figure 6.4: Comparison of shear stress in bulk using the local (red dashed line) and non-local (yellow solid
line) model against STF-MD (blue circles) simulations for (a) fundamental mode (n = 1), and (b) n = 5.

107



0 2 4 6 8 10
Number of iterations

-7

-6

-5

-4

-3

-2

-1

0

lo
g

1
0
(N

o
rm

a
liz

e
d
 r

e
s
id

u
a
l)

n = 1
n = 5

Figure 6.5: Normalized residual vs. number of iterations for the iterative method in bulk.
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Figure 6.6: Comparison of STF velocity profile predictions in bulk WCA fluid using the local (red dashed
line) and non-local (yellow solid line) model against STF-MD (blue circles) simulations for (a) fundamental
mode (n = 1), and (b) n = 5.
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Figure 6.7: Comparison of confined shear stress for (a) 20σff, and (b) 6σff wide slits.
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Figure 6.8: Comparison of local and non-local model predicted velocity profiles against NEMD velocity
profiles for (a) 20σff, and (b) 6σff wide slits. (c) compares the performance of constant vs. position dependent
kernel for 6σff wide slit.
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Chapter 7

Conclusions

The primary conclusions of this research work are as follows

• In Chapter 2, we have developed a quasi-continuum hydrodynamic transport model for gravity driven

flow in slit shaped nanopores. We have demonstrated the importance of both viscous and slip compo-

nents in the velocity profile by considering three different types of systems which elucidate competition

between the two phenomenon. Density profiles are used to calculate space dependent viscosity pro-

file, using LADM method. This variation is necessary to capture the non-parabolic nature of velocity

profiles as it would have been for constant density and viscosity case. A general boundary condition

which takes into account the total wall-fluid interactions modeled into the static Langevin equation

describing center of mass motion of fluid inside the slit is used. It is demonstrated that this boundary

condition works for a spectrum of wall-fluid interaction type, and its parameters are constant for fluids

confined in slit under same thermodynamic state. Furthermore, it is revealed from the velocity profiles

that the slip contribution in mass flow rate increases in all cases when the confining length is decreased,

which indicates that wall-fluid effects become more dominant compared to fluid-fluid effects for smaller

slit sizes. Overall, the model results in good agreement with the velocity profiles obtained from NEMD

simulations, and is valid for reasonable thermodynamic states that are studied in experiments for a

variety of wall-surface interactions.

• In Chapter 3, we have developed a continuum based hydrodynamic transport model for gravity driven

flow of water in slit shaped nanochannels. The boundary condition is formulated in the form of a slip

velocity, which is dependent on the interfacial friction coefficient. The friction coefficient provides the

atomistic to continuum bridge by incorporating the effect of the lattice structure and the nature of

wall-fluid interactions. It is estimated using the wall-fluid force autocorrelation and force-velocity cross-

correlation functions, which are computed using a GLE based dynamical framework. The correlations

computed using the GLE model are in good agreement with those computed using EMD simulations of

confined fluid. Furthermore, it is revealed from the velocity profiles that the slip length is invariant with
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channel width under certain conditions, and therefore it can serve as the single transport parameter

characterizing the surface-fluid interaction for a fixed thermodynamic state.

• In Chapter 4, we have developed a continuum based hydrodynamic transport model for isothermal,

non reacting mixture transport in slit shaped nanochannels. We have focused on species transport

equation instead of mixture motion as a whole. Viscous contributions are incorporated using partial

viscosities, which are evaluated using vdW1 and LADM formulation. A Maxwell-Stefan type term is

included to characterize the interspecies friction. The boundary conditions are provided in the form of

a friction based condition that contains the species-specific interfacial friction coefficient. The friction

coefficient is computed using a refined GLE based dynamical framework for mixtures. The species-

specific memory function for the GLE is obtained implicitly by utilizing the corresponding MFE of the

single particle VACF. The resulting correlations show good agreement with their EMD counterparts.

Under application of gravity, the species velocity profiles are predicted that are in excellent agreement

with NEMD velocities. The accuracy of the model remains unchanged in cases of species driven by

different gravity fields. In the cases considered, the mixture was observed to behave as a pseudo fluid,

that can be solved with preexisting one component transport models. Furthermore, it is also revealed

from the calculations that the effective friction coefficient of the mixture varies linearly with molar

composition at constant pressure and temperature, and therefore can be directly predicted from the

pure component friction coefficients. The slip lengths of the species are observed to be different from

each other.

• In Chapter 5, we have presented an interfacial friction based multiscale transport model for electroos-

motic flow. Spatial inhomogeneity in the solvent viscosity is modeled with separate contributions due

to the layering of solvent density and ion densities. Local viscosity variations include contributions

from the solvent structure using LADM and ion concentration dependent excess contributions by the

local application of Fuoss-Onsager theory, and Hubbard-Onsager electro-hydrodynamic equation based

dielectric friction theory. Interfacial friction dependent slip velocity is used as the boundary condition.

The friction parameter depends upon the time correlations, which are in turn computed using a refined

GLE framework that uses the electrochemical wall-solvent force map as an input, and is observed to

compare well with their EMD computed values. The segregation of flow profile into the slip and viscous

contributions allows us to separately predict the phenomenon of interfacial thickening of the solvent

and enhanced interfacial friction due to the coupling of LJ and electrostatic forces. It is inferred that

the interfacial friction for a positively charged wall is higher as compared to the negatively charged

wall of equal charge density magnitude. The proposed model shows good agreement of EOF velocity
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profiles against NEMD computed ones for a variety of input parameters such as wall-type, surface

charge densities and applied electric fields, including the cases of anomalous transport such as EOF

reversal.

• In Chapter 6, we have presented a multiscale, non-local transport model for nanochannel flow. The non-

local model postulates that the point-wise shear stress depends upon the strain-rate in its neighborhood.

This dependence is characterized by a viscous kernel, which is isotropic in bulk but non-isotropic in

confined systems. The non-isotropic viscous kernel can easily be parameterized by using the LADM

to estimate the viscosity profile, and bulk STF simulations to characterize the shape of the weight

function. We also discuss a Jacobi like iterative scheme to solve for the velocity profiles, which does

not require additional boundary conditions other than the slip velocity in Dirichlet form. The presented

model marks a significant improvement in capturing the short wavelength hydrodynamic effects and

shows better agreement with the velocity profiles obtained from NEMD simulations, in comparison to

the Stokes equation.
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Appendix A: Multicomponent
transport equations

Here we derive the vector form of Navier Stokes transport equations for multicomponent mixture. We would

begin with control volume formulation of continuity and momentum equations and reduce them into PDE

form. The interspecies friction term would account for the hydrodynamic drag experienced by a component

from other species constituting the mixture.

Continuity

The control volume form of the continuity equation describing the conservation of density mαρα for species

α can be written as

d

dt

∫
Vα(t)

mαραdV =

∫
Vα(t)

mα(∆sα)dV, (1)

where Vα(t) is the control volume that is translating with the continuum velocity uα(r, t). The right side

of the above equation has mα as the molar mass and sα as the rate of generation (with units of [L−3T−1]).

Since the choice of the control volume is arbitrary, the integrands must be equal. Dropping the volume

integrals and expanding the total derivative into partial time and density flux, the equivalent local PDE

form of the above equation is written as

∂

∂t
(mαρα) +∇ · (mαραuα) = mα(∆sα). (2)

Momentum

We apply a similar control volume based approach on momentum flux mαραuα of species α as

d

dt

∫
Vα(t)

mαραuαdV =

∫
Sα(t)

Πα · ndS +

∫
Vα(t)

mαραfαdV +

∫
Vα(t)

mα(∆sα)uαdV +

∫
Vα(t)

ραF∗αdV, (3)
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where the stress tensor Πα contains both hydrostatic and deviatoric components, and its flux is considered

moving across the surface Sα(t), which encloses the control volume Vα(t). The second term on the RHS

represents the body force, while the third term is momentum change due to mass generation, which is assumed

to be generated with the velocity uα. The final term is included due to interspecies momentum transfer

which is dependent on the species concentration, and the interspecies force F∗α consists of contributions from

all of the other components and will be discussed later. Similar to the continuity equation, the present

equation can be converted into the local PDE form as

∂

∂t
(mαραuα) +∇ · (mαραuα ⊗ uα) = ∇ ·Πα +mαραfα +mα(∆sα)uα + ραF∗α, (4)

where we have also invoked the Gauss’ divergence theorem. The symbol uα⊗uα denotes the outer product

of velocity field and results in a tensor. Using the identity ∇·(mαραuα ⊗ uα) = uα(∇·mαραuα)+mαρα(uα ·

∇ ⊗ uα), and application of chain rule on the partial time derivative, we can rewrite LHS of Eq. (4) as

mαρα
∂uα
∂t

+ uα
∂mαρα
∂t

+ uα(∇ ·mαραuα)︸ ︷︷ ︸+mαρα(uα · ∇uα), (5)

where the term in the underbraces can be simplified tomα(∆sα)uα by using the continuity equation (Eq. (2)).

Equating Eq. (5) and RHS terms from Eq. (4); and dropping the momentum term due to generation from

both sides, we get

mαρα

(
∂uα
∂t

+ uα · ∇ ⊗ uα

)
= ∇ ·Πα +mαραfα + ραF∗α. (6)

This equation is the momentum equation for species α, and is very similar to the Cauchy momentum equation

for pure component fluid, except for the introduction of interspecies friction force, which is absent in pure

component equation. Next, we will discuss the constitutive relationship for stress and interspecies friction

force.

Constitutive relationships

Stress tensor

The stress tensor for species α can be decomposed into hydrostatic partial pressure (Pα) and deviatoric (τα)

contributions

Πα = −PαI + τα, (7)
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where I is the identity matrix. At this stage, we can ignore the compressibility (bulk viscosity) and invoke

the stress-strain constitutive relationship

τα =
1

2
µP
α

[
∇⊗ uα + (∇⊗ uα)

T
]
, (8)

where µP
α is the partial shear viscosity, and T denotes the transpose. Now the divergence term finally reduces

to

∇ ·Πα = −∇Pα + µP
α∇2uα, (9)

Interspecies friction

The interspecies friction force F∗α consists of contributions from all other species β in the mixture, hence it

can be expressed as

F∗α =

N∑
β=1
β 6=α

ρβFαβ , (10)

where the hydrodynamic drag component Fαβ is assumed to be proportional to the relative velocity of the

two species, and directed to oppose the motion of the species. Its phenomenological form can be expressed

as

Fαβ = −ζαβ(uα − uβ), (11)

where ζαβ is the interspecies friction coefficient, and is related to the binary Maxwell-Stefan diffusivity as

ζαβ = kBT/ρtDαβ . Here the mixture density ρt =
∑
α ρα, is the sum of all component densities. Now the

total interspecies force can be written as

ραF∗α =

N∑
β=1
β 6=α

kBTραρβ
ρtDαβ

(uβ − uα), (12)

One-Dimensional simplification

Using results from Eq. (9) and Eq. (12) in Eq. (6), we can write the momentum equation as

mαρα

(
∂uα
∂t

+ uα · ∇ ⊗ uα

)
= −∇Pα + µP

α∇2uα +mαραfα +

N∑
β=1
β 6=α

kBTραρβ
ρtDαβ

(uβ − uα). (13)

These are N equations for velocity, and together with N continuity equations from Eq. (2), are able to fully

describe the three dimensional velocity and density fields for isothermal, incompressible flow.
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The following assumptions are made for 1D, gravity driven flow of a binary mixture N = 2,

1. No pressure gradient, ∇Pα = 0, and

2. No inertia term, LHS = 0,

Therefore the final equation can be written as

d

dz

[
µP
α

duα
dz

]
+mαραgα +

2∑
β=1
β 6=α

kBTραρβ
ρtDαβ

(uβ − uα) = 0, (14)
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Zürich, 2008.

[89] R. Kubo. The fluctuation-dissipation theorem. Rep. Prog. Phys., 29(1):255–284, 1966.

[90] Sridhar Kumar Kannam, B. D. Todd, J. S. Hansen, and Peter J. Daivis. Slip length of water on
graphene: Limitations of non-equilibrium molecular dynamics simulations. The Journal of Chemical
Physics, 136(2):–, 2012.

[91] Song Hi Lee and Jayendran C. Rasaiah. Molecular dynamics simulation of ion mobility. 2. alkali
metal and halide ions using the spc/e model for water at 25 c. The Journal of Physical Chemistry,
100(4):1420–1425, 1996.

[92] J Lyklema and J.Th.G Overbeek. On the interpretation of electrokinetic potentials. Journal of Colloid
Science, 16(5):501 – 512, 1961.

122



[93] Abdelhamid Maali, Touria Cohen-Bouhacina, and Hamid Kellay. Measurement of the slip length of
water flow on graphite surface. Applied Physics Letters, 92(5):–, 2008.

[94] M Majumder, N Chopra, R Andrews, and BJ Hinds. Nanoscale hydrodynamics: Enhanced flow in
carbon nanotubes (vol 438, pg 44, 2005). Nature, 438(7070):930, DEC 15 2005.

[95] Gerald S Manning. The interaction between a charged wall and its counterions: A condensation theory.
J. Phys. Chem. B, 114(16):5435–5440, 2010.

[96] G. A. Mansoori, N. F. Carnahan, K. E. Starling, and T. W. Leland. Equilibrium thermodynamic
properties of the mixture of hard spheres. The Journal of Chemical Physics, 54(4):1523–1525, 1971.

[97] A. Martini, A. Roxin, R. Q. Snurr, Q. Wang, and S. Lichter. Molecular mechanisms of liquid slip. J.
Fluid Mech., 600:257–269, 2008.

[98] S. Y. Mashayak and N. R. Aluru. Coarse-grained potential model for structural prediction of confined
water. J. Chem. Theory Comput., 8(5):1828–1840, 2012.

[99] S. Y. Mashayak and N. R. Aluru. Coarse-grained potential model for structural prediction of confined
water. J. Chem. Theory Comput., 8(5):1828–1840, 2012.

[100] S. Y. Mashayak and N. R. Aluru. Thermodynamic state-dependent structure-based coarse-graining of
confined water. The Journal of Chemical Physics, 137(21):214707, 2012.

[101] S Y Mashayak, M H Motevaselian, and N R Aluru. An EQT-cDFT approach to determine thermody-
namic properties of confined fluids. The Journal of Chemical Physics, 142(24):244116, 2015.

[102] SY Mashayak and N. R. Aluru. Langevin-poisson-eqt: A dipolar solvent based quasi-continuum
approach for electric double layers. The Journal of Chemical Physics, 146(4):044108, 2017.

[103] Nargess Mehdipour and Hossein Eslami. Calculation of transport properties of simple dense fluids.
Int. J. Therm. Sci., 41(10):949 – 954, 2002.

[104] Karsten Meier, Arno Laesecke, and Stephan Kabelac. Transport coefficients of the lennard-jones model
fluid. i. viscosity. The Journal of Chemical Physics., 121(8):3671–3687, 2004.

[105] Hazime Mori. Transport, collective motion, and brownian motion. Prog. Theor. Phys., 33(3):423–455,
1965.

[106] M H Motevaselian, S Y Mashayak, and N R Aluru. An EQT-based cDFT approach for a confined
Lennard-Jones fluid mixture. The Journal of Chemical Physics, 143(12):124106, 2015.
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