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ABSTRACT 
  

 Online Shopping is a household phrase that has been extremely successful in easing the 

lives of many people across the globe. Online shoppers spend ample amounts of time and money 

in buying products that they receive at their doorstep in a matter of a few days or, in some cases, 

a few hours. However, it is not as easy as it looks. People either have plenty of specifics in their 

mind before buying a product or are just looking to explore a range of products for a particular 

goal. This adds another layer on top of time and money spent – effort. 

 PathFinder is a guide that helps shoppers make more informed choices and reach their 

final product decision faster. It is a hand-in-hand assistant for shoppers that helps them at critical 

stages of the buying process to ensure that they either reach their specifics without too much 

research or that they get to explore granular details which they would miss otherwise. Being an 

online shopping assistant, PathFinder aims to reduce the effort spent by online shoppers and 

eases up the online product purchasing process even further. 
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CHAPTER 1: INTRODUCTION 

A decade ago, it was normal for people to queue up in stores to buy products. Nowadays, 

this is no longer the norm as 51% Americans prefer to shop online [7].  It is not hard to think of 

why this is the case. People can shop for their favorite items in the comfort of their couches and 

browse through a diverse display of products, each product containing multiple brands, sellers, 

and options. In the inventories of companies like Amazon, Walmart, eBay, and others, one can 

find a range of products like electronics, home products, kitchen appliances, video games, books, 

just to name a few. As a result of this comfort, Americans in metropolitan areas spend about 4.5 

hours every week shopping for products online, whereas Americans in rural and suburban areas 

spend around 5 hours per week doing the same [7]. This small difference might be because it is a 

little easier for people in urban areas to physically visit stores if they want do not want to buy 

some product online. Another dimension of this comfort comes in the form of the money spent 

on online shopping. People in urban areas tend to spend upward of $800 annually and those in 

the rural areas spend about $700 per year to buy products online [7]. 

While shopping online, there is a plethora of information that is thrown at a user. This 

includes product names, product images, product description, reviews, prices and 

advertisements. Out of these inputs for a product, the set of reviews is a very vital source of 

information for users. Around 61% of users read reviews before buying a product as they feel 

that they would make a more informed decision after reading the reviews [6]. Since users tend to 

look at several similar products before buying what they want, they have to consume, process, 

and scan through a lot of text information to make their final choice. Such information 

consumption is important because reading reviews or looking at pictures is the only way to 

compensate for the inability to physically touch the products. However, that amount of 
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information is a double edged sword – it provides tremendous crowd-sourced detail but at the 

same time can be a major hindrance. Around 21% of Americans [7] feel that websites become 

hard to navigate when there is an abundance of information and this abundance can very quickly 

become a bane from a boon, thereby driving away users. 

PathFinder aims to solve the issue of abundance of information that users need to parse 

through by extracting relevant parts of the content and displaying them in the regular purchasing 

flow of walmart.com. Websites like amazon.com, walmart.com, and ebay.com have perfected 

the art of buying flow over the years. Users reach a set of products either by searching for it or 

by recommendations, look at the description, price, and pictures, read reviews, and after looking 

at other similar products, make a decision and proceed to payment. This flow is as good as it gets 

and needs no changing. PathFinder uses the same content and the same ordering flow however, 

it provides the users key highlights along this flow. The system would link key phrases in the 

product descriptions to the relevant reviews so that users can quickly notice certain features and 

jump to the reviews that talk about those. Also, based on those key phrases, it would generate 

related words and highlight the context in which the related words are used in the review. Using 

this system, in the ideal case, a user would have to read minimally through reviews and after a 

few clicks and glances over the highlighted parts, be able to make an informed decision. This 

would in turn make it faster for users to decide on which product to buy. It would also make it 

easier for them to navigate through websites like walmart.com which have daunting mountains 

of text, which currently the users have to spend a lot of time parsing and figuring out which parts 

of the reviews are relevant and which are not. These metrics have been evaluated later in Chapter 

6. By using PathFinder, users would be able to get condensed information and be able to make 

faster and more holistic decisions for buying products. 
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PathFinder is built on top of walmart.com using the Walmart API [8]. It uses the search 

API provided by Walmart to access product listings. walmart.com does not allow a user to search 

through the reviews so as the first step, PathFinder indexes reviews to create a search engine for 

product reviews. Using this index, it hyperlinks key phrases in the product descriptions to the 

relevant reviews that mention those phrases. When the user reaches a set of reviews either 

through the previously mentioned hyperlinks or by manually searching for keywords, 

PathFinder uses Mutual Information to predict which words are likely to appear together with 

the phrases or keywords. This thesis will deep dive into each of these components of PathFinder, 

provide a walkthrough of a common search made by users, and explain results of product testing 

that was carried out. 

 

Figure 1.1: PathFinder’s overall architecture and flow. 
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CHAPTER 2: SEARCH ENGINE 

PathFinder uses the Walmart Search API to query for products requested by a user. The 

API returns a set of products along with product names, descriptions, and reviews. After 

retrieving these results, PathFinder uses its search indexer to index the reviews.  

2.1 BUILDING THE SEARCH INDEX 

 Suppose there are 3 products namely, 𝑝", 𝑝$, 𝑝%. For simplicity, let us assume that there is 

only 1 review for each product. The following are the reviews: 

Table 2.1: Example of products and corresponding reviews 

Product Review 

𝑝" Hi is this the product. 

𝑝$ This product is the best. 

𝑝% How is it so good. 

 

 The first step before indexing this data is to clean it. The indexer of PathFinder removes 

all punctuations and converts all words to lowercase as part of the cleaning process. After 

cleaning this data, an Inverted Index is created. Inverted Index is a mapping of documents (in 

this case documents are products) to the different unique tokens (in this case tokens are the 

words in the reviews) in them. Along with unique tokens, PathFinder’s indexer also stores the 

positions of the tokens in the documents. So, the indexer indexes products 𝑝&	𝑤ℎ𝑒𝑟𝑒	0 ≤ 𝑖 ≤ 𝑛 

and 𝑛 is the total number of products. At the end of this stage, this is what the Inverted Index 

looks like: 
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Table 2.2: Inverted Index after cleaning the data 

Product Words and Positions 

𝑝" hi: [0], is: [1], this: [3], the: [4], 

product: [5]   

𝑝$ this: [0], product: [1], is: [2], the: [3], 

best: [4] 

𝑝% how: [0], is: [1], it: [2], so: [3],  

good: [4] 

 

 The final step in creating the search index is to combine the mappings from the Inverted 

Index to create a Forward Index. A Forward Index would then be a mapping of words in the 

reviews to the documents they occur in, along with the corresponding positions. The Forward 

Index looks as follows. 

Table 2.3: Forward Index as a result of combining the mappings from the Inverted Index 

Words Products and Positions 

hi 𝑝": [0] 

is 𝑝": [1], 𝑝$: [2], 𝑝%: [1] 

this 𝑝": [2], 𝑝$: [0] 

the 𝑝": [3], 𝑝$: [3] 

product 𝑝": [4], 𝑝$: [1] 

best 𝑝$: [4] 

how 𝑝%: [0] 
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Table 2.3 (cont.) 

Words Products and Positions 

it 𝑝%: [2] 

so 𝑝%: [3] 

good 𝑝%: [4] 

 

The Forward Index is what is used by PathFinder’s Search Engine to perform different 

types of queries on the reviews. Currently, it supports Simple queries, Phrase queries, and 

Proximity Search queries. To explain each of these types of queries, consider a query 𝑞 

containing 𝑚 terms such that for any given term 𝑞& in 𝑞, 0 ≤ 𝑖 ≤ 𝑚.  

2.2 SIMPLE QUERIES 

 Simple Queries are the type of queries that simply search for the documents that the 

query terms appear in. For example, let the query be “is”. Thus, 𝑞": “is”. For every term in the 

query 𝑞, which in this case is just 𝑞", PathFinder would use the Forward Index to form a union 

of all documents containing the query terms. Since, 𝑞" is present in 𝑝", 𝑝$, 𝑝%, the set of 

documents returned would be 𝑝", 𝑝$, 𝑝%. Similarly, for query term “product”, the result would be 

𝑝", 𝑝$. As a final example, taking “this product is” as a query, the set of documents for 𝑞" 

(“this”) is 𝑝", 𝑝$ and the set of documents for 𝑞$ (“product”) is 𝑝", 𝑝$ and for 𝑞% (“is”) is 

𝑝", 𝑝$, 𝑝%. Therefore, the union of all these documents would form the final result i.e. 𝑝", 𝑝$, 𝑝%. 

 Even though this simple queries algorithm is useful in extracting documents based on the 

occurrence of words, it does not work well in capturing the context in which each of the query 

terms are used and also assumes that each term in the search query is equally important [1]. For 

example, for a query “this bad product”, the simple query algorithm would return all documents 
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where “this”, “bad”, and “product” are used. However, it is not necessary that the term “bad” is 

used in the context of “product” and the returned document(s) would not be useful to the user. 

2.3 PHRASE QUERIES 

 Phrase Queries do slightly better than Simple Queries in terms of capturing the context of 

the query terms in the query. The phrase query algorithm ensures that it only retrieves documents 

which contain all the terms in the query, unlike the simple query algorithm which only checks 

for occurrence. Apart from checking for the presence of all query terms, it also checks whether 

the terms appear consecutively or not in the document. If they do not, then the document is not 

returned. Since it uses the same Forward Index, retrieval is more efficient than substring 

matching. 

 Suppose the query is “this product”. Thus 𝑞" is “this” and  𝑞$ is “product”. According to 

the simple query algorithm, documents  	𝑝" and  𝑝$ would be returned. The Phrase Query 

algorithm would check the positions of  𝑞" and  𝑞$ , which in this case would be positions 2 and 

4 for  𝑝" and positions 0 and 1 for  𝑝$. Since the positions in  𝑝" are not continuous, 𝑝" would not 

be retrieved and since they are continuous in  𝑝$, so only 𝑝$ would be retrieved.  

Going back to the example of the query being “this bad product”, using the Phrase Query 

algorithm, only the documents which contain these terms consecutively would be returned. This 

captures the context in which the terms are being used and thus solves the limitation of Simple 

Queries. 

2.4 PROXIMITY OF SEARCH QUERIES 

 The Proximity Search Query algorithm is similar to the Phrase Query algorithm but 

instead of checking for continuous occurrence of query terms, it checks if the query terms lie 
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within a pre specified proximity of each other. PathFinder uses an online search query size 

survey [9], to determine the appropriate proximity between the search query terms. 

 As an example, taking the same query “this product” and a proximity window of 1, the 

Proximity Search Query algorithm would return the same documents as the Phrase Query 

algorithm i.e. only 𝑝$. This is because in 𝑝", “this” and “product” are separated by a distance of 

2. However, if the proximity window is increased to 2, then the algorithm would return 

𝑝"	𝑎𝑛𝑑	𝑝$ since “this” and “product” lie within a distance of 2 in both these documents. 

 PathFinder uses Proximity Search under the hood of the review search engine. Another 

key component of this algorithm is selecting the proximity window size. According to [9], more 

than 60% of the queries have 1 or 2 words and around 95% of the queries have 5 words of less. 

Since the proximity window is just an upper limit, it is selected to be 5 to allow for a smoother 

cushion even if the query terms are less than 5 terms apart. 

 The reason for using Proximity Search is because users would not necessarily use all the 

query terms together while writing reviews. That being said, query terms that appear within a 

certain distance of each other are likely to be used in the same context. So Proximity Search 

retrieves documents which capture the context of usage of the query terms even if the terms do 

not appear consecutively in the documents. Using this search engine, users can now simply 

search through the reviews quickly without having to read through them manually one after the 

other. 
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CHAPTER 3: DESCRIPTION KEY PHRASES DETECTION 

While buying products, users read product descriptions before even reading the reviews. 

As discussed above, users have either specific details that they are looking for or they are simply 

exploring varied features. The product descriptions provide a concise summary of the product 

features and details but currently, there is no bridge between the descriptions and the reviews. So 

users would look at a certain detail in the description, search for it in the reviews, and similarly 

go back and forth between the description and the reviews till they are satisfied or they reject the 

product. PathFinder simplifies this process and connects the descriptions with the reviews by 

detecting key words and phrases in the descriptions and linking them to the relevant reviews. 

Within a given product description, not all words or sub phrases are important for a user. 

PathFinder’s key phrases detection algorithm is built on the assumption that users would be 

interested in specific details in the description that other users are also talking about. 

3.1 SLIDING WINDOW MECHANISM 

 Suppose there is a product description 𝑑. 𝑑 contains words or terms along with several 

punctuations. Also, several words in 𝑑 would be English ‘stop words’ or words that are very 

commonly used in English language. PathFinder maintains a sliding window which is bounded 

by an upper limit size of 3, thus can be of size 0, 1, 2, and 3. This sliding window glides over the 

description for each possible window size and plugs part of the description that is within the 

sliding window into the Phrase Query algorithm in the review search engine. It then checks if the 

search engine returned any document and since it performs this operation for each possible 

window size, it would consider a phrase to be a key phrase if it is bounded by the maximum 

possible window size for which there is at least one document that is returned. 
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 As the first step in this process, PathFinder cleans the description 𝑑 by removing all the 

punctuations and then tokenizes 𝑑 by splitting it on spaces. For this example, consider the 

tokenized version of 𝑑 to be 𝑑5, thus 𝑑5 is a list of tokens after splitting 𝑑 by spaces. If the 

starting position of the sliding window points at a token which is a stop word, then the sliding 

window skips over that position to the next position. From a particular starting position of the 

sliding window 𝑠, the possible phrases are given by the following equation: 

																																																													𝑑5 7,			789  where 1 ≤ 𝑘 ≤ 3                                                  (3.1) 

 This equation would create a list of sub-phrases from 𝑑5 and query the search engine 

using the Phrase Query algorithm to check if any review is returned. PathFinder would plug in 

each sub-phrase from the generated list and select the one which is of maximum length and for 

which more than 1 review is returned by the search engine. After selecting a particular key 

phrase, PathFinder creates a hyperlink to the reviews that are returned by the search engine. The 

sliding window then jumps to the starting position of the phrase that lies right after the selected 

phrase. This process takes place till the end of 𝑑5 is reached and at the end, PathFinder would 

have converted the original description into a description which has the same text as before, but 

with certain key phrases hyperlinked to the relevant reviews that those key phrases appear in. 
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CHAPTER 4: SUMMARY GENERATION 

 At this point, PathFinder is equipped to allow users to search for products, search within 

the reviews of all products, and also highlight key words or phrases in the description and link 

them to the relevant reviews. PathFinder then aims to generate related words to the word or 

phrases that the user searched for or clicked from the description hyperlinks using Word 

Association Mining methods described in [1]. In addition to this, it would also highlight the 

context in which the related words occur along with them within reviews, thereby creating a 

specific summarized view of the information. Thus, the two main tasks in summary generation 

are to generate the related words and to highlight the context. 

4.1 RELATED WORDS GENERATION 

 Consider the following documents: 

Table 4.1: Sample documents to illustrate Related Words Generation 

Product Review 

𝑑" The pan is made of non stick material. 

𝑑$ The spatula is made of steel. 

𝑑% Great to cook meat on the pan. 

𝑑= Set includes both the pan and the spatula. 

𝑑> The spoons are made of silver. 

 

 Generating related words of a given word is all about mining associations between the 

words from a given set of documents. In the field of Information Retrieval, there are two types of 

word associations – Paradigmatic relation and Syntagmatic relation. 
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 According to [1], in a Paradigmatic relationship, two words 𝑤$ and 𝑤% can be used in 

place of each other while still keeping the overall meaning of the sentence the same. These 

words belong to the same semantic or syntactic class. In documents 𝑑" through 𝑑>, an example 

of paradigmatic relationship would be between “spatula” and “spoon” since they can be used 

interchangeably. If we replace “spatula” with “spoon” in 𝑑=, then 𝑑= would become “The set 

includes both the pan and the spoon.”, which still conserves the general context of the sentence. 

However, words like “pan” and “set” do not share a paradigmatic relationship because their 

interchange or substitution would not lead to a meaningful sentence. 

 In a Syntagmatic relationship [1], two words 𝑤? and 𝑤@ are semantically related i.e. they 

can be combined together to form a meaningful phrase. In documents 𝑑" through 𝑑>, (“pan” and 

“made”) and (“meat” and “cook”) are some examples of pairs of words that share a syntagmatic 

relationship. The context that would be created by (“pan” and “made”) could be thought of as 

“made in a pan” and the same created by (“meat” and “cook”) could be “cook meat”. Such pairs 

of words or phrases do not necessarily have to fit perfectly with each other but rather create a 

well perceivable context by their combination. 

 PathFinder makes use of Syntagmatic relationships between words and phrases to 

generate related words. In the case of online product shopping, suppose users search for 

“crockery” and then search for “pan” within the reviews of the product listing, they probably 

want to understand the contexts in which “pan” is used by other users in their writing. The users 

would be better off looking at related words like “set” or “made” instead of “spoon” or “spatula”. 

As described above (“pan” and “set”) creates the context of information about a set of pans and 

(“pan” and “made”) creates the context of “things made in a pan”. (“pan” and “spoon”) on the 

other hand, does not provide as much information about the “pan” as “set” and “made” do. These 
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reasons and examples warrant the use of Syntagmatic relationships between words and phrases 

for the generation of related words. 

4.2 SYNTAGMATIC RELATIONSHIPS EXTRACTION 

  Words that co-occur tend to have a syntagmatic relationship with each other. Considering 

the documents in Table 4.1 and for extracting syntagmatic relationships among words, the most 

important question is given word 𝑤$, what are the other words that are likely to occur in the 

same context. For example, if 𝑤$ is “pan”, some words that are likely to co-occur are “made” 

and “set”. If 𝑤$ is “meat”, then the co-occurring words would be “cook” and “pan”. 

4.2.1 CONDITIONAL ENTROPIES 

 The first method of extracting syntagmatic relationships is by using Conditional 

Entropies described in [1]. Given a word 𝑤′, the task is to figure out what words tend to co-occur 

with 𝑤′. Suppose 𝑋C is a random variable which simply depicts whether the word 𝑤 is present or 

not, thereby the domain of  𝑋C is {0, 1}. Although we need to check all words against 𝑤D, for 

simplicity assume that we calculate the tendency of 𝑤 co-occurring with 𝑤′.  

One idea to perform this extraction would be to simply calculate the probability of the 

occurrence of 𝑤 without taking anything into account about 𝑤′. Therefore, one would just need 

to calculate the following values when 𝑤 is “meat” and 𝑤′ is “cook”: 

																																																															𝑃 𝑋FG?5 = 1                                                          (4.1) 

This could be performed for all words in the corpus and simply take the one that has 

highest probability. However, such an approach does not say anything about the co-occurrence 

of the 2 words “meat” and “cook”. Thus, in the second approach, consider the following 

equations: 

																𝑃 𝑋FG?5 = 1	 	𝑋IJJ9 = 1) and 𝑃 𝑋FG?5 = 0	 	𝑋IJJ9 = 1)                            (4.2) 
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The equations above now try to predict the occurrence or non-occurrence of “meat” given 

that “cook” is present. Using these equations, we will extract syntagmatic relations with the help 

of conditional entropies. 

The conditional entropy of “meat” and the conditional entropy of “meat” given that 

“cook” is present or not present are defined as follows: 

𝐻 𝑋FG?5 = 	−𝑃 𝑋FG?5 = 1 log% 𝑋FG?5 = 1 	− 𝑃 𝑋FG?5 = 0 log% 𝑋FG?5 = 0   (4.3) 

𝐻 𝑋FG?5	|	𝑋IJJ9 = 1 = 	−𝑃 𝑋FG?5 = 1	|	𝑋IJJ9 = 1 log% 𝑋FG?5 = 1	|	𝑋IJJ9 = 1 	−

𝑃 𝑋FG?5 = 0	|	𝑋IJJ9 = 1 log% 𝑋FG?5 = 0	|	𝑋IJJ9 = 1                                                          (4.4) 

𝐻 𝑋FG?5	|	𝑋IJJ9 = 0 = 	−𝑃 𝑋FG?5 = 1	|	𝑋IJJ9 = 0 log% 𝑋FG?5 = 1	|	𝑋IJJ9 = 0 	−

𝑃 𝑋FG?5 = 0	|	𝑋IJJ9 = 0 log% 𝑋FG?5 = 0	|	𝑋IJJ9 = 0                                                          (4.5) 

Entropy is a measure of calmness within a system. In terms of syntagmatic words 

extraction, the entropy would be high if two words do not tend to co-occur and vice versa. For 

example, the entropy of just “meat” would be higher than the entropy of “meat” given that 

“cook” is also present because the presence of “cook” brings the prediction closer to predicting 

“meat”. Therefore, 𝐻 𝑋FG?5 = 1  is higher than 𝐻 𝑋FG?5 = 1	|	𝑋IJJ9 = 1 . On the extreme 

case, predicting “meat” given that “meat” is present would be 0 since the prediction would be 

100% accurate. 

This approach seems reasonable but has a major shortcoming. While using conditional 

entropies for syntagmatic relationships extraction, one needs to iterate over all the words in a 

corpus and calculate the value of the conditional entropy. This is given by the following 

equation: 

																																													𝐻 𝑋C = 1	 	𝑋CD = 1)	∀𝑤	 ∈ 𝑉                                              (4.6) 
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where 𝑉,𝑤,𝑤′ are the vocabulary of the corpus, word in the corpus, and the word for 

which we need to find co-occurrences respectively. 

After getting these values, a method to extract the top words that share a syntagmatic 

relationship would be to define a cutoff and ignore words that lie below it. The problem with this 

approach is that the values that are calculated for a particular 𝑤 cannot be compared across 

different 𝑤′s. Each would have a different cutoff and renders this approach inconsistent. 

4.2.2 MUTUAL INFORMATION 

Since the conditional entropy scores are not comparable across different words in the 

approach described above, it is challenging to find the words that correlated or co-occur with 

each other the most. To solve this problem, PathFinder uses Mutual Information as described in 

[1]. Mutual Information is depicted by the following equation: 

																																																𝐼 𝑋; 𝑌 = 𝐻 𝑋 − 	𝐻 𝑋	 	𝑌)                                               (4.7) 

𝐼 𝑋; 𝑌  stands for a reduction in the entropy of 𝑋 once the presence of 𝑌 is confirmed. 

The reason why this allows the comparison of different words is because it measures a 

magnitude of reduction, a metric that can be used to estimate usefulness or in this case, degree of 

co-occurrence. Thus, while ranking words that co-occur with a given word 𝑋, one would choose 

the top-k words that lead to the greatest reduction in 𝐻 𝑋 . Consider the following relation: 

																																														𝐼 𝑋FG?5	; 𝑌IJJ9 > 𝐼 𝑋FG?5	; 𝑌7YJJZ                                     (4.8) 

This relation indicates the presence of “cook” reduces the entropy of “meat” more than 

the reduction caused by “spoon”. Thus, “cook” co-occurs to a greater extent with “meat” than 

“spoon” does in the corpus. 

For words 𝑤 and 𝑤′, where the task if to find the reduction in entropy [1] in 𝑤 caused by 

𝑤′, PathFinder uses the following equation: 
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										𝐼 𝑋C	; 𝑋C[ = 	 𝑃(𝑋C = 𝑢, 𝑋C[ = 𝑣)_	∈{",$}b	∈{",$} log%
c(defb,de[f_)

c(defb)c(de[f_)
       (4.8) 

The numerator within the log is the joint distribution and the denominator is the expected 

joint distribution on the assumption that 𝑋C and 𝑋CD are independent. This equation is a form of 

the KL-Divergence method which estimates the the difference between the actual joint 

distribution and the expected joint distribution on the basis of independence of 𝑋C and 𝑋CD. 

Taking a look at the two summation operation, mutual information uses all possible values of 

occurrence i.e. present or not present thus, 1 or 0 respectively and sums over all these values. It is 

clear that the the higher the divergence is, the greater the mutual information would be. In order 

to compute the mutual information using the KL-Divergence approach, the following are the 

probabilities that are important: 

																																																	𝑃 𝑋C = 1 + 𝑃 𝑋C = 0 = 1                                            (4.9) 

																																																														𝑃 𝑋CD = 1 + 𝑃 𝑋CD = 0 = 1                                         (4.10) 

Since marginal probabilities sum up to 1, 

𝑃 𝑋C = 1, 𝑋C[ = 1 + 𝑃 𝑋C = 1, 𝑋C[ = 0 + 	𝑃 𝑋C = 0, 𝑋C[ = 0 +	 

𝑃 𝑋C = 0, 𝑋CD = 1 = 1                                                                                             (4.11) 

Also, 

																				𝑃 𝑋C = 1, 𝑋CD = 1 + 𝑃 𝑋C = 1, 𝑋CD = 0 = 	𝑃 𝑋C = 1                      (4.12) 

																			𝑃 𝑋C = 1, 𝑋CD = 0 + 	𝑃 𝑋C = 0, 𝑋CD = 0 = 	𝑃 𝑋CD = 0 	                   (4.13) 

																			𝑃 𝑋C = 0, 𝑋CD = 0 + 	𝑃 𝑋C = 0, 𝑋CD = 1 = 	𝑃 𝑋C = 0                      (4.14) 

																			𝑃 𝑋C = 1, 𝑋CD = 1 + 	𝑃 𝑋C = 0, 𝑋CD = 1 = 	𝑃 𝑋CD = 1                     (4.15) 

 

These probabilities can be plugged into the following equation: 

																																																						𝐼 𝑋C	; 𝑋C[ 	∀𝑤′	 ∈ 𝑉                                                    (4.16) 
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This would return a list of (word, score) pairs where the word is every word in the 

vocabulary and the score is the mutual information score. PathFinder simply sorts this list and 

takes the top-5 words to be the words that have highest co-occurrence with 𝑤. 

4.2.3 OPTIMIZATIONS AND SMOOTHING 

 PathFinder also makes optimizations suggested in [1] in terms of computation of these 

probabilities. The only values that need to be calculated are 𝑃 𝑋C = 1 , 𝑃 𝑋CD = 1 , and 

𝑃 𝑋C = 1, 𝑋CD = 1 . The following are the optimizations: 

1. 𝑃 𝑋C = 0  does not need to be calculated as it is 1 − 	𝑃 𝑋C = 1 . 

2. Similarly, 𝑃 𝑋CD = 0  does not need to be calculated as it is 1 − 	𝑃 𝑋CD = 1 . 

3. 𝑃 𝑋C = 1, 𝑋CD = 0  can be computed using 𝑃 𝑋C = 1 − 	𝑃 𝑋C = 1, 𝑋CD = 1 . 

4. 𝑃 𝑋C = 0, 𝑋CD = 0  is calculated by doing 𝑃 𝑋CD = 0 − 	𝑃 𝑋C = 1, 𝑋CD = 0 . 

5. 𝑃 𝑋C = 0, 𝑋CD = 1  can be calculated using 𝑃 𝑋C = 0 − 	𝑃 𝑋C = 0, 𝑋CD = 0 . 

Such optimizations not only improve the time complexity of calculating the values but also 

reduce the amount of storage space required for the different variables. 

 To compute the probability, a simple idea is to using MLE or Maximum Likelihood 

Estimation with the help of the following equations: 

                                                         𝑃 𝑋C = 1 = 	 IJbZ5 C
h

                                                    (4.17) 

																																																																𝑃 𝑋CD = 1 = 	 IJbZ5 CD
h

                                                  (4.18) 

																																																															𝑃 𝑋C = 1, 𝑋CD = 1 = 	 IJbZ5 C,CD
h

                                  (4.19) 

where 𝑤 and 𝑤′ ∈ 𝑉, 𝑁 is the number of documents, 𝑐𝑜𝑢𝑛𝑡(. ) is the number of documents 

containing the word or joint occurrence of words. 
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The problem with this approach is that there might be certain probabilities that might be 

0. To avoid this issue, PathFinder uses smoothing according to the following modified 

equations: 

																																																																						𝑃 𝑋C = 1 = 	 IJbZ5 C 8".m
h8$

                                         (4.20) 

																																																																					𝑃 𝑋CD = 1 = 	 IJbZ5 CD 8".m
h8$

                                        (4.21) 

																																																																				𝑃 𝑋C = 1, 𝑋CD = 1 = 	 IJbZ5 C,CD 8".%m
h8$

                      (4.22) 

 By adding a small noise like 0.5 and 0.25, it is guaranteed that no probability would be 0 

even if there are some words or word combinations whose count is 0 and also ensures that words 

or combinations that have 0 occurrences are not rewarded by a big amount. 

4.3 CONTEXT HIGHLIGHTING 

 After generating related words of a search query or phrase, PathFinder aids the users 

further by highlighting the context in which these related terms are used with the search key 

words. Suppose a user enters a search query 𝑞 and PathFinder, using the Mutual Information 

algorithm described previously, outputs a set of related terms. For each of these related terms, 

PathFinder would perform the highlighting process when the user clicks on a given related term 

𝑟. 

It is simple to extract the indices of the first occurrence of 𝑞 and 𝑟 and just highlight the 

part of the review spanning those indices. However, there might be multiple occurrences of 

either 𝑞 or 𝑟 or both. So it is important to highlight the span that pertains to the context of 𝑞 and 

𝑟. PathFinder computes the index of the first occurrence of 𝑞, suppose 𝑞& and then extracts the 

index of the first occurrence of 𝑟, suppose 𝑟& that is closest to 𝑞&. The last step is the highlight the 

terms from 𝑞& to 𝑟&.  
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It is also possible that the search query consists of multiple terms 𝑞", 𝑞$, …	, 𝑞Z	where 𝑛 is 

the number of terms in the search query. In this case, PathFinder would extract the indices of the 

first occurrence of each query term to form a list of indices. Suppose this list is [𝑞"&, 𝑞$&, … , 𝑞Z&]. 

The next step is to append to this list the index of the first occurrence of 𝑟, called 𝑟&. Thus the list 

becomes [𝑞"&, 𝑞$&, … , 𝑞Z&, 𝑟&]. Since this list is not necessarily sorted, PathFinder simply takes the 

minimum value and maximum value, which are nothing but the starting index and ending index 

of the span respectively. The range gives PathFinder the correct context pertaining to the search 

query and the generated related word. 

The idea behind highlighting such contexts is that it is not enough to just show the users 

the related words. A related word might give a certain association to the user related to the search 

query but will not be able to further the association in terms of whether it is a positive or 

negative association, or how the two entities are actually related to each other. For example, if 

the search query is “battery” and the related word generated is “life”, then without any 

highlighting the users would get to know that other users have associated “battery” with “life” 

but will not know any more information about the association. By highlighting the context, users 

would be able to know how “life” is used with “battery” by reading a few words around 

“battery” and “life” in the review and be able to sense the context without reading the whole 

review. 
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CHAPTER 5: PATHFINDER WALKTHROUGH 

5.1 LANDING PAGE 

The first part of PathFinder is the search page, on which users can perform searches for 

products of their choice. Below are the screenshots for the landing page and then followed by a 

few queries: 

 

Figure 5.1: PathFinder’s landing page. 
 

The user can then start to type in the query in the search box and press the “Search” 

button. As part of the walkthrough, we will make searches for “ipod”, “zoom camera”, and “desk 

lamp”. These queries are based on common searches made by users online i.e. for electronics and 

appliances. The reason for using common themed search queries is because they are bound to 

have more information in the form of reviews and descriptions, which would aim in 

underscoring the features of PathFinder. 
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5.2 SEARCH RESULTS AND DESCRIPTION KEY PHRASES DETECTION 

 

Figure 5.2: Search results for search query “ipod”. The image has been cropped from the right to 
increase the size of the image. 
 

The first line of each product listing is a hyperlink to the product on walmart.com. As 

discussed in Chapter 3, PathFinder detects key words and phrases in the descriptions and 

hyperlinks them to the relevant reviews. In this listing, “FaceTime cameras”, “device”, “Wi-Fi 

connection”, and “replaced” are some terms and phrases that are key to the “ipod”. There are 

also some terms like “At the” and “Up to” that do not add benefit for the users. Overall, by 

looking at this page, users would easily be able to glance over these key phrases and jump to the 

reviews to read more about the context of these key phrases. 
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Figure 5.3: Search results for the search query “zoom camera”. 

Similarly, in the case of “zoom camera” as the search query, there are several key phrases 

that PathFinder managed to detect from the descriptions. For example, users can quickly look at 

“Aperture”, “Focus”, “Lens”, “49mm”, “Camera”, “digital”, “image”, and others, each of which 

are essential terms when one researches about buying a camera. Since these terms are hyperlinked, 

on underlined in blue, the users’ eyes would notice such terms and they could click on these terms 

to read more about them in the reviews. Even if one does not want to read through the reviews, 

one can read about these features in the description itself. As an example of this, one can be 

informed of the “Aperture” being in the range of “f/4.5 to 6.3” of the first listing. Thus, users would 

not be required to read through the whole description to get a sense of each product. 
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5.3 REVIEWS SEARCH AND SUMMARY WORDS GENERATION 

 

Figure 5.4: Filtered reviews when the user searches for “batteries” within the reviews from the 
product listings page of PathFinder. Other reviews have been cropped to enlarge the image. 
 
 
 

 
Figure 5.5: Filtered reviews when the user searches for “features” within the reviews from the 
product listings page of PathFinder. 
 

Users can search for key words or phrases within the reviews from the product listings 

page. They could also simply click on the key phrases that PathFinder detects and PathFinder 

would directly search for those key words or phrases within the reviews. In this case, the user sees 

a filtered list of reviews, those that contain that keyword “batteries” and “features” in them. After 

landing on this page, users can read reviews and opinions of different people before they make 

their decision about the product. The word “batteries” is present in both reviews, in the second line 

of both reviews 1 and 2 in Figure 5.4 and the word “features” is present in the first line of review 

1 in Figure 5.5. However, users would still need to manually glance through the reviews to find 

these words and then read about them. 
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 As discussed in Chapter 4 to solve this issue, PathFinder also generates a list of related 

words or a summary. The summary would help the users get a better idea of the terms and ideas 

people typically use around the word they searched for. In this case, a user would get a broader 

view of what other users are writing about “batteries” and “features”. Taking a look at the summary 

words generated for “batteries”, one could relate “simple” with the batteries being simple to 

replace or install, “quality” with high or low quality batteries, and “several” with the batteries 

lasting several hours or even several batteries being needed to be changed within a few days. In 

the summary words for “features”, one can relate “easy” with the ease with which photos can be 

clicked, or easy to carry around, other relations, “little” might be used to refer to size of the camera 

and “pics” could be related to the ability of the camera to click good or bad pictures.  

5.4 CONTEXT HIGHLIGHTING PAGE 

Such hypothetical relations mean nothing till the they are read in the actual context. In 

order to view the original context in which such related words were used by other reviewers, users 

can click on a particular related word and PathFinder would highlight or bold the context of use. 

 

Figure 5.6: Context for “features” and “alkaline” highlighted in bold. 
 

Before analyzing this context highlight, we will also make a review search with search 

query “zoom” and then click on a related word generated called “suggest”. 
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Figure 5.7: Context for “zoom” and “suggest” highlighted in bold. 

In Figure 5.6, the intention of the user is to find the context in which “alkaline” is used 

with “features”. Since PathFinder highlighted the text in between these two words, the user can 

easily figure out that one of the features of the camera is that it comes with alkaline batteries. Even 

though this is not exactly a feature of a camera, it still gives one a better understanding of the 

overall product package that the user will buy. Similarly, in Figure 5.7, the user wants to 

understand the context of “suggest” when used with “zoom”. Reading the bold text, it is easy to 

figure out that to optimize the zoom of the camera, it is better to use a tripod. 

Such details might be missed if not explicitly displayed to the user. Apart from these 

insights getting missed, it is also tedious to manually read through all the reviews and see what is 

important for a user and what is not. Also, a particular user might not be interested in reading about 

everything that other reviewers have to say. Thus, the description key hyperlinking along with 

summary words generation allow users to select what specific information they want to learn more 

about and put lesser effort in gathering the relevant information. 
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CHAPTER 6: PATHFINDER TESTING RESULTS 

PathFinder is a tool that connects users to the products they want to buy using intelligent 

data mining. However, to test the effectiveness of the system as a whole, there is no set method 

as each user would have different needs and varied experiences with the system. We took the 

typical searches that users make on online shopping forums [10] and performed the same 

searches on PathFinder. 

6.1 FEEDBACK QUESTIONS 

As part of the testing process, we did 2 parallel searches – one on PathFinder and the 

other on walmart.com. There were a total of 10 queries [10] used in the testing phase i.e. 

“headphones”, “PC”, “phone”, “kindle”, “TV”, “toys”, “Christmas”, “wearables”, “gaming”, and 

“movies”.  Before performing these searches, we also kept a list of questions that one would 

typically expect while working with an online shopping forum. These questions included the 

following: 

1. What we were specifically looking for while buying products 

2. Whether we were able to reach specific information quicker than searching through 

walmart.com 

3. Whether we were able to find some additional information that they would not have 

found otherwise. 

After searching and exploring the 2 platforms, we report our experiences which helped us 

in understanding how well the system is working in terms of our initial hypothesis and how it 

could be improved further in future. 
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6.2 TESTING RESULTS 

It is known that at the time of researching about products to buy, some users have 

features that they most care about while others are simply looking to explore a range of products. 

In this test, for 60% of the searches we made, we had no pre-conceived goal in mind to decide 

which products to buy. In the next step, we checked if our decision making time improved over 

the buying process of wamart.com. In around 70% of the searches we felt this specifically due to 

the key phrase highlighting within the descriptions and the summary generation with the filtered 

reviews. In all the searches we performed, we needed to do minimal reading as the hyperlinks 

proved to be easy to navigate pointers which at the end of the day, helped us in reaching our 

decision quicker. In about 30% of the searches, we also thought that we got some additional 

information about the product with the help of the summary generation feature. Even though the 

reviews were filtered, it is still tedious to read through all of them. Thus, the summary generation 

feature guided us through the different contexts within reviews and made it easy to read through 

important parts of the reviews. 

There are also some vital nuances that we felt would help make PathFinder more useful 

and easier to use. One improvement would be to implement product name autofill feature in the 

search bar with a dropdown. It is simple to implement this feature provided walmart.com 

provides a list of all the products they have indexed. After entering the search query, we felt that 

PathFinder took too long to process the results and present them. A part of this could be 

attributed to the HTTP request that is sent to the walmart.com API which takes the most amount 

of time in the loading process. Other improvements to the search indexing and retrieval 

algorithms have been suggested in Chapter 7. Having images and prices of the products along 

with the description would also be a great addition. This will definitely make PathFinder more 
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visually appealing and more beneficial. Also, we found that there were too many phrases in the 

description that were being highlighted. Apart from the number of phrases that were being 

highlighted, there were phrases like “at the” that were considered to be key by PathFinder. This 

is because “at the” is a combination of stop words in the English language and PathFinder 

simply checks for stop words and not for stop phrases. However, checking for both would allow 

for more in-depth analysis of the description and would highlight fewer number of key phrases 

as stop phrases are very prevalent in the descriptions. Even though the summary generated was 

useful, it could have been presented in a more concise manner. This is definitely doable by either 

representing them according to the frequency with which they appear in the reviews or by 

inserting words in between the summary words to bring the summary closer to natural language. 

Out of the total number of contexts that were highlighted, about 60% of them had between 4-6 

words in them, about 30% of them had between 7-12 words and the remaining 10% had more 

than 12 words. After reading the highlighted contexts, we felt that the fewer the number of words 

highlighted, the more the conciseness. Thus, in a majority of cases, PathFinder was able to 

provide the contexts in a brief but meaningful highlight. 

Such testing is critical for evolving and maintaining a system like PathFinder because the 

common interests of users change over time and it is imperative to adjust the system based on 

that. Since PathFinder is a very application oriented system, it is beneficial to perform subjective 

testing as that is what would bring out the pitfalls and highlight possible improvements that 

could be made to the system. 
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CHAPTER 7: RELATED WORK AND FUTURE WORK 

As shown in in Chapter 1, PathFinder has been built with several components on top of 

each other. It starts off with the Walmart Search and Reviews API [8] which is followed by 

PathFinder’s Indexer. The Indexer is used by Information Retrieval algorithms to extract and 

process relevant reviews and also perform summary generation. We will discuss parts of these 

components which have been inspired by works of other researchers and authors and how each 

component can be extended further as part of future work. 

The data for PathFinder is retrieved from the Walmart database using their Search and 

Reviews Open API [8]. Based on the search query specified by the user, the Search API returns 

an ‘item id’ which is then fed into the Reviews API to retrieve the reviews of the product. 

amazon.com is another entity that could be used for gathering data. It hosts a plethora of 

products, description, and reviews however, they are not free for use. It is also possible to 

integrate the listing of these websites together and let the user decide the website from which he 

or she wants to buy the product after looking at the features offered by PathFinder. 

After retrieving the data, the Indexer indexes the reviews and the products using inverted 

indices and forward indices [1]. This textbook [1] also discusses several scoring techniques like 

term-at-a-time scoring using forward indices and inverted indices and document-at-a-time 

scoring. A disadvantage of the document-at-a-time scoring that is discussed is that the size of the 

total scores gathered would be the size of the number of reviews that match at least one term. 

Taking a look at the term-at-a-time scoring using forward indices, it is evident that this is an 

efficient scoring mechanism. One would need to go over all the documents one by one in order 

to get the score for a particular term. This means that the algorithm would also touch documents 

where that particular term has not even occurred, resulting in a wastage of resources and 
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processing time. Thus, PathFinder uses term-at-at-time scoring using Inverted Indices where 

terms are mapped to the documents they appear in and their positions in those documents. This 

approach is more efficient as one would only hit documents in which the terms occur. 

PathFinder uses Proximity Search [2] to retrieve documents in which the entered query terms are 

within a certain distance apart from each other in no specific order. The current approach works 

well for walmart.com. However, as the amount of data gets bigger, it would be imperative to 

modify the indexing approach. [1] discusses an Index Sharding method where several indices are 

built and kept apart in a distributed fashion on one node or on multiple across different machines. 

In order to perform term-at-a-time scoring, multiple threads would gather a particular term’s 

mapped value from different shards and the final step would be to combine the gathered values 

using Map Reduce. Thus, even though the single inverted index gets partitioned, the final output 

remains the same. Similar review search has been implemented by Yelp [11] however, that 

search engine simply returns the reviews that contain the occurrence of the search terms without 

any further annotations. 

As part of future work, PathFinder could be deployed publicly for testing purposes and 

the feedback of users could be gathered to make several improvements in the system. Based on 

overall metrics like CTR or Click Through Rate and session level metrics like time spent on a 

particular section of the results page, one can estimate the goodness or effectiveness of the search 

result ordering. Such metrics can be combined as features to evaluate MAP [3]. Other ideas for 

improvement would be to use feedback mechanisms like Rocchio feedback [1] which aim at 

increasing the search engine’s recall. Summary Generation of PathFinder is harder to evaluate 

because there are no ground truth labels which specify what the correct summary is. It is possible 

to use human judges who would pick a list of top words that are an effective summary and then 
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use that list to evaluate the accuracy of the list generated by PathFinder. Apart from this, it is 

also important to consider the time-accuracy [1] tradeoff which balances the processing time and 

accuracy. 

There are other stretch ideas about PathFinder that could make it more effective and 

holistic. [4] discusses approaches which can be used to judge how user-item interactions change 

over a given period of time. In a space like Online Shopping, users’ affinity to certain products 

may keep changing with time, or due to some developing story around the product. Such 

information can be useful for shoppers because a newly developing trend is essential and might 

be overshadowed by the mountains of information lying above it that point to some other trend. 

Generating image summaries [5] is a very useful way to extract more information from content 

posted by users. Day by day, the amount of visual data is increasing on the internet. A lot of 

users post their product pictures on such online shopping websites but some of them do not write 

descriptions for the images. As described in [5], it possible to generate a natural language 

summary for the image and use is as an input to the components of PathFinder, for example by 

appending it to the corresponding indices. Such ideas and improvements would ensure that 

PathFinder becomes more scalable and more intelligent than the current version. 
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CHAPTER 8: CONCLUSION 

PathFinder is built with the aim of making it easier and faster for online shoppers to 

make a decision regarding the products they want to buy as compared to buying products. After 

studying the results of the subjective user study that was conducted to evaluate the system, it is 

indeed the case that a majority of the users are able to reach their product decision faster. This is 

mainly due to the intelligent retrieval and presentation of information in the same flow as that of 

walmart.com. Users get more information in a concise manner in PathFinder that helps them 

gather varied types of data about the products they are searching for. However, walmart.com is a 

very reputable and established source with an already large base of users. Thus, PathFinder is 

not and was never meant to be a replacement of online shopping places like Walmart and 

Amazon. As PathFinder evolves with time and further improvements as suggested in Chapter 7, 

it can be thought of as a one stop shop to explore a plethora of products indexed from each 

online shopping website and using PathFinder to eventually visit websites like walmart.com and 

amazon.com to complete the purchase. Thus, users would be able to search for all their favorite 

or new products at one place, gather information in a quick manner, and proceed to existing and 

widely used websites to enhance their online ordering experience. 
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