
© 2017 Seyed Mohammadhossein Tabatabaei Yazdi



DNA–BASED DATA STORAGE SYSTEM

BY

SEYED MOHAMMADHOSSEIN TABATABAEI YAZDI

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2017

Urbana, Illinois

Doctoral Committee:

Professor Olgica Milenkovic, Chair
Professor Iwan Duursma
Professor Andrew Singer
Professor Venugopal V. Veeravalli
Associate Professor Jian Ma, Carnegie Mellon University



ABSTRACT

Despite the many advances in traditional data recording techniques, the
surge of Big Data platforms and energy conservation issues has imposed new
challenges to the storage community in terms of identifying extremely high
volume, non-volatile and durable recording media. The potential for using
macromolecules for ultra-dense storage was recognized as early as 1959 when
Richard Feynman outlined his vision for nanotechnology in a lecture, “There
is plenty of room at the bottom”. Among known macromolecules, DNA is
unique insofar as it lends itself to implementations of non-volatile recording
media of outstanding integrity and extremely high storage capacity.

The basic system implementation steps for DNA-based data storage sys-
tems include synthesizing DNA strings that contain user information and sub-
sequently retrieving them via high-throughput sequencing technologies. Ex-
isting architectures enable reading and writing but do not offer random-access
and error-free data recovery from low-cost, portable devices, which is crucial
for making the storage technology competitive with classical recorders.

In this work we advance the field of macromolecular data storage in three
directions. First, we introduce the notion of weakly mutually uncorrelated
(WMU) sequences. WMU sequences are characterized by the property that
no sufficiently long suffix of one sequence is the prefix of the same or another
sequence. For this purpose, WMU sequences used for primer design in DNA-
based data storage systems are also required to be at large mutual Hamming
distance from each other, have balanced compositions of symbols, and avoid
primer-dimer byproducts. We derive bounds on the size of WMU and various
constrained WMU codes and present a number of constructions for balanced,
error-correcting, primer-dimer free WMU codes using Dyck paths, prefix-
synchronized and cyclic codes.

Second, we describe the first DNA-based storage architecture that enables
random access to data blocks and rewriting of information stored at arbitrary
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locations within the blocks. The newly developed architecture overcomes
drawbacks of existing read-only methods that require decoding the whole file
in order to read one data fragment. Our system is based on the newly devel-
oped WMU coding techniques and accompanying DNA editing methods that
ensure data reliability, specificity and sensitivity of access, and at the same
time provide exceptionally high data storage capacity. As a proof of concept,
we encoded parts of the Wikipedia pages of six universities in the USA, and
selected and edited parts of the text written in DNA corresponding to three
of these schools. The results suggest that DNA is a versatile media suitable
for both ultrahigh density archival and rewritable storage applications.

Third, we demonstrate for the first time that a portable, random-access
platform may be implemented in practice using nanopore sequencers. Every
solution for DNA-based data storage systems so far has exclusively focused
on Illumina sequencing devices, but such sequencers are expensive and de-
signed for laboratory use only. Instead, we propose using a new technology,
MinION–Oxford Nanopore’s handheld sequencer. Nanopore sequencing is
fast and cheap, but it results in reads with high error rates. To deal with
this issue, we designed an integrated processing pipeline that encodes data to
avoid costly synthesis and sequencing errors, enables random access through
addressing, and leverages efficient portable sequencing via new iterative align-
ment and deletion error-correcting codes. As a proof of concept, we stored
and sequenced around 3.6 kB of binary data that includes two compressed
images (a Citizen Kane poster and a smiley face emoji), using a portable
data storage system, and obtained error-free read-outs.
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Chapter 1

INTRODUCTION

1.1 Motivation

DNA digital data storage refers to any scheme to store digital data in the
base sequence of DNA.

Among the macromolecules that may potentially be used as a storage me-
dia, DNA molecules, which may be abstracted as strings over the four symbol
alphabet {A, T,G,C}, stand out due to a number of unique properties:

• DNA has been successfully used as a building block of a number of
small scale self-assembly based computers [1].

• DNA lends itself to implementations of non-volatile recoding media of
outstanding integrity, as one can still recover the DNA of 30,000 year
old Neanderthal and 700,000 year old horse bones [2].

• DNA allows for extremely high storage capacities – a single human cell,
with a mass of roughly 3 picograms, hosts DNA strands encoding 6.4

GBs of information.

• The technologies for synthesizing (writing) artificial DNA and for mas-
sive sequencing (reading) have reached unprecedented levels of effi-
ciency and accuracy [3].

As a result, DNA-based storage systems may be the most plausible storage
platform to materialize in the near future.

Building upon the rapid growth of DNA synthesis and sequencing technolo-
gies, two laboratories recently outlined architectures for archival DNA-based
storage in [4, 5]. The first architecture achieved a density of 700 TB/gram,
while the second approach raised the density to 2 PB/gram. The increase in
density achieved by the second method was largely attributed to the use of
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four elementary coding schemes: Huffman coding, differential coding, single
parity-check coding, and repetition coding. Nevertheless, data fidelity levels
required by modern storage systems were not met, nor did the two architec-
tures enable accurate random access and portable system architecture.

1.2 Contributions of This Dissertation

The coding techniques used in the two aforementioned architectures [4, 5]
are off-the-shelf solutions that do not take into account the special nature of
synthesis and sequencing errors. For example, in [5], Huffman coding may
lead to catastrophic error propagation in the presence of storage system er-
rors. Furthermore, given the ultrahigh storage density achievable by DNA
storage systems, compression may not be needed and it also may prevent
efficient information access and rewriting. Differential encoding is only used
to avoid errors which arise when encountering long runs of the same DNA
symbol, termed homopolymers ; but such errors are confined to older sequenc-
ing technologies (such as Roche454) which are no longer in widespread use,
or to nanopore sequencers, in which case they are coupled with many other
types of indel and substitution errors. Finally, single parity-check coding
only allows for rudimentary error-detection and cannot actually be used to
correct errors; repetition coding is achieved by synthesizing multiple copies of
the same subsequences shifted by a fixed number of positions. This shifting
ensures what is known in the biology literature as “high sequence coverage,”
but high coverage is very costly. To overcome the last issue, the more recent
work [6] extended the coding approach of [5] by replacing single parity-check
codes with Reed-Solomon codes [7].

Another important issue regarding DNA storage systems is the need to
enable random access to data. The three architectures which confirmed the
plausibility of DNA-based storage did not account for precise random access,
which renders them impractical, as the whole DNA content has to be read at
once and assembled in order to retrieve the desired DNA blocks. The obvi-
ous solution to this problem is to equip DNA blocks with addresses that may
aid in accurate access and amplification of desired DNA strings without per-
turbing other blocks in the DNA pool. Unlike in classical storage systems,
addresses are “recognized” through Watson-Crick complementary bonding
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between DNA strings in a process that is known as DNA hybridization. As
an illustrative example, in order to select a block addressed by AAAGCCT ,
one would use a primer AGGCTTT (the reverse complement of the ad-
dress) to amplify the strand that contains the address AAAGCCT . In other
words, selection reduces to exponential amplification of the desired string.
Clearly, this approach may fail if other addresses are “hybridization similar”
to AAAGCCT - a simple example being the string TGGCTTA which only
differs from the true selection primer AGGCTTT in the first and last posi-
tion. The problem is further aggravated by the fact that undesired selection
and amplification may occur between address primers and substrings in the
information blocks themselves.
To mitigate these problems, in Chapter 2 we design addresses that satisfy a

number of constraints and encode information in a manner that prevents un-
desired selection. To accomplish this task, novel coding solutions are needed,
including generalizations of prefix-synchronized coding [8–10], running digital
sum coding [11, 12], and autocorrelation analysis [13]. We hence study the
problem of Enumerating and constructing addresses that satisfy constant GC
content, Hamming distance and mutual uncorrelatedness constraints.
In molecular biology and genetics, GC-content is the percentage of bases

on a DNA string that are either G or C. Here, the constant GC content is
imposed on sufficiently long prefixes of the addresses, for reasons that will be
discuss in Chapter 2 and Chapter 3. Constant composition codes under the
Hamming metric have been studied in depth in the literature, but the novelty
of the problem comes from requiring the words to be mutually uncorrelated.
A set of addresses A = {a1, . . . , aM}, each of length n, is termed to be mutu-
ally uncorrelated if for any two, not necessarily distinct, addresses ai, aj ∈ A,
no prefix of ai of length ≤ n−1 appears as a suffix of aj. Note that long unde-
sired prefix-suffix matches may lead to assembly errors in blocks during joint
sequencing and more importantly, uncorrelated sequences may be avoided
jointly in the information parts of the blocks via simple coding methods we
termed address coding. Hence, as part of our thesis research, we found bounds
on the size of addresses satisfying the aforementioned constraints and combi-
natorial construction methods that approach these bounds. We also studied
a relaxation of the address coding problem in which the prefix-suffix con-
straints are only imposed on substrings of sufficient length. We term such
sequences weakly mutually uncorrelated. In addition, we coupled the above

3



constraints with secondary structure constraints [14]. The term secondary
structure is used to describe a folded formation that results from hybridiza-
tion of Watson-Crick complementary substrings on the same single-stranded
DNA sequence. Secondary structures in primers are known to inhibit their
function or cause errors in the process of PCR amplification and fragment
rewriting [15].

To overcome random access and rewriting issues, in Chapter 3 we propose
a (hybrid) DNA rewritable storage architecture with random access capabil-
ities. The new DNA-based storage scheme encompasses a number of coding
features, including constrained coding, ensuring that DNA patterns prone
to sequencing errors are avoided; prefix synchronized coding ensures that
blocks of DNA may be accurately accessed without perturbing other blocks
in the DNA pool. We use the result from Chapter 2 to design WMU address
sequences, and once they are constructed, to encode user information into
codewords that avoid any of the addresses, sufficiently long substrings of the
addresses, or substrings “similar” to the addresses.

In the past few years, there has been a rapid growth of new generation of
portable sequencing devices using nanopore technology. In Chapter 4 we in-
troduce and design the first DNA storage platform that offers error-free and
random-access readouts from a portable device. We show through experi-
mental and theoretical verification that such a platform may be easily imple-
mented in practice. The gist of the approach is an integrated bioinformatics
and coding–theoretics pipeline that includes new anchored iterative align-
ment techniques and insertion/deletion error-correcting codes. Our work
represents the only known random access DNA-based data storage system
that uses error-prone MinION sequencers and produces error-free readouts.

Parts of the dissertation results were published in [16–18].
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Chapter 2

MUTUALLY UNCORRELATED PRIMERS
FOR DNA-BASED DATA STORAGE

2.1 Introduction

Mutually uncorrelated (MU) codes are a class of fixed length block codes in
which no proper prefix of one codesequence is a suffix of the same or an-
other codesequence. MU codes have been extensively studied in the coding
theory and combinatorics literature under a variety of names. Levenshtein
introduced the codes in 1964 under the name ‘strongly regular codes’ [19],
and suggested that the codes be used for synchronization. For frame syn-
chronization applications described by van Wijngaarden and Willink in [20],
Bajić and Stojanović [21] rediscovered MU codes, and studied them under
the name of ‘cross-bifix-free’ codes. Constructions and bounds on the size of
MU codes were also reported in a number of recent contributions [22,23]. In
particular, Blackburn [23] analyzed these sequences under the name of ‘non-
overlapping codes’, and provided a simple construction for a class of codes
with optimal cardinality.

MU codes have recently found new applications in DNA-based data stor-
age [4,5]: In this setting, Yazdi et al. [17,18] developed a new, random-access
and rewritable DNA-based data storage architecture that uses MU address
sequences that allow selective access to encoded DNA blocks via Polymerase
Chain Reaction (PCR) amplification with primers complementary to the
address sequences. In a nutshell, DNA information-bearing sequences are
prepended with address sequences used to access strings of interest via PCR
amplification. To jump start the amplification process, one needs to ‘inject’
complements of the sequences into the storage system, and those complemen-
tary sequences are referred to as DNA primers. Primers attach themselves
to the user-selected address strings and initiate the amplification reaction.
In order to ensure accurate selection and avoid expensive postprocessing, the
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information sequences following the address are required to avoid sequences
that resemble the addresses, thereby imposing a special coding constraint
that may be met through the use of MU addresses. In addition, the ad-
dressing scheme based on MU codes may be used in conjunction with other
specialized DNA-based data storage codes like the ones outlined in [24–26].
Detailed descriptions of implementations of DNA-based data storage systems
and their underlying synthetic biology principles are mentioned in Chapter 3;
the interested reader is referred to [27] for a discussion of system components
and constraints.

The goal of this work is to generalize the family of MU codes by intro-
ducing weakly mutually uncorrelated (WMU) codes. WMU codes are block
codes in which no sufficiently long prefix of one codesequence is a suffix of
the same or another codesequence. In contrast, MU codes prohibit suffix-
prefix matches of any length. This relaxation of prefix-suffix constraints was
motivated in [17], with the purpose of improving code rates and allowing
for increased precision DNA fragment assembly and selective addressing. A
discussion of the utility of WMU codes in DNA-based data storage may be
found in the overview paper [18,27] and the paper describing recent practical
implementations of portable DNA-based data storage systems which make
use of WMU codes [18].

Here, we are concerned with determining bounds on the size of specialized
WMU codes and efficient WMU code constructions. Of interest are both bi-
nary and quaternary WMU codes, as the former may be used to construct the
latter, while the latter class may be adapted for encoding over the four letter
DNA alphabet {A, T, C, G}. Our contributions include bounds on the largest
size of unconstrained and constrained WMU codes, constructions of WMU
codes that meet the derived upper bounds as well as results on several im-
portant constrained versions of WMU codes: Error-correcting WMU codes,
balanced WMU codes, balanced error-correcting WMU codes, and WMU
codes that avoid primer-dimer byproducts. The aforementioned constraints
arise due to the following practical considerations.

A binary sequence is called balanced if half of its symbols are zero. On
the other hand, a DNA sequence is termed balanced if it has a 50% GC
content (i.e., if 50% of the symbols in the sequence are either G or C). Bal-
anced DNA sequences are more stable than DNA sequences with lower or
higher GC content and they have lower sequencing error-rates. Balanced
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DNA sequences are also easier to synthesize than unbalanced sequences [28].
In addition, WMU codes at large Hamming distance limit the probability
of erroneous codesequence selection dues to address errors. When referring
to primer dimer (PD) issues [29], we consider potential problems that may
arise during random access when two primers used for selection bond to each
other, thereby prohibiting amplification of either of the two corresponding
information-bearing sequences. PD byproducts can be eliminated by restrict-
ing the WMU codes to avoid simultaneous presence of long substrings and
their complements in the codesequences.

This chapter is organized as follows. Section 2.2 contains an overview of
the topics and results discussed in the chapter and some formal definitions
needed to follow the material in subsequent sections. In Section 2.3 we review
MU and introduce WMU codes, and derive bounds on the maximum size of
the latter family of combinatorial objects. In addition, we outline a construc-
tion of WMU codes that meets the derived upper bound. We also describe
a construction that uses binary MU component codes and other constrained
codes in order to obtain families of WMU codes that obey different combi-
nations of primer constraints. In Section 2.4 we describe constructions for
error-correcting WMU codes, while in Section 2.5 we discuss balanced WMU
codes. Primer-dimer constraints are discussed in Section 2.6. Our main re-
sults are presented in Section 2.7, where we first propose to use cyclic codes
to devise WMU codes that are both balanced and have error correcting ca-
pabilities. We then proceed to improve the cyclic code construction in terms
of coding rate through decoupled constrained and error-correcting coding for
binary strings. In this setting, we use DC-balanced codes [30]. Encoding of
information with WMU address codes is described in Section 2.8.

2.2 Roadmap of Approaches and Results

Throughout the chapter we use the following notation: Fq stands for a finite
field of order q ≥ 2. Two cases of special interest are q = 2 and q = 4. In
the latter case, we tacitly identify the elements of F4 with the four letters of
the DNA code alphabet, {A, T, C, G}. We let a = (a1, . . . , an) ∈ Fnq stand for
a sequence of length n over Fq, and let aji , 1 ≤ i, j ≤ n, stand for a substring
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of a starting at position i and ending at position j, i.e.,

aji =

(ai, . . . , aj) i ≤ j

(ai, ai−1, . . . , aj) i > j.

Moreover, for two arbitrary sequences a ∈ Fnq ,b ∈ Fmq , we use
ab = (a1, . . . , an, b1, . . . , bm) to denote a sequence of length n+m generated
by appending b to the right of a. Thus, al stands for a sequence of length
ln comprising l consecutive copies of the sequence a.
We say that a sequence ā = (ā1, . . . , ān) ∈ Fnq represents the complement

of sequence a ∈ Fnq if:

• For q = 2, and 1 ≤ i ≤ n,

āi =

1 if ai = 0,

0 if ai = 1;
(2.1)

• For q = 4, and 1 ≤ i ≤ n,

āi =



T if ai = A,

A if ai = T,

G if ai = C,

C if ai = G.

(2.2)

The notion of complement used for F4 is often referred to as the Watson-Crick
(W-C) complement.
In this work, we define an (address) code C of length n as a collection of

sequences from Fnq , for q ∈ {2, 4}, satisfying a set of specific combinatorial
constraints described below.
The goal is to describe new constructions for address sequences used for

DNA-based data storage. Address sequences should enable reliable access to
desired information content. This is accomplished by making the addresses as
distinguishable from each other as possible via a simple minimum Hamming
distance constraint; recall that the Hamming distance dH between any two
sequences of length n, a = (a1, . . . , an) and b = (b1, . . . , bn), over some finite
alphabet A equals

dH(a,b) =
n∑
i=1

1(ai 6= bi),
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where 1(·) stands for the indicator function. One may also use the Leven-
shtein distance instead, as discussed in the context of MU codes in [31].

Access to desired sequences is accomplished by exponentially amplifying
them within the pool of all sequences via addition of primer sequences corre-
sponding to the W-C complement of their addresses. As primers have to be
synthesized, they need to satisfy constraints that enable simplified synthesis,
such as having a balanced GC-content, formally defined for a sequence a over
Fn4 as

∑n
i=1 1(ai ∈ {G, C}) = n

2
. This constraint directly translates to a bal-

ancing property for the address sequences. Furthermore, as one may require
simultaneous amplification of multiple sequences, multiple primers need to
be added in which case it is undesirable for different pairs of primers to bond
to each other via W-C complementarity. The PD byproducts of this binding
may be significantly reduced if one imposes an additional PD constraint on
the primers, and hence on the address sequences, as defined below.

Definition 1. A set of sequences C ⊆ Fnq , for q ∈ {2, 4}, is said to avoid
primer dimer (APD) byproducts of effective length f if substrings of se-
quences in C with length ≥ f cannot hybridize with each other in the forward
or the reverse direction. More precisely, we say that C is an f -APD code if for
any two sequences a,b ∈ C, not necessarily distinct, and 1 ≤ i, j ≤ n+1−f,
we have āf+i−1i 6= bf+j−1j ,bjf+j−1. We refer to the sequence bjf+j−1 as the
reverse of the sequence bf+j−1j .

For practical reasons, we only focus on the parameter regime f = Θ (n), as
only sufficiently long complementary sequences may bond with each other.
Furthermore, we defer the study of the related problem of secondary structure
formation [14,32] to future work.
In certain DNA-based data storage systems, one may be interested in re-

stricting the address sequences by imposing only one or two of the above
constraints. For example, if the addresses are relatively short (≤ 10), one
may dispose of the requirement to make the sequences balanced, as short se-
quences are significantly easier to synthesize than longer ones. If one allows
for postprocessing of the readouts, then the Hamming distance constraint
may be relaxed or completely removed. It is for this reason that we also
consider a more general class of code constructions that accommodate only
a subset of the three previously described constraints.
By far the most important constraint imposed on the address sequences
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is that they enable a simple construction of information-bearing sequences
(assumed to be of length N >> n) that do not contain any of the address
sequences of length n as substrings. It is in this context of forbidden sub-
string coding that MU codes were introduced in [8,13]. WMU codes may be
used in the same setting, but they are less restrictive than MU codes, and
therefore allow for larger codebooks. This is why our main results pertain
to constructions of WMU codes with various subsets of primer constraints,
and we formally define and discuss these codes in the next section. For some
related questions pertaining to MU codes, the interested reader is referred
to [31].

2.3 MU and WMU Codes: Definitions, Bounds and
Constructions

For simplicity of notation, we adopt the following naming convention for
codes: If a code C ⊆ Fnq has properties Property1,Property2, . . . ,Propertys,
then we say that C is a Property1_Property2_ . . . , Propertys_q_n code,
and use the previous designation in the subscript.

2.3.1 Mutually Uncorrelated Codes

We say that a sequence a = (a1, . . . , an) ∈ Fnq is self-uncorrelated if no
proper prefix of a matches its suffix, i.e., if (a1, . . . , ai) 6= (an−i+1, . . . , an),
for all 1 ≤ i < n. This definition may be extended to a set of sequences
as follows: Two not necessarily distinct sequences a,b ∈ Fnq are said to be
mutually uncorrelated if no proper prefix of a appears as a suffix of b and
vice versa. We say that C ⊆ Fnq is a mutually uncorrelated (MU) code if any
two not necessarily distinct codesequences in C are mutually uncorrelated.
The maximum cardinality of MU codes was determined up to a constant

factor by Blackburn [23, Theorem 8]. For completeness, we state the modified
version of this result for alphabet size q ∈ {2, 4} below:

Theorem 1. Let AMU_q_n denote the maximum size of a MU_q_n code, with
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n ≥ 2 and q ∈ {2, 4}. Then

cq
qn

n
≤ AMU_q_n ≤

qn

2n
,

where cq = (q−1)2(2q−1)
4q4

, which for q = 2 and q = 4 equal c2 = 0.04688 and
c4 = 0.06152, respectively.

We also briefly outline two known constructions of MU codes, along with a
new and simple construction for error-correcting MU codes that will be used
in our subsequent derivations.

Bilotta et al. [22] described an elegant construction for MU codes based on
well-known combinatorial objects termed Dyck sequences. A Dyck sequence
of length n is a binary sequence composed of n

2
zeros and n

2
ones such that

no prefix of the sequence has more zeros than ones. By definition, a Dyck
sequence is balanced and it necessarily starts with a one and ends with a
zero. The number of Dyck word of length n is the n

2
-th Catalan number,

equal to 2
n+2

(
n
n
2

)
.

Construction 1. (BAL_MU_2_n Codes) Consider a set D of Dyck sequences
of length n− 2 and define the following set of sequences of length n:

C = {1a0 : a ∈ D}.

It is straightforward to show that C is balanced and MU code. Size of C is
also equal to n−2

2
-th Catalan number, or |C| = 1

2(n−1)

(
n
n
2

)
.

An important observation is that MU codes constructed using Dyck se-
quences are inherently balanced, as they contain n

2
ones and n

2
zeros. The

balancing property also carries over to all prefixes of certain subsets of Dyke
sequences. To see this, recall that a Dyck sequence has height at most D if
for any prefix of the sequence, the difference between the number of ones and
the number of zeros is at most D. Hence, the disbalance of any prefix of a
Dyck sequence of height D is at most D. Let Dyck(n,D) denote the number
of Dyck sequences of length 2n and height at most D. For fixed values of D,
de Bruijn et al. [33] proved that

Dyck(n,D) ∼ 4n

D + 1
tan2

(
π

D + 1

)
cos2n

(
π

D + 1

)
. (2.3)
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Here, f(n) ∼ g(n) is used to denote the following asymptotic relation
limm→∞ f(n)/g(n) = 1.

Bilotta’s construction also produces nearly prefix-balanced MU codes, pro-
vided that one restricts his/her attention to subsets of sequences with small
disbalance D; equation 2.3 establishes the existence of large subsets of Dyck
sequences with small disbalance. By mapping 0 and 1 to {A, T} and {C, G},
respectively, one may enforce a similar GC balancing constraint on DNA MU
codes.
The next construction of MU codes was proposed by Levenshtein [19] and

Gilbert [8].

Construction 2. (MU_q_n Codes) Let n ≥ 2 and 1 ≤ ` ≤ n − 1, be two
integers and let C ⊆ Fnq be the set of all sequences a = (a1, . . . , an) such that

• The sequence a starts with ` consecutive zeros, i.e., a`1 = 0`.

• It holds that a`+1, an 6= 0.

• The subsequence an−1`+2 does not contain ` consecutive zeros as a subse-
quence.

Then, C is an MU code. Blackburn [23, Lemma 3] showed that when
` =

⌈
logq 2n

⌉
and n ≥ 2` + 2 the above construction is optimal. His proof

relies on the observation that the number of strings an−1`+2 that do not contain
` consecutive zeros as a subsequence exceeds (q−1)2(2q−1)

4nq4
qn, thereby establish-

ing the lower bound of Theorem 1. The aforementioned result is a simple
consequence of the following lemma.

Lemma 1. The number of q-ary sequences of length n that avoid t specified
sequences in Fnsq as substrings is greater than qn(1− nt

qns
).

Proof. The result obviously holds for n ≤ ns. If n ≥ ns, then the number
of bad strings, i.e., q-ary strings of length n that contain at least one of the
specified t strings as a substring, is bounded from above by:

#bad strings ≤ (n− ns + 1)tqn−ns

≤ ntqn−ns .

Hence, the number of good sequences, i.e., the number of q-ary sequences of
length n that avoid t specified strings in Fnsq as substrings, is bounded from
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below by

#good strings ≥ qn −#bad strings

≥ qn(1− nt

qns
).

It is straightforward to modify Construction 2 so as to incorporate error-
correcting redundancy. Our constructive approach to this problem is outlined
in what follows.

Construction 3. (Error− Correcting_MU_2_n Codes) Fix two positive
integers t and ` and consider a binary (nH , s, d) code CH of length nH =

t(` − 1), dimension s, and Hamming distance d. For each codesequence
b ∈ CH , we map b to a sequence of length n = (t+ 1)`+ 1 given by

a(b) = 0`1b`−11 1b
2(`−1)
` 1 · · ·bt(`−1)(t−1)(`−1)+11.

Let Cparse , {a(b) : b ∈ CH}.

It is easy to verify that |Cparse| = |CH |, and that the code Cparse has the same
minimum Hamming distance as CH , i.e., d(Cparse) = d(CH). As nH = t(`−1),
we also have Cparse ⊆ {0, 1}n, where n = (t+1)`+1. In addition, the parsing
code Cparse is an MU code, since it satisfies all the constraints required by
Construction 2. To determine the largest asymptotic size of a parsing code,
we recall the Gilbert-Varshamov bound.

Theorem 2. (Asymptotic Gilbert-Varshamov bound [34, 35]) For any two
positive integers n and d ≤ n

2
, there exists a block code C ⊆ {0, 1}n of

minimum Hamming distance d with normalized rate

R(C) ≥ 1− h
(
d

n

)
− o(1),

where h(·) is the binary entropy function, i.e., h(x) = x log2
1
x
+(1−x) log2

1
1−x ,

for 0 ≤ x ≤ 1.

Recall that the parameters s (dimension) and d (minimum Hamming dis-
tance) of the codes CH and Cparse are identical. Their lengths, nH and n,
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respectively, equal nH = t (`− 1) and n = (t+ 1) ` + 1, where t, ` are pos-
itive integers. We next aim to optimize the parameters of the parsing code
for fixed s and fixed n, which amounts to maximizing d. Since d is equal to
the corresponding minimum distance of the code CH , and both codes have
the same dimension s, in order to maximize d we maximize nH under the
constraint that n is fixed. More precisely, we optimize the choice of `, t and
then use the resulting parameters in the Gilbert-Varshamov lower bound.

To maximize nH = t (`− 1) given n = (t+ 1) `+ 1 and t, ` ≥ 1, we write

nH = n− (`+ t+ 1) ≤ n− 2
√
`(t+ 1) = n− 2

√
n− 1.

Here, the inequality follows from the arithmetic and geometric mean inequal-
ity, i.e., `+t+1

2
≥
√
` (t+ 1). On the other hand, it is easy to verify that this

upper bound is achieved by setting ` =
√
n− 1 and t =

√
n− 1− 1. Hence,

the maximum value of nH is n∗H = n− 2
√
n− 1.

By using a code CH with parameters [n∗H , s, d] as specified by the GV
bound, where d ≤ n∗H

2
and s = n∗H (1 − h( d

n∗H
) − o(1)), we obtain an error-

correcting MU code Cparse with parameters [n∗H+2
√
n∗H + 2

√
n∗H − 1− 1, n∗H (1−

h( d
n∗H

)− o(1)), d].

2.3.2 Weakly Mutually Uncorrelated Codes: Definitions,
Bounds and Constructions

The notion of mutual uncorrelatedness may be relaxed by requiring that
only sufficiently long prefixes of one sequence do not match sufficiently long
suffixes of the same or another sequence. A formal definition of this property
is given next.

Definition 2. Let C ⊆ Fnq and 1 ≤ κ < n. We say that C is a κ-weakly
mutually uncorrelated (κ-WMU) code if no proper prefix of length l, for all
l ≥ κ, of a codesequence in C appears as a suffix of another codesequence,
including itself.

Our first result pertains to the size of the largest WMU code.

Theorem 3. Let Aκ−WMU_q_n denote the maximum size of a κ-WMU code
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over Fnq , for 1 ≤ κ < n and q ∈ {2, 4}. Then,

cq
qn

n− κ+ 1
≤ Aκ−WMU_q_n ≤

qn

n− κ+ 1
,

where the constant cq is as described in Theorem 1.

Proof. To prove the upper bound, we use an approach first suggested by
Blackburn in [23, Theorem 1], for the purpose of analyzing MU codes. As-
sume that C ⊆ Fnq is a κ-WMU code. Let L = (n+ 1) (n− κ+ 1) − 1, and
consider the set X of pairs (a, i) , where i ∈ {1, . . . , L}, and where a ∈ FLq
is such that the (possibly cyclically wrapped) substrings of a of length n

starting at position i belongs to C. Note that our choice of the parameter L
is governed by the overlap length κ.
Clearly, |X| = L |C| qL−n, since there are L different possibilities for the

index i, |C| possibilities for the string starting at position i of a, and qL−n

choices for the remaining L − n ≥ 0 symbols in a. Moreover, if (a, i) ∈ X,
then (a, j) /∈ X for j ∈ {i± 1, . . . , i± n− κ}mod L due to the weak mutual
uncorrelatedness property. Hence, for a fixed string a ∈ FLq , there are at most⌊

L
n−κ+1

⌋
different pairs (a, i1) , . . . ,

(
a, ib L

n−κ+1c
)
∈ X. This implies that

|X| ≤
⌊

L

n− κ+ 1

⌋
qL.

Combining the two derived constraints on the size of X, we obtain

|X| = L |C| qL−n ≤
⌊

L

n− κ+ 1

⌋
qL.

Therefore, |C| ≤ qn

n−κ+1
.

To prove the lower bound, we describe a simple WMU code construction,
outlined in Construction 4.

Construction 4. (κ− WMU_q_n Codes) Let κ, n be two integers such that
1 ≤ κ ≤ n. A κ-WMU code C ∈ Fnq may be constructed using a simple
concatenation of the form C = {ab | a ∈ C1,b ∈ C2}, where C1 ⊆ Fn−κ+1

q is
an MU code, and C2 ⊆ Fκ−1q is unconstrained.

It is easy to verify that C is an κ-WMU code with |C1| |C2| codesequences.
Let C2 = Fκ−1q and let C1 ⊆ Fn−κ+1

q be the largest MU code of sizeAMU_q_n−κ+1.
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Then, |C| = qκ−1AMU_q_n−κ+1. The claimed lower bound now follows from
the lower bound of Theorem 1, establishing that |C| ≥ cq

qn

n−κ+1
.

As described in the Introduction, κ-WMU codes used in DNA-based stor-
age applications are required to satisfy a number of additional combinatorial
constraints in order to be used as blocks addresses. These include the error-
correcting, balancing and primer dimer constraints. Balancing and error-
correcting properties of codesequences have been studied in great depth, but
not in conjunction with MU or WMU codes. The primer dimer constraint
has not been previously considered in the literature.

In what follows, we show that all the above constraints can be imposed
on κ-WMU codes via a simple decoupled binary code construction. To this
end, let us introduce a mapping Ψ as follows. For any two binary sequences
a = (a1, . . . , an) ,b = (b1, . . . , bn) ∈ {0, 1}n, Ψ (a,b) : {0, 1}n × {0, 1}n →
{A, T, C, G}n is an encoding function that maps the pair a,b to a DNA string
c = (c1, . . . , cn) ∈ {A, T, C, G}n, according to the following rule:

for 1 ≤ i ≤ n, ci =



A if (ai, bi) = (0, 0)

T if (ai, bi) = (0, 1)

C if (ai, bi) = (1, 0)

G if (ai, bi) = (1, 1) .

(2.4)

Clearly, Ψ is a bijection and Ψ(a,b)Ψ(c,d) = Ψ(ac,bd). The next lemma
lists a number of useful properties of Ψ.

Lemma 2. Suppose that C1, C2 ⊆ {0, 1}n are two binary block codes of
length n. Encode pairs of codesequences (a,b) ∈ C1 × C2 into a code C =

{Ψ (a,b) | a ∈ C1,b ∈ C2}. Then:

(i) If C1 is balanced, then C is balanced.

(ii) If either C1 or C2 are κ-WMU codes, then C is also an κ-WMU code.

(iii) If d1 and d2 are the minimum Hamming distances of C1 and C2, respec-
tively, then the minimum Hamming distance of C is at least min (d1, d2).

(iv) If C2 is an f -APD code, then C is also an f -APD code.
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Proof. (i) Any c ∈ C may be written as c = Ψ (a,b) , where a ∈ C1,b ∈ C2.
According to (2.4), the number of G, C symbols in c equals the number
of ones in a. Since a is balanced, exactly half of the symbols in c are
Gs and Cs. This implies that C has balanced GC content.

(ii) We prove the result by contradiction. Suppose that C is not a κ-WMU
code while C1 is a κ-WMU code. Then, there exist sequences c, c′ ∈ C
such that a proper prefix of c of length at least κ appears as a suffix of c′.
Alternatively, there exist sequences p, c0, c

′
0 such that c = pc0, c

′ = c′0p

and the length of p is at least κ. Next, we use the fact Ψ is a bijection
and find binary strings a,b, a0,b0 such that

p = Ψ (a,b) , c0 = Ψ (a0,b0) , c
′
0 = Ψ (a′0,b

′
0) .

Therefore,

c = pc0 = Ψ (a,b) Ψ (a0,b0) = Ψ (aa0,bb0) ,

c′ = c′0p = Ψ (a′0,b
′
0) Ψ (a,b) = Ψ (a′0a,b

′
0b) ,

where aa0, a
′
0a ∈ C1. This implies that the string a of length at least

κ appears both as a proper prefix and suffix of two not necessarily
distinct elements of C1. This contradicts the assumption that C1 is a
κ-WMU code. The same argument may be used for the case that C2 is
a κ-WMU code.

(iii) For any two distinct sequences c, c′ ∈ C there exist a, a′ ∈ C1,b,b′ ∈ C2
such that c = Ψ (a,b) , c′ = Ψ (a′,b′). The Hamming distance between
c, c′ equals∑

1≤i≤n

1 (ci 6= c′i) =
∑

1≤i≤n

1 (ai 6= a′i ∨ bi 6= b′i)

≥

d1 if a 6= a′

d2 if b 6= b′
≥ min (d1, d2) .

This proves the claimed result.

(iv) By combining (2.1), (4.1) and (2.4), one can easily verify that Ψ(a,b) =

Ψ
(
a,b

)
. We again prove the result by contradiction. Suppose that C
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is not an f -APD code. Then, there exist c, c′ ∈ C, a, a′ ∈ C1,b,b′ ∈ C2
such that c = Ψ (a,b) , c′ = Ψ (a′,b′) and cf+i−1i = (c′)f+j−1j or (c′)jf+j−1,

for some 1 ≤ i, j ≤ n+1−f . This implies that b
f+i−1
i = (b′)f+j−1j or (b′)jf+j−1,

which contradicts the assumption that C2 is an f -APD code.

In the next sections, we devote our attention to establishing bounds on
the size of WMU codes with error-correction, balancing and primer dimer
constraints, and to devising constructions that use the decoupling principle
or more specialized methods that produce larger codebooks. As the codes C1
and C2 in the decoupled construction have to satisfy two or more properties
in order to accommodate all required constraints, we first focus on families
of binary codes that satisfy one or two primer constraints.

2.4 Error-Correcting WMU Codes

The decoupled binary code construction result outlined in the previous sec-
tion indicates that in order to construct an error-correcting κ-WMU code
over F4, one needs to combine a binary error-correcting κ-WMU code with a
classical error-correcting code. To the best of our knowledge, no results are
available on error-correcting MU or error-correcting κ-WMU codes.
We start by establishing lower bounds on the coding rates for error-correcting

WMU codes using the constrained Gilbert-Varshamov bound [34,35].
For a ∈ Fnq and an integer r ≥ 0, let BFnq (a, r) denote the Hamming sphere

of radius r centered around a, i.e.,

BFnq (a, r) =
{
b ∈ Fnq | dH (a,b) ≤ r

}
,

where, as before, dH denotes the Hamming distance. Clearly, the cardinality
of BFnq (a, r) equals

Vq(n, r) =
r∑
i=0

(
n

i

)
(q − 1)i ,

independently of the choice of the center of the sphere. For the constrained
version of Gilbert-Varshamov bound, let X ⊆ Fnq denote an arbitrary subset
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of Fnq . For a sequence a ∈ X, define the Hamming ball of radius r in X by

BX (a, r) = BFnq (a, r) ∩X.

The volumes of the spheres in X may depend on the choice of a ∈ X. Of
interest is the maximum volume of the spheres of radius r in X,

VX,max (r) = max
a∈X
|BX (a, r)| .

The constrained version of the GV bound asserts that there exists a code of
length n over X, with minimum Hamming distance d that contains

M ≥ |X|
VX,max (d− 1)

codesequences. Based on the constrained GV bound, we can establish the
following lower bound for error-correcting WMU codes. The key idea is to
use a κ-WMU subset as the ground set X ⊆ Fnq .

Theorem 4. (Lower bound on the maximum size of error-correcting WMU
codes.) Let κ and n be two integers such that n − κ − 1 ≥ 2`, for ` =⌈
logq 2 (n− κ+ 1)

⌉
, q ∈ {2, 4}. Then there exists a κ-WMU code C ⊆ Fnq

with minimum Hamming distance d and cardinality

|C| ≥ cq
qn

(n− κ+ 1) (L0 − L1 − L2)
, (2.5)

where

cq =
(q − 1)2 (2q − 1)

4q4
,

and L0,L1, and L2, are given by

L0 =Vq (n− `− 1, d− 1) + (q − 2)Vq (n− `− 1, d− 2) ,

L1 = (q − 1)
n−κ−`+1∑
i=`+2

[
i−`−2∑
j=0

((
i− `− 2

j

)
(q − 2)j

×Vq (n− i− `+ 1, d− `− j − 2))] ,
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and

L2 =
n−κ−`∑
i=0

(
n− κ− `

i

)
(q − 2)i Vq (κ− 1, d− i− 2) .

Proof. Assume that X is a κ-WMU code over Fnq generated according to
Construction 4 and such that it has the cardinality at least cq qn

n−κ+1
. Recall

that in this case, X is the set of sequences a ∈ Fnq that start with ` =⌈
logq 2 (n− κ+ 1)

⌉
consecutive zeros (a`1 = 0`), a`+1, an−κ+1 6= 0, and no `

consecutive zeros appear as a subsequence in an−κ`+2 . With every a ∈ X, we
associate two sets X (a, d− 1) and Y (a, d− 1): The set X (a, d− 1) includes
sequences b ∈ Fnq that satisfy the following three conditions:

• Sequence b starts with ` consecutive zeros, i.e., b`1 = 0`.

• One has b`+1 6= 0.

• Sequence b satisfies dH
(
an`+1,b

n
`+1

)
≤ d− 1.

The set Y (a, d− 1) ⊆ X (a, d− 1) is the collection of sequences b that con-
tain 0` as a subsequence in bn−κ`+2 , or that satisfy bn−κ+1 = 0. Therefore,

BX (a, d− 1) = X (a, d− 1) /Y (a, d− 1) ,

and
|BX (a, d− 1) | = |X (a, d− 1) | − |Y (a, d− 1) |.

Let L0 = |X (a, d− 1)|. Thus,

L0 =Vq (n− `− 1, d− 1) + (q − 2)Vq (n− `− 1, d− 2) . (2.6)

The result holds as the first term on the right-hand side of the equation
counts the number of sequences b ∈ X (a, d− 1) that satisfy b`+1 = a`+1,
while the second term counts those sequences for which b`+1 6= a`+1.
We determine next |Y (a, d− 1) |. For this purpose, we look into two dis-

joints subsets Y I and Y II in Y (a, d− 1) which allow us to use |Y (a, d− 1)| ≥∣∣Y I
∣∣+
∣∣Y II

∣∣ and establish a lower bound on the cardinality sought.
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The set Y I is defined according to

Y I =
n−κ−`+1⋃
i=`+2

Y I (i) ,

where Y I (i) is the set of sequences b ∈ X (a, d− 1) that satisfy the following
constraints:

• The sequence b contains the substring 0` starting at position i, i.e.,
bi+`−1i = 0`.

• It holds that bi−1 6= 0.

• The sequence 0` does not appears as a substring in bi−2`+2.

• One has dH
(
ai−1`+1,b

i−1
`+1

)
+ dH

(
ani+`,b

n
i+`

)
≤ d− `− 1.

The cardinality of Y I (`+ 2) can be found according to

∣∣Y I (`+ 2)
∣∣ =Vq (n− 2`− 1, d− `− 1)

+ (q − 2)Vq (n− 2`− 1, d− `− 2)

≥ (q − 1)Vq (n− 2`− 1, d− `− 2) .

The first term on the right-hand side of the above equality counts the se-
quences b ∈ Y I (`+ 2) for which b`+1 = a`+1, while the second term counts
sequences for which b`+1 6= a`+1. The inequality follows from the fact that
Vq (n− 2`− 1, d− `− 1) ≥ Vq (n− 2`− 1, d− `− 2).
To evaluate the remaining terms Y I (i) for `+3 ≤ i ≤ n−κ−`+1, assume

that dH
(
ai−2`+1,b

i−2
`+1

)
= j. In this case, there are at least(

i− `− 2

j

)
(q − 2)j

possible choices for bi−2`+1. This result easily follows from counting the number
of ways to select the j positions in ai−2`+1 on which the sequences agree and
the number of choices for the remaining symbols which do not include the
corresponding values in a and 0. As no additional symbol 0 is introduced
in bi−2`+1, bi−2`+2 does not contain the substring 0` as ai−2`+2 avoids that string;
similarly, b`+1 6= 0.
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On the other hand, there are q − 1 possibilities for bi−1 ∈ Fq \ {0}, and to
satisfy the distance property we have to have

dH
(
ani+`,b

n
i+`

)
≤ d− `− j − 2.

Therefore,

∣∣Y I (i)
∣∣ ≥ (q − 1)

[
i−`−2∑
j=0

(
i− `− 2

j

)
(q − 2)j

×Vq (n− i− `+ 1, d− `− j − 2)] .

Hence, the cardinality of Y I may be bounded from below as

∣∣Y I
∣∣ ≥LI,

where

LI = (q − 1)
n−κ−`+1∑
i=`+2

[
i−`−2∑
j=0

((
i− `− 2

j

)
(q − 2)j

×Vq (n− i− `+ 1, d− `− j − 2))] . (2.7)

The set Y II comprises the set of sequences in b ∈ X (a, d− 1) that have
the following properties:

• The sequence 0` does not appear as a substring in bn−κ`+2 .

• It holds bn−κ+1 = 0.

• One has

dH
(
an−κ`+1 ,b

n−κ
`+1

)
+ dH

(
ann−κ+2,b

n
n−κ+2

)
≤ d− 2.

It is easy to verify that

Y II ⊆ X (a, d− 1) \ [BX (a, d− 1) ∪ YI] .

Following the same arguments used in establishing the bound on the cardi-
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nality of Y II, one can show that

∣∣Y II
∣∣ ≥L2,

where

L2 =
n−κ−`∑
i=0

(
n− κ− `

i

)
(q − 2)i Vq (κ− 1, d− i− 2) . (2.8)

As a result, for each a ∈ X, we have

|BX (a, d− 1)| = |X (a, d− 1)| − |Y (a, d− 1)|

≤L0 − L1 − L2.

Note that L0,L1,L2 are independent from a. Therefore,

VX,max (d− 1) ≤ L0 − L1 − L2.

This inequality, along with the constrained form of the GV bound, establishes
the validity of the claimed result.

Figure 2.1 plots the above derived lower bound on the maximum achievable
rate for error-correcting κ-WMU codes (2.5), and for comparison, the best
known error-correcting linear codes for binary alphabets. The parameters
used are n = 50, κ = 1, q = 2, corresponding to MU codes. To construct q =

4-ary error-correcting κ-WMU codes via the decoupled construction, we need
to have at our disposition an error-correcting κ-WMU binary code. In what
follows, we use ideas similar to Tavares’ synchronization technique [36] to
construct such codes. We start with a simple lemma and a short justification
for its validity.

Lemma 3. Let C be a cyclic code of dimension κ. Then the run of zeros in
any nonzero codesequence is at most κ− 1.

Proof. Assume that there exists a non-zero codesequence c(x), represented
in polynomial form, with a run of zeroes of length κ. Since the code is cyclic,
one may write c(x) = a(x)g(x), where a(x) is the information sequence corre-
sponding to c(x) and g(x) is the generator polynomial of the code. Without
loss of generality, one may assume that the run of zeros appears at positions
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Figure 2.1: Comparison of two different lower bounds for binary codes:
Error-correcting MU codes (inequality (2.5) of Theorem 4) and the best
known linear error-correcting codes; n = 50, κ = 1, as κ = 1-WMU codes
are MU codes.

0, . . . , κ − 1, so that
∑

i+j=s ai gj = 0, for s ∈ {0, . . . , κ− 1}. The solu-
tion of the previous system of equations gives a0 = a1 = . . . = aκ−1 = 0,
contradicting the assumption that c(x) is non-zero.

Construction 5. (d − HD_κ− WMU_q_n Codes) Construct a code C ⊆ Fnq
according to

C = {a + e | a ∈ C1, e = (1, 0, . . . , 0)} ,

where C1 is a [n, κ− 1, d] cyclic code.

We argue that C is a κ-WMU code, with minimum Hamming distance d.
To justify the result, we first demonstrate the property of weakly mutually
uncorrelatedness. Suppose that on the contrary the code is C is not κ-WMU.
Then there exists a proper prefix p of length at least κ such that both pa

and bp belong to C. In other words, the sequences (pa) − e and (bp) − e

belong to C1. Consequently, (pb)− e′ belongs to C1, where e′ is a cyclic shift
of e. Hence, by linearity of C1, z , 0(a − b) + e′ − e belongs to C1. Now,
observe that the first coordinate of z is one, and hence nonzero. But z has a
run of zeros of length at least κ − 1, which is a contradiction. Therefore, C
is indeed a κ-WMU code. Since C is a coset of C1, the minimum Hamming
distance property follows immediately.
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As an example, consider the family of primitive binary t-error-correcting
BCH codes with parameters [n = 2m − 1,≥ n −mt,≥ 2t + 1]. The family
is cyclic, and when used in Construction 5, it results in an error-correcting
(n − mt + 1)-WMU code of minimum distance 2t + 1. The rate of such a
code is n−mt

n
≥ 1 − mt

2m−1 , while according to the Theorem 3, the cardinal-
ity of the optimal-order corresponding κ-WMU code is at least 0.04688×2n

mt
,

corresponding to an information rate of at least

log(0.04688×2
n

mt
)

n
> 1− 5 + log (mt)

2m − 1
. (2.9)

As an illustration, we compare the rates of the BCH-based κ-WMU and the
optimal κ-WMU codes for different values of m = 10, t = 1, 3, 5:

(i) m = 10, t = 1: In this case our BCH code has length 1023, dimension
1013, and minimum Hamming distance 3. This choice of a code results
in a binary 1014-WMU code with minimum Hamming distance 3, and
information rate 0.9902, while the optimal binary 1014-WMU code has
information rate greater than 0.9919.

(ii) m = 10, t = 3: In this case our BCH code has length 1023, dimension
993, and minimum Hamming distance 7. This choice of a code results
in a binary 994-WMU code with minimum Hamming distance 7, and
information rate 0.9707, while the optimal binary 994-WMU code has
information rate greater than 0.9903.

(iii) m = 10, t = 5: In this case our BCH code has length 1023, dimension
973, and minimum Hamming distance 11. This choice of a code results
in a binary 974-WMU code with minimum Hamming distance 11, and
information rate 0.9511, while the optimal binary 974-WMU code has
information rate greater than 0.9896.

Next, we present a construction for MU ECC codes of length n, minimum
Hamming distance 2t+ 1 and of size roughly (t+ 1) log n. This construction
outperforms the previous approach for codes of large rate, whenever t is a
small constant.
Assume that one is given a linear code of length n′ and minimum Hamming

distance dH = 2t+1, equipped with a systematic encoder EH(n′, t) : {0, 1}κ →
{0, 1}n′−κ which inputs κ information bits and outputs n′−κ parity bits. We
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feed into the encoder EH sequences u ∈ {0,1}κ that do not contain runs of
zeros of length ` − 1 or more, where ` = log(4n′). Let p = d κ

n′−κe > `. The
MU ECC codesequences are of length n = n′+ `+ 2, and obtained according
to the constrained information sequence u as:

(0, 0 . . . , 0, 1,up
1 ,EH(u)11,u

2p
p+1, EH(u)22,

u3p
2p+1,EH(u)33 . . . ,u

n′

(n′−κ−1)p+1, EH(u)n
′−κ

n′−κ,1).

The codesequences start with the 0`1 substring, and are followed by sequences
u interleaved with parity bits, which are inserted every p > ` positions.
Notice that the effect of the inserted bits is that they can extend the lengths
of existing runs of zeros in u by at most one. Since u has no runs of length
`− 1 or more, this means that we do not see any runs of zeros of length ≥ `

in the last n− `− 1 bits of x. This implies that the underlying code is MU,
while the ECC properties are inherited from the initial linear code.

2.5 Balanced κ-WMU Codes

In what follows, we focus on the analysis of balanced κ-WMU codes, and start
with a review of known bounds on the number of balanced binary sequences.
Let Ad−HD_2_n denote the maximum size of a binary code of length n and

minimum Hamming distance d, and let Aw−CST_d−HD_2_n denote the maxi-
mum cardinality of a binary code with constant weight w, length n and even
minimum Hamming distance dH . Clearly,

A n
2
−CST_2−HD_2_n =

(
n
n
2

)
.

Gyorfi et al. [37] derived several bounds for the more general functionAw−CST_d−HD_2_n

based on Ad−HD_2_n.

Theorem 5. For even integer d, 0 ≤ d ≤ n, and every w, 0 ≤ w ≤ n,(
n
w

)
2n−1

Ad−HD_2_n ≤ Aw−CST_d−HD_2_n.

We present next our first construction of balanced κ-WMU codes.
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Construction 6. (BAL_κ− WMU_4_n Codes) Form a code C ∈ {A, T, C, G}n

using the decoupled construction with component codes C1 and C2 chosen
according to the following rules:

• Let C1 ⊆ {0, 1}n be a balanced code of size equal to A n
2
−CST_2−HD_2_n.

• Let C2 ⊆ {0, 1}n be a κ-WMU code; one may use Construction 4 to
generate C2.

Lemma 4. Let C ∈ {A, T, C, G}n denote the code generated by Construction 6.
Then,

(i) C is a κ-WMU code.

(ii) C is balanced.

Proof. (i) Since C2 is a κ-WMU code, property ii) of Lemma 2 ensures
that C is also a κ-WMU code.

(ii) Since C1 is balanced, property i) of Lemma 2 ensures that C is a bal-
anced binary code.

This completes the proof.

We discuss next the cardinality of the code C generated by Construction 6.
According to Theorem 3, one has |C2| = c2

2n

n−κ+1
. In addition, |C1| =

(
n
n
2

)
.

Hence, the size of C is bounded from below by:

c2

(
n
n
2

)
2n

n− κ+ 1
.

Theorem 6 proves that both Construction 1 and 6 are order optimal, in
the sense that they produce codes with cardinality within a constant factor
away from the maximal achievable value.

Theorem 6. Let ABAL_κ−WMU_q_n denote the maximum size of a balanced
κ-WMU code over Fnq , for n ≥ 2 and q ∈ {2, 4}. Then,

(i)

c2

(
n
n
2

)
2n

n− κ+ 1
≤ ABAL_κ−WMU_4_n ≤

(
n
n
2

)
2n

n− κ+ 1
.

(ii)

ABAL_κ−WMU_2_n ≤

(
n
n
2

)
n− κ+ 1

.
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(iii) (
n
n
2

)
2(n− 1)

≤ ABAL_MU_2_n ≤

(
n
n
2

)
n
.

Proof. To prove the upper bounds, we use the same technique as that de-
scribed in Theorem 3. Assume that C ⊆ Fnq is a balanced κ-WMU code, for
q ∈ {2, 4}, and consider the set X of pairs (a, i) where a ∈ Fnq , i ∈ {1, . . . , n},
and the cyclic shift of the sequence a starting at position i belongs to C.
One may easily verify that |X| = n |C|. On the other hand, if (a, i) ∈ X,
then a is balanced itself and there are

(
n
n
2

)
( q
2
)n balanced sequences to select

from. Moreover, (a, j) /∈ X, for j /∈ {i± 1, . . . , i± (n− κ)}mod n due to the
κ-WMU property. Hence, for a fixed balanced sequence a ∈ Fnq , there are at

most
⌊

n
n−κ+1

⌋
pairs (a, i1) , . . . ,

(
a, ib n

n−κ+1c
)
∈ X. This implies that

|X| ≤
n
(
n
n
2

)
( q
2
)n

n− κ+ 1
.

Therefore, |C| ≤
(nn

2
)( q2 )n

n−κ+1
.

The lower bound in (i) can be achieved through Construction 6, while the
lower bound in (iii) can be met using Construction 1.

We complete our discussion by briefly pointing out how to use the balanced
MU code Construction 1 to derive a balanced κ-WMU code C ∈ {A, T, C, G}n

that has the prefix balancing property with parameter D. For this purpose,
we generate C according to the balanced WMU Construction 6. We set
C2 = {0, 1}n and construct C1 by concatenating C ′1 ⊆ {0, 1}

κ−1 and C ′′1 ⊆
{0, 1}n−κ+1. Here, C ′1 is balanced and C ′′1 is a balanced WMU code with
parameter D. It is easy to verify that C is a balanced κ-WMU DNA code
with prefix-balancing parameter D and of cardinality

|C| =|C ′1| |C ′′1 | |C2| = A(κ− 1, 2,
κ− 1

2
) Dyck(

n− κ
2

, D) 2n

∼
4n tan2

(
π

D+1

)
cosn−κ

(
π

D+1

)
√

2π (D + 1) (κ− 1)
1
2

.
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2.6 APD-MU Codes

Our next goal is to provide constructions for κ-WMU codes that do not form
primer dimer byproducts.

We first discuss a construction of binary MU codes with the APD property.

Construction 7. (f− APD_MU_2_n) Let n, f, `, p be positive integers such
that n = pf and `+ 3 ≤ f

2
. Let

C = {a1a2 . . . a2p | a ∈ C1, a2, . . . , a2p ∈ C2} ,

where C1 ⊆ F
f
2
2 is the set of binary sequences a = (a1, . . . , a f

2
) such that:

• The sequence a starts with 0`1 and ends with 1;

• The substring a
f
2
`+1 does not contain 0` as a substring;

and where C2 ⊆ F
f
2
2 is the set of binary sequences a = (a1, . . . , a f

2
) such that:

• The sequence a ends with 1;

• The sequence a contains 01`0 as a substring.

• The sequence a does not contain 0` as a substring.

Lemma 5. Let C ∈ {0, 1}n denote the code generated by Construction 7.
Then,

(i) C is an MU code.

(ii) C is an f -APD code.

Proof. The proof follows from two observations, namely

(i) The code C satisfies the constraints described in Construction 2, and is
hence an MU code.

(ii) Any substring of length f of any sequence in C contains an element
from C2 as a substring. Hence, any substring of length f in C contains
01`0 as a substring, and so the reverse and forward complement se-
quence contains 10`1. Furthermore, no proper substring of length f in
C contains 10`1 as a substring. Hence, C is also an f -APD code.
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Next, we use Lemma 1 to derive a lower bound on the size of the codes C1
and C2 in Construction 7, and a lower bound on the size of the code C. First,
notice that

|C1| ≥
2
f
2

2`+2

(
1−

f
2
− `− 2

2`

)
≥ 2

f
2

2`+2

(
1− f

2`+1

)
,

which follows from Lemma 1, with n = f
2
− ` − 2, ns = `, t = 1. To bound

the cardinality of C2 we define an auxiliary code C3 ⊆ {0, 1}
f
2
−`−3 such that

sequences in C3 avoid 0`−1, 1`−1 as a substring. One can once more apply
Lemma 1 with n = f

2
− `− 3, ns = `− 1, t = 2, to obtain

|C3| ≥
2
f
2

2`+3

(
1−

4(f
2
− `− 3)

2`

)
≥ 2

f
2

2`+3
(1− f

2`−1
).

Notice that by inserting 01`0 into sequences in C3 at any of the f
2
− ` − 2

allowed positions, and then appending 1 to the newly obtained sequence, we
obtain a subset of C2 of size (f

2
− `− 2)|C3|. Therefore,

|C2| ≥
(
f

2
− `− 2

)
2
f
2

2`+3
(1− f

2`−1
).

For ` = dlog2(3f)e, one can verify that the size of the code C1 is within a

constant factor of 2
f
1

f
, and the size of C2 is within a constant factor of 2

f
2 . In

the last step, we use the fact that |C| = |C1||C2|2p−1 to show that |C| is within
a constant factor of 2n

n
. Therefore, Construction 7 produces an order-optimal

f -APD MU binary codes. The result is summarized in the following theorem.

Theorem 7. LetAf−APD_MU_2_n denote the maximum size of an f− APD_MU_2_n
code, for positive integers n = pf such that p is a constant factor. Then,
there exist constants c3 > 0 such that

c3
2n

n
≤ Af−APD_MU_2_n≤

2n

n
.

Proof. The lower bound is a direct consequence of Construction 7, while the
upper bound follows from Theorem 1, and the fact that any f− APD_MU_2_n
code is also an MU_2_n code.
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2.7 APD, Balanced, Error-Correcting and WMU
Codes

In what follows, we describe the main results of our work: Constructions of
APD, balanced, error-correcting κ-WMU codes. The gist of our approach is
to use the decoupling principle along with a pair of binary codes that satisfy
one or two of the desired binary primer constraints in order to obtain a large
set of proper address/primer sequences. In addition to constructions based
on the decoupling procedure, we introduce a number of other constructions
that directly produce the desired q-ary codes with large codebooks, or allow
for simple encoding and decoding.
Recall Construction 5, in which we showed results in an error-correcting

κ-WMU DNA code. Map the elements in F4 to {A, T, C, G} according to:

0 7→ A, 1 7→ C, ω 7→ T, ω + 1 7→ G,

where ω is a primitive element of the field F4.
Let a be a sequence of length n. Then it is straightforward to see that the

sequence (a, a + 1n) is balanced, for 1n = (1, . . . , 1). These observations lead
to the simple primer construction described next.

Construction 8. (V1 : BAL_2d− HD_κ− WMU_4_n Codes) Let C be an
[n
2
, κ− 1, d] cyclic code over F4 that contains the all ones vector 1. Then

{(c + e, c + 1
n
2 + e) : c ∈ C}

is a GC balanced, κ-WMU code with minimum Hamming distance 2d.

The next construction follows by invoking the decoupling principle with
binary error-correcting WMU codes constructed in Section 2.4 and codes
meeting the bound of Theorem 5.

Construction 9. (V2 : BAL_d− HD_κ− WMU_4_n Codes) Construct a code
C ∈ {A, T, C, G}n via the decoupled construction of Lemma 2 involving two
codes:

(i) A balanced code C1 of length n, with minimum Hamming distance d
and of size A n

2
−CST_d−HD_2_n.

31



0 10 20 30 40 50
Hamming distance

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e 

ra
te

Error-correcting linear code
Error-correcting WMU code
Balanced error-correcting WMU code

Figure 2.2: Comparison of three different lower bounds for quaternary
codes: Balanced error-correcting κ-WMU codes (inequality (2.10) in
Example 1), error-correcting κ-WMU codes (inequality (2.5) in Theorem 4)
and the best known linear error-correcting codes; n = 50, κ = 25.

(ii) A κ-WMU code C2 ⊆ {0, 1}n of length n and minimum Hamming
distance d, described in Section 2.4.

Lemma 6. Let C ∈ {A, T, C, G}n denote the code generated by Construction 9.
Then,

(i) C is a κ-WMU code.

(ii) C is balanced.

(iii) The minimum Hamming distance of C is at least d.

Example 1. The size of the code C obtained from Construction 9 equals

|C| =|C1| |C2|

≥ c2
2nA n

2
−CST_d−HD_2_n

(n− κ+ 1) (L0 − L1 − L2)

≥ 0.09376

(
n
n
2

)
Ad−HD_2_n

(n− κ+ 1) (L0 − L1 − L2)
. (2.10)

The last two inequalities follow from the lower bounds of Lemma 4 and
Theorem 5, respectively.
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Figure 2.2 plots the lower bound on the maximum achievable rate for error-
correcting κ-WMU codes (2.5), balanced error-correcting κ-WMU codes (2.10),
and for comparison, the best known linear error-correcting codes over qua-
ternary alphabets. The parameters used are n = 50, κ = 25.
The next result shows that Construction 7 may be used to devise sequences

that are balanced, MU and do not form any PDs.

Construction 10. (f− APD_BAL_MU_4_n Codes) Using the decoupled code
construction in Lemma 2, a balanced, MU code C ∈ Fn4 that avoids PDs may
be obtained by choosing C1 ⊆ Fn2 to be an BAL_2_n code, and C2 ⊆ Fn2 to
be an f− APD_MU_2_n code.

It is straightforward to see that |C1| =
(
n
n
2

)
and that |C2| ≥ c3

2n

n
. Therefore,

the size of C is at least c3
(nn

2
) 2n

n
.

Theorem 8. Let Af−APD_BAL_MU_4_n denote the maximum size of a
f− APD_BAL_MU_4_n code. Then

c3

(
n
n
2

)
2n

n
≤ Af−APD_BAL_MU_4_n≤

(
n
n
2

)
2n

n
.

Proof. The lower bound is the direct consequence of Construction 10. To
prove the upper bound, observe that any f− APD_BAL_MU_4_n code is
also a valid BAL_MU_4_n code. The upper bound on the cardinality of an
BAL_MU_4_n code may be obtained from the upper bound of Theorem 6,
pertaining to a BAL_WMU_4_n code, by setting κ = 1.

Next, we discuss an iterative construction based on an APD, balanced,
error-correcting and κ-WMU seed code.

Construction 11. For a given integer s ≥ 1, let C0 be a set of sequences in
Fsq. Let

C = {a1 . . . am | ai ∈ Ci for 1 ≤ i ≤ m} ,

where the subset codes C1, . . . , Cm ⊆ C0 are chosen according to:

C1 ∩ Cm = ∅

and (C1 ∩ Cm−1 = ∅) or (C2 ∩ Cm = ∅)
...

and (C1 ∩ C2 = ∅) or . . . or (Cm−1 ∩ Cm = ∅).
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Lemma 7. Let C ⊆ Fnq be a code generated according to the Construction
11. Then

(i) C is 2f -APD if C0 is f -APD.

(ii) C is balanced if C0 is balanced.

(iii) C and C0 have the same minimum Hamming distance.

(iv) C is κ-WMU if C0 is κ-WMU.

Proof. (i) Any proper substring of length 2f of any codesequence in C
contains a proper substring of length f of a codesequence in C0. Then,
C is 2f -APD if C0 is f -APD.

(ii) Codesequences in C form by concatenating codesequences in C0. If C0
is balanced then each codesequences in C is also balanced.

(iii) Again, any two distinct codesequences in C differ in at least one of
the concatenated codesequences from C0. Therefore, C and C0 have
identical minimum Hamming distance.

(iv) For any pair of not necessarily distinct a,b ∈ C and for κ ≤ l < n, we
show that al1 and bnn−l+1 cannot be identical. This establishes that the
constructed concatenated code is WMU. Let l = is+ j, where i =

⌊
l
s

⌋
and 0 ≤ j < s. We consider three different scenarios for the index j:

• j = 0; In this case, 1 ≤ i < m. Therefore, (C1 ∩ Cm−i+1 =

∅) or . . . or (Ci ∩ C1 = ∅) implies that al1 6= bnn−l+1.

• 0 < j < κ; Again, one can verify that 1 ≤ i < m. It is easy to
show that al−jl−s+1 is a suffix of length s − j of a sequence in C0
and bn−jn−s+1 is a prefix of length s − j of an element in C0. Since
κ < s− j < s, one has al−jl−s+1 6= bn−jn−s+1. Hence, al1 6= bnn−l+1.

• κ ≤ j < s; In this case, all−j+1 is a proper prefix of length j of
a sequence in C0, and bnn−j+1 is a proper suffix of length j of an
element in C0. Since κ ≤ j < s, one has all−j+1 6= bnn−j+1 and
al1 6= bnn−l+1.
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Figure 2.3: Concatenation construction for information blocks avoiding
κ-WMU primer sequences. The gist of the approach is to use a subset of
address sequences for actual addressing, and the remaining sequences as
blocks to be concatenated.

2.8 Information Encoding with WMU Addresses

In order to store user data in DNA, one needs to encode the binary informa-
tion into relatively short sequences of nucleotide, each of which is equipped
with a unique address sequence that satisfies the constraints outlined in the
previous section. As already described, in order to enable accurate random
access via PCR, the information bearing content of the sequences has to avoid
the set of address sequences. This leads to the following problem formulation.

Given a set of sequencesA ⊆ Fnq , let CA(N) ⊆ FNq denote another collection
of sequences that avoid members of A as substrings, i.e., a 6= bn+i−1i for every
a ∈ A, b ∈ CA(N), 1 ≤ i ≤ N − n+ 1. We refer to A as the set of addresses
and CA(N) as the set of address-avoiding information blocks.

We discuss next three different schemes for constructing an information
codebook CA(N) of sequences of length N for particular sets of address se-
quences A.
Let C be an κ-WMU code over Fnq , for κ ≤ n

2
, and let A ⊂ C. For a given

integer s ≥ 1, let N = s n and define CA(N) ⊆ FNq as the collection of all
sequences b ∈ FNq of the form

b = b1 . . .bs,

where bi ∈ C−A, for 1 ≤ i ≤ s. This construction is illustrated in Figure 2.3.
We show next that no b ∈ CA(N) contains any a ∈ A as a substring.
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The proof follows by contradiction. Assume that a appears as substring
in bibi+1, for some 1 ≤ i < s. Since a ∈ A and bi,bi+1 ∈ C − A, a may be
written as a = sp, where s is a proper suffix of bi and p is a proper prefix of
bi+1. Then one of the two strings p or s has length greater than or equal to
n
2
≥ κ, which contradicts the fact that C is an κ-WMU code.
The previously described construction may be easily extended to obtain

error-correcting information blocks CA(N). We start by identifying a bijec-
tionM from C − A to a finite field Fpt with appropriate prime parameter p
and t ≥ 1; for this purpose, we expurgate codesequences from the set C so
that |C| − |A| = pt.
The bijectionM is used to convert every sequence b = b1 . . .bs in CA(N)

to a sequence v = v1 . . .vs ∈ Fspt , where vi = M(bi), for 1 ≤ i ≤ s. The
sequence v is encoded using an [r, s, r − s + 1]pt Reed-Solomon (RS) error
correcting code to arrive at a codesequence w = w1 . . .wr ∈ Frpt , where
wi ∈ Fpt for 1 ≤ i ≤ r. SinceM is a bijection, one can applyM−1 to w to
reconstruct c = c1 . . . cr ∈ Fs rq , where ci =M−1(wi), for 1 ≤ i ≤ r. Since c

is obtained by concatenating elements from C − A, it is easy to verify that
c does not contain any element of A as a substring. Moreover, the RS code
guarantees that given a sequence c with at most b r−s

2
c errors, one can still

fully recover b.
For the second scheme, assume that C1, C2 ⊆ Fn2 are two disjoint collections

of binary sequences of length n such that for all a ∈ C1, the cyclic shifts of a

do not belong to C2, i.e., for all a ∈ C1, ani a
i−1
1 /∈ C2 for all 1 ≤ i ≤ n.

Now given C1 and C2, define the set of addresses A ⊆ F2n
4 as

A =
{

Ψ(c, aa) | a ∈ C1, c ∈ F2n
2

}
,

where Ψ was introduced in (2.4). To construct CA(N), let s ≥ 1 be an integer
such that N = s n. We define CA(N) ⊆ FN4 as the collection of all sequences
b = b1 . . .bs ∈ FN4 where bi ∈ Fn4 that can be written as bi = Ψ(fi,gi), for
some gi ∈ C2, fi ∈ Fn2 and 1 ≤ i ≤ s. We claim that CA(N) does not contain
any element of A as a substring.

If Ψ(c, aa) ∈ A appears as a substring in a sequence b ∈ CA(N), then
there exists an index 1 ≤ i ≤ s − 2 such that Ψ(c, aa) is a substring of
bibi+2bi+3. Since Ψ is a bijection one can verify that aa appears as a sub-
string in gigi+1gi+2, for a ∈ C1 and gi,gi+1,gi+2 ∈ C2. In addition, C1∩C2 = ∅

36



implies that aa can be written as aa = sgi+1p, where s is a proper suffix of
gi and p is a proper prefix of gi+2. It is clear that a = sp and gi+1 = ps;
hence, gi+1 ∈ C2 is a cyclic shift of a ∈ C1, which contradicts the fact that C2
contains no cyclic shifts of elements in C1.
The last information block design scheme we present is endowed with a

simple encoding and decoding procedure. Let A ⊆ Fnq be a collection of
sequences of length n such that e /∈ A, where e = (0, . . . , 0, 1). For the
purpose of information block encoding, we may assume that A is a κ-WMU
code with desired primer properties, constructed using cyclic error-correcting
codes of minimum distance at least three, as described in Constructions 8
and 9. Let N > n and define I , {a|an−11 ∈ Fn−1q , aNn ∈ FN−n+1

q−1 }, so
that |I| = qn−1(q − 1)N−n+1. There is an efficient encoding scheme that
maps elements of I to a set of sequences CA(N) of length N that avoid all
codesequences in A.
Let H be a parity-check matrix of A. Hence, a sequence c belongs to A if

and only if cH = 0. Also, since e /∈ A, one has eH 6= 0.
To describe the encoding procedure, we define the following function φ :

Fn−1q × {0, 1, . . . , q − 2} → Fq. Given a ∈ Fn−1q and 0 ≤ i ≤ q − 2, let
an = φ(a, i) be the i smallest element in Fq such that (a, an)H 6= 0. For this
function to be well-defined, it suffices to demonstrate that there are at least
q− 1 elements in Fq such that appending one of them to a yields a decoding
syndrome not equal to 0. Suppose otherwise. Then there exist distinct u, u′

such that (a, u)H = (a, u′)H = 0. The last equality may be rewritten as
(0, u− u′)H = (u− u′)eH = 0, contradicting the starting assumption.
Encoding a sequence a results in a sequence b obtained by concatenating

the following sequences:

bi =

ai if 1 ≤ i ≤ n− 1

φ(bi−1i−n+1, ai), otherwise.

It is straightforward to see that sequences obtained via this encoding method
avoid all elements of the codebook A.
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2.9 Conclusions

Motivated by emerging code design problems for DNA-based data storage,
we introduced the problem of address/primer sequence design. The address
design problem reduces to constructing sequences that satisfy a new form of
mutual uncorrelatedness and in addition, are balanced, at sufficient Ham-
ming distance from each other and such that they avoid primer dimers which
arise if a substring of an address sequence is also a substring of the reverse
complement sequence of the same or another address sequence. Our main
results are listed in Table 2.1. Given the constructed address sequences, we
also described information encoding methods for sequences endowed with ad-
dresses, such that they avoid any address as a proper substring. This address
avoidance property allows one to randomly access desired DNA sequences via
simple and inexpensive PCR reactions.

Table 2.1: Summary of the optimal code constructions for various
constrained WMU codes.

Cons. No. Name Rate Features Comment
1 BAL_MU_2_n 1

2(n−1)

(
n
n
2

)
Binary, Balanced, MU

2 MU_q_n cq
qn

n
q-ary, MU q ∈ {2, 4}, c2 = 0.04688, c4 = 0.06152

4 WMU_q_n cq
qn

n−κ+1
q-ary, κ-WMU q ∈ {2, 4}, c2 = 0.04688, c4 = 0.06152

6 BAL_κ− WMU_4_n c2
(nn

2
)2n

n−κ+1
4-ary, Balanced, κ-WMU c2 = 0.04688

7 f− APD_MU_2_n c3
2n

n
Binary, f -APD, MU For some constant c3 > 0

10 f− APD_BAL_MU_4_n c3
(nn

2
) 2n

n
4-ary, f -APD, Balanced, MU For some constant c3 > 0
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Chapter 3

A REWRITABLE, RANDOM-ACCESS
DNA-BASED STORAGE SYSTEM

3.1 Introduction

Addressing the emerging demands for massive data repositories, and building
upon the rapid development of technologies for DNA synthesis and sequenc-
ing, a number of laboratories have recently outlined architectures for archival
DNA-based storage [4–6, 38, 39]. The architecture in [4] achieved a storage
density of 87.5 TB/gram, while the system described in [5] raised the density
to 2.2 PB/gram. The success of the latter method may be largely attributed
to three classical coding schemes: Huffman coding, differential coding, and
single parity-check coding [5]. Huffman coding was used for data compres-
sion, while differential coding was used for eliminating homopolymers (i.e.,
repeated consecutive bases) in the DNA strings. Parity-checks were used
to add controlled redundancy, which in conjunction with four-fold coverage
allows for mitigating assembly errors.
Due to dynamic changes in biotechnological systems, none of the three

coding schemes represents a suitable solution from the perspective of current
DNA sequencer designs: Huffman codes are fixed-to-variable length com-
pressors that can lead to catastrophic error propagation in the presence of
sequencing noise; the same is true of differential codes. Homopolymers do not
represent a significant source of errors in Illumina sequencing platforms [40],
while single parity redundancy or RS codes and differential encoding are
inadequate for combating error-inducing sequence patterns such as long sub-
strings with high GC content [40]. As a result, assembly errors are likely,
and were observed during the readout process described in [5].
An even more important issue that prohibits the practical widespread use

of the schemes described in [4,5] is that accurate partial and random access to
data is impossible, as one has to reconstruct the whole text in order to read
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or retrieve the information encoded even in a few bases. Furthermore, all
current designs support read-only storage. The first limitation represents a
significant drawback, as one usually needs to accommodate access to specific
data sections; the second limitation prevents the use of current DNA stor-
age methods in architectures that call for moderate data editing, for storing
frequently updated information and memorizing the history of edits. Mov-
ing from a read-only to a rewritable DNA storage system requires a major
implementation paradigm shift, as:
1. Editing in the compressive domain may require rewriting almost the

whole information content.
2. Rewriting is complicated by the current data DNA storage format that

involves reads of length 100 bps shifted by 25 bps so as to ensure four-fold
coverage of the sequence (See Figure 3.1 (a) for an illustration and description
of the data format used in [5]). In order to rewrite one base, one needs to
selectively access and modify four “consecutive” reads.
3. Addressing methods used in [4, 5] only allow for determining the posi-

tion of a read in a file, but cannot ensure precise selection of reads of interest,
as undesired cross-hybridization between the primers and parts of the infor-
mation blocks may occur.
To overcome the aforementioned issues, we developed a new, random-

access and rewritable DNA-based storage architecture based on DNA se-
quences endowed with specialized address strings that may be used for se-
lective information access and encoding with inherent error-correction ca-
pabilities. The addresses are designed to be mutually uncorrelated and to
satisfy the error-control running digital sum constraint [11, 12]. Given the
address sequences, encoding is performed by stringing together properly ter-
minated prefixes of the addresses as dictated by the information sequence.
This encoding method represents a special form of prefix-synchronized cod-
ing [8]. Given that the addresses are chosen to be uncorrelated and at large
Hamming distance from each other, it is highly unlikely for one address to
be confused with another address or with another section of the encoded
blocks. Furthermore, selection of the blocks to be rewritten is made pos-
sible by the prefix encoding format, while rewriting is performed via two
DNA editing techniques, the gBlock and OE-PCR (Overlap Extension PCR)
methods [41, 42]. With the latter method, rewriting is done in several steps
by using short and cheap primers. The first method is more efficient, but re-
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Figure 3.1: (a) The scheme of [5] uses a storage format consisting of DNA
strings that cover the encoded compressed text in fragments of length of
100 bps. The fragments overlap in 75 bps, thereby providing 4-fold coverage
for all except the flanking end bases. This particular fragmenting procedure
prevents efficient file editing: If one were to rewrite the “shaded” block, all
four fragments containing this block would need to be selected and
rewritten at different positions to record the new “shaded” block. (b) The
address sequence construction process we propose uses the notions of
autocorrelation and cross-correlation of sequences [30]. A sequence is
uncorrelated with itself if no proper prefix of the sequence is also a suffix of
the same sequence. Alternatively, no shift of the sequence overlaps with the
sequence itself. Similarly, two different sequences are uncorrelated if no
prefix of one sequence matches a suffix of the other. Addresses are chosen
to be mutually uncorrelated, and each 1000 bps block is flanked by an
address of length 20 on the left and by another address of length 20 on the
right (colored ends). (c) Content rewriting via DNA editing: the gBlock
method [41] for short rewrites, and the cost efficient OE-PCR (Overlap
Extension PCR) method [42] for sequential rewriting of longer blocks.
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quires synthesizing longer and hence more expensive primers. Both methods
were tested on DNA encoded Wikipedia entries of size 17 kB, correspond-
ing to six universities, where information in one, two and three blocks was
rewritten in the DNA encoded domain. The rewritten blocks were selected,
amplified and Sanger sequenced [43] to verify that selection and rewriting
are performed with 100% accuracy.

3.2 Results

The main feature of our storage architecture that enables highly sensitive
random access and accurate rewriting is addressing. The rationale behind
the proposed approach is that each block in a random access system must
be equipped with an address that will allow for unique selection and ampli-
fication via DNA sequence primers.
Instead of storing blocks mimicking the structure and length of reads gen-

erated during high-throughput sequencing, we synthesized blocks of length
1000 bps tagged at both ends by specially designed address sequences. Adding
addresses to short blocks of length 100 bps would incur a large storage over-
head, while synthesizing blocks longer than 1000 bps using current technolo-
gies is prohibitively costly.
More precisely, each data block of length 1000 bps is flanked at both ends

by two unique address blocks of length 20 bps each. These addresses are
used to provide specificity of access, see Figure 3.1 (b). Note that different
flanking addresses simplify the process of sequence synthesis. The remaining
960 bases in a block are divided into 12 sub-blocks of length 80 bps, with each
block encoding six words of the text. The “word-encoding” process may be
seen as a specialized compaction scheme suitable for rewriting, and it operates
as follows. First, different words in the text are counted and tabulated in a
dictionary. Each word in the dictionary is converted into a binary sequence
of sufficient length to allow for encoding of the dictionary. For our current
implementation and texts of choice this length was set to 21. Encodings of six
consecutive words are subsequently grouped into binary sequences of length
126. The binary sequences are then translated into DNA blocks of length
80 bps using a new family of DNA prefix-synchronized codes described in
the Methods section. Our choice for the number of jointly encoded words is
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governed by the goal to make rewrites as straightforward as possible and to
avoid error propagation due to variable code lengths. Furthermore, as most
rewrites include words, rather than individual symbols, the word encoding
method represents an efficient means for content update. Details regarding
the counting and grouping procedure may be found in [17].

For three selected access queries, the 1000 bps blocks containing the desired
information were “identified” (i.e., amplified) via primers corresponding to
their unique addresses, PCR amplified, Sanger sequenced, and subsequently
decoded.

Two methods were used for content rewriting. If the region to be rewritten
had length exceeding several hundreds, new sequences with unique primers
were synthesized as this solution represents a less costly alternative to rewrit-
ing. For the case that a relatively short substring of the encoded string had
to be modified, the corresponding 1000 bps block hosting the string was
identified via its address, amplified and the changes were generated via DNA
editing.

Both the random access and rewriting protocols were tested experimentally
on two jointly stored text files. One text file, of size 4 kB, contained the
history of the University of Illinois at Urbana-Champaign (UIUC) based on
its Wikipedia entry retrieved on 12/15/2013. The other text file, of size 13

kB, contained the introductory Wikipedia entries of Berkeley, Harvard, MIT,
Princeton, and Stanford, retrieved on 04/27/2014.
Encoded information was converted into DNA blocks of length 1000 bps

synthesized by IDT (Integrated DNA Technologies), at a cost of $149 per
1000 bps (see http://www.idtdna.com/pages/products/genes/gblocks-gene-
fragments). The rewriting experiments encompassed:
1. PCR selection and amplification of one 1000 bps sequence and simulta-

neous selection and amplification of three 1000 bps sequences in the pool. All
32 linear 1000 bps fragments were stored in a mixed form, and the mixture
was used as a template for PCR amplification and selection. The results of
amplification were verified by confirming sequence lengths of 1000 bps via
gel electrophoresis (Figure 3.2 (a)) and by randomly sampling 3-5 sequences
from the pools and Sanger sequencing them (Figure 3.2 (b)).
2. Experimental content rewriting via synthesis of edits located at various

positions in the 1000 bps blocks. For simplicity of notation, we refer to the
blocks in the pool on which we performed selection and editing as B1, B2,
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Figure 3.2: (a) Gel electrophoresis results for three blocks, indicating that
the length of the three selected and amplified sequences is tightly
concentrated around 1000 bps, and hence correct. (b) Output of the Sanger
sequencer, where all bases shaded in yellow correspond to correct readouts.
The sequencing results confirmed that the desired sequences were selected,
amplified, and rewritten with 100% accuracy.

and B3. Two primers were synthesized for each rewrite in the blocks, for the
forward and reverse direction. In addition, two different editing/mutation
techniques were used, gBlock and OE-PCR. gBlocks are double-stranded
genomic fragments used as primers or for the purpose of genome editing,
while OE-PCR is a variant of PCR used for specific DNA sequence editing
via point editing/mutations or splicing. To demonstrate the plausibility of
a cost-efficient method for editing, OE-PCR was implemented with general
primers (≤ 60 bps) only. Note that for edits shorter than 40 bps, the mutation
sequences were designed as overhangs in primers. Then, the three PCR
products were used as templates for the final PCR reaction involving the
entire 1000 bps rewrite. Figure 3.1 (c) illustrates the described rewriting
process. In addition, a summary of the experiments performed is provided
in Table 3.1.

Given that each basepair has weight roughly equal to 650 dalton (650 ×
1.67×10−24 gram), and given that 27, 000+5000 = 32, 000 bps were needed to
encode a file of size 13 + 4 = 17 kB in ASCII format, we estimate a potential
storage density of 4.9 × 1020 B/g for our scheme. This density significantly
surpasses the current state-of-the-art storage density of 2.2 × 1015 B/g, as
we avoid costly multiple coverage, use larger blocklengths and specialized
word encoding schemes of large rate. A performance comparison of the three
currently known DNA-based storage media is given in Table 3.2. We observe
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that the cost of sequence synthesis in our storage model is clearly significantly
higher than the corresponding cost of the prototype in [5], as blocks of length
1000 bps are still difficult to synthesize. This trend is likely to change dra-
matically in the near future, as within the last seven months, the cost of
synthesizing 1000 bps blocks reduced almost 7-fold. Despite its high cost,
our system offers exceptionally large storage density and enables, for the first
time, random access and content rewriting features. Furthermore, although
we used Sanger sequencing methods for our small scale experiment, for large
scale storage projects Next Generation Sequencing (NGS) technologies will
enable significant reductions in readout costs.

3.3 Methods

3.3.1 Address Design and Encoding

To encode information on DNA media, we employed a two-step procedure.
First, we designed address sequences of short length which satisfy a number of
constraints that makes them suitable for highly selective random access [30].
Constrained coding ensures that DNA patterns prone to sequencing errors are
avoided and that DNA blocks are accurately accessed, amplified and selected
without perturbing or accidentally selecting other blocks in the DNA pool.
The coding constraints apply to address primer design, but also indirectly
govern the properties of the fully encoded DNA information blocks. The
design procedure used is semi-analytical insofar as it combines combinatorial

Table 3.1: Selection, rewriting and sequencing results. Each rewritten 1000
bps sequence was ligated to a linearized pCRTM-Blunt vector using the
Zero Blunt PCR Cloning Kit and was transformed into E. coli. The E. coli
strains with correct plasmids were sequenced at ACGT, Inc. Sequencing
was performed using two universal primers: M13F_20 (in the reverse
direction) and M13R (in the forward direction) to ensure that the entire
block of 1000 bps is covered.

Sequence identifier - Editing Method # of sequence samples Length of edits (bps) Selection accuracy/error percentage
B1-M-gBlock 5 20 (5/5)/0%
B1-M-PCR 5 20 (5/5)/0%
B2-M-gBlock 5 28 (5/5)/0%
B2-M-PCR 5 28 (5/5)/0%
B3-M-gBlock 5 41+29 (5/5)/0%
B3-M-PCR 5 41+29 (5/5)/0%
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methods with limited computer search techniques. A unifying and highly
technically charged coding approach will be reported elsewhere.

We required the address sequences to satisfy the following constraints:

• (C1) Constant GC content (close to 50%) of all their prefixes of suf-
ficiently long length. DNA strands with 50% GC content are more
stable than DNA strands with lower or higher GC content and have
better coverage during sequencing. Since encoding user information is
accomplished via prefix-synchronization, it is important to impose the
GC content constraint on the addresses as well as their prefixes, as
the latter requirement also ensures that all fragments of encoded data
blocks have balanced GC content.

• (C2) Large mutual Hamming distance, as it reduces the probability of
erroneous address selection. Recall that the Hamming distance between
two strings of equal length equals the number of positions at which the
corresponding symbols disagree. An appropriate choice for the mini-
mum Hamming distance is equal to half of the address sequence length
(10 bps in our current implementation which uses length 20 address
primers). It is worth pointing out that rather than using the Ham-
ming distance, one could use the Levenshtein (edit) distance instead,
capturing the smallest number of deletions, insertions and substitu-
tions needed to convert one string into another. Unfortunately, many
address design problems become hard to analyze under this distance
measure, and are hence not addressed in this manuscript.

• (C3) Uncorrelatedness of the addresses, which imposes the restriction

Table 3.2: Comparison of storage densities for the DNA encoded
information expressed in B/g (bytes per gram), file size, synthesis cost, and
random access features of three known DNA storage technologies. Note
that the density does not reflect the entropy of the information source, as
the text files are encoded in ASCII format, which is a redundant
representation system.

Work Church et al. [4] Goldman et al. [5] Our scheme [17]
Density 0.7× 1015 B/g 2.2× 1015 B/g 4.9× 1020 B/g
File size 5.27Mb 739kB 17kB
Cost Not available $12, 600 $4, 023
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that prefixes of one address do not appear as suffixes of the same or
another address and vice versa. The motivation for this new constraint
comes from the fact that addresses are used to provide unique identities
for the blocks, and that their substrings should therefore not appear
in “similar form” within other addresses. Here, “similarity” is assessed
in terms of hybridization affinity. Furthermore, long undesired prefix-
suffix matches may lead to read assembly errors in blocks during joint
informational retrieval and sequencing.

• (C4) Absence of secondary (folding) structures, as such structures may
cause errors in the process of PCR amplification and fragment rewrit-
ing.

Addresses satisfying constraints C1-C2 may be constructed via error-correcting
codes with small running digital sum [11] adapted for the new storage sys-
tem. Properties of these codes are discussed in Section 3.3.2. The notion
of mutually uncorrelated sequences is described in 3.3.3; it was studied in an
unrelated context under the name cross-bifix-free coding. We also introduce
a new and more suitable version of cross-bifix-free codes termed weakly mu-
tually uncorrelated sequences. Constructing addresses that simultaneously
satisfy the constraints C1-C4 and determining bounds on the largest number
of such sequences is prohibitively complex [10,14]. To mitigate this problem,
we resort to a semi-constructive address design approach, in which balanced
error-correcting codes are designed independently, and subsequently expur-
gated so as to identify a large set of mutually uncorrelated sequences. The re-
sulting sequences are subsequently tested for secondary structure using mfold
and Vienna [15].
Given two uncorrelated sequences as flanking addresses of one block, one

of the sequences is selected to encode user information via a new imple-
mentation of prefix-synchronized encoding [13, 15], described in 3.3.4. The
asymptotic rate of an optimal single sequence prefix-free code is one. Hence,
there is no asymptotic coding loss for avoiding prefixes of one sequence; we
only observe a minor coding loss for each finite-length block. For multiple se-
quences of arbitrary structure, the problem of determining the optimal code
rate is significantly more complicated and the rates have to be evaluated
numerically, by solving systems of linear equations [13] as described in 3.3.4
and [17]. This system of equations leads to a particularly simple form for the
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generating function of mutually uncorrelated sequences.

3.3.2 Balanced Codes and Running Digital Sums

One criterion for selecting block addresses is to ensure that the corresponding
DNA primer sequences have prefixes with a GC content approximately equal
to 50%, and that the sequences are at large pairwise Hamming distance. Due
to their applications in optical storage, codes that address related issues have
been studied in a different form under the name of bounded running digital
sum (BRDS) codes [11, 12]. A detailed overview of this coding technique
may be found in [11].
Consider a sequence a = a0, a1, a2, . . . , al, . . . , an over the alphabet {−1, 1}.

We refer to Sl (a) =
∑l−1

i=0 ai as the running digital sum (RDS) of the sequence
a up to length l, l ≥ 0. Let Da = max {|Sl (a)| : l ≥ 0} denote the largest
value of the running digital sum of the sequence a. For some predetermined
value D > 0, a set of sequences {a(i)}Mi=1 is termed a BRDS code with
parameter D if Da(i) ≤ D for all i = 1, . . . ,M . Note that one can define
non-binary BRDS codes in an equivalent manner, with the alphabet usually
assumed to be symmetric, {−q,−q + 1, . . . ,−1, 1, . . . , q − 1, q}, and where
q ≥ 1. A set of DNA sequences over {A, T, G, C} may be constructed in a
straightforward manner by mapping each +1 symbol into one of the bases
{A, T} , and −1 into one of the bases {G, C}, or vice versa. Alternatively, one
can use BRDS over an alphabet of size four directly.

To address the constraints C1-C2, one needs to construct a large set of
BRDS codewords at sufficiently large Hamming distance from each other.
Via the mapping described above, these codewords may be subsequently
translated to DNA sequences with a GC content approximately equal to
50% for all sequence prefixes, and at the same Hamming distance as the
original sequences.

Let (n,C, d;D) be the parameters of a BRDS error-correcting code, where
C denotes the number of codewords of length n, d denotes the minimum
distance of the code, while logC

n
equals the code rate. For D = 1 and d = 2,

the best known BRDS-code has parameters
(
n, 2

n
2 , 2; 1

)
, while for D = 2

and d = 1, codes with parameters
(
n, 3

n
2 , 1; 2

)
exist. For D = 2 and d = 2,

the best known BRDS code has parameters
(
n, 2 · 3(n2 )−1, 2; 2

)
[12]. Note
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that each of these codes has an exponentially large number of codewords,
among which an exponentially large number of sequences satisfy the required
correlation property C3, discussed next. Codewords satisfying constraint C4
were found by expurgating the BRDS codes via computer search.

3.3.3 Sequence Correlation

We describe next the notion of the autocorrelation of a sequence and de-
scribe mutually uncorrelated sequences (i.e., cross-bifix-free codes) and the
new class of weakly mutually uncorrelated sequences. Mutually uncorrelated
sequences, cross-bifix-free and non-overlapping codes were introduced and
rediscovered many times, as witnessed by the publications [23,44–46].

It was shown in [13] that the autocorrelation function is the crucial math-
ematical concept for studying sequences avoiding forbidden strings and sub-
strings. In the storage context, forbidden strings correspond to the addresses
of the blocks in the pool. In order to accommodate the need for selective re-
trieval of a DNA block without accidentally selecting any undesirable blocks,
we find it necessary to also introduce the notion of mutually uncorrelated
sequences.

Let X and Y be two words, possibly of different lengths, over some alpha-
bet of size q > 1. The correlation of X and Y , denoted by X ◦Y , is a binary
string of the same length as X. The i-th bit (from the left) of X ◦ Y is de-
termined by placing Y under X so that the leftmost character of Y is under
the i-th character (from the left) of X, and checking whether the characters
in the overlapping segments of X and Y are identical. If they are identical,
the i-th bit of X ◦ Y is set to 1, otherwise, it is set to 0. For example, for
X = CATCATC and Y = ATCATCGG, X ◦ Y = 0100100, as depicted below.
Note that in general, X ◦ Y 6= Y ◦X, and that the two correlation vectors

may be of different lengths. In the example above, we have Y ◦X = 00000000.
The autocorrelation of a word X equals X ◦X.
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In the example below, X ◦X = 1001001.

X = C A T C A T C

Y = A T C A T C G G 0

A T C A T C G G 1

A T C A T C G G 0

A T C A T C G G 0

A T C A T C G G 1

A T C A T C G G 0

A T C A T C G G 0

(3.1)

Definition 3. A sequence X is self-uncorrelated if X ◦X = 10 . . . 0. A set
of sequences {X1, X2, . . . , XM} is mutually uncorrelated (cross-bifix-free) if
each sequence is self-uncorrelated and if all pairs of distinct sequences satisfy
Xi ◦Xj = 0 . . . 0 and Xj ◦Xi = 0 . . . 0.

Intuitively, correlation captures the extent to which prefixes of sequences
overlap with suffixes of the same or other sequences. Furthermore, the no-
tion of mutual uncorrelatedness may be relaxed by requiring that only suffi-
ciently long prefixes do not match sufficiently long suffixes of other sequences.
Sequences with this property, and at sufficiently large Hamming distance,
eliminate undesired address cross-hybridization during selection and cross-
sequence assembly errors.

We provide the following extremely simple and easy-to-prove bound on
the size of the largest mutually uncorrelated set of sequences of length n over
an alphabet of size q = 4. The bounds show that there exist exponentially
many mutually uncorrelated sequences for any choice of n, and the lower
bound is constructive. Furthermore, the construction used in the bound
“preserves” the Hamming distance and GC content, which distinguishes it
from any known results in classical coding theory.

Theorem 9. Suppose that {X1, . . . , XM} is a set of M pairwise mutually
uncorrelated sequences of length n. Let u (n) denote the largest possible
value of M for a given n. Then

4 · 3
n
4 ≤ u (n) ≤ 9 · 4n−2. (3.2)

As an illustration, for n = 20, the lower bound equals 972. The proof of
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the theorem is given in [17].
It remains an open problem to determine the largest number of address

sequences that jointly satisfy the constraints C1-C4. We conjecture that the
number of such sequences is exponential in n, as the numbers of words that
satisfy C1-C3 and C4 [14] are exponential. Exponentially large families of
address sequences are important indicators of the scalability of the system
and they also influence the rate of information encoding in DNA.

Using a casting of the address sequence design problem in terms of a simple
and efficient greedy search procedure, we were able to identify 1149 sequences
for length n = 20 that satisfy constraints C1-C4, out of which 32 pairs were
used for block addressing. Another means to generate large sets of sequences
satisfying the constraints is via approximate solvers for the largest indepen-
dent set problem [47]. Examples of sequences constructed in the aforemen-
tioned manner and used in our experiments are listed in [17].

3.3.4 Prefix-Synchronized DNA Codes

In the previous sections, we described how to construct address sequences
that can serve as unique identifiers of the blocks they are associated with.
We also pointed out that once such address sequences are identified, user
information has to be encoded in order to avoid the appearance of any of the
addresses, sufficiently long substrings of the addresses, or substrings similar
to the addresses in the resulting DNA codeword blocks. For this purpose,
we developed new prefix-synchronized encoding schemes based on ideas pre-
sented in [10], but generalized to accommodate multiple sequence avoidance.
To address the problem at hand, we start by introducing comma-free and

prefix-synchronized codes which allow for constructing codewords that avoid
address patterns. A block code C comprising a set of codewords of length
N over an alphabet of size q is called comma-free if and only if for any
pair of not necessarily distinct codewords a1a2 . . . aN and b1b2 . . . bN in C, the
N concatenations a2a3 . . . aNb1, a3a4 . . . b1b2, . . . , aNa1 . . . bN−2bN−1 are not in
C [13]. Comma-free codes enable efficient synchronization protocols, as one is
able to determine the starting positions of codewords without ambiguity. A
major drawback of comma-free codes is the need to implement an exhaustive
search procedure over sequence sets to decide whether or not a given string of
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length n should be used as a codeword or not. This difficulty can be overcome
by using a special family of comma-free codes, introduced by Gilbert [8] un-
der the name prefix-synchronized codes. Prefix-synchronized codes have the
property that every codeword starts with a prefix p = p1p2 . . . pn, which is
followed by a constrained sequence c1c2 . . . c`. Moreover, for any codeword
p1p2 . . . pnc1c2 . . . c` of length n+`, the prefix p does not appear as a substring
of p2 . . . pnc1c2 . . . c`p1p2 . . . pn−1. More precisely, the constrained sequences
of prefix-synchronized codes avoid the pattern p which is used as the address.
First, we point out that in our work, no consideration is given to concatena-
tions of codewords as DNA blocks are stored unattached. Furthermore, due
to the choice of mutually uncorrelated addresses at large Hamming distance,
we can encode each information block by avoiding only one of the address
sequences, used for that particular block. Avoidance of all other address se-
quences is automatically guaranteed by the lack of correlation between the
sequences, as demonstrated in the proof of our encoding method.
Specifically, for a fixed set A of address sequences of length n, we define

the set CA(`) to be the set of sequences of length ` such that each sequence in
CA(`) does not contain any string belonging to A. Therefore, by definition,
when ` < n, the set CA(`) is simply the set of strings of length `. Our objective
is then to design an efficient encoding algorithm (one-to-one mapping) to
encode a set I of messages into CA(`). For the sake of simplicity, we let
I = {0, 1, 2, . . . , |I| − 1}.
In this scheme, we assume that A is mutually uncorrelated and all se-

quences in A end with the same base, which we assume without loss of
generality to be G. We then pick an address a = a1a2 . . . an ∈ A and define
the following entities for 1 ≤ i ≤ n,

Āi = {A, T, C} \ {ai} (3.3)

a(i) = a1 . . . ai. (3.4)

In addition, assume that the elements of Āi are arranged in increasing order,
say using the lexicographical ordering A ≺ C ≺ T. We subsequently use āi,j
to denote the j-th smallest element in Āi, for 1 ≤ j ≤

∣∣Āi∣∣ . For example, if
Āi = {C, T} , then āi,1 = C and āi,2 = T.

Next, we define a sequence of integers Sn,1, Sn,2, . . . that satisfies the fol-
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lowing recursive formula:

Sn,` =

3`, 1 ≤ ` < n,∑n−1
i=1

∣∣Āi∣∣Sn,`−i, ` ≥ n.
(3.5)

For an integer ` ≥ 0 and y < 3`, let θ` (y) = {A, T, C}` be a length-` ternary
representation of y. Conversely, for each W ∈ {A, T, C}`, let θ−1 (W ) be the
integer y such that θ` (y) = W . We proceed to describe how to map every
integer {0, 1, 2, . . . , Sn,l − 1} into a sequence of length ` in CA(`) and vice
versa. We denote these functions as Encodea,` and Decodea, respectively.
The steps of the encoding and decoding procedures are listed in Algo-

rithm 1.
The following theorem is proved in [17].

Theorem 10. Let A be a set of mutually uncorrelated sequences that ends
with the same base. Then for a ∈ A, Encodea,` is an one-to-one mapping
from {0, 1, 2, . . . , Sn,l−1} to CA(`). Moreover, for all x ∈ {0, 1, 2, . . . , Sn,l−1},
Decodea(Encodea,`(x)) = x.

A simple example describing the encoding and decoding procedure for
the short address string a = AGCTG, which can easily be verified to be self-
uncorrelated, is provided in [17].
The previously described Encodea,`(x) algorithm imposes no limitations

on the length of a prefix used for encoding. This feature may lead to un-
wanted cross hybridization between address primers used for selection and
the prefixes of addresses encoding the information. One approach to miti-
gate this problem is to “perturb” long prefixes in the encoded information in
a controlled manner. For small-scale random access/rewriting experiments,
the recommended approach is to first select all prefixes of length greater
than some predefined threshold. Afterwards, the first and last quarter of the
bases of these long prefixes are used unchanged while the central portion of
the prefix string is cyclically shifted by half of its length. For example, for the
address a = AGTAAGTCTCGCAGTCATCG, if the prefix a(16) = AGTAAGTCTCGCAGTC

appears as a subword, say V , in X = Encodea,`(x) then X is modified to
X ′ by mapping V to V ′ = AGTAATCGGTCCAGTC. This process of shifting is
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Algorithm 1 Encoding and decoding
X = Encodea,` (x)
begin
1 n← length (a) ;
2 if (` ≥ n)
3 t← 1;
4 y ← x;
5 while

(
y ≥

∣∣Āt∣∣Sn,`−t)
6 y ← y −

∣∣Āt∣∣Sn,`−t;
7 t← t+ 1;
8 end;
9 c← by/Sn,`−tc;
10 d← y mod Sn,`−t;
11 return a(t−1)āt,c+1Encodea,`−t(d);
12 else
13 return θ` (x) ;
14 end;
end;
x = Decodea (X)
begin
1 n← length (a) ;
2 `← length (X) ;
3 assume that the input is X = X1X2 . . . X`;
4 if (` < n)
5 return θ−1 (X) ;
6 else
7 find(u, v) such that a(u−1)āu,v = X1 . . . Xu;

8 return
(∑u−1

i=1 |Āi|Sn,`−i
)

+ (v − 1)Sn,`−u + Decodea(Xu+1 . . . X`);
9 end;
end;

illustrated below:

X = . . .

V︷ ︸︸ ︷
AGTAA GTCTCG︸ ︷︷ ︸ CAGTC . . .

⇓
cyclically shift by 3

⇓
X ′ = . . . AGTAA

︷ ︸︸ ︷
TCGGTC CAGTC︸ ︷︷ ︸

V ′

. . .

(3.6)

For an arbitrary choice of the addresses, this scheme may not allow for unique
decoding Encodea,`. However, there exist simple conditions that can be
checked to eliminate primers that do not allow this transform to be “unique”.
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Given the address primers created for our random access/rewriting exper-
iments, we were able to uniquely map each modified prefix to its original
prefix and therefore uniquely decode the readouts.

As a final remark, we would like to point out that prefix-synchronized
coding also supports error-detection and limited error-correction. Error-
correction is achieved by checking if each substring of the sequence represents
a prefix or “shifted” prefix of the given address sequence and making proper
changes when needed.
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Chapter 4

PORTABLE AND ERROR-FREE
DNA-BASED DATA STORAGE

4.1 Introduction

Modern data storage systems primarily rely on optical and magnetic media
to record massive volumes of data that may be efficiently accessed, retrieved,
and copied [48]. Key features of existing recorders include random access
and highly accurate data retrieval, supported by low-cost, real-time opera-
tions. Recently, these systems were challenged by the emergence of the first
DNA- and polymer-based data storage platforms [4–6,17,49–51]. These new
platforms have the potential to overcome existing bottlenecks of classical
recorders as they offer ultrahigh storage densities on the order of 1015–1020

bytes per gram of DNA [4,5, 17,49].
Experiments have shown that using DNA-based data storage one can

record files as large as 200 MB [49], and ensure long-term data integrity
through encapsulation [6] and coding [17, 49, 52, 53]. Data retrieval has ex-
clusively been performed via high-throughput, high-cost sequencers, such
as Illumina HiSeq [4, 5] and MiSeq [6, 49], because inexpensive portable se-
quencers such as MinION may introduce a prohibitively large number of
deletion, insertion, and substitution errors. Some highly conservative esti-
mates [54] for first-generation MinION sequencers suggested error rates as
high as 30%, which by far exceed those of optical recorders equal to 1 bit/10
TBs [55].

In order to make DNA-based data storage competitive with existing flash
technologies, it is hence imperative to reduce synthesis cost by avoiding un-
desirable DNA sequence patterns; provide for random access, as otherwise
selective reading becomes impossible; reduce sequencing cost by enabling
portable readout systems ; and offer extremely low error rates, comparable to
those of classical recorders.
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Our implementation addresses these challenges by introducing several unique,
new concepts in bioinformatics, coding theory, and synthetic biology. In par-
ticular, it entails:

• Reducing the cost of synthesizing DNA containing user information via
compression and subsequent constrained coding. Constrained coding
eliminates substrings that may cause problems during synthesis, such
as short repetitive substrings near the 3’ and 5’ ends of the string;
it also limits the length of homopolymers (homopolymers are “runs”
of consecutive symbols of the same kind, for example, AAAA) that
cause both synthesis and sequencing problems, and balances out the
GC content within short substrings of the encoded data.

• Providing random access by storing data in gBlock codewords (long
DNA strings) equipped with addresses that allow for accurate selection
via polymerase chain reactions (PCRs). The addresses have special-
ized properties, such as GC balanced content, large mutual Hamming
distance, and weak mutual correlation. Controlled mutual correlation
allows for avoiding matches of substrings of the address sequences in
encoded data, and consequent erroneous codeword selection. The ad-
dresses are constructed mathematically using two binary component
codes, without resorting to computer search.

• Ensuring portability of the system by using nanopore sequencers, such
as MinION, while error-tolerance, which is challenging to accomplish
with such architectures, is built-in via a new set of consensus sequence
construction algorithms and asymmetric deletion-correcting codes tailor-
made for the nanopore channel. The new consensus method combines
classical multiple sequence alignment methods with side information
provided by the address sequences, and improves upon the state-of-
the-art nanopolish platform, as it exploits the algebraic structure of
the gBlock codewords. Furthermore, the deletion correcting codes are
designed for errors that occur in consensus sequences, such as bounded
magnitude errors in the homopolymer length sequences.

All these techniques are seamlessly combined into an integrated pipeline
for data encoding (compression and constrained encoding) and postprocess-
ing (address sequence identification, iterative sequence alignment and error
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correction). On a broader scale, our work also presents experimental results
regarding a new DNA-based data storage architecture that has many fea-
tures of modern storage devices and paves the way for practical employment
of macromolecular storage systems (see Table 4.1).

4.2 The Encoding Step

When compressed, data is stripped of its redundancy and errors in the com-
pressed domain introduced either during synthesis or sequencing may cause
catastrophic error propagation in the decompressed file. Even one single
substitution error in the compressed domain may render the file unrecogniz-
able. Hence, it may appear undesirable to perform data compression. Un-
fortunately, uncompressed files are significantly larger than their compressed
counterparts, which implies significantly higher costs for synthesizing the in-
formation into DNA codewords. Our analysis detailed in Section 4.5 shows
that the cost of adding redundancy for eliminating errors in the compressive
domain is negligible compared to the cost of synthesizing uncompressed files.
As a result, to accommodate large file sizes at low synthesis cost, the data
is first compressed. To introduce the redundancy needed for different stages
of error correction and to minimize the addressing overhead, we chose the
DNA codeword length to be 1,000 base pairs (bp). This codeword length
also offers good assembly quality of long files without additional coverage
redundancy or word identifiers, and the overall smallest commercial synthe-
sis cost. The prevalent method for encoding information into DNA relies
on the use of oligos of length close to 100 nucleotides. Such a length in-
troduces high loss in coding efficiency when addressing is performed, and

Table 4.1: Comparison of features/properties of current DNA-based storage
platforms.

Work Random Portability Sequencing Sequencer Error Net density
access technology error rate correction/detection (bits/bp)

Church [4] No No HiSeq 0.1-0.3% None 0.83
Goldman [5] No No HiSeq 0.1% Detection 0.33
Yazdi [17] Yes No Sanger 0.05% Correction 1.575
Grass [6] No No MiSeq 0.1% Correction 1.14
Bornholt [49] Yes No MiSeq 0.1% None 0.88
Erlich [52] No No MiSeq 0.1% None 1.55
Yazdi [18] Yes Yes MinION 12% Correction 1.72
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underutilizes nanopore sequencing platforms. Some work has reported lower
synthesis cost for oligo sequences, but this may be due to special arrange-
ments made with the companies performing synthesis. To accommodate this
choice of codeword length, as well as the inclusion of codeword address se-
quences, we grouped 123 × 14 = 1, 722 consecutive bits in the compressed
file and translated them into DNA blocks comprising 123 × 8 = 984 bases.
We then balanced the GC-content of each substring of 8 bases via specialized
constrained coding techniques that extend our previous results in terms of
mitigating the need for computer search and providing mathematical charac-
terizations of the addresses [16], outlined in Section 4.5. Balancing eliminates
certain secondary structures, reduces synthesis errors, and helps to correct
sequencing deletion errors. Each of the remaining 16 bases in a DNA code-
word is used as a codeword address. As already pointed out, the purpose of
the addressing method is to enable random access to codewords via highly
selective PCR reactions. Selectivity is achieved by prohibiting the appear-
ance of the address sequence anywhere in the encoded DNA blocks [16, 17].
Additional protection against deletion errors is provided via a new coding
method we term homopolymer check codes. When coupled with balancing
and subsequent read alignment steps, homopolymer checks lead to error-free
readouts. A detailed description of the balancing and addressing schemes
may be found in Section 4.5. Homopolymer checks are also discussed in the
postprocessing step. All the encoding techniques are universal and there-
fore transparent to the type of data to be stored. The encoding pipeline is
illustrated in Figure 4.1.

4.3 The Postprocessing Step

Postprocessing follows the physical process of sequencing via nanopores, as
outlined in Section 4.5. The reads obtained using the MinION MkI se-
quencers have sequence-dependent substitution, deletion, and insertion er-
rors, described in detail in Section 4.5. In practice, arbitrary combinations
of deletions, insertions and substitution are harder to correct than deletions
alone. Hence, we performed a consensus alignment procedure that “trans-
forms” almost all insertion and substitution errors into deletion errors con-
fined to homopolymers of certain lengths, and generates an estimate of the
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Figure 4.1: The encoding stage. This stage involves compression,
representation conversion, encoding into DNA, and subsequent synthesis.
Each synthesized DNA codeword is equipped with one or two addresses.
The encoding phase entails constrained coding, which limits the occurrence
of the address block to one predefined position in the codeword only, and
GC-content balancing of each substring of eight bases. Additional
homopolymer checks are added directly into the string or stored on classical
media; they correspond to only 0.02% of the data content.
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DNA codeword based on the noisy reads.
In the first phase of postprocessing, we constructed a rough estimate of the

DNA codewords. For this purpose, we used the address sequences to identify
high-quality reads, i.e., those reads that contain an exact match with the
given address. Aligning all reads instead of only high quality reads results in
a large number of errors, and the quality of the reads is highly nonuniform.
Next, we ran different multiple sequence alignment (MSA) algorithms on
the identified high-quality reads and obtained different consensus sequences.
For that purpose, we used Kalign, Clustal Omega, Coffee, and MUSCLE
[56,57]. As multiple sequence alignment algorithms are traditionally designed
for phylogenetic analysis, their parameters are inappropriate for modeling
“mutations” introduced by nanopore sequencers. Hence, for each alignment
method, new parameters were chosen by trial and error (see Section 4.5).
The choice of the parameters was governed by the edit distance between the
MSA consensus sequence and the corresponding DNA codeword.

As each alignment method produced a different consensus sequence, we
formed an aggregate consensus. The aggregate consensus contains the “ma-
jority homopolymer” of the different MSA algorithms. As an example, if
three MSA algorithms produced three consensus sequences, AAATTGCC,
AATTTGCA, and AAATTGC, the majority homopolymer consensus would
equal AAATTGCA, as two sequences contain a homopolymer of three As
at the first position; two sequences contain a homopolymer of two Ts in the
positions to follow; and all three sequences contain G and C. Observe that
A is included in the last position of the consensus.

In the second phase of postprocessing, we performed iterative alignment.
By this stage, consensus sequences that estimate the original DNA blocks
were identified, with errors mostly confined to deletions in homopolymers
of length at least two. (See Section 4.5 for a detailed analysis.) To further
improve the reconstruction quality of the blocks and thereby correct more
errors, we performed one more round of BWA [58] alignment to match more
reads with the corresponding estimates of their DNA codewords. Once this
alignment was generated, two sequential checks were performed simultane-
ously on the bases. The checks included computing the majority consensus
for each homopolymer length and determining whether the GC-balancing
constraint for all substrings of length 8 was satisfied. More precisely, in the
majority count, only homopolymer lengths that resulted in a correct balance
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Figure 4.2: Postprocessing via sequence alignment and homopolymer
correction. In the first phase, estimates of the DNA codewords are obtained
by running several MSA algorithms on high-quality reads that contain an
exact match with the address sequence. The second phase improves the
estimate by employing an iterative method that includes BWA alignment
and an error-correcting scheme.

were considered. This procedure is illustrated by an example in Section 4.5.
Note that alignment does not require any coding redundancy, while balanc-
ing uses typical sequences and, as a result of this, has a high coding rate of
0.88. The alignment procedure is depicted in Figure 4.2.
In the final stage of postprocessing, we corrected deletion errors in ho-

mopolymers of length exceeding one. For this purpose, we used an error-
correction scheme that parses the consensus sequence into homopolymers.
As an example, the parsing of the sequence AATCCCGA into homopoly-
mers AA, T, CCC, G, A gives rise to a homopolymer length sequence of
2,1,3,1,1. Special redundancy that protects against asymmetric substitu-
tion errors is incorporated into the homopolymer length sequence. If two
deletions were to occur in the example consensus, resulting in ATCCGA,
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the homopolymer lengths would equal 1,1,2,1,1. Here, we can recover the
original length sequence 2,1,3,1,1 from 1,1,2,1,1 by correcting two bounded
magnitude substitution errors. Note that the sequence of the homopolymer
symbols is known from the consensus.

4.4 System Implementation

Because we tested address-based DNA data storage methods for ordinary text
files [17], for practical implementation we focused on image data. Two images
were used as test samples: a poster for the movie Citizen Kane (released in
1941), and a color Smiley Face emoji. The total size of the images was 10,894
bytes. The two images were compressed into a JPEG [59] format and then
converted into a binary string using Base64 [60] (Base64 allows one to embed
images into HTML files). The resulting size for the two compressed images
was 3,633 bytes.
Through the previously described data encoding methods, the images were

converted into 17 DNA blocks, out of which 16 blocks were of length 1,000
bp and one single block was of length 880 bp. Before the sequences were
submitted for synthesis, they were tested by the IDT (Integrated DNA Tech-
nologies) gBlocks Gene Fragments Entry online software; they were then
synthesized. The total cost of the testing and synthesis was $2,540. IDT
failed to synthesize one of the blocks because of a high GC-content in one
substring of the address sequence, which was subsequently corrected through
the addition of adapters at the two ends of the sequences. Based on infor-
mation about this type of synthesis error, the sequence encoding procedure
was modified to accommodate balancing of all short substrings of the DNA
blocks, including the addresses, as previously described. This reduced the
synthesis error rate and synthesis time.
The gBlocks representing our DNA codewords synthesized by IDT were

mixed in equimolar concentration. One microgram of pooled gBlocks was
used to construct the Oxford Nanopore libraries with the Nanopore Sequenc-
ing kit SQK-MAP006. The gBlock libraries were pooled and sequenced for
24 hours in a portable size MinION MkI using R7 chemistry and flowcell Mk
1 FLO-MAP103.12 with sequencing speed 75 bp/s. All of the reads used in
our subsequent testing were generated within the first 12 hours of sequencing.
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Base-calling was performed in real time with the cloud service of Metrichor
(Oxford, UK); the run produced a total of 6,660 reads that passed the fil-
ter. Table 4.2 provides a summary of the alignment results for all obtained
reads, with respect to the reference genomes, along with the types of errors
observed. It also illustrates how our new consensus formation algorithm sig-
nificantly outperforms nanopolish. After the consensus formation stage, the
error rate reduced to a mere 0.02% without any error-correction redundancy.
It is important to observe that there are two levels of errors we are dealing
with: per read and per consensus errors. Sequencing coverage clearly allows
for the consensus error to be significantly smaller than the average per read
error.

The three residual errors in the 17 consensus codewords were of the fol-
lowing type: in one block, two homopolymers AAAAAAA were erroneously
decoded to AAAAA, while in one block, the homopolymer AAAAA was con-
verted into AAAA. Error patterns where long homopolymer lengths are being
reduced by one or two were also observed in the raw reads, as well as in other
experiments that we will report on elsewhere. These asymmetric homopoly-
mer errors were subsequently corrected using homopolymer checks, thereby
producing error-free reconstructed images. The images reconstructed with
and without homopolymer checks are shown in Figure 4.3 (e,f) and Figure
4.3 (c,d), respectively.

The described implementation represents the only known random access
DNA storage system that operates in conjunction with a MinION sequencer.
Despite the fact that MinION has significantly higher error rates than Il-
lumina sequencers and that random-access DNA systems typically require
additional data redundancy, our DNA storage system has the highest re-
ported information rate of 0.85, storage density of 1.1 × 1023 bytes/gram,
and it offers error-free reconstruction.

4.5 Supplementary Information

Before data is encoded into DNA, it is compressed to reduce the file size and
hence lower the cost of DNA synthesis. Any compression method is compat-
ible with our encoding procedures and is left as a choice for the user. Given
that the focus of this study is image storage, the compression method used
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Figure 4.3: Image files used in our experiment. (a, b) show the raw images
which were compressed, encoded and synthesized into DNA blocks. The
Citizen Kane poster (photographed by Kahle, A., date of access:
17/11/2016) RKO Radio Pictures, not copyrighted per claim of Wikipedia
repository) and Smiley Face emoji were of size 9,592 and 130.2 bytes, and
had dimensions of 88× 109 and 56× 56 pixels, respectively. (c, d) show the
recovered images after sequencing of the DNA blocks and the
postprocessing phase without homopolymer error correction. Despite
having only two errors in the Citizen Kane file, we were not able to recover
any detail in the image. On the other hand, one error in the Smiley Face
emoji did not cause any visible distortion. (e, f) show the image files
obtained after homopolymer error correction, leading to an error-free
reconstruction of the original file.
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throughout our analysis and implementation is JPEG. The actual process of
encoding refers to converting the compressed data into DNA codewords of
length 1,000 bp (gBlocks). Note that we alternatively refer to the codewords
as DNA blocks or gBlocks.

Despite a large amount of work on oligo-based data storage, we used
gBlocks as they have many advantages over oligo sequences, including:

1. Long DNA sequences may be easily assembled with minimal or no cov-
erage redundancy even when no addressing schemes are used. When
using addresses, one effectively mitigates the need for assembly if the
address sequences are carefully designed. Furthermore, for long code-
word lengths, the overhead introduced by address sequences is negligi-
ble, as the length of the address is typically logarithmic in the length
of the codeword.

2. Long DNA sequences offer largest coding efficiency as the address over-
head for oligos may be as large as 20%, while for gBlocks it amounts
to a mere 2%. Furthermore, all known coding schemes offer best per-
formance for long block lengths.

3. Most third-generation sequencing technologies are being developed to
accommodate long reads, and hence long-read sequencers will become
the dominant market product in the near future; at the same time,
a number of companies (e.g., IDT) offer smallest costs per base pair
for long DNA sequences (for IDT, this cost equals 14 cents). Note
that currently, a significantly lower cost for gBlocks may be obtained
through Gen9 (https://www.gen9bio.com).

All modern storage systems offer random access, as otherwise one would
have to retrieve the complete data content to read out even one bit of desired
information. As every random-access data storage system is built around ad-
dressing schemes, we start with a description of address sequence construction
and encoding. The results presented in the next section build upon our pre-
vious random-access architecture [17], with the important difference that this
work presents the first explicit mathematical construction of exponentially
large sets of addresses.
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4.5.1 Data Encoding

We represent a DNA codeword (block) by a row vector over the four symbols
alphabet D = {A,C,G, T}. Moreover, we make frequent use of the following
notation:

• If a = (a1, · · · , an) and b = (b1, · · · , bm) are two vectors over the same
alphabet D, then ab is the vector obtained by appending b to a, i.e.,
ab = (a1, · · · , an, b1, · · · , bm).

• If a = (a1, · · · , an), then aji= (ai, · · · , aj) is used to denote the substring
of a starting at position i and ending at position j, 1 ≤ i ≤ j ≤ n.

• If a = (a1, · · · , an), then a(i)=ani a
i−1
1 is the cyclic shift of the vector a

starting at position 1 ≤ i ≤ n. Note that for the shift to be well defined
we impose the initial condition a(1)=a.

Next, we describe the encoding scheme used for constructing DNA code-
words that may contain arbitrary user information. Each DNA block starts
with a unique address of length p base pairs; the remaining symbols in the
block are referred to as the encoded information part of the block. Using
the previously introduced notation we may write each DNA block as ab,
where a denotes the address and b denotes the encoded information part.
We also denote the set of all the allowed address sequences of length p and all
valid encoded information sequences of length N-p by A and B, respectively.
Hence, a∈A and b∈B and the total codelength equals N.
The encoding goals are three-fold. The first goal is to design a set of

addresses and encoded information sequences such that for any two not nec-
essarily distinct addresses a,a

′∈A, and for any encoded information sequence
b∈B, a

′ does not appear as a substring anywhere in ap2b. In other words, if
c = ab then a

′ 6=cp+i−1i , for i ≥ 2. The second goal is to make the addresses as
distinguishable as possible, and ideally the solution for this problem would be
to use sequences at large edit distance. (Recall that the edit distance between
two strings equals the smallest number of deletions, insertions and substitu-
tions needed to convert one string into the other.) Working with the edit
distance causes a number of mathematical challenges, and we instead adopt
an approach that requires the Hamming distance between pairs of different
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addresses to be as large as possible (the Hamming distance between two se-
quences a,a

′∈A is defined as dH
(
a,a

′)
= |{i : ai 6= bi}|). The third goal is to

balance out the GC-content of sequences in B locally. Local balancing refers
to balancing the GC-content in each relatively short substring of the DNA
codewords. Local balancing simplifies the process of synthesis, enables error
correction and makes rewriting easier to accommodate with short primers.
These properties will be discussed further in the experimental study section.
More formally, with respect to the first design goal, our address sequences

are required to satisfy the following property.

Property 1. For any two not necessarily distinct addresses a,a
′∈A, and for

any encoded information sequence b ∈B, a
′ is not allowed to appear as a

substring in ap2b, i.e., a
′ 6= (ab)p+i−1i , for i ≥ 2.

We now describe a simple new construction for sequences that satisfy Prop-
erty 1. Another sequence family with related properties was introduced in
Chapter 2. Given a binary set (code) C ⊆{0, 1}n, let Ccyclic denote the set of
all cyclic shifts of elements in C, that is if a ∈C then a(i)∈Ccyclic, for 1 ≤ i ≤ n.
Consider two binary codes C1, C2 ⊆ {0, 1}n such that

• Ccyclic
1 ∩ C2 = ∅.

• If a ∈ C1, then a(i) /∈C1 for 2 ≤ i ≤ n.

Given these two binary codes, we first construct the set of addresses
A ⊆{A,C,G, T}2n according to:

A = {ψ (ff ,g) |f ∈ C1,g ∈ C3} . (4.1)

Note that the address length is p = 2n, C3 is a binary code of length
p = 2n whose properties may be chosen so as to enforce a minimum Hamming
distance on the addresses, and ψ (•, •) is a bijection that maps two binary
strings into one DNA codeword. More precisely, if f = (f1, · · · , fm)∈{0, 1}m

and g = (g1, · · · , gm)∈{0, 1}m, then ψ (f ,g) = h∈{A,C,G, T}m, where h =

(h1, · · · , hm) is obtained according to the rules:
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hi =



A, if (fi, gi) = (0, 0)

T, if (fi, gi) = (0, 1)

C, if (fi, gi) = (1, 0)

G, if (fi, gi) = (1, 1)

, for1 ≤ i ≤ m. (4.2)

The set of encoded information sequences B is defined as a collection of
DNA strings of the form

B = {s1· · ·sm|for m ≥ 1, si∈ S} . (4.3)

where the set S equals

S = {ψ (f ,g) |f ∈ C2,g ∈ C4} . (4.4)

Here C2, C4 are binary code of length n whose properties may be tuned to
accommodate balancing and Hamming distance constraints.

The next theorem shows that the sequences in A and B satisfy Property
1.
Theorem 1. A and B defined in 1 and 3, satisfy Property 1.
Proof. Consider two arbitrary address sequences a,a

′∈A and an encoded
information sequence b∈B. For simplicity of notation assume that a =ψ (ff ,g),
a
′
=ψ

(
f
′
f
′
,g
′) and that b = s1· · ·sm, where si=ψ (fi,gi) for 1 ≤ i ≤ m. Since

the mapping ψ (•, •) defined above is one-to-one, the claimed result will fol-
low if we can prove that f

′
f
′ does not appear as a substring anywhere in

fn2 ff1 · · · fm. This can be done by checking two conditions:

• f
′ does not appear as a substring anywhere in fn2 f . Otherwise, f

′ would
have to be a proper cyclic shift of f , i.e., there would exist an index
2 ≤ i ≤ n such that f

′
=f (i). But then f

′
= f (i) /∈C1, which contradicts

the assumption that f ,f
′ ∈ C1.

• f
′
f
′ does not appear as a substring in ff1 · · · fm. Otherwise, there would

exist a sequence fi for 1 ≤ i ≤ m that appears as a substring in f
′
f
′ .

This would in turn imply that fi is a cyclic shift of f
′ , i.e., fi ∈ Ccyclic

1 .
This contradicts our initial assumptions that fi ∈ C2 and Ccyclic

1 ∩ C2 =

∅.
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We now turn our attention to the practical implementation of this scheme
and the choice of various code components and parameters. In our exper-
iments, we set n = 8 and designed addresses of length p = 16. We also
selected C2 and C4 to be the set of all balanced binary words (i.e., words
with half 0s and half 1s) and all binary words of length 8, respectively. Note
that |C2| =

(
8
4

)
, |C4| = 28. In addition, according to the defining relation

(2), ψ (f ,g) is a GC-balanced DNA string if and only if f is a balanced
binary word. So, since C2 is a balanced set, S is just the set of all GC-
balanced DNA strings of length 8 bp. The cardinality of the latter set equals
|S| =

(
8
4

)
× 28, and B is formed by stringing together elements from S. An

important observation which will subsequently be used in our postprocessing
step is that balancing the GC-content of each substring of a given length
limits the longest homopolymer length to the same value – in our case, 8.

To construct a large set of addresses, one may select C1 = {10000000, 01111111}
and let C3 be the set of all binary strings of length 16. In this case, the num-
ber of addresses equals |A| = 217. Alternatively, one may select the code C3
to have large Hamming distance which would result in the same Hamming
distance for the constructed addresses (in our experiments, we used an ex-
tended [16,11,4] BCH code for C3). It is easy to verify that in this case A
and B satisfy the condition of Property 1. Also of importance are the nu-
merically computed Hamming distances between the chosen addresses of the
blocks and all the substrings of the encoded DNA blocks of the same length.
For each address of length 16 we hence recorded the distance between the
address and all the substrings in the codewords. We then identified the “most
similar” substrings for the address sequences in terms of the Hamming dis-
tance and replaced the later if needed to achieve larger discriminative power
during PCR reactions.
Using the described method, we designed 17 DNA blocks, each of length

1,000 bp, containing 984 bp of encoded information involving a black and
white movie poster (Citizen Kane) and a color image (Smiley Face). Here,
B was formed by grouping together 123 balanced strings from S. The block
addresses are listed in Table 4.3, along with the average and minimum Ham-
ming distances between our chosen addresses and encoded substrings. Note
that the choice of the BCH code C3 is justified by the fact that the minimum
Hamming distance between a DNA address and any encoded information
substring equals dH = 4.
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Table 4.2: Summary of the readout data, along with the number and type
of errors encountered in the reads.

Block Number Sequencing coverage Number of errors: (substitution, insertion, deletion)
(length) of reads depth

Average Maximum Per read Consensus
(average) Nanopolish Our method

1 (1,000) 201 176.145 192 (107, 14, 63) (14, 32, 5) (0, 0, 2)
2 (1,000) 407 315.521 349 (123, 12, 70) (75, 99, 40) (0, 0, 0)
3 (1,000) 490 460.375 482 (80, 23, 42) (10, 45, 0) (0, 0, 0)
4 (1,000) 100 81.763 87 (69, 18, 37) (1, 54, 1) (0, 0, 0)
5 (1,000) 728 688.663 716 (88, 20, 48) (4, 45, 3) (0, 0, 0)
6 (1,000) 136 120.907 129 (79, 21, 42) (390, 190, 61) (0, 0, 0)
7 (1,000) 577 542.78 566 (83, 26, 41) (3, 31, 3) (0, 0, 0)
8 (1,000) 217 199.018 207 (83, 20, 46) (18, 51, 1) (0, 0, 0)
9 (1,000) 86 56.828 75 (60, 16, 30) (404, 92, 54) (0, 0, 0)
10 (1,000) 442 396.742 427 (91, 18, 52) (388, 100, 59) (0, 0, 0)
11 (1,000) 114 101.826 110 (79, 23, 42) (16, 23, 18) (0, 0, 0)
12 (1,000) 174 162.559 169 (94, 23, 50) (14, 59, 1) (0, 0, 0)
13 (1,060) 378 352.35 366 (88, 26, 44) (7, 55, 4) (0, 0, 0)
14 (1,000) 222 189.918 203 (69, 22, 34) (15, 34, 3) (0, 0, 0)
15 (1,000) 236 222.967 232 (92, 24, 45) (15, 46, 2) (0, 0, 0)
16 (1,000) 198 182.99 195 (103, 16, 61) (15, 62, 4) (0, 0, 1)
17 (880) 254 240.273 250 (77, 19, 42) (359, 95, 44) (0, 0, 0)

Table 4.3: Block addresses and Hamming distance profiles of the addresses
vs DNA blocks. Only one address is used.

Block Average Hamming Minimum Hamming Forward address
(length) distance distance
1 (1,000 bp) 8.75 4 TATGCGCGACCCCCCT
2 (1,000 bp) 8.62 4 CCGAATATCAAAAATC
3 (1,000 bp) 9.27 5 AATCCGCGACCCCCGA
4 (1,000 bp) 9.28 5 CCCAATATCAAAATAG
5 (1,000 bp) 9.28 5 AAACCGCGACCCCGCT
6 (1,000 bp) 9.34 5 GCCTATATCAAAATTC
7 (1,000 bp) 9.30 6 TAAGCGCGACCCCGGA
8 (1,000 bp) 9.33 5 CGCAATATCAAATAAC
9 (1,000 bp) 9.33 5 ATACCGCGACCCGCCA
10 (1,000 bp) 9.32 5 GGCTATATCAAATATG
11 (1,000 bp) 9.27 5 TTAGCGCGACCCGCGT
12 (1,000 bp) 9.29 5 GGGTATATCAAATTAC
13 (1,060 bp) 9.35 4 TTTGCGCGACCCGGCA
14 (1,000 bp) 9.2 5 CGGAATATCAAATTTG
15 (1,000 bp) 9.2 5 ATTCCGCGACCCGGGT
16 (1,000 bp) 9.01 5 AAAGCCCCTGCGCCGT
17 (880 bp) 9.23 5 TTACCGCCTCCCCCCA
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Figure 4.4: Thermodynamic profiles of sequences with undesirable
GC-content. (a) The profile of the DNA block with large GC-content in an
address substring. (b) The profile of the sequence upon addition of terminal
adapters. It may be observed that the GC-content of the adapters is more
balanced that that of the address sequence.

4.5.2 DNA Synthesis

The blocks constructed using the binary component codes were synthesized
by Integrated DNA Technology (IDT). Before performing the actual writing
process, the synthesis complexity of each DNA codeword was tested by a spe-
cial purpose IDT software (http://www.idtdna.com/pages/products/genes/gblocks-
gene-fragments). It appears that synthesis errors are highly correlated with
the total repeat density (direct, inverse and palindromic repeat elements),
extreme variations in GC-content, and secondary structures, especially if
such properties hold near the 3’ and 5’ termini of the sequence. All these
issues were accommodated to the largest extent possible via our balancing
and address selection procedures.

Although all the 17 DNA blocks passed the initial complexity test, IDT
was not able to synthesize one of the blocks due to high GC-content in
one substring of the corresponding address sequence, see Figure 4.4 (a). To
overcome the problem, we redesigned the address and in addition, requested
terminal adapters to be added to the original DNA block in order to check if
the hard-to-synthesize sequence had other undesirable properties that may
arise only during sequencing. The sequences augmented by adapters passed
all subsequent tests without issues. Note that IDT maintains a small subset
of adapters which have been optimized to be compatible with the gBlock
synthesis process, see Figure 4.4 (b). These adapters can be appended to
the 5’ and 3’ ends of any sequence and may increase synthesis feasibility
whenever complex secondary structures are encountered.
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4.5.3 DNA Sequencing

Nanopore sequencers are built around nanopores, small holes with an internal
diameter of the order of 1 nm. The idea behind nanopore sequencing is that
when a nanopore is immersed in a conducting fluid and a voltage is applied
across it, an electric current due to conduction of ions through the nanopore is
induced. The current is very sensitive to the size and shape of the nanopore.
If DNA strands or other molecules pass through the nanopore, they create a
characteristic change in the magnitude of the current through the nanopore,
and one can use the generated signal and sequence the DNA strands [61].
MinION is the first commercial sequencer using nanopore technology, and it
was released by Oxford Nanopore Technologies in 2014. It is also very small
compared to the other sequencing devices available, 10 × 3 × 2 cm in size
and it weighs just 90 g. DNA sequencing on MinION is performed by first
adding the sample to the flowcell that contains all the nanopores that are
needed to perform sequencing. When DNA strings pass through nanopores,
there will be a change in electrical current, and this current in the nanopore
is measured and sampled by a sensor several thousand times per second.
Base-calling is performed on 5-mers or 6-mers [62]. In our experiments, we
used the R7 chemistry, with a throughput of at least 75 base pairs/s. The
latest model, R9, may only improve the system performance compared to
R7, as it produces single strand reads, deep-learning base calling, and simpler
workflows. Still, none of these features were critical for demonstrating the
power of our coding schemes. The readouts of R9 are also created with
smaller delay, but yet again, the delay parameter does not influence our
findings.

4.5.4 Random Access (RA)

RA is performed using PCR reactions with primers corresponding to the
addresses of the selected blocks. The protocols for RA experiments were
described in detail in Chapter 3.
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4.5.5 Reconstructing Sequences from Traces

Reconstructing a sequence from a number of reads that were generated by
passing the same sequence multiple times through different “versions” of the
nanopore requires using specialized tools from bioinformatics and theoretical
computer science. Here, a version may refer to a nanopore used at a certain
time or a different nanopore. As Oxford Nanopore MinION uses a biological
pore, the more the pore is used, the more likely that the quality of the reads
will differ. It is currently not known if the system relies on one or multiple
pores to perform sequencing. The main challenge is to identify which pores
gave unacceptable quality readouts and perform accurate sequence estima-
tion based on high quality reads only.

Variants of the latter problem have been studied in the computer science
literature under the name of sequence reconstruction via traces Figure 4.5.
The general traces problem may be stated as follows: Reconstruct a string
x of length n from a set of m subsequences generated by randomly editing
symbols in x with a given probability fixed for all subsequences [63]. In a
separate work [64], the authors showed that by focusing on edits of the form
of deletions, which occur with a small constant probability, m = poly (n)

traces suffice for exact reconstruction. Here, poly (n) stands for a polyno-
mial expression in n. Later, this result was improved [65] to show that for
certain alphabet sizes, even a sub-polynomial number of traces suffices. Both
lines of work also described several algorithms for high probability, error-free
reconstruction. Other works [66, 67] considered the reconstruction problem
for the case that the traces represent nanopore DNA reads. In [66], the au-
thors studied the noiseless setup where each read has some fixed length and a
noisy setup in which the reads were subjected to substitution errors. In [67],
the authors consider a different type of noise model that more realistically
captures the properties of nanopore sequencing technologies. In particular,
they gave bounds on the parameter (m) necessary for reliable reconstruction
for the case that edits change the homopolymer lengths. Another related line
of work includes [24], where accurate sequence reconstructing via new profile
coding techniques was proposed. And although the model studied in [67]
is relevant to our approach, it cannot be applied directly due to the fact
that the pores introduce a complex mixture of errors that are not necessarily
confined to homopolymer changes. In addition, the noise parameters of the
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Figure 4.5: Nanopore-based sequence estimation as a sequence
reconstruction from traces problem. A trace refers to the readout of a
“pore” at a certain time point, or the readout from one out of multiple
pores. During each read time the pore may behave differently, introducing
sequence-dependent substitution, deletion and insertion errors at different
rates.

pore(s) observed during different readout times may be very different, and
they depend on the particular sequence structure as well. Hence, we propose
a two-stage procedure that will allow us to mitigate all the aforementioned
problems.

4.5.6 Consensus Sequence Formation via Iterative Alignment

Given the different read qualities, it is important to first identify reads with
small fractions of deletion and insertion errors which will be used in the first
step of reconstruction. For this purpose, we use the idea of pilot sequences.
A pilot sequence is used to assess the performance of a noisy channel (e.g.,
wireless channel) as it is known both to the transmitter and receiver. The
transmitter sends the pilot sequence to the receiver which can, based on
knowledge of the sequence, estimate the probability of error. If the error
probability is small, the transmitter asks for the information sequence to
be transmitted; otherwise, the transmitter delays transmission. Clearly, as
the addresses of the sequences of the DNA codewords are known to the
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user, they may serve the role of pilot sequences. More precisely, based on
the quality of the address sequence one may decide to use a read in the
reconstruction process or not. Once good-quality reads are identified, the
obvious next step is to perform alignment of the reads and then form a
consensus sequence through majority voting at each sequence coordinate or
for each homopolymer. This procedure may be performed in multiple rounds,
using more and more reads to correct consensus errors as needed, especially in
areas where the consensus has low confidence values; see Figure 4.6 obtained
using the Tablet Software [68]. Furthermore, as pointed out in the main
text, the parameters of various MSA algorithms need to be carefully tuned
to produce the best alignment results, and are shown in the Table 4.4.

To better explain our iterative scheme for finding the consensus sequence
using majority rules and the balancing property, we provide a simple example.
This example involves three reads and the rough estimate of the DNA block
after running the first alignment phase described in the main text. The three
reads (read1, read2 and read3) and the running consensus estimate (c_est)
are listed below:

c_est TTCACCCCAAAACCCGAAAACCGCTTCACGA

read_1 TTCACCCAAAACCGAAAACCGCTTCACGA

read_2 TTCACCCCAAAACCCGAAAACCGCTTCAGCGA

read_3 TTCACCCAAAAACCCGAAAACCGCTTCAGCGA

By running the MATLAB built-in MSA algorithm [69] we obtain the fol-

Table 4.4: Parameter choices for MSA algorithms used to build a consensus
of consensus sequences. The parameters are selected to achieve best
empirical performance for nanopore read alignments.

Software Parameters
Kalign Gap open penalty = {5, 11},

Gap extension penalty = {0.2, 0.85},
Terminal Gap Penalties = {0.1, 0.45},

Bonus Score = {5.2, 5, 1, 0}
Clustal Omega Number of combined iterations = {0, 1, 2, 3, 4, 5}
Coffee Default
MUSCLE Default
MAFFT Default
BWA K = 14, W = 20, r = 10, A = 1, B = 1, O = 1, E = 1, L = 0
MATLAB Position of reads in the SAM file is less than or equal to = {1, 8, 15}
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Figure 4.6: Screen shot from the Tablet software showing poor consensus
quality substrings formed during the iterative alignment phase of data
recovery.
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lowing result:
c_est TT C A CCCC AAAA− CCC G AAAA CC

read_1 TT C A CCC− AAAA− CC− G AAAA CC

read_2 TT C A CCCC AAAA− CCC G AAAA CC

read_3 TT C A CCC− AAAAA CCC G AAAA CC

r1 r2 r3 r4 r5 r6 r7 r8 r9

c_est G C TT C A − C G A

read_1 G C TT C A − C G A

read_2 G C TT C A G C G A

read_3 G C TT C A G C G A

r10 r11 r12 r13 r14 r15 r16 r17 r18
We next divide the alignment into 18 nonoverlapping segments correspond-

ing to different maximal length homopolymers. The segments may have dif-
ferent lengths, but due to the balancing constraint, no segment has length
exceeding 8. To improve the current estimate Cest, we start by forming the
consensus from the left and by adding a new homopolymer at each step.
Since for the first three segments all four sequences agree on the homopoly-
mer lengths and do not violate the balancing property, we initiate the new
consensus sequence to

cns TTCA.
Next, we add one more homopolymer corresponding to the forth segment

(r4). According to the four sequences, this homopolymer should have length
either 3 or 4 (the sequences in question are CCC or CCCC). Note that the
majority rule suggests that the correct sequence is CCC; this sequence also
satisfies the balancing property, since we know that the next symbol is from
the fifth segment and equals A. The second option CCCC does not satisfy
the balancing property. Hence, the only valid solution up until this point
reads as

cns TTCACCC.
For the fifth segment, the majority rule suggests picking the sequence

AAAA as the next homopolymer candidate. Also, it is apparent that we
need to have at least four G or C symbols in both the segments r6 and r7,
as otherwise the resulting block does not have a balanced GC-content. The
only homopolymer choices that satisfy these constraints are CCC for r6 and
G for r7. As all sequences agree on the homopolymer choices for segments
r8 to r12, the 24 symbols of the consensus read as TTCACCCAAAACCC-
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GAAAACCGCT. As may be seen, the last 8 symbols do not have a balanced
GC composition. As the first encountered ambiguity in the reads came from
segment r5, we change our homopolymer to AAAAA instead of AAAA, al-
though it violates the majority choice. Then, the consensus up until and
including segment 14 equals:

cns TTCACCCAAAAACCCGAAAACCGCTTCA.
(Note that violations of the majority rules as described above are rare,

and included only for illustrative purposes.) In the final step, we select the
homopolymer G to represent the segment r15, although it again violates the
majority rule - another choice would result in a consensus with 31 symbols,
a length not divisible by 8. Hence, the new consensus equals

cns TTCACCCAAAAACCCGAAAACCGCTTCAGCGA

and satisfies the GC-balanced property. This new consensus is used in the
BWA reference based alignment software to identify more good and accept-
able quality reads that may resolve issues with poor alignment regions. The
procedure is repeated until no sufficiently good reads are available, or until
all poor alignment regions are resolved or declared unresolvable.
Clearly, one cannot guarantee that the above procedure produces error-

free read estimates. But given the choice of the alignment parameters, the
majority rules and the balancing checks, one tends to observe only a very
small number of errors which tend to be exclusively deletions. In our exper-
iments, we encountered three deletion errors for the whole encoded file: All
deletions were confined to homopolymers of length at least five, and exclu-
sively included As. Hence, the information about homopolymer symbols was
recovered correctly. Table 4.5 (Experiment 1), shows the summary of error
events in the DNA blocks after one round of address-anchored alignment and
an additional round of BWA alignment.
We conclude by observing that in all alignment procedures, we used less

than 200 reads per DNA codeword. Such a small number of reads may be
generated in a relatively short time, and it appears to be a rule of thumb
that the best quality reads are generated first. Hence, the readout cost
and delay of the MinION system are highly competitive with those of other
technologies.
We also tested the Nanopolish software [70] (Version 0.6-dev) to obtain
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Table 4.5: Summary of errors on the consensus sequences on each
experiment. Experiment 1 represents our iterative alignment method that
identifies the consensus sequences using multiple sequence alignment
techniques, majority rules and the balancing property. Experiments 2,3 use
Nanopolish software to find the consensus sequences.

Block Number of errors (substitution, insertion, deletion)
Experiment 1 Experiment 2 Experiment 3

Round 1 Round 2 Round 1 Round 2
1 (0, 0, 9) (0, 0, 2) (14, 36, 8) (14, 32, 5) (0, 4, 1)
2 (0, 0, 7) (0, 0, 0) (83, 93, 58) (75, 99, 40) (3, 10, 7)
3 (0, 0, 3) (0, 0, 0) (11, 48, 1) (10, 45, 0) (0, 10, 0)
4 (0, 0, 1) (0, 0, 0) (4, 57, 2) (1, 54, 1) (0, 2, 0)
5 (0, 0, 0) (0, 0, 0) (8, 52, 10) (4, 45, 3) (0, 1, 0)
6 (0, 0, 1) (0, 0, 0) (397, 100, 54) (390, 102, 61) (0, 2, 0)
7 (0, 0, 2) (0, 0, 0) (8, 34, 4) (3, 31, 3) (0, 0, 0)
8 (0, 0, 0) (0, 0, 0) (22, 53, 2) (18, 51, 1) (1, 2, 0)
9 (0, 0, 2) (0, 0, 0) (388, 107, 55) (404, 92, 54) (0, 0, 0)
10 (0, 0, 0) (0, 0, 0) (398, 89, 55) (388, 100, 59) (0, 1, 0)
11 (0, 0, 0) (0, 0, 0) (21, 36, 20) (16, 23, 18) (0, 1, 0)
12 (0, 0, 1) (0, 0, 0) (21, 72, 3) (14, 59, 1) (0, 1, 0)
13 (0, 0, 1) (0, 0, 0) (19, 60, 10) (7, 5, 4) (0, 1, 0)
14 (0, 0, 1) (0, 0, 0) (21, 30, 9) (15, 34, 3) (0, 2, 0)
15 (0, 0, 0) (0, 0, 0) (17, 50, 3) (15, 46, 2) (0, 2, 2)
16 (0, 0, 4) (0, 0, 1) (21, 67, 12) (15, 62, 4) (0, 1, 0)
17 (0, 0, 0) (0, 0, 0) (362, 96, 42) (359, 95, 44) (0, 1, 0)
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the consensus sequences. Nanopolish is a software package for signal-level
analysis of Oxford Nanopore sequencing data, and it is used to calculate an
improved consensus sequence from an initial draft genome. The commands
used to obtain the consensus are as follow:

1. Extract the QC-passed reads from a directory of FAST5 files:

$ nanopolish extract --type 2d FAST5/ > reads.fa

2. Index the draft genome:

$ bwa index draft.fa

3. Align the basecalled reads to the draft sequence:

$ bwa mem -x ont2d -t 8 draft.fa reads.fa | samtools sort -o
reads.sorted.bam -T reads.tmp - samtools index reads.sorted.bam

4. Use Nanopolish to compute the consensus sequence:

$ nanopolish variants –consensus cns.fa –r reads.fa –b reads.sorted.bam
–g draft.fa -t 4 -- min-candidate frequency 0.1

To test the performance of Nanopolish, we designed two separate experi-
ments; see Table 4.5, Experiment 2 and Experiment 3.

• The first experiment includes two rounds, and follows the same pro-
cedure we used during our iterative alignment method. For the first
round, we used the 17 known address sequences as pilot sequences and
selected 17 DNA blocks from the reads file (reads.fa) to form the draft
genomes (draft.fa). We used the draft genome and flowed the Nanop-
olish workflow to obtain 17 consensus sequences (cns.fa). Next, each
consensus sequence was compared to its original DNA block, and the
difference were recorded in terms of the number of insertion, deletion,
and substitution; see Table 4.5, Experiment 2/Round 1.

The second round repeats the same procedure, with the draft
genome being the consensus sequence from the previous round.
The result on Table 4.5, Experiment 2/Round 2 suggests that
running the Nanopolish software multiple times does not neces-
sarily improve the consensus sequence accuracy.
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• In the second experiment, we used the original 17 DNA blocks as the
draft genomes and formed the draft.fa. The results on Table 4.5, Ex-
periment 3 suggest that for our data set Nanopolish is unable to recon-
struct the original DNA blocks even in this genie-aided case.

4.5.7 Deletion Correction

There are numerous known coding schemes that can be used to correct stan-
dard deletion errors. The principle drawback of all these schemes is their low
information rate and inability to tackle one particular subclass of deletion
errors that was encountered in our sequencing experiments.

In what follows, we briefly discuss three prominent techniques from the
literature, and review their information rates.

• Watermark coding and variants thereof refer to the process of insert-
ing or super-imposing a known sequence over an information sequence.
Typically, the information sequence is then encoded with an outer prob-
abilistic code such as an LDPC (low-density parity-check) code that
enables recovery of the encoded message. The decoding proceeds in
two stages whereby the first stage makes use of the watermark code
to compute likelihoods that are used in the second stage to decode the
LDPC code. The watermark codes are typically designed to correct low
error rates and these codes have small information rates. For instance,
the highest rate code from [71] was 0.71 and this code had a block
error rate which exceeded 0.1, even for a raw deletion rate as small as
0.005. A code with a similar information rate was presented in [72],
where again the code had a block error rate exceeding 0.1 when the
raw deletion rate was below 0.1. Another potential drawback to these
codes is their long block length (on the order to several thousand bits
long) which may be unsuitable for DNA codewords that are typically
of length of the order of 1,000 bp.

• A more recent scheme for correcting deletions was introduced in [73].
The idea is to use a series of error-control codes on patterns that ap-
pear in a large majority of the strings. To correct t deletions, in a
block of length (n) the construction from [73] was shown to require
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O (t2 (log t) log n) redundant bits; however, for shorter block lengths,
the construction requires many redundant bits. For instance, for the
case where t = 2, it can be shown that this construction requires at least
144 (n) bits of redundancy which renders the approach impractical for
shorter block lengths.

• In [74], a number-theoretic code construction was proposed, which ex-
tended the congruence for single deletion codes introduced by Leven-
shtein in [19]. This construction requires many redundant bits, espe-
cially for longer block lengths. For only t = 2, the redundancy (or the
number of redundant bits) is linear with respect to the block length n.
More specifically, it can be shown that the redundancy (in bits) for the
case where t = 2 is at least

⌊
1.5n√

5

⌋
which implies that for n = 1024,

such a construction would require at least 597 bits of redundancy.

4.5.8 Homopolymer Parity-check Coding

Motivated by the findings of the iterative anchored alignment phase, we
propose a simple deletion correcting code related to the method described
in [65] which leverages the so-called “integer sequence” of an information
sequence.

To correct t deletions that preserve homopolymer symbols, our encoding
scheme requires approximately t N bits of redundancy, where N denotes the
length of the encoded information sequence. Furthermore, the code parti-
tions the space FN4 and hence lends itself to systematic encoding, which is
desirable when constructing codes compatible with different nanopore se-
quencers. We also note that the proposed construction outperforms existing
general multiple deletion correcting codes such as those described in [73, 74]
as it is adapted to the nanopore channel at hand.
We begin by reviewing the notion of an integer sequence. For a vector

x∈Fn4 , the integer sequence of x is the sequence of lengths of maximal runs
in x. For example, the integer sequence of x = (0, 0, 1, 3, 3, 2, 1, 1) is

I (x) = (2, 1, 2, 1, 2).

Similarly, the integer sequence of AATTTGCGAA equals (2,3,1,1,1,2). In
the context of DNA coding, we refer to such a sequence as the homopolymer

83



length sequence. We also make use of the string sequence of a codeword.
The string sequence represents the symbols in the maximal runs of x. For
example, the string sequence of x equals

S (x) = (0, 1, 3, 2, 1)

since the first run in x has value 0, the next run has value 1 and so on. The
string sequence of AATTTGCGAA equals (A,T,G,C,G,A).

It is straightforward to see that one can uniquely recover x given its integer
sequence and string sequence. For shorthand, we use M (I (x) , S (x)) to
denote the “reconstruction map”, a map such that

M (I (x) , S (x)) = x.

We introduce one more relevant piece of notation. Suppose that z∈FN2 ,
i.e., that z is a binary vector of length N. Then, let

Bt (z) = {z + e},

where e∈{0,−1}N and e has at most t non-zero components. Given I, S,
and Bt we are now able to define the types of errors we wish to correct,
which we refer to as sticky deletions, a special case of the general family of
repetition errors [75].
Let x∈FN4 . In our model, we assume that y∈FN−s4 (where s ≤ t) is such

that

1. S (y) = S (x), and

2. I (y) ∈ Bt (I (x)).

Note that the first condition enforces that deletions occurring in x lead-
ing to y can never cause runs to be added or removed. In other words, the
deletions are not allowed to change the string sequence. The second restric-
tion enforces that deletions occurring in x can cause each run length in x to
decrease by at most one.

We define next a code C (N, t) capable of correcting sticky deletions. For
x∈FN4 , let |x| denote the number of runs in x. We assume in what follows
that for |x| = r, where r < N, the output of I (x) has length N with the last
N − r components of I (x) set to zero.
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Suppose that CH (N, t) is a binary code of length N capable of correcting
up to t substitution errors. Let C (N, t) ⊆ FN4 be defined so that
C (N, t) =

{
x∈FN4 : I (x) mod 2 ∈ CH (N, t)

}
.

Let Dt denote a decoder for CH (N, t) where if y = z + e(2) ∈ FN2 , z ∈
CH (N, t), and e(2) ∈ FN2 has at most t non-zero components, then Dt (y) = z.
We prove next that the code C (N, t) can correct up to t sticky deletions.
Theorem 2. The code C (N, t) ⊆ FN4 can correct up to t sticky deletions.
Proof: We prove the result by outlining the decoding algorithm. Suppose

that the vector x∈C (N, t) is stored and that the vector y∈FN−s4 is retrieved,
where s ≤ t is the result of s sticky deletions.
First, we compute S = S (y). Since y is the result of at most t sticky

deletions, we know that S = S (x). We now show how to recover I (x). Since
y is the result of at most t sticky deletions occurring to x, I (y) ∈ Bt (I(x)),
so that we may write I(y) = I(x) + e, where e has at most t non-zero
components and each component has value −1. Notice that

I(y) mod 2 ≡ (I (x) + e)mod 2 ≡ I(x) mod 2 + e mod 2,

where I (x) mod 2 ∈ CH (N, t) and e is a binary vector with at most t non-zero
components. Therefore, applying Dt to I(y) mod 2 gives
Dt (I (y)mod 2) = Dt (I (x) mod 2 + e mod 2) = I (x) mod 2.
From the previous equation, given I (x) mod 2, we can determine e mod 2.

Notice that every non-zero component at position i in e mod 2 is the result of a
sticky deletion. Therefore, we increment the value of I (y) at position i by one
to obtain I (x) . Using the map M we may then reconstruct x = M (I(x), S).
Note that the construction in Theorem 1 is not systematic. We describe

next how to use the scheme to perform systematic encoding. We consider
the case where t = 2 and use a primitive BCH code over F2 of length
1023 and dimension 1003, shortened on the last 23 bits. The resulting code
has length 1000, dimension 980, and can correct up to 2 random substitu-
tion errors. We denote this code by C (1000, 980, 2). Since C (1000, 980, 2)

is a linear code, there exists a systematic encoder for CH , which we de-
note by Enc, that given an input w∈F980

2 , outputs 20 parity bits such that
(w,Enc (w))∈C (1000, 980, 2).
We encode our information sequence, denoted byM4∈F980

4 into a codeword
x∈F1000

4 according to the following procedure:

85



1. We set the first 980 symbols of x to be equal toM4 and let = Enc (I (M4))

∈ F20
2 .

2. We convert z to a quaternary representation and denote the resulting
sequence with z(4) ∈ F10

4 .

3. We set (x981, x982, x983, . . . , x1000) = (z
(4)
1 , z

(4)
1 , z

(4)
2 , z

(4)
2 , . . . , z

(4)
10 , z

(4)
10 ) .

Note that since z is binary, it follows that 10 symbols over F4 suffice to
store z. Observe also that the last 20 symbols in x arise by simply repeating
every symbol in z(4) twice. Hence, it is straightforward to prove the following
corollary.
Corollary 1. Suppose x is encoded according to the previous procedure

and y is the result of up to 2 sticky deletions in x. Then, it is possible to
recover x from y.
Proof: Let v equal the last 20 symbols in y read in reverse order. In other

words, the first symbol of v equals the last symbol in y, the second symbol
in v equals the second to last symbol in y, and so on. Let zR be equal to
the last 20 symbols in x (which results from repeating every symbol in z(4),
generated by our encoding procedure) read in reverse order. We show that it
is possible to recover zR from v given that at most 2 sticky deletions occurred
in the string. In fact, it can be shown that

(
z
(4)
1 , z

(4)
1 , z

(4)
2 , z

(4)
2 , . . . , z

(4)
10 , z

(4)
10

)
can be recovered given any number of sticky deletions. Note that if zR is
known, one can easily recover the parity bits z and combine the parity bits
(which have no errors) with the information symbols in x to construct a
vector ŷ ∈ B2 (x) , where ŷ has at most 2 sticky deletions in the information
symbols and x ∈ C (N, t).
Consider the sequences I (v) = (u1, u2, . . . , u|v|), I (zR) = (s1, s2, . . . , s|zR|),

and S (v). As a consequence of the sticky channel definition, S (v) = S(zR).
Note also that for every symbol ui ∈ I(v), we have ui ∈ {si, si − 1}. As a
result of the encoding, si ≡ 0 mod 2. Therefore, we can recover si from ui

by setting ui = ui + 1 if ui ≡ 1 mod 2 and setting ui = ui otherwise. In this
manner, we can recover I (zR) and determine zR from M(I (zR) , S (zR)).
The rate of the homopolymer check codes was 0.98, and it allowed for

systematic encoding, which cannot be achieved via simple (d = 1, k = 6)

run-length-constrained code of slightly higher rate 0.998. Furthermore, the
homopolymer parity checks may be stored on classical media which have neg-
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ligible small error probabilities to further increase the code rate to 0.98. This
comes at almost no additional cost, as the homopolymer checks constitute
less than 0.02% of the data volume.

Remark: Note that by using the integer and symbol sequences one may
correct a more general class of sticky errors, including both deletions and
insertions. In this context, it suffices to use a classical substitution error-
correcting code on the integer sequence. Any asymmetries observed in the
deletion or insertion patterns can be handled by using modulo constraints
akin to those described in the definition of the code C (N, t). As asymmetries
provide additional side information, one may expect a higher coding rate for
modulo constrained codes compared to standard substitution error-correcting
codes.

4.5.9 Information Rate and Data Storage Density

The information rate of a code (also known as the code rate) is the proportion
of the stored data that represents useful information (i.e., is non-redundant).
That is, if the code rate equals k/n, for every k bits of useful information,
the code generates a total of n bits of data, of which n-k are redundant. In
our data storage system, we have three layers of data encoding. We calculate
next the information rate for each layer and multiply the results of the three
layers to get the overall information rate.

• In the first stage of encoding, we used GC-balanced DNA fragments
of length 8 to store data. Note that the total number of GC-balanced
DNA string of length 8 is

(
8
4

)
× 28. Hence, the information rate of the

balancing code equals

R1 =

[(
8
4

)
× 28

]
48

= 0.8831. (4.5)

Note that the nominator is the logarithm of the number of bits
required to represent each GC-balanced DNA string of length 8.

• In the second stage of encoding, we formed each DNA block of length
1,000 bp by concatenating an address sequence with the balanced blocks.

87



At this stage, only 984 bp are used to store useful data while the re-
maining 16 bp are reserved for addressing. Hence, the information rate
of this stage equals

R2 =
984

1, 000
= 0.984. (4.6)

• The third stage of encoding is homopolymer parity-check coding. Here,
the code rate equals

R3 = 0.98. (4.7)

The total information rate is obtained by multiplying the three rates from
5, 6 and 7, and equals

R = Information rate = 0.8831× 0.984× 0.98 ≈ 0.85. (4.8)

To calculate the DNA information density of our scheme, we use the fact
that average weight of a DNA base pair is 650 dalton (1 dalton equals the
mass of a single hydrogen atom, or 1.67 × 10−24 gram [76]). As we mapped
3,633 bytes of compressed data into 17 DNA blocks with total number of
16,880 bp, the DNA information density equals

DNA information density =
3, 633 bytes× 0.85

(16, 880 bp)× (1.67× 10−24 gram/bp)

≈ 1.1× 1023bytes
gram

(4.9)

These are the highest known achievable information rate and density of
all DNA-based data storage systems, even when taking into account systems
that do not use addressing or rely on highly accurate, but large volume
Illumina sequencers.
Data availability. The sequencing data are available at Google Drive:
https://drive.google.com/open?id=0BwIM8p8qEKCaU1NlRzFWTjltZ2M
Software availability. The encoding, alignment and decoding algorithms

are available at GitHub:
https://github.com/smhty/MATLAB_MinION
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