
	
	

© 2017 Akshat Gupta

	
	

PATHFINDER – AN ONLINE SHOPPING ASSISTANT DRIVEN BY DATA MINING

BY

AKSHAT GUPTA

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2017

Urbana, Illinois

Adviser:

 Professor Roy Campbell

	

	

ii	

ABSTRACT

 Online Shopping is a household phrase that has been extremely successful in easing the

lives of many people across the globe. Online shoppers spend ample amounts of time and money

in buying products that they receive at their doorstep in a matter of a few days or, in some cases,

a few hours. However, it is not as easy as it looks. People either have plenty of specifics in their

mind before buying a product or are just looking to explore a range of products for a particular

goal. This adds another layer on top of time and money spent – effort.

 PathFinder is a guide that helps shoppers make more informed choices and reach their

final product decision faster. It is a hand-in-hand assistant for shoppers that helps them at critical

stages of the buying process to ensure that they either reach their specifics without too much

research or that they get to explore granular details which they would miss otherwise. Being an

online shopping assistant, PathFinder aims to reduce the effort spent by online shoppers and

eases up the online product purchasing process even further.

	

	

iii	

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION...1

CHAPTER 2: SEARCH ENGINE...4

CHAPTER 3: DESCRIPTION KEY PHRASES DETECTION...9

CHAPTER 4: SUMMARY GENERATION..11

CHAPTER 5: PATHFINDER WALKTHROUGH..20

CHAPTER 6: PATHFINDER TESTING RESULTS..26

CHAPTER 7: RELATED WORK AND FUTURE WORK..29

CHAPTER 8: CONCLUSION...32

BIBLIOGRAPHY..33

	

	

1	

CHAPTER 1: INTRODUCTION

A decade ago, it was normal for people to queue up in stores to buy products. Nowadays,

this is no longer the norm as 51% Americans prefer to shop online [7]. It is not hard to think of

why this is the case. People can shop for their favorite items in the comfort of their couches and

browse through a diverse display of products, each product containing multiple brands, sellers,

and options. In the inventories of companies like Amazon, Walmart, eBay, and others, one can

find a range of products like electronics, home products, kitchen appliances, video games, books,

just to name a few. As a result of this comfort, Americans in metropolitan areas spend about 4.5

hours every week shopping for products online, whereas Americans in rural and suburban areas

spend around 5 hours per week doing the same [7]. This small difference might be because it is a

little easier for people in urban areas to physically visit stores if they want do not want to buy

some product online. Another dimension of this comfort comes in the form of the money spent

on online shopping. People in urban areas tend to spend upward of $800 annually and those in

the rural areas spend about $700 per year to buy products online [7].

While shopping online, there is a plethora of information that is thrown at a user. This

includes product names, product images, product description, reviews, prices and

advertisements. Out of these inputs for a product, the set of reviews is a very vital source of

information for users. Around 61% of users read reviews before buying a product as they feel

that they would make a more informed decision after reading the reviews [6]. Since users tend to

look at several similar products before buying what they want, they have to consume, process,

and scan through a lot of text information to make their final choice. Such information

consumption is important because reading reviews or looking at pictures is the only way to

compensate for the inability to physically touch the products. However, that amount of

	

	

2	

information is a double edged sword – it provides tremendous crowd-sourced detail but at the

same time can be a major hindrance. Around 21% of Americans [7] feel that websites become

hard to navigate when there is an abundance of information and this abundance can very quickly

become a bane from a boon, thereby driving away users.

PathFinder aims to solve the issue of abundance of information that users need to parse

through by extracting relevant parts of the content and displaying them in the regular purchasing

flow of walmart.com. Websites like amazon.com, walmart.com, and ebay.com have perfected

the art of buying flow over the years. Users reach a set of products either by searching for it or

by recommendations, look at the description, price, and pictures, read reviews, and after looking

at other similar products, make a decision and proceed to payment. This flow is as good as it gets

and needs no changing. PathFinder uses the same content and the same ordering flow however,

it provides the users key highlights along this flow. The system would link key phrases in the

product descriptions to the relevant reviews so that users can quickly notice certain features and

jump to the reviews that talk about those. Also, based on those key phrases, it would generate

related words and highlight the context in which the related words are used in the review. Using

this system, in the ideal case, a user would have to read minimally through reviews and after a

few clicks and glances over the highlighted parts, be able to make an informed decision. This

would in turn make it faster for users to decide on which product to buy. It would also make it

easier for them to navigate through websites like walmart.com which have daunting mountains

of text, which currently the users have to spend a lot of time parsing and figuring out which parts

of the reviews are relevant and which are not. These metrics have been evaluated later in Chapter

6. By using PathFinder, users would be able to get condensed information and be able to make

faster and more holistic decisions for buying products.

	

	

3	

PathFinder is built on top of walmart.com using the Walmart API [8]. It uses the search

API provided by Walmart to access product listings. walmart.com does not allow a user to search

through the reviews so as the first step, PathFinder indexes reviews to create a search engine for

product reviews. Using this index, it hyperlinks key phrases in the product descriptions to the

relevant reviews that mention those phrases. When the user reaches a set of reviews either

through the previously mentioned hyperlinks or by manually searching for keywords,

PathFinder uses Mutual Information to predict which words are likely to appear together with

the phrases or keywords. This thesis will deep dive into each of these components of PathFinder,

provide a walkthrough of a common search made by users, and explain results of product testing

that was carried out.

Figure 1.1: PathFinder’s overall architecture and flow.

	

	

4	

CHAPTER 2: SEARCH ENGINE

PathFinder uses the Walmart Search API to query for products requested by a user. The

API returns a set of products along with product names, descriptions, and reviews. After

retrieving these results, PathFinder uses its search indexer to index the reviews.

2.1 BUILDING THE SEARCH INDEX

 Suppose there are 3 products namely, 𝑝", 𝑝$, 𝑝%. For simplicity, let us assume that there is

only 1 review for each product. The following are the reviews:

Table 2.1: Example of products and corresponding reviews

Product Review

𝑝" Hi is this the product.

𝑝$ This product is the best.

𝑝% How is it so good.

 The first step before indexing this data is to clean it. The indexer of PathFinder removes

all punctuations and converts all words to lowercase as part of the cleaning process. After

cleaning this data, an Inverted Index is created. Inverted Index is a mapping of documents (in

this case documents are products) to the different unique tokens (in this case tokens are the

words in the reviews) in them. Along with unique tokens, PathFinder’s indexer also stores the

positions of the tokens in the documents. So, the indexer indexes products 𝑝&	𝑤ℎ𝑒𝑟𝑒	0 ≤ 𝑖 ≤ 𝑛

and 𝑛 is the total number of products. At the end of this stage, this is what the Inverted Index

looks like:

	

	

5	

Table 2.2: Inverted Index after cleaning the data

Product Words and Positions

𝑝" hi: [0], is: [1], this: [3], the: [4],

product: [5]

𝑝$ this: [0], product: [1], is: [2], the: [3],

best: [4]

𝑝% how: [0], is: [1], it: [2], so: [3],

good: [4]

 The final step in creating the search index is to combine the mappings from the Inverted

Index to create a Forward Index. A Forward Index would then be a mapping of words in the

reviews to the documents they occur in, along with the corresponding positions. The Forward

Index looks as follows.

Table 2.3: Forward Index as a result of combining the mappings from the Inverted Index

Words Products and Positions

hi 𝑝": [0]

is 𝑝": [1], 𝑝$: [2], 𝑝%: [1]

this 𝑝": [2], 𝑝$: [0]

the 𝑝": [3], 𝑝$: [3]

product 𝑝": [4], 𝑝$: [1]

best 𝑝$: [4]

how 𝑝%: [0]

	

	

6	

Table 2.3 (cont.)

Words Products and Positions

it 𝑝%: [2]

so 𝑝%: [3]

good 𝑝%: [4]

The Forward Index is what is used by PathFinder’s Search Engine to perform different

types of queries on the reviews. Currently, it supports Simple queries, Phrase queries, and

Proximity Search queries. To explain each of these types of queries, consider a query 𝑞

containing 𝑚 terms such that for any given term 𝑞& in 𝑞, 0 ≤ 𝑖 ≤ 𝑚.

2.2 SIMPLE QUERIES

 Simple Queries are the type of queries that simply search for the documents that the

query terms appear in. For example, let the query be “is”. Thus, 𝑞": “is”. For every term in the

query 𝑞, which in this case is just 𝑞", PathFinder would use the Forward Index to form a union

of all documents containing the query terms. Since, 𝑞" is present in 𝑝", 𝑝$, 𝑝%, the set of

documents returned would be 𝑝", 𝑝$, 𝑝%. Similarly, for query term “product”, the result would be

𝑝", 𝑝$. As a final example, taking “this product is” as a query, the set of documents for 𝑞"

(“this”) is 𝑝", 𝑝$ and the set of documents for 𝑞$ (“product”) is 𝑝", 𝑝$ and for 𝑞% (“is”) is

𝑝", 𝑝$, 𝑝%. Therefore, the union of all these documents would form the final result i.e. 𝑝", 𝑝$, 𝑝%.

 Even though this simple queries algorithm is useful in extracting documents based on the

occurrence of words, it does not work well in capturing the context in which each of the query

terms are used and also assumes that each term in the search query is equally important [1]. For

example, for a query “this bad product”, the simple query algorithm would return all documents

	

	

7	

where “this”, “bad”, and “product” are used. However, it is not necessary that the term “bad” is

used in the context of “product” and the returned document(s) would not be useful to the user.

2.3 PHRASE QUERIES

 Phrase Queries do slightly better than Simple Queries in terms of capturing the context of

the query terms in the query. The phrase query algorithm ensures that it only retrieves documents

which contain all the terms in the query, unlike the simple query algorithm which only checks

for occurrence. Apart from checking for the presence of all query terms, it also checks whether

the terms appear consecutively or not in the document. If they do not, then the document is not

returned. Since it uses the same Forward Index, retrieval is more efficient than substring

matching.

 Suppose the query is “this product”. Thus 𝑞" is “this” and 𝑞$ is “product”. According to

the simple query algorithm, documents 	𝑝" and 𝑝$ would be returned. The Phrase Query

algorithm would check the positions of 𝑞" and 𝑞$, which in this case would be positions 2 and

4 for 𝑝" and positions 0 and 1 for 𝑝$. Since the positions in 𝑝" are not continuous, 𝑝" would not

be retrieved and since they are continuous in 𝑝$, so only 𝑝$ would be retrieved.

Going back to the example of the query being “this bad product”, using the Phrase Query

algorithm, only the documents which contain these terms consecutively would be returned. This

captures the context in which the terms are being used and thus solves the limitation of Simple

Queries.

2.4 PROXIMITY OF SEARCH QUERIES

 The Proximity Search Query algorithm is similar to the Phrase Query algorithm but

instead of checking for continuous occurrence of query terms, it checks if the query terms lie

	

	

8	

within a pre specified proximity of each other. PathFinder uses an online search query size

survey [9], to determine the appropriate proximity between the search query terms.

 As an example, taking the same query “this product” and a proximity window of 1, the

Proximity Search Query algorithm would return the same documents as the Phrase Query

algorithm i.e. only 𝑝$. This is because in 𝑝", “this” and “product” are separated by a distance of

2. However, if the proximity window is increased to 2, then the algorithm would return

𝑝"	𝑎𝑛𝑑	𝑝$ since “this” and “product” lie within a distance of 2 in both these documents.

 PathFinder uses Proximity Search under the hood of the review search engine. Another

key component of this algorithm is selecting the proximity window size. According to [9], more

than 60% of the queries have 1 or 2 words and around 95% of the queries have 5 words of less.

Since the proximity window is just an upper limit, it is selected to be 5 to allow for a smoother

cushion even if the query terms are less than 5 terms apart.

 The reason for using Proximity Search is because users would not necessarily use all the

query terms together while writing reviews. That being said, query terms that appear within a

certain distance of each other are likely to be used in the same context. So Proximity Search

retrieves documents which capture the context of usage of the query terms even if the terms do

not appear consecutively in the documents. Using this search engine, users can now simply

search through the reviews quickly without having to read through them manually one after the

other.

	

	

9	

CHAPTER 3: DESCRIPTION KEY PHRASES DETECTION

While buying products, users read product descriptions before even reading the reviews.

As discussed above, users have either specific details that they are looking for or they are simply

exploring varied features. The product descriptions provide a concise summary of the product

features and details but currently, there is no bridge between the descriptions and the reviews. So

users would look at a certain detail in the description, search for it in the reviews, and similarly

go back and forth between the description and the reviews till they are satisfied or they reject the

product. PathFinder simplifies this process and connects the descriptions with the reviews by

detecting key words and phrases in the descriptions and linking them to the relevant reviews.

Within a given product description, not all words or sub phrases are important for a user.

PathFinder’s key phrases detection algorithm is built on the assumption that users would be

interested in specific details in the description that other users are also talking about.

3.1 SLIDING WINDOW MECHANISM

 Suppose there is a product description 𝑑. 𝑑 contains words or terms along with several

punctuations. Also, several words in 𝑑 would be English ‘stop words’ or words that are very

commonly used in English language. PathFinder maintains a sliding window which is bounded

by an upper limit size of 3, thus can be of size 0, 1, 2, and 3. This sliding window glides over the

description for each possible window size and plugs part of the description that is within the

sliding window into the Phrase Query algorithm in the review search engine. It then checks if the

search engine returned any document and since it performs this operation for each possible

window size, it would consider a phrase to be a key phrase if it is bounded by the maximum

possible window size for which there is at least one document that is returned.

	

	

10	

 As the first step in this process, PathFinder cleans the description 𝑑 by removing all the

punctuations and then tokenizes 𝑑 by splitting it on spaces. For this example, consider the

tokenized version of 𝑑 to be 𝑑5, thus 𝑑5 is a list of tokens after splitting 𝑑 by spaces. If the

starting position of the sliding window points at a token which is a stop word, then the sliding

window skips over that position to the next position. From a particular starting position of the

sliding window 𝑠, the possible phrases are given by the following equation:

																																																													𝑑5 7,			789 where 1 ≤ 𝑘 ≤ 3 (3.1)

 This equation would create a list of sub-phrases from 𝑑5 and query the search engine

using the Phrase Query algorithm to check if any review is returned. PathFinder would plug in

each sub-phrase from the generated list and select the one which is of maximum length and for

which more than 1 review is returned by the search engine. After selecting a particular key

phrase, PathFinder creates a hyperlink to the reviews that are returned by the search engine. The

sliding window then jumps to the starting position of the phrase that lies right after the selected

phrase. This process takes place till the end of 𝑑5 is reached and at the end, PathFinder would

have converted the original description into a description which has the same text as before, but

with certain key phrases hyperlinked to the relevant reviews that those key phrases appear in.

	

	

11	

CHAPTER 4: SUMMARY GENERATION

 At this point, PathFinder is equipped to allow users to search for products, search within

the reviews of all products, and also highlight key words or phrases in the description and link

them to the relevant reviews. PathFinder then aims to generate related words to the word or

phrases that the user searched for or clicked from the description hyperlinks using Word

Association Mining methods described in [1]. In addition to this, it would also highlight the

context in which the related words occur along with them within reviews, thereby creating a

specific summarized view of the information. Thus, the two main tasks in summary generation

are to generate the related words and to highlight the context.

4.1 RELATED WORDS GENERATION

 Consider the following documents:

Table 4.1: Sample documents to illustrate Related Words Generation

Product Review

𝑑" The pan is made of non stick material.

𝑑$ The spatula is made of steel.

𝑑% Great to cook meat on the pan.

𝑑= Set includes both the pan and the spatula.

𝑑> The spoons are made of silver.

 Generating related words of a given word is all about mining associations between the

words from a given set of documents. In the field of Information Retrieval, there are two types of

word associations – Paradigmatic relation and Syntagmatic relation.

	

	

12	

 According to [1], in a Paradigmatic relationship, two words 𝑤$ and 𝑤% can be used in

place of each other while still keeping the overall meaning of the sentence the same. These

words belong to the same semantic or syntactic class. In documents 𝑑" through 𝑑>, an example

of paradigmatic relationship would be between “spatula” and “spoon” since they can be used

interchangeably. If we replace “spatula” with “spoon” in 𝑑=, then 𝑑= would become “The set

includes both the pan and the spoon.”, which still conserves the general context of the sentence.

However, words like “pan” and “set” do not share a paradigmatic relationship because their

interchange or substitution would not lead to a meaningful sentence.

 In a Syntagmatic relationship [1], two words 𝑤? and 𝑤@ are semantically related i.e. they

can be combined together to form a meaningful phrase. In documents 𝑑" through 𝑑>, (“pan” and

“made”) and (“meat” and “cook”) are some examples of pairs of words that share a syntagmatic

relationship. The context that would be created by (“pan” and “made”) could be thought of as

“made in a pan” and the same created by (“meat” and “cook”) could be “cook meat”. Such pairs

of words or phrases do not necessarily have to fit perfectly with each other but rather create a

well perceivable context by their combination.

 PathFinder makes use of Syntagmatic relationships between words and phrases to

generate related words. In the case of online product shopping, suppose users search for

“crockery” and then search for “pan” within the reviews of the product listing, they probably

want to understand the contexts in which “pan” is used by other users in their writing. The users

would be better off looking at related words like “set” or “made” instead of “spoon” or “spatula”.

As described above (“pan” and “set”) creates the context of information about a set of pans and

(“pan” and “made”) creates the context of “things made in a pan”. (“pan” and “spoon”) on the

other hand, does not provide as much information about the “pan” as “set” and “made” do. These

	

	

13	

reasons and examples warrant the use of Syntagmatic relationships between words and phrases

for the generation of related words.

4.2 SYNTAGMATIC RELATIONSHIPS EXTRACTION

 Words that co-occur tend to have a syntagmatic relationship with each other. Considering

the documents in Table 4.1 and for extracting syntagmatic relationships among words, the most

important question is given word 𝑤$, what are the other words that are likely to occur in the

same context. For example, if 𝑤$ is “pan”, some words that are likely to co-occur are “made”

and “set”. If 𝑤$ is “meat”, then the co-occurring words would be “cook” and “pan”.

4.2.1 CONDITIONAL ENTROPIES

 The first method of extracting syntagmatic relationships is by using Conditional

Entropies described in [1]. Given a word 𝑤′, the task is to figure out what words tend to co-occur

with 𝑤′. Suppose 𝑋C is a random variable which simply depicts whether the word 𝑤 is present or

not, thereby the domain of 𝑋C is {0, 1}. Although we need to check all words against 𝑤D, for

simplicity assume that we calculate the tendency of 𝑤 co-occurring with 𝑤′.

One idea to perform this extraction would be to simply calculate the probability of the

occurrence of 𝑤 without taking anything into account about 𝑤′. Therefore, one would just need

to calculate the following values when 𝑤 is “meat” and 𝑤′ is “cook”:

																																																															𝑃 𝑋FG?5 = 1 (4.1)

This could be performed for all words in the corpus and simply take the one that has

highest probability. However, such an approach does not say anything about the co-occurrence

of the 2 words “meat” and “cook”. Thus, in the second approach, consider the following

equations:

																𝑃 𝑋FG?5 = 1	 	𝑋IJJ9 = 1) and 𝑃 𝑋FG?5 = 0	 	𝑋IJJ9 = 1) (4.2)

	

	

14	

The equations above now try to predict the occurrence or non-occurrence of “meat” given

that “cook” is present. Using these equations, we will extract syntagmatic relations with the help

of conditional entropies.

The conditional entropy of “meat” and the conditional entropy of “meat” given that

“cook” is present or not present are defined as follows:

𝐻 𝑋FG?5 = 	−𝑃 𝑋FG?5 = 1 log% 𝑋FG?5 = 1 	− 𝑃 𝑋FG?5 = 0 log% 𝑋FG?5 = 0 (4.3)

𝐻 𝑋FG?5	|	𝑋IJJ9 = 1 = 	−𝑃 𝑋FG?5 = 1	|	𝑋IJJ9 = 1 log% 𝑋FG?5 = 1	|	𝑋IJJ9 = 1 	−

𝑃 𝑋FG?5 = 0	|	𝑋IJJ9 = 1 log% 𝑋FG?5 = 0	|	𝑋IJJ9 = 1 (4.4)

𝐻 𝑋FG?5	|	𝑋IJJ9 = 0 = 	−𝑃 𝑋FG?5 = 1	|	𝑋IJJ9 = 0 log% 𝑋FG?5 = 1	|	𝑋IJJ9 = 0 	−

𝑃 𝑋FG?5 = 0	|	𝑋IJJ9 = 0 log% 𝑋FG?5 = 0	|	𝑋IJJ9 = 0 (4.5)

Entropy is a measure of calmness within a system. In terms of syntagmatic words

extraction, the entropy would be high if two words do not tend to co-occur and vice versa. For

example, the entropy of just “meat” would be higher than the entropy of “meat” given that

“cook” is also present because the presence of “cook” brings the prediction closer to predicting

“meat”. Therefore, 𝐻 𝑋FG?5 = 1 is higher than 𝐻 𝑋FG?5 = 1	|	𝑋IJJ9 = 1 . On the extreme

case, predicting “meat” given that “meat” is present would be 0 since the prediction would be

100% accurate.

This approach seems reasonable but has a major shortcoming. While using conditional

entropies for syntagmatic relationships extraction, one needs to iterate over all the words in a

corpus and calculate the value of the conditional entropy. This is given by the following

equation:

																																													𝐻 𝑋C = 1	 	𝑋CD = 1)	∀𝑤	 ∈ 𝑉 (4.6)

	

	

15	

where 𝑉,𝑤,𝑤′ are the vocabulary of the corpus, word in the corpus, and the word for

which we need to find co-occurrences respectively.

After getting these values, a method to extract the top words that share a syntagmatic

relationship would be to define a cutoff and ignore words that lie below it. The problem with this

approach is that the values that are calculated for a particular 𝑤 cannot be compared across

different 𝑤′s. Each would have a different cutoff and renders this approach inconsistent.

4.2.2 MUTUAL INFORMATION

Since the conditional entropy scores are not comparable across different words in the

approach described above, it is challenging to find the words that correlated or co-occur with

each other the most. To solve this problem, PathFinder uses Mutual Information as described in

[1]. Mutual Information is depicted by the following equation:

																																																𝐼 𝑋; 𝑌 = 𝐻 𝑋 − 	𝐻 𝑋	 	𝑌) (4.7)

𝐼 𝑋; 𝑌 stands for a reduction in the entropy of 𝑋 once the presence of 𝑌 is confirmed.

The reason why this allows the comparison of different words is because it measures a

magnitude of reduction, a metric that can be used to estimate usefulness or in this case, degree of

co-occurrence. Thus, while ranking words that co-occur with a given word 𝑋, one would choose

the top-k words that lead to the greatest reduction in 𝐻 𝑋 . Consider the following relation:

																																														𝐼 𝑋FG?5	; 𝑌IJJ9 > 𝐼 𝑋FG?5	; 𝑌7YJJZ (4.8)

This relation indicates the presence of “cook” reduces the entropy of “meat” more than

the reduction caused by “spoon”. Thus, “cook” co-occurs to a greater extent with “meat” than

“spoon” does in the corpus.

For words 𝑤 and 𝑤′, where the task if to find the reduction in entropy [1] in 𝑤 caused by

𝑤′, PathFinder uses the following equation:

	

	

16	

										𝐼 𝑋C	; 𝑋C[= 	 𝑃(𝑋C = 𝑢, 𝑋C[= 𝑣)_	∈{",$}b	∈{",$} log%
c(defb,de[f_)

c(defb)c(de[f_)
 (4.8)

The numerator within the log is the joint distribution and the denominator is the expected

joint distribution on the assumption that 𝑋C and 𝑋CD are independent. This equation is a form of

the KL-Divergence method which estimates the the difference between the actual joint

distribution and the expected joint distribution on the basis of independence of 𝑋C and 𝑋CD.

Taking a look at the two summation operation, mutual information uses all possible values of

occurrence i.e. present or not present thus, 1 or 0 respectively and sums over all these values. It is

clear that the the higher the divergence is, the greater the mutual information would be. In order

to compute the mutual information using the KL-Divergence approach, the following are the

probabilities that are important:

																																																	𝑃 𝑋C = 1 + 𝑃 𝑋C = 0 = 1 (4.9)

																																																														𝑃 𝑋CD = 1 + 𝑃 𝑋CD = 0 = 1 (4.10)

Since marginal probabilities sum up to 1,

𝑃 𝑋C = 1, 𝑋C[= 1 + 𝑃 𝑋C = 1, 𝑋C[= 0 + 	𝑃 𝑋C = 0, 𝑋C[= 0 +	

𝑃 𝑋C = 0, 𝑋CD = 1 = 1 (4.11)

Also,

																				𝑃 𝑋C = 1, 𝑋CD = 1 + 𝑃 𝑋C = 1, 𝑋CD = 0 = 	𝑃 𝑋C = 1 (4.12)

																			𝑃 𝑋C = 1, 𝑋CD = 0 + 	𝑃 𝑋C = 0, 𝑋CD = 0 = 	𝑃 𝑋CD = 0 	 (4.13)

																			𝑃 𝑋C = 0, 𝑋CD = 0 + 	𝑃 𝑋C = 0, 𝑋CD = 1 = 	𝑃 𝑋C = 0 (4.14)

																			𝑃 𝑋C = 1, 𝑋CD = 1 + 	𝑃 𝑋C = 0, 𝑋CD = 1 = 	𝑃 𝑋CD = 1 (4.15)

These probabilities can be plugged into the following equation:

																																																						𝐼 𝑋C	; 𝑋C[∀𝑤′	 ∈ 𝑉 (4.16)

	

	

17	

This would return a list of (word, score) pairs where the word is every word in the

vocabulary and the score is the mutual information score. PathFinder simply sorts this list and

takes the top-5 words to be the words that have highest co-occurrence with 𝑤.

4.2.3 OPTIMIZATIONS AND SMOOTHING

 PathFinder also makes optimizations suggested in [1] in terms of computation of these

probabilities. The only values that need to be calculated are 𝑃 𝑋C = 1 , 𝑃 𝑋CD = 1 , and

𝑃 𝑋C = 1, 𝑋CD = 1 . The following are the optimizations:

1. 𝑃 𝑋C = 0 does not need to be calculated as it is 1 − 	𝑃 𝑋C = 1 .

2. Similarly, 𝑃 𝑋CD = 0 does not need to be calculated as it is 1 − 	𝑃 𝑋CD = 1 .

3. 𝑃 𝑋C = 1, 𝑋CD = 0 can be computed using 𝑃 𝑋C = 1 − 	𝑃 𝑋C = 1, 𝑋CD = 1 .

4. 𝑃 𝑋C = 0, 𝑋CD = 0 is calculated by doing 𝑃 𝑋CD = 0 − 	𝑃 𝑋C = 1, 𝑋CD = 0 .

5. 𝑃 𝑋C = 0, 𝑋CD = 1 can be calculated using 𝑃 𝑋C = 0 − 	𝑃 𝑋C = 0, 𝑋CD = 0 .

Such optimizations not only improve the time complexity of calculating the values but also

reduce the amount of storage space required for the different variables.

 To compute the probability, a simple idea is to using MLE or Maximum Likelihood

Estimation with the help of the following equations:

 𝑃 𝑋C = 1 = 	 IJbZ5 C
h

 (4.17)

																																																																𝑃 𝑋CD = 1 = 	 IJbZ5 CD
h

 (4.18)

																																																															𝑃 𝑋C = 1, 𝑋CD = 1 = 	 IJbZ5 C,CD
h

 (4.19)

where 𝑤 and 𝑤′ ∈ 𝑉, 𝑁 is the number of documents, 𝑐𝑜𝑢𝑛𝑡(.) is the number of documents

containing the word or joint occurrence of words.

	

	

18	

The problem with this approach is that there might be certain probabilities that might be

0. To avoid this issue, PathFinder uses smoothing according to the following modified

equations:

																																																																						𝑃 𝑋C = 1 = 	 IJbZ5 C 8".m
h8$

 (4.20)

																																																																					𝑃 𝑋CD = 1 = 	 IJbZ5 CD 8".m
h8$

 (4.21)

																																																																				𝑃 𝑋C = 1, 𝑋CD = 1 = 	 IJbZ5 C,CD 8".%m
h8$

 (4.22)

 By adding a small noise like 0.5 and 0.25, it is guaranteed that no probability would be 0

even if there are some words or word combinations whose count is 0 and also ensures that words

or combinations that have 0 occurrences are not rewarded by a big amount.

4.3 CONTEXT HIGHLIGHTING

 After generating related words of a search query or phrase, PathFinder aids the users

further by highlighting the context in which these related terms are used with the search key

words. Suppose a user enters a search query 𝑞 and PathFinder, using the Mutual Information

algorithm described previously, outputs a set of related terms. For each of these related terms,

PathFinder would perform the highlighting process when the user clicks on a given related term

𝑟.

It is simple to extract the indices of the first occurrence of 𝑞 and 𝑟 and just highlight the

part of the review spanning those indices. However, there might be multiple occurrences of

either 𝑞 or 𝑟 or both. So it is important to highlight the span that pertains to the context of 𝑞 and

𝑟. PathFinder computes the index of the first occurrence of 𝑞, suppose 𝑞& and then extracts the

index of the first occurrence of 𝑟, suppose 𝑟& that is closest to 𝑞&. The last step is the highlight the

terms from 𝑞& to 𝑟&.

	

	

19	

It is also possible that the search query consists of multiple terms 𝑞", 𝑞$, …	, 𝑞Z	where 𝑛 is

the number of terms in the search query. In this case, PathFinder would extract the indices of the

first occurrence of each query term to form a list of indices. Suppose this list is [𝑞"&, 𝑞$&, … , 𝑞Z&].

The next step is to append to this list the index of the first occurrence of 𝑟, called 𝑟&. Thus the list

becomes [𝑞"&, 𝑞$&, … , 𝑞Z&, 𝑟&]. Since this list is not necessarily sorted, PathFinder simply takes the

minimum value and maximum value, which are nothing but the starting index and ending index

of the span respectively. The range gives PathFinder the correct context pertaining to the search

query and the generated related word.

The idea behind highlighting such contexts is that it is not enough to just show the users

the related words. A related word might give a certain association to the user related to the search

query but will not be able to further the association in terms of whether it is a positive or

negative association, or how the two entities are actually related to each other. For example, if

the search query is “battery” and the related word generated is “life”, then without any

highlighting the users would get to know that other users have associated “battery” with “life”

but will not know any more information about the association. By highlighting the context, users

would be able to know how “life” is used with “battery” by reading a few words around

“battery” and “life” in the review and be able to sense the context without reading the whole

review.

	

	

20	

CHAPTER 5: PATHFINDER WALKTHROUGH

5.1 LANDING PAGE

The first part of PathFinder is the search page, on which users can perform searches for

products of their choice. Below are the screenshots for the landing page and then followed by a

few queries:

Figure 5.1: PathFinder’s landing page.

The user can then start to type in the query in the search box and press the “Search”

button. As part of the walkthrough, we will make searches for “ipod”, “zoom camera”, and “desk

lamp”. These queries are based on common searches made by users online i.e. for electronics and

appliances. The reason for using common themed search queries is because they are bound to

have more information in the form of reviews and descriptions, which would aim in

underscoring the features of PathFinder.

	

	

21	

5.2 SEARCH RESULTS AND DESCRIPTION KEY PHRASES DETECTION

Figure 5.2: Search results for search query “ipod”. The image has been cropped from the right to
increase the size of the image.

The first line of each product listing is a hyperlink to the product on walmart.com. As

discussed in Chapter 3, PathFinder detects key words and phrases in the descriptions and

hyperlinks them to the relevant reviews. In this listing, “FaceTime cameras”, “device”, “Wi-Fi

connection”, and “replaced” are some terms and phrases that are key to the “ipod”. There are

also some terms like “At the” and “Up to” that do not add benefit for the users. Overall, by

looking at this page, users would easily be able to glance over these key phrases and jump to the

reviews to read more about the context of these key phrases.

	

	

22	

Figure 5.3: Search results for the search query “zoom camera”.

Similarly, in the case of “zoom camera” as the search query, there are several key phrases

that PathFinder managed to detect from the descriptions. For example, users can quickly look at

“Aperture”, “Focus”, “Lens”, “49mm”, “Camera”, “digital”, “image”, and others, each of which

are essential terms when one researches about buying a camera. Since these terms are hyperlinked,

on underlined in blue, the users’ eyes would notice such terms and they could click on these terms

to read more about them in the reviews. Even if one does not want to read through the reviews,

one can read about these features in the description itself. As an example of this, one can be

informed of the “Aperture” being in the range of “f/4.5 to 6.3” of the first listing. Thus, users would

not be required to read through the whole description to get a sense of each product.

	

	

23	

5.3 REVIEWS SEARCH AND SUMMARY WORDS GENERATION

Figure 5.4: Filtered reviews when the user searches for “batteries” within the reviews from the
product listings page of PathFinder. Other reviews have been cropped to enlarge the image.

Figure 5.5: Filtered reviews when the user searches for “features” within the reviews from the
product listings page of PathFinder.

Users can search for key words or phrases within the reviews from the product listings

page. They could also simply click on the key phrases that PathFinder detects and PathFinder

would directly search for those key words or phrases within the reviews. In this case, the user sees

a filtered list of reviews, those that contain that keyword “batteries” and “features” in them. After

landing on this page, users can read reviews and opinions of different people before they make

their decision about the product. The word “batteries” is present in both reviews, in the second line

of both reviews 1 and 2 in Figure 5.4 and the word “features” is present in the first line of review

1 in Figure 5.5. However, users would still need to manually glance through the reviews to find

these words and then read about them.

	

	

24	

 As discussed in Chapter 4 to solve this issue, PathFinder also generates a list of related

words or a summary. The summary would help the users get a better idea of the terms and ideas

people typically use around the word they searched for. In this case, a user would get a broader

view of what other users are writing about “batteries” and “features”. Taking a look at the summary

words generated for “batteries”, one could relate “simple” with the batteries being simple to

replace or install, “quality” with high or low quality batteries, and “several” with the batteries

lasting several hours or even several batteries being needed to be changed within a few days. In

the summary words for “features”, one can relate “easy” with the ease with which photos can be

clicked, or easy to carry around, other relations, “little” might be used to refer to size of the camera

and “pics” could be related to the ability of the camera to click good or bad pictures.

5.4 CONTEXT HIGHLIGHTING PAGE

Such hypothetical relations mean nothing till the they are read in the actual context. In

order to view the original context in which such related words were used by other reviewers, users

can click on a particular related word and PathFinder would highlight or bold the context of use.

Figure 5.6: Context for “features” and “alkaline” highlighted in bold.

Before analyzing this context highlight, we will also make a review search with search

query “zoom” and then click on a related word generated called “suggest”.

	

	

25	

Figure 5.7: Context for “zoom” and “suggest” highlighted in bold.

In Figure 5.6, the intention of the user is to find the context in which “alkaline” is used

with “features”. Since PathFinder highlighted the text in between these two words, the user can

easily figure out that one of the features of the camera is that it comes with alkaline batteries. Even

though this is not exactly a feature of a camera, it still gives one a better understanding of the

overall product package that the user will buy. Similarly, in Figure 5.7, the user wants to

understand the context of “suggest” when used with “zoom”. Reading the bold text, it is easy to

figure out that to optimize the zoom of the camera, it is better to use a tripod.

Such details might be missed if not explicitly displayed to the user. Apart from these

insights getting missed, it is also tedious to manually read through all the reviews and see what is

important for a user and what is not. Also, a particular user might not be interested in reading about

everything that other reviewers have to say. Thus, the description key hyperlinking along with

summary words generation allow users to select what specific information they want to learn more

about and put lesser effort in gathering the relevant information.

	

	

26	

CHAPTER 6: PATHFINDER TESTING RESULTS

PathFinder is a tool that connects users to the products they want to buy using intelligent

data mining. However, to test the effectiveness of the system as a whole, there is no set method

as each user would have different needs and varied experiences with the system. We took the

typical searches that users make on online shopping forums [10] and performed the same

searches on PathFinder.

6.1 FEEDBACK QUESTIONS

As part of the testing process, we did 2 parallel searches – one on PathFinder and the

other on walmart.com. There were a total of 10 queries [10] used in the testing phase i.e.

“headphones”, “PC”, “phone”, “kindle”, “TV”, “toys”, “Christmas”, “wearables”, “gaming”, and

“movies”. Before performing these searches, we also kept a list of questions that one would

typically expect while working with an online shopping forum. These questions included the

following:

1. What we were specifically looking for while buying products

2. Whether we were able to reach specific information quicker than searching through

walmart.com

3. Whether we were able to find some additional information that they would not have

found otherwise.

After searching and exploring the 2 platforms, we report our experiences which helped us

in understanding how well the system is working in terms of our initial hypothesis and how it

could be improved further in future.

	

	

27	

6.2 TESTING RESULTS

It is known that at the time of researching about products to buy, some users have

features that they most care about while others are simply looking to explore a range of products.

In this test, for 60% of the searches we made, we had no pre-conceived goal in mind to decide

which products to buy. In the next step, we checked if our decision making time improved over

the buying process of wamart.com. In around 70% of the searches we felt this specifically due to

the key phrase highlighting within the descriptions and the summary generation with the filtered

reviews. In all the searches we performed, we needed to do minimal reading as the hyperlinks

proved to be easy to navigate pointers which at the end of the day, helped us in reaching our

decision quicker. In about 30% of the searches, we also thought that we got some additional

information about the product with the help of the summary generation feature. Even though the

reviews were filtered, it is still tedious to read through all of them. Thus, the summary generation

feature guided us through the different contexts within reviews and made it easy to read through

important parts of the reviews.

There are also some vital nuances that we felt would help make PathFinder more useful

and easier to use. One improvement would be to implement product name autofill feature in the

search bar with a dropdown. It is simple to implement this feature provided walmart.com

provides a list of all the products they have indexed. After entering the search query, we felt that

PathFinder took too long to process the results and present them. A part of this could be

attributed to the HTTP request that is sent to the walmart.com API which takes the most amount

of time in the loading process. Other improvements to the search indexing and retrieval

algorithms have been suggested in Chapter 7. Having images and prices of the products along

with the description would also be a great addition. This will definitely make PathFinder more

	

	

28	

visually appealing and more beneficial. Also, we found that there were too many phrases in the

description that were being highlighted. Apart from the number of phrases that were being

highlighted, there were phrases like “at the” that were considered to be key by PathFinder. This

is because “at the” is a combination of stop words in the English language and PathFinder

simply checks for stop words and not for stop phrases. However, checking for both would allow

for more in-depth analysis of the description and would highlight fewer number of key phrases

as stop phrases are very prevalent in the descriptions. Even though the summary generated was

useful, it could have been presented in a more concise manner. This is definitely doable by either

representing them according to the frequency with which they appear in the reviews or by

inserting words in between the summary words to bring the summary closer to natural language.

Out of the total number of contexts that were highlighted, about 60% of them had between 4-6

words in them, about 30% of them had between 7-12 words and the remaining 10% had more

than 12 words. After reading the highlighted contexts, we felt that the fewer the number of words

highlighted, the more the conciseness. Thus, in a majority of cases, PathFinder was able to

provide the contexts in a brief but meaningful highlight.

Such testing is critical for evolving and maintaining a system like PathFinder because the

common interests of users change over time and it is imperative to adjust the system based on

that. Since PathFinder is a very application oriented system, it is beneficial to perform subjective

testing as that is what would bring out the pitfalls and highlight possible improvements that

could be made to the system.

	

	

29	

CHAPTER 7: RELATED WORK AND FUTURE WORK

As shown in in Chapter 1, PathFinder has been built with several components on top of

each other. It starts off with the Walmart Search and Reviews API [8] which is followed by

PathFinder’s Indexer. The Indexer is used by Information Retrieval algorithms to extract and

process relevant reviews and also perform summary generation. We will discuss parts of these

components which have been inspired by works of other researchers and authors and how each

component can be extended further as part of future work.

The data for PathFinder is retrieved from the Walmart database using their Search and

Reviews Open API [8]. Based on the search query specified by the user, the Search API returns

an ‘item id’ which is then fed into the Reviews API to retrieve the reviews of the product.

amazon.com is another entity that could be used for gathering data. It hosts a plethora of

products, description, and reviews however, they are not free for use. It is also possible to

integrate the listing of these websites together and let the user decide the website from which he

or she wants to buy the product after looking at the features offered by PathFinder.

After retrieving the data, the Indexer indexes the reviews and the products using inverted

indices and forward indices [1]. This textbook [1] also discusses several scoring techniques like

term-at-a-time scoring using forward indices and inverted indices and document-at-a-time

scoring. A disadvantage of the document-at-a-time scoring that is discussed is that the size of the

total scores gathered would be the size of the number of reviews that match at least one term.

Taking a look at the term-at-a-time scoring using forward indices, it is evident that this is an

efficient scoring mechanism. One would need to go over all the documents one by one in order

to get the score for a particular term. This means that the algorithm would also touch documents

where that particular term has not even occurred, resulting in a wastage of resources and

	

	

30	

processing time. Thus, PathFinder uses term-at-at-time scoring using Inverted Indices where

terms are mapped to the documents they appear in and their positions in those documents. This

approach is more efficient as one would only hit documents in which the terms occur.

PathFinder uses Proximity Search [2] to retrieve documents in which the entered query terms are

within a certain distance apart from each other in no specific order. The current approach works

well for walmart.com. However, as the amount of data gets bigger, it would be imperative to

modify the indexing approach. [1] discusses an Index Sharding method where several indices are

built and kept apart in a distributed fashion on one node or on multiple across different machines.

In order to perform term-at-a-time scoring, multiple threads would gather a particular term’s

mapped value from different shards and the final step would be to combine the gathered values

using Map Reduce. Thus, even though the single inverted index gets partitioned, the final output

remains the same. Similar review search has been implemented by Yelp [11] however, that

search engine simply returns the reviews that contain the occurrence of the search terms without

any further annotations.

As part of future work, PathFinder could be deployed publicly for testing purposes and

the feedback of users could be gathered to make several improvements in the system. Based on

overall metrics like CTR or Click Through Rate and session level metrics like time spent on a

particular section of the results page, one can estimate the goodness or effectiveness of the search

result ordering. Such metrics can be combined as features to evaluate MAP [3]. Other ideas for

improvement would be to use feedback mechanisms like Rocchio feedback [1] which aim at

increasing the search engine’s recall. Summary Generation of PathFinder is harder to evaluate

because there are no ground truth labels which specify what the correct summary is. It is possible

to use human judges who would pick a list of top words that are an effective summary and then

	

	

31	

use that list to evaluate the accuracy of the list generated by PathFinder. Apart from this, it is

also important to consider the time-accuracy [1] tradeoff which balances the processing time and

accuracy.

There are other stretch ideas about PathFinder that could make it more effective and

holistic. [4] discusses approaches which can be used to judge how user-item interactions change

over a given period of time. In a space like Online Shopping, users’ affinity to certain products

may keep changing with time, or due to some developing story around the product. Such

information can be useful for shoppers because a newly developing trend is essential and might

be overshadowed by the mountains of information lying above it that point to some other trend.

Generating image summaries [5] is a very useful way to extract more information from content

posted by users. Day by day, the amount of visual data is increasing on the internet. A lot of

users post their product pictures on such online shopping websites but some of them do not write

descriptions for the images. As described in [5], it possible to generate a natural language

summary for the image and use is as an input to the components of PathFinder, for example by

appending it to the corresponding indices. Such ideas and improvements would ensure that

PathFinder becomes more scalable and more intelligent than the current version.

	

	

32	

CHAPTER 8: CONCLUSION

PathFinder is built with the aim of making it easier and faster for online shoppers to

make a decision regarding the products they want to buy as compared to buying products. After

studying the results of the subjective user study that was conducted to evaluate the system, it is

indeed the case that a majority of the users are able to reach their product decision faster. This is

mainly due to the intelligent retrieval and presentation of information in the same flow as that of

walmart.com. Users get more information in a concise manner in PathFinder that helps them

gather varied types of data about the products they are searching for. However, walmart.com is a

very reputable and established source with an already large base of users. Thus, PathFinder is

not and was never meant to be a replacement of online shopping places like Walmart and

Amazon. As PathFinder evolves with time and further improvements as suggested in Chapter 7,

it can be thought of as a one stop shop to explore a plethora of products indexed from each

online shopping website and using PathFinder to eventually visit websites like walmart.com and

amazon.com to complete the purchase. Thus, users would be able to search for all their favorite

or new products at one place, gather information in a quick manner, and proceed to existing and

widely used websites to enhance their online ordering experience.

	

	

33	

BIBLIOGRAPHY

[1] Zhai, C., & Massung, S. (2016). Text data management and analysis: a practical
introduction to information retrieval and text mining. New York: ACM Books.

[2] Proximity Operators. (2009, January 13). Retrieved from
https://library.alliant.edu/screens/proximity.pdf

[3] Evaluation of Ranked Retrieval Results. (2009, April 07). Retrieved from
https://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-ranked-retrieval-results-1.html

[4] Wang, Y., Nan, D., Trivedi, R., & Song, L. (2017). Coevolutionary Latent Feature Processes
for Continuous-Time User-Item Interactions. [online] Available at:
http://papers.nips.cc/paper/6480-coevolutionary-latent-feature-processes-for-continuous-time-
user-item-interactions.pdf.

[5] Karpathy, A., & Fei-Fei, L. (2017). Deep Visual-Semantic Alignments for Generating Image
Descriptions. [online] Available at: http://cs.stanford.edu/people/karpathy/cvpr2015.pdf.

[6] Morrison, K. (2017). 81% of Shoppers Conduct Online Research Before Buying
[Infographic]. [online] Adweek.com. Available at: http://www.adweek.com/digital/81-shoppers-
conduct-online-research-making-purchase-infographic.

[7] Wallace, T. (2017). Ecommerce Trends: 147 Stats Revealing How Modern Customers Shop
in 2017. [online] www.bigcommerce.com. Available at:
https://www.bigcommerce.com/blog/ecommerce-trends/.

[8] Walmart Open API - Search and Reviews. (2017). Walmart.

[9] Anon. (2017). Average number of search terms for online search queries in the United States
as of July 2017. [online] www.statista.com. Available at:
https://www.statista.com/statistics/269740/number-of-search-terms-in-internet-research-in-the-
us/

[10] Kulach, K. (2017). How buyers conduct product searches on Amazon vs. Google: new
insights for online sellers. [online] Available at: https://webinterpret.com/us/blog/ecommerce-
product-searches-amazon-google/.

[11] Yelp Search Engine. Available at: www.yelp.com (2017). Yelp.

