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ABSTRACT

Millions of mobile apps are used by billions of users every day. Although

the design of these apps play an important role in their adoption, the design

process still remains complex and time intensive. At the same time, existing

apps embody multiple solutions to numerous design problems faced by app

developers. How do we make this design knowledge embedded in existing apps

accessible to designers? And how can it help simplify the app design process?

This dissertation introduces interaction mining, a technique to capture the

designs of mobile apps in a way that supports data-driven design applica-

tions. It presents systems that implement interaction mining for Android

apps without requiring any access to their source code making it possible

to design mine apps at an unprecedented scale. It presents Rico, the largest

publicly available mobile app design repository to date. It discusses how such

repositories created using interaction mining can be used to train models that

enable applications such as keyword and example-based search interactions

for mobile screens and user flows. It also presents zero-integration perfor-

mance testing (ZIPT), a novel technique for testing app designs. It demon-

strates how ZIPT can be used to help designers understand which examples

to draw from in the early stages of the app design process and perform com-

parative testing at scale with low cost and effort in the later stages of the

process.
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CHAPTER 1

INTRODUCTION

In today’s crowded app marketplaces, good design can be a key differen-

tiator for apps [1], impacting their adoption and ultimately their success.

App design, however, remains a complex process comprising multiple design

activities: researchers, designers, and developers must all work together to

identify user needs, create user flows (user experience design), determine the

proper layout of user interface (UI) elements (UI design), and define their

visual (visual design) and interactive (interaction design) properties [2]. To

create durable and engaging applications, app builders must consider hun-

dreds of solutions from a vast space of design possibilities, prototype the most

promising ones, and evaluate their effectiveness heuristically and through

user testing.

To aid designers in navigating such complex design processes, several recent

works have proposed leveraging data-driven design tools in domains such as

web design, fashion design, 3D modeling and graphic design. Such tools can

assist designers throughout the different stages of the design process – helping

them search for examples for design inspiration [3, 4], understand successful

patterns and trends [3, 5], generate new designs [6, 7], and evaluate design

alternatives [8].

Such data-driven design tools, however, remain largely unavailable to mo-

bile app designers. This is primarily because of the lack of suitable design

datasets to power such tools. While open design repositories (such as Thin-

giverse [9] for 3D models) exist for some domains, no such large-scale design

repository exists for mobile apps. Similarly, while designs for webpages can

be programmatically mined at scale [3], mobile app designs remain siloed in

closed-sourced apps, making them hard to access. Without scalable meth-

ods to capture and suitably expose the designs of existing apps, the design

knowledge embodied in them remains unutilized – an unfortunate situation

given the many challenges in the app design process such data could help
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overcome.

This dissertation develops a technique, interaction mining, that allows cap-

turing and exposing the designs contained in existing apps. It involves using

people to understand and interact with UIs, and machines to capture design

and interaction data seamlessly in the background. It demonstrates how

interaction mining can be implemented at scale to mine design repositories

using thousands of existing Android apps and how such repositories can sup-

port training machine-learning models that enable novel design interactions.

1.1 Challenges in the Current App Design Process

Early on in the design process, designers generate ideas on possible solutions

to a design problem. They often look at relevant examples from existing

apps. These examples serve as sources of inspiration and help understand

the landscape of possible solutions [10, 11]. For instance, a designer working

on a search interaction for a news app might want to broadly understand

the different ways search is implemented in news apps or even other types

of apps. However, there is no efficient way to find such examples at present.

The designer would either depend on their memory and try to recollect search

interactions that they have seen in the past or they would ask a colleague.

However, there are only so many examples that a person can commit to mem-

ory and retrieve at will. Even if they ended up getting a few good example

suggestions, they would have to manually download the apps, interact with

them and capture some of their screens. Only then would they be able to

bring these examples into the design process. This is time consuming and

laborious.

Another complication that arises is that even if a designer is able to find

relevant examples, there is no easy way to understand how these examples

perform under different scenarios or how they compare with one another.

Perhaps the designer sees a scoped search interaction [12] in a popular app

and decides to use that but might not realize that such an interaction works

well only if the search scope is very clearly communicated to a user (an

example app that violates this principle is shown in Figure 6.4). Usability

tests could help understand such nuances, but running them takes a lot

of time and effort, making them unattractive for testing examples. Thus,
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early on, decisions about which examples to draw from are made based on

guesswork and intuition. This is unfortunate given that the decisions being

made at this stage are generally large in scope and mistakes made in these

stages are harder to rectify in later stages.

1.2 Designing with Data-Driven Tools

This dissertation demonstrates the possibility of a future where data-driven

design tools help overcome challenges in the design process. It demonstrates

two such tools that leverage the data that interaction mining produces. The

first is a design search engine that designers can use to find examples. It

indexes designs from a large number of existing apps and allows keyword-

based and example-based queries over them. Designers can visualize the

different design components of the returned results, such as user flows, UIs,

and animations.

The second application is zero-integration performance testing (ZIPT), a

novel approach to performance testing app designs. It enables designers to

understand the performance characteristics of different examples that they

might be considering. It also can be used for comparative testing of one’s

apps against those of others with significantly lower cost and effort than

existing testing methods. Below we present two example of how these tools

can help designers learn from the designs of others.

1.2.1 Food Logging in a Diabetes App

Suppose Jane is prototyping a food logging flow for a diabetes management

app and wants to understand the space of possible designs. First, Jane must

find a set of relevant apps to analyze. Using the search engine, Jane searches

for“diabetes” and finds a number of existing diabetes management apps such

as mySugr and Diabetes:M. Since the search interface also allows her to run

queries with semantic keywords that describe the tasks supported by an app,

Jane also searches for “food logging” and finds food journaling apps such as

Lose It! and MyPlate which also contain food logging flows. Thus designers

can find apps in distal categories that contain relevant design features.

Based on her search results, Jane creates a comparison set containing both
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diabetes management and food journaling apps to measure user performance

on their food logging flows. She defines a scripted usability test, where she

instructs crowd workers to log the last meal they ate using the app they

are assigned from the comparison set. Additionally, she specifies a set of

open-ended survey questions to elicit feedback around the task experience.

After defining the tests, Jane deploys them on ZIPT. It recruits crowd

workers from Amazon Mechanical Turk and allows them to complete the

tasks on the different apps. As the crowd workers perform their chosen tasks,

the platform captures design and interaction data streams in the background,

and processes them into a multi-modal representation of user traces.

Once the tests are complete, Jane can review aggregate metrics and visu-

alizations over the collected user traces, as well as the collated qualitative

feedback. The performance results reveal that the meal logging flows found

in the food journaling apps have statistically higher completion rates than

those in diabetes management apps. Jane uses the platform’s interactive flow

visualization to quickly identify and inspect interaction traces where users

could not finish the task. Jane finds that many of these users had a hard

time initiating the food logging flow in the diabetes apps, and notices that

these medically oriented apps have information dense UIs. In contrast, Jane

observes that the meal logging UIs in the food journaling apps are more min-

imal, although the flows themselves involve more steps. Based on this data,

Jane decides to start her design process with a food logging flow that has

simple UIs modeled after the ones in the food journaling apps.

1.2.2 Playlist Interactions in a Music App

Suppose Susan is designing the functionality to add songs to a playlist in a

music app. She searches for a “Add to playlist” flows in the search engine

and reviews how users can do so in popular apps such as YouTube Music and

Spotify. She notices that Spotify allows users to add a song to a new playlist

in two ways. Users can “add to playlist” on a song and then specify that

it is going to be part of a new playlist. Alternatively, they can “create new

playlist” from a screen for managing playlists, and then navigate to a song

and add it. YouTube Music, she notices, does not support the second use

case.
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She guesses that perhaps the second use case is not something that many

users use. Although in the past she would have gone ahead with YouTube

Music’s simpler design, she decides to run a quick test on ZIPT to see if this

assumption is correct. She scripts a test where she asks users to add two

songs to a new playlist and collects data from 50 users for both Spotify and

YouTube Music.

She discovers from the aggregate data that YouTube Music has a 80%

completion rate versus 94% for that of Spotify. On inspecting the qualitative

feedback, she discovers that several users on YouTube Music were confused

by being unable to create empty playlists. One individual trace revealed that

a crowd worker even used the help functionality of the app to learn how to

create playlists. Based on this data, Susan decides to go the Spotify route

and support both ways of adding songs to a new playlist.

1.3 Contributions

This dissertation advances knowledge of how to capture designs in an interac-

tive domain and what applications such design data can enable. Specifically,

it makes the following contributions:

• Design mining for interactive domains. Design mining in prior

work has remained confined to non-interactive designs domains such

as graphic designs, 3D models, or webpages (treated as static designs).

This dissertation develops an approach, interaction mining, that brings

design mining to an interactive domain – mobile apps – where designs

change with user interactions. It demonstrates that by capturing and

combining three types of data – a visual representation of the UI state,

a structural representation of the UI state, and user interactions – it is

possible to capture, analyze, and visualize the design of mobile apps.

• An architecture for scalable interaction mining. This disser-

tation presents a web-based architecture for implementing interaction

mining that promotes scalability in two ways. First, it requires no

modification to an app’s source code, which makes it possible to mine

any Android app. Second, using a web-based app usage model enables

crowdsourcing human exploration of apps over the Internet, making it
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possible to mine a large number of apps. Using this architecture, we

collected and released a dataset that contains app designs from over

9700 Android apps, making it the largest dataset of its kind.

• Hybrid app exploration for higher coverage. Prior work has used

either human or automated approaches for interacting with app UIs to

explore their different states. This dissertation discusses the limitations

of these two approaches and demonstrates that higher coverage of app

states is possible by combining the two approaches.

• Automated identification of semantic user flows. Although user

flow examples play an important role in the app design process, existing

repositories of user flows do not scale because of manual curation. This

dissertation develops a machine-learning-based approach that identifies

user flow examples in interaction traces, and uses it to develop the

larges user flow search engine that constains over 3000 examples of

user flows in Android apps.

• Example-based searching for mobile UIs. This dissertation presents

an unsupervised approach for training a deep-learning model to cap-

ture similarity between mobile UI layouts. This enables example-based

search interactions over UI datasets.

• Performance testing of examples. This dissertation brings design

testing earlier into the design process. The zero-integration perfor-

mance testing approach presented here enables designers to run tests

on examples of interest in the ideation phase. This is in contrast to the

current practice of testing for the first time after having invested the

time and effort in building prototypes.

• Comparative testing with low cost and effort. Zero-integration

performance testing can also be used in the later stages of the design

process to compare the performance of designs in one’s apps to those in

others. Used in this manner, it allows comparative testing at a signifi-

cantly lower cost and effort compared to techniques that are currently

available. For example, it costs 100× less than using a video-based re-

mote usability testing platform such as http://www.usertesting.com.
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1.4 Overview

This dissertation is divided into seven chapters, setting out the origins of

design mining in the literature, motivating the development of platforms

for interaction mining mobile apps, describing two applications that interac-

tion mining enables, and sketching a future for how data-driven design tools

enabled by interaction mining can transform the creative design process of

mobile app design.

Chapter 2 provides an overview of the history of design mining in other do-

mains, describes the technologies and components that constitute the design

of a mobile app, presents the different use cases and techniques for mining

mobile apps, and discusses the challenges in holistically capturing the design

of a mobile app.

Chapter 3 introduces interaction mining as a technique for capturing the

design of mobile apps and discusses its design goals. It presents the de-

sign choices and implementation details of two interaction mining systems,

ERICA1 and Rico, developed for mining Android apps.

Chapter 4 describes two representations of mobile app designs that are

captured by our interaction mining systems and describes how these repre-

sentations can be used to train models that enable real-time design interac-

tions. It also presents the details of the Rico mobile app design dataset that

we publicly released.

The next two chapters introduce applications built using interaction min-

ing data. Chapter 5 presents search engines for mobile app designs that sup-

port keyword- and example-based search interactions. Chapter 6 presents

the motivation and design rationale behind our system for zero-integration

performance testing, ZIPT, and describes how it enables designers to learn

from designs in the vast array of existing apps.

Finally, Chapter 7 sketches directions for future work.

1.5 Statement on Prior Publications

Materials presented in this dissertation have also appeared in three prior con-

ference publications. The technique of interaction mining and the flow search

1ERICA is an acronym for Enabling Realtime Interaction Capture for Android apps.
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interface was published at the ACM User Interface Software and Technology

(UIST) Conference in 2016 [13]. The work on scaling interaction mining,

the Rico dataset, and our approach to example-based searching over UIs was

published at UIST 2017 [14]. ZIPT was also published at UIST 2017 [15].
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CHAPTER 2

BACKGROUND AND RELATED WORK

This chapter provides a broad overview of the technologies related to the

design and implementation of mobile apps. It also presents a survey of prior

work in design mining, summarizes prior work in mining mobile apps, and

discusses the challenges in capturing the design of mobile apps.

2.1 Mobile Apps

Mobile apps are self-contained applications that run on devices equipped

with a mobile operating system such as iOS [16] or Android [17]. Consumers

can generally download apps to their devices from online app stores for their

platforms. In recent years, apps have seen increasing popularity with con-

sumers. Millions of apps are available in app stores for iOS and Android with

over 90 billion app downloads and nearly 900 billion hours of app usage in

2016 alone [18].

2.1.1 The Mobile App Design Process

Given the sheer number of apps available today, it is very common for mul-

tiple apps to exist that help users accomplish the same task. This has made

it challenging for apps to stand out amongst other similar apps. Increasingly

the user experience afforded by app has become a key criterion for their

adoption and ultimately their success [1].

Designing compelling user experiences for mobile apps, however, still re-

mains a complicated, time-consuming process. Popular apps are often de-

signed by teams of multiple professionals including designers, user experience

(UX) researchers, and engineers. The process generally starts with a design

goal such as the addition of a new feature. From there on, app creation hap-
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pens in four stages. In the first stage, designers generate ideas on potential

solutions to the design problem. At this stage, they often look for examples

of similar features in other apps for design inspiration. Often the generated

ideas are combined, remixed, and iterated upon as well.

A few of the ideas generated in the ideation phase are prototyped. For

mobile apps, this could involve low-fidelity prototypes such as paper proto-

types or high-fidelity interactive, digital prototypes built using tools such as

Invision [19], Origami [20], or Pixate [21]. To understand their effectiveness,

these prototypes are tested using various methods such as heuristic evalua-

tion [22], usability testing, or performance testing.

Once a design has been chosen based on the test results for prototypes, it

enters the implementation stage where developers get involved. They help

translate the design mock-ups to actual code and realize the vision of the de-

signers for the app. Once implemented, the feature might go through another

round of usability and performance testing to ensure that it is effective in an

end-to-end usage scenario. This is important since many components of an

app cannot be tested with a prototype. For example, although a particular

search results page might seem to work as well as a prototype, on using it

with real data a designer might discover that the screen space allocated for

each result is not large enough. Or they might discover that the usability

is poor, not because of a poor UI, but because the search backend returns

results with unacceptable delays.

Once such implementation kinks are worked out and the feature has been

sufficiently tested, it is released to end users. At this stage, app creators often

collect usage metrics to monitor if the feature works for users as expected.

If they have enough users, they also employ A/B testing techniques to test

design variations and further refine the feature.

2.1.2 Design Components of a Mobile App

Throughout the design process outlined in the previous section, designers

develop multiple components of an app’s design including user flows, user

interfaces (UIs), visual details, and interaction details [2]. Different designers

usually specialize in designing one or a few of these components. First, for

each task an app supports, UX designers perform user research and try to
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understand the logical steps to accomplish the task. This is captured as a

user flow – a sequence of UI screens and corresponding user actions that let

users perform that task. An example user flow could be for onboarding a

new user in a finance app by helping connect all of their bank accounts to

the app.

Once the UX designer has laid out the paths that they intend users to take

in an app, UI designers then design the individual UI screens of the app. For

each UI, they determine the elements to be included and their overall layout.

They are also responsible for ensuring that the UIs visually communicate the

right paths and that a consistent design language is applied across all UIs.

Once UIs have been developed, visual designers (also referred to as graphic

designers) decide the visual details of the UIs and their elements. This in-

cludes deciding things like color palettes and typography. They often also

create the final pixel-perfect assets (such as icons) to be used in implementing

the app.

Finally, motion designers create the dynamic interactions in an app. This

could include designing how UI elements animate in response to user in-

teractions or how entire screens transition from one to another. Common

examples of animations include menus sliding out or spinner icons when a

UI is waiting for data.

2.1.3 The Structure of a Mobile App

Most mobile apps are distributed as closed-sourced packages. This is true

for the two most popular mobile app platforms: iOS and Android. The

implementations developed in this dissertation focus on the Android platform

because of the extensive use it has seen in the research community due to its

open-source nature.

Android apps are written using languages such as Java, C++, and Kotlin [23].

The code is complied using the Android SDK (sowtware development kit)

tools along with any data and resource files into an APK (Android package),

which is an archive file. A single APK file contains all the contents of an

Android app and is the file that users download from app marketplaces (such

as the Google Play Store) and install on their devices.

Android apps consist of four main programmatic components: activities,
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services, content providers, and broadcast receivers [23]. Activities are used

to build app UIs, whereas services run in the background without any as-

sociated UIs. Content providers interface with app data sources (such as a

database) and broadcast receivers are used to respond to system-wide broad-

cast messages (such as notifications). Of these components, users interact

directly with only the activities. Apps typically have multiple activities with

a few “main” activities that are ones in which an app can be started. An

activity can start other activities as well. This process often involves passing

asynchronous messages called intents which contain any necessary data.

An activity’s user interface is composed of UI elements or views. Views

can respond to user inputs and are organized in a hierarchy called the view

hierarchy. Developers can declare the layout of these user interfaces using

human readable XML layout files that get included in the APK. In addition,

the layouts can also be defined in the code, allowing for programmatically

construction of UIs at runtime. The APK also includes important metadata

about an app in the “manifest” file. It specifies all the resources in an

app, including the name of its activities, and, in particular, defines its main

activities. It is relatively straightforward to unpack an APK file and inspect

the manifest as well as the XML layout files using open source tools [24]. As

a result, this is what researchers generally do when they want to mine some

of the static design data present in public Android apps.

2.2 Design Mining

Design mining, as proposed by Kumar et al. [3], refers to mining the de-

sign details of artifacts in a domain such that traditional data-mining and

knowledge-discovery techniques can be readily used on that data. They

demonstrated design mining for webpages using a platform, Webzeitgeist,

that captured and combined the visual (screenshots) and structural repre-

sentations (document object model or DOM trees [25]) of webpages. The

resultant data enabled them to answer questions about design demograph-

ics, automate design curation, and build data-driven design tools, such as

tools for example-based retrieval of designs.

This notion of using automated knowledge-discovery techniques on the

mined data is what makes design mining different from traditional ways of
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collecting and curating designs. Graphic designs, for instance, are collected

and curated by designers in the form of images. While images are useful

for visualizing the designs and even testing for their effectiveness with user

studies [8], analyzing designs with automated techniques using just images

is hard. As a result, for design webpage designs, Kumar et al. advocated

capturing not just screenshots but also their DOM trees. Processing these

two data streams together allowed Webzeitgeist to easily surface relevant

design data (such as popular colors or layouts) to the data-driven design

applications that it supported.

This dissertation extends this line of research to mobile apps. Design min-

ing mobile apps, however, presents a new challenge. Unlike artifacts in other

design domains, such as graphic designs, infographics, 3D models, or even

webpages (as explored by Kumar et al.) that are static (do not change over

time), app designs contain dynamic components such as user flows and ani-

mations. These dynamic components are central to the design of an app, but

capturing them is hard since they only manifest themselves during runtime

when a user interacts with an app. The technique of interaction mining that

we present in the next chapter, answers the question: How can we capture

dynamic designs such as those of mobile apps?

2.3 Data Mining Mobile Apps

In this section we discuss prior works from multiple domains on extracting

useful knowledge from mobile apps. These works primarily mine information

from two sources: the app stores (such as the Google Play Store) and the

mobile app packages (such as the Android APK files).

2.3.1 Mining Play Store Metadata

The Google Play Store contains a wealth of information about any app. An

app’s webpage includes metadata about the popularity of the app (such as

the number of downloads), feedback from users in the form of 5-star ratings

and text reviews, a category label, screenshots of a few UIs from the app,

and often times a textual description of the features found in the app. As a

result, researchers have mined data from the Google Play Store by crawling
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its web pages for a variety of studies.

A common use of play store metadata is as a proxy for the quality of apps.

An app’s quality is judged by users based on a variety of factors (such as

animations [26], menus [27], and visual diversity and consistency between

different screens [28, 29]) and hence cannot be as easily collected as say for

graphic designs. Thus using Play Store metrics as a proxy for app quality be-

comes attractive. Many studies have used the number of downloads, average

rating, or the number of ratings for an app as a proxy for the quality of an

app [29, 30, 31]. Sometimes multiple metrics are also combined to overcome

biases associated with using just one of them [30]. Another unique feature

of app stores as compared to traditional software deployment mechanisms

is the presence of the large amount of user feedback. Several studies have

investigated the nature of this feedback [32, 33, 34, 35, 36]. Finally, app store

metadata has also been used to study app development and release practices

such as frequency of updates [37] or the dialogue between app creators and

consumers [38, 39].

2.3.2 Mining App Packages

Several prior works have mined app packages (such as APK files for An-

droid apps) for design data. They follow one of two approaches – static

or dynamic. A static approach involves unpacking the package file using

open-source tools [24] and inspecting static XML files that describe the lay-

outs of different UIs. This approach has been used to study design pattern

changes over time [40], identify frequently-used UI components [41], study

the complexity of app UIs [30], and understand characteristics of highly rated

apps [42]. The main limitation of this approach is that it can only capture

UI information that has been specified declaratively and misses UIs that are

specified programmatically at runtime. In addition, since this approach does

not run an app, it cannot capture components of an app’s design that are

dynamic, such as user flows or animations.

Dynamic approaches for mining mobile apps, conversely, capture data at

runtime. For instance, Li et al. [43] used this approach to capture UI in-

formation of Android apps at runtime and leveraged the text data found in

the UI layouts to enable text-based searching for Android components. Dy-
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namic mining methods can be difficult to implement due to the challenges

associated with driving an app’s graphical UI to reach new states [44], and

hence have found limited usage in design mining apps. They have nonetheless

been deployed for testing [45], detecting security vulnerabilities [46, 47], and

modeling web applications [48]. The main limitation of these approaches,

however, is that they fail to explore app UIs in a manner that mirrors hu-

man usage. This makes it difficult to extract meaningful user flows from

the captured data — an important component of an app’s design. Interac-

tion mining, as developed in this dissertation, overcomes these limitations by

seamlessly incorporating humans into the app mining process, which allows

them to drive the graphical UI and demonstrate meaningful flows.
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CHAPTER 3

INTERACTION MINING MOBILE APPS

Data-driven tools can help designers in the complex app design process.

Building such tools for mobile app design requires a way to capture the design

of apps. This chapter introduces interaction mining for mobile apps. Inter-

action mining captures and analyzes both static (UI layouts, visual details)

and dynamic (user flows, motion details) components of an application’s de-

sign. Mined at scale, the data produced by interaction mining enables tools

that scaffold the app design process: finding examples for design inspira-

tion, understanding successful patterns and trends, generating new designs,

and evaluating alternatives. This chapter also presents the architecture and

design details of systems for large-scale interaction mining of Android apps

that enabled mining close to 10,000 apps. This large-scale mining enabled

creating a design repository with 72,000 unique UIs and 3 million design

elements.

3.1 Goals for Interaction Mining

The aim of interaction mining is to build a design repository and a set of

data structures to support design tools that scaffold the entire mobile app

design process. Accordingly, an interaction mining system must possess the

following capabilities:

Capture of multiple design components. An app’s design consists of mul-

tiple components: how users move from one UI to another to complete tasks,

how UIs are laid out, the visual details of the UIs and their elements, and

how each UI responds to user interactions. Supporting data-driven design

tools for app design requires capturing each of these components. This cap-

ture is challenging because it requires collecting, combining, and correlating

multiple types of data, including both visual and structural representations
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of UIs and their elements, as well as user interaction details.

Coverage of important UI states. In order for the design data produced by

interaction mining to help designers understand the experiences an app af-

fords, it must capture UI states that are frequently used by humans. Discov-

ering and navigating to each of these states in an automated way is difficult,

and requires an understanding of how to interact with different UIs. Ad-

ditionally, states must be visited in a natural, semantic order to be able to

capture meaningful user flows.

Scalability. The utility of interaction mining hinges on the scale of the

corpus it can build. Larger repositories improve both diversity of results

in example-based applications as well as the accuracy of machine-learning

models trained on the mined data. Mining strategies that require access to

an app’s source code or the cooperation of an app’s developer, therefore, are

less useful than those that take a black-box approach to working with the

millions of extant mobile apps.

3.2 ERICA: Interaction Mining for Android Apps

ERICA is a system that enables interaction mining for Android apps in

a black-box manner. It combines the strengths of humans and machines,

using humans to drive app interactions and computers to capture design and

interaction data.

3.2.1 Design Choices

Dynamic Mining

Mobile design data can be mined in two ways: statically by unpacking app

packages and dynamically by running an app. ERICA uses the dynamic

approach since a static approach cannot capture dynamic design components

such as user flows and motion details.
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Human-Powered Exploration

To generate meaningful interactions for different UIs, ERICA leverages hu-

mans to interact with an app while it captures their interactions and the

resultant UIs. This is in contrast to using an automated agent to interact

with the UI elements programmatically (used for example in DynoDroid [45]).

ERICA employs a human-powered approach instead of an automated one for

several reasons.

First, human interactions are more likely to produce realistic user flows.

The space of possible interaction sequences in apps is large, and only a small

fraction of such sequences represent semantically-meaningful flows. It is

challenging for automated methods to discern these semantically-meaningful

flows. Humans, on the other hand, naturally use apps to perform meaningful

tasks, and hence data mined during human usage often contain meaningful

user flows.

Second, many apps require user input (e.g., usernames, passwords, queries,

content, etc.) before meaningful interaction can occur. Automatically creat-

ing valid user data across a large number of apps is a challenging problem.

In addition, many apps need to be populated with user-generated data be-

fore they their UIs reflect the full set of possible interactions and features.

For example, many screens in the Evernote app (useful for note-taking) have

limited interactions until a user creates folders and some notes. With an au-

tomated approach, it is challenging to create such data across a large number

of diverse apps.

Third, for captured UI data to be meaningful, a new UI state should only

be captured after the UI has been completely updated in response to a user

interaction. Automatically detecting the completion of UI updates is another

challenging problem, since updates can happen asynchronously in response

to external events (for example, when data from a remote server is received).

Humans, however, are capable of detecting the completion of UI updates

with relative ease.

Web-Based Interaction Interface

ERICA users interact with Android apps through a web-based interface, as

opposed to directly accessing the devices on which the apps run. There
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are two reasons for this design decision. First, having a web-based inter-

face makes it possible to use apps remotely, making it easier to crowdsource

data collection over the Internet. In addition, a browser-based architecture

lowers the barrier for users to use the system. Users do not need to use a

specific device or install any software on their devices. Second, the servers

that power ERICA have much greater compute capability than a phone or

tablet, allowing interaction data to be captured in the background without

negatively affecting user experience.

Although users interact with apps through a web interface, ERICA still

offers a near-native experience for users. ERICA is powered by a responsive

web frontend which, when used in fullscreen mode on a mobile browser,

mirrors the screen of the device on which the app is running (see Figure 3.2).

Physical Devices

ERICA runs Android apps on physical phones and tablets connected to the

ERICA server. Physical devices offer more predictable UI performance and

support a wider variety of features (such as OpenGL 2.0) across a larger

number of apps, compared to the best Android emulators available today.

3.2.2 Implementation

ERICA comprises four components: an app crawler, a data collector, a post-

processor, and a web API (Figure 3.1). The app crawler obtains APK files for

Android apps from the Google Play Store. The data collector captures the

state of an app’s UI as users interact with it. The post-processor combines

the captured data streams into a single unified representation – an interaction

trace (details of this representation are presented in Section 4.1.1). It also

computes visual and textual features for UI elements and stores them in a

database for subsequent querying. Client applications access ERICA’s data

through a web API.

App Crawler

The app crawler uses a Google Play Store API (application programming

interface) to download Android APK files for apps, along with play store
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Figure 3.1: ERICA’s architecture. Apps from the Google Play Store are
run on physical Android devices. Users interact with these apps through a
web interface that allows the system to capture their interactions as well as
the state of the app’s UI. Post-processing scripts compute structural
properties of elements, and UIs and store them in a NoSQL datastore.
Client applications access data through a web API.

metadata such as app rating, number of downloads, and app category.

Data Collector

The data collector allows users to interact with Android apps through a web

interface and captures three kinds of data in realtime: screenshots (visual

representation of UIs), view hierarchies (structural representation of UIs),

and user interactions. The collector comprises three components: a set of

Android devices, a backend server, and a web client (Figure 3.2). Each

Android device is a physical phone connected to the backend server via USB,

and each one runs a modified version of Android OS.

The backend manages the devices and installs Android apps on them. It

sends the device’s UI as compressed JPEG images to the web client using a

WebSocket connection. It also relays user inputs from the web client to the
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Figure 3.2: ERICA’s data collection infrastructure. Here ERICA’s web
client is being used in a browser on a phone in fullscreen mode to interact
with an app running on one of the other Android devices connected to the
server (second from the left). ERICA collects information about the app in
realtime while the user is interacting with it.

device. Finally, it saves the captured data to the local file system.

The web client displays images of the app’s UI in a browser and allows

users to interact with it. It has a responsive layout and can be used on

devices of varying form factors, including desktops and mobile devices. On a

mobile device, with the browser in full-screen mode, it offers a near-native app

experience (Figure 3.2 shows one of the device screens being mirrored in the

user’s browser). Both the backend server and the web client are implemented

on top of the OpenSTF framework [49]. The minitouch library allows the web

client to support all common multitouch gestures when used on touchscreen

devices, and two-finger pinch, rotate, and zoom on regular PCs [50].

Implementing the data collector required overcoming two technical chal-

lenges:
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Capturing UI Data with Low Latency. Capturing UI data in an app with-

out any perceptible user delay is non-trivial. To capture UI changes in

response to user interactions, ERICA requests the structured representa-

tion of an app’s UI every time a user interacts with it. Android’s default

UiAutomator service, which is commonly used to request view hierarchies

from Android devices, is poorly suited for this purpose as it takes multiple

seconds to return the data [51]. Instead, we modified the Android OS to im-

plement a custom service that responds within about a hundred milliseconds.

This service was built by augmenting the Android classes that define UIs and

UI elements with custom methods that dump properties of their instances at

runtime. The service returns a hierarchical representation of the UI in XML

format and has properties (such as position and size) for all the elements

on the screen. The service also allows capturing additional properties of UI

elements that are not available through the UiAutomator service, such as

font family and size information for text elements.

Capturing screenshots of a UI multiple times a second enables a smooth

user experience when interacting with apps through the web frontend. It also

enables high-fidelity viewing of the motion details of the app (animations and

transitions) from the captured data. ERICA uses the minicap library [52]

to enable the capture of more than ten screenshots per second, configured to

trigger whenever pixels on the device screen change.

Inferring Gestures. When a user interacts with an app’s UI through the

web client, the client captures user input events (such as TouchUp, TouchMove,

and TouchDown) and their coordinates. These events are relayed to the An-

droid device via the server. Android translates these low-level input events to

gestures (such as clicks, scrolls, longtaps, etc.), and, if applicable, dispatches

them to the appropriate element on the UI [53].

Accurately inferring high-level gestures from the low-level input events

captured by the web client is a challenging task. Instead, ERICA captures

gestures directly from the Android OS by modifying Android to output the

type and target element of a gesture every time one is detected.

Post-Processor

The post-processor reconciles the three streams of captured data and com-

bines them to form a unified representation called an interaction trace (Sec-
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tion 4.1.1). It parses the structural representation of UI screens to identify

individual UI elements, crops the elements from the screenshot, and saves

them to the file system. Element properties (such as size, location, and con-

tained text) are also saved to a NoSQL datastore for subsequent querying.

Multiple screenshots are combined to form animated GIFs that show how a

UI responds to different user interactions. A web API provides access to the

data stored in the file system and in the NoSQL datastore.

3.2.3 Data Collection

We demonstrated the usefulness of ERICA by using it to collect user in-

teraction traces from more than 1000 Android apps, and built a corpus by

crawling the top 100 apps from 30 different categories on the Google Play

Store. We recruited 28 participants for lab-based data collection through

posters and email lists on campus, briefed them about the study, and gave

them a short tutorial on ERICA’s web interface. Each participant was free

to use each app totally unsupervised and without any time limit. To pro-

tect participants’ privacy, we instructed them to input fake personal data as

necessary.

The participants completed 1186 sessions for 1150 apps. After rejecting

sessions with less than 5 interactions, we were left with 1065 sessions for 1011

apps, consisting of more than 18, 000 unique UI screens, 52, 000 gestures,

500, 000 interactive elements, and 6.7 million total elements. On average,

sessions lasted 4 minutes (min 30 seconds, max 21 minutes) and had 51 in-

teractions over 18 unique UI screens. Users employed 5 Android activities in

each app on average, and performed 6.2 interactions in each activity (activ-

ities are components of Android apps that allow users to perform a specific

task [54]).

3.3 Rico: Scaling Interaction Mining

ERICA was the first system to demonstrate the feasibility of interaction

mining. It was, however, limited in two ways. First, it was designed for a

lab-based setup where users were on the same network as the server. The

effort required to recruit and manage users for lab-based crawling sessions
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limited the scale at which we could operate it for app crawling. Second,

ERICA achieved low coverage of an app’s UI states. One way to improve

that is to combine multiple user traces. Figure 3.3 illustrates how coverage

increased for three apps of varying complexity (measured by the number of

Android activities found in their APK files) as multiple traces were combined.

We observe that, as in heuristic evaluation, 5 to 8 users appear to provide

optimal coverage [22]. For truly complex apps, coverage may remain low even

after aggregating many user traces, since many UI states exist that humans

do not visit during regular usage.

To enable interaction mining at a larger scale, we developed Rico, an inter-

action mining platform that extended the ERICA architecture in two ways.

First, it was designed to work over the Internet, enabling us to hire paid work-

ers from online crowd marketplaces for app crawling. Second, it combined

human-powered and programmatic exploration for higher coverage. Humans

rely on prior knowledge and contextual information to effortlessly interact

with a diverse array of apps. Apps, however, can have hundreds of UI states,

and human exploration clusters around common use cases. These factors

result in human exploration achieving low coverage over UI states for many
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Figure 3.3: Coverage of activities in the app Wallet (top),
Weheartit (middle), and Yelp (bottom) with respect to the number
of users whose interaction traces were combined. Coverage does not
increase significantly after 5 to 8 users since there is significant
overlap between activities that different users visit.
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apps [55, 13]. Automated agents, on the other hand, can be used to exhaus-

tively process the interactive elements on a UI screen [47, 44]; however, they

can be stymied by UIs that require complex interaction sequences or human

inputs (Figure 3.4) [56].

Rico’s hybrid approach for design mining mobile apps combines the strengths

of human-powered and programmatic exploration: leveraging humans to un-

lock app states that are hidden behind complex UIs, and using automated

agents to exhaustively process the interactive elements on the uncovered

screens to discover new states. The automated agents leverage a novel

content-agnostic similarity heuristic (see Section 4.3 for details) to construct

an interaction graph (Section 4.1.2) to efficiently explore the UI state space.

Together, these approaches achieve higher coverage over an app’s UI states

than what is possible using any one of them alone (Section 3.3.3).

3.3.1 Crowdsourced Exploration of Apps

For crowdsourced exploration, Rico uses a web-based architecture similar

to that of ERICA. A crowd worker uses apps through a web application,

which establishes a dedicated connection between the worker and a phone in

our mobile device farm. The system loads an app on the phone, and starts

continuously streaming images of the phone’s screen to the worker’s browser.

Figure 3.4: Automated crawlers are often stymied by UIs that require
complex interaction sequences, such as the three shown here.

25



As the worker interacts with the screen on his browser, these interactions are

sent back to the phone, which performs the interactions on the app.

Rico extends the ERICA architecture to enable large-scale crowdsourcing

over the Internet. It adds a token-based authorization system that supports

both short- and long-term engagement models. For micro-task-style crowd-

sourcing on platforms like Amazon Mechanical Turk, it generates URLs with

tokens. When a worker clicks on a URL with a valid token, the system in-

stalls an app on a device and hands over control to the user for a limited

time. To facilitate longer term engagements on platforms such as Upwork,

Rico provides a separate interface through which workers can repeatedly re-

quest apps and use them. This interface is protected by a login wall, and

each worker is provided separate login credentials. Compared to ERICA, we

also lowered the bandwidth consumed by Rico by lowering the frame rate

for screen updates and by using higher a compression ratio for the streamed

JPEG images.

Rico’s view hierarchies capture the superclass names of all elements in

the view hierarchy, something not present in the ERICA view hierarchies.

Superclass names are useful since we discovered that developers frequently

use custom derived class names such as AppNameView from TextView. Using

superclass names, it is possible to correctly expose such an element as a text

element to downstream applications.

We show the Rico web interface in Figure 3.5. On the left-hand side, crowd-

workers can see the streamed phone screen. They can interact with it using

their computer keyboard and mouse. The interface also supports relaunching

the app they were supposed to use in case they exit the app by mistake. On

the right-hand side, the interface provides usage instructions and features

to overcome two operational challenges we faced in large-scale crowdsourc-

ing. First, to minimize the capture of personally identifiable information,

the interface provides a name, email address, location, and phone number

for crowd workers to use when apps request such information. Second, the

system is set up in a way that when apps send emails or text messages to

the specified email addresses and phone numbers, crowd workers can access

those messages through the web interface. This allows them to complete app

verification steps with minimal effort.

Our use of crowdsourcing is different form prior work. Prior work has gen-

erally used crowdsourcing to collect labeled data for training models [57] or
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Figure 3.5: Rico’s web interface. On the left, crowd workers can interact
with the app screen using their keyboard and mouse. On the right, they are
provided instructions and details such as the name, location, phone number,
and email address to use in app. The interface also allows workers to access
SMS (short message service) and email messages sent to the provided
phone number and email to complete the app verification processes.
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for performing evaluations through surveys or performance oriented tasks [8,

58]. In contrast, our work requires crowdworkers to use mobile apps without

performing any labeling or annotations.

3.3.2 Automated Exploration of Apps

To move beyond the set of UI states uncovered by humans, Rico employs

an automated exploration system. Existing automated crawlers hard code

inputs for each app to unlock states hidden behind complex UIs [59, 56]. We

achieve a similar result by leveraging the interaction data contained within

the collected user traces: when the crawler encounters a interface requiring

human input, it replays the interactions that a crowd worker performed on

that screen to advance to the next UI state.

Similar to prior work [59, 56], the automated mining system uses a depth-

first search strategy to crawl the state space of UIs in the app. For each

unique UI, the crawler requests the view hierarchy to identify the set of

interactive elements. The system programmatically interacts with these ele-

ments, creating an interaction graph that captures the unique UIs that have

been visited as nodes, and the connections between interactive elements and

their resultant screens as edges. This data structure also maintains a queue of

unexplored interactions for each visited UI state. The system programmati-

cally crawls an app until it hits a specified time budget or has exhaustively

explored all interactions contained within the discovered UI states.

3.3.3 Benefits of Hybrid App Approach

To measure the coverage benefits of our hybrid exploration approach, we

compare Rico’s crawling strategy to human and automated exploration alone.

We selected 10 apps (Table 3.1) from the top 200 on the Google Play Store.

Each app had an average rating higher than 4 stars (out of 5) and had

been downloaded more than a million times. We recruited 5 participants for

each app, and instructed them to use the app until they believed they had

discovered all its features. We then ran the automated explorer on each app

for three hours, after warming it up with the collected human traces.

Prior work [54, 55, 13] measured coverage using Android activities, a way of
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Table 3.1: The Android apps used in our evaluation. Each had a rating
higher than 4 stars (out of 5) and more than 1M downloads on the Google
Play Store.

Name Rating Downloads Description

Polyvore 4.7 1 - 5M Fashion social-network and marketplace

Fabulous 4.6 1 - 5M Goal-setting app 

Issuu 4.3 1 - 5M Magazine browsing and collection 

Foursquare 4.1 10 - 50M City guide and reviews

Yelp 4.3 10 - 50M Guide for local businesses

Newsrepublic 4.4 10 - 50M World news digest

Etsy 4.3 10 - 50M Homemade and Vintage goods marketplace

Todoist 4.4 10 - 50M To-do list and reminder

WeHeartIt 4.5 10 - 50M Photo-sharing social network

Weather Channel 4.3 50 - 100M Weather tracker

Evernote 4.6 100 - 500M Note-taking app for collaboration

Figure 3.6: The performance of our hybrid exploration system compared to
human and automated exploration alone, measured across ten diverse
Android apps
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organizing an Android app’s codebase that can comprise multiple UI screens.

While activities are a useful way of statically analyzing an Android app,

developers do not use them consistently: in practice, complex apps can have

the same number of activities as simple apps. In contrast, we use a coverage

measure that correlates with app complexity: computing coverage as the

number of unique UIs discovered under the similarity heuristic (Section 4.3).

Figure 3.6 presents the coverage benefits of a hybrid system, combining hu-

man and automated exploration increases UI coverage by an average of 40%

over human exploration alone. For each app, hybrid exploration reached

Android activities that weren not reached by human exploration. For exam-

ple, on the Etsy app, the hybrid system discovered screens from 7 additional

activities beyond the 18 discovered by human exploration.

We also evaluated the coverage of the automated system in isolation, with-

out bootstrapping it with a human trace. The automated system achieved

26% lower coverage across the tested apps than Rico’s hybrid approach. This

poor performance is largely attributable to the gated experiences that pure,

automated approaches cannot handle. For instance, Todoist and WeHeartIt

hide most of their features behind a login wall.

3.3.4 Data Collection

We used Rico to mine 9, 772 Android apps spanning 27 categories. The result-

ing dataset comprises 10, 811 user interaction traces and 72, 219 unique UIs

(Figure 3.7). We excluded from our crawl categories that primarily involve

multimedia (such as video players and photo editors) as well productivity

and personalization apps. Apps in the Rico dataset have an average rating

of 4.1 stars, and data pertaining to 26 user interactions.

We crowdsourced user traces for each app by recruiting 13 workers (10

from the U.S. and 3 from the Philippines) on UpWork. We chose UpWork

over other crowdsourcing platforms because it allows managers to directly

communicate with workers, a capability that we used to resolve technical

issues that arose during crawling. UpWork workers also preferred longer term

work commitments, which was better for us than micro-task-based models

since it minimized the time we had to spend training and overseeing workers

untill they became proficient in using our interface. We instructed workers
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to use each app as it was intended, based on its play store description for no

longer than 10 minutes.

In total, workers spent 2, 450 hours using apps on the platform over five

months, producing 10, 811 user interaction traces. We paid $19, 200 in com-

pensation, or approximately $2 to crowdsource usage data for each app. To

ensure high-quality traces, we visually inspected a subset of each user’s sub-

missions. After collecting each user trace for an app, we ran the automated

crawler on it for one hour. We discuss the contents of the Rico dataset and

its intended applications in the next chapter.
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Figure 3.7: Summary statistics of the Rico Dataset: app distribution by (a)
category, (b) average rating, and (c) number of mined interactions. The
distribution of mined UIs by number by of (d) total elements and (e)
interactive elements.
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3.4 Discussion and Future Work

With systems like Rico, it is now possible to mine design data at scale from

thousands of publicly available apps. We discuss how the mined data can be

processed into useful representations of app designs in Chapter 4 and present

two applications that use these representations in Chapter 5 and Chapter

6.

There are a number of avenues for future work on extending interaction

mining systems. Interaction mining outside of a web-based paradigm could

be explored. For instance, mining interaction data directly on end-user de-

vices could have certain advantages, such as capturing more nuanced inter-

action patterns that are influenced by a user’s context and capturing the

effects of different device sizes and configurations. On-device mining could

also be more financially sustainable compared to using paid crowdworkers.

This could enable mining app designs longitudinally over larger periods of

time to build datasets that capture design changes over time.

Another promising direction of future work is towards lowering the need

for human exploration. Perhaps more sophisticated automated models for

app exploration that emulate human interaction could be used. Human in-

teraction traces such as those captured by Rico would be an ideal dataset

for training such models. Future work could also explore the benefits of a

system like Rico outside of design mining, in areas like security and software

testing where high app state coverage is also desirable [55, 47, 56].
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CHAPTER 4

REPRESENTATIONS AND MODELS OF
MOBILE APP DESIGN

Interaction mining systems such as ERICA and Rico enable capturing de-

tailed design and interaction data for Android apps. In this chapter, we

discuss how the captured data can be processed to expose the different com-

ponents of an app’s design and to build representations that are useful for

downstream data-driven applications. This chapter also illustrates how mod-

els of design similarity can be trained on this data to help find unique designs

in the dataset and to enable example-based design search.

4.1 App Design Representations

The representations used to capture designs in a domain are closely tied to

what capabilities are desired in the design tools. For example, capturing

graphic designs as images is useful for designers to visualize designs and to

gather feedback on them. However, they are not very useful for building

design search and retrieval systems. Having access to structured representa-

tion of a design (such as a DOM tree for webpages) allows easier search and

retrieval [3]. In this section, we describe two representations of mobile app

designs that we have found to be a good fit for a wide range of data-driven

design applications.

4.1.1 Interaction Trace

An interaction trace (shown in Figure 4.1) captures an app’s design as a

sequence of app UI’s. For each UI, it contains a collection of screenshots

(visual representation), a view hierarchy (structural representation), and the

user interaction performed on that screen. The set of screenshots for a UI,

taken together, captures how the UI transitioned into the next UI in response
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Figure 4.1: Visual representation of an interaction trace. It consists of a
sequence of UIs. For each UI it contains a collection of screenshots, a view
hierarchy, and the user interaction performed on that screen. The series of
screenshots for a UI taken together show how the UI responded to the user
interaction.

to the user interaction performed on it.

View hierarchies capture all of the elements comprising a UI, their prop-

erties, and relationships between them. For each element, it exposes the

element’s visual properties (such as screen position, dimensionality, and visi-

bility), textual properties (such as class name, id, and displayed text), struc-

tural properties (such as a list of its children in the hierarchy), and interactive

properties (such as the ways a user can interact with it). Additionally, view

hierarchies mined by Rico contain Android superclasses for all elements (e.g.,

TextView), which can help third-party applications reason about element

types.

Combining the three types of data captured in an interaction trace enables

multiple use cases. Combining the screenshots with the user interactions

allows visualizing user behavior in an app. The blue dots in Figure 4.1, for

instance, show where users tapped or scrolled on the different screens. View

hierarchies expose element text and when combined with screenshots allow

accurately cropping out individual elements and analyzing their visual details
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(such as color) and shapes. Thus, it becomes possible to index and search

over UI elements based on text, shape, or visual attributes. Having multiple

screenshots during UI changes allows combining them to visualize motion

details. And finally, if an interaction trace is mined during human usage (as

is done by ERICA and Rico), it often captures meaningful user flows in the

app. These flows can be identified using automated methods (see Section

5.2) by combining user interaction details with view hierarchies. Thus an

interaction trace captures and helps index and search all four components of

an app’s design: user flows, UIs, visual details and animations.

4.1.2 Interaction Graph

An interaction graph (shown in Figure 4.2) comprises of nodes that repre-

sent unique UI screens encountered in an app. Edges connect interactive UI

Figure 4.2: Visual representation of an interaction graph. Nodes in this
graph represent unique UI screens. Edges connect interactive elements to
UI screens that are reached by interacting with them.
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elements to UIs that are reached by interacting with those elements.

Interaction graphs are well suited for maintaining state when performing

automated exploration of an app (Section 3.3.2). Interaction graphs can can

also be created from interaction traces produced during human exploration

to analyze the complexity of apps. In both cases, creation of such a graph

requires a way to identify if two UI screens encountered by an automated

crawler (or by a human) are the same. We use a content-agnostic similarity

heuristic described in Section 4.3 to do that.

Existing Android app datasets expose different kinds of information: Google

Play Store metadata (e.g., reviews, ratings) [60, 61], software engineering and

security related information [62, 63], and design data [41, 40, 13]. The Rico

dataset captures both design data and Google Play Store metadata.

Table 4.1 compares the Rico dataset with other popular datasets that

expose app design information. Design datasets created by statically mining

app packages, such as the ones used by Shirazi et al. [41] and Alharbi and

Yeh [40] contain view hierarchies, but cannot capture data created at runtime

such as screenshots or interaction details. The Rico and ERICA datasets

were created by dynamically mining design and interaction data from apps

at runtime. The Rico dataset is four times larger than the ERICA dataset,

and presents a superset of its design information. The Rico dataset is also

the only one of these datasets to be publicly released and is available for

download at http://interactionmining.org/rico.

Table 4.1: Comparison of the Rico dataset with other app design datasets

Year # Apps # UIs
Mining 

Technique
View 

Hierarchies Screenshots
User 

Interactions

Rico 2017 9.7K 72.2K Dynamic
ERICA 2016 2.4K 18.6K Dynamic

Shirazi et al. 2013 400 29K Static
Alharbi et al. 2015 24K - Static
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4.2 The Rico App Design Dataset

4.2.1 Rico Dataset Contents

For each app, the Rico dataset contains Google Play Store metadata, a set

of user interaction traces, and a list of all the unique, discovered UIs through

crowdsourced and automated exploration (Figure 4.3). The play store meta-

Figure 4.3: The Rico dataset contains Google Play Store metadata, a set of
user interaction traces, and a list of all the unique UIs discovered during
crawling.
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data includes an app’s category, average rating, number of ratings, and num-

ber of downloads. Each user trace is composed of a sequence of UIs and

user interactions that connect them. Each UI comprises a screenshot, an

augmented view hierarchy, a set of explored user interactions, a set of an-

imations capturing transition effects in response to user interaction, and a

learned vector representation of the UI’s layout. Overall, the Rico dataset

contains more than 3M elements, of which approximately 500k are interac-

tive. On average, each UI comprises eight interactive elements.

The Rico dataset also contains an additional view of each app’s design data:

while the ERICA dataset provides a collection of individual user interaction

traces for an app, the Rico dataset additionally provides a list of the unique

UIs (more than 72, 000) discovered by aggregating over user interaction traces

and merging UIs based on a similarity measure. This representation is useful

for training machine-learning models over UIs that do not depend on the

sequence in which they were seen. Lastly, each unique UI in the Rico datset

is annotated with a low-dimensional vector representation that encodes its

layout (Section 4.3), which can be used to cluster and retrieve similar UIs

from different apps.

The Rico dataset was built to support a variety of data-driven applications

for mobile app design. Chapter 5 describes how it can be used to train models

of design that enable novel design search interactions including example-

based search. Section 7.1.5 discusses four other applications that it could

support: mobile layout generation [64, 65], UI code generation [66, 67], user

interaction modeling, and user perception prediction [68, 69, 70, 71].

4.3 Identifying Unique UI Designs

Database-backed applications can have thousands of views that represent the

same semantic design concept and differ only in their content (Figure 4.4).

Exposing the set of uniques UIs in the Rico dataset required us to identify

such UI screens that represent the same design in an interaction trace. We

also needed a way to do that during automated exploration of apps (Section

3.3.2). After Rico’s crawler interacts with a UI element, it must determine

whether the interaction led to a new UI state or one that is already captured

in the interaction graph.
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Figure 4.4: Pairs of UI screens from apps that are visually distinct but have
the same design. Our content-agnostic similarity heuristic uses structural
properties to identify these sorts of design collisions.

Identifying unique UIs screens for mobile apps, however, is challenging.

This is because unlike web applications that usually have different URLs for

each unique application screen, there is no such identifier that a mobile app

exposes during usage (or mining). Although interaction mining captures the

Android activity names [54] for each screen, they do not have a one-to-one

correspondence with UI designs. Activities in practice can contain multiple

UI screens that exhibit different designs.

Therefore, we developed a bespoke content-agnostic similarity heuristic

to compare UIs. This similarity heuristic compares two UIs based on their

visual and structural composition. If the screenshots of two given UIs differ

by fewer than α pixels, they are treated as equivalent states. Otherwise, the

crawler compares the set of element resource-ids present on each screen.

If these sets differ by more than β elements, the two screens are treated as

different states.

We evaluated the heuristic with different values of α and β on 1, 044 pairs

of UIs from 12 apps. We found that α = 99.8% and β = 1 produces a false

positive rate of 6% and a false negative rate of 3%. We use these parameter

values for automated crawling, and computing the set of unique UIs for a

given app.
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Figure 4.5: Overall approach for example-based searching for UIs. A query
UI is first mapped to a lower-dimensional space in a way that similar UIs
are mapped close to one another. Then nearest-neighbor searches are
performed in this space to find similar UIs.

4.4 Modeling UI Similarity

To facilitate query-by-example searches over the dataset (Figure 4.5), the

Rico dataset contains a vector representation for each UI that encodes its

layout. This vector representation can be used to find structurally — and

often semantically — similar UIs, supporting example-based search over the

dataset (see Figure 5.6 for results of search queries). This vector is obtained

through training an autoencoder to learn a lower-dimensional embedding for

UI layouts.

An autoencoder is a neural network that involves two models — an encoder

and a decoder — to support the unsupervised learning of lower-dimensional

representations [72]. The encoder maps its input to a lower-dimensional

vector, while the decoder maps this lower-dimensional vector back to the

input’s dimensions. Both models are trained together with a loss function

based on the differences between inputs and their reconstructions. Once

an autoencoder is trained, the encoder portion is used to produce lower-

dimensional representations of the input vectors.

To create training inputs for the autoencoder that embed layout informa-

tion, we constructed a new image for each UI encoding the bounding box

regions of all leaf elements in its view hierarchy, differentiating between text

and non-text elements (Figure 4.6). Rico’s view hierarchies obviate the need
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Figure 4.6: We train an autoencoder to learn a 64-dimensional
representation for each UI in the repository and to encode structural
information about its layout. This is accomplished by creating training
images that encode the positions and sizes of elements in each UI,
differentiating between text and non-text elements.

for noisy image processing or OCR techniques to create these inputs. In the

future, if we can predict functional semantic labels for elements such as search

icon or login button, we can train embeddings with even richer semantics.

The encoder has an input dimension of 11, 200, and an output dimension

of 64, and uses two hidden layers of dimension 2, 048 and 256 with ReLU

(Rectified Linear Unit) non-linearities [73]. The decoder has the reverse

architecture. We trained the autoencoder with 90% of our data and used the

rest as a validation set, and found that the validation loss stabilized after

900 epochs or approximately 5 hours on a Nvidia GTX 1060 GPU. Once the

autoencoder was trained, we used the encoder to compute a 64-dimensional

representation for each UI, which is also included in the Rico dataset.

We discuss an example-based UI search interface built using this learned

layout vector in Section 5.3.

4.5 Discussion and Future Work

The are a number of opportunities to extend and improve the Rico dataset.

New models could be trained to annotate the dataset with richer labels, like

classifiers that describe the semantic function of elements and screens (e.g.,

search, login). Designers can perform keyword searches over these functional

semantic classes to find relevant elements or screens in a user interaction

trace. Similarly, researchers could crowdsource additional perceptual anno-

tations (e.g., first impressions) over design components such as screenshots

and animations, and use them to train newer types of perception-based pre-
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dictive models.

Unlike static research datasets such as ImageNet [74], the Rico dataset will

become outdated over time if new apps are not continually crawled and their

entries updated in the database. Therefore, another important avenue for

future work is to explore ways to make app mining more sustainable. One

potential path to sustainability is to create a platform where designers can use

apps and contribute their traces to the repository for the entire community’s

benefit.
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CHAPTER 5

DESIGN SEARCH

Designers often draw upon prior work in the form of examples to solve new

problems [75, 76, 77]. Examples of previous work serve as sources of inspi-

ration, reduce barriers to entry, lower the cognitive burden of routine tasks,

and help understand the landscape of possible solutions [10, 11]. In this

chapter, we discuss how datasets created through interaction mining enable

building search applications to support mobile app designers in their quest

for examples in the design process.

5.1 Finding App Design Examples in Practice

In a series of formative interviews we conducted with app designers (details in

Section 6.2), participants emphasized the importance of looking at examples

in the design process. They mentioned doing so to keep up-to-date with

popular design patterns, to find and reuse design patterns that work well for

different use cases, and to conduct competitive analysis.

Several methods to find examples also emerged in these interviews. Design-

ers mentioned depending on their own memory of designs seen in the past,

asking colleagues for pointers, and searching online design forums and design

repositories. Each of these current methods for finding examples, however,

has its limitations. Depending on one’s memory and that of others does not

scale. There are only so many examples that a designer can commit to mem-

ory and retrieve at will. While online design forums (such as Dribbble [78]

and Behance [79]) may contain examples from real apps, it is hard to tell

them apart from the large number of design prototypes that are submitted

by designers to solicit feedback and showcase their skills.

Design repositories (such as uxarchive.com [80] or pttrns.com [81]) are a

recent development in the design community. These repositories archive user
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flows in popular apps, given their importance in the design of an app. These

user flows are showcased as sequences of screenshots (Figure 5.1). These

repositories, however, are manually curated by designers who must identify

desirable flows, manually capture associated screenshots, upload them, and

tag them with useful keywords. The effort required in doing so makes them

difficult to scale to large numbers of apps [82]. In this dissertation, we develop

a scalable approach to creating such app design repositories by automatically

identifying user flows in interaction traces captured during app usage.

Figure 5.1: Design repositories such as uxarchive.com showcase user flows
from popular apps using sequences of screenshots. Here we see examples of
login flows from two apps.
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5.2 Flow Search

Interaction mined datasets contain metadata that make it possible to sup-

port keyword-based searches out of the box. For instance, the view hierar-

chy contains programmer-defined annotations such as the activity name for

each UI and the class name and id for all UI elements. Usually these an-

notations are semantically meaningful. A developer might call an activity a

loginActivity or a searchActivity. Or they might tag an element with an

id of settingsBtn. Thus, elements and UIs can be indexed based on these

annotations and made searchable using keywords. Using this approach, we

built a keyword-based search interface over the Rico dataset that is available

online at http://uisearch.interactionmining.org

Indexing user flows in interaction traces, however, is not as straightforward.

In the rest of this section we describe a machine-learning-based approach to

automatically identify user flows by combining information contained in view

hierarchies with user interaction information.

5.2.1 Identifying User Flows

We developed two methods to identify user flows in interaction traces: an

element-based method and a layout-based one. These methods are based

on two insights. First, apps are generally designed with visual, textual, or

structural cues in their elements (or layouts) that help users identify impor-

tant semantic tasks. For example, a magnifying glass icon usually indicates

a search flow, and the words “sign in” usually indicate a login flow.

Second, a user must interact with an indicative element in order for it to

be part of a corresponding flow. For example, if we know that a user clicked

the magnifying glass icon on a particular UI screen, we expect that screen

to be part of a search flow. Based on these insights, we combine the user

interaction and UI data in an interaction trace to identify meaningful flows.

Element-Based Flow Detection

To identify elements indicative of common flows, we clustered the elements

users interacted with in the ERICA dataset based on their visual and textual

45

http://uisearch.interactionmining.org


features. We then built classifiers to automatically identify similar elements

in new traces.

Clustering Interactive Elements. We clustered both text elements and

icons. We identified text elements using the text string associated with them

in the view hierarchy. Non-text elements smaller than 200 × 200 pixels and

with aspect ratios between 0.5 and 2 where chosen as candidate icons.

To cluster icons, we converted them to grayscale and scaled the images

to 50 × 50 pixels. We trained an autoencoder [72] with 2500 inputs and

two hidden layers (with 500 and 200 neurons, respectively) to learn a 20-

dimensional feature vector, and then performed k-means clustering in this

space. We chose 100 clusters, since the mean-squared error plateaued at that

number. Icons from some of the largest clusters are presented in Figure 5.2.

We observed that many of the clusters correspond to icons with semantic

meaning such as “sharing”, “searching”, or “liking”.

We computed the frequency of words and phrases across all text elements

in our dataset. Some of the text elements with the highest frequency are

presented in Figure 5.2. As with icons, these elements also contain semantic

meaning related to flows.

Classifying Elements. Based on these clusters, we developed classifiers to

automatically identify similar interactive elements. For icons, we trained

neural network-based classifiers with an architecture similar to the autoen-

coder’s (2500 inputs, two hidden layers with 200 and 100 neurons). For text

elements, we built simple binary keyword-identification classifiers for each

flow. Some flows (such as “search”) have both a icon-based and a text-based

classifier. Examples of flows detected in our dataset with these classifiers are

shown in Figure 5.3.

Layout-Based Flow Detection

We can also detect flows by identifying screens with specific UI layouts (or

Android components) on which specific gestures are performed. We devel-

oped detectors for three such patterns. Figure 5.4 shows examples of these

flows in our dataset. Consuming flows were identified by searching for UIs

with more than 2000 characters of text where users have also scrolled at least

twice. Composing flows were detected by searching for UIs with a deployed

keyboard and with text input boxes that covered more than 60% of the re-
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Figure 5.2: Unsupervised clustering of interactive elements produced
clusters that helped identify the most common types of
semantically-meaningful elements in the ERICA dataset. We used this
information to build visual and text-based classifiers to detect these
elements in UIs, and leverage them to identify semantically meaningful
flows in user interaction traces.

maining screen space. Onboarding flows were found by searching for the

Android ViewPager component (generally seen as a sequence of dots on the
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Figure 5.3: Examples of three different types of flows detected in our
dataset by using element-based detectors. Visual markers and textual
keywords that were used to identify each type of flow are also shown.
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Figure 5.4: Examples of three different types of flows detected in our
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that were used to identify each type of flow are also shown.
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screen) along with the words “get started”, “skip”, or “tutorial”.

Overall, we used element- and layout-based flow detection methods to

identify 23 flow types that are popular in existing flow repositories and occur

frequently in our dataset. 6.5% of the elements users interacted with in the

ERICA dataset were indicative of one of these flows. On average, each app

contained three such flow examples.

5.2.2 Flow Search Interface

Our pipeline for automated user flow identification allowed us to build — in

two months — a repository with flows from 7× more apps than UX Archive,

the most popular sxtant repository, which has been in operation for four

years [80]. We developed a web interface for searching and visualizing the

user flows found in our repository (Figure 5.5), and made it available online

at http://flowsearch.interactionmining.org.

The interface offers two ways to search for flow examples. Users can select

the name of a flow from a list, and see search results from apps showing the

relevant UI screen with the indicative element highlighted in red. Users can

also use text-based queries to search for flows. These free-form queries return

results based on the text contained in UI elements as well as the elements’

classname and id, since developers frequently use descriptive names for

these fields.

Clicking on a search result takes the user to the flow viewer interface.

It shows the UI screen from the results page with the two previous and

subsequent screens from the interaction trace, as well as the interactions the

user performed on these screens. It does not explicitly show the beginning

or end of an example flow, but rather lets the user go back and forth in

the trace to view more UI screens as desired. In addition to viewing a flow

as a sequence of screenshots, users can also view animated GIFs of the UIs

responding to the shown user interactions by hovering over the screenshots.

5.3 Example-Based UI Search

Interfaces that support example based searching are useful for exploratory

searches without clear goals. They are also used when keywords are hard to
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articulate. Such example-based search interfaces have been explored in prior

work for webpage designs. d.tour is a design gallery that supports “show

more/less like” queries implemented using neighborhood searches in feature

spaces that describe a webpage’s use of space, color, text, and images [83].

Webzeitgeist supports direct queries with example webpages [3]. It retrieves

similar webpages using nearest-neighbor searches in a learned space.

We implemented an example-based search system for UI designs using the

layout vectors learned over the Rico dataset (Section 4.4). Figure 5.6 shows

several example query UIs and their nearest neighbors in the learned 64-

dimensional space. The results demonstrate that the learned model is able to

capture common mobile and Android UI patterns such as lists, login screens,

dialog screens, and image grids. Moreover, the diversity of the dataset allows

the model to distinguish between layout nuances, such as lists composed of

smaller and larger image thumbnails.

This search system is available online at

http://uisearch.interactionmining.org.

5.4 Discussion and Future Work

This chapter demonstrates how interaction mining enables building app de-

sign search systems with lower effort and at a much larger scale than what

was possible before. There are several important directions for improving

app design search systems. Our work focused on layouts for example based-

searching. Models that learn other dimensions of similarity (semantic simi-

larity for instance) between UIs could be explored.

Our keyword- and example-based search interfaces were inspired by similar

interfaces in other domains. The underlying assumption is that app designers

would use these modalities in ways similar to other designers. Field studies

could confirm this hypothesis or help uncover differences in search behavior

that could inform such interfaces. Search interactions other than keyword

and example-based ones could also be explored. For example, retrieving

designs based on rough, low-fidelity sketches could be explored [84]. We used

sequences of screenshots to show user flows (and GIFs to show animations)

based on the designs of current popular app design repositories [80, 81].

Future work could explore better ways to present the design of apps in search
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Query UI Retrieved UIs
Text

Non-Text
1 2 3 4 5

(a)

(b)

(c)

(d)

(e)

(f)

6

Figure 5.6: The top six results obtained from querying the repository for
UIs with similar layouts to those shown on the left, via a nearest-neighbor
search in the learned 64-dimensional autoencoder space. The returned
results share a common layout and even distinguish between layout nuances
such as lists composed of smaller and larger image thumbnails (a,b).

interfaces. In addition, it could explore modifications to the presentation

format to improve the search engine’s effectivenss towards its larger goal of

helping designers ideate better. For instance, perhaps artificially ensuring

diversity of presented results will lead to better ideas being generated.
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CHAPTER 6

ZERO-INTEGRATION PERFORMANCE
TESTING

Mobile app designers use a range of techniques to evaluate their design ideas.

This chapter presents, zero-integration performance testing (ZIPT), a new

technique and an online platform for design evaluation that allows perfor-

mance testing using crowdsourced interaction data. It demonstrates how

ZIPT can be used in the early stages of the design process to understand

which examples to draw from and in later stages to enable comparative test-

ing with low cost and effort.

6.1 Background

Throughout the mobile app design process, designers seek to understand

the artifacts they build and the experiences those artifacts allow users to

have. During ideation, designers attempt to evaluate the relative merits

of potential satisficing designs. Before design specifications are sent to the

engineering team, designers endeavor to detect usability issues. Once an app

is implemented, designers attempt to optimize user performance metrics and

benchmark them against competitors.

To evaluate the performance of mobile designs, designers employ a num-

ber of testing techniques, which generally fall into one of three categories:

A/B [85], usability [22], and analytics-driven testing [86]. While these tech-

niques all provide value to designers and elevate the practice of design beyond

guesswork and intuition, the costs associated with optimizing design perfor-

mance can be steep.

A/B and analytics-driven testing require substantial engineering resources

to build out alternative solutions and instrument them for testing. Manually

aggregating unstructured usage data (e.g., video and audio streams) acquired

during usability testing is costly and time consuming [87].
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This chapter presents a design performance testing approach that makes

it economically feasible to answer the fundamental question of app design:

“given the space of possibilities, which solution performs best?” This ap-

proach is based on the key observation that, given the millions of mobile apps

available today, it is likely that any UX problem a designer encounters has

been tackled many ways by a number of existing apps. This approach lever-

ages existing app implementations to enable comparative testing at scale. It

also allows app designers to go beyond searching for examples [83, 13, 3] and

helps them collect the data needed to decide which examples to draw from

in their own work.

This approach is manifest in ZIPT, which allows designers to collect de-

tailed design and interaction data over any Android app — including apps

they do not own and did not build — and correlate this data with quan-

titative metrics and qualitative feedback. Analytics and A/B testing tools

require access to an app’s source: at a minimum, a developer must instru-

ment the app with tracking code to begin collecting data. ZIPT, in contrast,

provides comparable functionality with zero integration: it requires no access

to code, and can be deployed by any user over any app in the Android store.

Unlike usability testing platforms, ZIPT automatically captures and aggre-

gates structured interaction data from app usage: therefore, it can provide

user performance data for third-party apps at a tiny fraction of the cost (30/c

a user versus $50 on a usability testing platform like usertesting.com).

6.2 Formative Study

Prior to building ZIPT, we conducted interviews with five Google employees

— two interaction designers, two UX researchers, and one UX Engineer —

to understand how practitioners leverage examples in their current work,

and to discuss how they might incorporate crowdsourced performance data

on extant mobile designs. Echoing the literature, all participants referenced

examples early in the design process, especially for competitive analyses.

The interaction designers, in particular, reported frequently studying existing

flows — logical sequences of screens for performing a task — in competitors’

apps and manually comparing them.

Although mere knowledge of the existence of a design example can be
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useful, the practitioners we interviewed often expressed a desire to go further

and understand how well an example performs: whether users can understand

a design and use it as intended to accomplish their goals. When choosing

examples to build upon, participants also considered how easy it would be to

communicate the benefits of a particular design pattern to the rest of their

team. All participants indicated that they do not turn to examples enough

and wished to do so more frequently.

All participants expressed interest in crowdsourcing user performance data

to evaluate existing design patterns. Participants offered different ways in

which this data might be useful in their design process. P3 observed, “if

getting such data was easy, I would ask team members to generate it for

patterns they see in the wild before they bring it to me to build a prototype.”

P2 said, “I would use such a process to quickly pinpoint the what (what works

or does not work) and use other methods to find out the why.” P4 said, “I

can think of two ways I would use such data. One is for finding unexpected

behavior and the other is for storytelling.”

To conduct remote usability tests, participants wished to collect perfor-

mance and interaction data over specific tasks in apps. They requested ag-

gregate usability metrics such as completion rate, as well as the average time

and number of interactions required to finish the specified task. To identify

common usage patterns and unexpected behavior, designers also wished to

examine the interaction paths users took to accomplish a task. At an app

level, designers hypothesized that it would be useful to collect general user

perceptions about usability and branding.

While participants were generally positive about crowdsourced usability

testing, they expressed concerns around ensuring uniform device setup across

workers: they were wary of trusting crowd workers to follow configuration

steps such as software installation. Although participants indicated that they

might use crowdsourcing to test their own apps, several expressed reserva-

tions about inadvertently exposing features that were not yet public.

6.3 The ZIPT Platform

The ZIPT platform comprises three stages (Figure 6.1). In the first stage,

designers define the scripted usability tests they want to run over a set of
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Test Creation

Data Visualizations and Metrics

Aggregate 
Data

92% Avg: 48 secs Avg: 12.9

Completion 
Rate

Time 
Taken

Number of 
Interactions

Performance Metrics

Flow Visualization

N
Y

1 
2 
3 
4 
5

Feedback
Task Difficulty Used this app before?

Individual 
Trace

Task answer: 170 O’Farrell Street Have you used this app before : No Task Difficulty: 3

Crowd 
Workers

User Interaction Traces

Data Collection

Feedback Questions
Have you used this app 

before?
Rate the difficulty of this 

task from 1-5.. . .

Task
What is the address of 

the closest Macy’s store 
to 94102?

50
Number of  Users

App

Macy’s

…

Figure 6.1: An overview of ZIPT: designers define usability tests (top left),
which are deployed to crowd workers (top right). ZIPT computes and
presents designers with aggregate performance metrics and visualizations
based on the data collected from crowd workers (bottom).
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apps. In the second stage, ZIPT deploys the user-defined tests to crowd

workers. Finally, in the third stage, ZIPT computes and presents designers

with aggregate performance metrics and visualizations based on the data

collected from crowd workers.

6.3.1 Test Creation

ZIPT allows designers to define a usability test by uploading a set of Android

APK files, specifying the number of traces to be collected, and providing a

description of the task for crowd workers to perform. The description can be

open ended (e.g., “browse for music”), or very specific (e.g., “create a playlist

with three songs”). It can be written in plain text or in the Jade templating

language if designers want to customize its presentation.

Designers can customize tasks in two additional ways. First, they can con-

struct tasks with built-in verification, requiring a user to provide an answer

to a question in addition to performing a task in the app (e.g., “What is

the address of the store closest to the 94102 zip code?”). Phrasing tasks as

questions can be useful for quickly identifying traces where users could not

complete the task. Second, designers can provide a specific starting point for

crowd workers within the app other than the home screen. This feature is

useful for testing specific flows that a user would encounter deeper within an

app. Designers specify custom starting points by demonstration. ZIPT runs

the app within the browser, records interaction paths taken by designers, and

replays those interactions before presenting the app to a crowd worker.

ZIPT requires each crowd worker to self-report whether or not they suc-

cessfully completed the specified task. It also allows researchers to add

other pre- and post-task questions, which can be used to collect demographic

data for cohort analysis and qualitative feedback to understand usability

and brand perception. ZIPT supports questions with Likert-scale, multiple

choice, and free-form text answers.

6.3.2 Visualizations and Metrics

Once designers submit a test, ZIPT deploys it on Amazon Mechanical Turk.

As crowd workers use the apps, the platform automatically captures design
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and interaction data streams. After collecting the requisite number of user

traces, ZIPT computes aggregate metrics and visualizations, and presents a

results dashboard comprising four types of data:

Individual Traces. ZIPT allows designers to inspect each crowd worker’s

interaction path through the app. User traces are presented as sequences

of screenshots with user interaction annotations. Each trace also contains a

user’s answers to task and feedback questions, if any were specified by the

designer.

Performance Metrics. ZIPT computes and presents three performance

metrics: completion rate, time on task, and number of interactions per-

formed. The performance dashboard visualizes completion rates as pie charts,

and the other two metrics as histograms. Researchers can interactively select

different performance segments in these visualizations to view their associ-

ated traces.

Qualitative Feedback. The dashboard also collates crowd workers’ answers

submitted in the pre- and post-task questionnaires. It uses bar charts for

summarizing Likert-scale and multiple-choice answers. Like the performance

visualizations, designers can select segments in these charts to inspect corre-

sponding traces. For example, designers can quickly identify and inspect all

traces where crowd workers reported high task difficulty to uncover potential

usability bugs.

Flow Visualization. ZIPT presents interactive flow visualizations to help

designers compare and contrast the different paths taken by users to accom-

plish tasks. These visualizations build on prior work on representing user

flows in mobile apps with Sankey flow diagrams [88]. Color-coded nodes

representing different screens in a user interaction trace are arranged sequen-

tially along the horizontal axis. The nodes in the visualization are connected

by bands whose thickness is directly proportional to the number of users

who took the path defined by its node endpoints. These diagrams can al-

low designers to quickly understand aggregate interaction data, as well as

inspect individual screens to identify usability issues. For example, designers

can interact with the nodes to view screenshots and with the bands to see

user interaction between two screens. Additionally, a designer can create a

flow by demonstration in an app and use it to highlight paths of interest in

the visualization. For example, by defining a golden trace for a task — the

intended path a user should take to complete a task — and highlighting this
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path in the diagram, a designer can quickly determine the screens that cause

the most confusion and are most likely to prevent users from completing the

task.

6.3.3 Implementation

To ensure that all crowd workers use apps under identical conditions with-

out having to install any software on their devices, ZIPT uses a web-based

streaming approach for collecting data from mobile apps. Apps run in a

controlled environment on a mobile device farm, and are streamed to client

devices through the browser. This streaming approach has been used in

recent systems including ERICA for mining mobile app designs [13] and Mo-

biPlay for implementing record and replay systems for app testing [89], and

been piloted by Google for mainstream Android app usage [90].

We modeled ZIPT’s web-based app streaming implementation after ERICA [13].

Apps are run on a set of Android devices connected to a server that hosts the

ZIPT web application. The web application continuously streams the phone

screens as compressed JPEG images. When users interact with these images

in their browser, the frontend web application captures these interactions and

sends them to the phones via the server. When an app’s screen changes as

a result of these interactions, users see the updated screens in their browser

with a slight delay. ZIPT supports diverse interactions including tapping,

scrolling, two finger pinch-and-zoom, and keyboard text entry.

In contrast to ERICA and MobiPlay, where app streaming occurs over a

local network, ZIPT must have good performance over the public Internet.

As a result, ZIPT uses a low frame rate (5 to 10 frames per second) and

high compression ratio to minimize bandwidth requirements. To produce

acceptable latencies, ZIPT only recruits crowd workers within the U.S. (where

the server is located). In addition, ZIPT logs the incurred latency for each

user interaction, and can filter out traces impeded by network performance.

Like ERICA [13], ZIPT logs screenshots, view hierarchies, and interactions

produced during usage, and combines them to produce interaction traces.

ZIPT computes completion rates based on user-reported data, and the other

two metrics — time on task and number of user interactions — directly from

the interaction traces. When examining individual traces, a designer can fix
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any mislabeled traces, where a user incorrectly self-reported the completion of

a task. ZIPT factors in network and server-to-phone communication latencies

when computing time on task for a more accurate estimate. In the future,

ZIPT can be extended with mechanisms for outlier detection [58] or data

validation [91, 92, 93, 93, 94, 95] as necessary.

To construct flow visualizations, ZIPT automatically computes the set of

screens that represent the same UI state and merges them together into a

single node. To do so, ZIPT employs the content-agnostic similarity heuristic

presented in Deka et al. [14], which compares screens based both on their

structural and visual properties. Designers can also manually merge and

split nodes to fine tune the visualization.

6.4 Case Studies in Using ZIPT

We used ZIPT to identify usability issues in — and compare the performance

of — a number of popular apps. In this section, we present a series of case

studies to demonstrate how the data collected and visualized by ZIPT can

provide novel design insights for apps used by millions of people. For these

case studies, we selected 10 popular Android apps that target a diverse set

of day-to-day consumer activities. Via ZIPT, we crowdsourced performance

data over tasks central to these apps, collecting between 15 to 50 user traces

for each task. We paid Amazon Mechanical Turk workers 30/c for each trace

and used a server backed by three Android devices, which allowed us to

collect approximately 15 traces per hour.

6.4.1 Identifying Usability Issues

ZIPT demonstrates that combining aggregate flow and individual trace visu-

alizations allows designers to quickly identify potential usability problems in

apps. Researchers can detect usability problems by examining both common

and unusual user traces. For example, if many users drop off at a common

node in the flow visualization, this may signify a usability problem in the

critical path of the task. On the other hand, if most users successful follow

the golden path but a small number are unable to complete the task, this

may indicate a usability issue in a part of the app that users are not able
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to easily recover from. We encountered both cases in the user traces we

crowdsourced with ZIPT.

In one test, we asked crowd workers to find the next train’s departure

time from a specific station on The Transit App, which provides real-time

information updates on public transportation systems. The easiest way to

complete the task is to search for the station using the search bar at the

top of the app’s home screen. From the flow visualization, we observed that

only 21% of users (6 out of 28) initially attempted to search for the answer

(Figure 6.2). We hypothesize that more users would have tried the search

bar if it was more visually prominent, many search bars have a box around

them or a high contrast line underneath them.

In another test, we used ZIPT to ask crowd workers to “add a cookie

to your food log” on MyNetDiary, an app used to track calories. From the

resultant flow visualization, we noticed a large user drop-off on the data entry

UI (Figure 6.3), and that 21% (5 out of 24) of users encountered an error on

the next screen. We discovered that the error occurs when a unit (oz, cookie,

Only 24% users started by 
using the search bar. 

Figure 6.2: Although the easiest way to find the departure time of the next
train from a station is to use the search bar, only 21% percent of The
Transit App users did so initially.
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gram) is not selected on the data entry screen. We hypothesize that the unit

options are not easily recognizable as radio buttons, and positioning them to

the side of the quantity field may have exacerbated the issue since users are

accustomed to scanning forms vertically rather than horizontally [96].

By examining outliers — users who fail to complete a task after spending

considerable time on it — ZIPT makes it possible to uncover usability issues

that are not directly related to the specified task. For instance, we asked

Users forget 
to select a 
unit on this 

form 

Large user 
drop-off on 
this screen

21% of users 
encountered 

this error

Data Entry Screen Error Notification Screen

User Flow Visualization

25% of users 
encountered 

this error

User Flow Visualization

Figure 6.3: ZIPT helps designers discover usability issues in existing
Android apps. The user flow visualization shown here summarizes the
paths crowd workers took while trying to “add a cookie to their daily food
log” in MyNetDiary, a calorie counter app. Using the flow visualization,
designers were able to quickly identify a UI screen with a large user drop-off
and its associated usability issues.
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crowd workers to find a specific restaurant’s phone number on Foursquare,

a social app for discovering places. Most crowd workers easily completed

the task; however, we noticed that one user became stuck searching for the

specified restaurant in the “lists” tab. Foursquare uses scoped search, a

design pattern where search bars on different screens search over different

types of entities. On Foursquare, the “search” tab supports search over

places, while the “lists” tab supports search over user lists (Figure 6.4).

Although scoped search is a popular design pattern, when the scope is not

communicated clearly, it can lead to usability problems [12]. In this app,

even though the scope changed between tabs, the placeholder text in the

search box remained the same.

In another test, ZIPT helped uncover a usability issue on Pinterest, a

social, visual inspiration app. Pinterest recently added a visual discovery

feature that allows users to quickly search for similar images by clicking on a

white circular icon on the bottom right corner of an image (Figure 6.5) [97].

We asked crowd workers to “pin an image to a board,” and then identified

and inspected the trace of an outlier who had fixated on the visual discovery

icon, tapping it several times on different images before abandoning the task.

Commonly, an icon placed on an entity such as an image brings up a menu

for additional actions that can be performed on it, we suspect that other

users will have to “unlearn” their expected behavior on the Pinterest app.

6.4.2 Analyzing Comparative Performance

ZIPT affords designers — for the first time — the ability to perform com-

parative analysis at scale. During ideation, designers can leverage existing

implementations to understand the relative performance of different design

patterns. After implementation, ZIPT allows designers to benchmark against

competitors’ apps. We demonstrate how ZIPT’s quantitative and qualita-

tive performance data can be combined to conduct comparative performance

analyses. Moreover, researchers can inspect flow visualizations and individual

traces to better understand why these performance differences exist, uncov-

ering usability issues, user expectations, and general trends in user behavior.
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Same text in search bar 

Different search context 

Searching over listsSearching over places

Figure 6.4: The Foursquare app presents search bars with different scope
based on which tab is selected. However, the placeholder text does not
change when tabs are switched to indicate a scope change, which can
confuse users.

Finding Store Locations in Shopping Apps

Big-box retailer apps use different navigation patterns such as a hamburger

icons with flyout menus and tabbed navigation to present their main capa-

bilities (see Figure 6.6). To understand the relative performance of these

patterns, we analyzed how users perform store location searches on two pop-
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Time on Task

Number of 
Users

Figure 6.5: We discovered a potential usability issue on Pinterest by
inspecting an outlier’s trace. After spending considerable time on the task,
this user was unable to add an image to a board because the new visual
search icon (white circle) behaved in an unexpected way.

ular retail apps — Macy’s and Best Buy. Finding a specific store location is

an important feature of these apps, since it directly impacts revenue.

We used ZIPT to ask crowd workers “what is the address of the store to

closest to the 94102 zip code?” We deployed the test for both the Macy’s and

Best Buy apps and collected 31 and 35 traces, respectively. In the Macy’s

app, there is only one golden path for answering the question: through a
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Macy’s allows one way to find a store by ZIP code

Best Buy allows two ways to complete the same task

Figure 6.6: We asked crowd workers to find the address of a store location
closest to a specified zip code on the Macy’s and Best Buy apps. The
Macy’s app uses a hamburger icon with flyout menu navigation, whose
sub-menu contains the store locator. The Best Buy app uses tabbed
navigation and offers two ways to accomplish the task.

sub-menu in the flyout menu triggered by the hamburger icon (Figure 6.7).

The Best Buy app, in contrast, offers two ways to perform this task. From

the tabbed navigation, users can select the “Stores” tab and search for the

specified ZIP code. Users can also click on the “Closest Store” location

prominently displayed on the home screen and change the ZIP code to find

the same information.
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incorrect answer

Best Buy

Macy’s

The task was harder on Best 
Buy than on Macy’s

Best 
BuyMacy’s

In both apps, majority of users took a first step 
that matched that of the designer

Inspecting the cause of an incorrect answer highlighted a potential issue with the 
search functionality in the Best Buy app

Figure 6.7: On average, users reported that the store location finding task
to be more difficult to perform on the Best Buy app than on Macy’s.
Perhaps the hamburger icon is a more familiar design idiom than tabbed
navigation with scoped search.

When we examined the data collected by ZIPT, we noticed that the task

completion rate on the Macy’s app (95.7%) was significantly higher than on

Best Buy (82.5%). Moreover, on average, users reported that the task was

harder to perform on the Best Buy app than on Macy’s. By examining the

user traces where crowdworkers submitted incorrect answers to the task ques-

tion, we noticed one possible cause of confusion: users did not understand

the Best Buy search bar’s scope, which changes depending on the selected

tab. Although Best Buy does change the search bar’s placeholder text, some

users still tried searching for stores on the “Home” tab, which returned zero

results. Interestingly, 77% (24 out of 31) of Macy’s app users took the cor-

rect first step of opening the flyout menu and following the design scent to

find the store locator. Perhaps sticking to a familiar design idiom — the
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hamburger icon — is more effective than having custom navigation.

Adding Events in Calendar Apps

Creating and adding events to a calendar is one of the most common tasks

performed by users on scheduling apps. These apps generally provide action

buttons on the home screen to support this essential feature. We picked two

calendar apps — Simple Calendar and DigiCal — that offer slightly different

action buttons. To study their relative performance, we created and deployed

a ZIPT test for both apps, asking crowd workers to “add a new event to a

calendar.” We collected 24 traces for Simple Calendar, and 18 traces for

DigiCal.

Simple Calendar uses a distinct floating action button (FAB) that appears

on the bottom right of the main screen (Figure 6.8). FABs are a popu-

lar design pattern and are part of the Android material design library [98].

They are recommended for highlighting promoted actions in an app and are

frequently used to create new items (e.g., when composing a new email).

DigiCal, in contrast, uses a less distinct + icon in the top action bar. Both

apps allow users to complete the task by directly interacting with a time slot

on the calendar, which requires two interactions to reach the screen where

event details can be entered. By interacting with the action button, users

can reach this screen in one step.

In both apps, we observed that most users attempted the task by directly

manipulating the time slots on the calendar. This behavior is easy to spot in

flow visualizations (Figure 6.8). Even though the FAB is high contrast and a

popular pattern, only 17% (4 out of 24) of users interacted with it in Simple

Calendar. The differences in action buttons had little effect on behavior,

perhaps because users have a strong habit of manipulating calendar events

directly.

Creating Playlists in Music Apps

Most music service apps support the creation of playlists for curating collec-

tions of songs. We studied the relative user performance of playlist creation

flows in two popular music apps: Spotify and YouTube Music. We deployed

a task on ZIPT asking crowd workers to “add two songs to a new playlist
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Adding event with action button

Adding event by interacting with time slots

FAB

Plus 
Sign

Simple Calendar DigiCal

B

A

A

B B

A

Figure 6.8: Both Simple Calendar and DigiCal provide two ways for users
to add an event to their calendar: directly interacting with slots on the
calendar or through an action button. Although the former strategy is
slower than the latter, a larger percentage of users in both apps started the
task using direct time slot manipulation.

that you create,” and collected 41 user traces for Spotify and 31 for YouTube

Music.

We observed a higher task completion rate on Spotify than YouTube Music

(92.9% versus 81.5% with p = 0.17) (Figure 6.9). Worker feedback on the

task indicated that users were confused by being unable to create empty
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Spotify

Did you have any trouble completing 
the task? If so, briefly explain.

Yeah, I couldn’t figure out how to 
create a playlist, or add a song…

Yes, I could not find the button to
start a new playlist

Could not find create playlist

A user turned to YouTube Music’s help menu

YouTube 
Music

User feedback highlighted main 
difficulties

88.6

97.6

Task Completion Rates

Figure 6.9: Feedback from the crowd explained why the completion rate of
“adding two songs to a new playlist” was lower for YouTube Music than for
Spotify. YouTube Music did not support creation of empty playlists, a
capability expected by users.

playlists on YouTube Music. One individual trace revealed that a crowd

worker even used the help functionality to learn how to create playlists in

YouTube Music.

By inspecting the apps and the collected traces, we discovered that Spotify

allows users to add a song to a new playlist in two ways. Users can “add

to playlist” on a song and then specify that it is going to be part of a new

playlist. Alternatively, they can “create new playlist” from a screen for man-
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aging playlists, and then navigate to a song and add it. YouTube Music does

not support the creation of empty playlists, which seems to be an expected

capability.

6.5 Evaluation

We conducted user interviews to gauge the usefulness of ZIPT and to un-

derstand how the system might be integrated into the design process. We

recruited four Google employees for the study: three of them were partic-

ipants in our formative study (P3, P4, and P5), and the fourth (P6) was

another UX researcher. The interviews lasted one hour and participants

were compensated $25.

Each interview comprised a system overview (30 minutes), system walk-

through (10 minutes), and discussion (20 minutes). During the system

overview, we introduced the goals of the system and then demonstrated its

features using examples from the case studies described in the previous sec-

tions. During the system walkthrough, we let each participant use the system

to explore the data collected for the MyNetDiary calorie counter app. We

then started a discussion about how each participant might incorporate the

ZIPT system and data into their workflow.

After the interview, we sent participants a survey with 11 questions ad-

dressing the overall usefulness of the system and data presentation. The

questions elicited responses on a 7-point Likert-scale from strongly disagree

(1) to strongly agree (7). Three of the four participants completed the survey.

We summarize the questions and their responses in Table 6.1.
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Table 6.1: Participant feedback about the overall usefulness of ZIPT and its
features.

Question Avg (S.D.)
Q1 The data produced by this system would be helpful in the 

app design process.
6.0 (0.0)

Q2 This system would help me understand what works well 
for design patterns that I see in existing apps.

6.0 (1.0)

Q3 This system would help me find unexpected user 
behavior.

6.0 (1.0)

Q4 This system would help me find usability bugs. 6.3 (1.2)
Q5 The data produced by this system would help me 

communicate the merits and demerits of a design pattern. 
to my team members.

6.3 (0.6)

Q6 The metrics overview was helpful. 5.7 (1.2)
Q7 The flow visualization was helpful. 6.3 (1.2)
Q8 The user feedback was helpful. 6.0 (1.0)
Q9 The user interface was easy to use and learn. 6.0 (0.0)
Q10 I believe that the app MyNetDiary has a usability issue. 7.0 (0.0)
Q11 I would gather performance data for existing apps more 

often with this system.
6.7 (0.6)

6.5.1 Potential Uses Cases

Overall, participants reported that ZIPT would be helpful in their design

process (Q1 to Q5). From the discussions, it was clear that participants val-

ued the potential comparative use cases. P3 would use ZIPT to understand

“if reusable components in different apps share similar usability issues.” P5

was interested in using ZIPT to benchmark his own apps against competi-

tors’: “I think it fits nicely with how designers think about problems...We

think a lot about critical user journeys...This is a way for us to focus on those

journeys and benchmark them against similar apps.” He added, “If adding

a record for food takes 10 seconds on my competitor’s app, that would be

my target...If I have a set of core tasks that can be matched up with those

in other apps, then I can understand how well I am doing.”

Participants found the aggregate data views were useful (Q6 to Q8) for

both identifying user problems, and for understanding why they occur. P3

commented, “I really like that you can state your hypothesis about what

the golden paths are and then you check to see if you were correct...and

the ability to drill down into the flows where it didn’t happen and see in

the traces where the derailing was, is very powerful.” Similarly, during the
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demonstration of the feedback view, P4 remarked, “When you first showed

me the task creation interface, I was dismissive of the open text fields, but

when you are trying to come up with a theory of why things are going wrong,

just skimming those things can be very useful.”

6.5.2 Perceived Benefits

Participants reported that they would use a system like ZIPT to collect

performance data for existing apps more often (Q11). P4 commented that

“Even small improvements that reduce the cost of user research have a big

impact on people’s willingness to do research.” Participants appreciated that

ZIPT reduced the monetary and engineering cost of testing and user research.

P5 remarked that “It is way cheaper than usertesting.com.” He added, “The

benefit (compared to building prototypes) is that you don’t have to create

parts of the app that do not relate to the features that you want to test...like

creating logins and realistic content...You can save time by using existing

applications since all those things are already there.”

Participants realized that the structured data collection made the testing

platform flexible and general. P6 stated, “You could do a UI evaluation or

an interaction evaluation or a component evaluation. Each of those could

benefit from an approach like this, especially once you have all the data, you

can ask arbitrary questions of that data.” P5 viewed the ability to produce

a “flow visualization using the view hierarchy” as ZIPT’s unique advantage.

Participants also felt that the structured representation of data was complete.

While viewing an individual trace, P4 remarked, “It seems there is very little

that you lose from having an over-the-shoulder video camera.”

6.5.3 Generated Design Insights

After using ZIPT for 10 minutes to explore the user data for MyNetDiary, all

participants reported that it had at least one usability issue (Q10, µ = 7.0).

P3 and P6 noticed the same issue we identified: the visual design of the data

entry screen (Figure 6.3) did not clearly communicate that “something else

was needed” (P6).

Participants identified additional usability issues as well. P4 and P5 men-
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tioned that it was an “anti-pattern” that the error message was a global

pop-up and not attached to the offending elements. After inspecting multi-

ple traces, P3 noted, “There are a number of people here who expect that

the flow should go to the bottom right when they are done instead of the save

button in the top right.” Participants also spontaneously generated solutions

to address some of these issues, including preselecting one of the options (P6,

P3), restructuring the data entry as a two step process (P5), changing the

component used for selection (P5), and modifying the layout of the screen to

be diagonal (P3).

Participants felt comfortable generalizing from specific examples to broader

design insights. P3 explained, “I am not a trained interaction designer, but

even with the experience I have, I can look at the one problem case and I can

infer from that what the general problem is.” Similarly, when we mentioned

the case of users trying to create empty playlists in YouTube Music, P4

generalized that “People like to think of containers as things.” He named

two specific products where he had seen similar user behavior in the past and

added, “You want to be able to have an empty thing to put things in...Its

how we think of stuff. You want to support the object-first use case where

you start the collection from an object, but that’s not the first way people

think of when you ask them to create the thing.”

6.6 Discussion and Future Work

The case studies described in this chapter illustrate that ZIPT can provide

both the detailed data of usability testing and the scale of analytics-driven

and A/B testing. ZIPT allows designers to combine quantitative and quali-

tative data to identify problems, quantify their magnitude, and gain insight

into their causes. In the future, extending ZIPT to support more sophis-

ticated statistical techniques could allow designers to specify a maximum

budget and desired confidence interval for key performance indicators, in-

stead of requiring them to mandate the number of user traces to collect.

More broadly, we envision ZIPT becoming part of an integrated mobile

design exploration platform, where designers can search for examples using

tools like the flow search system from Deka et al. [13], and then invoke ZIPT

to understand their performance through a series of inexpensive, targeted
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experiments. Observing how designers use ZIPT under realistic conditions

would also help improve its task specification and data-analysis interfaces.

Although it was not designed to support this use case, ZIPT could also be

an interesting platform for evaluating one’s own apps. Initially, many app

development teams do not have the resources to conduct usability testing,

or the users to spend on A/B testing [99]. ZIPT could afford these teams

the ability to iterate on their app and get low-cost, low-overhead usability

feedback. In the words of one of our participants, “If it was just me, and it

was my startup, and this was my application, after seeing this data, I would

at least change the position of the save button and see if that makes the flow

any better. I would be quite eager to do a couple of iterations until I get

something that is as frictionless as possible.”
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CHAPTER 7

CONCLUSION

This dissertation demonstrates the possibility of mining designs for an in-

teractive domain. It focuses on mobile app designs and demonstrates the

value of being able to capture their designs at scale by developing novel

data-driven design applications to assist designers in the app design process.

In particular, it develops the following:

• Interaction mining for mobile apps: a technique to capture the multi-

ple components of an apps design including both static and dynamic

components

• ERICA and Rico: systems that implement interaction mining for An-

droid apps using a black-box approach that make it possible to mine

tens of thousands of apps

• Interaction trace: a representation of mobile app designs suitable for

supporting data-driven design applications

• The Rico dataset: a publicly released dataset of designs from over 9700

Android apps with over 1200 interaction traces

• A content-agnostic similarity heuristic for detecting mobile UIs that

represent the same design

• A deep-learning-based technique for capturing a lower dimensional rep-

resentation of UI layouts useful for example-based searching

• A pipeline for automated identification and tagging of semantic user

flows in interaction traces that allowed us to build the largest searchable

repository of app designs

• Zero-integration performance testing: an approach for testing mobile

apps that enables understanding performance characteristics of app
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design examples for the first time and provides a low-cost, low-effort

method for comparative testing at scale

7.1 Future Directions

7.1.1 Scaling Up Interaction Mining

There are benefits to be had from scaling up interaction mining beyond

what we demonstrate in this dissertation . Larger datasets in general enable

training more sophisticated models. For example, recent breakthroughs in

supervised [74, 57] as well as unsupervised learning [100, 101, 102], have come

from training on datasets with millions of examples. For applications based

on design examples (such as example search), larger design datasets could

provide a more diverse set of examples to draw from.

One potential way to scale up interaction mining would be to work with

commercial app streaming providers. Google recently launched Android app

streaming [103] as a way to let users use an app without the need to download

it on their device. Multiple startups are also exploring the potential appli-

cations of such a usage model [104, 105]. If this app usage model becomes

mainstream, a web-based approach like the one presented in this dissertation

could enable interaction mining of mobile apps at a truly massive scale.

Another approach, could be to move beyond the web-based, paid crowd-

worker approach used in this dissertation . Perhaps techniques for interaction

mining on end-user devices could be developed. This could allow researchers

to capture user behavior in context (such as when walking) and allow un-

derstanding how app usage is affected by different usage scenarios. Another

potential benefit could be that the cost of design data acquisition could be

lower than what it is for crowdsourcing. This might make it feasible to collect

design data longitudinally and create a dataset that captures design change

over time. However, for on-device mining to be adopted by a large number of

users, suitable incentives such as those offered by market research firms [87]

or consumer software companies [24] would have to be devised. Adequate

privacy preserving measures will also have to be designed.
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7.1.2 Interaction Mining in Other Interactive Domains

Interaction mining is the first technique to demonstrate the possibility of

design mining for artifacts whose designs are dynamic and change depending

on user interactions. Although this dissertation focused on using interaction

mining for mobile apps, the general approach of combining a visual and a

structural representation of states with data about user interactions and how

states change based on these interactions is applicable to other interactive

domains as well. For instance, prior work in analyzing designs on the web

have treated web pages as static artifacts [3, 83, 68]. However, the vast ma-

jority of websites today are dynamic – ranging from websites that have a few

Javascript enabled interactions to single-page web applications with highly

interactive frontends [106, 107]. Interaction mining could be implemented for

such dynamic webpages and web applications by capturing the DOM (doc-

ument object model) trees [25, 3] as a structural representation of their UIs.

It would also be interesting to see how far this approach can go in capturing

the designs of VR, AR or mixed-reality interactions that are increasing in

popularity.

7.1.3 Unified Design Exploration Platform

Another direction for our work is towards an online app exploration plat-

form that unifies design search and testing. It would allow designers to run

inexpensive, targeted tests on examples they find and make the test results

available for everyone else to search over. Test results could also be aggre-

gated to uncover design patterns that are effective across apps and help build

theories of what makes them effective. Such a platform could democratize

the design knowledge that remains embedded in individual apps today, and

make it available for everyone to learn from.

7.1.4 Testbed for Studying Factors that Affect Usability

The web-based architecture for interacting with apps presented in this dis-

sertation could be used to artificially alter the app usage experience and to

allow researchers to conduct large-scale studies on different factors that affect

usability and user performance of mobile apps. For example, the effect of
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system delays on the usability and user engagement could be studied by intro-

ducing artificial delays in streaming the app screens to the web frontend [108].

Effects of color blindness [109, 110] could be studied by dynamically chang-

ing the streamed images. The effect of fat fingers [111] or limited dexterity

could be simulated by suitably modifying the frontend web interface.

7.1.5 Additional Data-Driven Mobile App Design
Applications

Interaction mining can be used to enable data-driven design applications

beyond the ones developed in this dissertation. Below we discuss four such

applications that the current dataset can support. Table 7.1 summarizes the

different dataset components that support each application.

UI Layout Generation

Design datasets are also useful for training generative models of design. Prior

work has trained generative models for arranging design elements and defin-

ing their attributes in domains such as graphic design [112], 3D modeling [6],

and the web [6]. Generation of UI layouts, in particular, has been extensively

studied using constraint-based systems [113], model-based systems [114, 115,

116, 117, 118], energy-based models [112], human-performance models [65],

and Bayesian grammars [6].

Table 7.1: The five classes of design applications that the Rico dataset
supports, correlated with the parts of the dataset intended to support them.

UI Screenshots

View Hierarchies

User Interactions

Animations

UI Similarity Annotations

App Store Metadata

Design 
Search

Mobile  
Layout  

Generation

UI  
Code  

Generation

User  
Interaction  
Modeling

User  
Perception  
Prediction
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Researchers can use the Rico dataset to train such models of mobile UI

layouts. The Android view hierarchy contains all the elements comprising

a UI screen, their attributes (e.g., position, dimensions), and the structural

relationships between them. By combining screenshots and view hierarchies,

researchers can compute visual features such as the color contrast between

nested elements. Additionally, play store metadata can be leveraged to create

specialized training sets. For example, app ratings and download metrics

can be used as proxies for design quality, so that models can be optimized

to emulate “good” layouts. Models can also be trained to take into account

app category or UI and element semantics since layouts vary based on those

factors (Figure 7.1).

UI Code Generation

Once a mobile app is designed, implementing its interfaces and interactions in

code can be a time-consuming process. As a result, prior work has developed

methods to automatically generate code from UI designs. REMAUI (Reverse

Engineering Mobile Application User Interfaces), for instance, used computer

vision and OCR to first segment an input image and then used heuristics for

code generation [66]. pix2code used neural network-based models to directly

generate Android code from UI images [67].

Design systems can leverage the Rico dataset to reverse engineer UIs (Fig-

ure 7.2). Since the Rico dataset contains both the screenshots and the An-

droid components (in the view hierarchies) of a UI screen, it is an ideal

dataset to refine heuristics (such as those used in REMAUI) or train models

Figure 7.1: Different semantic elements are laid out differently in mobile
UIs. Here we show heatmaps of seven popular types of elements in the
ERICA dataset.
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Figure 7.2: The representations of UIs captured by interaction mining can
be used to generate Android source code that recreates the UI. We reverse
engineered a UI from the app StumbleUpon and generated the Android
source code, which is then rendered on an emulator with a different form
factor.

used for code generation (such as the ones used in pix2code).

User Interaction Modeling

A key component of a mobile app’s design is the interactivity of its various

UIs and elements [13]. Modeling how users interact with different UIs can

support better automated testing for apps as well as app optimizations that

pre-fetch data by predicting a user’s next action.

Rico captures user interaction data while an app is being. Each user trace

for an app contains every user interaction event annotated with its type

(such as “tap” or “scroll”) and the UI element that reported it. By finding

the same UI element in the corresponding view hierarchy, models can learn

from a richer set of features based on the element’s properties and metadata.

Instead of predicting that a user will click on an element in the top-right

corner of the screen, models can predict that a user will “check out”.

User Perception Prediction

Models of user perception help designers get early feedback on their designs.

Prior work has explored models for predicting users’ first impressions of web

pages [68, 119], mobile app screens [70, 120], and mobile app icons [121].
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Other research has focused on predicting longer-term perception based on

animations [26], menus [27], and visual diversity and consistency between

different screens [28, 29].

To build perceptual models of mobile design using the Rico dataset, sys-

tems can compute features over UI screenshots and animations, and correlate

them with play store metrics. For example, researchers could examine corre-

lations between an app’s color palette and its average rating. In the future,

researchers could use these screenshots and animations to crowdsource addi-

tional perceptual annotations.

7.1.6 Assessing Data-Driven Design Tools

Although design mining has enabled the creation of data-driven design tools

that have the potential to assist design professionals in their work, their

actual usage has not been studied. Longitudinal studies with design prac-

titioners could help understand the impact such tools have on the creative

process. Such research could study how effective these tools are in prac-

tice, how designers modify their practices to use such tools, adverse impacts

such tools could have (such as lowering diversity of generated designs), and

identify directions future tools should pursue.

7.1.7 Non-Professional Use Cases

The tools developed in this dissertation could also be useful outside of tradi-

tional app design teams that they were built to support. For instance, many

apps are released by lone developers with no design experience and a limited

budget. A system like ZIPT could help such developers (or novice designers)

learn the essentials of design most useful for the app they are working on.

Such learning benefits could also extend to instructional settings. Instructors

of visual and interaction design classes can use search systems to find rele-

vant examples to illustrate concepts they are teaching. In addition, they can

illustrate with data which patterns work and under what conditions. Future

work could study these use cases that were not explored in this dissertation.

83



REFERENCES

[1] M. Gualtieri, “Best Practices In User Experience (UX) Design,”
2009. [Online]. Available: https://www.forrester.com/report/Best+
Practices+In+User+Experience+UX+Design/-/E-RES54101

[2] “UI, UX: Who Does What? A Designer’s Guide to the Tech Industry,”
2014, http://www.fastcodesign.com/3032719/ui-ux-who-does-what-a-
designers-guide-to-the-tech-industry.

[3] R. Kumar, A. Satyanarayan, C. Torres, M. Lim, S. Ahmad,
S. R. Klemmer, and J. O. Talton, “Webzeitgeist: Design
mining the web,” in Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, 2013. [Online]. Available:
http://doi.acm.org/10.1145/2470654.2466420 pp. 3083–3092.

[4] C. Eckert and M. Stacey, “Sources of inspiration: A language of de-
sign,” Design Studies, vol. 21, no. 5, pp. 523–538, 2000.

[5] R. He and J. McAuley, “Ups and downs: Modeling the visual evolution
of fashion trends with one-class collaborative filtering,” in Proceedings
of the 25th International Conference on World Wide Web, 2016, pp.
507–517.

[6] J. Talton, L. Yang, R. Kumar, M. Lim, N. Goodman, and R. Měch,
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