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Abstract

With computers becoming ubiquitous there is an ever growing necessity to ensure that

they are programmed to behave correctly. Formal verification is a discipline within com-

puter science that tackles issues related to design and analysis of programs with the aim of

producing well behaved systems. One of the core problems in this domain is what is called

the model checking problem: given a mathematical model of a computer and a correctness

specification, does the model satisfy the specification? In this thesis we explore this question

for Markov Decision Processes (MDPs), which are finite state models involving stochastic

and non-deterministic behaviour over discrete time steps. The kind of specifications we focus

on are those that describe the correctness of individual executions of the model, called linear

time properites. We delve into two di↵erent semantics for assigning meaning to the model

checking problem: execution based semantics and distribution based semantics.

In the execution based semantics we look at specifications described using Linear Tem-

poral Logic (LTL). The model checking problem under this semantics are of two kinds:

qualitative and quantitative. In the qualitative version we are interested in finding out if the

specification is satsified with non-zero probability, and in the more general quantitative ver-

sion we want to know whether the probability of satisfaction is greater than a given quantity.

The standard way to do model checking for both cases involves translating the LTL formula

into an automaton which is then used to analyze the given MDP. One of the contributions of

this thesis is a new translation of LTL to automata that are provably smaller than previously

known ones. This translation helps us in reducing the asymptotic complexity of qualitative

model checking of MDPs against certain fragments of LTL. We implement this translation

in a tool called Büchifier to show its benefits on real examples. Our second main contri-
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bution involves a new automata-based algorithm for quantitative model checking that along

with known translations of LTL to automata, which gives us new complexity results for the

problem for di↵erent fragments of LTL.

In the distribution based semantics we view MDPs as producing a sequence of probability

distributions over its state space. At each point of time we are interested in the truth of

atomic propositions, each of which tells us whether the probabilty of being in a certain states

is above or below a given threshold. Linear time properties over these propositions are then

used to describe correctness criteria. The model checking problem here happens to be unde-

cidable in general, and therefore we consider restrictions on the problem. First we consider

propositions which are robust: a proposition is said to be robust when the probability of

being in its associated set of states is always well separated from its given threshold. For

properties described over such propositions we observe that the model checking problem be-

comes decidable. But checking for robustness itself is an undecidable problem for MDPs. So

we focus our attention on a subclass of MDPs called Markov Chains which exhibit stochastic

behaviour without non- determinism. For Markov Chains we show that checking for robust-

ness and model checking under robustness become tractable and we provide an analysis of

the computational complexity of these problems.
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Chapter 1

Introduction

1.1 Motivation

Software systems have become ubiquitous and control various aspects of human life.

Computers have widespread applications, from health-care to transportation, from banking

to telecommunications, which critically depend on the programs behaving correctly. Formal

methods has emerged as the science of designing and analyzing programs with an aim of

producing well behaved computer systems. A corner stone of this area is what is called

the model checking paradigm, pioneered by Clarke, Emerson and Sistla [15, 14] and Queille

and Sifakis [47]. Clarke, Emerson and Sifakis received the Turing Award in 2007 for their

seminal work. Model checking involves considering a mathematical model of the system

and its requirements, and then automatically checking whether the system satisfies those

requirements. Thus a model checking algorithm takes two inputs:

• A model: a design of the system that describes the how the given system behaves.

• A requirement: a property that specifies what the system is supposed to do.

The models of primary interest in this thesis are those that describe the execution or evo-

lution of the system as a sequence of configurations over discrete time steps. A linear-time

property specifies what it means for a sequential execution to be correct. Some examples

of linear-time properties described in plain English are: “Every message that is received is

eventually acknowledged” or “It is always the case that at most one process has acquired a

certain lock”. In these examples note the usage of eventually and always which refer to

passage of time. These properties are temporal in nature as they relate to the configuration
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of the system at di↵erent time-points within a single execution. Thus the model checking

problem becomes one of ensuring that executions of the system, of which there might be

infinitely many, meet the specification.

In this thesis we consider systems that evolve probabilistically. Probabilities are used in

many crucial ways in computational systems:

• Randomized algorithms exploit randomness to either improve average-case e�ciency,

or improve e�ciency at the expense of accuracy or correctness. Randomness is also

used in distributed protocols such as leader election and consensus.

• In physiochemistry applications related to drug administration one is interested in

capturing relative concentrations of chemicals like enzymes, drugs and hormones as

probabilities and then reason about their evolution and pathways in the animal body.

• Probabilities are used in machine learning to summarize relative likelihood of di↵erent

patterns in historical data, which is then used to make quantified judgments about

future events.

• In performance evaluation, probabilities are used to model information regarding relia-

bility such as a processor’s failure rate, a network channel’s distribution of time delay.

These are then used in computing expectation of various quantities of interest like

queue length, waiting time, time to recovery, load per processor etc.

When considering models that have probabilities it is natural that some executions of

the system might be more or less likely than others. So the correctness might not be of

universal/existential in nature as for non-probabilistic systems. For example there might be

an execution of the system that is bad according to the specification, but the probability of

that particular execution occurring might be zero or small enough that it does not matter.

Here the correctness becomes quantitative in nature: one could possibly ask “What is the

probability that a random execution of the system satisfies the specification?”, “Is that prob-

ability greater than some prescribed threshold?”. Or correctness could be about comparing

probabilities of the system being in certain state(s) at di↵erent time points. For example:
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“Is the drug concentration in the liver always greater than 0.5 grams during the day?”. Here

the drug concentration (modeled as probabilities) in di↵erent parts evolves over time in the

system. The correctness questions that one can pose depends on the semantics of the prob-

abilistic system one chooses. But first we look at the kind of probabilistic systems we focus

in this thesis.

In this thesis we investigate questions related to the probabilistic model called Markov

Decision Processes (MDPs). MDPs are finite-state transition systems which have a prob-

abilistic and a non-deterministic component. This makes them a convenient formalism for

describing concurrent stochastic programs with finite states. A scheduler is used to define

semantics for an MDP. A scheduler resolves the non-deterministic aspect of the MDPs be-

haviour (we will provide precise definitions in the subsequent section). The model checking

problem then becomes: “Is there a scheduler under which the requirement is violated?” or

“Is it the case that every scheduler satisfies the requirement?”. To answer these questions

we need to know what does it mean for a specification to be violated/satisfied under a given

scheduler. In this thesis we consider two di↵erent ways of assigning this meaning: (i) Execu-

tion based semantics, (ii) Distribution based semantics. Informally, the di↵erence between

the two lies in the way in which the temporal and probabilistic aspects interact to give rise

to the meaning of term violation/satisfaction. In the former, a scheduler associates probabil-

ities with the sets of executions, and we are interested in knowing how large or small is the

probability measure of the good executions, i.e., executions deemed to be good according to

the specification. In the latter, a scheduler yields a sequence of probability distributions over

the states, and we are interested in whether this sequence is good. We divide the thesis into

two parts, in the first one (Chapters 2 to 6) we explore questions related to the execution

based semantics and in the second part (Chapters 7 to 9) we look at the distribution based

semantics.
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1.2 Formal Background

1.2.1 Transitions Systems, Markov Chains and MDPs

In this section we look at the formalisms we use for modeling a system and writing

correctness specifications. We first introduce transition systems for modeling programs that

do not have probabilities and then see how we can enrich them to obtain MDPs. Transitions

systems are directed graphs where the vertices represent states of the system and edges

represent transitions or change of state. Informally, a state is an instantaneous snapshot of

the system. The state gives us all the information needed to know the subsequent evolution

of the system. Transitions represent how the state is allowed to change from one instant to

the next.

Formally, a transition system is a tuple (Q,Act, T rans, i) where Q is the set of states, Act

is a set of actions (names for individual transitions), Trans ✓ S ⇥Act⇥ S is the transition

relation and i 2 Q is the initial state. For example Figure 1.1 shows a transition system mod-

eling a tra�c light system with states Q = {R, Y,G} which correspond to red/yellow/green,

actions being Act = {↵, �, �}, transitions Trans = {(R,↵, G), (G, �, Y ), (Y, �, R), (R, �, R)}

(as indicated by the directed edges between states) and R is the initial state (indicated by

the arrow pointing to it).

R G Y
↵

�

�

�

Figure 1.1: Example of a transition system.

A transition system behaves as follows. At any point the system has a current state.

The next state is decided by looking at the available actions at the current state. So if

the current state above is R then the available actions are ↵ and �. An action is chosen

non-deterministically from the available actions, and it is followed to update the current
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state. So, if ↵ is picked from R then the next state is G, and if � is picked from R then

the next state is R. The process is repeated from the updated current state. An execution

is a sequence of such repeated moves starting from the initial state. Transition systems are

a convenient formalism for systems such as tra�c lights, communication protocols, digital

circuits, concurrent programs etc.

Next, we look at Markov Chains which can be seen as transition systems with probabilistic

choice instead of non-determinism. From here onwards, we use Dist(S) to denote the set of

all probability distributions over a finite set S. A Markov Chain is a tuple (Q, �, µ0) where

Q is a finite set of states, � : Q ! Dist(Q) is the probabilistic transition function and

µ0 2 Dist(Q) is the initial distribution. A Markov Chain works as follows: the first state s0

of an execution is picked by sampling according to µ0. The next state is picked by sampling

�(s0) to obtain s1, and this process is continued with s1 and so on. Figure 1.2 presents an

example of Markov chain. As you can see instead of actions the transitions are annotated

with numbers in the range [0, 1] which add up to 1 for all transitions leaving any particular

state. The probabilistic aspect of Markov chains makes it convenient for modeling systems

that have uncertainty or randomized algorithms for example election protocols, ethernet

protocols, systems of chemical reactions etc.

q0 q1

1
2

1
4

1
2

3
4

Figure 1.2: An example of a Markov Chain.

Next, we look at Markov Decision Processes (MDP) which combines both non-determinism

and probabilistic aspects. A MDP is a tuple (Q,Act,�, µ0) where

• Q is a finite set of states

• Act is a finite set of actions

• � : Q⇥ Act ! Dist(Q) is a function representing probabilistic transitions
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• µ0 2 Dist(Q) is the initial distribution

A MDP works as follows: it begins by choosing a state s0 obtained by sampling the

distribution µ0. After that an action ↵0 2 Act is chosen non-deterministically which yields

the distribution �(s0,↵0) which is then sampled to obtain the next state s1. The process is

repeated with s1. This yields an execution of the MDP of the form s0
↵0�! s1

↵1�! s2
↵2�! · · · .

As an example we take a look at a randomized mutual exclusion protocol modeled as a MDP

in Figure 1.3.

(n, n)

(w, n)

(n,w)

(c, n)

(w,w)

(n, c)

(c, w)

(w, c)

rnd

req1

req2

acq1

req2

acq2

req1
1
2

1
2

req2

req1

rel1

rel2
rel1

rel2

Figure 1.3: MDP for randomized mutual exclusion.

The scenario is one in which two processes are competing for exclusive access to a shared

resource. Each process can be in one of 3 states n,w, or c denoting “not using resource”,

“waiting for resource”, “using the resource (critical section)”. respectively. The state of the

system is represented using a pair (s1, s2) denoting the state of the individual processes. A

process moves from n to w when it has requested for the resource (action req
i
), and moves

from w to c when the request has been granted (action acq
i
). A process then moves from c
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to n when it releases access to the resource (action reli). Note that the transitions of these

processes can interleave which gives rise to the di↵erent states. The system is never in a

state (c, c) thus maintaining mutual exclusion. Randomization here is used at only one state

(w,w), i.e., if both processes are waiting to gain access then one of them is randomly chosen

with equal probability (action rnd). An important question one can ask is “What is the

probability that if a process requests access at any point then it eventually gains access to

the resource?”. The answer here is 1 and can be argued as follows. Suppose the first process

requests access and is never granted this has to mean that the second process continually

requests access and gains access . For this to happen the system has to go through state

(w,w) infinitely often and each time the random choice has to end up giving access to the

second resource, the probability of this happening is 0. Although we have argued this by

hand, it becomes harder to do so when the systems become larger and complicated, which

motivates for having e�cient algorithms to do it.

1.2.2 The specification language

In the previous example we looked the property “If a process requests access at any point

then it eventually gains access”. This is an example of a temporal property because it relates

states of the system at di↵erent time points. A temporal property classifies sequences (over

an appropriate domain) as true or false. To elaborate on this we first look at propositions.

A proposition is a symbol that can take a value of true/false. The truths of propositions

are allowed to change over time. Propositions are usually designed to abstract out a certain

characteristic of the system at a given time. For example let the proposition r denote the fact

that a request is made at a point and let proposition g denote the fact that a request is granted

at a point. We can now abstract the execution of a system into a sequence of truth values

(true/false) of these propositions. Consider the finite sequence {r}, {}, {g}, {r, g}. This

sequence is saying that at the first instant in the execution a request was made but access

not granted, at the second instant neither a request was made nor was any access granted.

Access was granted at the third instant but no request was made (we can infer that this was

in response to the request at first instant). At the fourth instant another request was made

which was granted access immediately. We will be interested in never-ending executions of
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the system and hence infinite sequences of truth assignments to propositions. Let AP denote

a finite set of atomic propositions or simply propositions. We use 2AP to denote the set of

Boolean assignments to these propositions. The set of all infinite sequence of assignments is

then denoted by (2AP )!. A temporal property P over atomic propositions AP is any subset

of (2AP )!, i.e., P ✓ (2AP )!. An infinite sequence w 2 (2AP )!, also called as word, is said

to satisfy property P if w 2 P . The word w is said to violate (not satisfy) property P if

w /2 P . The usage of such properties in verification will be clarified in the next section. In

this section we shall restrict our attention to how such properties are specified formally. Note

that individual elements of P are infinitely long strings and P itself can have uncountably

many elements. If we are to provide a property as input to the model checking algorithm

we need a finite representation of it. This means we can only consider properties that can

possibly have finite representations. One such class of well studied properties are what are

called !-regular properties. !-regularity was first studied in the 1960s by Büchi [10], Muller

[44] in connection with logic and network theory, and now the theory of !-regularity is a

field of study in its own right [26]. One way of characterizing !-regular properties is using

finite-state automata that process words of infinite length. An automaton is a transition

system with an acceptance condition. An automaton processes words (sequences over a finite

alphabet) from left to right to produce run(s), and the acceptance condition tells us whether

a run is good or bad which is used to define the property associated with the automaton.

Below is the definition of an automaton with Büchi acceptance condition and the language

associated with it. When the alphabet used by an automaton is 2AP , it defines a language

which is a temporal property over propositions AP .

Definition 1.1 (Büchi Automata). A nondeterministic Büchi automaton (NBA) over

input alphabet ⌃ is a tuple (Q, �, I, F ) where Q is a finite set of states; � ✓ Q⇥⌃⇥Q is a set

of transitions; I ✓ Q is a set of initial states and F ✓ Q is a set of final states.

A run of a word w 2 ⌃! over a NBA is an infinite sequence of states q0q1q2 . . . such that

q0 2 I and 8 i � 0 (qi, wi, qi+1) 2 �. A run is accepting if qi 2 F for infinitely many i.

The language accepted by an NBA A, denoted by L(A) is the set of all words w 2 ⌃!

which have an accepting run on A.
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One way to characterize !-regular properties is to define it as the class of all languages

recognized by non-deterministic Büchi automata. An important subclass of !-regular prop-

erties are those definable using the logic called Linear Temporal Logic (LTL) first introduced

by [46], which will be the focus of much of this thesis. LTL builds upon propositional logic

by adding temporal connectives that relate the truth of propositions at di↵erent points. LTL

formulae are constructed using atomic propositions from AP , boolean connectives conjunc-

tion (^), disjunction (_), negation (¬), temporal connectives always (G), eventually (F),

until (U ), release (R), and next (X).

We first describe notational conventions before defining the syntax and semantics of the

logic. We use w to denote infinite words over a finite alphabet. We use wi to denote the ith

(index starting at 0) symbol in the sequence w, and use w(i) to denote the su�x wiwi+1 . . .

of w starting at i. We use w[i, j] to denote the substring wi . . . wj�1. We use [n] to denote all

non-negative integers less than n that is {0, 1, . . . , n�1}. We begin by recalling the syntax

of LTL:

Definition 1.2 (LTL Syntax). Formulae in LTL are given by the following syntax:

' ::= p | ¬p | ' ^ ' | ' _ ' | X' | F' | G' | 'U ' | 'R ' p 2 P

Next, we look at the semantics of the various operators. Here the notation w ✏ ' indicates

that the word w satisfies the property '.

Definition 1.3 (Semantics). LTL formulae over a set P are interpreted over words w in

(2P )!. The semantics of the logic is given by the following rules

w ✏ p (¬p) () p 2 w0 (p /2 w0) w ✏ X' () w(1) ✏ '

w ✏ ' _  () w ✏ ' or w ✏  w ✏ F' () 9 i : w(i) ✏ '

w ✏ ' ^  () w ✏ ' and w ✏  w ✏ G' () 8 i : w(i) ✏ '

w ✏ 'U  () 9 i : w(i) ✏  , and w ✏ 'R  () 8 i : w(i) ✏  , or

8 j < i : w(j) ✏ ' 9 j < i : w(j) ✏ '

The semantics of ', denoted by J'K, is defined as the set {w 2 (2P )! | w ✏ '}.
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As an example consider the formula pU q. Any word that satisfies the formula has a

point such that q holds at that point and p holds at every point preceding it. For a more

complicated formula 'U  , we have the truth of ' and  at each point inductively which

we use to define the truth of the bigger formula. A formula X' holds true for a word if it is

true for the su�x starting at position 1. The formula F' holds true if there is some point

along the given word at which ' holds. The formula G' holds true for a word if ' holds

true at every point along the word. The formula 'R  holds true if either  holds true at

every point or ' holds at a certain point, and for all points upto and including that point

 holds true. Going back to the request-response specification introduced earlier in this

section which said “every request for access is eventually granted” can be described using

the formula G(r ) Fg), here ) is a symbol used for propositional implication.

In this thesis we shall often look at various fragments of LTL. In order to facilitate such

discussion we use the notation LTL(op1, . . . , opk) to denote the fragment of LTL that is

constructed using boolean combinations of formulae that only use operators op1, . . . , opk.

1.3 Contribution

In this section we briefly highlight the main contributions of this thesis, and include other

related results in the respective chapters.

In the execution based semantics we consider labeled MDPs where the states are labeled

by propositions, and we consider Linear Temporal Logic (LTL) specifications over these

propositions. We investigate two versions of the model checking problem:

• Quantitative Model Checking: Given a labeled MDP, an LTL formula describing the

bad executions, and ✓ 2 [0, 1] is there a scheduler under which the probability of

formula being satisfied is > ✓ ?

• Qualitative Model Checking: Given a labeled MDP, and an LTL formula describing

the bad executions is there a scheduler under which the probability of formula being

satisfied is > 0 ?

Observe that in the quantitative version the threshold ✓ is given as input and can be thought
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of as part of the specifications or requirement, and in the qualitative version this threshold

is 0 making it a special case of the former. In order to solve these problems we take the

automata theoretic approach, which has been used for the non-probabilistic case [59] and also

for the probabilistic version [19]. This approach broadly involves, taking the cross product

of the model and an automaton derived from the LTL formula, and then doing an analysis

of this product. For the quantitative question we show that for certain fragments of LTL the

analysis step of the approach can be improved, thus yielding better upper bounds. For the

qualitative question we show a new translation for large fragments of LTL to appropriate

automata that is provably better than existing methods by an exponential factor, thus

giving as much gains in the algorithmic complexity. We provide experimental results for this

translation in a prototype implementation, Büchifier that constructs smaller automata

when compared to state of the art techniques.

In the distribution based semantics we consider labelings on the probability distribution

of states. The propositions here correspond to whether the probability of being in a certain

set of states is above a threshold. We then consider !-regular properties over these propo-

sitions, defined using automata over infinite strings, as the linear-time specification. The

model checking question we investigate here is whether there exists a Markovian scheduler

(a scheduler whose decision depends only on the number of steps that have been taken so far)

that induces a sequence of distributions which satisfies the !-regular property. The problem

for such labelings turns out to be undecidable in general, so we consider a restriction on the

labelings, called robustness, which makes the problem decidable. We analyze the complexity

of checking robustness and also of the model checking problem under robustness for MDPs

and Markov chains.

1.4 Related Work

The model checking problem for probabilistic programs under the execution based se-

mantics was first investigated by Vardi [58]. Vardi considered the qualitative version of the

problem which asks if executions of the probabilistic program satisfy the temporal prop-

erty with probability 1. They showed that the complexity of this problem for sequential
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probabilistic programs (Labeled Markov chains) is PSPACE-complete when specifications

are LTL formulae. Courcoubetis and Yannakakis [19] later showed that the complexity of

this problem for concurrent probabilistic programs (MDPs) is 2EXPTIME-complete. In this

thesis we consider the same problem but restricted to fragments of LTL, and show that

complexity can be reduced to EXPTIME and also prove a matching lower bound. In [19],

they showed that for Markov Chains the quantitative problem can be solved in PSPACE,

using an approach not involving automata. The quantitative version for MDPs was solved

by Courcoubetis and Yannakakis [18] using an automata theoretic approach that involves

solving a linear program obtained from the cross product of the model and the automaton

for the specification.

The distribution based semantics was first considered by Kwon and Agha [40] in which

they consider labelings whose truth was derived by looking at linear inequalities over the

distribution of states. The labelings we consider are a special case of this, where the only

allowed linear combinations correspond to sets of states. But the models considered in

[40] are Markov chains that are ergodic and diagonalizable, whereas our decidability results

apply to Markov chains in their full generality. The idea of [40] was extended to MDPs by

Korthikanti et al. [33], where they show decidability results for two di↵erent restrictions: first

they show that when the linear labels are such that the constant in the linear inequalities

is 0 the problem becomes decidable in PSPACE, and secondly they consider restrictions

on regular Markovian schedulers termed “almost acyclic” to prove decidability for general

labelings. In our work we consider only one set of schedulers, these are all possible Markovian

schedulers. The work of [33] is continued in [13] where they consider special class of MDPs

called semi-regular for which they prove decidability of the model checking problem against

any !-regular property.

In this thesis we only consider specifications which are linear time properties, either ex-

pressed as LTL formulae or more generally !-regular languages. LTL was proposed by Pnueli

[46] for analyzing non-probabilistic programs which was later adapted for the probabilistic

case. Branching time properties form another important class of temporal properties. The

concept of time they consider is one which has a branching tree structure as opposed to a

sequence of time steps. Computational Tree Logic (CTL) proposed by Clarke and Emer-
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son [16] was the first branching time logic to be considered, and it has been followed up

with several extensions [16, 20, 21]. CTL allows nesting of of explicit path quantification (8

paths ⇡ starting at state s: ⇡ satisfies..., or 9 path ⇡ starting at state s: ⇡ satisfies...) to

express properties that LTL cannot. PCTL is an extension of CTL where the quantification

is probabilistic (the probability of paths ⇡ starting at state s to satisfy... is 7 ✓). PCTL and

the related model checking problems were first proposed and investigated by Hansson and

Jonsson [28].

In terms of implementations of model checking algorithms for probabilistic systems,

PRISM [39] is the most prominent. PRISM supports PCTL model checking as well quanti-

tative verification of linear time properties. Our future goals include providing Büchifier

as a plugin for PRISM to perform qualitative model checking of MDPs against LTL.
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Chapter 2

Execution Based Semantics

In this first part of the thesis (starting from here to Chapter 6) we focus on the execution

based semantics of MDPs. We consider labeled MDPs where states are labeled by truth

assignments to atomic propositions. We define the semantics through schedulers that resolve

non-determinism to yield a probability measure on sets of executions, explained Section 2.1.

We will be interested in specifications expressed in Linear Temporal Logic (LTL). The model

checking problem we investigate is of deciding if the probability associated with the set of

paths conforming to the given LTL formula is greater than a threshold. The threshold

can be given as an input ✓ 2 [0, 1] in which case the problem is called quantitative model

checking. Or the threshold can be assumed to be 0 in which case it is called qualitative model

checking. In Section 2.2 we outline the automata-theoretic approach to solving this problem

that involves translating the LTL formula into di↵erent kinds of automata and using those

automata to perform model checking. In Chapters 3 and 4 we present new translations of

fragments of LTL to automata that can be used in the model checking of Markov chains

and MDPs. In Chapter 5 we present a new algorithm for quantitative model checking that

exploits existing translations of fragments of LTL to automata. In Chapter 6 we discuss our

prototype implementation Büchifier that implements our constructions of Chapter 4 and

compare it with state of the art tools that generate automata for model checking MDPs.

2.1 Basic Definitions

We recall the definition of a Markov chain M , a tuple (Q, �, µ0) where Q is a set of

states, � : Q ! Dist(Q) is the probabilistic transition function, and µ0 2 Dist(Q) is the

initial distribution. When Q is finite, we will often abuse notation and use � as a stochastic

14



matrix where the ith row of the matrix corresponds the distribution associated with si where

s0, . . . , sn is some fixed enumeration of Q. �(si, sj) will be denoting the probability of moving

from si to sj. A Markov chain M induces a probability distribution over infinite paths of

M . In the definition below we will refer to a sequence of states of the Markov chain as a

path of the Markov chain.

Definition 2.1. Given Markov chain M = (Q, �, µ0), the probability space associated with

it is denoted by PM is (⌦M ,FM ,PrM) where:

• The sample space ⌦M = Q!, the set of all infinite paths in M

• For finite paths ⇡ 2 Q⇤ the cylinder set C⇡ is defined as

C⇡ = {⇡0 2 Q! | ⇡ is a prefix of ⇡0}

FM is defined as the smallest �-algebra containing the set {C⇡ | ⇡ 2 Q⇤}

• PrM is the unique probability measure which assigns the cylinder set C⇡ with the prob-

ability value µ0�(s0, s1)�(s1, s2) . . . �(sk�1, sk) where ⇡ = s0, s1, . . . , sk

A Labeling of a Markov Chain M = (Q, �, µ0) is a function L : Q ! 2AP mapping each

state to a subset of the atomic propositions AP , or equivalently a truth assignment to the

propositions. A trace tr is an infinite sequence of assignments to AP . The trace associated

with a infinite path ⇡ = q0, q1, q2, . . . is the sequence t0, t1, t2, . . . where ti = L(qi). The

probability measure PrM can be extended to sets of traces as follows: Let T be a set of

traces then PrM(P ) is defined as PrM({⇡ 2 Q! | trace(⇡) 2 T}).

Next, recall that a Markov Decision Process M is a tuple (Q,Act,�, µ0) where Q is

a finite set of states, Act is a finite set of actions, � : Q ⇥ Act ! Dist(Q) is a function

representing probabilistic transitions, and µ0 2 Dist(Q) is the initial distribution.

In the execution based semantics of MDPs, one considers a scheduler that resolves the

non-determinism. At each state s 2 Q the scheduler picks an action a 2 Act, and then the

next state is chosen stochastically according to the distribution �(s, a). The scheduler can

make its decision based on the states that have been seen so far. The execution begins by

picking a state q 2 Q based on the initial distribution µ0.
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Definition 2.2. A scheduler S for an MDP M is a function Q+ ! Act which maps finite

sequence of states to actions. A

The set of paths in the MDP induced by the scheduler S are referred to as S-paths.

The S-paths of an MDP M have a one-to-one correspondence with the paths of a Markov

Chain MS that is said to be induced by the scheduler. MS is obtained by unfolding the

MDP graph along the actions prescribed by the scheduler. For simplicity we shall often write

�(s, a)(t) as �(s, a, t).

Definition 2.3. Given an MDP M = (Q,Act,�, µ0), a scheduler S is said to induce the

Markov chain MS = (Q+, �S, µ0) where for ⇢ = q0, q1, . . . , qk: �S(⇢, ⇢q) = �(qk,S(⇢), q).

A labeling on the MDP is defined exactly the same way it is defined for Markov chains.

The induced Markov chain MS allows one to assign probabilities to temporal-properties

described on the labels of the S-paths on M. If P ✓ (2AP )! is an !-regular property over

AP the set of propositions used in the labeling, then PrS
M
(P ) is defined as PrMS

(P ). The

problem we are interested is model checking of MDPs.

Definition 2.4. The quantitative model checking problem is to decide if there exists a

scheduler S such that PrS
M
(P ) > ✓ where MDP M, property P and threshold ✓ 2 [0, 1] are

given as inputs. When ✓ is fixed to be 0 the problem is known as qualitative model checking.

In this part of the thesis we present new complexity results for the qualitative and quanti-

tative model checking problems where the properties are specified in Linear Temporal Logic

(LTL) or its sub-fragments.

2.2 Automata Theoretic Approach

The classical algorithm for model checking non-probabilistic systems involves construct-

ing a non-deterministic automaton (Definition 1.1) for the given property (which describes

the bad executions), followed by an emptiness check of the product of the model and the

automaton (outlined in Figure 2.1). This idea, invented by Vardi et al. [57], paved the

way for an automata theoretic approach to model checking temporal properties. Since then
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Transition System T LTL formula '

Automaton A'

Cross Product T ⇥A'

Check Emptiness!
su�ces for A' to be non-deterministic.

Figure 2.1: Model checking schema for non-probabilistic systems.

there has been a lot of interest in discovering e�cient translation of LTL formulae into small

automata.

2.2.1 Limit Deterministic Automata

The algorithm for quantitative model checking problem for LTL properties, follows a sim-

ilar approach. One constructs an automaton for the property P , and solves a linear program

obtained from the cross-product of the model (MDP) and the automaton. The solution to

the linear program yields the extremal probabilities, infS PrS
M
(P ) and supS PrS

M
(P ), which

are then compared to ✓ to decide the answer. The procedure is outlined in Figure 2.2. The

crucial di↵erence here as compared to the non-probabilistic case is that non-deterministic

automata don’t su�ce. One requires the automaton to be deterministic. Deterministic

automata are also required for solving games. Hence there has been a lot of e↵ort in the

construction of small deterministic automata for LTL. Direct translations of LTL (and frag-

ments of LTL) to deterministic Rabin automata have been proposed [31, 45, 42, 35, 6, 22].

However, any such translation, in the worst case, results in automata that are doubly ex-

ponential in the size of the specification [3]; this lower bound holds for any fragment that

contains ^, _ and F. Courcoubetis and Yannakakis [19] in fact showed that the qualitative

model checking problem is itself 2EXPTIME-hard, thus one cannot hope to do any better

for the quantitative case than using the LTL to deterministic automata translation. But

[19] also showed that for solving the qualitative model checking problem one does not need
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MDP (or Markov chain) M LTL formula '

Automaton A'

Cross Product M⇥A'

Solve linear program for supS PrS
M
('), check > ✓

A' needs to be deterministic.

Figure 2.2: Model checking schema for probabilistic systems.

deterministic automata but limit deterministic (Definition 2.5) automata su�ce (Proposi-

tion 2.1). This does not yield an improved upper bound of the qualitative model checking

problem for LTL, but is useful because the construction of limit deterministic automata is

shown to be simpler than the construction of deterministic automata. In this thesis we show

how one can construct limit deterministic automata which are provably more e�cient for

sub-fragments of LTL. In Chapter 4 we show exponential sized construction for a large class

of formulae which we call LTLD. This results in lowering the complexity of the qualitative

model checking problem for that fragment.

Definition 2.5 (Limit Determinism). A NBA (Q, �, I, F ) over input alphabet ⌃ is said

to be limit deterministic if for every state q reachable from a final state, it is the case that

|�(q, �)|  1 for every � 2 ⌃.

Proposition 2.1 ([19, Proposition 4.2.3]). The qualitative model checking problem of

MDPs against property specified as a limit deterministic Büchi automata can be solved in

time linear in the product of the sizes of the MDP and the automaton.

2.2.2 Quantitative Model Checking

While qualitative model checking benefits from e�cient translation of LTL to limit de-

terministic automata, its usefulness for quantitative model checking is limited. Recently

it has been shown by Sickert et al. [52] that LTL can be translated to limit deterministic
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automata such that the resulting automata can be used for quantitative model checking, but

the construction presented there is still double exponential for small fragments. Recall that

the model checking algorithm has two parts (i) translating LTL to automata (ii) analyzing

the cross product. Our results for qualitative model checking and the work by [52] are in

improving the first part of the algorithm. For quantitative model checking we see how we

can perform better by improving the second part. We rely on existing translations of LTL

fragments to deterministic Büchi automata, and present a new algorithm for the analysis of

the cross product. This new algorithm enables us to reduce the complexity of quantitative

model checking for di↵erent fragments of LTL which we cover in Chapter 5.

2.2.3 Finite State Probabilistic Monitors

Courcoubetis and Yannakakis [19] showed that quantitative model checking problem

for Markov Chains is PSPACE-complete, and proposed an alternate approach to solving

the problem, which does not involve automata. Since Markov chains are special case of

MDPs one could use deterministic automata but that would yield a double exponential time

algorithm as in the case of MDPs. For Markov chains one can in fact use unambiguous

automata [8] or probabilistic automata, instead of deterministic ones. Probabilistic Büchi

automata (PBA) proposed in [7] are a generalization of limit deterministic Büchi automata.

PBAs associate each word with a probability measure. A cut-point, a number in ✓ 2 [0, 1],

can be then used to define a language: the set of all words with measure > ✓ (or � ✓).

PBAs with cut-point 1 can be used to perform quantitative verification of Markov Chains

and PBAs with cut-point 0 can be used for qualitative verification. We focus on a subclass

of PBAs known as Finite-state Probabilistic Monitors (FPM) [12], in which all states, except

a special absorbing reject state, are accepting. FPMs have the added appeal that they can

be used as runtime monitors of temporal properties.

We consider 3 special classes of FPMs in this thesis. A strong monitor is an FPM with

cut-point 1, i.e., an input word is accepted if the probability of reaching the reject state

is 0. Thus a strong monitor never rejects a good word. A weak monitor is an FPM with

cut-point 0, i.e., it accepts a word if it has some non-zero probability of being accepted. In

other words, a weak monitor never accepts a bad word. Finally a robust monitor is an FPM
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(with cut-point ✓) such that there is a gap g > 0 with the property that every input word

is either accepted with probability at least ✓ + g or at most ✓ � g. Robust monitors are

automata with two-sided, bounded error. Therefore standard techniques like amplification

can be used to have their error probabilities reduced. That is one can execute an input on

many independent instances of the monitor and take the majority answer to have the error

reduced by an exponential factor in the number of repetitions.

In Chapter 3 we investigate the construction of strong monitors, weak monitors, and

robust monitors, for safety properties expressible in Linear Temporal Logic.

20



Chapter 3

Monitors for Safety LTL specifications

3.1 Overview

In this chapter we focus on translation of safety properties experessed in LTL to proba-

bilistic monitors. LTL(R,X,_,^) are LTL properties built using propositions, conjunctions,

disjunctions, next, and release operators; negations are restricted to being only applied to

propositions (Definition 3.1). LTL(R,X,_,^) is known to capture all safety properties ex-

pressible in LTL [54].

In this chapter and sebsequent ones we will be interested in di↵erent fragments of LTL.

We will use LTL(op1, . . . , opk) as the set of formulae built using literals (propositions and

their negations) along with operators op1, . . . , opk. We use B(LTL(op1, . . . , opk)) to denote

all possible boolean combination of formulae in LTL(op1, . . . , opk). For example LTL(F,^)

represents the set of formulae built using literals and the connectives F and ^.

For this chapter we start out with the fragment LTL(R,X,_,^) which we will refer to

as safe-LTL.

Definition 3.1 (Safe-LTL syntax). The fragment LTL(R,X,_,^) over propositions AP

is described by the following syntax

' ::= p | ¬p | ' ^ ' | ' _ ' | X' | 'R ' p 2 AP

We show that for any property ' in LTL(R,X,_,^), there is a strong monitor with

O(2|'|) states that accepts the models of '. The monitor is essentially the nondeterministic

Büchi automata for the property constructed in [37], where the nondeterministic choices

are turned into probabilistic choices by assigning some non-zero probability to each choice.
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While this construction is not novel, it can be used to verify if a Markov chain violates a

safety property with non-zero probability (qualitative model checking of co-safety) — since

the PBA obtained by flipping the accept states and reject state of a FPM accepts the

complement of the safety property with non-zero probability. We also prove that there is no

translation from LTL(R,X,_,^) to small weak monitors. More specifically, we show that

there is a family of LTL(R,X,_,^) properties {'n}n2N such that |'n| = O(n log n) and

the smallest weak monitor for 'n is of size 22
|'|
. Since all safety properties in LTL can be

recognized by a doubly exponential deterministic automata, these results show that weak

monitors maybe no smaller than deterministic automata. These results are surprising in the

following light. Strong monitors are known to recognize only regular safety properties [12].

On the other hand, weak monitors are known to recognize all regular persistence properties 1

and even some non-regular properties [12]. Thus, while weak monitors recognize a richer class

of properties than strong monitors, they are not as e�cient.

Next, we consider a fragment of LTL(R,X,_,^) denoted LTL(G,X,_,^), where we

only allow the use of the “always” modal operator instead of release.

Definition 3.2. The logic LTL(G,X,_,^) over set of propositions AP is described by the

following syntax:

' ::= p | ¬p | ' ^ ' | ' _ ' | X' | G' p 2 AP

Since G' can be interpreted as falseR', LTL(G,X,_,^) is a fragment of LTL(R,X,_,^).

For this logic, we show that every formula ' has a weak monitor of size O(2|'|). Given

results in [3], our construction demonstrates that weak monitors can be exponentially more

succinct than deterministic automata for a large, natural class of properties. We also consider

the construction of robust monitors for LTL(G,X,_,^). We show that for any property ',

there is a robust monitor of size O(2|'|) with gap 2�|'|. Our construction is optimal in terms

of the gap; we show that any robust monitor with gap 2�o(|'|) must be of size at least 22
⌦(|'|)

.

Thus, robust monitors with subexponential gaps are no more e�cient than deterministic

automata for this logic. Our results are summarized in Figure 3.1.

1Informally, persistence properties are those that say that “eventually something always happens”. For

a formal definition see [41].
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DBA NBA Strong

Monitors

Weak

Monitors

Robust Monitors

LTL(R,X,_,^) 2-EXP EXP EXP 2-EXP with gap 1
2o(n) : 2-EXP

LTL(G,X,_,^) 2-EXP EXP EXP EXP with gap 1
2o(n) : 2-EXP

with gap 1
2n : EXP

Table 3.1: Size of automata recognizing Safety Properties in LTL. EXP means the number of

states is exponential in the size of the formula and 2-EXP means that the number of states

is doubly exponential. DBA stands for Deterministic Büchi Automata and NBA stands for

Nondeterministic Büchi Automata.

We conclude the overview with a brief discussion of our lower bound proofs which draw

on results in communication complexity [61, 38]. More specifically, we focus on one round

protocols, where the only one message is sent from Alice to Bob, and Bob computes the

value of the function based on this message and his input. We consider the non-membership

problem, which is a special case of set disjointness problem, where Alice gets a subset X ✓ S,

and Bob gets y 2 S, and they are required to determine if y 2 X. We observe that the

non-membership problem has a high VC-dimension, and, therefore, using results in [34], has

a high communication complexity. Next, we observe that for certain languages, an FPM

can be used to construct a one round protocol for this problem. In this protocol Alice and

Bob construct special strings based on their inputs, Alice sends the state of the FPM after

reading her input, and Bob computes the answer to the non-membership problem based on

whether his string is accepted from the state sent by Alice. Thus, a lower bound on the

communication complexity of the non-membership problem is lifted to obtain a lower bound

on the number of states in an FPM recognizing certain languages.
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3.2 Preliminaries

3.2.1 Monitors

We first look at the formal definition of a finite state probabilistic monitor (FPM). Recall

that a stochastic matrix is a square matrix with entries in [0, 1] such that every row sums

up to exactly 1.

Definition 3.3 (FPMs). A finite state probabilistic monitor (FPM) M is a tuple

(Q,⌃, µ0, qr, (��)�2⌃) where Q is a finite set of states; µ0 2 dist(Q) is the initial distribution;

qr 2 Q is the reject state, and (��)�2⌃ is an indexed set of stochastic matrices with dimension

|Q|⇥ |Q| such that ��(qr, qr) = 1 for all � 2 ⌃.

We will use |M| to denote the size of Q. For q 2 Q we will use (M, q) to denote the

FPM (Q,⌃, µ0

0, qr, (��)�2⌃) where µ0

0(q) = 1.

Given an infinite string as input a FPM M behaves as follows. M first chooses a state q1

according to µ0. When the computation is at state q and the next symbol is � then it moves

to state q0 with probability ��(q, q0); consumes the input symbol � and keeps repeating this

process for the remaining input.

For a finite word u = �0 . . . �n define �u as the matrix product ��0 . . . ��n , and let µM,u

be the distribution µ0�u. Define the rejection probability of u as µrej

M,u
= µM,u(qr) and and

acceptance probability µacc

M,u
= 1� µrej

M,u
. Next observe that µrej

M,↵(i)  µrej

M,↵(i+1) because the

reject state has no edges leaving it. So, the sequence µrej

M,↵(0)µ
rej

M,↵(1) . . . is non decreasing

and since it is upper-bounded by 1, its limit exists. Define M’s probability of rejecting ↵,

denoted by µrej

M,↵
, to be this limit. Let M’s probability of accepting ↵ be µacc

M,↵
= 1� µrej

M,↵
.

Given a cutpoint � 2 [0, 1], the language recognized by M can be defined as the set of

all infinite words with probability of acceptance at least � or strictly more than �. This is

formally defined below.

Definition 3.4. Given a cut-point � 2 [0, 1] and FPM M

• L>�(M) = {↵ 2 ⌃! | µacc

M,↵
> �}
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Figure 3.1: Example FPM M

• L��(M) = {↵ 2 ⌃! | µacc

M,↵
� �}

Example: Figure 3.1 shows an example of an FPM. Here the input alphabet consists

of Boolean assignments for p and q that is ⌃ = 2{p,q}. The transitions are shown to be

annotated with predicates over p and q: for example the transition from 1 to 2 is annotated

with p, 12 which means if you are in state 1 and see an input symbol � for which p 2 � then

you move to state 2 with probability 1
2 . Consider the initial distribution to be the one which

assigns equal probabilities to states {1, 2, 3} and let qr be the reject state. The language

associated with M at cutpoints 1 and 0 are: L�1(M) = JG(p^ q)K and L>0 = JG(p_Gq)K.

A cut-point is said to be extremal if it is either 0 or 1, and it is called non-extremal

otherwise. The following proposition states that when the cutpoint is non-extermal it does

not matter as to what that exact cutpoint is. The Proposition is proved in [12] and a proof

sketch is included here because the same construction will be used in Corollary 3.2.

Proposition 3.1 ([12]). For any p 2 [0, 1] and for any FPM M

• there is an FPM M0 of size O(|M|) such that µrej

M0,↵ = pµrej

M,↵

• there is an FPM M0 of size O(|M|) such that µacc

M0,↵ = pµacc

M,↵
.

Proof. LetM be (Q,⌃, µ0, qr, (��)�2⌃). First let us consider when there is a single state q0 for

which µ0(q0) = 1. In this case we introduce two new states q00, qacc(/2 Q) and extend the tran-

sition matrices to include ��(q00, q) := p��(q0, q), ��(q00, qacc) := (1� p), ��(qacc, qacc) := 1 and

��(q, q00) := ��(q00, q
0

0) = 0 for all q 2 Q and � 2 ⌃. LetM0 be (Q[{q00, qacc},⌃, µ0

0, qr, (��)�2⌃)

where µ0

0(q
0

0) := 1. The construction ensures that every word is diverted to qacc right at the

beginning with probability (1�p). A word ↵ gets rejected on M0 if it does not go to qacc and
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ends up in qr. If it does not go to qacc then the M would behave exactly as it would on w

except for the beginning, where the probability gets scaled by p, and hence µrej

M0,↵ = pµrej

M,↵
.

When there are multiple states q 2 Q with µ0(q) > 0 one can introduce a copy for each of

them in the same way.

The second part can be similarly proved by diverting probabilities to qr instead of qacc at

the beginning.

Corollary 3.1. For any two cutpoints �1,�2 2 (0, 1) and FPM M1, there is a FPM M2

such that L>�1(M1) = L>�2(M2) and L��1(M1) = L��2(M2) and M2 is of size O(|M1|).

We will be interested in FPMs for which the probability of accepting any word is bounded

away from the cut-point. We call these FPMs to be robust, and we define this formally.

Robustness, first introduced in [12], is analogous to the concept of isolated cut-points [48]

for probabilistic automata over finite words.

Definition 3.5. Given FPM M and a cut-point � define gap(M,�) as

gap(M,�) = inf
↵2⌃!

|µacc

M,↵
� �|

Definition 3.6. A FPM is said to be robust with respect to a cut-point � if gap(M,�) > 0.

When a M is robust for cut-point � then L>�(M) = L��(M) which we will represent by

L�(M).

For robust FPMs, we can always consider the cut-point to be 1
2 without seriously changing

the size of the automata or its gap. Thus in the rest of the paper, we will assume that the

cut-point of any robust monitor that we consider is 1
2 .

Corollary 3.2. If FPM M is robust at � then there is a FPM M0 of the same size as M

such that L�(M) = L 1
2
(M0) and gap(M0, 12) �

1
2gap(M,�)

Proof. The construction of Proposition 3.1 give us the required FPM M0. When � < 1
2

choose p := 1
2(1��) and observe that:

gap(M0, 12) = inf
↵2⌃!

|µacc

M0,↵ � 1
2 | = inf

↵2⌃!
|12 � µrej

M0,↵|

= inf
↵2⌃!

|12 �
µ
rej
M,↵

2(1��) | =
inf↵2⌃! |µ

acc
M,↵��|

2(1��) � 1
2gap(M,�)
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Monitorable languages

An FPM M is said to strongly monitor a language L ✓ ⌃! if L = L�1(M), meaning the

monitor M never declares a correct behaviour to be wrong. Similarly M is said to weakly

monitor L if L>0(M) = L which means M never accepts a wrong behaviour but it may

occasionally reject a correct behaviour. The FPM M is said to robustly monitor L if there

is a cut-point � for which M is robust and L = L�(M).

Gap amplification

Given a robust FPM M, one can always increase the gap (and reduce the error probabil-

ity) by running multiple copies of M in parallel. Before presenting this result, we introduce

some formal definitions that will allow us to state this result precisely.

A family of FPMs is a sequence of FPMs {Mn}n2N. We define the size of the family as

the function s(n) = |Mn|, and the gap of the family as the function g(n) = gap(Mn,
1
2).

Lemma 3.1. Let {Mn} be a family of robust FPMs, then there exists a family {M0

n
} of

size s(n)
d

1
g(n)2

e
with ⌦(1) gap such that for all n L 1

2
(Mn) = L 1

2
(M0

n
).

Proof. Gap amplification is well known technique wherein a particular experiment is repeated

in order to increase the gap or reduce the error probability [43]. Consider M0

n
to be the

machine that runs d 1
g(n)2 e copies of Mn in parallel on an input word ↵. M0

n
rejects ↵ if more

than 1
2 of the d 1

g(n)2 e copies of Mn reject ↵. Using Cherno↵’s bounds we can show that for

any ↵, |µacc

M0
n,↵

� 1
2 | �

1
2 � e�2. The bounds on the size and the gap for M0

n
follow from these

observations.

3.2.2 LTL to NBA

Lemma 3.2 ([59, Theorem 22, Proposition 20]). For every formula ' in LTL(R,X,_,^)

there is an NBA N = (Q,⌃, Q0, �, {q}) such that �(q, �) = {q} for all � 2 ⌃, J¬'K = L(N)

and size of N is O(2|'|).

Proof. The NBA constructed from the alternating automaton for ¬' has a single final state

with outgoing edges only to itself.
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3.2.3 Communication Complexity

In the two-party communication complexity model of Yao [61], there are two parties

Alice and Bob, who are given strings x 2 X and y 2 Y , respectively, and are trying to

cooperatively compute a Boolean function f : X ⇥ Y ! {0, 1} on their joint inputs. We are

primarily interested in one-round communication protocols, wherein Alice computes some

(randomized) function a on her input x, sends the output of this function to Bob, and then

Bob, based on Alice’s message and his own input, tries to compute the answer f(x, y) using

another function b. This can be formalized as below.

Definition 3.7. A one round protocol is P = (a, Z, b), where a : X ⇥ RA ! Z is the

(randomized) function that Alice computes (where RA is the space of Alice’s random choices),

Z is the space of messages that Alice uses to communicate to Bob, and b : Z⇥Y ⇥RB ! {0, 1}

is the (randomized) function that Bob computes (where again RB is the space of Bob’s random

choices).

• The protocol P is said to compute f with error at most ✏ 2 (0, 1) if

Pr
r12RRA, r22RRB

⇥
b(a(x, r1), y, r2) = f(x, y)

⇤
� 1� ✏

where the probability is measured over the random choices made by Alice and Bob.

• The cost of protocol P will be taken to be the number of bits communicated by Alice to

Bob in the worst case, i.e., cost(P ) = log |Z|. Notice, that in measuring the cost of the

protocol, we do not measure the resources needed to compute the functions a and b.

• The randomized one-round communication complexity of function f , denoted by RA!B

✏
(f),

is the least cost of any one-round protocol computing f with error at most ✏.

The one-round communication compexity of a boolean function f(x, y) is closely related

to the concept of VC-dimension. We take a look at the definition VC-dimension [56].

Definition 3.8. Let H be a class of boolean functions over the set Y . A set Y 0 ✓ Y is said

to be shattered by H if for every T ✓ Y 0 there exists a function hT 2 H such that for all

y 2 Y 0 hT (y) = 1 i↵ y 2 T . The size of the largest set Y 0 ✓ Y which is shattered by H is

known as the VC-dimension of H and is denoted by V C-dim(H).
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For a Boolean function f : X ⇥ Y ! {0, 1} let fx : Y ! {0, 1} be the function defined

as fx(y) = f(x, y) and let fX = {fx | x 2 X}.

Lemma 3.3 ([34]). For any boolean function f : X ⇥ Y ! {0, 1} over finite sets X and

Y , and any constant error ✏ < 1
8 , the one-round randomized communication complexity of

f , RA!B

✏
(f) = ⌦(V C-dim(fX)).

We will be interested in a particular function which we will call the non membership

function. Given any set S the non-membership function is the Boolean function gS : X⇥Y !

{0, 1} where X = 2S, Y = S and g(x, y) is 1 when y /2 x and 0 otherwise.

Proposition 3.2. The VC-dimension of the class of functions gS
X

is equal to the size of S,

that is V C-dim(gS
X
) = |S|.

Proof. For every subset Y 0 ✓ S the function gS
x
2 gS

X
where x = S � Y 0 2 X is such that

gS
x
(y) = 1 i↵ y 2 Y 0.

Corollary 3.3. For error ✏ < 1
8 , the one-round randomized communication complexity of

the non-membership function RA!B

✏
(gS) is ⌦(|S|)

3.3 Monitors for Safe-LTL

In this section, we present a construction of strong monitors for formulae in LTL(R,X,_,^)

of exponential size, and also show that the smallest weak monitors for some formulas in

LTL(R,X,_,^) can be doubly exponential sized. However, before presenting these results,

we observe that any exponential blow-up is inevitable even for very simple formulas that are

built using only the X operator. Thus the best upper bounds we can hope for is exponential.

Proposition 3.3. • There exists a family of specifications {'n}n2N such that any family

{Mn}n2N that weakly monitors it has size at least 2|'n|, and

• There exists a family of specfications {'n}n2N such that any family {Mn}n2N that

strongly monitors it has size at least 2|'n|

29



Proof. Consider the class of languages {Ln} where Ln = {uu(0 + 1)! | u 2 {0, 1}n}. Ln

can be specified by saying that for each i 2 {1, . . . , n} the ith input symbol should be

the same as the (i + n)th input symbol, which can be done using only X and the boolean

connectives. Any FPM that weakly recognizes Ln should have at least 2n states because for

each u 2 {0, 1}n one can identify a state q reachable from u and not reachable on any other

v 2 {0, 1}n such that the word u is accepted with non-zero probability from q.

The complement of the above language, Ln, can be used to show that the translation to

strong monitors will also result in an exponential blowup, and this can be argued in a similar

fashion.

3.3.1 Strong Monitors

We present our construction of an exponential size strong monitor for LTL(R,X,_,^)

formulas.

Theorem 3.1. For every formula ' in LTL(R,X,_,^) there is a FPM M' of size O(2|'|)

such that M' strongly monitors J'K that is L�1(M') = J'K

Proof. We begin by using Lemma 3.2 to construct a NBA B = (Q,⌃, Q0, �, qf ) that rec-

ognizes all words that don’t satisfy the specification ', such that state qf is absorbing.

Let µ0 2 dist(Q) such that µ0(q) = 1
|Q0|

if q 2 Q0 and 0 otherwise. For all q1, q2 2 Q

define ��(q1, q2) = 1
|�(q1,�)|

if q2 2 �(q1, �) and 0 otherwise. The required FPM M' is

(Q,⌃, µ0, qf , (��)�2⌃). Any word that satisfies ' can never reach the reject state of the

FPM, if it could then the accept state of B would also be reachable on that word and since

it is absorbing the word would be accepted by B, which is not possible as B accepts words

that do not satisfy '. Hence no word satisfying ' can reach the reject state of M' so we

have J'K ✓ L�1(M'). Any word that does not satisfy ' can reach the accepting state of

the NBA, and hence can reach the reject state in M' with non-zero probability and so we

have that J'K ◆ L=1(M').

The above result is not a novel construction. However, it can be potentially exploited in

model checking Markov Chains. Flipping the accept and reject states of the FPM gives a
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PBA that accepts the complement of the safety property with non-zero probability, hence

the above construction shows that there are exponential sized PBAs recognizing co-safety

properties expressed in LTL. Thus, if to check if a Markov chain violates a safety prop-

erty with non-zero probability, we can use this PBA instead of constructing a deterministic

automaton for the co-safety property (which can be doubly exponential in size).

3.3.2 Weak Monitors

While LTL(R,X,_,^) admits strong monitors of exponential size, we show that the

smallest weak monitors for some formulas can be doubly exponential in size. This is inter-

esting in the light of the fact that weak monitors are expressively more powerful than strong

monitors (i.e., can recognize languages not recognizable by strong monitors) [12].

Theorem 3.2. There exists a family of LTL(R,X,_,^) specification {'n}n2N of size O(n log n)

such that any family of FPMs that weakly monitors {'n}n2N has size 2⌦(2
n)

Proof. Consider ⌃ = {0, 1,#, $} and the following ! languages over ⌃

Sn = (# · (0 + 1)n)+ · $ · (0 + 1)n

R0

n
= {(# · (0 + 1)n)⇤ · (# · w) · (# · (0 + 1)n)⇤ · $ · w | w 2 (0 + 1)n}

Rn = Sn �R0

n

Ln = R!

n
+R⇤

n
· (# · (0 + 1)n)!

A word in Sn can be thought of as an instance of a non-membership query: call the set of

n-bit strings appearing before the $ as the query set and a n-bit string appearing after the

$ as the query string. In a non-membership query you want to know whether the query

string does not occur in the query set. R0

n
represents the words in Sn that are no instances

of the non-membership query and Rn represents the yes instances. Ln represents either a

possibly infinite sequences of yes instances of the non-membership query or finitely many

yes instances followed by an infinite sequence of n-block 0, 1 separated by # alone. For the

LTL(R,X,_,^) specification the set of propositions P we consider is {0, 1,#, $}, and we will

assume that exactly one proposition holds at any time point. This can be easily enforced

by a constant sized specification. For the sake of simplicity we present the specification
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family that is of size O(n2). For details about the more succinct O(n log n) specification the

interested reader should refer to [36] after reading this proof.

# ^G(# ) (
n^

i=1

Xi(0 _ 1)) ^Xn+1(# _ $)) (3.1)

^G($ ) (
n^

i=1

Xi(0 _ 1)) ^Xn+1(#)) (3.2)

^G(# )
n_

i=1

_

�2{0,1}

(Xi(�) ^ (X($ ^Xi(�c))R (¬$))) (3.3)

(3.1) says that the words should begin with # and each # should be followed by a n-bit string

followed by a # or $. (3.2) says that every $ is followed by n-bit string block then followed by

#. (3.1) and (3.2) together describe a sequence of possibly infinite non-membership queries.

(3.3) says that for any every word in the query set di↵ers from the query string in at least

one position. Hence (3.1) ^ (3.2) ^ (3.3) is a specification of Ln and is of size O(n2).

Now let us assume that we have a family of FPMs {Mn} that weakly monitors {Ln}.

We make the following claim about Mn.

Claim: Consider any n 2 N and c 2 (0, 1). Let Mn be (Q,⌃, Q0, qr, (��)�2⌃). There exists a

u 2 R⇤

n
and a state q 6= qr with µMn,u(q) > 0 such that for all � 2 R!

n
: µacc

(Mn,q),�
� c.

Proof: Suppose the claim does not hold for some c and n. Let us fix M to be Mn. Since the

claim is false we have that for any u 2 R⇤

n
and any q with µM,u(q) > 0 there is a �q 2 R!

n

such that the measure of accepting runs from q on �q is less than c. Let us fix q to be a

state with maximal µM,u(q) among all q 6= qr. For such a q we have µM,u(q) � µ
acc
M,u

|M|
by

pigeon-hole principle. For an FPM the acceptance measure of any string is non-increasing

along its length and so there should be a finite prefix of �q, say v 2 R⇤

n
such that µacc

(M,q),v < c.

From this we get

µacc

M,uv
 µacc

M,u

✓
1� 1� c

|M|

◆

because at least 1 � c of the probability of reaching q is lost to qr after seeing v. So for

any u 2 R⇤

n
we manage to find a string v 2 R⇤

n
such that the acceptance probability of the

extended string uv compared to u decreases by a constant factor. But observe that uv is

once again in R⇤

n
. So this extension process can be repeated forever to get a string in R!

n

which is accepted with 0 probability which is a contradiction. So our claim is indeed true.
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Continuing with the proof our theorem, consider S = {0, 1}n. In order to show the

required lower bound on Mn we will show how Mn can be used to construct a constant-

error one-round protocol for the non-membership function gS. For the sake of the remaining

argument we instantiate c in the above claim to 7
8 . Consider the state q as per our claim.

Let ⌘ denote the string (#an)!. We make the following observations:

• for w 2 Rn the acceptance probability of w⌘ starting from q is at least 7
8 . This is

because from q every prefix w0 of w⌘ should be accepted with probability at least 7
8 ,

otherwise we can attach an appropriate su�x to w0 to get a string that contradicts our

claim.

• for w 2 R0

n
, the string w⌘ is accepted with 0 probability because Mn should accept

strings uw⌘ with 0 probability.

So Mn if started from q is able to significantly distinguish between yes and no instances

of the non-membership query. We can use this to construct a one-round protocol for the

function gS: Alice encodes her input set of n-bit blocks as a string in (#·(0+1)n)+$ and runs

it on Mn starting from q and sends to Bob the resulting state q0. Bob then simulates y⌘ from

q0 and outputs 0 i↵ the simulation results in rejection. (Bob cannot actually run the infinite

string ⌘ but he can simulate ⌘’s acceptance because probability of ⌘ being accepted from

any state can be calculated). This gives us a randomized one-round protocol with error < 1
8 .

The number of bits exchanged in this protocol is log2 |M|, but according to Corollary 3.3

any such protocol needs to exchange at least ⌦(2n) bits. Hence we get that M has at least

2⌦(2
n) states.

3.4 Monitors for LTL(G,X,_,^)

The results in Section 3.3 show that for general LTL(R,X,_,^) formulas, weak monitors

can be as large as deterministic automata. In this section, we show that when we consider

the sub-logic LTL(G,X,_,^), we can demonstrate that weak monitors can be exponentially

more succinct than their deterministic counterparts. The idea behind the construction is

that we consider each state to represent a guess about the truth of all subformulae of the
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form G : whether it holds now, or holds starting from some point in the future, or never

holds. Then we argue that for satisfying behaviours one can find accepting runs that need

to make finitely many correct guesses and vice versa.

In the latter part of the section we present constructions of robust monitors for this logic

that are small. This result relies on considering a normalized form of the formula which

yields an e�cient way to construct the required monitor.

3.4.1 Weak Monitors

Before we present our construction of exponential sized weak monitors for the fragment

LTL(G,X,_,^), we introduce some assumptions and definitions that will facilitate the proof.

For a formula ' let Sub(') denote the set of all subformulae of ', and let GSub(') ✓

Sub(') be those which are of the form G .

Definition 3.9. An annotation for a formula ' is a function mapping GSub(') to the set

{>,?, L}. Denote by A the set of all annotations. An annotation is called stable if it maps

GSub(') to {>,?}. Given an annotation a and � 2 2P an evaluation for ' is the unique

function e�
a
: Sub(') ! {>,?} that meets the following constraints:

e�
a
( ) = > i↵ (a( ) = >) for  2 GSub(')

e�
a
(p) => i↵ p 2 � e�

a
( 1 ^  2)=e�

a
( 1) ^ e�

a
( 2)

e�
a
(¬p)=> i↵ p /2 � e�

a
( 1 _  2)=e�

a
( 1) _ e�

a
( 2)

An annotation represents a guess for each subformula G stating whether G holds now

(>), holds for some later point but not now (L), never holds (?). An evaluation attempts to

evaluate the truth for all the subformulae (read e�
a
( ) as evaluation of  annotated with a

and �). Note that an evaluation need not be logically consistent. For example e�
a
(Gp) could

be > because a(Gp) = >, but e�
a
(p) = ? because p /2 �. We are now ready to present the

main result of this section.

Theorem 3.3. For every ' 2 LTL(G,X,_,^) there is a FPM M' of size 2O(|'|) such that

L>0(M') = J'K

Proof. First we show how the construction works for ' 2 LTL(G,X,_,^) when it does not

have any X operators. Let Q the set of states be (A⇥ {0, 1}) [ {qr}. For � 2 2P define T�
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to be the binary relation on Q such that for a, b 2 A, ((a, t1), (b, t2)) 2 T� i↵: t2 = 0 and if

t1 = 1 then e�
a
(') = > and the following conditions on a, b holds:

(a(G ) = >) ) (b(G ) = > ^ e�
a
( ) = >)

(a(G ) = ?) ) (b(G ) = ?)

(a(G ) = L) ) (b(G ) 6= ?)

For a 2 A, ((a, t1), qr) 2 T� if for no (b, t2) the above conditions hold. For all �, (qr, qr) 2

T�. Define �� as:

��(q1, q2) =
T�(q1, q2)P
q2
T�(q1, q2)

,

Define µ0 as follows: for an annotation a, µ0((a, t)) =
1
|A|

if t = 1 and define it to be 0 on

the rest of the states. The required FPM M' is (Q, 2P , µ0, qr, (��)�2⌃). Now we prove that

L>0(M') = J'K.

L>0(M') ◆ J�K : For a string ↵ that satisfies ' we look at the sequence of states induced

by ↵, i.e define the ith state (ai, ti) as ti = 1 i↵ i = 0 and

ai(G ) =

8
>>>>><

>>>>>:

> if ↵i ✏ G 

L if ↵i 2 G and 9j > i : ↵j ✏ G 

? if 8j � i : ↵j 2 G 

First let us observe that �↵(i)((ai, ti), (ai+1, ti+1)) > 0 for any i: If ai(G ) = > then by

construction, ↵i ✏ G . This implies ↵i+1 ✏ G and so ai+1(G ) = >. Also one can prove

that for all i 2 N and  2 Sub('), (↵i ✏  ) ) e↵(i)ai ( ) = > by induction on the structure of

 . If ai(G ) = L then we know  is going to hold forever from some point after i, which

means it is also going to hold forever from some point after i+ 1 and hence ai+1(G ) 6= ?.

If ai(G ) = ? then we know  is going to be false infinitely often from i, so  will be false

infinitely often from i + 1 as well hence ai+1(G ) = ?. This makes sure that ai and ai+1

are properly related. Since ↵ ✏ ' we have that e↵(0)a0 (') = 1. Thus ((a0, 1), (a1, 0)) 2 T↵(0).

Hence, (a0, 1)(a1, 0) . . . is a valid run of M' over ↵.

For any ai ifG 2 GSub(') is marked L then there is a j > i such thatG ✏ ↵j (defnition

of ai), so it follows that aj(G ) = >. This implies that every L eventually becomes >, so
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there exists a point k at which ak marks all formulae in GSub(') as either > or ? (which

cannot be further modified), and hence ak0 = ak for all k0 � k. Once you reach ak you cannot

go to any other annotation except itself and hence for all k0 � k : �↵(k0)((ak, 0), (ak, 0)) = 1.

Therefore this run does not have to make any probabilistic choice after the point k and hence

has positive acceptance probability.

L>0(M') ✓ J'K : Consider any valid accepting run (a0, t0)(a1, t1) . . . of M' on input

↵. First observe that in any valid run of M' the number of >s and ?s are non decreasing.

Since there are finitely many states, the run ultimately stagnates at a particular state. Let us

denote by Ca the set of runs which stay in the state (a, 0) after finitely many steps. Denote

by C i

a
the set of all runs in Ca that stay in a after i steps. We have Ca = [1

i=1C
i

a
.

Fix a to be an unstable annotation. For any � we have ��((a, 0), (a, 0)) < 1, because

a has a choice to change a L to > and move to a di↵erent annotation. So the probabiltiy

measure associated with C i

a
is 0 because after i steps the only transition taken is from (a, 0)

to (a, 0) which leaks at least 1 � ��((a, 0), (a, 0)) probability out of (a, 0). This implies the

probability associated with the set Ca is also zero.

So if the set of all accepting runs of ↵ has non-zero measure then it has to have a run

that ultimately reaches a stable annotation. Now with such a run we prove that the word

↵ satisfies '. For any '0 2 Sub(') and i 2 N if e↵(i)ai ('0) = > then ↵i ✏ '0, this can

be proved by performing induction on the structure of '0. The interesting case is when

'0 = G . The definition of e suggests that if e↵(i)ai (G ) = > then ai(G ) = >. Since

((ai, ti), (ai+1, ti+1)) 2 T↵(i), we get from the definition of T that e↵(i)ai ( ) = > and so it

follows that ↵i ✏  from the induction hypothesis. But if G is marked > in ai then it is

marked > in every aj for j > i. So ↵j ✏  for every j � i and hence we have that ↵i ✏ G .

Finally observe that ((a0, t0), (a1, t1)) 2 T↵(0) i↵ e↵(0)a0 (') = >. Thus ↵0 ✏ '.
What remains is to be shown is the construction in the presence of X operators. First

we push down the X operators to the bottom, this is possible because X distributes over

all other operators. If the number of nested Xs is at most k (which is at most |'|) then by

looking ahead k positions into the input one can evaluate the X subformulae just like literals.

So by maintaining the last k input symbols and delaying the computation by those many

steps will give use the required construction. Since we need to remember k input symbols
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¬q, 1p, 1

¬p, 1

Figure 3.2: Weak monitor for G(p _G(q))

the construction will blow up only by a factor of |⌃|k which is again in 2|'|.

3.4.2 Robust Monitors

We will present a construction of robust automata of exponential size for formulae in

LTL(G,X,_,^). We begin by observing that the above construction for weak monitors

does not result in a robust monitor. Consider the formula G(p _ Gq). The construction

of Theorem 3.3 results in the FPM given in Figure 3.2. The initial distribution gives equal

probability to the states A, B and C. The states are as follows: A = (a1, 1), B = (a2, 1),

C = (a3, 1), A0 = (a1, 0), B0 = (a2, 0) and C 0 = (a3, 0), where a1, a2, a3 are annotations as

given below.

{a1(G(p _Gq)) = >, a1(Gq) = L} {a2(G(p _Gq)) = >, a2(Gq) = >}

{a3(G(p _Gq)) = >, a3(Gq) = ?} (3.4)

The rest of the annotations do not appear as they are unreachable. To see why the FPM

is not robust we consider the word pnq!. After seeing the first n > 0 input symbols of this

word, the monitor is going to be in state A0 with probabitlity 1
3.2n , in state B0 with 1

3.2n and

in state C 0 with probability 1
3 . Probability of being in state C 0 goes to 0 as we see the rest of

string q!. This means as n grows larger the word pnq! is accepted with negligible probability
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and hence the language JG(p _Gq)K is not robustly monitored by this FPM. Therefore, we

present a new construction that avoids these pitfalls.

Theorem 3.4. For every ' in LTL(G,X,_,^) there is a FPM M', which is robust with

1
2|'| gap, 2

O(|'|) states such that M' recognizes '.

Proof. As in Theorem 3.3 we can push all the X in the formula to the bottom and take

care of it by remembering the last k input symbols where k is the nesting depth of the Xs.

Therefore we are going to consider only formulae without any X in this proof.

The FPM that we construct is going to accept safe inputs with probability 1 and reject

bad inputs with probability > 1
2|'| .

Let us first consider the simpler logic LTL(_,G) built using literals, disjunction and G;

so the formulas have no conjunction. We will say that a formula ' 2 LTL(_,G) is guarded

i↵ every subformula G of ' is of the form G(↵_�), where ↵ is a disjunction of literals, and

� is a disjunction of formulae like G�; � could be an empty disjunction. Observe that every

formula ' in LTL(_,G) is equivalent to a guarded formula  such that | | = O(|'|). This is

because we have GG ⌘ G , and G(G↵1 _G↵2 _ · · ·_G↵n) ⌘ (G↵1 _G↵2 _ · · ·_G↵n).

Every guarded formula ' can be recognized by a deterministic monitor 2 of size 2|'|, whose

states keep track of the guarded subformulae which are yet to be violated. For example, if

the formula is G(↵1 _G↵2 _G↵3) then the automaton monitors ↵1 until it becomes false

and then starts monitoring G↵2 and G↵3 (which are guarded).

Consider ' 2 LTL(G,X,_,^). Since ^ distributes over _ and G( 1 ^  2) ⌘ (G 1) ^

(G 2), we can pull all the conjunctions out, and show that ' is equivalent to a formula

 which is conjunction of formulas in LTL(_,G). We can also see that | | = O(2|'|).

The FPM for  will be will be a disjoint union of the deterministic monitors recognizing

each of the conjuncts in  . Thus, the number of states in this FPM is thus O(22|'|). The

initial distribution assigns equal probability to the initial states of each of the deterministic

monitors (and 0 probability to all other states). A bad input violates one of the conjuncts,

and so the monitor corresponding to that conjunct will reject the input. Thus, bad inputs

are accepted with probability at most (1� 1
2|'| ). On the other hand, a good input is accepted

2A deterministic monitor is an FPM in which each transition matrix has entries which are either 0 or 1.
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by the monitors of each of the conjuncts, and therefore accepted by the FPM for  with

probability 1.

The proof of Theorem 3.4 constructs a robust FPM with exponential gap. We show that

these bounds on the gap cannot be improved without increasing the number of states to

doubly exponential; this is the content of the next theorem.

Theorem 3.5. There exists a family of LTL(G,X,_,^) (and hence LTL(R,X,_,^)) spec-

ifications {'n}n2N of size O(n) s.t. any family of robust FPMs with 1
2o(n) gap that recognizes

it has size 22
⌦(n)

.

Proof. We consider the specfications used in [3] to prove lower bounds on deterministic

generators. Let 'n = G(
W

n

i=1(¬pi ^G¬qi)). We will reduce the problem of finding e�cient

protocols for the non-membership function to the problem of finding small sized FPMs for

this specification.

Let Pp = {p1, . . . , pn}, Pq = {q1, . . . , qn}, ⌃k be {a ✓ Pp | |a| = k} and �k be {b ✓

Pq | |b| = k}. We choose k to be n

2 so that |⌃k| = 2⌦(n). For any � ✓ Pp let q(�) =

{qi | pi /2 �}. Let S = ⌃k and gS be the corresponding non-membership function. Using

Corollary 3.3 we get that for ✏  1
8 the communication complexity RA!B

✏
(gS) 2 2⌦(n).

We begin by showing that a constant gap family {Mn} recognizing {'n} should have

large size. Consider an FPM family Mn with gap at least 3
8 such that L(Mn) = J'nK. Now

we are going construct a randomized one-round protocol for gS with < 1
8 error using Mn.

Alice encodes her input x as a string �1�2 . . . �m, an enumeration of the sets in x (which are

also symbols in the alphabet 2Pp[Pq), runs it on Mn and gives the resulting state to Bob.

Bob whose input is y simulates the word q(y)(;)! from the given state, and outputs 0 if it

results in rejection and outputs 1 otherwise. A word violates 'n i↵ there is a point in the

word where for each pi that is false it is the case that eventually qi is true. Suppose x and

y are such that gS(x, y) = 0, this means that there is some �j 2 x for which y = �j and

so we get that �1�2 . . . �mq(y)(;)! violates 'n. Similarly if gS(x, y) = 1 then is no j such

that �j 2 x and y = �j and so �1�2 . . . �mq(y)(;)! satisfies 'n. Since Mn has a gap of 3
8

it follows that the protocol that we constructed has an error of at most 1
8 in deciding the

output gS(x, y). The number of bits exchanged in this protocol is log2 |Mn|. But above we
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saw that any such protocol should exchange 2⌦(n) bits which imples that the size of Mn has

to be 22
⌦(n). Having shown that constant gap FPMs recognizing {'n} is of size 22

⌦(n)
we

invoke Lemma 3.1 to get the same lower bound for 1
2o(n) gap FPMs.

3.5 Conclusion

In this chapter we gave constructions of FPMs for safety properties expressed in LTL. We

showed that LTL(R,X,_,^) has strong monitors of exponential size, where as weak monitors

and robust monitors with sub-exponential gaps, can be doubly exponentially large. For the

sub-logic LTL(G,X,_,^) we gave constructions of weak monitors and robust monitors of

exponential size. However, the gap for robust monitors for LTL(G,X,_,^) given by our

construction is exponential and we showed that these bounds on the gap cannot be improved

without increasing the number of states to doubly exponential.

A number of questions remain open. While we showed that robust monitor with sub-

exponential gap for LTL(R,X,_,^) can be doubly exponential in size, we could not conclude

if the construction can be improved if we relax the bounds on the gap. In particular, it would

be interesting to know if there are exponential sized robust monitors with an exponential

gap.
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Chapter 4

Qualitative Model Checking

In this chapter we present the construction of limit deterministic Büchi automata (LDBA)

for LTL which is exponential sized for the fragment LTLD. We present our construction in

steps. We first look at some of the core ideas involved by looking at the translation for the

subfragment LTL(F,G,^,_) in Section 4.1 and then present the full construction in Sec-

tion 4.2. We show that our construction is optimal for the fragment LTLD in Section 4.3, and

discuss the expressive power of LTLD in Section 4.4. The resulting complexity improvements

of qualitative model checking are covered in Section 4.5.

4.1 LDBA construction for LTL(F,G,^,_)

Recall that the fragment LTL(F,G,^,_) consists boolean combinations of LTL properites

built using literals, conjuctions, disjunctions, always, and eventually operators.

First, let us look at an example that shows that the standard construction (Fischer-

Ladner and its variants) is not limit deterministic. The standard construction involves

guessing the set of subformulae that are true at each step and ensuring the guess is correct.

For ' = G(a_Fb) this gives us the automaton (after pruning unreachable states and merging

q0 : {',Fb} q1 : {',Fb, b}

q2 : {'}

¬b b

¬b

b

b

a

(a) Standard Construction

q0 : h ' | Fb | - i, 0

q1 : h ',Fb | - | - i, 0

q2 : h ' | - | Fb i, 0

q3 : h ' | - | Fb i, 1

true

b

a

trueb

¬b

(b) Tripartition Construction

Figure 4.1: Automata for G(a _ Fb)
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bisimilar ones. Here all 3 states are initial) in Figure 4.1a which is not limit deterministic as

the final state q1 has non-deterministic choices enabled.

The following proposition embodies the key idea behind our construction. A proof is

provided in Appendix A.

Proposition 4.1 (Key Idea). For any formula ' 2 LTL over P , and any word w 2 (2P )!

exactly one of the following three holds

w ✏ ¬F', w ✏ (¬G' ^ F'), w ✏ G'

Furthermore, if ' is of the form F or G then we can deduce if w ✏ ' holds from

knowing which one of the above three holds.

Now we see how this key idea is used. Given an LTL(F,G,^,_) formula, for each of

its G-subformula we are going to predict whether it is: always true (↵), true at some point

but not always (�), never true (�). Note that for any formula if we predict ↵/� then the

prediction should remain the same going forward. For a G-subformula, G , if we predict �

it means we are asserting FG ^¬G and therefore the prediction should remain � until a

certain point and then change to ↵. This prediction entails two kinds of non-deterministic

choices: (i) the initial choice of assigning one of ↵, �, � (ii) if assigned � initially then the

choice of the time point at which to change it to ↵. The first choice needs to be made once

at the beginning and the second choice has to be made eventually in a finite time. They

together only constitute finitely many choices which is the source of the limit determinism.

We similarly define predictions for F-subformulae as: never true (↵), true at some point

but not always (�), always true (�). Notice that we have flipped the meaning of ↵ and �

here, this is to ensure � becomes ↵ eventually as for G-subformulae. An FG-prediction for a

formula ' 2 LTL(F,G,^,_), denoted by ⇡, is a tri-partition h↵(⇡), �(⇡), �(⇡)i of its F,G-

subformulae. We drop ⇡ when it is clear from the context. The prediction for a subformula

 made by ⇡ is said to be ↵/�/� depending upon the partition of ⇡ in which  is present.

The space of all FG-predictions for ' is denoted by ⇧('). Table 4.1 summarizes how we

interpret a FG-prediction as one of three guesses for F and G subformulae.

Example 4.1. Consider the formula ' = G(a _ Fb), and an FG-prediction ⇡ = h↵, �, �i

for ' where ↵ = {'}, � = {Fb} and � = ;. For the formula ' the prediction made is ↵.
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↵(⇡) �(⇡) �(⇡)

F ¬F F ^ ¬GF GF 

G G ¬G ^ FG ¬FG 

Table 4.1: Guess corresponding to a tripartition ⇡

Since it is a G-formula this prediction says that ' is always true or simply ' is true. For

the subformula Fb the prediction made is �. This prediction says that Fb is true at some

point but not always which implies Fb is true but not GFb.

The automaton for LTL(F,G,^,_) essentially makes a non-deterministic choice for ⇡

initially and at each step makes a choice of whether to move some formula(e) from � to ↵.

The correctness of predictions made by ⇡ is monitored inductively. Suppose our prediction

for a formula G is ↵ at some instant: this implies we need to check that  is true at every

time point there onwards (or equivalently check that  is true whenever ↵ is predicted for

G since the prediction ↵ never changes). If we are able to monitor the truth of  at every

instant then it is clear how this can be used to monitor the prediction ↵ for G . The

crucial observation here is that the correct prediction for G/F formula gives us their truth

(Proposition 4.1): a G/F formula is true/false (respectively) at a time point if and only if

its correct prediction is ↵ at that time. Now the prediction ↵ for G can be checked by

using the truths (derived from the predictions) of the subformulae of  (inductive step). If

 is propositional then its truth is readily available from the input symbol being seen (base

case of the induction). This inductive idea shall be used for all predictions. Note that since

our formulae are in negation normal form we only need to verify a prediction is correct if it

asserts the truth rather than falsehood of a subformula. Therefore the predictions �, � for

G need not be checked. In case of F the prediction ↵ need not be checked (as it entails

falsehood of F ) but �, � do need to be checked. If our prediction for F is � then we are

asserting  is true until a certain point in the future at which the prediction becomes ↵.

Therefore we only need to check that  is true when the prediction for F changes to ↵.

Once again we can inductively obtain the truth of  at that instant from the predictions for

43



the subformulae of  and from the next input. With these two predictions in mind (↵ for

G and � ! ↵ for F ) we define the following set of formulae:

 (⇡1, ⇡2) = { | F 2 �(⇡1) \ ↵(⇡2) or G 2 ↵(⇡1)} (4.1)

For checking a prediction � about F we need to check  is true infinitely often. For this

purpose we use the Büchi acceptance where the final states are those where  is evaluated

to be true, again inductively. When we are monitoring multiple F for � we will need

a counter to cycle through all the F in �. Let m be the number of F in �. Observe

that the set of formulae predicted to be � never changes once fixed at the beginning and

hence m is well defined once � is fixed at the beginning. If the counter has value n and the  

corresponding to the nth F 2 � evaluates to true , then the counter is incremented cyclically

to n+1(mod m), otherwise it remains the same. The initial states are those in which the top

formula evaluates to true given the predictions in that state and the input symbol to be seen.

Since the input symbol is not available in the states we choose to define the initial condition

over the transitions, which does not change the expressive power of the automata. The final

states are those where no formula is assigned � and the counter is 0. Summarizing, a state

in our automata has two components: (a) an FG-prediction ⇡ = h↵, �, �i (a tri-partition of

the F,G-subformulae) and (b) a cyclic integer counter n. The transitions are determined

by how the predictions and counters are allowed to change as described.

Next, we provide a formal definition for what it means to evaluate a formula with respect

to a prediction:

Definition 4.1 (Evaluation). For any formula ' 2 LTL(F,G,^,_) over P , a FG-prediction

⇡ 2 ⇧ we inductively define a the propositional formula [' ]⇡, the evaluation of a formula ',

as follows:

[ p ]⇡ = p [' ^  ]⇡ = [' ]⇡ ^ [ ]⇡ [G ]⇡ = true i↵ G 2 ↵(⇡)

[¬p ]⇡ = ¬p [' _  ]⇡ = [' ]⇡ _ [ ]⇡ [F ]⇡ = true i↵ F /2 ↵(⇡)

Next, to provide the reader with intution about the correctness of the construction we

present two Propositions about the soundness and completeness of FG-predictions. First,
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we observe that if ⇡ is sound in the sense that every formula G 2 ↵(⇡) and F /2 ↵(⇡) is

true at present then [' ]⇡ evaluates to true with respect to w0 indicates that ' is true for w.

Proposition 4.2 (Soundness). For any formula ' 2 LTL(F,G,^,_), a FG-prediction

⇡ 2 ⇧ and word w 2 ⌃! if the following implications hold

G 2 ↵(⇡) =) w ✏ G F /2 ↵(⇡) =) w ✏ F 

for every G , F that is a subformula of ' then: w0 ✏ [' ]⇡ implies w ✏ '.

Similarly, if ⇡ is complete in the sense that every G that is true is in ↵(⇡) and every

F that is true is not in ↵(⇡) then ' is true for w implies [' ]⇡ evaluates to true on w0.

Proposition 4.3 (Completeness). For any formula ' 2 LTL(F,G,^,_), a FG-prediction

⇡ 2 ⇧ and a word w 2 ⌃! if the following implications holds

w ✏ G =) G 2 ↵(⇡) w ✏ F =) F /2 ↵(⇡)

for every G , F that is a subformula of ' then: w ✏ ' implies w0 ✏ [' ]⇡.

Both the Propositions above can be proved by induction on the structure of '. They

are used in the correctness proof the construction. We use (S) to denote all F in set S.

Finally, we give the formal definition of the construction for LTL(F,G,^,_) (devoid of Xs).

Definition 4.2 (Construction for LTL(F,G,^,_)). Given a formula ' in LTL(F,G,^,_)

defined over propositions P , let D(') be the NBA (Q, I, �, F ) over the alphabet 2P defined as

follows

• Q is the set ⇧⇥ [z], consisting of guess-counter pairs where z = | '|+1

• � is the set of all transitions

(⇡1,m)
��! (⇡2, n)

such that

(A) ↵(⇡1) ✓ ↵(⇡2) and �(⇡1) = �(⇡2)

(B) for each  2  (⇡1, ⇡2), � ✏ [ ]⇡1
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(C) n is updated as follows

n =

8
<

:
m+1 (mod k), � ✏ [ m ]⇡1

m otherwise

where k = | (�)|+ 1, {F 1, . . ,F k} is an enumeration of (�),  0 = tt.

Note: Since �(⇡1) = �(⇡2) from (A) we ignore ⇡i when mentioning �.

• I is the set of transitions of the form (⇡, 0)
��! (⇡0, i) where � ✏ [' ]⇡ is true

• F is the set of states (⇡, 0) where �(⇡) is empty.

Next, we present the theorem that states the correctness of the above construction.

Theorem 4.1. For any formula ' 2 LTL(F,G,^,_), the NBA D(') is a limit deterministic

automaton of size 2O(|'|) such that L(D(')) = J'K.

Proof. The number of states in D(') is bounded by 3| [ |⇥| | and so clearly the size of

D(') is exponential in |'|.

We can see that D(') is limit deterministic as follows: The final states are of the form

(⇡, 0) where �(⇡) is empty. Note that according to condition (A), �(⇡) remains empty once

it becomes empty, and ↵(⇡) and �(⇡) remain fixed. Hence the guess ⇡ can never change after

visiting a final state. And since the counter is updated deterministically we have that any

state reachable from a final state chooses its next state deterministically. We omit the proof

of the fact L(D(')) = J'K since this result is going to be generalized in the construction for

full LTL in Definition 4.7 for which we will provide a proof.

Illustration

We illustrate the construction using once again the formula ' = G(a_Fb) for which the

automaton is presented in Figure 4.1b. Note that every state has the formula ' present in

↵ becuase any inital state has to evaluate ' to true and since it is a G formula it has to

be in ↵ and once assigned to be ↵ it cannot be changed. Hence all states are initial. Next

observe that we have two components owing to the two di↵erent �: ; (in q0, q1) or {Fb}

(in q2, q3). In the states q0, q1, the subformula Fb is in �,↵ respectively. We do not need
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a counter for this component as � is empty and hence shown to be always 0. There is a

transtion from q0 to q0 where the FG-prediction hasn’t changed, but we need to verify that

 = (a _ Fb) is true (for ' 2 ↵) at the initial q0 which is done by observing that Fb is

predicted to be � implying the truth of  . The state q0 is non-final as � is non-empty. There

is a transition from q0 to q1 which changes the prediction for Fb and this forces only those

transitions to be enabled where b is true (if b were replaced by a more complicated formula

its truth would be enforced using a combination of the input being seen and the predictions

made for the smaller temporal subformulae). q1 has a transition to q1 only enabled when a

is true because at this point Fb is predicted to be in ↵ and hence assumed to be false. In q2

and q3 the predictions don’t change only the counter does. In both states since Fb 2 �, we

get a _ Fb to be evaluated to be true irrespective of the input being seen therefore ' 2 ↵ is

automatically checked. The only remaining thing is Fb 2 � which is done using a counter.

When the counter is 0 it is forced to be incremented and when the counter is non-zero (in

this case 1) it is incremented when b is evaluated to be true, once again if b were replaced by

a more complicated formula its truth would have been derived using the next input and the

prediction at that state. It is easy to see that this automaton is indeed limit deterministic

and correctly accepts J'K.

Compositional Construction for LTL\GU

In [29, 30] we also consider the fragment LTL\GU which is defined as follows:

Definition 4.3 (LTL\GU Syntax). The fragment LTL\GU is given by the syntax

 ::= ' |  ^  |  _  | X |  U  ' 2 LTL(F,G,^,_)

LTL\GU allows for Untils (U ) in addition to F,G,X as the temporal operator, but the

untils are restricted to be outside the scope of any G subformula (Note that Fs outside the

scope of G can be rewritten as a U ). We provide a compositional style construction for

this fragment that produces exponential sized automata, where we compose a master and a

slave automata to obtain the required one. The master automaton assumes that the truth

values of the maximal until-free subformulae are known at each step and checks whether the
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top-level until formula holds true. The master works over an extended set of propositions

where the new propositions are introduced in place of the until-free subformulae. The slave

automaton works over the original set of propositions and outputs at each step the truth

value of the subformulae abstracted by the master in the form of the new propositions. The

master and the slave are then composed such that they work together to check the entire

formula. The master is produced using the standard NBA construction [59] and the slave is

a mealey automaton which is a generalization of the construction presented in Definition 4.2.

The interested reader should refer to [29] for details. We omit the details from this thesis

because in the next section we provide a direct translation (as opposed to a compositional

style) that works for full LTL while being e�cient for a richer fragment LTLD. We mention

the construction for LTL\GU here because we will also be proving that the fragment LTLD

is semantically richer than LTL\GU , thus justifying the worth of the direct construction.

4.2 Translation for full LTL

In this Section we present a generalization of the construction for LTL(F,G,^,_) (Def-

inition 4.2) that translates full LTL to limit deterministic Büchi automata. In Section 4.3

we shall see how this construction is not only optimal for LTL\GU but for a richer fragment

LTLD.

Definition 4.4 (LTLD Syntax). The formulae in the fragment LTLD are given by the

syntax for #:

 ::= ' |  _ ' | ' _  |  ^  |  U ' | G | X ' 2 LTL(F,G,^,_)

# ::=  | # _ # | # ^ # | #U # | X#

In the remainder of this chapter we will use the following terminology: subformula of '

is used to denote a node within the parse tree of '. When we refer to the subformula as

an LTL formula we will be referring to the formula at that node. Two subformulae that

have the same formulae at their nodes need not be the same owing to the possibility of them

being in di↵erent contexts. This distinction will be important as we treat formulae di↵erently
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depending on their contexts. For the purposes of describing di↵erent subfragments we qualify

subformulae as being either internal or external.

Definition 4.5 (Scope). A subformula  of ' is said to be internal if  is in the scope of

some G-subformula of ', otherwise it is said to be external.

LTL(F,G,^,_) allows for G and F as the only temporal operators. The fragment

LTL\GU additionally allows for external U but not internal ones. Also, we choose to

represent an external subformula of the form F using until as ttU  . In other words every

F will be internal. Unlike LTL\GU , LTLD allows for internal U but it is restricted. The

following restrictions apply on LTLD:

(i) The second argument of every internal U formula is in LTL(F,G,^,_),

(ii) At least one argument of every internal _ is in LTL(F,G,^,_)

Note that LTLD is strictly larger than LTL\GU in the syntactic sense, as every LTL\GU

formula is also an LTLD formula. We shall show in Section 4.4 that it is strictly richer in

the semantic sense as well.

Next we define depth and height. A subformula  of ' is said to be at depth k if the

number of X operators in ' within which  appears is exactly k. The height of a formula is

the maximum depth of any of its subformulae.

4.2.1 Handling Untils and Nexts

First, we observe that the technique used for LTL(F,G,^,_) does not lend itself to the

U /X operators. The crucial property used above about F,G-formulae is that they cannot

be simultaneously infinitely often true and infinitely often false unlike U /X formulae. So if

we tried the above technique for U /X we would not get limit determinism since the truth

of the U /X formulae would have to be guessed infinitely often.

The key idea we use in handling U /X is to propagate their obligation along the states.

Let us say the automaton needs to check if a formula ' holds for an input w, and it begins

by making an FG-prediction ⇡ about w. The obligation when no input has been seen is '.

When the first symbol w0 is seen it needs to update the obligation to reflect what “remains
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to be checked” for the rest of the input w[1], in order for w ✏ ' to hold, assuming ⇡ is correct

for w. The automaton can keep updating the obligation as it sees each input symbol. The

claim will be that the obligation is never falsified i↵ w ✏ ', given that ⇡ is correct. This

brings up some questions:

1. How are we exploiting opportunities for non-determinism?

2. How is the obligation computed at each step?

3. How is ⇡ checked to be correct in the presence of U /Xs?

Exploiting non-determinism.

Being able to exploit non-determinism helps in reducing the size of the automaton we con-

struct. So the question is: how are we exploiting any opportunities for non-determinism (al-

beit for finite time)? The answer is to update the obligation non-deterministically. Checking

the formula  1 U  2 presents us with two alternatives: either  2 is true now or  1^X( 1 U  2)

is true now. Similarly  1 _  2 brings up two alternatives. We can pick between the obliga-

tions of these two choices non-deterministically. But we should somehow ensure that we are

only allowed to use this non-determinism finitely often. This is where we treat internal and

external (Definition 4.5) U /_ subformulae di↵erently. The observation is that external U /_

need to be checked for only a finite amount of time. Hence the disjunctive choice presented

by them can be dispatched non-deterministically each time without worrying about violat-

ing limit determinism. To illustrate this point we show the standard NBA for the formula

' = aU (Gb) in Figure 4.2 which turns out to be limit deterministic owing to the fact that

the U is external. In Figure 4.1a we saw that the standard construction for ' = G(a _Fb)

resulted in a NBA that was not limit-deterministic, and one of the reasons is that the F,

which is a special form of U , is internal. An internal U /_ may need to be checked infinitely

many times and hence the choice should not be resolved non-deterministically, but carried

forward as a disjunction of the obligations of the choices. Passing the choice forward without

resolving it comes at a cost of a bigger state space, this is akin to the subset construction

where all the choices are being kept track of.
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q0 : {'} q1 : {Gb, b}a
a

b

Figure 4.2: Standard NBA construction for ' = aU (Gb).

Now we begin to formalize the ideas. To exploit the non-determinism allowed by the

external U /_ we introduce the concept of ex-choice. We use ⇤' to denote the set of all

external U /_ subformulae. Any subset of it � ✓ ⇤' is called an ex-choice. An ex-choice

dictates how each external U /_ should be satisfied if it needs to be satisfied. The in-

terpretation associated with � is the following: if  1 U  2 2 � then  2 has to hold or if

 1 U  2 2 ⇤'�� then  1 ^ X( 1 U  2) has to hold. Similarly if  1_ 2 2 � then  1 has to

hold and if  1_ 2 2 ⇤' � � then  2 has to hold. The automaton we are going to construct

is going to non-deterministically pick an ex-choice at each step and use it resolve the choices

on external U /_. After a finite time the ex-choice will not matter because the obligations

will not consist of any external U /_ that need to be checked (which will be enforced as a

part of the acceptance condition), and hence limit determinism is ensured. The ex-choice

picked along a transition is going to determine the obligation computed. Which leads us to

the question of how the obligation is computed.

Computing Obligation.

We define the derivative of a formula µ w.r.t an input symbol �, FG-prediction ⇡ and

ex-choice �. The derivative should capture the obligation/requirement on any word ⇢ such

that those obligations are able to imply that

1. �⇢ satisfies µ

2. �⇢ respects the ex-choice �.

This enables us to keep passing on the obligation forward as we see each symbol of the input

by taking the derivative of the obligation so far. This requires us to ensure that the ex-choice

� picked when we are taking the transition dictates how a formula in ⇤' should be satisfied
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if it needs to be. With that in mind we define f(�) as follows:

f(�) = (^(�U  2�)�U  )  ) ^ (^(�U  2(⇤'��))�U  ) (� ^X(�U  )))

^ (^(�_ 2�)� _  ) �) ^ (^(�_ 2⇤'��)� _  )  ) (4.2)

Therefore the two requirements on �⇢ above, simplifies to � ✏ µ ^ f(�). But predictions

made by ⇡ already tell us the truth of some of the subformulae, they need to be taken into

account. This can be done using the evaluation function (Definition 4.1). Now we are ready

to give a declarative definition of the derivative:

Definition 4.6. Given an LTL formula µ over P , and a triple " = (�, ⇡,�) where � 2 2P ,

⇡ 2 ⇧(') and � ✓ ⇤': an LTL formula  is said to be a derivative of µ w.r.t to " if

8 ⇢ 2
�
2P

�!
⇢ ✏  =) �⇢ ✏ [µ ^ f(�) ]⇡

The weakest derivative of µ w.r.t ", denoted by r(µ, "), is a derivative such that

 =) r(µ, ") for any other derivative  .

Since we will only be interested in the weakest derivative (as opposed to any other

derivative) we shall refer to it as the derivative. The above definition is only declarative in

the sense that it does not give us an explicit way to compute the derivative. We present

this definition here for the sake of simplicity and ease of understanding for the reader. In

Appendix A we provide a syntactic definition and all the necessary machinery that allows us

to compute such a formula. The syntactic definition also restricts the representation of the

obligations to B+(') which is the set of all positive Boolean combinations of subformulae of

'.

The automaton now will have an extra component µ corresponding to the obligation

along with (⇡, n) from before. In the initial state µ will be the given formula ' that needs

to be checked. At each step, the automaton sees an input symbol � and makes a non-

deterministic ex-choice � ✓ ⇤'. The obligation at the next state will then become r(µ, ")

where " = (�, ⇡,�). The process continues as long as the obligation is never falsified. In order

to ensure that every external until is dispatched in finite time, we impose that the obligation

µ in the final states is ex-free, i.e. free of any formulae in ⇤'. When the obligation is ex-free
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the ex-choice does not play a role in determining its derivative and we shall drop � whenever

that is the case, and this eliminates any non-determinism once a final state is visited. In

order to ensure that an internal until, say �U  is not delayed forever, we involve F in

the FG-prediction and enhance the definition of substitution to say that �U  is replaced

with ↵ if F 2 ↵. This way the derivative will impose that F is true whenever �U  is

claimed to be true. With this in mind we define the closure of ', denoted by C('), to be

set of all F,G-subformulae of ', along with all F for every internal �U  subformula of '.

We re-define an FG-prediction ⇡ to be any tri-partition of C('). Note that for every F or

G in C('),  is internal.

Example 4.2. Let ' = G(Fa _ (bU c)). Here C(') = {',Fa,Fc}

Example 4.3. Let ' = aU (b ^ Gc) be an internal subformula of some given formula.

r(', ") can take di↵erent values depending upon " = (�, ⇡). Here ex-choice � does not play

a role because the only U is internal. Note that '0 = F(b ^Gc) is in the closure. If '0 2 ↵,

then r(', ") = ↵ because [' ]⇡ would be ↵ owing to ' being substituted with ↵ . Let '0 /2 ↵.

Now if Gc 2 ↵ then substituting tt in place of Gc gives us aU b whose satisfaction depends

upon the truth of a and b as given by �. So if �(b) = tt then the U is immediately satisfied

and so r(', ") = tt. If �(b) = ↵ then the U is delayed and hence r(', ") is either aU b

or ↵ depending on �(a) = tt/↵ respectively. If Gc /2 ↵ then truth of b does not matter (as

replacing Gc with ↵ makes b ^ Gc = ↵) and once again the derivative is '/↵ depending

upon �(a).

Checking FG-predictions in the presence of untils and nexts.

The main idea in being able to check an FG-prediction ⇡ was that a correct prediction

about an F,G-subformula also tells us its truth. When we have U /Xs in the mix, we no

longer have a prediction available for them, and hence no immediate way to check if some

subformula is true. For example when G 2 ↵ we needed to check  is true and we did

so inductively using the predictions for subformulae in  . Now, since  can have U /X

within them it is not clear how we are going to check truth of  . In this case we pass  to

the obligation µ. Similarly when the prediction of F is changed from � to ↵ we need to
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check  is true so once again we pass  to the obligation. So we use the set of formulae  

defined in Equation 4.1, and update the obligation along a transition (µ, ⇡, n)
��! (µ0, ⇡0, n0)

as: µ0 = r(µ ^ (^ 2  ), ") where " = (�, ⇡,�). Now consider the case when the counter is

n > 0 and need to verify that the nth F formula in � is true. In this case we cannot pass

on  to the obligation because F may be true because  is true at a later point and not

now. Since we cannot predict when  is going to be true, we carry the disjunction of all the

derivatives of  since the counter was incremented to n. We keep doing it until this “carry”

becomes true indicating that  became true at some point since we started checking for it.

We also increment the counter at that point. This “carry” becomes yet another component

⌫ in the automaton’s state. We use (S) to denote all F in set S. Now we are ready to

put the pieces together to formally describe the entire construction.

Definition 4.7 (Construction). Given a formula ' 2 LTL over propositions P , let D(')

be the NBA (Q, �, I, F ) over the alphabet 2P defined as follows:

⌅ Q is the set B+(')⇥ B+(')⇥ ⇧(')⇥ [n] where n = | (C('))|+ 1

⌅ � is the set of all transitions (µ, ⌫, ⇡,m)
��! (µ0, ⌫ 0, ⇡0,m0) such that

(a) ↵(⇡) ✓ ↵(⇡0) and �(⇡) = �(⇡0)

(b) µ0 = r(µ ^ ✓, ") for some � ✓ ⇤'

where ✓ = (^ 2  ),  as defined in (4.1) and " = (�, ⇡,�)

(c) m0 =

8
><

>:

(m+ 1) (mod | (�)|+ 1) ⌫ = tt

m otherwise

(d) ⌫ 0 =

8
<

:
 m0 ⌫ = tt

r(⌫, ") _  m otherwise

where {F 1, . . ,F k} is an enumeration of (�),  0 = tt and " = (�, ⇡)

⌅ I is all states of the form (', tt, ⇡, 0)
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⌅ F is all states of the form (µ, tt, ⇡, 0) where �(⇡) = ;, µ 6= ↵ , µ is ex-free

We state the correctness result here, the proofs can be found in Appendix A.

Theorem 4.2. For ' 2 LTL, D(') is a limit deterministic automaton such that L(D(')) =

J'K and D(') is of size at most double exponential in '.

The number of di↵erent formulae in B+('), is at most double exponential in the size of ',

since each can be represented as a collection of subsets of subformulae of '. ⇧(') is simply

tripartition of C(') which is bounded above by 3|'|. And the counter can take | (C('))|+1

di↵erent values which is  |'|. The entire state space B+(')⇥ B+(')⇥ ⇧(')⇥ [n] is upper

bounded by the product of these which is clearly doubly exponential.

q0 : (', tt,⇡, 0)

q1 : (tt, b,⇡, 1)

q2 : (aUb, b,⇡, 1)

q3 : (tt, tt,⇡, 0)

b

a.b

a.b

b

b

b

a.b

a.b

Figure 4.3: Our construction for ' = G(aU b).

Illustration

We illustrate our construction using ' = G(aU b) which is a formula outside LTL\GU .

The automaton for ' is shown in Figure 4.3. First note that the C(') = {',Fb}. Next,

observe that the only interesting FG-prediction is ⇡ in which ↵ = {'}, � = ; and � = {Fb}.

This is because any initial state will have µ = ' which forces ' 2 ↵, and since predictions

in ↵ don’t change, every reachable state will have ' 2 ↵ as well. As for Fb note that the

corresponding internal until aU b will become ↵ if Fb is in ↵ and thus making the derivative

↵ (aU b is added to the obligation at each step since ' 2 ↵ and rule (b)). Therefore Fb

cannot be in ↵, and it cannot be in � because then it would be eventually in ↵. So Fb has

to be in �. Now that ⇡ is fixed, and given input �, the obligation µ changes according to

rule (b) as µ0 = r(µ ^ (aU b), (�, ⇡)). Similarly the carry ⌫ changes to b if ⌫ = tt (as in

q3 to q1/q2) and becomes ⌫ 0 = r(⌫, (�, ⇡)) _ b otherwise in accordance with rule (d). The
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initial state is q0 with µ = ', ⌫ = tt and counter = 0. The counter is incremented whenever

⌫ becomes tt. It is easy to see that the automaton indeed accepts G(aU b) and is limit

deterministic.

4.3 Optimality for LTLD

In this section we state the results regarding the e�ciency of our construction for LTLD.

We prove that there are only exponentially many reachable states in D('). A state q =

(µ, ⌫, ⇡, n) of D(') is called reachable if there exists a valid finite run of the automaton that

ends in q. A µ is said to be reachable if (µ, ⌫, ⇡, n) is reachable for some choice of ⌫, ⇡ and n.

Similarly for ⌫. We show that the space of reachable µ and ⌫ is only exponentially large in

the size of '. Our approach will be to show that every reachable µ (or ⌫) can be expressed in

a certain way, and we will count the number of di↵erent such expressions to obtain an upper

bound. The expression for µ and ⌫ relies on them being represented in DNF form and uses

the syntactic definition of the derivative given in Section A.2 of the Appendix. Therefore we

state only the main result here and present the proofs in Section A.4 of the Appendix.

Theorem 4.3. For ' 2 LTLD the number of reachable states in the D(') is at most expo-

nential in |'|.

4.4 Expressive Power of LTLD

In this section we show that LTLD is semantically more expressive than LTL\GU . We

demonstrate that the formula '0 = G(p _ (q U r)) which is expressible in LTLD, cannot be

expressed by any formula in LTL\GU .

Let us fix integers `, k 2 N. We will use LTL`(F,G) to denote the subfragment of

LTL(F,G,^,_) where formulae have maximum height `. Since X distributes over all other

operators we assume that all the Xs are pushed inside. We use LTL`,k\GU to denote the

fragment where formulae are built out of U , ^, _ and LTL`(F,G) formulae such that the

number of U s used is at most k.
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Next, consider the following strings over 2P where P = {p, q, r}:

u = {p}{p, q}`{p} v = {q}{p, q}`{r} w = {q}{p, q}`{p}

sk = (uv)k+1u � = (uv)! ⌘k = skwv� (4.3)

The observation we make is that � satisfies '0 but ⌘k does not, stated in Theorem 4.4. In

order to prove our main result we will need a proposition and a lemma. We will use suf(w)

to denote the set of all su�xes of the word w.

Proposition 4.4. For any ⇢ 2 suf(⌘k) one of the following holds

1. Either ⇢ 2 suf(�), or

2. 9 x 2 suf(sk) such that ⇢ = xwv�

For ⇢ 2 suf(⌘k)\suf(�), i.e., ⇢ is of the form xwv� where x 2 suf(s), let cutw(xwv�) =

xv� 2 suf(�). What we are trying to say is that for all su�xes of ⌘k that are not su�xes of

�, cutw removes the substring w. Next we show that every su�x of ⌘k is logically equivalent

(w.r.t LTL`(F,G)) to some su�x of �.

Lemma 4.1. For every  2 LTL`(F,G), for any k and any ⇢ 2 suf(⌘k)\suf(�):

⇢ ✏  i↵ cutw(⇢) ✏  

Proof. ⇢ is of the form xwv�. We perform induction on |x| to prove the required statement.

Base Case: x = ✏, i.e ⇢ = wv�. We prove the base case by induction on  . Observe that

for every  of the form Xia where a 2 {p, q, r} and 0  i  `, we have wv� ✏  i↵ v� ✏  .
For the inductive step the only intersting cases are when  is F or G formula. Consider

 = F 1

v� ✏ F 1 =) 9y 2 suf(v�) s.t y ✏  1

=) wv� ✏ F 1 becaue y 2 suf(wv�)

wv� ✏ F 1 =) either (a) wv� ✏  1 ) v� ✏  1 (ind hyp) ) v� ✏ F 1

or (b) 9y 2 suf(wv�)\{wv�} s.t y ✏  1

) v� ✏ F 1 because y 2 suf(v�)
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We continue the induction on  by considering the case when  = G 1

v� ✏ G 1 =) 8y 2 suf(v�), y ✏  1

=) 8y 2 suf(wv�)\{wv�}, y ✏  1 and

wv� ✏  1(since v� ✏  1 and ind hyp)

=) wv� ✏ G 1

wv� ✏ G 1 =) 8y 2 suf(wv�), y ✏  1

=) 8y 2 suf(v�), y ✏  1(suf(v�) ✓ suf(wv�))

=) v� ✏ G 1

Returning back to the induction on x consider ⇢ = xwv� where x = ay with a = {p}, {q},

{r} or {p, q}. The proof is again by structural induction on  and similar to the base case

hence we omit it.

In order to prove Theorem 4.4 we prove the following stronger statement: For ' 2

LTL`,k\GU , x 2 suf(uv), j � k: if x� ✏ ' then x(uv)juwv� ✏ '. We perform induction on

k. The base case is when k = 0 i.e ' has no U , and it directly follows from the previous

Lemma. For the inductive case consider k = n + 1. The interesting case is when ' is of

the form  1 U  2. The first position i along x� where  2 holds has to be < |uv|. Consider

the su�x of x(uv)muwv� at position i , using induction hypothesis we can conclude that  2

holds at that position. Similarly for every prefix of x(uv)muwv� that begins before position

i we can conclude that it satisfies  1 using induction hypothesis.

Theorem 4.4. 8' 2 LTL`,k\GU � ✏ ' =) ⌘k ✏ '

Corollary 4.1. '0 is not expressible in LTL`,k\GU . Also since ` and k are arbitrary, '0 is

not expressible in LTL\GU .

4.5 Model Checking MDPs

In this section we comment on the impact of our constructions on the qualitative model

checking problem. We observe that our exponential sized construction for LTLD yields a
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EXPTIME algorithm for qualitative model checking problem for MDPs, as compared to the

previously known 2EXPTIME upper bound. We also prove an EXPTIME lower bound for

the fragment LTL\GU thus showing that the problem is in fact EXPTIME-complete.

4.5.1 Model Checking complexity for LTLD

Proposition 4.5. The qualitative model checking problem for MDPs against specification in

LTLD can be solved in time exponential in the specification and linear in the size of the MDP

Proof. Follows from our construction being of exponential size and the fact that the model

checking of MDPs can be done by performing a linear time analysis of the synchronous

product of the MDP and the automaton (Proposition 2.1).

Proposition 4.6. The qualitative model checking problem for MDPs against specification in

LTL(F,X,^) is EXPTIME-hard, as a conseuqnce it is EXPTIME-hard for every fragment

that contains LTL(F,X,^) (which includes LTLD).

Proof. We reduce the membership problem for polynomial space-bounded alternating Turing

Machines to the the problem of qualitative model checking of MDPs against LTL(F,X,^).

Recall that an alternating Turing Machine T over tape alphabet ⌃ is a specified as a tuple

(Q, �, q0, g) where Q is the set of states, � : Q⇥⌃! P(Q⇥⌃⇥ {�1,+1}) is the transition

function, q0 is the initial state and g : Q ! {9, 8, acc, rej} categorizes each state into one

of 4 types, namely: existential, universal, accept and reject. A configuration of the T is a

triple (q, w, i) 2 Q ⇥ ⌃⇤ ⇥ N where q is the current state, w is the content of the tape and

i 2 {0, 1, . . . , |w|� 1} is the head position. In a s(n) space -bounded ATM the tape content

w is always restricted to be of size s(|x|) where x is the input word. The initial configuration

on input x is (q0, x, 0). The computation of the ATM is a sequence of configurations which

can be viewed as a two player game between 9-player and 8-player. When the configuration

is in an existential state (g(q) = 9) it is 9-player’s turn to pick a transition and when it is in

a univeral state (g(q) = 8) it is 8-player’s turn to pick the next transition. The transition

modifies the configuration in the usual way a Turing Machine operates (change state, write

on the head position and move the tape head left/right) according to �. The play is continued

until a state is reached which is accepting or rejecting (together known as the halting states).
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If the play ends in an accept state then 9-player wins and if it ends in a reject state then

8-player wins. The input word x is said to be accepted i↵ 9-player has a winning strategy

from the initial configuration.

In our reduction we consider polynomial space-bounded ATMs. Without loss of generality

we can assume that the ATM halts on every input because polynomial space allows for

counting the number of steps, and so an s(n) space-bounded machine can force the play to

halt after 2s(n) steps. Given polynomial space-bounded ATM T and an input x we construct

an MDP M and formula ' 2 LTL(F,X,^) such that T accepts x i↵ 9S : PrS
M
(') > 0.

Reduction sketch: The MDP M is going to be such that the scheduler plays the role

of the 9-player and the stochastic choices play the role of the 8-player. Loosely speaking,

the states of M encode information about a configuration and the transitions of M encode

how configurations change. The scheduler then attempts to reach a state corresponding

to a configuration that is accepting. If 9-player has a winning strategy for input x then

there is a scheduler that reaches an accepting configuration with probability 1, because no

matter what stochastic choices are made (which correspond to strategies of 8-player), 9-

player can force the play into an accepting state. But on the other hand if 9-player does

not have a winning strategy for input x then no scheduler can win with probability 1, but

some scheduler might still be able to reach accepting state with probability > 0 because

the stochastic player cannot make intentional choices like the 8-player. This is a problem

because if T rejects input x we want no scheduler to be able to reach an accept state with

probability > 0. To rectify this problem the MDP M is designed to repeatedly orchestrate

the game until a reject state is reached. In this scenario if 9-player has a winning strategy

then there is a scheduler corresponding to the strategy which will reach the accepting state

on each round of the game with probability 1, and if 8-player has a winning strategy then

every scheduler has non-zero probability of reaching the reject state in one round and hence

has 0 probability of avoiding the reject state when played forever.

The issue we have not discussed so far is the size of the MDP M. If we are to have a

state for each di↵erent configuration then M would have to be exponentially large owing to

the tape being polynomially long and the reduction would be incorrect. Therefore, instead of

storing the entire configuration, we only store the important details about the configuration.
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The tape contents of the configuration are generated sequentially, and the responsibility

for doing so is handed to the scheduler. But the scheduler has a conflicting interest in

reaching the accept state and might cheat, i.e., make an incorrect guess for its advantage.

The specification ' is then strengthened to prevent the scheduler from cheating.

Formal details: In the MDP M that we construct, each state is going to be either

non-deterministic or stochastic: a state is called non-deterministic if every enabled action

on that state has exactly one successor state, and a state is called stochastic if it has no

more than one enabled action. The names of the actions are irrelevant and will be omitted

in the description. We view each state of M as a tuple (q, (p, �p), (h, �h), (w, �w)) where

q is the state of the current configuration, p is the index of the cell being guessed, �p is

the symbol at position p in the current configuration, h is the index of the head in the

current configuration, �h is the symbol at position h (underneath the head) in the current

configuration, w is the index of the cell at which the tape was in the previous configuration

(the cell to be written), and �w is the symbol at position w in the current configuration. We

divide the state space of M into two: initial part I and the non-initial part S. I is used

to spell out the starting configuration, and the S is used to guess the configurations that

follow.

First, we describe how I and S generate configurations. The initial part I consists of sx

(short hand for s(|x|), where s is the polynomial bound on the space) di↵erent states of the

form (q0, (i, xi), (0, x0), (?,?)) for i 2 [0, sx). Here q is fixed to be the inital state q0, (h, �h)

is fixed to be (0, x0) indicating that the tape head is over the first cell of the tape, and (w, �w)

is fixed to be (?,?) indicating that there is no previous configuration. The pair (p, �p) tra-

verses over the initial input tape (x bu↵ered by blank symbols to make it of length sx). The

transitions in I are of the form (q0, (i, xi), (0, x0), (?,?)) ! (q0, (i+1, xi+1), (0, x0), (?,?))

for i 2 [0, sx�1), indicating that the cells of the tape are being traversed from left to right. All

the states in I except possibly the last ones (where p = sx�1) are deterministic (only one en-

abled action with a single successor). In the non-initial part S the states consists of all possi-

ble assignments to the symbolic tuple (q, (p, �p), (h, �h), (w, �w)). All the states in S except

possibly the last ones (where p = sx�1) are non-deterministic. The only transitions allowed

within this part are of the form (q, (i, �), (h, �h), (w, �w)) ! (q, (i+1, �0), (h, �h), (w, �w)).
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Here the components q, (h, �h) and (w, �w) remain fixed across transitions, and (p, �p) is

allowed to change indicating that the tape is being traversed left to right.

Next we describe transitions of M once a configuration has been generated (in I or S).

When p = sx�1 it is time to guess details of the next configuration. So consider the state

to be of the form (q, (sx�1, �), (h, �h), (w, �w)). The next configuration depends on whose

turn it is to play in the game.

• If q is an existential (universal) state then the next value for q is chosen non-determinstically

(stochastically) from the available transitions in �. The choice of this transition also dic-

tates the next value of �w, and the direction in which to move the tape head. Thus tran-

sitions here are of the form (q, (sx�1, �), (h, �h), (w, �w)) ! (q0, (0, �0), (h+◆, �h0), (h, �w0)),

where (q0, �w0 , ◆) 2 �(q, �h). The symbols �0, �h0 are guessed non-deterministically by

the scheduler.

• If q is an accept state then this round has ended in the scheduler’s favour and the next

round is started from the first state in I.

• If q is a reject state then no more rounds are played and that state of the MDP is

turned into an absorbing state.

Next, we look at the design of specification ', and see how it enforces consecutive conifgu-

rations to be valid. First, observe that for a non-halting configuration the contents of a cell

located at a position other than the head remains unchanged as it moves to the next config-

uration. We enforce this by using the following formula:

'1 =
^

a2⌃

G ((p 6= h ^ g(q) 2 {9, 8}) ) ((�p = a) ) Xsx(�p = a))) (4.4)

Note that the p 6= h, g(q) 2 {9, 8} and �p = a are all propositions whose truth can

be derived by looking at the state alone. Next, we need to ensure that the symbol �w

guessed for cell w matches with the symbol that is generated when p takes up the value

of w in that configuration, and this is done using formula '2 = G ((p = w) ) (�p = �w)).

Similarly, we need to ensure that the symbol �h guessed for cell h in a configuration matches

with actual symbol generated at position corresponding to h, this is achieved using '3 =
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G ((p = h) ) (�p = �h)). Finally, we have formula '4 = G(g(q) 6= rej) to specify that we

are looking for a scheduler that can win every round of play. Putting everything together

we have ' = ^4
i=1'i as the final specification which is in LTL(F,X,^).

Theorem 4.5 (Complexity). The qualitative model checking problem for MDPs against

specification in LTLD and LTL(F,X,^) is EXPTIME-complete.

4.5.2 Model Checking Complexity for LTL(F,G,^,_)

Next we show that removing nexts (X) and untils (U ) from the logic makes the quali-

tative model checking problem much easier. We prove that the model checking problem of

MDPs against LTL(F,G,^,_) is in the complexity class NP. To do so we first take a closer

look at the result by Courcoubetis and Yannakakis [19] which proposed the use of LDBAs

for qualitative model checking.

Proposition 4.7. Given an MDP M and a limit-deterministic Büchi automaton A, the

problem of checking if there exists S such that PrS
M
(JAK) > 0, can be solved by taking a

cross-product of M and A and checking if this product has a rechable BSCC containing a

state (s, q) where q is a final state of A.

Checking for the existence of such a final BSCC boils down to doing a linear time graph

analysis of the product. We have already seen how to transform LTL to LDBAs. The

construction for ' 2 LTL(F,G,^,_) produces an exponential sized LDBA A', so it would

seem Proposition 4.7 is not useful for proving our desired NP upper bound. The key idea

we introduce here is the following: the automaton A' can be split into a disjoint union

of exponentially many LDBAs each of which is polynomially large in the size of '. In

Proposition 4.7, if A is a disjoint union of multiple LDBAs, then the product of M and A

has final BSCC if and only if the product of M and some individual component of A has a

final BSCC. The NP-algorithm guesses this individual component of A (of polynomial size)

and performs the graph analysis for the product of M and the indivudal component in time

polynomial in both M and '.

In order to understand the splitting of A' we recall the core idea behind the construction

of A' for ' 2 LTL(F,G,^,_). For each F or G subformula  of ', the automaton keeps
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track of how often  is true, which is one of three things:

1.  is always true

2.  is true at some point but not always

3.  is never true

This yields a tri-partition, ⇡ = h↵(⇡) | �(⇡) | �(⇡) i, of all the F,G subformulae of '. If a F

subformula is in ↵, � or � we take it to mean that it is never true, true at some point but not

always, or always true respectively. If G subformula is in ↵, � or � we take it to mean that

it is always true, true at some point but not always, or never true respectively. With this

semantics in mind we see that a subformula in ↵ or � should remain in ↵ or � respectively

in the future, and a subformula in � can remain in � only for a finite time before moving

to ↵. It turns out that, for a given input word w, correctly guessing (a) the triple ⇡ at the

beginning of w and (b) the points along w at which subformulae move from � to ↵, enables

us to check if w satisfies the original formula '. A key observation here is that a triple at a

certain point not only tells us how often a F,G subformula is true from that point onwards

in the future, but also whether or not the subformula is true at that point. In other words, a

triple refines the truth of F,G formulae. This observation is used to inductively check that

the guessed triple is correct at every point. We encourage the reader to go back and refer

Section 4.1 for a detailed account of the construction. Recall that the state of the automaton

for ' is of the form (⇡, k) where:

• ⇡ is a triple reflecting how often the F,G subformulae are true on the remaining input.

• k is an integer counter no larger than |'|, which is updated deterministically.

The transitions of the automaton allow moving from a state with ⇡ = h↵ | � | � i to a state

with ⇡0 = h↵0 | �0 | �0 i only if ↵ ✓ ↵0, �0 ✓ � and � = �0 (⇡ v ⇡0 for short) in accordance

with the semantics we associate with the triple. That is ⇡ v ⇡0 is a necessary condition for

a transition to move from ⇡ to ⇡0, i.e., subformulae in � are allowed to move ↵ while the

remaining stay put. In order to split this automaton into smaller components as anticipated

earlier, we add restrictions to the order in which the formulae in � are moved to ↵. First, let us
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fix an initial triple ⇡ = h↵0 | �0 | �0 i. Given ⇡, consider a ranking function ⇢ : �0 ! N whose

range is allowed to be any consecutive set of positive integers starting from 1, i.e. {1, . . . , n}.

Given ⇡ and ⇢ we are going to define a component A(⇡,⇢) of the original automaton A'. We

define the space of possible triples ⇡i = h↵i | �i | �i i for i 2 {0, 1, . . . , n} as follows:

↵i = { 2 �0 | f( )  i} [ ↵0 (4.5)

�i = { 2 �0 | f( ) > i} (4.6)

�i = �0 (4.7)

The states of A(⇡,⇢) are those states of A' where the triple is restricted to be some ⇡i as

defined above. A transition ⌧ , say (⇡i,m)
��! (⇡j, n), is allowed in A(⇡,⇢) i↵ ⌧ is a valid

transition in A' and either j = i or j = i + 1. In A(⇡,⇢) a transition is allowed to either

keep the triple unchanged (when j = i), or move only the formulae mapped to i + 1 from

� to ↵ (when j = i + 1). Thus the ranking function ⇢ restricts the order in which the

subformulae move from � to ↵. A subformula with smaller rank is moved earlier compared

to one with a larger rank. Note that two or more formulae can be mapped to the same

number, which means those formulae are moved simultaneously. The initial state of A(⇡,⇢)

is defined to be (⇡0, 0) and the state (⇡n, 0) is marked as the only final state. Note that the

size of the automaton A(⇡,⇢) is n+ |�0| which is linear in |'|. The number of di↵erent (⇡, ⇢)

is exponential in ', hence there can be exponentially many di↵erent individual components.

What remains to be seen is that the disjoint union of these components
U

A(⇡,⇢) accepts

exactly the same language as A'. Since A(⇡,⇢) is a projection of A' it is the case that

JA(⇡,⇢)K ✓ JA'K and so J]A(⇡,⇢)K ✓ JA'K. To see the other direction consider any word w

accepted by A', and let (⇡0, k0), (⇡1, k1), . . . be an accepting run for w on A' with ⇡i =

h↵i | �i | �i i. From the construction of A' we know that ⇡0 v ⇡1 v ⇡2 · · · . Identify all the

positions j1 < j2 < · · · < jn where the triple changes, i.e.,

(⇡0 = ⇡1 · · · = ⇡j1) @ (⇡j1+1 = · · · = ⇡j2) @ (⇡j2+1 = · · · = ⇡j3) @ (· · · ) @ (⇡jn = · · · (4.8)

Here ji is the ith time the triple changes, n being the last. Now we consider the automaton

A(⇡0,⇢) where ⇢( )
def
= i if  moves from � to ↵ at position ji, i.e.,  2 �ji and  2 ↵ji+1.

Observe that the above accepting run is also an accepting run of A(⇡,⇢) on the word w. This

gives us JA'K ✓ J]A(⇡,⇢)K.
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Figure 4.4: Markov chain reduction for a boolean formula having n variables.

Thus we have succesfully split A' into exponentially many individual components of

linear size. The index (⇡, ⇢) for any component requires only polynomially many bits to

represent. This combined with our earlier observation of using Proposition 4.7 for the disjoint

union gives us the NP-algorithm for qualitative model checking against LTL(F,G,^,_).

NP-hardness: Next we show that the qualitative model checking problem against the

fragment LTL(F,^) is NP-hard. We show this lower bound not just for MDPs but for

Markov chains. We reduce the problem of boolean satisfiability to qualitative model checking

of Markov Chains. Consider a boolean formula � n negation normal form which consits of

variables x1, . . . , xn. We construct a Markov chain Mn as shown in Figure 4.4, which has

start state s, a sink state t, and states q1, . . . , qn and r1, . . . , rn where n is the number of

variables in �. s goes to q1 or r1 with half probablity each. Each qi, ri (for i < n) has

transitions to qi+1, ri+1 with half probability each, and qn, rn proceed to t and remain there

with probability 1. Next we fix the set of propositions {y1, . . . , yn, z1, . . . , zn} which we will

use to label the Markov chain. Each yi is assigned to be true at and only at qi and each zi

is set to true at and only at ri. Next we transform the formula � into a LTL(F,^) formula

�0 by replacing the positive literals xi with Fyi and the negative literals ¬xi with Fzi. For

example (x1 ^ ¬x2) _ x3 would become (Fy1 ^ Fz2) _ Fy3. Now the claim is that � is

satisfiable if and only if �0 has a non-zero probability of being satisfied in Mn. There is a

one to one correspondence between assignments to variables in � and paths from s to t in

Mn such that an assignment satisfies � i↵ the trace generated by the corresponding path

satisfies �0. Every path from s to t has a non-zero probability of occuring, and therefore �

being satisfiable is equivalent to �0 being satisfied in Mn with non-zero probability. This

completes the reduction showing that qualitative model checking is NP-hard for LTL(F,^).
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LTL Fragment Qualitative Model checking

LTL(F,^)
NP-complete

LTL(F,G,^,_)

LTL(F,X,^)
EXPTIME-complete

LTLD

Table 4.2: Summary of results: qualitative model checking complexity of MDPs against

various fragments.

4.6 Conclusion

In this chapter we considered the qualitative model checking problem for MDPs against

LTL specifications. We used the automata theoretic approach to solving the problem, which

uses limit deterministic automata. We showed e�cient constructions of such automata which

improve upon existing constructions by an exponential factor. This results in improving the

upper bound from 2EXPTIME to EXPTIME for a large class of properties, namely LTLD.

We also showed that the problem is EXPTIME-complete for LTLD (and LTL(F,X,^)). We

also showed that the automata we obtain for LTL(F,G,^,_), using the same translation,

can be appropriately split so that they can be used in an NP algorithm for qualitative model

checking, and we showed that is the best we can achieve by proving matching lower bound.

These results are summarized in Table 4.2. There are some questions that still remain open.

Is it possible to have an exponential sized limit deterministic translation for a logic bigger

than LTLD? This is an open question. But we do know from [52] that there is an double

exponential lower bound for the full logic.
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Chapter 5

Quantitative Model Checking

In this chapter we present new upper bounds for quantitative model checking of MDP

for various fragments of LTL. We also prove matching lower bounds for all these fragments.

The fragments we consider will be restricting the use of temporal operators to G, F and X.

The upper bounds we prove follow the automata theoretic approach but in a manner

which di↵ers from what we have seen previously. Here we rely on being able to construct

Büchi automaton for the LTL formula, but instead of explicitly constructing the automa-

ton from the given formula, we construct parts (states and transitions) of the automaton

implicitly. The algorithm analyzes the product of the MDP and the automaton, without

constructing the entire product, but constructing it on a need-to-know basis. This analysis

calculates probabilities of repeatedly reaching a set of states in an MDP. The algorithm for

doing this calculation is the core technical result that is used in all the upper bounds in this

chapter. The lower bounds for these problems are obtained by adapting the lower bounds

for solving 2-player games with LTL objectives.

5.1 Basic Definitions

We recall some of the notational conventions and introduce some new ones for this chap-

ter. Given a set S, we use S⇤ denote the set of all finite sequences (finite words) of elements

from S, and S+ to denote all non-empty finite sequences over S. The length of a finite word

u is denoted by |u|. We use S! to denote all infinite sequences over S. Given a (finite or

infinite) word, we use ui to denote ith (index starting at 0) symbol in the sequence u, u[i]

to denote the prefix u0u1 . . . ui�1 of length i, and u(i) to denote the su�x uiui+1 . . . starting

at index i. For u 2 S+, we use hui to denote the last element in the sequence u. Given an
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infinite word u, we use inf(u) to denote elements of S that appear infinitely often in u. We

use S! to denote words in S+ with distinct elements. The binary relations <, on S⇤ denote

the prefix relations: u < v i↵ u is a proper prefix of v. We have u  v i↵ u < v or u = v.

We use l to denote the covering relation of prefixes, i.e., ul v i↵ v = ua for some a 2 S. A

set U ✓ S⇤ is said to be closed under prefixes i↵ every prefix (including the empty word ✏)

of a word in U is also in U .

Definition 5.1. A prefix tree on a set S is any V such that V ✓ S⇤, the set of vertices, is

closed under prefixes. A vertex v 2 V is called a leaf if there is no u 2 V for which v < u.

The set of all leaf vertices (leaves) of V is denoted by Leaf(V ) and the set of all non-leaf

vertices 6= ✏ are called inner vertices, denoted by Inner(V ). A prefix tree is called infinite if

V is infinite.

In this chapter much of our focus will be on a particular temporal property called repeated

reachability. For a set of states B ✓ Q we use the LTL-like notation GFB to denote paths

that visit some state in B infinitely often, i.e., {⇡ 2 Paths(M) | inf(⇡) \ B 6= ;}. For a

Markov Chain M , the computation of PrM(GFB) requires familiarity with the structure of

the underlying graph of M . A set of vertices of a directed graph are called strongly connected

if every pair of vertices have paths to each other. A Strongly Connected Component (SCC)

is a set of vertices S that is maximally strongly connected, i.e., no superset of S is strongly

connected. The SCCs of a graph induces a directed acyclic graph where the vertices are the

SCCs and there is an edge from one SCC to another if there is an edge going from a vertex

in the first to a vertex in the second. A SCC is called bottom (BSCC) if there is no other

SCC that it can reach. Intuitively, a path of Markov chain almost certainly ends up in one of

the BSCCs and visits each of the vertices in that BSCC infinitely often. In order to compute

PrM(GFB) it su�ces to compute the probability of reaching BSCCs that have at least one

state from B. We will be building upon these ideas in our proofs.

For a MDP M recall that a scheduler S induces a Markov chain MS. A labeling for

M using propositions AP can be extended to MS which can then be used to define the

probability PrS
M
(J'K) for a LTL formula ' over AP . The problem we are interested in this

chapter is the following:
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Definition 5.2. The quantitative model checking problem for LTL is to decide if there exists

a scheduler S such that PrS
M
(J'K) � ✓ given MDP M, ' 2 LTL, and ✓ 2 [0, 1] as inputs.

We say two schedulers for M, say S1 and S2, are equivalent, denoted by S1 ⇠ S2,

when Pathsf (MS1) = Pathsf (MS2), and S1(u) = S2(u) for every u 2 Pathsf (MS1).

Schedulers that are equivalent yield Markov chains whose reachable portions are isomorphic.

All equivalent schedulers for a MDP can be viewed as a tree obtained from “unfolding” the

MDP under the scheduler. We define prefix trees associated with an MDP and then see how

they relate to schedulers.

Definition 5.3. Given a MDP M = (Q,Act,�, µ0), a M-labeled prefix tree (V,�), is

one where V is a prefix tree on Q, and � : Inner(V ) ! Act is a labeling such that 8u 2

Inner(V ), q 2 Q : uq 2 V i↵ �(hui,�(u), q) > 0; and 8q 2 Q : q 2 V i↵ µ0(q) > 0.

Let S denote the set of all schedulers, and S/⇠M denote the equivalence classes induced

by the ⇠M relation. The proposition below captures our observation about how equivalent

schedulers of M can be identified by their the infinite M-labeled prefix tree obtained from

unfolding M on those schedulers.

Proposition 5.1. Given MDP M = (Q,Act,�, µ0) there is a one to one correspondence

between S/⇠M and infinite M-labeled prefix trees (V,�).

5.2 Upper Bounds

In this section we present an algorithm for deciding the quantitative model checking

problem when the property of interest is repeated reachability. The salient feature of the

algorithm is that its space requirements are polynomial in the diameter but logarithmic in

the graph size. Here, diameter refers to the length of the longest simple path in the graph.

We exploit this algorithm to show upper bounds on quantitative model checking for wider

range of properties using the automata-theoretic approach. First, we look at two class of

schedulers called memoryless and depth-bounded which are useful in reasoning about the

probability of repeated reachability.
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Definition 5.4. A memoryless scheduler S is one where S(u) = S(v) if hui = hvi.

A memoryless scheduler uses only knowledge about the latest state to decide which action

it is going to pick. For a finite execution u, hui represents the latest state and hence the

action S(u) is only dependent on hui.

Definition 5.5. A depth-bounded scheduler S : Q+ ! Act is one such that

8v 2 Q⇤, u 2 Q!,m 2 {1, . . . , |u|} : S(uumv) = S(u[m]v).

A depth-bounded scheduler can take history into consideration to make its decision, but

it is only allowed to remember a bounded subsequence of the history. More precisely: at

any point during the execution, the scheduler will remember a subsequence u 2 Q! of the

sequence of states visited so far, and either truncate or extend it depending upon whether the

next state is in u or not in u. If the next state, say q, is not in u, then the new subsequence

remembered is uq. Otherwise, the new subsequence is u[m] where m denotes the index where

q appears in u. The scheduler then chooses its action solely based on this subsequence. Note

that the process of extension/truncation maintains the last state of the subsequence as the

last state visited in the execution. From this it follows that a memoryless scheduler is a

special case of the depth-bounded scheduler where the decision depends only on hui.

Proposition 5.2. Every memoryless scheduler is a depth-bounded scheduler.

Next, we define special kinds of prefix trees that correspond to depth-bounded schedulers.

Let D denote all depth-bounded schedulers.

Definition 5.6. A prefix tree V on S is called depth-bounded if V is finite, Inner(V ) ✓ S!

and Leaf(V ) \ S! = ;.

Next, analogous to Proposition 5.1, we observe how equivalent depth-bounded schedulers

for M can be identified by M-labeled depth-bounded prefix trees. Let D denote all depth-

bounded schedulers, and D/⇠M denote the equivalence classes induced by the ⇠M relation.

Proposition 5.3. Given MDP M = (Q,Act,�, µ0) there is a one to one correspondence

between D/⇠M and M-labeled depth-bounded prefix trees.
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Next, we look at the core technical result that helps us achieve the upper bound for

doing quantitative model checking. Recall that the diameter refers to the length of the

longest simple path in the MDP and numeric size refers to the space required to represent

the numeric quantities (probabilities) of the transitions.

Theorem 5.1. Given a MDP M = (Q,Act,�, µ0) with diameter d, graph size n and nu-

meric size k, and given a set of states B ✓ Q, the problem of deciding if 9S : PrS
M
(GFB) � ✓

can be solved in non-deterministic space O(d2 · (log(n) + k)).

The core of the algorithm is to guess a scheduler S and attempt to compute PrS
M
(GFB)

and compare it to ✓. Recall that memoryless schedulers su�ce for attaining the maximal

probability of repeatedly reaching a set of states. Guessing a memoryless scheduler requires

n bits of space, which does not meet our space requirement. But we know every memoryless

scheduler is also a depth-bounded scheduler (Proposition 5.2), so it is su�ces to look for a

depth-bounded scheduler S. We use Proposition 5.3 to guess the M-labeled depth-bounded

prefix tree T (S) = (V,�). Guessing the entire tree at once would require excess space, instead

we guess the tree, using depth first strategy (DFS) in a path-by-path manner. Observe that

any path to a vertex in the depth-bounded tree has to be a simple path in M and hence

bounded by the diameter d. Therefore storing a path and its labels requires only d· log(n) bits

of space. What remains to be seen is how to compute the required probability PrS
M
(GFB) as

we guess and explore the tree. The Markov chainMS induced by a depth-bounded scheduler

S can be shown to be probabilistic bisimulation equivalent to Markov chain MT (S), which

is obtained from T (S) as follows: MT (S) = (Inner(V ), �, µ0) where

�(u, v)
def
=

8
><

>:

�(hui,�(u), hvi) if (ul v) OR (v  u and uhvi 2 Leaf(V ))

0 otherwise.
(5.1)

We classify the edges of the above Markov chain as: (i) forward edges (u, v) where ul v,

(ii) back edges (u, v) where v  u.

The probability of repeatedly reaching B in MS equals the probability of repeatedly

reaching B0 in MT (S) where B0 = {v 2 Inner(V ) | hvi 2 B}. Computing repeated reachabil-

ity in Markov chains boils down to computing probability of reaching BSCCs that contain
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at least one of the given states. In the remainder of this section we see how to do this in the

DFS that explores the tree T (S).

Index of a SCC: For a SCC of MT (S) define an index vertex w as one for which there

is no other vertex w0 in the SCC such that w0 < w. The first observation is that there is a

unique index vertex for a SCC. For contradiction assume there are two indices u 6= v for a

SCC. By definition of SCC there is a simple path from u to v. If this path does not consist

of any back edges then clearly u < v contradicting the fact that v is an index. If the path

consists of back edges consider the first back edge in the path, say (u0, v0). Now v0 cannot

be on the path from u to u0, due to the fact that nodes cannot be repeated on a simple path

(otherwise v0 would be visited twice from u to v). So v0 < u0 (because back edges lead to a

prefix/ancestor) and u ⌅ v0. This means v0 < u because two ancestors of any node in a tree

are always directly related (Any prefix of u0 which is not a su�x of u has to be a prefix of u).

Since there is a path from u to v0 (as observed), and a path from v0 to u owing to the fact

that v0 < u, we get that v0 is included in the SCC. This contradicts u being an index. This

proves the uniqueness of an index node. In our algorithm we guess which nodes in the tree

are index nodes and compute the probability of reaching every index node. The probability

of reaching a BSCC is simply the probability of reaching the index of that BSCC. Also note

that every node V \Q is an index node, as there is no vertex in Inner(V ) that precedes such

vertices.

Parent-Child relationship: In order to compute the probability of reaching an index

node in an inductive fashion we identify the parent-child relationship between indices. An

index node v is called the child of an index node u if u < v and there is no index node w

such that u < w < v. u is called the parent of v, if v is the child of u. Note that every index

has a unique parent except for the nodes in V \ Q which have no parent, so we call V \ Q

the root nodes. For an index node u let C(u) denote all the children of u. Given a node u,

let pu denote the probability of reaching u. Given a node uv with u, v 6= ✏, let qu,v denote the
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probability of moving from u to uv along the path of forward eges from u to uv in MT (S):

qu,v
def
=

|v|�1Y

i=0

�(u.v[i], u.v[i+ 1]) (5.2)

The Proposition below formulates how we can calculate the probability of reaching an

index by using the reachability probability of its parent.

Proposition 5.4. For a node uv 2 C(u), the probability puv of reaching uv is given by

(pu · qu,v)/su, where su
def
=

P
w2C(u) qu,w is called the normalizing factor of u.

In order to use the above formula for the computation of puv we need to know the

normalizing factor su of the parent node u. We guess this quantity su associated with each

node u that is an index, and store it along with u on the depth-first stack. Now, let us see

how these can be used to compute reachability probabilities. For an index node uv whose

parent is u, assume pu is already computed and stored. The parent of a node can be identified

by looking at the latest node before u in the stack that is an index node. For the root nodes

r, pr = µ0(r). Now puv can be computed according to Proposition 5.4 using:

• pu which is already computed and stored on the stack when u was first encountered

• su which is guessed and stored on the stack when u was first encountered

• qu,v which can be computed by looking at the path from u to uv on the depth-first

stack.

Next, to compute the probabilities of reaching the BSCCs that have a state from B0 in

them, we observe that an index node u corresponds to a BSCC i↵ the normalizing factor

qu = 0, implying that it has no children. For such a state u we mark it as final as soon as

a descendant uv is encountered where huvi 2 B. Once all the descendants of u are explored

we check if it is final, and if so we add the probability of reaching it, pu, to a running total.

The total value at the end of the DFS exploration is the required probability PrS
M
(GFB).

Confirming guesses: In the computation described above we have guessed two things for

every node u:
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• if u is an index or not

• the normalizing factor su, whenever u is an index

In order to check that our guess regarding u being an index is correct we use the following:

Proposition 5.5. For T (S) = (V,�), a node u 2 Inner(V ) is an index node of some SCC

in MT (S) i↵ every uv 2 Leaf(V ) is such that huvi = huv0i for some uv0 2 Inner(V ).

So, when u is guessed as an index node we make sure that every leaf node descending

from u points to a repetition of a state that is no earlier than u, and when u is guessed as

non-index we ensure there is a leaf node descending from u pointing to a repetition of a state

earlier than u. In order to check that the guess for su is correct, we maintain a running sum

for each index node u on the stack. When a uv 2 C(u) is encountered we add the computed

quantity qu,v to the running sum associated with u. When the DFS exploration for u is

complete we check that the running sum equals the guess su.

Size of the quantities: So far in this algorithm we have not accounted for the space

requirements of the quantities we calculate. Let us begin by looking at qu,v for parent-child

indices u, v. Equation 5.2 tells us that qu,v is a product of transition probabilities from u to

v of which there are at most d. Therefore qu,v requires d·k bits to store since each transition

probability has no more than k bits. Next, the normalizing factor su for an index u is the

sum of qu,v where uv is a child of u. Note that the number of children for any index is

bounded by the total number of nodes in the tree which is at most nd. So each su, the sum

of nd quantities (qu,v) each of size d·k requires only d·(log(n)+k) bits. For pu observe that it

can be written as a product of qu0,v0/su0 corresponding to the ancestor indices of u of which

there are at most d. Hence each pu takes O(d2 · (log(n) + k)) bits. The sum of pu for u

that are final BSCCs of which there are no more than nd, will increase the bits required by

d· log(n). So the total space required remains O(d2 · (log(n)+ k)). This finishes up the proof

for Theorem 5.1.
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Upper bounds for LTL fragments

We are now ready to present all our upper bounds for the quantitative verification problem

for di↵erent LTL fragments. Our results rely on the automata theoretic approach that solves

the quantitative verification problem by constructing a deterministic automaton for the given

LTL specification. We, therefore, begin by recalling results on translations of fragments of

LTL to deterministic automata.

Theorem 5.2. (Alur and La Torre [3]) The following fragments of LTL can be translated

into deterministic Buchi automata with the following space and diameter bounds.

• LTL(F,^) has automata of exponential size and linear diameter.

• LTL(F,X,^) has automata of exponential size and exponential diameter.

• LTL(F,^,_) has automata of double exponential size and exponential diameter.

• LTL(F,X,^,_) has automata of double exponential size and exponential diameter.

• LTL(F,G,^,_) has automata of double exponential size and double exponential diam-

eter.

These bounds on size and diameter are also tight.

Using these we present our upper bound results, also summarized in Table 5.1 at the end

of this chapter.

Theorem 5.3. The quantitative verification problem for MDPs against LTL specifications

has the following complexity bounds for B(LTL(F,^)) it is in PSPACE; for B(LTL(F,^,_))

it is in EXPSPACE; for B(LTL(F,G,^,_)) it is in 2EXPTIME; for B(LTL(F,X,^)) it is

in EXPTIME; for B(LTL(F,X,^,_)) it is in EXPSPACE; for B(LTL(F,G,X,^,_)) it is

in 2EXPTIME.

Proof Sketch: Recall that in the automata theoretic approach to quantitative verification

of MDPs, the LTL specification ' is translated into a deterministic automaton A, and then

the cross product of A with the MDP M is analyzed. When the automaton A is Buchi, the
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analysis involves solving the repeated reachability problem on the cross product MDP. The

algorithm of [58, 19] runs in time that is polynomial in the size of the cross product. Given the

results on the size of deterministic Buchi automata mentioned in Theorem 5.2, we immedi-

ately get the complexity bounds for LTL(F,G,^,_), LTL(F,X,^) and LTL(F,G,X,^,_).

For the other upper bounds, we follow a similar approach, but we construct the product of

M and A on the fly. We exploit the fact that the Buchi automata constructions for LTL

formulae have an amenable representation that allows one to guess its states and check the

transition relation just from the knowing the formula. This allows us to apply Theorem 5.1

to the implicit product whose diameter is the product of the diameters of M and A. Given

the bounds on the diameter of the deterministic Buchi automata mentioned in Theorem 5.2,

and using Theorem 5.1, we obtain the complexity bounds for the remaining fragments.

5.3 Lower Bounds

In this section we prove matching lower bounds for the upper bounds established in

Theorem 5.3. The lower bounds essentially follow from lower bounds established in [3, 4]

for 2-player games. The reason for this observation is that games constructed in the lower

bound reductions in [3, 4] have a special property that enable their lifting to the quantitative

verification problem for MDPs. We begin this section by identifying this property, and

showing how it helps transfer complexity bounds to the quantitative verification case.

Recall that a two player game is played on a graph G = (V,E), where the set of vertices

V is partitioned into two sets V9 which belong to 9-player, and V8 which belong to 8-player.

At any given time, the play is at some vertex u of graph G. Player P (P 2 {9, 8}) plays

from u if u VP , by picking the target of some outgoing edge from u. Starting from an initial

vertex u0, a play is the infinite sequence of vertices visited as the players choose edges on

their turn. Given an objective described by LTL formula ', we say a play ⇡ is winning for

9-player if ⇡ satisfies '; otherwise the play is said to be winning for the 8-player. We now

identify a special class of games that we call finitely winnable.

Definition 5.7. A game (G,') is said to finitely-winnable for a player P (P 2 {9, 8}) i↵

for any play ⇡ of (G,') that P wins, there is a prefix of ⇡, say ⇡0, such that every play
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(according to the game graph G) that is an extension of ⇡0 is also winning for P .

The main observation about finitely winnable games is that if the 8-player is replaced by

a stochastic player that uniformly chooses among the available choices, then in the resulting

MDP, there is a scheduler that meets objective ' with probability 1 if and only if the 9-player

has a winning strategy in the game.

Proposition 5.6. Given a game (G,') which is finitely-winnable for the 8-player, the MDP

MG obtained by replacing the 8-player with stochastic choices is such that: the 9-player

has a winning strategy for (G, u0,') if and only if there exists a scheduler S such that

PrS
MG

(J'K) = 1.

Proof. If the 9-strategy has a winning strategy for (G, u0,'), then the strategy interpreted

as scheduler for MG is going to be such that all runs of that scheduler are going to satisfy ',

which implies PrS
MG

(J'K) = 1. Now consider the case the where the 8-player has a winning

strategy for (G, u0,'). Here, for any strategy of the 9-player there is going to be a play that

is won by the 8-player. Since the game is finitely-winnable for the 8-player, we know there

is a prefix of the play whose every extension is winning for the 8-player. What this means in

the MDP setting, is that for any strategy there is a finite run ⇢ whose every extension results

in ' not being met. Since the measure associated with all extensions of ⇢ is non-zero (since

⇢ is finite), we get that any strategy loses with non-zero probability, i.e., PrS
MG

(J'K) < 1 for

any scheduler S.

We use the above observations to obtain matching lower bounds for the quantitative

verification problem.

Theorem 5.4. The quantitative verification problem for MDPs against LTL specification

has the following complexity lower bounds:

• for B(LTL(F,^)) it is PSPACE-hard

• for B(LTL(F,^,_)) it is EXPSPACE-hard

• for B(LTL(F,G,^,_)) it is 2EXPTIME-hard
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• for B(LTL(F,X,^)) it is EXPTIME-hard

• for B(LTL(F,X,^,_)) it is EXPSPACE-hard

• for B(LTL(F,G,X,^,_)) it is 2EXPTIME-hard.

Proof Sketch: All the lower bounds follow from similar lower bounds established for

solving 2-player games for the same LTL fragments in [3, 4]. All reductions for games

essentially reduce the membership problem of a space/time bounded Alternating Turing

machine (ATM) given an ATM A and an input w they construct a game graph G, initial

state u0, and a specification ' such that w 2 L(A) i↵ there exists a winning strategy for the

9-player in the game (G, u0,'). In each of these reductions, the game (G, u0,') is finitely

winnable for the 8-player. Thus, we can use the same reduction and Proposition 5.6 to

obtain a lower bound for the quantitative verification problem for MDPs when the threshold

is 1.

LTL Fragment Quantitative Model checking

B(LTL(F,^)) PSPACE-complete

B(LTL(F,X,^)) EXPTIME-complete

B(LTL(F,^,_))
EXPSPACE-complete

B(LTL(F,X,^,_))

B(LTL(F,G,^,_))
2EXPTIME-complete

B(LTL(F,G,X,^,_))

Table 5.1: Summary of results: quantitative model checking complexity of MDPs against

various fragments.

5.4 Conclusion

In this chapter we considered the problem of quantitative model checking of MDPs against

LTL fragments. The existing approach to the problem involves a translation of the given
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formula into a deterministic automaton, followed by an analysis of the cross-product of

the automaton and the MDP. Therefore this approach directly depends on the size of the

automaton. We proved that for certain fragments one can improve upon this automata

based approach by exploiting the fact that the translations yield automata in which the

diameter is asymptotically smaller than its size. Our core technical result involves a space-

e�cient algorithm for calculating repeated reachability probabilities which is polynomial

in the diameter but logarithmic in the size of the MDP . This combined with the known

results on translation of LTL fragments to deterministic automata give us our upper bounds.

We also proved matching lower bounds for all the fragments we considered. In Table 5.1

we summarize the complexities of the quantitative model checking problem for di↵erent

fragments.
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Chapter 6

Experiments with Büchifier

We present our tool Büchifier (available at [1]) that implements the techniques described

in this paper. Büchifier is the first tool to generate LDBA with provable exponential upper

bounds for a large class of LTL formulae. The states (µ, ⌫, ⇡, n) in our automaton described

in Definition 4.7, involve µ, ⌫ 2 B+(') which are essentially sets of sets of subformulae. We

view each subformula as a di↵erent proposition. We then interpret the formulae in B+(')

as a Boolean function on these propositions. In Büchifier we represent these Boolean

functions symbolically using Binary Decision Diagrams (BDD). Our overall construction

follows a standard approach where we begin with an initial set of states and keep adding

successors to discover the entire reachable set of states. We report the number of states,

number of transitions and the number of final states for the limit deterministic automata we

construct.

MDP model checkers like PRISM [39], for a long time have used the translation from LTL

to deterministic Rabin automata and only recently [52] have started using limit determinis-

tic Büchi automata. As a consequence we compare the performance of our method against

Rabinizer 3 [32] (the best known tool for translating LTL to deterministic automata) and

ltl2ldba [52] (the only other known tool for translating LTL to LDBA). Rabinizer 3

constructs deterministic Rabin automata with generalized Rabin pairs (DGRA). The exper-

imental results in [22, 32] report the size of DGRA using the number of states and number of

acceptance pairs of the automata; the size of each Rabin pair is, unfortunately, not reported.

Since the size of Rabin pairs influences the e�ciency of MDP model checking, we report

it here to make a meaningful comparison. We take the size of a Rabin pair to be simply

the number of transitions in it. The tool ltl2ldba generates transition-based generalized

Büchi automata (TGBA). The experimental results in [52] report the size of the TGBA using
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Büchifier Rabinizer 3 ltl2ldba

St Tr AC St Tr AC St Tr AC

g0(1) 4 7 2 1 1 3 3 6 2 (1)

g0(2) 12 23 5 1 1 8 5 14 12 (2)

g0(3) 32 63 8 1 1 20 9 36 54 (3)

g1(2) 12 21 5 1 1 8 5 13 11 (2)

g1(3) 31 54 13 1 1 18 9 30 44 (3)

'1 5 7 3 5 13 40 7 23 12 (4)

'2 26 83 8 12 48 233 36 101 75 (2)

'3 13 25 3 16 128 64 21 140 129(2)

'4 17 47 7 2 4 35 9 29 31 (2)

'5 36 111 11 12 48 330 41 133 94 (2)

f0(1) 4 7 2 2 4 2 2 4 2 (1)

f0(2) 14 29 5 16 74 26 4 16 16 (2)

f0(3) 44 105 13 – – – 8 64 96 (3)

f0(4) 130 369 33 – – – 16 256 512(4)

f1(1) 14 29 5 6 24 10 8 32 12 (1)

f1(2) 130 369 33 – – – 64 1024 768(2)

f1(3) 1050 4801 193 – – – 512 32768 36K(3)

f2(1) 1 1 1 2 3 2 1 1 2 (2)

f2(2) 5 7 3 5 13 45 6 21 9 (3)

f2(3) 19 37 7 19 109 847 19 218 28 (4)

f2(4) 65 175 15 167 2529 – 93 6301 75 (5)

Table 6.1: A Comparison between the sizes of automata produced by Büchifier,

Rabinizer 3 and ltl2ldba on various formulae. Column St denotes the number of states,

column Tr denotes the number of transitions and column AC denotes the size of the ac-

ceptance condition. Entries marked as “–” indicate that the tool failed to construct the

automaton and/or the acceptance condition due to the memory limit (1GB) being exceeded.
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Büchifier Rabinizer 3 ltl2ldba

St Tr AC St Tr AC St Tr AC

f3(1) 2 4 1 3 7 4 1 2 3 (2)

f3(2) 10 20 4 17 91 53 14 62 28 (1)

f3(3) 36 78 12 – – – 212 2359 953(1)

f3(4) 114 288 32 – – – 17352 598330 167K(1)

h(2, 1) 26 54 9 15 49 49 14 44 1(1)

h(2, 2) 60 138 21 65 469 469 64 434 1(1)

h(2, 3) 182 468 57 315 5119 5119 314 4892 1(1)

h(4, 1) 80 146 36 76 250 250 75 229 1(1)

h(4, 2) 230 464 96 990 8068 8068 989 7465 1(1)

h(4, 3) 908 1994 348 – – – – – –

 1 35 62 9 3 6 12 3 6 8 (3)

 2 7 15 3 8 39 53 2 5 18 (3)

 3 29 62 8 29 116 74 62 293 27(2)

 4 26 92 6 4 11 7 3 8 3(1)

 5 9 58 1 5 17 9 3 9 3(1)

Table 6.1 (continued)

number of states and number of acceptance sets, and once again the size of each of these

sets is not reported. Since their sizes also e↵ect the model checking procedure we report

them here. We take the size of an acceptance set to be simply the number of transitions in

it. In Table 6.1 we report a head to head to comparison of Büchifier, Rabinizer 3 and

ltl2ldba on various LTL formulae.

1. The first 5 formulae are those considered in [22]; they are from the GR(1) frag-

ment [45] of LTL. These formulae capture Boolean combination of fairness conditions

for which generalized Rabin acceptance is particularly well suited. Rabinizer 3 does

well on these examples, but Büchifier is not far behind its competitors. The for-

mulae are instantiations of the following templates: g0(j) = ^j

i=1(GFai ) GFbi),
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g1(j) = ^j

i=1(GFai ) GFai+1).

2. The next 5 formulae are also from [22] to show how Rabinizer 3 can e↵ectively handle

Xs. Büchifier has a comparable number of states and much smaller acceptance

condition when compared to Rabinizer 3 and ltl2ldba in all these cases. '1 =

G(q_XGp)^G(r_XG¬p), '2 = (GF(a^X2b)_FGb)^FG(c_ (Xa^X2b)), '3 =

GF(X3a^X4b)^GF(b_Xc)^GF(c^X2a), '4 = (GFa_FGb)^(GFc_FG(d_Xe)),

'5 = (GF(a ^X2c) _ FGb) ^ (GFc _ FG(d _ (Xa ^X2b))).

3. The next 15 formulae (4 groups) express a variety of natural properties, such as

G(req ) Fack) which says that every request that is received is eventually ac-

knowledged. As shown in the table in many of the cases Rabinizer 3 runs out of

memory (1GB) and fails to produce an automaton, and ltl2ldba fails to scale in

comparison with Büchifier. The formulae in the table are instantiations of the fol-

lowing templates: f0(j) = G(^j

i=1(ai ) Fbi)), f1(j) = G(^j

i=1(ai ) (Fbi ^ Fci))),

f2(j) = G(_j

i=1(ai ^Gbi)), f3(j) = G(_j

i=1(ai ^ Fbi)).

4. The next 6 formulae expressible in LTL\GU , contain multiple Xs and external U s.

Büchifier constructs smaller automata and is able to scale better than ltl2ldba

in these cases as well. The formulae are instantiations of: h(m,n) = (Xmp)U (q _

(^n

i=1(ai U Xmbi))).

5. The last few examples are from outside of LTL\GU . The first three are in LTLD

while the rest are outside LTLD. We found that Büchifier did better only in a few

cases (like  3), this is due to the multiplicative e↵ect that the internal untils have

on the size of the automaton. So there is scope for improvement and we believe

there are several optimizations that can be done to reduce the size in such cases and

leave it for future work.  1 = FG((a ^X2b ^GFb)U (G(X2¬c _X2(a ^ b)))),  2 =

G(F¬a^F(b^Xc)^GF(aU d)),  3 = G((X3a)U (b_Gc)),  4 = G((aU b)_ (cU d)),

 5 = G(aU (bU (cU d))).
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Chapter 7

Distribution Based Semantics

In this second part of the thesis (from here to Chapter 9) we focus on the distribution

based semantics. Here, the non-determinism in MDPs is resolved by Markovian schedulers. A

Markovian scheduler (which we shall refer to as a schedule) is an infinite sequence of actions.

In other words these schedules choose their action purely based on the number of steps that

have been taken. Such a schedule then induces a sequence of probability distribution on

the states of the MDP. These distributions are then classified based on labelings. Note that

the labelings here are not applied to the states (as in the execution based semantics) but

to the probability distribution of states. The labelings of interest are what we call binary

labels, which compares the probability of being in a certain set of states to a constant,

to assign truth to propositions. We further focus on binary labels that are robust, where

perturbing the constants by a small amount does not change their truth. We prove a number

of decidability results for checking robustness (Chapter 8) and model checking Markov chains

under robustness (Chapter 9), and contrast it with the corresponding complexity for MDPs.

We begin by illustrating a working example borrowed from [33], that motivates the use

of distribution based semantics. We look at compartment models which are used in drug

administration [51]. A compartment is a group of organs or tissues that maintain similar

profiles of blood flow and drug concentration. These compartments have the property that

the rate of flow of any drug leaving a compartment is proportional to the concentration

of the drug in it. This essentially allows us to model drug concentrations as probabilities

which flow from one compartment to another. Thus Markov chains emerge as a convenient

formalism where the states act as compartments and the probabilities act as concentrations.

But sometimes Markov chains do not su�ce, because the rate of flow of concentration is not

constant but is multimodal. For instance the drug disposition shows a saturation behaviour
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Figure 7.1: The MDP corresponding to a compartment model of Insulin�131I

when the body has more drugs than certain enzymes. So there is a normal mode when the

flow behaves in a certain way and there is a saturation mode when it behaves in another

way. The switching between these modes may be out of our control or unpredictable. In

such scenarios one can model the switching as a non-deterministic behaviour, and this is

where MDPs become useful.

We look at a specific example of the behaviour of Insulin�131I in the human body modeled

using compartments [53] in Figure 7.1. The states Pl, IF, and Ut correspond to compartments

Plasma, Interstitial fluid, and Utilization site which are present in the body (body marked

by the dotted box). The probability of being in these states corresponds to the concentration

of Insulin�131I in those compartments. The probability at state Dr corresponds to the total

amount of drug administerd and Cl corresponds to a sink state that clears drug away from

the body. The transitions from one state to another describes the rate of flow between the

corresponding compartments in one unit of time. The unit of time in the above model is

10 minutes. We have not chosen to represent transitions from a state to itself, but they

can inferred from the other outgoing transitions. The only non-deterministic behaviour is

present at state Ut, where the clearance of insulin from the body depends upon whether

the system is in normal or saturated mode. Note that two di↵erent actions are enabled at

Ut, namely normal and saturated, and both of them have the same rate of flow to IF, and

di↵ering rate of flow to Cl. This is balanced by the implicit self transitions at state Ut on

each of these actions. To begin with we can put a initial amount of drug c0 in the Dr state.

By choosing the appropriate unit we can ensure 0  c0  1, and then put the remaining

1� c0 units in the state Cl.

Next we look at the requirements of this compartment model. We would like to verify

properties of the following kind: no matter how the modes change, drug concentration at Ut

is (i) always below a certain toxic threshold “tt”, and (ii) above a given e↵ective threshold
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“et” for a certain amount of time. We might even want a stronger property that the drug

concentration is always well below the toxic threshold and not just barely acceptable. By

this we mean that there is some positive constant ✏ such that the drug concentration is below

tt� ✏. This is what we shall refer to as robustness, which we shall define precisely in the next

section. The mode changes of the system can be thought of as a “schedule” which chooses

at each point whether the system is in normal mode or saturated mode. In our example a

schedule is an infinite sequence of actions over the binary alphabet ⌃ = {normal, saturated}.

If we are given a schedule � 2 ⌃! and a probability distribution µ0 describing the initial

concentrations, then we can infer concentrations at every time point. Let µt denote the

concentration at time t and µt(s) denote the concentration in state s at time t, then we have

µt+1 = µt · �t, where �t is the tth symbol in the sequence �.

The requirements on the above model are given as !-regular properties described in Sec-

tion 1.2.2. We first define atomic propositions e↵ect and toxic on the probability distribution

over the states. A probability distribution µ assigns e↵ect to be true if µ(Ut) > et and false

otherwise. So e↵ect is said to be true at time t i↵ µt(Ut) > et. Similarly µ assigns toxic

to be true if µ(Ut) � tt. Now we can describe the temporal property, “always below toxic

threshold” in LTL as G(¬toxic). The property “always well below toxic threshold” would be

true if G(¬toxic) holds true and the proposition toxic is robust. For the second requirement

if it is the case that we require insulin concentration to be above et for 3 consecutive units

of time then we can say this using F(e↵ect ^ (Xe↵ect) ^ (XXe↵ect)). For this example we

have used LTL to specify the requirements but more generally we can use Büchi automata

over assignments to appropriate propositions to do so. In this part of the thesis we shall

explore questions regarding the complexity of determining robustness of a proposition and

the complexity of model checking properties described using robust propositions.

7.1 Basic Definitions

We review some of the terminology and basic results required to proceed with the results

in this part of the thesis.
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7.1.1 Distributions and Stochastic Matrices.

A probability distribution over a finite set S is a function µ : S ! [0, 1] such that
P

s2S
µ(s) = 1. We use Dist(S) to denote the set of all distributions over the set S. Let

s1, s2, . . . , sn be an enumeration of a finite set S. A collection of distributions X ✓ Dist(S)

is termed binary if there are a1, a2, . . . , an 2 {0, 1}, b 2 [0, 1] \ Q such that µ 2 X i↵
P

i
aiµ(si) > b. For a set S 0 ✓ S, we write µ(S 0) =

P
i2S0 µ(i). For any two distributions

µ, ⌫ 2 dist(S) the distance between them is defined as

d(µ, ⌫) =
X

i2S

|µ(i)� ⌫(i)|
2

= max
S0✓S

|µ(S 0)� ⌫(S 0)|. (7.1)

The distance d is a metric.

A stochastic matrix � is a square matrix with non-negative entries such that each row of

the matrix sums up to one. This distance between n⇥ n matrices �1,�2 is defined as:

d(�1, �2) = max
i

X

j

|�1(i, j)� �2(i, j)|. (7.2)

We use �(; , j) to represent the jth column of the matrix �. We use �t(�) to denote the

sequence of matrices �t, �2t, �3t, . . . and use b�t to denote the limit limr!1 �rt if it exists.

When clear from the context, we shall drop � from �t(�) and just write �t. A stochastic

matrix � is called positive if all of its entries are strictly positive.

A stochastic matrix of dimension n ⇥ n can be represented as a directed graph with n

vertices, and an edge from i to j if �(i, j) > 0. A maximally strongly connected component

of the graph is called a Bottom Strongly Connected Component (BSCC) if it has no outgoing

edges. A transient state is a state which is not in a BSCC, and a terminal state is one which

is within a BSCC. � is said to be irreducible if it has only one BSCC and no transient states.

The collection of all BSCCs of a � will be represented by C�. The set of all transient states

of � will be denoted by T�. Lower case c� will be used to denote individual BSCCs. When

clear from the context, we shall drop the subscript �.

The period of a vertex is defined as the g.c.d (greatest common divisor) of all the cycle

lengths going through the vertex. For a SCC, the periods of all the vertices in that component

will be the same and will be defined as the period of that component. A component is called
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aperiodic if its period is 1. � is said to be aperiodic if all vertices have period 1. The ultimate

period of � is the l.c.m (least common multiple) of the periods of its BSCCs. Since BSCCs

and their related periods can be computed in polynomial time we have the following:

Proposition 7.1. The ultimate period of a n ⇥ n matrix � can be computed in polynomial

time and is a number with O(n log n) bits.

The following Lemma is proved in [50]

Lemma 7.1. For any n⇥n stochastic matrix �, if � is an aperiodic and irreducible stochastic

matrix then �n
2
is positive.

A stochastic matrix � with dimensions n⇥n is called a contraction map with contracting

factor ↵ < 1 if for all distributions µ and ⌫ of dimension n it is the case that d(µ�, ⌫�) <

↵d(µ, ⌫).

Proposition 7.2. For any n ⇥ n stochastic matrix � if � is positive then � is contracting

with contracting factor 1� nmini,j �(i, j).

7.1.2 Schedules, Labeling and Model Checking

Schedule. Given an MDP M = (Q,Act,�, µ0), a schedule � for M is an infinite sequence

of actions from Act. The set of all schedules is represent as Act!. Given schedule � the path

induced by �, is the sequence of distributions path(�) = µ0µ1µ2 . . . where µi+1 = µi�(ai)

and µ0 is the initial distribution of M. The set of all paths induced by M, denoted by

Paths(M), is defined as the set {path(�) | � 2 Act!}. A distribution µ is said to be i-

reachable if there is path of M, µ0µ1µ2 . . . such that µi = µ. µ is said to be reachable if it

is i-reachable for some i.

Labeling. A labeling for M = (Q,Act,�, µ0) is a function � : Dist(Q) ! 2AP , where AP

is a finite set of atomic propositions. A labeling function � is binary i↵ 8p 2 AP : Up =

{µ 2 Dist(Q) | p 2 �(µ)} is a binary set.

The trace of a sequence of distributions ⇡ = µ0µ1µ2 . . . w.r.t � is defined as the infinite

sequence �(⇡) = �(µ0)�(µ1)�(µ2) . . . . The set of all traces induced by M and �, denoted

by Traces�(M), is defined as the set {�(⇡) | ⇡ 2 Paths(M)}.
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Consider a binary labeling � and the proposition p 2 AP . Let Up be parameterized by

a1, a2, . . . , an, b. The proposition p is said to be robust w.r.t � if there exists an ✏ such that

for every reachable distribution µ the following are equivalent

• p 2 �(µ) (i.e.
P

i
aiµ(si) > b)

•
P

i
aiµ(si) > b+ ✏

•
P

i
aiµ(si) > b� ✏

More generally, the proposition is said to be limit robust w.r.t � if there exists an ✏ and

an m such that for every i-reachable distribution µ where i � m, the above three conditions

are equivalent. The labeling � is said to be (limit) robust, if every p 2 AP is (limit) robust

w.r.t �. For a (limit) robust �, the minimum of the ✏ across all p 2 AP is known as the

degree of robustness of �.

We define the model checking problem for MDPs and labeling functions using Büchi

automata as the specification.

Definition 7.1 (Model Checking Problem). Given an MDP M = (Q,Act,�, µ0), and

a labeling function � over AP , and a Büchi automaton A over the alphabet 2AP determine

if Traces�(M) \ L(A) = ;.

In the above definition the Büchi automaton specifies the set of bad traces, and the

question we are trying to answer is if the MDP and labeling produces a trace that is bad.

7.1.3 Complexity Classes

The complexity class RP consists of problems which can be solved using a randomized

polynomial time algorithm that always returns “no” on no-instances, and returns “yes” with

probability at least 1
2 on yes-instances. We know that RP is contained in NP.

The counting hierarchy CH is a class of decision problems contained within PSPACE,

which was introduced by Wagner [60]. The 0-th level, C0P, is defined as P. The k-th level

of the hierarchy is denoted by CkP and is defined recursively as Ck+1P = PP
CkP. Here

PP denotes the class of decision problems for which there are polynomial time randomized
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algorithms which answer “yes” with probability > 1
2 on yes-instances, and answer “no” with

probability � 1
2 on no-instances. The whole counting hierarchy is contained in PSPACE.

In this paper we will assume every rational number is represented as p

q
where p and q are

integers in binary. So, when we say a rational r can be computed in polynomial time given

rationals r1, . . . , rk, it implies that r can also be represented using polynomially many bits

in the inputs r1, . . . , rk.

7.1.4 Straight Line Programs

We will use straight line programs (SLP) to represent the computation of quantities such

as acceptance probability of a word. A SLP over a set of variables V is a sequence of

statements of the form x := E where x 2 V ; E is either a constant in {0, 1}, a variable in

V , or an expression of the form e1 � e2 where the operator � 2 {+,�, ⇤} and ei 2 {0, 1}[ V .

Furthermore, each variable occurring on the right hand side of an assignment must occur in

the left hand side of (some) earlier assignment. The value of a SLP is defined as the value

assigned in its last statement. EquSLP is the problem of deciding if the value returned by

the SLP is 0. PosSLP is defined as the problem of determining whether the value of the

given SLP is positive. EquSLP was shown to be in coRP in [49]. A recent result [2] shows

that PosSLP is in P
C3P and hence in the 4-th level of counting hierarchy.

7.2 Summary of Results for MDPs

In this Section we will briefly go through the results for problems pertaining to MDPs.

These results follow from some well known results on probabilistic finite automata (PFA)

which we shall touch upon. Most of our contribution in this thesis will be results regarding

Markov chains, and we provide the results for MDPs here to show a contrast between the

complexities.
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7.2.1 Undecidability

The first result we observe is that the model checking problem for MDPs even when the

labeling are restricted to be binary is undecidable. This result relies on the undecidability of

the emptiness checking of probabilistic finite automata (PFA) by Condon and Lipton [17].

Therefore we review the definitions related to PFAs.

A PFA is a tuple A = (Q,⌃, (��)�2⌃, µ0, F ), where Q is a finite set of states, ⌃ is the finite

input alphabet, F ✓ Q is the set of final states and µ0 2 Dist(Q) is the initial distribution

and (��)�2⌃ is an indexed set of stochastic matrices with dimension |Q|⇥ |Q|. For a symbol

a, �a(s, t) represents the probability of going from state s to t on input symbol a. For any

input word w 2 ⌃⇤ of length n the probability of going from s to t along w = a1a2 · · · an is

then given by �w(s, t) where �w is the matrix (�a1 · �a2 · · · �an). The distribution reached on

input w 2 ⌃⇤ in A is then given by µ0�w.

The acceptance probability of a word w 2 ⌃⇤ on PFA A is given by
P

q2F
(µ0�w)(q) or

µ0�w⌘F where ⌘F is the column vector such that ⌘F (j) = 1 if j 2 F and ⌘F (j) = 0 otherwise.

We will say that ⌘F is the vector corresponding to F.

Given a cut-point t 2 [0, 1], the language of F w.r.t cut-point t is defined as the set

L>t(A) = {w 2 ⌃⇤ | µ0�w⌘F > t}. The result by Condon and Lipton [17] is that the

emptiness problem of PFAs for any non-zero cut-point is undecidable.

Theorem 7.1 (Condon and Lipton [17]). Given a PFA A the problem of checking if

L
>

1
2
(A) = ; is undecidable.

Using this we show the undecidability of the model checking problem:

Theorem 7.2. The problem of model checking a MDP M with respect to a binary labeling

function � is undecidable.

Proof. We reduce the emptiness problem for PFAs to our model checking problem. Let

F = (Q,⌃, (��)�2⌃, µ0, F ) be a PFA over alphabet ⌃. We will construct a MDP M =

(Q,Act,�, µ0) which has the same state space as F , the set of actions Act = ⌃, the transition

function �(q, a) is the qth row of �a, and the initial distribution µ0 is the same. Observe that
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if there is a finite path of M, µ0µ1 . . . µn obtained from the schedule w = w0w1 . . . wn then,

the word w is accepted with probability µn(F ) = µ0�w⌘F by F , and vice versa.

Let AP = {p} be the singleton proposition (label), and consider the labeling function

� such that p 2 �(µ) i↵
P

q2F
µ(q) > 1

2 . Such a labeling is indeed binary and from the

observation of the previous paragraph we obtain that L
>

1
2
(F) is empty i↵ M has a path

that reaches a distribution labeled p.

7.2.2 Decidability under Robustness

Next, we observe that model checking MDPs becomes decidable when we restrict the

binary labeling to be robust. We make use of the celebrated result by Rabin [48] which

proves languages accepted by PFAs with isolated cut-points is regular. A cut-point t is said

to be ✏-isolated if there exists an ✏ > 0 such that for all w 2 ⌃⇤, |µ0�w⌘F � t| > ✏.

Theorem 7.3 (Rabin [48]). Given a PFA F with n states and r final states, and a cut-

point t which is ✏-isolated, the language L>t(F) is regular and is recognized by a DFA with

(1 + (r/✏))(n�1) states.

Theorem 7.4. The problem of model checking a MDP M with respect to a robust binary

labeling � where the degree of robustness ✏ is given is solvable in EXPTIME.

Proof. Let a particular p 2 AP be parameterized by a1, . . . , an, b for the binary set it repre-

sents. Now we can define a PFA over the alphabet Act, where the states and transitions are

given by the MDP M, final states are those whose coe�cients ai are 1, and the cut-point

for the PFA is b. Observe that a word w 2 Act⇤ is accepted by the PFA i↵ the distribution

that the MDP reaches via w is such that p holds true on it according to �. Now since �

is robust, we have that the PFA is isolated. Using Theorem 7.3 we can construct an ex-

ponential sized DFA that accpets the same language as the PFA. The DFA accepts a word

w 2 Act⇤ i↵ p 2 �(µ0�w). Therefore the synchronous product of these DFAs gives us a Moore

machine B which outputs the labels according to � along any infinite word in Act!. Taking

a cross product of B with the Büchi automaton A of the specification where the output of

the Moore machine B is fed into A gives us an exponential sized Büchi automaton A ⇥ B.

The automaton A⇥B over Act! accepts all and only all violating schedules. Model checking
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then reduces to checking emptiness of which can be done time linear in the size of the graph.

This gives us the EXPTIME upper bound.

7.2.3 Undecidability of Checking Robustness

The problem of checking if a binary label is robust is equivalent to the problem of checking

isolation of PFAs. Given MDP M = (Q,Act,�, µ0) and a proposition p in a binary label �

where Up is parameterized by a1, a2, . . . , an, b, we construct a PFA A = (Q,⌃, (��)�2⌃, µ0, F )

as before where Q and µ0 are the same, ⌃ = Act, �� is the stochastic matrix whose qth row

is �(q, �), and F = {q 2 Q | aq = 1}. A along with cut-point b is then isolated i↵ the

proposition p is robust for M. Simlarly given a PFA A and cut-point b one can construct a

MDP and a labeling such that the two problems are identical. The isolation problem turns

out to be undecidable, which gives us the undecidability of the robustness problem.

Theorem 7.5 ([9, 25, 11]). Given PFA F and cut-point t, the problem of deciding whether

t is isolated for F is ⌃0
2-complete (undecidable).

Theorem 7.6. The problem of checking whether a given proposition is robust w.r.t binary

label � and MDP M is ⌃0
2-complete.

Corollary 7.1. The problem of checking whether a given proposition is limit robust w.r.t

binary label � and MDP M is undecidable.

7.2.4 Roadmap

In the remaining chapters we consider the model checking and the robustness problems

for Markov Chains. First we prove that the problem of checking limit robustness of a given

binary label for Markov Chains is coNP-complete. We also prove that the robustness checking

problem for a binary label for Markov Chains is coNPRP. Both these results are covered in

Chapter 8. Regarding the model checking problem, we prove that it is decidable in PSPACE

for Markov chains against binary labels that are limit robust in Chapter 9.

94



Chapter 8

Complexity of Checking Robustness

In this chapter we look at the question of deciding whether a proposition in a binary

labeling is robust or limit robust for a given Markov chain. Recall that the truth of propo-

sition in a binary labeling is derived from an inequality of the form
P

i
aiµ(si) > ✓ where µ

is a probability distribution over the states s0, . . . , sn and each ai 2 {0, 1} and ✓ 2 [0, 1] are

constants. We will borrow some vocabulary from the study of PFAs to make our statements

simpler. The set of states F = {si | ai = 1}, will be referred to as final states for the given

proposition. We shall refer to the left hand side of the inequality
P

i
aiµ(si) as the accep-

tance probability for a given distribution, and we shall refer to the right hand side ✓ as the

cut-point. The acceptance probability after n steps is defined as the acceptance probability

of the distribution reached after n steps in the Markov chain. A proposition is said to be

robust if there is some ✏ such that changing the right hand side of the inequality to ✓ ± ✏

does not change the truth of the proposition on any of the reachable distributions. In other

words a proposition is robust if the acceptance probability is always bounded away from ✓.

A proposition is said to be limit robust if the acceptance probability is bounded away from

✓ for all but finitely many reachable distributions.

We briefly summarize our technique before we delve into the specifics in the rest of the

chapter. When ✓ 2 (0, 1), we show that the robustness problem is decidable and is in coNP
RP.

Note that since RP is contained in NP (see [5]), this implies that the problem of checking

robustness when ✓ 2 (0, 1) is in the second level of polynomial hierarchy. Furthermore, given

that RP is believed to be P, this would imply the problem to be in coNP which matches the

lower bound of coNP-hardness mentioned ahead. Our procedure also gives a way to compute

a degree of robustness if the proposition is robust for the Markov chain. Our result is proved

as follows. If a proposition is limit robust then there is a n0 > 0 such that the acceptance
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probability after n steps is bounded away from ✓ for all n > n0. Thus the proposition is

robust i↵ it is limit robust and the probability of reaching the final states in a “short” time

(i.e., in time less than n0) is bounded away from ✓. We first prove (in Section 8.1) that

the problem of checking if a proposition is limit robust is in coNP . Next, we show that

if it is limit robust, then the bound n0 is “small” (Section 8.2). More precisely, we show

that this number n0 can be represented in binary using polynomially many bits (in the size

of Markov chain). Using this observation, we can conclude that if a proposition is limit

robust for a Markov chain, then it is not robust i↵ there is some number (which at most

is exponentially large) such that acceptance probability in those many steps is exactly ✓.

The check of whether the acceptance probability after ` is equal to ✓ can be reduced to

checking if a straight-line program (Section 7.1.4) of length ` using addition, multiplication,

and subtraction computes a real number that is equal to 0. Based on this observation, and

results on the complexity of the EquSLP problem [49], we conclude that checking robustness

for a proposition in a binary labeling of a Markov chain is in coNP
RP.

8.1 Checking Limit Robustness

First, we prove that the problem of checking limit robustness of a proposition in a binary

labeling for Markov Chains is coNP-complete. In order to prove these results, we recall some

standard facts about Markov chains. The proofs of these facts can be found in [23].

Theorem 8.1. Let c 2 C be a BSCC of a Markov Chain M = (Q, �, µ0), p be the period of

c, then for any state j in c:

1. If i is a transient state of M then lim
r!1

�pr(i, j) exists and can be calculated in time

polynomial in the size of �.

2. If i is in c, then lim
r!1

�pr(i, j) exists and can be calculated in time polynomial in the size

of �.

3. If i is neither a transient state of M nor in c then lim
r!1

�pr(i, j) = 0 (in fact �`(i, j) = 0

for all `).
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This leads to the following corollary (recall that the ultimate period of � is the l.c.m of

the period of its BSCCs).

Corollary 8.1. For any stochastic matrix �, with ultimate period p, b�p = lim
r!1

�pr exists.

We are ready to show that limit robustness is coNP-complete.

Theorem 8.2. The problem of checking given a Markov chain M and a proposition param-

eterized by a0, . . . , an, ✓, whether the proposition is limit robust is coNP-complete.

Proof. (Upper Bound). Let M = (Q, �, µ0) and let p be the ultimate period of �. Accord-

ing to Corollary 8.1, there are possibly p di↵erent limits towards which the Markov chain

approaches in a cyclic manner. That is for each 0  k < p, we have that limr!1 �k+pr exists.

If the proposition is not limit robust then it is easy to see that there is a 0  k < p such

that limr!1 µ0�k+pr⌘F is ✓. The witness for a no answer to our problem is therefore going

to be this number k which requires only n log n bits to be represented.

The result will follow if we can compute the distribution µk
b�p = limr!1 µ0�k+pr in

polynomial time. This can be achieved as follows. Note that µk
b�p(i) = 0 for any transient

state i. We only have to compute µk
b�p(i) for terminal states i.

Consider a BSCC ci of �. Let its period be pi, let ki be k mod pi. Note that p can

be exponentially large but each of the pis at most n. Although �pi = �pi , �2pi , . . . need not

converge, it follows from Theorem 8.1 that the columns corresponding to ci do converge to

a limit. Now c�pi(; , j) = b�p(; , j) for any state j 2 ci because �p is a subsequence of �pi .

So the entire matrix b�p can be calculated in polynomial time. Essentially the jth column

of b�p is identical to the jth column of c�pi . In order to calculate �k b�p observe that its jth

column �k b�p(; , j) = �kc�pi(; , j) = �kic�pi(; , j) where again pi is the period of the BSCC ci that

contains j. Note that Now ki < pi  n and so �ki can be calculated in polynomial time. The

upper bound follows.

(Lower Bound). In order to prove hardness we use the reduction in [27, 55] which is

used to show coNP-hardness of the universality problem for unary non-deterministic finite

automata (NFA). We briefly describe the salient features of the reduction; for further details

the reader should refer to [27]. The original reduction is from 3SAT to non-universality

of unary NFA. Given a 3SAT formula � with n variables and m clauses, [27] constructs a
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NFA N� as a union of m cyclic automata. Intuitively, each cycle corresponds to a clause,

has an initial state and a cycle accepts if and only if the input encodes an assignment that

does not satisfy that clause. So N� accepts every input i↵ � is unsatisfiable. The only non-

determinism in N� is from having to choose a cycle at the beginning, so we can transform it

into a Markov chain M� by choosing amongst the cycles uniformly at random and define a

proposition parameterized by final states of N� and ✓ = 0. Since there are only m cycles if

any word a` is accepted by N� then the acceptance probability after ` steps in M� will have

acceptance probability at least 1
m
; otherwise it the acceptance probability after ` steps is 0.

Therefore the proposition is robust for M� i↵ � is unsatisfiable. Finally we observe that the

proposition is robust i↵ it is limit robust, which proves that the proposition is limit robust for

M� i↵ � is unsatisfiable. We have already observed that if a proposition is robust then it is

also limit robust. For the converse observe that the constructed unary NFA N� is a disjoint

union of cycles. Let d be the lcm of all the cycles of N�. Now it is easy to see that for each j,

the probability distribution on the states of the unary PFA P� after j steps is the same as the

probability distribution on after jmod d steps. So if there is some j-reachable distribution

whose acceptance probability is 0, then there are infinitely many reachable distribution with

0 acceptance probability and therefore the considered proposition cannot be limit robust.

Please note that the lower bound proof of Theorem 8.2 can be modified if the cut-point

✓ is not extremal; simply add an additional state with a self loop, which you choose initially

with probability ✓. Also, we could have taken the cut-point to be 1 by switching the final

and non-final states. Thus, complexity of limit robustness does not depend on whether the

cut-point is extremal or not. Also, note that the lower bound proof also establishes the

coNP-hardness of the robustness problem.

8.2 Checking Robustness

We will prove that the problem of checking whether a proposition (parameterized by

a1, . . . , an and ✓) is robust is in coNP
RP (see Theorem 8.3). For extremal cut-points, i.e.,

when ✓ is 0 or 1, we will show the problem to be coNP-complete (see Theorem 8.4). We start

by discussing non-extremal cut-points.
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Non-extremal cut-points.

Broadly speaking, the proof for showing that checking robustness of a proposition is in

coNP
RP is as follows:

• We can use Theorem 8.2 to check if the proposition is limit robust. If it is not limit

robust then we know that it is not robust.

• If it is limit robust, then robustness follows i↵ there is no number ` such that the

acceptance probability after ` steps is exactly ✓. We will show that that this number

cannot be too long (see Lemma 8.2).

• We can then guess this number, construct a straight-line program such that its value

is 0 i↵ the acceptance probability after ` steps is ✓, and check if it evaluates to 0 or

not (see Lemma 8.1).

We start by showing that the problem of deciding given a Markov chain M and a number

n in binary, whether the acceptance probability, for a given set of final states, =✓ is in coRP

and > ✓ is in the counting hierarchy.

Lemma 8.1. Given a Markov chain M and a proposition parameterized by (a1, . . . , an, ✓),

and a non-negative integer n in binary as input, the problem of checking:

1. if the acceptance probability after n steps is equal to ✓ is in coRP.

2. if acceptance probability after n steps is greater than ✓ lies in P
C3P.

Proof. The acceptance probability after n steps is µ0�n⌘F , where µ0 is the initial distribution,

� the transition matrix and ⌘F the vector corresponding to the final states (states i where ai

= 1). In order to find out if this quantity is equal to ✓, one can write a straight line program

p that calculates µ0�n⌘F � ✓. The program is the usual square-and-multiply algorithm for

exponentiation and it is going to be O(log2 n) long because the number of iterations in the

algorithm is equal to the number of bits required to represent n. The value of the program p

is equal to (greater than) 0 i↵ acceptance probability after n steps is exactly equal to (greater

than) ✓. Now, we can check if val(p) = 0 in coRP [49] and val(p) > 0 in P
C3P [2]. The result

follows.

99



We will now show that if a limit robust proposition is such that the acceptance probability

after n steps is exactly ✓ then n cannot be too large. This fact is proved in Lemma 8.2 with

the help of auxiliary Propositions 8.1, 8.2 and 8.3. We start by proving a result about

irreducible stochastic matrices. Recall that b�t is used to denote the limit of the sequence

lim
r!1

�rt.

Proposition 8.1. Given an irreducible stochastic matrix � with period p and rational ✏ 2

(0, 1) there exists a number k, computable in polynomial time, such that for all ` � k :

d(�p`, b�p)  ✏.

Proof. A stochastic matrix � with all positive entries acts as a contraction map on the set of

distributions. The associated contraction factor ↵ is (1 � ns) where s is the smallest entry

in � (see Proposition 7.2). So we have

d(µ�i, µb�) = lim
j!1

d(µ�i, µ�j)  lim
j!1

j�1X

i0=i

d(µ�i
0
, µ�i

0+1)

 lim
j!1

j�1X

i0=i

↵i
0
d(µ, µ�)  ↵i

1� ↵
=

(1� ns)i

ns
 e�nsi

ns
.

Choosing i > 1
ns

log 2
ns✏

will give us d(µ�i, µb�)  ✏

2 and because the µ is arbitrary we also

have d(�i, b�)  ✏.

Coming back to �, the graph of �p consists of p disjoint irreducible and aperiodic compo-

nents. It is enough to show the above bound on each of the individual components (because

the distance between the matrices takes maximum across rows), so consider �p to be irre-

ducible and aperiodic. From Lemma 7.1, we know that �pn
2
has all positive entries. The

smallest entry of �pn
2
, say s, requires only polynomially many bits to be represented. Ac-

cording to the above observation, for i � 1
ns

log 2
ns✏

we have d(�pn
2
i, b�p)  ✏. If 1

ns✏
= x

y
, and

j represents the number of bits of y then we can choose k = dn

s
(j+1)e, which is computable

in polynomial time.

We now bound the number of steps required so that the probability of being in a transient

state is small.
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Proposition 8.2. Given a stochastic matrix � and rational ✏ 2 (0, 1) there exists a number

k, computable in polynomial time such that for all ` � k it is the case that for all distributions

µ0,
P

j2T�
µ0�`(j)  ✏ where T� is the set of transient states of �.

Proof. Here we are required to show that after k steps the probability of being in a transient

state is small. Every transient state has a path of length at most n to at least one terminal

state, so choose one for each transient state. Let u be the minimum probability associated

with any of those paths. So after every n steps each transient state loses at least u fraction of

its probability to a terminal state, or in other words the probability of being in any transient

state reduces by a factor of u. Hence after k0n steps the probability of being in a transient

state is at most (1 � u)k
0
, and choosing k0 � 1

u
log 1

✏
makes (1 � u)k

0  ✏. So choosing k to

be a number bigger then n

u
log 1

✏
we have our required number.

We now bound the length of input needed to be close to the limit distribution µb�p where

p is the ultimate period of �.

Proposition 8.3. Given a stochastic matrix �, a distribution µ and rational ✏ 2 (0, 1) there

exists a k, computable in polynomial time such that for all ` � k: d(µ�p`, µb�p)  ✏ where p

is the ultimate period of �.

Proof. (Sketch.) First we use Proposition 8.2 to get a k1 such that it su�ces to take k1 steps

to get to a distribution where the probability of being in any transient state is less than ✏

4 .

This ensures that for l � k1, the probability of being in any BSCC c after pl steps is at least

1 � ✏

4 . This means that taking any more steps beyond k1 can only perturb the probability

in terminal states by a small amount which adds up to ✏

4 across all BSCCs. Let us focus on

one BSCC c. Taking, k2 steps beyond the k1 will do two things to c:

i) bring in more probability from the transient states

ii) distribute the probability already present in c (i.e., the probability of being in c) at

step k1 according to µc, the stationary distribution of c.

The first e↵ect can only result in pumping at most a small probability into c, which adds

at most ✏

4 to the distance. The probability already present in c after k1 steps is close to the
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limiting probability, and hence the contribution of the second e↵ect into the distance can be

made small by choosing k2 according to Proposition 8.1 for the BSCC c with the bound ✏

4 .

Instead of choosing k2 for a particular c, we can choose it to be the maximum across all c

which will give us the desired result. We formalize these ideas in the calculations below.

For the purposes of the calculation below let a sub-distribution over a finite set S is a

function µ : S 7! [0, 1] such that
P

s2S
µ(s)  1. The distance between sub-distributions

can be defined in the same way we do for distributions.

We first describe the notation we will use in the following calculations: µT and µC denote

the sub-distributions on the transient states and the BSCCs after pk1 steps. For any (sub-

)distribution µ , µ�c denotes the vector with the entries in the states in c alone. The matrix

� restricted to the states of c is written as �c. Starting from µ, and having taken pk1 steps,

the probability of being in component c is denoted by ⇡pk1
c

, and the relative distribution on

a component c is given by µpk1
c

, i.e for any i 2 c, µpk1
c

(i) = µ�pk1(i)/⇡pk1
c

. Starting from µ

the probability of being in c in the limit is given by ⇡̂c and the relative distribution on c in

the limit is give by µ̂c. Now we are ready to proceed.

d
�
µ�p`, µb�p

�
= d

�
µ�pk1�pk2 , µb�p

�
= d

�
(µT + µC)�

pk2 , µb�p
�

=d
�
µT �

pk2 + µC�
pk2 , µb�p

�


P
j
µT �pk2(j)

2| {z }
Apply Prop 8.2

+d
�
µC�

pk2 , µb�p
�

Let us focus on d
�
µC�pk2 , µb�p

�

=
X

c2C

d
�
(µC�

pk2)�c , (µb�p)�c
�
=

X

c2C

d
�
⇡pk1
c

µpk1
c
�pk2
c

, ⇡̂c µ̂c
c�cp

�
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We have (µC�pk2) � c = ⇡pk1
c

µpk1
c
�pk2
c

because when we start from µC there is no probability

of being in any transient state, so we can ignore the transient states, and then the BSCCs

cannot communicate so they evolve independently.

=
X

c2C

X

j2c

���⇡pk1
c

µpk1
c
�pk2
c

(j)� ⇡̂c µ̂c
c�cp(j)

���

=
X

c2C

X

j2c

���⇡pk1
c

�
µpk1
c
�pk2
c

(j)� µ̂c
c�cp(j)

�
+ (⇡pk1

c
� ⇡̂c )µ̂c

c�cp(j)
���


✓X

c2C

⇡pk1
c

X

j2c

���µpk1
c
�pk2
c

(j)� µ̂c
c�cp(j)

���
◆
+

✓X

c2C

(⇡̂c � ⇡pk1
c

)
X

j2c

µ̂c
c�cp(j)

◆


✓X

c2C

⇡pk1
c

Apply Prop 8.1z }| {
d
�
µpk1
c
�pk2
c

(j), µ̂c
c�cp(j)

�◆
+

Apply Prop 8.2z }| {X

c2C

(⇡̂c � ⇡pk1
c

)


✓X

c2C

⇡pk1
c

✏

2

◆
+
✏

4
 3✏

4

Therefore d
�
µ�`, µb�p

�
 ✏.

We can prove a similar result about the matrix products as well.

Lemma 8.2. Given a stochastic matrix � and a rational ✏ 2 (0, 1), there exists a number k,

computable in polynomial time, such that for all ` � k : d(�p`, b�p)  ✏ where p is the ultimate

period of �.

Proof. The distance between the matrices can be broken into

d(�p`, b�p) = max
i

X

j

|�p`(i, j)� b�p(i, j)| = max
i

X

j

|⌫i�p`(j)� ⌫i b�p(j)|

= max
i

(2d(⌫i�
p`, ⌫i b�p)). Here ⌫i represents the distribu-

tion with probability 1 at state i

Proposition 8.3 tells us we can choose a k of appropriate size such that for any µ, the distance

d(µ�p`, µb�p) for ` � k is below ✏

2 .

We are ready to establish the complexity of the problem of checking if a proposition in a

binary labeling for a Markov chain is limit robust.
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Theorem 8.3. Given a Markov chain M and a proposition in a binary labeling parameterized

by a1, . . . , an, ✓, the problem of checking if the proposition is robust is in coNP
RP and is coNP-

hard.

Proof. The lower bound follows from the proof of Theorem 8.2. For the coNP
RP upper

bound, let us consider the complement of the problem where the proposition is not limit

robust. In this case either the proposition is not limit robust or there is some n such that is

the acceptance probability (as per a1, . . . , an) after n steps is exactly ✓. If the proposition is

limit robust then we guess this fact and check if it is true in NP (Thanks to Theorem 8.2).

So assume that it is limit robust. We now need to check if there is any “small” number of

steps such that probability of acceptance after those many steps is ✓.

Let M = (Q, �, µ0) and let p be the ultimate period of �. Let b�p = lim
t!1

�pt. For each r > 0,

let µr = µ0�r.

Consider ✏r = |µr
b�p⌘ � ✓| where ⌘ is the final states or the vector corresponding to

a1, . . . , an. Since any µr
b�p can be computed in polynomial time (see proof of Theorem 8.2),

it is the case that ✏r can be computed in polynomial time (given µ0, �, r). Suppose the

length of the string accepted with probability ✓ is `. Let ` = pq + r where r = ` mod p.

According to Lemma 8.2, there exists a kr (computable in polynomial time) such that if

q > kr then d(µr�pq, µr
b�p)  ✏r

2 . Since d(µr�pq, µr
b�p) � |µr�pq⌘ � µr

b�p⌘|, we get that

acceptance probability after ` steps is ✓ if q > kr.

Now, the decision procedure for checking non-robustness proceeds as follows. It first

guesses 0  r < p, then it computes ✏r and subsequently computes kr. Now, it guesses

q  kr and then it computes ` = pq+ r. ` requires only polynomially many bits (because kr

is computable in polynomial time from r). Hence we can use the procedure of Lemma 8.1

as an oracle to check if the acceptance probability after ` steps is exactly ✓. Note that this

final check is done by a coRP algorithm and hence the non-robustness is in NP
coRP. Note

that NP
coRP is exactly the class NP

RP since we can always switch the yes/no answer from

the oracle-calls. This results in a coNP
RP upper bound for the limit robustness problem in

the non-extremal case.
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Extremal cut-points.

For extremal cut-points, the upper bound matches the lower bound.

Theorem 8.4. Given a Markov chain M , the problem of checking if a proposition, parame-

terized by a1, . . . , an, ✓ and ✓ = 0, is robust is coNP-complete. Similarly checking robustness

when ✓ = 1 is robust is also coNP-complete.

Proof. The lower bound follows from the proof of Theorem 8.2. For upper bound, first

thing to note is that the coNP upper bound for limit robustness proved in Theorem 8.2 also

holds for the ✓ = 0. So in case it is limit robust, we need to check if there is a number

` such that acceptance probability after ` steps is 0. If µ0 is the initial distribution, let

QI = {q | µ0(q) > 0}. The probability of acceptance after ` steps is 0 i↵ there is no path

from a state in QI to a final state in exactly ` steps. So checking robustness when ✓ = 0

reduces to the universality checking of unary NFA which is known to be in coNP [55].
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Chapter 9

Decidability under Limit Robustness

In this chapter we will discuss results for the model checking problem for Markov chains

and the containment problem unary PFAs under the assumption of limit robustness for

Markov chains and isolation for PFAs. Our main proposition is as follows:

Proposition 9.1. Given a Markov Chain M with ultimate period p, a number 0  r < p

and a limit robust proposition in a binary labeling, parameterized by a1, a2, . . . , an, b there is

a number k computable in polynomial time s.t 8q � k, µ�pq+r~a > b i↵ µ0�pk+r~a > b, where ~a

is the column vector (a1, a2, . . . , an).

Proof. Let M = (Q, �, µ0). Let µr = µ0�r, let b�p = limt!1 �pt. Consider ✏r = |µr
b�p~a � b|.

✏r can be computed in polynomial time (see proof of Theorem 8.2). According to Lemma

8.2, there is a k computable in polynomial time such that if q > k then d(µr�pq, µr
b�p)  ✏r

2 .

Since d(µr�pq, µr
b�p) � |µr�pq~a� µr

b�p~a|, we get that apq+r has acceptance probability > b i↵

apk+r has acceptance probability > b.

A similar result holds for unary PFAs with limit robust cut-points.

Corollary 9.1. Given a PFA A with ultimate period p, a number 0  r < p and a rational

cut-point ✓ such that ✓ is limit isolated for A, there is a number k computable in polynomial

time s.t 8q � k, apq+r 2 L>✓(A) i↵ apk+r 2 L>✓(A).

Next we look at the model checking problem under the limit robustness restriction.

Theorem 9.1. The model checking problem for Markov chains when the labeling is binary

and restricted to be limit robust, is solvable in PSPACE. (the result holds even if the degree

of limit robustness is not given)
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Proof. Let M = (Q, �, µ0) be the Markov chain and � be the limit robust binary labeling.

Let p be the ultimate period of �. Note that by Proposition 9.1 there is a k of polynomially

many bits such that 8r : 0  r < p and 8q � k, �(µ0�pq+r) = �(µ0�pk+r), and k can be

computed in PSPACE. Since M is a Markov chain, it induces a single path µ0µ1µ2 . . . , and

hence yields a single trace �(µ0)�(µ1)�(µ2). From our last observation this trace is of the

form ⌧ = uv!, where |u| = k and |v| = p. The model checking problem now boils down

to checking whether there is an accepting run for the word ⌧ over the specification given

as a Büchi automaton A. For any accepting run ↵ (for ⌧) let Inf-Step(↵) denote the set

{q 2 QA | q = ↵|u|+i|v| for infinitely many i}. Consider all the those runs ↵ which have the

earliest (across all ↵) occurence of some state in Inf-Step(↵) at some position |u|+i|v|, denote

this set by E and the earliest index as e. Note that this earliest position e  |u| + |QA||v|,

otherwise there is going to be a repeated state at |u|+ i1|v| and |u|+ i2|v| (i1 < i2  |QA|)

due to pigeon hole principle and we can “short circuit” the path to get a run ↵0 over ⌧ in

which an earlier position has an occurence of Inf-Step(↵0). Now, let Inf-Final(↵) denote the

set {q 2 FA | q = ↵i for infinitely many i}. Consider all those runs � in E where the first

occurence after e of some state in Inf-Final(�) is the earliest across all �. Now using a similar

argument as above we can say that this earliest position f is such that f  e+(|QA|+1)|v|.

Now among all such � we look at those runs in which the first occurence after f , of the

state at position e in �, is the earliest across all runs �. Let this position be g, again we can

argue that g  f + (|QA| + 1)|v|. Thus we obtain a finite run over some uvj of length g,

such that the state at positions g and e (which corresponds to uvi for some i < j) are the

same, and there is some final state at position f such that e < f < g. Now one can extend

this finite run to uv! by repeating the portion between e and g to obtain an accepting run.

Thus the string uvj along with positions e, f and g is a finite witness of an infinite accepting

run. Note that the positions can be represented in polynomially many bits but the string

uvj, which is a prefix of ⌧ , is exponentially long. But we observe that the ith element in the

trace ⌧i can be computed from i alone in PSPACE, thanks to part 2 of Lemma 8.1. Thus

we can guess e, f and g at the beginning, and guess the prefix of the accepting run over ⌧ ,

transition by transition, and check that (i) each transition is true to A, (ii) |u|  e < f < g,

(iii) e ⌘ g mod |v|, (iv) states at e and g match and (v) state at f is final, all in PSPACE.
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Next we present results pertaining to decision problems for Unary PFAs.

Theorem 9.2. Given two unary PFAs A and B (over the same alphabet) and rational cut-

points ✓1 and ✓2, such that ✓1 and ✓2 are limit isolated for A and B respectively, the following

problems are in coNP
C3P.

1. L>✓1(A) ✓ L>✓2(B).

2. L>✓1(A) = L>✓2(B).

3. L>✓1(A) = ;.

4. L>✓1(A) = ⌃
⇤.

Proof. Without loss of generality, we can assume that the ultimate periods of A and B are

the same (since we can always add unreachable cycles). Let the ultimate period be p. The

algorithm for checking containment proceeds as follows.The algorithm is going to guess a

number ` such that a` (here a is the lone symbol in the unary alphabet) is accepted by A

and rejected by B. Note, ` can be written as ` = pq + r where q = ` div p and r = ` mod p.

Hence we have to guess q and r. First, the algorithm guesses the o↵set 0  r < p which is a

polynomial-sized number.

Thanks to Corollary 9.1, there is a kA such for all qA � kA, apqA+r is accepted by A i↵

the string apkA+r is accepted. Furthermore, kA can be computed in polynomial time from

A and r. Similarly, there is a kB such that for all qB � kB, apqB+r is accepted by B i↵ the

string apkB+r is accepted. Let k = max(kA, kB).

By construction, we can conclude that if a` with ` = pq+r is in the language of A but not

in the language of B then we can take q  k. So, now the algorithm guesses q  k and then

checks that i) a` 2 L>�1(A) and ii) a` /2 L>�2(B). These checks can be carried out by P
C3P

algorithms as in Lemma 8.1 and the result follows. The other problems of language equality,

emptiness, and universality follow immediately from the result for language containment.

9.1 Conclusion

We conclude with a summary of results we have covered in this part of the thesis. In Ta-

ble 9.1 we contrast the complexities of the model checking problem for MDPs against Markov

chains under di↵erent restrictions. Each line of the table considers a di↵erent restriction of

the model checking problem: the first column denotes if the labeling considered is (limit)
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Robust ✏ known MDP Markov chain

No - Undecidable Open

Limit No Open PSPACE

Yes No Open PSPACE

Yes Yes EXPTIME PSPACE

Table 9.1: Model checking complexity for distribution based semantics

MDP Markov chain

Limit Robustness Undecidable coNP-complete

Robustness Undecidable coNP
RP

Table 9.2: Complexity of Checking Robustness

robust or not, and the second column denotes whether the degree of robustness is given as

an input. The results for MDPs are derived from those for PFAs as we saw in Section 7.2.

In contrast the lower complexity of PSPACE for Markov chains is what we finally proved in

Theorem 9.1. We also note that there are several problems that remain open in this space.

The model checking problem for Markov chains against binary labeling (not necessarily limit

robust) is open. The model checking problem for MDPs when the binary label is given to

be robust but the degree of robustness ✏ is not known is also an open problem. We showed

in Chapter 8 that the problem of checking (limit) robustness is tractable for Markov chains

and their complexities are mentioned in Table 9.2.
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Chapter 10

Conclusion

We conclude this thesis by summarizing the work, highlighting the results we have es-

tablished and mentioning the main open problems. The focus of this thesis is on the model

checking of probabilistic systems. Model checking involves determining whether a mathe-

matical model of system satisfies a certain specification. We are specifically interested in

a model called Markov Decision Processes (MDPs) which evolve, probabilistically and non-

deterministically, over discrete time steps on a given finite state space. We looked at two

di↵erent ways of assigning semantics to the model checking problem, execution based and

distribution based.

The execution based semantics is defined with respect to a scheduler that can resolve non-

determinism in the MDP. A scheduler induces a probability distribution on the executions of

a MDP. We are interested in finding out if the probability of the specified set of executions

is greater than a certain given threshold. This is called the quantitative model checking

problem, the special version of it when the threshold is zero is called qualitative model

checking problem. The specifications we consider are formulae in Linear Temporal Logic

(LTL) over boolean propositions that annotate the states of the MDP. In order to solve the

model checking problem we follow what is called an automata-theoretic approach which has

two steps. The first step involves translating the LTL into an automaton and the second

step involves analyzing the product of the MDP and the automaton. Since the size of the

automaton plays a direct role in the complexity of this approach it is essential to obtain an

e�cient translation. With this in mind researchers have spent large e↵orts in translating LTL

to deterministic automata which can be used for quantitative model checking. But it turns

out that for qualitative model checking it is enough to consider limit deterministic automata.

In this thesis we provide the first translation of large fragments of LTL to exponential sized
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limit deterministic automata that can be used to speed up the qualitative model checking

algorithm for those fragments (Chapter 4). We presented a tool called Büchifier that

builds automata for LTL formula using this translation (Chapter 6). We also considered the

quantitative model checking problem using existing deterministic automata translations, and

proposed a new algorithm for analyzing the product of the automata and the MDP. This new

space e�cient algorithm helped us in determining the exact complexity of the quantitative

problem for various LTL fragments (Chapter 5). Apart from these we also considered the

complexity of translating the safety fragment of LTL to probabilistic monitors that can be

used for model checking Markov chains and runtime monitoring (Chapter 3). One of the

main open questions that we are left with is regarding our translation from LTL to limit

deterministic automata; we presented a translation that was exponential for a large fragment

called LTLD, but the question remains whether this can be extended to a richer fragment

and thus improve the qualitative model checking result.

In the distribution based semantics we considered Markovian schedulers; these are sched-

ulers which resolve non-determinism by following a fixed sequence of actions. Such sched-

ulers induce a sequence of probability distributions over the states of the MDP. We looked

at propositions defined over such distributions, whose truth was derived by comparing the

probability in a set of states against a given constant. The specifications we considered are

!-regular languages defined over those propositions. The model checking problem then be-

came one of determining whether there is a Markovian scheduler which induces a sequence

of probability distributions whose trace belongs to the given language. The problem hap-

pens to be undecidable in general hence we consider a restriction of the problem; we consider

propositions which are (limit) robust w.r.t the MDP, i.e, their truth does not change on slight

perturbation of the constant involved in the inequality. For this restricted case it turns out

the the model checking problem becomes decidable when the degree of robustness is known.

But the problem remains open when the degree of robustness is not given as an input. The

problem of determining whether a proposition is robust happens to be undecidable. We then

reconsider the same problem for Markov chains (which are MDPs without non-determinism).

Our result here is that determining robustness for Markov chains is decidable (Chapter 8)

is decidable, and the model checking problem against !-regular specifications over robust
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proposition is in PSPACE (Chapter 9). The question of model checking a Markov chain

without the robustness assumption is one that is not settled, unlike in the case of MDPs

where it is known to be undecidable.
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Büchi automata for linear temporal logic. CAV, 2016.

[53] Abraham Silvers, Robert S Swenson, John W Farquhar, and Gerald M Reaven. Deriva-

tion of a three compartment model describing disappearance of plasma insulin-131i in

man. Journal of Clinical Investigation, 48(8):1461, 1969.

[54] A. Prasad Sistla. Safety, liveness and fairness in temporal logic. In Formal Aspect of

Computing, pages 495–511, 1999.

[55] Larry J. Stockmeyer and Albert R. Meyer. Word problems requiring exponential time:

Preliminary report. In Proc. of the 5th Ann. ACM Symposium on Theory of Computing,,

pages 1–9, 1973.

[56] Vladimir N Vapnik and A Ya Chervonenkis. On the uniform convergence of relative

frequencies of events to their probabilities. Theory of Probability & Its Applications, 16

(2):264–280, 1971.

[57] M. Vardi, P. Wolper, and A. P. Sistla. Reasoning about infinite computation paths. In

FOCS, 1983.

118



[58] Moshe Y. Vardi. Automatic verification of probabilistic concurrent finite state programs.

In Proceedings of the 26th Annual Symposium on Foundations of Computer Science,

SFCS ’85, pages 327–338, Washington, DC, USA, 1985. IEEE Computer Society. ISBN

0-8186-0844-4. doi: 10.1109/SFCS.1985.12. URL http://dx.doi.org/10.1109/SFCS.

1985.12.

[59] Moshe Y. Vardi. An automata-theoretic approach to linear temporal logic. In Logics

for Concurrency. LNCS, vol. 1043, pages 238–266. Springer-Verlag, 1996.

[60] Klaus W. Wagner. Some observations on the connection between counting and recursion.

Theoretical Computer Science, 47(3):131–147, 1986.

[61] A.C. Yao. Some complexity questions related to distributed computing. In Proceedings

of the ACM Symposium on Theory of Computation, pages 209–213, 1979.

119

http://dx.doi.org/10.1109/SFCS.1985.12
http://dx.doi.org/10.1109/SFCS.1985.12


Appendix A

Details of LDBA Construction

A.1 Proof of Proposition 4.1

It is easy to see using propositional calculus that at least one of the three formula should

hold, i.e ¬F'_ (¬G'^F')_G' ⌘ tt. Conjunction of every pair of them is false. This can

be proved using propositional calculus for ¬F'^ (¬G'^F'), and for (¬G'^F')^G'. It

is easy see that ¬F' ^G' is false since ¬F' says ' can never hold, while G' asserts that

' is always true, which is a contradiction. If ' is of the form F then w ✏ ' i↵ w 2 ¬F'.

A.2 Derivative

In Section 4.2 we introduced the concept of derivative by providing a declarative defini-

tion. Here we will elaborate on the syntactic definition of the concept.

We describe some terminology related to normal form representation for temporal for-

mulae. A term t is a conjunction of formulae '0, . . ,'k denoted as a set t = {'0, . . ,'k}.

A term over ' is a term in which all formulae are subformulae of ' or their dependents

(formulae F for internal �U  and and X(�U  ) for all �U  ). The set of all terms over '

is denoted by T ('). A form is a disjunction of a finitely many terms t1, . . , tn represented as

ht1, . . , tni. A form is said to be over ' if every term in it is over '. Set of all such forms is

denoted by F('). A single term t can also be interpreted as the form hti depending on the

context it is used. We use h i to denote the form with a single term { }. False is denoted

by the empty form hi and true is represented as h;i. If there are two terms ti, tj in a form

such that ti ✓ tj then we can drop tj because tj implies ti. For a set of terms T , let min(T )
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be the form consisting of the minimal (according to the subset relation) terms in T . Let

⌫1 [ ⌫2 be the set of terms contained in either ⌫1 or ⌫2. The join of two forms ⌫1, ⌫2 denoted

by ⌫1 t ⌫2 is the form min(⌫1 [ ⌫2). The meet of two forms ⌫1, ⌫2 denoted by ⌫1 u ⌫2 is the

form min({t1 [ t2 | t1 2 ⌫1, t2 2 ⌫2}).

We say a term t is ex-free if t \ ⇤' is empty, and form f is ex-free if each term in it is

ex-free. Next, we introduce the concept of consistency.

Definition A.1 (Consistency). A term e is said to be locally consistent if:

• � _  2 e then � 2 e or  2 e.

• � ^  2 e then � 2 e and  2 e

• (�U  2 e and �U  /2 ⇤') then F 2 e

• �U  2 e then either (� 2 e and X(�U  ) 2 e) or  2 e

• ↵ /2 e

A term e is said to be consistent with input symbol � 2 2P if:

• if p 2 e then p 2 �

• if ¬p 2 e then p /2 �

A term e 2 T (') is said to be consistent with an FG-prediction ⇡ 2 ⇧(') if:

• F 2 e then F /2 ↵(⇡)

• G 2 e then G 2 ↵(⇡)

A term e 2 T (') is said to be consistent with ex-choice � ✓ ⇤' if:

• 8 �U  2 e \ ⇤':  2 e i↵ �U  2 �

• 8 � _  2 e \ ⇤': � 2 e i↵ � _  2 �

The notion of local consistency is an extension of the concept of “local informativeness”

introduced in [24]. A term is locally consistent if every compound formula of the form

(^/ _ /U ) present in the term is appropriately supported by the presence of its immediate

subformulae/dependents. A term that is locally consistent gives a proof for the satisfaction
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of each compound formula present in it. The proof is local in the sense that it gives a way

to satisfy the current and not any future obligations that need to be met. Consider �U  ,

for which to be satisfied one needs:

•  to hold at some point (which is expressed by the presence of dependent F ), and

• either  holds now (presence of  ) or � holds now and �U  holds at the next step

(presence of �, X(�U  ))

For ^/_ we need both/one of the arguments present for the term to be locally consistent.

Note that local consistency does not handle literals because the current input � is supposed to

tell us their truth; and those requirements are encoded in � consistency constraints. Similarly

⇡ tells us the truth of F,G-formulae which are encoded in ⇡ consistency constraints. An ex-

choice � 2 ⇤' also dictates additional constraints. The ex-choice � dictates how each external

U /_ subformula is satisfied if it needs to be. If �U  2 � then it must be immediately

satisfied by the presence of  . A �_ 2 � must be satisfied by the presence of �. � provides

us with a resolution of choices created by external U /_.

For notational simplicity, we are going to combine the three forms of constraints (input

symbol, FG-prediction, ex-choice) into an extended symbol:

Definition A.2 (Extended symbol). An extended symbol for an LTL formula ' over

propositions P is a triple (�, ⇡,�) 2 2P ⇥ ⇧(') ⇥ ⇤'. We will use E' denote the space

2P ⇥ ⇧(') ⇥ ⇤'. We say a term t is consistent with " 2 E' if t is consistent with each

component of ".

(We will also sometimes refer to the pair (�, ⇡) as an extended symbol, this is useful when

the ex-choice becomes irrelevant)

For a sequence of symbols ⇢ (finite or infinite) over 2P , an extension is an equally long

sequence w = {(⇢i, ⇡i,�i)} over E'.

Next, we define the expansion of a term w.r.t an extended input. The expansion is a

form consisting of terms that describe di↵erent ways to satisfy the given term.

Definition A.3 (Expansion). For t 2 T (') and " 2 E', the expansion X (t, ") is the form

min(T ) where T is the set of all terms e such that t ✓ e, e is locally consistent, and consistent

with ". Given form ⌫ we define the expansion X (⌫, ") as
F

t2⌫
X (t, ")
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The successor of a term t is the term consisting of all the temporal obligations that are

pending in t:

Definition A.4 (Successor). The successor of a term t denoted by S(t) is defined as the

term { | X( ) 2 t}. For a form f , S(f) is defined as the form min({S(t) | t 2 f}).

Next, we define the derivative. Here we directly define what corresponds to the weakest

derivative as in Definition 4.6 and simply refer to it as the derivative. Given a form f ,

a finite sequence of input symbols ⇢ and an extension w of ⇢: the derivate denoted by

r(f, w) corresponds to the obligation such that if any infinite continuation ⇢0 satisfies it

then it guarantess f to be true at ⇢⇢0 given that w is the prefix of a sound extension for ⇢⇢0.

Informally, an extension is sound if the guesses made by the FG-predictions and ex-choices

along the word are correct. The derivative can be seen as a generalization and a declarative

version of the various unfolding operations [35, 22].

Definition A.5 (Derivative). For a form f 2 F , and extended symbol " 2 E' define the

derivate r(f, "), as the form S(X (f, ")). We extend the definition to finite words over E'
as: r(f, ✏) = f and r(f, "w) = r(r(f, "), w). For a given extension w we shall use rj

i
(f)

as a shorthand for r(f, w[i, j])

Observe that the derivative of a form only consits of U subformulae and arguments of

X subformulae of the given form due to the application of S.

Now we are ready to describe the automata construction using this definition. A single

state in our construction is a 4-tuple (µ, ⌫, ⇡,m) where µ and ⌫ are forms over ', ⇡ is a

FG-prediction and m is a counter. Note that forms are just a di↵erent way of representing

formulae and will be more convenient when proving correctness and e�ciency of the con-

struction. The only operations a form needs to emulate are the ^/_ which are done by

u/t. The construction is exactly as in Definition 4.7 with forms replacing formulae and the

analogous boolean operations for forms.

Definition A.6 (Construction). Given a formula ' 2 LTL over propositions P , let D(')

be the NBA (Q, �, I, F ) over the alphabet 2P defined as follows:

⌅ Q is the set F(')⇥ F(')⇥ ⇧(')⇥ [n] where n = | (C('))|+ 1
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⌅ � is the set of all transitions of the form (µ, ⌫, ⇡,m)
��! (µ0, ⌫ 0, ⇡0,m0)

such that

(a) ↵(⇡) ✓ ↵(⇡0) and �(⇡) = �(⇡0)

(b) µ0 = r(µ u hti, ") for some � ✓ ⇤'

where t = { | F 2 �(⇡) \ ↵(⇡0) or G 2 ↵(⇡)} and " = (�, ⇡,�)

(c) m0 =

8
><

>:

(m+ 1) (mod | (�)|+ 1) ⌫ = h;i

m otherwise

(d) ⌫ 0 =

8
<

:
h m0i ⌫ = h;i

r(⌫, (�, ⇡)) t h mi otherwise

where {F 0, . . ,F k} is an enumeration of (�),  0 = tt

⌅ I is all states of the form (h'i, h;i, ⇡, 0)

⌅ F is all states of the form (µ, h;i, ⇡, 0) where �(⇡) = ;, µ 6= hi, µ is ex-free

A.3 Proof of Correctness

In order to prove correctness (Theorem 4.2) we define an annotation for an accepting run.

The annotation is a sequence of pairs (u, v) where u and v represent expansions of terms in

µ and ⌫ respectively that are true:

Definition A.7 (Annotation). Given an accepting run of automaton D(') over word ⇢

(µ0, ⌫0, ⇡0,m0)
⇢0�! · · · (µi, ⌫i, ⇡i,mi)

⇢i�! · · · (?)
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an annotation is a (finite/infinite) sequence of pairs (ui, vi) 2 T ⇥ (T [ {null}) where:

8i � 0 : �i ✓⇤' such that µi+1 = r(µi u i, (⇢i, ⇡i,�i)) (A.1)

8i � 0 : ui 2 X
�
t u i, ⇢i, ⇡i,�i)

�
where t = (S(ui�1) if i > 0 else{'})

where  i = { | F 2 �(⇡i) \ ↵(⇡i+1) or G 2 ↵(⇡i)} (A.2)

8i � 0 : ; 2 ⌫i () vi = ; (A.3)

8i > 0 : vi�1 = ;/null =) vi = null or vi 2 X
�
h mii, (⇢i, ⇡i)

�
(A.4)

8i > 0 : vi�1 6= ;/null =) vi 2 X (S(vi�1), (⇢i, ⇡i)) (A.5)

Lemma A.1. For a given accepting run of D(') (?)

8n � 0; 8s 2 µn; 8x 2 X (s u n, (⇢n, ⇡n,�n)); 8y 2 X (⌫n, (⇢n, ⇡n))

there exists an annotation of length n+1 ending in (x, y)

Proof. First note that the requirements for sequence of ui and those for vi in an annotation

are independent. We show the existence of a sequence {ui}0in ending in x and sequence

{vi}0in ending in y each satisfying their respective conditions. Combining the sequences

will then gives us the required annotation. First note that �i in condition A.1 is given by

the transtions taken in the accepting run. We perform indunction on n to construct the

sequences.

Base Case: when n = 0 we have µn = h'i (initial state condition), so s can only be {'}

and hence x 2 X ({'} u  0, (⇢0, ⇡0,�n)) which satisfies condition A.2. For n = 0 we have

⌫n = h;i, so y = ; which would satisfy condition A.3. Conditions A.4 and A.5 do not apply

for the base case (see quantification on the conditions).

Inductive Case: We assume the statement is true for n upto i and prove it for n = i+ 1.

Extending u: Let t be a term in µi such that the quantified s is contained in r(t u

 i, (⇢i, ⇡i,�i)) = S(X (tu i, (⇢i, ⇡i,�i))). Such a term t should exist by the fact that s 2 µi+1

and how µi+1 is derived from µi in Rule (b). Now let x0 be the term in X (tu i, (⇢i, ⇡i,�i))

for which S(x0) = s. By the inductive hypothesis we have {uj}0ji that ends in x0 which
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satisfies the condition A.2. We append x to this sequence to obtain the required sequence of

length i+ 1

Extending v: Consider the case when ⌫i = h;i, here we know ⌫i+1 = h mi+1i implying

y 2 X (h mi+1i, (⇢i+1, ⇡i+1)). Condition A.3 is satisfied for vn+1 = y because y is non-

empty, as  ni+1 is contained in y. For ⌫i = h;i we need to check condition A.4, which

is satisfied because y 2 X (h mi+1i, (⇢i+1, ⇡i+1)). Next, consider the case when ⌫i 6= h;i,

here we know ⌫i+1 = r(⌫i, (⇢i, ⇡i)) t h mii. Now suppose r be the term in ⌫i+1 for which

y 2 X (r, (⇢i+1, ⇡i+1)). If r 2 r(⌫i, (⇢i, ⇡i))(= S(X (⌫i, (⇢i, ⇡i)))) let y0 2 X (⌫i, (⇢i, ⇡i)) for

which r = S(y0). By the induction hypothesis we have {vj}0ji that ends in y0. We append

y to this sequence to obtain the required sequence of length i+1. If r = { mi}, consider the

last index k where nk 6= ni. (If such a k does not exist, then all mi have to be zero in which

case we have vi = ; for all i). Here ⌫k has to be h;i owing to the fact that counter changes

only when ⌫ becomes h;i. By induction hypothesis there exists a sequence {vj}0jk ending

in ;. Appending null
(k�i�1)y to this gives us the required sequence.

Corollary A.1. Every accepting run of D(') has an infinite annotation

Proof. Note that in an accepting run µi 6= ; for any i, which means there will always exist

s 2 µi such that X (s [  i, (⇢i, ⇡i,�i)) 6= ; (otherwise µi+1 = ;). In an accepting run we

also know that ⌫i = h;i for infinitely many i. Hence using Lemma (A.1) we have finite sized

annotations of arbitrarily large lengths. Note that every prefix of an annotation is also a valid

annotation. We can arrange all these annotations and their prefixes in an infinite rooted

tree where the root is the empty annotation, and there is an edge between two annotations

if one of them is a prefix of the other obtained by removing the last element. Every node

in this tree has finite degree because the space of each element in this sequence is finite

(T ⇥ (T [ {null})). Finally we use König’s lemma to obtain an infinite path in this tree

which gives us the required infinite annotation.

Let Set : T [ {null} ! T be the function which maps every T to itself and maps null to

the empty term ;.

Lemma A.2. For an accepting run (?) with an infinite annotation {(ui, vi)}i�0, it is the

case that 8i � 0 8 ✓ 2 (ui [ Set(vi)) : ⇢(i) ✏ ✓
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Proof. We perform induction on the size of ✓. We shall use the fact that Si = ui [Set(vi) is

a term that is locally consistent and consistent with ⇡i and wi.

For the base case when ✓ is a literal p/¬p it has to be the case that p/¬p is respectively

true for ⇢(i) because it is contained in a term that is consistent with wi.

If ✓ is of the form �_/^  then using local consistency we get that either (or both) of �

or  is present in Si, and hence true at ⇢(i) due to the inductive hypothesis which gives us

the truth of ✓ at ⇢(i).

If ✓ is �U  : if ✓ /2 ⇤' then local consistency tells us that F 2 Si and using the

induction hypothesis we get that F is true at ⇢(i). Let j � i the smallest index such that

⇢(j) ✏  . 8k : i  k < j we can inductively prove (this is a separate induction on k) that

�,X(�U  ) 2 Sk using the facts: that  is absent from all such Sk (induction hypothesis),

local consistency of Sk and that X(�U  ) transfers �U  to the next step (definition of

annotation and S). If ✓ 2 ⇤' then there is a j � i such that ✓ is absent in µj (because once

a final state is reached µ becomes ex-free), picking the smallest such j one obtains the point

at which  is true which can be proved by induction on j like we did in previous case.

If ✓ is F then using the fact that Si is ⇡i consistent we can infer that F 2 �(⇡i)[�(⇡i).

If  2 �(⇡i) then 9j � i such that F 2 �(⇡j)\↵(⇡j+1) (due to (a)). Now we know  2  j

and hence  2 Sj (from definition of annotation). Using the induction hypothesis we get

⇢(j) ✏  and hence ⇢(i) ✏ F . If  2 �(⇡i) then we know that the counter will eventually

(say at j � i) become the indexmj corresponding to  in � (� doesn’t change along a run, see

(a)). Let j be the smallest such index. Consider the smallest k � j for which vk 6= null. mk

has to be equal to mj because the counter cannot change while vi is empty. From property

(A.4) of annotations we get that vk 2 X ({ }, ⇡k, wk). This tells us that  2 Sk and by the

induction hypothesis we have ⇢(k) ✏  thus proving ⇢(i) ✏ F .

If ✓ is G then using the fact that Si is consistent with ⇡i we infer that G 2 ↵(⇡i).

Now using (a) we infer that G 2 ↵(⇡j) for all j � i. Using property (A.2) of annotations

we get that  2 uj(✓ Sj). Applying the induction hypothesis we get that ⇢(j) ✏  for all

j � i and hence ⇢(i) ✏ G .

Corollary A.2. If w has an accepting run in D(') then w ✏ '.
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Proposition A.1. If w ✏ ' then w has an accepting run in D(')

Proof. Define the run (µi, ⌫i, ⇡i,mi) as follows. Let ⇡i be such that

↵(⇡i) = {G 2 C(') | ⇢(i) ✏ G } [ {F 2 C(') | ⇢(i) 2 F }

�(⇡i) = {G 2 C(') | ⇢(i) 2 FG } [ {F 2 C(') | ⇢(i) ✏ GF }

Define �i as { U �, �_ 2 ⇤' | ⇢(i) ✏ �}. Fixing the sequences ⇡i,�i resolves all the

non-determinism present along a run, we can then define µi, ⌫i,mi as described by the initial

state and the transition relation. We will be then left to check that the run is indeed an

accepting one.

We first show that 8i µi 6= hi. We prove a stronger statement 9 t2µn, 8 2 t : ⇢(n) ✏ t

by induction on n. Base case is trivial as µ0 = h'i for the initial state. Next consider the

inductive case where n = i+1. Let ti be term in µi which is true according to the induction

hypothesis. We can then recursively construct the set e ◆ (ti [  i) such that all formulae

we add to e are true by looking at the truth of the immediate subformulae of the formulae

present in e. For example consider �U  2 e0 = (e\⇤'), if �U  2 �i then we add  to e as

we know that ⇢(i) ✏  by definition of �i, otherwise we add �,X(�U  ) to e to ensure local

consistency. Note that the formulae we add will be true at ⇢(i). Whenever there is a choice

as to how we can make a certain formula true then we non-deterministically pick one. We do

so for every formulae in e. The set e constructed will be locally consistent, consistent with

⇡i (by it’s definition and the fact that all formulae in e are true at ⇢(i)), consistent with wi

(by the fact all formulae in e hold at ⇢(i)) and �i consistent (due to the way we construct

e). Consider all minimal such e (among all those that can be constructed this way) and they

would have to be present in X (t[ i, (wi, ⇡i,�i)). Then pick ti+1 as S(e) which is a minimal

among all such e (to ensure ti+1 2 µi+1), and observe that every formulae in S(e) is true at

⇢(i+1) by semantics of X and the fact that all formulae in e hold at ⇢(i).

Next we show that ⌫i is h;i for infinitely many i. In order to do so we define the metric f

which for a given word ⇢ and formula  gives us a number f(⇢, ) which gives us an upper

bound on the number of steps it takes ⌫ to become h;i along ⇢ if it were to start at h i.

Definition A.8. For a formula ' and a word ⇢ define f(⇢,') 2 N[{1} such that: f(⇢,') =
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1 if ⇢ 2 ' otherwise we recursively define it as follows

f(⇢,') = 1 if ' is p/¬p/F /G 

f(⇢,X�) = 1 + f(⇢(1),�)

f(⇢,� ^  ) = max(f(⇢,�), f(⇢, ))

f(⇢,� _  ) = min(f(⇢,�), f(⇢, ))

f(⇢,�U  ) = max
j<i

(j+f(⇢(j),�), i+f(⇢(i), )) i is min s.t ⇢(i) ✏  

We also extend this definition for a term t: define f(⇢, t) as max'2t f(⇢,')

Next, using the above metric we show the following statement which claims that if a term

t is true at ⇢(j) then taking the derivative of t for su�ciently many times will yield the ;

term.

8j 8t 8k (8 2 t : ⇢(j) ✏  ) ^ (k = j+f(⇢(j), t)) ) ; 2 r({t}, ⇡(j, k), w(j, k)) (A.6)

We prove this using induction on k. Consider a term t that holds for ⇢(i). One can show

that 9t0 2 r(t, (⇢i, ⇡i)) such that t0 is true for ⇢(i + 1) and f(⇢(i+1), t0) < f(⇢(i), t). Using

this along with the induction hypothesis will prove the inductive case. For the base case

when f(⇢(i), t) is 1 the formulae in t can only be boolean combinations of p/¬p/F /G 

which do not produce any obligations (X formulae) which implies that ; 2 r(t, (⇢i, ⇡i)).

Now, for contradiction assume ⌫ is h;i finitely many times, and let i be the index suc-

ceeding the last point where ⌫ = h;i. Let  denote the formula  mi . Since F 2 �(⇡i) we

know that  holds infinitely often by definition of �(⇡i), so consider a point j � i such that

⇢(j) ✏  . Using (A.6) we get that that within f(⇢(j), ) steps ⌫ would have to be h;i which

is a contradiction.

Next, we note that �(⇡i) is empty for su�ciently large i. In order to prove µ eventually

becomes ex-free we can once again use a metric similar to f to argue that within finite steps

every external subformula disappears from µ.

Proposition A.2. D(') is limit deterministic

Proof. First note that ⌫ 0 and n are deterministically updated, they only depend on ⌫, ⇡ which

is a part of the state and � which is the current input symbol. The only non-determinism in
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the automaton comes from the evolution of µ and ⇡. In a final state, the ⇡ cannot change

any further due to monotonicity and �(⇡) being empty. In a final state µ becomes ex-free

and remains ex-free from then on because the formula introduced in µ come from  all of

which are internal. This implies that the ex-choice � does not play a role in determining µ

(as it is ex-free) and hence µ is also updated deterministically from then on.

A.4 E�ciency

In order to prove Theorem 4.3, we first observe identities about the derivative that we

shall use in proofs appearing later in this Section.

Lemma A.3. For forms A and B and extended symbol ": r(A t / uB, ") = r(A, ") t / u

r(B, ")

Lemma A.4. Given ' 2 LTL\GU , a subformula  , and an extended input symbol " 2 E',

the derivative of  , r( ) (short for r( , ")) satisfies the following identities depending on

the structure of  :

r( 1 U  2) =

8
>>>>><

>>>>>:

r( 2) t (r( 1) u h 1 U  2i) if  1 U  2 /2 ⇤'

r( 2) if  1 U  2 2 �

r( 1) u h 1 U  2i otherwise

r( 1 _  2) =

8
>>>>><

>>>>>:

r( 1) tr( 2) if  1 _  2 /2 ⇤'

r( 1) if  1 _  2 2 �

r( 2) otherwise

r( 1 ^  2) = r( 1) ur( 2)

r(F ) = hi if F 2 ↵(⇡) else h;i r(p) = h;i if p 2 � else hi

r(G ) = h;i if G 2 ↵(⇡) else hi r(¬p) = hi if p 2 � else h;i

Next, we observe that the terms in the derivative of an LTL(F,G,^,_) formula ' w.r.t

a word of length k consist only of subformulae at depth k in ', and hence derivatives of '
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of order greater than h are either true or false where h is the height of '. The lemma can

be proved by induction on k.

Lemma A.5. For ' 2 LTL(F,G,^,_), w 2 Ek

'
, t 2 r(h'i, w): every � 2 t is such that �

is a formula at depth k within '.

Corollary: If ' 2 LTL(F,G,^,_) is of height h � 0, then r(h'i, w) 2 {hi, h;i} for all

|w| > h.

Now we see how to represent the space of reachable ⌫ and µ. Let us fix a formula

' and an infinite sequence of extended symbols w. Note that the ⌫ component of a run

cycles through (�). When ⌫ becomes h;i it moves to the next F in (�). (�) is at

most as large as the given formula, hence it su�ces to show a bound on reachable ⌫ for

a single F . With this in mind we fix  and define ⌫i inductively as follows: ⌫0 = h i

and ⌫i+1 = r(⌫i, wi) t h i. For µ define µ0 = h'i and µi+1 = r(µi u  i, wi) where  i =

{ | F 2 �(⇡i) \ ↵(⇡i+1) or G 2 ↵(⇡i)}. The sequence µi describes the µ component of

a run. Our aim is to find a representation for ⌫i, µi and show that the number of di↵erent

possible representations is exponential. The following Proposition proved using Lemma A.5

gives us a representation.

Proposition A.3. If  2 LTL(F,G,^,_) and ' 2 LTLD are of height k, and l =

max(i�k, 0)

⌫i =
iG

j=l

ri

j
(h i) or h;i µi =

i�1l

j=l

ri

j
( j) u ri

0(h'i) or hi

Proof. Consider ⌫i, we can prove that it is ti

j=0ri

j
( ) by inducting on i and using Lemma A.3.

Then we observe that the first l�1 elements are either true (h;i) or false (hi) due to

Lemma A.5. The representation above follows immediately. For µi the structure can be

derived in a similar fashion the only di↵erence is the extra term ri

0(') that arises due to

the initial condition.

Note if ⌫i is not h;i then it is completely determined by the substring of extended symbols

w[l, i]. There are at most (2|P |.3|'|.2|⇤'|)k such substrings for each length and there are k

di↵erent lengths. Hence we get that ⌫i can take on at most exponentially di↵erent values.
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Observe that in µi the part
d

i�1
j=l

ri

j
( j) can take exponentially many di↵erent values once

again due to the fact that it only depends on the w[l, i]. What remains to be seen that

ri

0(h'i) takes on at most exponentially di↵erent values. The next Lemma states that every

derivative of ' over w[0, i] can be expressed as the derivative of a single term t over w[l, i].
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