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ABSTRACT

We investigate robustness and reliability in decision-making systems and al-

gorithms based on the tradeoff between cost and performance. We propose

two abstract frameworks to investigate robustness and reliability concerns,

which critically impact the design and analysis of systems and algorithms

based on unreliable components.

We consider robustness in online systems and algorithms under the frame-

work of online optimization subject to adversarial perturbations. The frame-

work of online optimization models a rich class of problems from information

theory, machine learning, game theory, optimization, and signal processing.

This is a repeated game framework where, on each round, a player selects

an action from a decision set using a randomized strategy, and then Nature

reveals a loss function for this action, for which the player incurs a loss.

Through a worst-case adversary framework to model the perturbations, we

introduce a randomized algorithm that is provably robust even against such

adversarial attacks. In particular, we show that this algorithm is Hannan-

consistent with respect to a rich class of randomized strategies under mild

regularity conditions.

We next focus on reliability of decision-making systems and algorithms

based on the problem of fusing several unreliable computational units that

perform the same task under cost and fidelity constraints. In particular,

we model the relationship between the fidelity of the outcome and the cost

of computing it as an additive perturbation. We analyze performance of

repetition-based strategies that distribute cost across several unreliable units

and fuse their outcomes. When the cost is a convex function of fidelity,

the optimal repetition-based strategy in terms of minimizing total incurred

cost while achieving a target mean-square error performance may fuse several

computational units. For concave and linear costs, a single more reliable unit

incurs lower cost compared to fusion of several lower cost and less reliable
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units while achieving the same mean-square error (MSE) performance. We

show how our results give insight into problems from theoretical neuroscience,

circuits, and crowdsourcing.

We finally study an application of a partial information extension of the

cost-fidelity framework of this dissertation to a stochastic gradient descent

problem, where the underlying cost-fidelity function is assumed to be un-

known. We present a generic framework for trading off fidelity and cost in

computing stochastic gradients when the costs of acquiring stochastic gradi-

ents of different quality are not known a priori. We consider a mini-batch

oracle that distributes a limited query budget over a number of stochas-

tic gradients and aggregates them to estimate the true gradient. Since the

optimal mini-batch size depends on the unknown cost-fidelity function, we

propose an algorithm, EE-Grad, that sequentially explores the performance

of mini-batch oracles and exploits the accumulated knowledge to estimate the

one achieving the best performance in terms of cost efficiency. We provide

performance guarantees for EE-Grad with respect to the optimal mini-batch

oracle, and illustrate these results in the case of strongly convex objectives.
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CHAPTER 1

INTRODUCTION

Consider consulting a medical expert in order to make a decision on a health

concern, e.g., whether to accept a certain treatment or have some operation.

Each medical expert has a certain level of competence associated with the

fidelity of the advice he or she can provide, which in turn is highly corre-

lated to the cost incurred to obtain the advice. Often, medical experts with

higher competence may cost more than those with lower competence, where

a patient seeking for advice may either spend his or her entire budget for a

single and high competence medical expert, or distribute it across a number

of less competent medical experts and make a final decision by aggregating

their advice. Depending on the inherent decision-making problem and the

nature of the cost-fidelity relationship, either approach may lead to a better

result than the other in terms of the final decision quality. Similar arguments

apply to the case where we consider getting investment advice subject to a

limited budget. We might decide to either exhaust the entire budget on a

single and expensive expert, or allocate it to several cheaper experts and fuse

their outputs to make a decision. In both scenarios, the optimal approach

in terms of final decision performance depends heavily on the underlying

cost-fidelity function. Along these lines, we can also consider crowdsourcing,

which assigns a single task to a number of cheaper but unreliable workers,

instead of a single or smaller number of more expensive and reliable experts.

In general, there is a tradeoff between cost (monetary payments, bonus) and

fidelity (quality of work) in a wide range of crowdsourcing scenarios.

In this dissertation, we focus on decision-making systems and algorithms

under uncertain environments from an abstract point of view. In particular,

we focus on robustness and reliability, which are significant concerns for sys-

tems and algorithms built out of unreliable components in a wide range of

applications including but not limited to machine learning and optimization,

circuits and systems, neuroscience, crowdsourcing, communications, invest-
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ment, and wireless sensor networks.

We propose and investigate two abstract frameworks to account for the

robustness and reliability issues that critically impact the design and analy-

sis of decision-making systems and algorithms subject to unreliable behavior,

respectively. We first present the framework of online optimization, and show

how it is connected to a large number of problems from different fields. We

will use this framework to study robustness of online decision-making sys-

tems and algorithms under worst-case adversarial perturbations. We next

propose a framework to study the fundamental cost-fidelity tradeoff inherent

in decision-making engines subject to unreliable behavior. We demonstrate

that this framework may have relevance in problems from a wide range of

fields including circuits and systems, theoretical neuroscience, and crowd-

sourcing.

1.1 Online Optimization Setting

In the machine learning and optimization literature [1–8], online optimiza-

tion has been introduced and used as an abstract framework that provides a

unified approach to a number of problems including: prediction with expert

advice and online classification/regression in online learning [9–13]; sequen-

tial investment and universal portfolios in mathematical finance [14–16]; uni-

versal prediction in information theory [17–19], and zero-sum repeated games

in game theory [20].

To clarify the notion, we briefly describe an online optimization framework

with a T -round repeated game, where on each round t = 1, . . . , T , an online

player chooses an action At from a set of feasible actions A, which is treated

as a comparison class. Then Nature selects a loss function `t(·) from a class

of loss functions L, and the player suffers the loss `t(At). The goal of the

online player is to minimize and control the regret it accumulates over T

rounds with respect to the best action from the comparison class A, which

can be defined as

RT ,
T∑
t=1

`t(At)− inf
U∈A

T∑
t=1

`t(U).

Regret is a game-theoretic notion to assess the player’s performance, which
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measures the difference between the cumulative performance of an online

player and that of the best strategy from a class of competing strategies, the

best of which can only be chosen in hindsight [13]. Under this framework,

we investigate a natural question arising in different applications: Are online

decision-making systems and algorithms robust against adversarial pertur-

bations of external agents? Particularly in sequential systems, adversarial

perturbations of the player’s decisions can be catastrophic if not compen-

sated properly since their effects will accumulate across iterations.

1.2 A Framework of Cost-Fidelity Tradeoff

In this framework, we consider the problem of fusing outcomes of several

unreliable computational units subject to cost and fidelity constraints. We

propose an analytical model for the output of an unreliable computational

unit as an additive perturbation to its error-free result that captures the

relationship between its fidelity and cost. In particular, suppose that a signal

X ∈ Rd is processed to compute some target function f(·) as

Y = f(X),

where we model the output of any unreliable computational unit with fidelity

θ > 0 as

Zθ = Y + Uθ,

where Uθ is a zero-mean perturbation with variance θ−1. In our model, a

cost C(θ) must be incurred to achieve the fidelity θ. Naturally, the cost is an

increasing function of the fidelity. Note that by Chebyshev’s inequality, the

output Zθ of the unreliable computational unit with fidelity θ > 0 satisfies,

for any ε > 0,

Pr(|Zθ − Y | ≥ ε) ≤ 1

ε2θ
,

which suggests that the output of the unreliable unit converges to the error-

free computation in probability as the fidelity increases at the expense of a

larger cost. This introduces a cost-fidelity tradeoff, which will be extensively
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explored in this dissertation.

Under this framework, we study the performance of repetition-based strate-

gies that distribute a limited cost budget across several unreliable compu-

tational units and fuse their outputs to form a final output. In many ap-

plications, the fusion operation also incurs some cost, which must also be

taken into account in an effort to find the optimal approach in terms of

cost-performance tradeoff.

One particular application of this framework is in modern signal process-

ing systems based on unreliable circuit fabrics, such as nanoscale CMOS or

spintronics, which exhibit a tradeoff between cost (such as area, complex-

ity, power, or other resources) and performance (such as precision, accuracy,

latency, or throughput). For instance, as CMOS technology scales beyond

10 nm, or the supply voltage scales below some threshold, the critical path

lengths in a design may become too slow and their computation may not

complete within a clock period, leading to static defects as well as dynamic

operational non-determinism. This leads to artifacts such as process, voltage,

and temperature variations, which results in unreliable behavior. Moreover,

present implementations of spintronics, or electron spin-based electronics,

exhibit unreliable behavior, where there is a tradeoff between reliability and

energy consumption [21,22]. We emphasize that our framework of cost-fidelity

tradeoffs also has connections to neuroscience, where typical central synapses

are noisy devices, for instance, due to probabilistic transmitter release [23].

These unreliable synapses play essential roles in two principal tasks of the

brain, namely, information storage and information processing.

1.3 Outline of the Dissertation

In Chapter 2, we consider robustness of online decision-making systems and

algorithms under the framework of online optimization subject to adversarial

perturbations. We investigate a repeated game framework where on each

round, a player selects an action from a decision set using a randomized

strategy, and then Nature reveals a loss function for this action, for which

the player incurs a loss. The game then repeats for a total of T rounds,

over which the player seeks to minimize the total incurred loss, or more

specifically, the excess incurred loss with respect to a fixed comparison class.
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The added challenge over traditional online optimization is that on certain

rounds, which are unknown to the player, after the player selects an action,

an adversarial agent perturbs this action arbitrarily. Through a worst-case

adversary framework to model the perturbations, we introduce a randomized

algorithm that is robust against such adversarial attacks. In particular, we

show that this algorithm is Hannan-consistent with respect to a rich class of

randomized strategies under mild conditions.

In Chapter 3, we turn our attention to the reliability issue, and study the

problem of fusing several unreliable computational units that perform the

same task under cost and fidelity constraints. Here we view any computa-

tional unit as a black box that produces results based on its unknown mech-

anism. More precisely, we propose an unreliable computational unit model,

where instead of the error-free output, we observe a perturbed version while

incurring an associated cost. We consider several cost models formalizing

the relation between the fidelity of an unreliable computational unit and its

cost. We analyze repetition-based strategies that distribute the cost across

several unreliable units and fuse their outputs to make a final decision, and

demonstrate limits of achievable performance within this framework. In par-

ticular, we demonstrate that a single and more reliable computational unit

incurs less cost compared to a fusion of several less costly and less reliable

computational units while achieving the same performance, under concave

and linear costs. We also show that when the cost function is a convex func-

tion of fidelity, fusing several cheaper but less reliable computational units,

instead of an expensive and reliable unit, may yield a better cost-performance

tradeoff under certain conditions.

In Chapter 4, we consider an application of our cost-fidelity framework

to a stochastic gradient descent problem, where the underlying cost-fidelity

function is assumed to be unknown. In this case, the optimal repetition-

based strategy is also unknown since it depends on the cost-fidelity function.

In particular, we focus on an arbitrary unknown cost function satisfying some

regularity conditions, and formulate an online learning problem, where we

learn the optimal approach in terms of cost efficiency through sequential

trials by using the paradigm of an exploration-exploitation tradeoff, which

is heavily used the multi-armed bandit literature [24, 25]. More rigorously,

we propose a novel algorithm that performs sequential trials over different

repetition-based strategies, and prove that it performs almost as well as the
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optimal repetition-based approach in terms of cost-efficiency.

In Chapter 5, we present a number of extensions related to the problems

investigated in this dissertation, and propose some new open problems. We

conclude the dissertation with certain remarks in Chapter 6.
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CHAPTER 2

ONLINE OPTIMIZATION UNDER
ADVERSARIAL PERTURBATIONS

2.1 Introduction

In this chapter we consider the problem of online optimization [1,3,5] subject

to adversarial perturbations. This online setting can be viewed as a repeated

game between a decision maker (or player) and Nature. On each round,

the player chooses a point from a decision set, possibly at random. Then,

Nature reveals a loss function from a function class, and the player incurs a

loss. Nature’s actions are assumed to be adversarial, such that the revealed

loss function sequence can even depend on the entire sequence of the player

moves in a non-causal manner.

The online convex optimization framework was first introduced in [1], and

has been extensively investigated in [2–8]. This framework provides a uni-

fied approach to many problems in online learning [10–13], mathematical

finance [15, 16], and information theory [17–19]. In particular, recent sur-

vey papers by Hazan [26] and Shalev-Shwartz [27] show that this approach

provides an abstraction for several problems including online classification

and regression [9], online portfolio management [14–16], zero-sum repeated

games [20], stochastic optimization [28], and online density estimation [29].

Moreover, the seminal book by Cesa-Bianchi and Lugosi [13] comprehensively

studies the underlying connections between online learning, prediction, and

repeated games. In particular, they demonstrate that results from these

fields can be studied under the framework of prediction with expert advice.

We emphasize that our repeated game framework fits into both frameworks,

namely, online convex optimization and prediction with expert advice. Hence,

in this sense, our results can be readily applied to problems from a number

of different fields.

A natural question that arises in the frameworks of online optimization and
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prediction with expert advice is how various results regarding performance

guarantees change if strategies are subject to adversarial actions of external

agents. That is, are these strategies robust against adversarial environments?

In this work, we introduce an extension of the online optimization problem

where any online player’s strategy is subject to perturbations. Here, as in

the spirit of the repeated game we describe above, we study a generic model

and produce results that hold in a worst-case setting, rather than assuming

that such perturbations follow a stochastic model and designing players for

that model.

We view perturbations in a player’s strategy as acts of an adversary, who

perturbs the player’s strategy so as to prevent the player from achieving the

goal, e.g., minimizing its cost function. We use the game-theoretic notion of

regret to assess player’s performance. Regret measures the difference between

the cumulative performance of a player and that of the best strategy from

a class of strategies, which can only be chosen in hindsight. In particular,

since we investigate a randomized algorithm, we are interested in its expected

regret. Also, the perturbation-generating mechanism of the adversary is

completely unknown to the decision maker, we introduce a framework that

models such perturbations from a worst-case perspective. More generally, we

consider a worst-case oblivious adversary and a worst-case oblivious Nature,

that is, their behavior are nonadaptive to the random decision of a player.

Indeed, Cesa-Bianchi and Lugosi [13] establish that regret bounds that hold

under any oblivious opponent hold also under an adaptive opponent who

may adapt its actions based on the random decisions of a player. Hence,

our results also hold against any strategies of a nonoblivious Nature and a

nonoblivious adversary.

We note that this extended setting can also be seen as a repeated game,

where the decision maker plays against two adversarial opponents, namely,

Nature and the strategy-perturbing adversary. Evidently, performing well

under this new framework is more challenging than performing under the

standard setup, where the player is against only Nature. We emphasize that

any perturbation in a player’s strategy is especially harmful in online algo-

rithms since uncompensated perturbations will accumulate across successive

iterations, which can severely degrade the performance.

In this chapter, we propose a new randomized algorithm, which we call

the robust weighted average algorithm. We note that there exists a deter-
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ministic version of this strategy that is computationally infeasible, which

involves integrating over continuous decision sets in a high-dimensional Eu-

clidean space [30]. We concentrate on how the worst-case expected regret of

this algorithm depends on the number of rounds under our worst-case per-

turbation framework. Hence, this model allows us to measure how robust

our strategies are against worst-case scenarios. Specifically, we prove a sub-

linear worst-case expected regret bound that holds even under the worst-case

adversarial perturbations and the worst-case action of Nature, when certain

regularity conditions are satisfied.

2.1.1 Related Work

The work of Narayanan and Rakhlin [30] is related to ours as it investigates a

random walk-based implementation of the randomized strategy that we study

in this chapter. They consider a class of convex and bounded loss functions

and a convex decision space, and later in [31], they extend their results to

uniformly Lipschitz loss functions. However, both of their works [30, 31]

focus on the problem of sampling from high-dimensional distributions and

computational efficiency rather than robustness of the strategy to external

agents. Our work extends and improves on [30] in the sense that we prove

a worst-case regret bound under adversarial perturbations and show that

this bound exactly matches the upper bound presented in [30], when there

are no perturbations. Moreover, we prove that the algorithm analyzed in

[30] performs poorly under our adversarial perturbations framework. We

introduce a novel improved version of the algorithm that performs provably

well even under worst-case scenarios.

In other related work, Weissmann [32] considers causal (sequential) fil-

tering of a noisy sequence, where the underlying sequence is designed by a

“well-informed antagonist” meaning that it may depend on past noise-free

and noisy samples. He demonstrates that any deterministic filter is guar-

anteed to fail under some well-informed antagonist, and that there exists a

randomized filter that can compete with any given finite class of filters, under

every well-informed antagonist. Our work differs from his in several aspects.

First, we consider a more general repeated game framework, where Nature

can adversarially choose its actions based on observing the entire sequence

9



of moves by a player in advance. Hence, the scheme of [32] can be framed

as a special case of our framework. Second, in our framework, any player’s

strategy itself is also subject to actions of another adversary, who perturbs

the decisions of the player in a certain worst-case manner.

More recently, Arora, et al. [33] and Cesa-Bianchi, et al. [34] consider

adaptive and nonadaptive adversaries under a prediction with expert advice

setting. They analyze strategies under different scenarios and specialize their

results to the multi-armed bandit setting. Our results differ from theirs in the

following sense. We emphasize adversarial perturbations of strategies, while

the adversaries of this prior work are merely different versions of Nature in

our setting. Hence, our extension to adversarial perturbations is novel.

2.1.2 Organization of the Chapter

The chapter is organized as follows. In Section 2.2, we present the online

optimization framework. We provide the basic strategy of any randomized

player and provide several performance-related quantities. We present the

randomized weighted average algorithm and demonstrate its worst-case ex-

pected regret. In Section 2.3, we present our worst-case adversarial per-

turbation framework, where we specify a characterization of any adversary

considered in this chapter. We next propose the randomized robust weighted

average algorithm that combats adversarial perturbations by employing a lo-

cal averaging scheme in Section 2.3.2. Section 2.4 provides the main results

of this chapter, where we analyze the worst-case expected regret of the ro-

bust weighted average algorithm. We also provide some asymptotic results

in Section 2.4.1, establishing Hannan consistency of this algorithm under

mild regularity conditions. In Section 2.5, we present numerical experiments

to illustrate our theoretical results. We conclude the chapter with certain

remarks.

2.2 Problem Setup and Preliminaries

In this section we present our problem setup and some preliminary results.

We first describe the online optimization setting as a repeated game between

an online player and Nature. We next present a widely used player strat-
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egy, the randomized weighted average algorithm [30,31]. Finally, we provide

an upper bound on its worst-case expected regret under our optimization

framework.

We first present the online optimization problem [1]. Let X ⊂ Rm be a

compact decision set with the diameter 1

diam(X) = sup
x,y∈X
‖x− y‖<∞, (2.1)

and let

L = {` : X→ R}

be a class of uniformly Lipschitz loss functions, that is, for any ` ∈ L we

have

|`(x)− `(y)| ≤ C‖x− y‖,

for all x, y ∈ X, where C > 0 is a constant. An online player produces a

sequence of decisions XT = (X1, . . . , XT ), where T is the time horizon, in a

sequential manner as follows. On each round t, the player chooses a CDF

Wt supported on X and produces its decision as

Xt ∼ Wt.

Then, Nature reveals a loss function `t ∈ L and the player incurs the loss

`t(Xt). Here, we define the strategy of a player as a sequence of functions

ST = (S1, . . . , ST ), where

St : Lt−1 → P, St
(
`t−1

)
= Wt, t = 1, . . . , T,

and P is the set of all probability distributions on X. This generic online

optimization setting is described in Algorithm 1.

We next describe the randomized weighted average (WA) algorithm [30],

which is characterized by its distribution sequence

W T = (W1, . . . ,WT ).

1‖·‖ is the Euclidean norm.

11



Algorithm 1 Online Optimization

for t = 1 : T do
The player chooses a distribution Wt on X.
The player generates Xt ∼ Wt.
Nature reveals a loss function `t ∈ L.
The player incurs the loss `t(Xt).

end for

The algorithm picks its initial distribution W1 such that

suppW1 = X.

For each distribution Wt, we denote the corresponding density by wt. Then,

the decision of the player at round t is given by Xw,t ∼ Wt. After initializa-

tion, the density wt is determined in the following sequential manner:

wt+1(x) =
wt(x) exp(−η`t(x))

Zt
, x ∈ X, (2.2)

for all t = 1, . . . , T , where η > 0 is the learning rate and

Zt ,
∫
X

dWt(u) exp(−η`t(u)) = E[exp(−η`t(Xw,t))]

is the normalization term. After N rounds, for any N ≤ T , the cumulative

loss of the online player is defined as

L
(o)
N

(
XN

w ; `N
)
,

N∑
t=1

`t(Xw,t).

Note that from (2.2), the density wt can also be written as

wt(x) =
w1(x) exp

(
−ηL(o)

t−1(xt−1; `t−1)
)

∫
X
dW1(u) exp

(
−ηL(o)

t−1(ut−1; `t−1)
) , x ∈ X,

where ut−1 is a constant sequence with the value u, for any u ∈ X. Intuitively,

the randomized WA algorithm chooses its distribution such that it puts more

measure to the points in X that incurs less cumulative loss up to the round

t by using a certain exponential mapping. We remark that this distribution

is known as the Boltzmann-Gibbs distribution in statistical mechanics, where

12



Algorithm 2 Online Randomized WA Algorithm (η)

Input: A learning rate η > 0.
Initialization: Pick W1 such that suppW1 = X.
for t = 1 : T do

The player generates Xw,t ∼ Wt (with the density wt).
Nature reveals a loss function `t ∈ L.
The player incurs the loss `t(Xw,t) and updates wt:

wt+1(x) =
wt(x) exp(−η`t(x))∫

X

dWt(u) exp(−η`t(u))
, ∀x ∈ X.

end for

it is used as a probability distribution of particles in a system over different

states [35]. A description of this algorithm is given in Algorithm 2.

To introduce the regret [13], we first define a comparison class C as a set

of probability distributions with the sample space X. We characterize a

“stationary P -strategy” as a strategy producing decisions Ut as i.i.d draws

from a distribution P ∈ C on all rounds. That is,

Ut
i.i.d.∼ P

for all t = 1, . . . , T . We define the cumulative loss of a stationary P -strategy

as

L
(s)
T

(
UT ; `T , P

)
,

T∑
t=1

`t(Ut).

Informally, the player’s goal is to do almost as well as the best stationary

randomized strategy in the comparison class C even if it could observe the

entire loss function sequence `1, . . . , `T ahead of time. Note that the best

fixed randomized strategy can only be chosen in hindsight. Formally, given

a sequence of loss functions `T , we define the regret [5, 13] with respect to a

stationary P -strategy, P ∈ C, as

R
(o)
T

(
XT , UT ; `T , P

)
, L

(o)
T

(
XT ; `T

)
− L(s)

T

(
UT ; `T , P

)
.

Since the decisions are randomized, we are particularly interested in the

expected regret. We assume that Nature is oblivious, that is, the sequence

13



`T is chosen by Nature ahead of time without observing the random actions

of the player. However, we will investigate the performance of the player

under any loss function sequence so that our bound will hold even in the

worst-case scenario. In particular, the player’s goal is to guarantee that the

worst-case expected regret

E
[
R

(o)
T

(
XT ;L,C

)]
, sup

`T∈LT
sup
P∈C

E
[
R

(o)
T

(
XT , UT ; `T , P

)]
is sublinear in T , where sublinearity is defined as follows.

Definition 2.2.1. A function f : Z→ R is sublinear in N if for any c > 0,

there exists N0 such that f(N) ≤ cN for any N ≥ N0. See [36] for a thorough

discussion.

More generally, when the time horizon T is allowed to be unbounded, the

player’s goal is to achieve Hannan consistency, which is formally defined as

follows.

Definition 2.2.2. Any player strategy that satisfies

E
[
R

(o)
T

(
XT ;L,C

)]
= o(T )

is said to be Hannan-consistent with respect to the comparison class C; see

Hannan’s paper [37] and the book [13] for a detailed discussion.

We consider a particular comparison class of distributions on X to investi-

gate the worst-case expected regret of the WA algorithm. We fix a parameter

r > 0, and let P(r) denote the set of all probability distributions P on X,

such that

DKL(P‖W1) ≤ r

(a “ball” of radius r around W1 using the Kullback-Leibler divergence), that

is,

P(r) , {P ∈ P : DKL(P‖W1) ≤ r}.

We first state and prove a lemma, which will be useful in the proof of

Theorem 2.2.1.

14



Lemma 2.2.1. Given any learning rate η > 0, the expected regret of the WA

algorithm satisfies2

E
[
R

(o)
T

(
XT

w ; `T , P
)]
≤ 1

η
(DKL(P‖W1)−DKL(P‖WT+1))

+
ηT (C diam(X))2

8
.

Proof. To prove the desired result, we first write

η E[`t(Xt)] = η

∫
X

dWt(x)`t(x)

=

∫
X

dWt(x) ln(exp(η`t(x)))

=

∫
X

dWt(x) ln

(
wt(x)

wt+1(x)

)
− ln(Zt), (2.3)

which can be rewritten as∫
X

dWt(x) ln

(
wt(x)

wt+1(x)

)
= η E[`t(Xt)] + ln(Zt)

= ln
(
E
[
e−η(`t(Xt)−E[`t(Xt)])

])
.

Here, we note that by the Lipschitz continuity of the loss function `t(·) and

by the boundedness of the set X, we have

max
x∈X

`t(x)−min
x∈X

`t(x) ≤ C diam(X),

which implies that

`t(Xt)− E[`t(Xt)]

is a zero-mean random variable supported on an interval of length at most

C diam(X). Then, by Hoeffding’s lemma [13], we obtain

ln
(
E
[
e−η(`t(Xt)−E[`t(Xt)])

])
≤ (ηC diam(X))2

8
.

When combined with (2.3), this result implies that

E[`t(Xt)] ≤ −
1

η
ln(Zt) +

η(C diam(X))2

8
. (2.4)

2For any P,Q ∈ P, DKL(P‖Q) is the Kullback-Leibler divergence.
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Following similar steps as in (2.3), we next write

E[`t(Ut)] =
1

η

∫
X

dP (x) ln

(
wt(x)

wt+1(x)

)
− ln(Zt)

η

= − ln(Zt)

η
− 1

η

∫
X

dP (x) ln

(
dP (x)

dWt(x)

)
+

1

η

∫
X

dP (x) ln

(
dP (x)

dWt+1(x)

)
= − ln(Zt)

η
− 1

η
(DKL(P‖Wt)−DKL(P‖Wt+1)). (2.5)

Hence, by summing (2.4) and (2.5) over t = 1, . . . , T , we get

E
[
R

(o)
T

(
XT ; `T , P

)]
≤ 1

η
(DKL(P‖W1)−DKL(P‖WT+1)) +

Tη(C diam(X))2

8
.

In Theorem 2.2.1, we present a worst-case regret upper bound for the

randomized WA algorithm and show that this algorithm is Hannan consistent

with respect to the comparison class P(r), when the learning rate is chosen

properly.

Theorem 2.2.1. The worst-case expected regret of the WA algorithm satisfies

E
[
R

(o)
T

(
XT

w ;L,P(r)
)]
≤ r

η
+
Tη(C diam(X))2

8
,

for a learning rate η > 0 and r > 0. In particular, if the learning rate satisfies

η = O
(

1/
√
T
)
,

then it follows that

E
[
R

(o)
T

(
XT

w ;L,P(r)
)]

= o(T ).

Proof. We first note that by Lemma 2.2.1, for any distribution P ∈ P(r) and

a loss function sequence `T ∈ LT , the regret of the randomized WA algorithm
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satisfies

E
[
R

(o)
T

(
XT ; `T , P

)]
≤ 1

η
(DKL(P‖W1)−DKL(P‖WT+1))

+
Tη(C diam(X))2

8
. (2.6)

By definition of P(r) and non-negativity of the KL divergence,

D(P‖W1)−D(P‖WT+1) ≤ D(P‖W1) ≤ r,

for any P ∈ P(r). Therefore, we get

E
[
R

(o)
T

(
XT ;L,P(r)

)]
≤ r

η
+
Tη(C diam(X))2

8
.

Moreover, if the learning rate η satisfies η = O
(

1/
√
T
)
, then it follows that

r

η
+
Tη(C diam(X))2

8
= O

(√
T
)
.

This yields the desired result

E
[
R

(o)
T

(
XT ;L,P(r)

)]
= o(T ).

In this section, we provided the online regret minimization framework of

this chapter, and presented the randomized WA algorithm. After demon-

strating certain preliminary results, we showed that the worst-case expected

regret of the randomized WA algorithm against all stationary P -strategies,

P ∈ P(r), is sublinear in T , when the learning rate of the algorithm is chosen

properly. In the next section, we will first introduce the worst-case perturba-

tion framework. We will next show that the performance of the randomized

WA algorithm can be arbitrarily poor in the presence of our adversarial per-

turbation model. We will propose a novel extension of this algorithm and

demonstrate that it is robust to perturbations in its strategy under certain

regularity conditions. That is, we will prove that the worst-case expected

regret of the proposed algorithm is sublinear in T even under worst-case

adversarial perturbations, when certain conditions are satisfied.
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2.3 Online Optimization under Adversarial

Perturbations

In this section, we first present our worst-case distribution perturbation

framework to model the perturbations in a randomized player’s strategy.

We next introduce a new randomized decision strategy, the robust weighted

average (WA) algorithm, which is robust to perturbations in a certain sense,

as detailed in Section 2.4. This algorithm employs a local averaging tech-

nique to alleviate effects of perturbations on the player’s regret, rather than

explicitly trying to detect and fix the perturbations. In particular, we will

show that this algorithm performs provably well even in the worst case.

2.3.1 Worst-Case Adversarial Perturbation Framework

Here, we propose a framework to model adversarial perturbations, where

we view perturbations in the randomized player’s strategy as actions of an

adversary. We assume that the goal of the adversary is to maximize the

expected regret. In this adversarial model, the goal is to better capture

realistic adversarial environments and produce results that hold even under

worst-case scenarios.

We first describe of our worst-case distribution perturbation model. An

adversary Ak with k perturbations is characterized by the following two se-

quences:

• a distribution sequence

Πk = (Π1, . . . ,Πk), (2.7)

defined over the set X, i.e., Πj ∈ P for j = 1, . . . , k, with the corre-

sponding densities πk = (π1, . . . , πk),

• a sequence of time instants

τ k = (τ1, . . . , τk) ∈ Z, (2.8)

where Z ⊂ Nk, N , {1, . . . , T}, is the set of monotonically increasing
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sequences (of length k) of the form

Z =
{

(t1, . . . , tk) ∈ Nk : tj > tj−1 + 1, j = 2, . . . , k
}
,

i.e., no elements of any sequence in Z are allowed to be consecutive.

We will denote any adversary as Ak

(
Πk, τ k

)
, which operates as follows. At

each time instant τj, the adversary perturbs the player’s distribution Wt to a

new distribution Πj (or, equivalently, wt to πj) for j = 1, . . . , k. We observe

that perturbing the distribution Wt is equivalent to reseting the algorithm

to a new initial distribution. The adversary repeats the same process for all

j = 1, . . . , k. We call the resulting algorithm the randomized Perturbed WA

(PWA) algorithm, and describe it in Algorithm 3.

Remark 2.3.1. We make two observations regarding extreme cases. At one

extreme, the number of perturbations is k = 0. In this case, the adversary

does not perturb the algorithm, and the repeated game proceeds as usual.

This yields the original randomized WA algorithm. At the other extreme, the

number of perturbations is k = T . That is, the adversary perturbs the player’s

decisions on all rounds. It follows that the player’s strategy has nothing to do

with the final decisions, so the adversary may potentially disturb the player’s

entire strategy and maximize its expected regret. In this sense, our adversarial

perturbations framework models a wide range of adversarial behavior.

We next define some relevant performance measures and the worst-case

adversary. First, we partition the time instants N into k + 1 disjoint sets as

follows:

Nj , {τj + 1, . . . , τj+1}, j = 0, . . . , k, (2.9)

where we let τ0 = 0 and τk+1 = T . Hence, we have N = ∪kj=0Nj. Second, we

define the total loss of the randomized PWA algorithm over the partition Nj

as

L̃(j)(Xp; `) ,
τj+1∑

t=τj+1

`t(Xp,t),

where Xp,t is the decision of the randomized PWA algorithm at time t. Then,

the cumulative loss of the randomized PWA algorithm after T rounds can be
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Algorithm 3 Online Randomized PWA Algorithm (η)

Input: A learning rate η > 0.
Initialization: Pick W1 such that suppW1 = X.
for t = 1 : T do

The player draws Xp,t ∼ Wt (with the density wt).
Nature reveals a loss function `t ∈ L.
The player incurs the loss `t(Xp,t) and updates wt:

wt+1(x) =
wt(x) exp(−η`t(x))∫

X

dWt(u) exp(−η`t(u))
, ∀x ∈ X.

if t == τj for some j = 1, . . . , k then
The distribution is perturbed by an adversary:
Wt+1 ← Πj,
wt+1 ← πj.

end if
end for

defined as

L
(o,p)
T

(
XT

p ; `T , τ k,Πk
)
,

k∑
j=0

L̃(j)(Xp; `).

Finally, using the definition of the worst-case expected regret, we can de-

fine the worst-case expected regret of the randomized PWA algorithm when

subject to perturbations of an adversary as

E
[
R

(o,p)
T

(
XT

p ;L,P(r), τ k,Πk
)]

, sup
`T∈LT

sup
P∈P(r)

E
[
R

(o,p)
T

(
XT

p ; `T , P, τ k,Πk
)]
.

We define the worst-case adversary Aw
k , Ak

(
Πk

w, τ
k
w

)
as an adversary with:

• the distribution sequence Πk
w, the worst-case perturbation distributions,

that satisfies

Πk
w = arg max

Πk∈Pk
E
[
R

(o,p)
T

(
XT

p ;L,P(r), τ k,Πk
)]
, (2.10)

given any sequence of time instants τ k ∈ Z,

• the sequence of perturbation time instants τ kw, the worst-case time in-
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stants, that satisfies

τ kw = arg max
τk∈Z

max
Πk∈Pk

E
[
R

(o,p)
T

(
XT

p ;L,P(r), τ k,Πk
)]

= arg max
τk∈Z

E
[
R

(o,p)
T

(
XT

p ;L,P(r), τ k,Πk
w

)]
. (2.11)

Hence, the worst-case adversary’s goal is to perturb the distribution of the

algorithm such that its worst-case expected regret is maximized. More com-

pactly, we denote the worst-case expected regret of the algorithm when sub-

ject to perturbations of the worst-case adversary Aw
k as

E
[
R

(o,p)
T

(
XT

p ;L,P(r),Aw
k

)]
≡ E

[
R

(o,p)
T

(
XT

p ;L,P(r), τ kw,Π
k
w

)]
.

To illustrate the capabilities of adversaries of this framework, we consider

a particular adversary Ak

(
Πk
∗, τ

k
)

with the following distribution sequence:

Πk
∗ = (Π∗,1, . . . ,Π∗,k),

Π∗,j , δx∗j , ∀j = 1, . . . , k,

where x∗j is given by

x∗j = arg max
u∈X

τj+1∑
t=τj+1

`t(u),

and δx∗j is the Dirac delta distribution3 concentrated at x∗j . Note that at the

beginning of each time interval Nj, the algorithm’s distribution is perturbed

to the distribution δx∗j that puts all the measure on the single point x∗j , for

each j = 1, . . . , k. However, since the update rule (2.2) for the density wt is

multiplicative, the randomized PWA algorithm gets stuck at the distribution

δx∗j until the next perturbation time. It follows that Xp,t ∼ δx∗j for all t ∈ Nj,

3For any point x ∈ X, the Dirac delta distribution δx concentrated at x is defined as

δx(A) =

{
1 if x ∈ A
0 if x /∈ A,

(2.12)

for any Borel set A ⊆ X.
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i.e.,

Xp,t = x∗j , ∀t = τj + 1, . . . , τj+1, ∀j = 1, . . . , k,

with probability one. Hence, we have

L̃(j)(Xp; `) = max
u∈X

τj+1∑
t=τj+1

`t(u), ∀j = 1, . . . , k. (2.13)

Then, the expected cumulative loss of the randomized PWA algorithm sat-

isfies

E
[
L

(o,p)
T

(
XT

p ; `T ,Π∗, τk
)]

=
k∑
j=0

E
[
L̃(j)(Xp; `)

]
=

k∑
j=1

τj+1∑
t=τj+1

`t
(
x∗j
)
,

for any loss sequence `T ∈ LT , when subject to perturbations of the adver-

sary Ak

(
Πk
∗, τ

k
)
. Therefore, the worst-case expected regret of the algorithm

satisfies

E
[
R

(o,p)
T

(
XT

p ;L,P(r),Π∗, τk
)]

≥ sup
`T∈LT

sup
P∈P(r)


k∑
j=1

τj+1∑
t=τj+1

`t
(
x∗j
)
−

T∑
t=1

`t(Ut)

.
We conclude that the worst-case expected regret performance of the random-

ized PWA algorithm can be arbitrarily poor in the presence of perturbations

according to our model.

In this section, we first presented our worst-case distribution perturbation

framework to model any adversary’s actions from a worst-case perspective.

We next showed a lower bound on how poor the performance of the random-

ized WA algorithm can be under this framework. In the next section, we will

propose an algorithm we call the randomized robust WA algorithm. This

algorithm is an improved version of the randomized WA algorithm so as to

mitigate the effects of adversarial perturbations.

Remark 2.3.2. One potential application of the worst-case adversarial per-
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turbation approach of this chapter is in the design of signal processing systems

based on nanoscale beyond-CMOS circuit fabrics. As CMOS technology scales

beyond 10 nm, the operation of standard CMOS transistors begins to suf-

fer from static defects as well as dynamic operational non-determinism [38].

Therefore, deeply scaled CMOS-based systems need to be capable of operating

in the presence of both transient and fixed hardware errors [39]. Moreover,

we emphasize that the computational errors caused by hardware defects may

be catastrophic in online systems since the computation is performed recur-

sively, so that the errors that are not corrected or compensated will propagate

across successive iterations, leading to poor performance. This suggests that

the adversarial perturbation model introduced in this chapter may be useful in

modeling these computational errors, where the non-ideal computational fab-

ric and the errors it causes can be perceived as an adversary and its actions,

respectively. Hence, the designer can guarantee satisfactory performance even

under the worst-case computational errors by utilizing the robust algorithm

design approach proposed in this chapter.

2.3.2 Randomized Robust Weighted Average Algorithm

In this section, we propose the randomized robust weighted average (RWA)

algorithm, an extended version of the randomized WA algorithm to perform

well under adversarial perturbations. To this end, this algorithm employs

a local averaging scheme after it updates its distribution on each round to

alleviate the effects of perturbations.

An explicit description of the randomized RWA algorithm is as follows.

The algorithm maintains two different distributions:

• the intermediate distribution Wt (with density wt)

• the actual distribution Mt (with density µt)

The algorithm chooses its initial intermediate distribution W1 such that

suppW1 = X, and sets M1 = W1. On each round t, the algorithm produces

its decision as

Xr,t ∼ Mt. (2.14)
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Figure 2.1: The randomized RWA algorithm subject to adversarial pertur-
bations.

Then, Nature reveals its loss function `t(·) ∈ L, and the player incurs the

loss `t(Xr,t). In response, the algorithm performs the update

wt+1(x) =
µt(x) exp(−η`t(x))

Zt
, (2.15)

for all x ∈ X, where

Zt ,
∫
X

dMt(u) exp(−η`t(u)) = E[exp(−η`t(Xr,t))]

for all t = 1, . . . , T . After this update, the intermediate distribution Wt is

subject to perturbations of an adversary Ak

(
Πk, τ k

)
, as explained in Sec-

tion 2.3.1. After this stage, the algorithm employs a local averaging scheme

with time-varying averaging parameter 0 < γt < 1. This scheme is assumed
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to be error-free. At each time t, this algorithm computes the weighted av-

erage of the two most recent values of the intermediate distribution Wt to

evaluate the distribution Mt:

Mt+1 = γt+1Wt+1 + (1− γt+1)Wt. (2.16)

We observe that (2.16) guarantees that Mt+1 ∈ P since Wt,Wt+1 ∈ P and

γt ∈ (0, 1) for all t = 1, . . . , T . We present a block diagram description of

this algorithm in Fig. 2.1, and a corresponding pseudocode in Algorithm 4.

We note that the averaging scheme in (2.16) incorporates the new infor-

mation, i.e., Wt+1, gained after Nature reveals the loss function `t(·) into

the history, which is summarized in Wt, in order to protect the algorithm

against perturbations. When the distribution Wt+1 is perturbed, we observe

that the distribution Wt is not perturbed, since the perturbation time in-

stants are not allowed to be consecutive. Hence, the actual distribution Mt+1

contains some information regarding the loss function sequence revealed in

the previous rounds. When, on the other hand, that the distribution Wt is

perturbed, Wt+1 is not perturbed, so that Mt+1 loses the past information

while keeping the information gained on the round t, which is passed to the

next rounds to improve performance.

We note that the choice of the averaging parameter γt is important for the

performance of the randomized RWA algorithm. We let

αT+1 = (α1, . . . , αT+1)

be a strictly decreasing sequence such that αt ∈ (0, 1) for all t = 1, 2, . . . , T +

1. At each time t, we define

γt =
αt+1

αt
∈ (0, 1),

where

0 < Γl ≤ γt ≤ Γu < 1.

Here the parameters Γl and Γu control the rate of decrease of the sequence

αT+1.

When subject to perturbations of the adversary Ak(Πk, τk), the cumulative
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expected loss of the randomized RWA algorithm after T rounds is defined as

E
[
L

(o,p)
T

(
XT

r ; `T ,Πk, τ k
)]

,
T∑
t=1

E[`t(Xr,t)].

Moreover, we define the worst-case expected regret of the randomized RWA

algorithm as

E
[
R

(o,p)
T

(
XT

r ;L,P(r),Πk, τ k
)]

, sup
`T∈LT

{
E
[
L

(o,p)
T

(
XT

r ; `T ,Πk, τ k
)]
− inf

P∈P(r)
E
[
L

(s)
T

(
UT ; `T , P

)]}
.

For notational convenience, we denote the worst-case expected regret of the

randomized RWA algorithm as

E
[
R

(o,p)
T

(
XT

r ;L,P(r),Aw
k

)]
≡ E

[
R

(o,p)
T

(
XT

r ;L,P(r),Πk
w, τ

k
w

)]
when subject to perturbations by the worst-case adversary Aw

k .

We note that, at each perturbation time instant τj, the intermediate dis-

tribution Wt+1 (and the density wt) is set to the distribution Πj (and to the

density πj), for any j = 1, . . . , k. We perceive this as the algorithm “losing”

the information of the intermediate density wτj+1 for all j = 1, . . . , k. We

can express the “lost” density at each perturbation time t = τj as

fj(x) ,
µτj(x) exp

(
−η`τj(x)

)
Zτj

, ∀x ∈ X, (2.17)

for each j = 1, . . . , k.

In this section, we introduced the worst-case perturbation framework to

model perturbations in the player’s strategy as actions of an adversarial

agent. We presented the randomized RWA algorithm subject to adversarial

perturbations. This algorithm employs a local averaging scheme to mitigate

adversarial effects of perturbations. We will next provide an upper bound

on the worst-case cumulative expected regret of this algorithm under the

worst-case scenario. In particular, we will show that the worst-case expected

regret of the randomized RWA algorithm is sublinear in T even under the

worst-case adversary, when some mild conditions are satisfied.
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Algorithm 4 Online Randomized RWA Algorithm (η)

Input: A learning rate η > 0,
A sequence γT with 0 < Γl ≤ γt ≤ Γu < 1, ∀t.

Initialization: Pick W1 = M1 with suppW1 = X.
for t = 1 : T do

The player draws Xr,t ∼ Mt, where µt is its density.
Nature reveals a loss function `t ∈ L.
The player incurs the loss `t(Xr,t) and updates wt:

wt+1(x) =
µt(x) exp(−η`t(x))∫

X

dMt(u) exp(−η`t(u))
, ∀x ∈ X.

if t == τj for some j = 1, . . . , k then
The distribution is perturbed by an adversary:
Wt+1 ← Πj,
wt+1 ← πj.

end if
The algorithm computes the actual distribution:
Mt+1 = γt+1Wt+1 + (1− γt+1)Wt.

end for

2.4 Worst-Case Expected Regret Analysis

In this section, we investigate the worst-case regret performance of the ran-

domized RWA algorithm introduced in Section 2.3.2 in the presence of worst-

case adversarial perturbations. We present an upper bound on the worst-case

expected regret of the randomized RWA algorithm. We prove results that

hold under any adversary of the form Ak

(
Πk, τ k

)
, so that they also hold

under the worst-case adversary Aw
k . We first provide the following lemma:

Lemma 2.4.1. Given any learning rate η > 0, the expected loss of the ran-

domized RWA algorithm at any time t satisfies

E[`t(Xr,t)] ≤ −
1

η
ln(Zt) +

η(C diam(X))2

8
.

Proof. The proof is given in Appendix A.1.

We next state and prove the main theorem of this section. This theorem

provides an upper bound on the worst-case expected regret of the randomized

RWA algorithm, when subject to the perturbations of the worst-case adver-

sary. Later, we will use this theorem to prove that under certain conditions,
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the randomized RWA algorithm is Hannan-consistent.

Theorem 2.4.1. Suppose that the randomized RWA algorithm is subject to

the perturbations of the worst-case adversary Ak

(
Πk

w, τ
k
w

)
, characterized by

(2.10) and (2.11). Then, for any learning rate η > 0, the worst-case expected

regret of this algorithm satisfies

E
[
R

(o,p)
T

(
XT

r ;L,P(r),Aw
k

)]
≤ r

η
+
Tη(C diam(X))2

8

+ kFη(Γl,Γu), (2.18)

where

Fη(Γl,Γu) , C diam(X) +
1

η
ln

(
1

1− Γu

)
+

1

η
ln

(
Γu + exp(ηC diam(X))

1− Γl

Γl

)
. (2.19)

Remark 2.4.1. We observe that the upper bound in (2.18) on the worst-case

expected regret of the randomized RWA algorithm when subject to perturba-

tions of the worst-case adversary is composed of two parts. The first part,

r

η
+
Tη(C diam(X))2

2
,

is the upper bound in Theorem 2.2.1 on the worst-case expected regret of the

randomized WA algorithm that is not subject to any perturbations. In this

sense, the second part of the upper bound in (2.18),

kFη(Γl,Γu),

can be seen as an upper bound on the “extra” regret resulting from the pertur-

bations by the worst-case adversary, which is an extension of the randomized

WA algorithm where the only modification is the local averaging scheme in

(2.16). Moreover, since kFη(Γl,Γu) is a scaled version of Fη(Γl,Γu), scaled

by the number of perturbations, we can perceive Fη(Γl,Γu) as an upper bound

on the “cost” of any single perturbation to the algorithm in terms of the

worst-case expected regret.

Proof. Given a sequence of loss functions `T ∈ LT and a distribution P ∈
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P(r), let Ut
i.i.d.∼ P for t = 1, . . . , T . To prove (2.18), we first derive an upper

bound on E[`t(Xr,t)] for each t. We then sum these bounds to get an upper

bound on the cumulative expected loss of the randomized RWA algorithm.

Our analysis is based on E[`t(Xr,t)] for three different cases:

1. t 6= τj and t 6= τj + 1 for any j = 1, . . . , k

2. t = τj for some j = 1, . . . , k

3. t = τj + 1 for some j = 1, . . . , k

We first note that for each t = 1, . . . , T , we can write

− 1

η
ln(Zt) = −1

η
ln(Zt)− `t(Ut) + `t(Ut) (2.20)

= −1

η
ln(Zt) +

1

η
ln(exp(−η`t(Ut))) + `t(Ut)

=
1

η
ln

(
exp(−η`t(Ut))

Zt

)
+ `t(Ut)

= `t(Ut) +
1

η
ln

(
µt(Ut) exp(−η`t(U))

µt(Ut)Zt

)
= `t(Ut) +

1

η
ln

(
µt(Ut) exp(−η`t(U))

Zt

)
− 1

η
ln(µt(Ut)),

where in (2.20) we added and subtracted `t(Ut). Hence, by Lemma 2.4.1, we

get

E[`t(Xr,t)] ≤ `t(Ut) +
1

η
ln

(
µt(Ut) exp(−η`t(Ut))

Zt

)
− 1

η
ln(µt(Ut)) +

η(C diam(X))2

8
. (2.21)

• Case 1: t 6= τj and t 6= τj + 1 for any j = 1, . . . , k:

In this case, we note that

wt+1(Ut) =
µt(Ut) exp(−η`t(Ut))

Zt
,

so that (2.21) is equivalent to

E[`t(Xr,t)] ≤ `t(Ut) +
1

η
(ln(wt+1(Ut))− ln(µt(Ut)))
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+
η(C diam(X))2

8
. (2.22)

Due to the local averaging in (2.16), we have

ln(µt(Ut)) ≥ ln(γt) + ln(wt(Ut)), (2.23)

since 1− γt ≥ 0 and wt−1(Ut) ≥ 0. Hence, by using (2.22) and (2.23),

we can upper-bound E[`t(Xr,t)] as

E[`t(Xr,t)] ≤ `t(Ut) +
1

η
(ln(wt+1(Ut))− ln(wt(Ut)))

+
1

η
(ln(αt)− ln(αt+1)) +

η(C diam(X))2

8
,

where we used γt = αt+1/αt. We take expectations of both sides and

get

E[`t(Xr,t)]

≤ E[`t(Ut)] +
1

η
(E[ln(wt+1(Ut))]− E[ln(wt(Ut))])

+
1

η
(ln(αt)− ln(αt+1)) +

η(C diam(X))2

8
. (2.24)

• Case 2: t = τj for some j = 1, . . . , k:

In this case, the density of the intermediate distribution, wt+1, is per-

turbed to πj. Therefore, we get

µt(Ut) exp(−η`t(Ut))
Zt

= fj(Ut). (2.25)

As in the first case, we can write

ln(µt(Ut)) ≥ ln(γt) + ln(wt(Ut)). (2.26)

Hence, by using (2.21), (2.25) and (2.26), the expected loss E[`t(Xr,t)]

is upper bounded as

E[`t(Xr,t)] ≤ `t(Ut) +
1

η
(ln(fj(Ut))− ln(wt(Ut)))
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+
1

η
(ln(αt)− ln(αt+1)) +

η(C diam(X))2

8
.

By taking the expectation of both sides, we obtain

E[`t(Xr,t)]

≤ E[`t(Ut)] +
1

η
(E[ln(fj(Ut))]− E[ln(wt(Ut))])

+
1

η
(ln(αt)− ln(αt+1)) +

η(C diam(X))2

8
. (2.27)

• Case 3: t = τj + 1 for some j = 1, . . . , k:

In this case, the density of the intermediate distribution, wt, is per-

turbed to πj. From the local averaging, we can write

µt(Ut) ≥ (1− γt)wt−1(Ut),

since γt ≥ 0 and πj(Ut) ≥ 0. This yields

ln(µt(Ut)) ≥ ln(1− γt) + ln(wt−1(Ut)). (2.28)

Therefore, by using (2.21) and (2.28), we get

E[`t(Xr,t)] ≤ `t(Ut) +
1

η
(ln(wt+1(Ut))− ln(wt−1(Ut)))

+
1

η
ln

(
1

1− γt

)
+
η(C diam(X))2

8
.

We take expectation of both sides to get

E[`t(Xr,t)]

≤ E[`t(Ut)] +
1

η
(E[ln(wt+1(Ut))]− E[ln(wt−1(Ut))])

+
1

η
ln

(
1

1− γt

)
+
η(C diam(X))2

8
. (2.29)

Hence, we have an upper bound on the expected loss of the randomized

RWA algorithm for each time t = 1, . . . , T . We next sum these upper bounds

over each set Nj to get upper bounds on E
[
L̃(j)(X; `)

]
for each j = 0, . . . , k,

which will be used to find a final upper bound on the cumulative expected
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loss. There are three cases depending on j.

1. Upper bound E
[
L̃(0)(X; `)

]
:

From (2.24) and (2.27), we obtain

E
[
L̃(0)(X; `)

]
=

τ1∑
t=1

E[`t(Xr,t)]

≤
τ1∑
t=1

E[`t(Ut)] +
1

η
(E[ln(f1(Uτ1))]− E[ln(w1(U1))])

+
1

η
ln

(
α1

ατ1+1

)
+ τ1

η(C diam(X))2

8
. (2.30)

2. Upper bound E
[
L̃(j)(X; `)

]
for j = 1, . . . , k − 1:

In this case, from (2.24), (2.27) and (2.29), we obtain

E
[
L̃(j)(X; `)

]
=

τj+1∑
t=τj+1

E[`t(Xr,t)]

≤
τj+1∑

t=τj+1

E[`t(Ut)] +
1

η
ln

(
1

1− γτj+1

)

+
1

η
E

[
ln

(
fj+1

(
Uτj+1

)
wτj
(
Uτj
) )]+

1

η
ln

(
ατj+2

ατj+1+1

)
+ (τj+1 − τj)

η(C diam(X))2

8
. (2.31)

3. Upper bound E
[
L̃(k)(X; `)

]
:

From (2.24) and (2.29), we obtain

E
[
L̃(k)(X; `)

]
=

T∑
t=τk+1

E[`t(Xr,t)]

≤
T∑

t=τk+1

E[`t(Ut)] +
1

η
ln

(
1

1− γτk+1

)
+

1

η
E
[
ln

(
wT+1(UT )

wτk(Uτk)

)]
+

1

η
ln

(
ατk+2

αT+1

)
+ (T − τk)

η(C diam(X))2

8
. (2.32)
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From (2.30), (2.31), and (2.32), an upper-bound on the expected cumula-

tive loss can be obtained as

E
[
L

(o,p)
T

(
XT ; `T ,Πk, τ k

)]
≤

T∑
t=1

E[`t(Ut)] +
1

η
E
[
ln

(
wT+1(UT )

w1(U1)

)]

+
1

η

k∑
j=1

E

[
ln

(
fj
(
Uτj
)

wτj
(
Uτj
))]+

1

η

k∑
j=1

ln

(
1

1− γτj+1

)

+
Tη(C diam(X))2

8
, (2.33)

where in (2.33), we used that αt is strictly decreasing. Moreover, since we

have Γl ≤ γt ≤ Γu, we obtain

1

η

k∑
j=1

ln

(
1

1− γτj+1

)
≤ k

η
ln

(
1

1− Γu

)
. (2.34)

From (2.33) and (2.34), we obtain

E
[
L

(o,p)
T

(
XT

r ; `T ,Πk, τ k
)]
≤

T∑
t=1

E[`t(Ut)] +
1

η
E
[
ln

(
wT+1(UT )

w1(U1)

)]

+
1

η

k∑
j=1

E

[
ln

(
fj
(
Uτj
)

wτj
(
Uτj
))]+

k

η
ln

(
1

1− Γu

)

+
Tη(C diam(X))2

8
. (2.35)

We next provide an upper bound on E
[
ln
(
fj
(
Uτj
)
/wτj

(
Uτj
))]

for each

j = 1, . . . , T as follows. We note that we can write

E

[
ln

(
fj
(
Uτj
)

wτj
(
Uτj
))] = E

[
ln

(
fj
(
Uτj
)

µτj
(
Uτj
))]+ E

[
ln

(
µτj
(
Uτj
)

wτj
(
Uτj
))]. (2.36)

We will bound the term on the right-hand side of (2.36) separately. We first

write from (2.17) that

ln

(
fj
(
Uτj
)

µτj
(
Uτj
)) = −η`τj

(
Uτj
)
− ln

(
Zτj
)

≤ −η`τj
(
Uτj
)

+ ηmin
u∈X

`τj(u)
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≤ ηC diam(X), (2.37)

where (2.37) follows from Lipschitz continuity of the loss function `τj and

compactness of the set X. Hence, by taking expectation of both sides, we

obtain

E

[
ln

(
fj
(
Uτj
)

µτj
(
Uτj
))] ≤ ηC diam(X) . (2.38)

We note that from the local averaging, we have

µτj
(
Uτj
)

wτj
(
Uτj
) = γτj +

(
1− γτj

)wτj−1

(
Uτj
)

wτj
(
Uτj
) . (2.39)

Here, we note that

wτj−1

(
Uτj
)

wτj
(
Uτj
) =

wτj−1

(
Uτj
)
Zτj−1

µτj−1

(
Uτj
)

exp
(
−η`τj−1

(
Uτj
))

≤ exp

(
η`τj−1

(
Uτj
)
− ηmin

u∈X
`τj−1(u)

)
wτj−1

(
Uτj
)

µτj−1

(
Uτj
)

≤ exp(ηC diam(X))
1

γτj−1

, (2.40)

where in (2.40), we used

wτj−1

(
Uτj
)

µτj−1

(
Uτj
) ≤ 1

γτj−1

,

which follows directly from (2.39). Hence, we can write

E

[
ln

(
µτj
(
Uτj
)

wτj
(
Uτj
))] ≤ ln

(
γτj + exp(ηC diam(X))

(
1− γτj

)
γτj−1

)
. (2.41)

Therefore, by combining (2.38) and (2.41), we obtain

E

[
ln

(
fj
(
Uτj
)

wτj
(
Uτj
))] ≤ ηC diam(X) + ln

(
Γu + exp(ηC diam(X))

1− Γl

Γl

)
, Gη(Γl,Γu), (2.42)

for each j = 1, . . . , k. Finally, by combining (2.35) and (2.42), we get the
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following upper bound:

E
[
L

(o,p)
T

(
XT

r ; `T ,Πk, τ k
)]
≤

T∑
t=1

E[`t(Ut)] +
1

η
E
[
ln

(
wT+1(UT )

w1(U1)

)]
+
Tη(C diam(X))2

8
+ kFη(Γl,Γu), (2.43)

where Fη(Γl,Γu) is given in (2.19). We observe that the second term in (2.43)

can be written as

1

η
E
[
ln

(
wT+1(UT )

w1(U1)

)]
=

1

η

(∫
X

dP (u) ln(wT+1(u))−
∫
X

dP (u) ln(w1(u))

)
=

1

η

∫
X

dP (u) ln

(
WT+1(u)

W1(u)

)
=

1

η
(DKL(P‖W1)−DKL(P‖WT+1))

≤ r

η
,

since P ∈ P(r). Moreover, we note that (2.43) is true for all `T ∈ LT , and

for any adversary Ak

(
Πk, τ k

)
, it is also true for the worst-case adversary Aw

k ,

yielding

E
[
R

(o,p)
T

(
XT

r ;L,P(r),Aw
k

)]
≤ r

η
+
Tη(C diam(X))2

8

+ kFη(Γl,Γu).

We proved an upper bound on the worst-case expected regret of the ran-

domized RWA algorithm when subject to perturbations of an adversarial

agent. We observed that this upper bound is intuitively related to the up-

per bound we presented in Theorem 2.2.1 on the worst-case expected regret

of the randomized WA algorithm. This observation has two implications.

First, when the adversary does not perturb the player’s decisions, that is,

when k = 0, then this result gives the same worst-case expected regret guar-

antee that we had for the randomized WA algorithm. Second, when the

adversary does perturb the player’s distribution, i.e., when k > 0, then we

can introduce an intuitive notion of the “cost” of each single perturbation,

and interpret the second part in the upper bound (2.18) as an upper bound
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on the total cost of k perturbations. In the next section, we will demon-

strate some asymptotic results on the worst-case regret of the randomized

RWA algorithm when T and k are allowed to be unbounded. Specifically, we

will show that this algorithm is Hannan consistent under certain regularity

conditions.

2.4.1 Asymptotic Behavior of the Worst-Case Expected
Regret

We present results on the asymptotic performance of the randomized RWA

algorithm when subject to the perturbations of the worst-case adversary.

In previous sections, we considered finite T and k. To study the asymptotic

behavior of the worst-case regret of the randomized RWA algorithm, we allow

T and k to be unbounded. We first prove the following result, which is a

corollary to the Theorem 2.4.1.

Corollary 2.4.1. Suppose that the randomized RWA algorithm is subject

to the perturbations of the worst-case adversary Ak

(
Πk

w, τ
k
w

)
characterized by

(2.10) and (2.11). If the learning rate η is set to

ηo =

√
2r

C diam(X)

1√
T
,

then the worst-case expected regret of the randomized RWA algorithm satisfies

E
[
R

(o,p)
T

(
XT

r ;L,P(r),Aw
k

)]
≤
√
T (A1(r) + kA2(r,Γl,Γu)) + 2kC diam(X), (2.44)

whenever Γl ≤ 1− exp(−1), where

A1(r) ,
√

2rC diam(X), (2.45)

A2(r,Γl,Γu) ,

√
1

2r
C diam(X) ln

(
e(1− Γl)

Γl(1− Γu)

)
. (2.46)

In particular, if

k = o
(√

T
)
,
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then it follows that

E
[
R

(o,p)
T

(
XT

r ;L,P(r),Aw
k

)]
= o(T ).

Proof. The proof is presented in Appendix A.2.

We note that in Corollary 2.4.1, the algorithm’s learning rate must be a

function of the time horizon T to achieve Hannan consistency. Here, we use a

technique called the doubling trick to remove this dependence as follows [27].

We first divide time into periods

In ,
[
2n−1, 2n − 1

]
of length 2n−1 for n = 1, . . . , N , where

N , dlog2(T )e.

Hence, we have

[1, T ] ⊆ ∪Nn=1In.

Then, in each time period In, the algorithm uses the learning rate

ηn =

√
r

C diam(X)

1√
2n−1

, (2.47)

for n = 1, . . . , N . We present a description of this algorithm in Algorithm 5.

Corollary 2.4.2 proves that the worst-case expected regret of Algorithm 5

is sublinear in T when subject to the worst-case adversary’s perturbations,

under certain conditions.

Corollary 2.4.2. Suppose that Algorithm 5 is subject to perturbations by the

worst-case adversary Aw
k . Then, its worst-case expected regret satisfies

E
[
R

(o,p)
T

(
XT

r ;L,P(r),Aw
k

)]
≤
√
T (βA1(r) + kA2(r,Γl,Γu)) + 2kC diam(X),

where

β ,
√

2/
(√

2− 1
)
,
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Algorithm 5 Online Randomized RWA Algorithm (ηN)

Input: A sequence of learning rates ηN , given in (2.47),
A sequence γT with 0 < Γl ≤ γt ≤ Γu < 1, ∀t.

Initialization: Pick W1 = M1 with suppW1 = X, n = 1.
for t = 1 : T do

if n == log2(t)− 1 then
Set η = ηn, and n← n+ 1.
Reset wt(x) = µt(x) = w1(x), ∀x ∈ X.

end if
The player draws Xr,t ∼ Mt (with density µt).
Nature reveals a loss function `t ∈ L.
The player incurs the loss `t(Xr,t) and updates wt:

wt+1(x) =
µt(x) exp(−η`t(x))∫

X

dMt(u) exp(−η`t(u))
, ∀x ∈ X.

if t == τj for some j = 1, . . . , k then
The distribution is perturbed by an adversary:
Wt+1 ← Πj, (wt+1 ← πj).

end if
The algorithm computes the actual distribution
Mt+1 = γt+1,
Wt+1 + (1− γt+1)Wt.

end for

A1 and A2 are given in (2.45) and (2.46), respectively, whenever

Γl ≤ 1− exp(−1),

and the learning rate sequence ηN = (η1, . . . , ηN) is given by

ηn =

√
r

C diam(X)

1√
2n−1

, n = 1, . . . , N.

Moreover, if

k = o
(√

T
)
,

then it follows that

E
[
R

(o,p)
T

(
XT

r ;L,P(r),Aw
k

)]
= o(T ). (2.48)

Proof. To prove this result, we first upper-bound the worst-case expected

regret of Algorithm 5 in each time period In for each n = 1, . . . , N . We next
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combine these upper bounds to derive a final upper bound on the worst-case

expected regret of the algorithm.

Suppose that the algorithm is subject to perturbations of an adversary

Ak(Πk, τk) for some k ∈ Z. Let kn be the number of perturbation time

instants in the time interval In for each n = 1, . . . , N , that is,

τ
(n)
k , τk ∩ In, kn ,

∣∣∣τ (n)
k

∣∣∣ ≥ 0, n = 1, . . . , N,

Hence, we can represent actions of the adversary Ak(Πk, τk) in each time

interval In as Akn

(
Π

(n)
k , τ

(n)
k

)
for each n = 1, . . . , N .

Since the algorithm resets the intermediate density wt to the initial density

w1 at the beginning of each time interval In, the worst-case expected regret

of this algorithm in In can be upper-bounded by the worst-case expected

regret of the same algorithm that is run for a time horizon of 2n−1 using

the learning rate ηn, where it is subject to kn adversarial perturbations. We

define, with mild abuse of notation, the worst-case expected regret of the

algorithm in the time period In as

E
[
RIn

(
Xr;L,P(r), τ

(n)
k ,Π

(n)
k

)]
, sup

`2n−1∈L2n−1

{
2n−1∑
t=2n−1

E[`t(Xr,t)]− inf
P∈P(r)

2n−1∑
t=2n−1

E[`t(Ut)]

}
, (2.49)

for each n = 1, . . . , N . Then, by Corollary 2.4.1, we upper-bound (2.49) as

E
[
RIn

(
Xr;L,P(r), τ

(n)
k ,Π

(n)
k

)]
≤ 2(n−1)/2[A1(r) + knA2(r,Γl,Γu)] + 2knC diam(X),

for all n = 1, . . . , N . Hence, we can upper-bound the worst-case expected

regret of Algorithm 5 as

E
[
R

(o,p)
T

(
XT

r ;L,P(r), τk,Πk

)]
≤

N∑
n=1

E
[
RIn

(
Xr;L,P(r), τ

(n)
k ,Π

(n)
k

)]
≤ A1(r)

N−1∑
n=0

2n/2 + A2(r,Γl,Γu)
N−1∑
n=0

2n/2kn+1

+ 2kC diam(X)
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≤ A1(r)
2N/2 − 1√

2− 1
+ kA2(r,Γl,Γu)2(N−1)/2

+ 2kC diam(X)

≤
√
T (βA1(r) + kA2(r,Γl,Γu)) + 2kC diam(X) .

We observe that this is true for all adversaries of the form Ak(Πk, τk). In

particular, it is satisfied under the worst-case adversary, so that

E
[
R

(o,p)
T

(
XT

r ;L,P(r),Aw
k

)]
≤
√
T (βA1(r) + kA2(r,Γl,Γu)) + 2kC diam(X) .

Moreover, when k = o
(√

T
)

, we get

E
[
R

(o,p)
T

(
XT

r ;L,P(r),Aw
k

)]
= o(T ).

This concludes the proof.

Remark 2.4.2. We observe from Corollary 2.4.2 that, when the time hori-

zon T is unknown to the randomized RWA algorithm in advance, we can

still guarantee a sublinear worst-case expected regret via the doubling trick.

Moreover, this bound is of the same order as before, up to a constant factor.

In this section, we investigated asymptotic performance of the randomized

RWA algorithm when subject to perturbations of the worst-case adversary

Aw
k . We showed that under certain conditions, the worst-case regret of this

algorithm is sublinear in the time horizon T . We next proposed another

version of this algorithm, where we removed the dependence of the algorithm

to the time horizon T by using the so-called doubling trick. We demonstrated

that this version of the randomized RWA algorithm enjoys an upper bound

that is of the same order as before. In particular, we showed that it is also

Hannan consistent under similar regularity conditions.

2.5 Experimental Results

In this section, we illustrate our theoretical results and performance of the

proposed algorithms on synthetic data. For these experiments, we use the

decision set X = [0, 1], and Nature reveals affine loss functions, that is, for
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Figure 2.2: The randomized RWA algorithm (Algorithm 1) and the ran-
domized WA algorithm when subject to adversarial perturbations with
k = bT 1/4c.

each x ∈ X and t = 1, . . . , T ,

`t(x) = βt(x− φt),

for some βt, φt ∈ R.

We first present and compare the worst-case expected regret performance

of the randomized WA algorithm and the randomized RWA algorithm, when

both are subject to perturbations of the worst-case adversary with k =

bT 1/4c. We use the Independent Metropolis-Hastings algorithm [40] to gen-

erate random decisions of the online player (using its distribution) in each

case, where we run both algorithms for 103 rounds, and take averages over

104 realizations to experiment the expectations. In particular, we plot the

time-averaged worst-case expected regret of both algorithms in Fig. 2.2. We

observe that the performance of the WA algorithm is poor compared to that

of the RWA algorithm. We next plot the worst-case expected regret curves of
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the RWA algorithm (Algorithms 1 and 2) when the time horizon T is known

and unknown, respectively, under different regimes (k = 0, bT 1/3c, bT 1/5c) of

adversarial perturbations in Fig. 2.3. We note that the randomized RWA

algorithm performs satisfactorily in all cases, illustrating the sufficient condi-

tion for Hannan-consistency given in both Corollary 1 and Corollary 2, i.e.,

k = o
(√

T
)

. Hence, for these experiments, we observe a close agreement

between our theoretical results and simulations.

2.6 Conclusion

We have introduced and investigated an adversarial worst-case perturba-

tion framework for online optimization, where an online player’s strategy is

subject to perturbations by an adversary. We cast this problem as a new

repeated game, where a randomized player is pitted against two opponents,

namely, Nature and a strategy-perturbing adversary. We introduced a robust

randomized algorithm and presented an upper bound on its worst-case ex-

pected regret under our worst-case model. In particular, we proved that this

algorithm is Hannan consistent even under adversarial perturbations, when

certain regularity conditions are satisfied. We presented some numerical ex-

periments to illustrate our theoretical results.
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Figure 2.3: The worst-case expected regret performance of Algorithm 1 and
Algorithm 2 under different regimes of adversarial perturbations.
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CHAPTER 3

COST-PERFORMANCE TRADEOFFS IN
FUSING UNRELIABLE COMPUTATIONAL

UNITS

3.1 Introduction

We consider the problem of fusing outcomes of several unreliable compu-

tational units in order to form a reliable outcome from the individual con-

tributions. In particular, we consider a case where each of the unreliable

units performs the same computation. However, each of these units must

operate under cost and fidelity constraints. We formalize the relationship

between the fidelity of each unit and the cost associated with it, and explore

this tradeoff in a number of practical problems. Consider, for instance, the

capacity of an additive white Gaussian noise (AWGN) channel, which is a

logarithmic function of the signal-to-noise (SNR) ratio. In this scenario, the

capacity can be increased at the expense of requiring a higher SNR, which

introduces a tradeoff between cost (SNR) and performance (rate). Note also

that the Fisher information in estimation is often a linear function of SNR,

leading to a different cost-performance tradeoff [41].

Building reliable systems out of unreliable components has attracted sub-

stantial interest in circuits and systems [42–44], information theory [45–47],

and signal processing [48]. In [42], von Neumann investigated error in logic

circuits from a statistical point of view and demonstrated that repeated com-

putations followed by majority logic may yield reliable results even when the

underlying components are unreliable. In [43], Tryon introduced a technique

called quadded logic, which corrects errors by a redundant design of logic

gates. Moreover, the authors of [45–47] investigated reliable computation by

formulas in the presence of noise. More recently, the authors of [48] consid-

ered energy-reliability tradeoffs in computing linear transforms implemented

on unreliable components.

Fusion of the outputs collected from several sensors has been considered
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in distributed detection, estimation, classification, and optimization in sen-

sor networks [49–55]. Often, spatially distributed sensors locally perform a

decision-making task and send their outputs, under bandwidth constraints,

to a fusion center that forms a final decision. In most practical applica-

tions, these sensors are battery-powered devices with limited accuracy and

computational capabilities, so their performance is critically affected by the

resources allocated to them, introducing a cost-performance tradeoff. The

authors of [54] studied tradeoffs between the number of sensors, resolution

of the quantization at each sensor, and SNR. Similarly, [55] considered the

tradeoff between reliability and efficiency in distributed source coding for

field-gathering sensor networks. In general, the main goal is to make a reli-

able final decision in a cost-efficient manner based on these unreliable sensors

subject to resource and reliability constraints.

A fundamental question that arises in fusing several unreliable compu-

tational units is how a limited budget should be allocated across several

unreliable units, where adding a new unit incurs a baseline cost as well as an

incremental cost, and also increases the cost of fusion. That is, what is an

optimal approach for a given cost-performance tradeoff? Although existing

work in fault-tolerant computing and sensor networks focuses on different

pieces of this problem, a more general treatment that jointly considers cost

and performance is necessary. This chapter is an attempt to combine insights

from both fields into a unified framework that captures characteristics of a

range of problems. In particular, we show how our framework and results

are connected to problems from neuroscience, circuits, and crowdsourcing in

Section 3.5.

In this chapter, we present an abstract framework to explore the funda-

mental tradeoff between cost and performance achievable through specific

forms of redundancy. We model unreliability in any computational unit as

an additive random perturbation, where the variance of the perturbation is

inversely related to its fidelity. We cast the main task as one of inference

of the error-free computation based on noisy computational outcomes. Each

computational unit incurs a cost that is a function of fidelity and includes a

baseline cost incurred to simply operate the unit.

We define a class of repetition-based strategies, where each strategy dis-

tributes the total cost across several unreliable computational units and fuses

their outputs. We note that the fusion operation also incurs some cost, which
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is a function of the number of individual computational units to be fused. We

measure the inference performance of each strategy in terms of MSE between

its final output and the error-free computation.

We consider optimal repetition-based strategies under convex, linear, and

concave cost functions rather than restricting to specific cost functions. For

convex costs, there are two main cases. In the first case, we prove that using

only a single and more reliable computational unit is more cost-efficient than

the fusion of several lower cost but less reliable computational units. In the

second case, however, we demonstrate that the optimal strategy uses several

computational units instead of a single more reliable one. Intuitively, the

convexity of the cost function disperses the cost across several less reliable

computational units with smaller individual costs. For linear or concave

costs, the optimal strategy is to use a single and more reliable computational

unit.

3.1.1 Organization

This chapter is organized as follows. In Section 3.2, we describe the frame-

work for unreliable computational units under cost and fidelity constraints.

We model any unreliable computation in terms of the error-free computa-

tion and an additive random perturbation, where the fidelity is inversely

related to the variance of the perturbation. Moreover, we describe the

class of repetition-based strategies, and derive the optimal repetition-based

strategies achieving the minimum MSE. In Section 3.4, we consider the cost-

performance tradeoff of repetition-based strategies under classes of convex,

linear, and concave cost functions, In particular, we characterize the optimal

repetition-based strategy that incurs the smallest total cost while achieving

a target MSE level under each class. Finally, we study application of our the-

oretical results into problems from neuroscience, circuits, and crowdsourcing

in Section 3.5. We conclude with certain remarks and future research direc-

tions in Section 3.6.
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3.2 Problem Description

We first introduce a model of an unreliable computational outcome as an

additive perturbation to its error-free result. To provide a tradeoff between

fidelity and cost, we assume the resource cost of the computational unit

is inversely proportional to the variance of the additive perturbation. We

next consider a class of repetition-based strategies that distribute cost across

several parallel unreliable units and fuse their outcomes to produce a final

estimate of the error-free computation.

Suppose a vector of input signals

X = (X1, . . . , Xk)

is processed to yield the error-free computation,

Y = f(X),

where f(·) is some arbitrary target function. Instead, we observe an unreli-

able computational outcome,

Zθ = Y + Uθ,

where Uθ is a zero-mean perturbation with variance θ−1. Here, θ is the fidelity

of the unreliable computational outcome Zθ. We assume that Y and Uθ are

uncorrelated, that is,

E[Y Uθ] = E[Y ]E[Uθ]

holds, whether or not Y is a random variable.

By Chebyshev’s inequality, the unreliable outcome Zθ with fidelity θ > 0

satisfies, for any ε > 0,

Pr(|Zθ − Y | ≥ ε) ≤ 1

ε2θ
. (3.1)

This implies the unreliable outcome Zθ converges to the error-free computa-

tion in probability as the fidelity tends to infinity. However, as the fidelity

parameter θ increases, the cost C(θ) incurred to guarantee that level of fi-

delity also increases, introducing a cost-fidelity tradeoff. Note that this holds

both when Xi for i = 1, . . . , k, or Y , are random as well as when they are

47



purely deterministic.

In this model, we incur the cost C(θ) for the unreliable outcome Zθ with

fidelity θ > 0, which we assume to be a strictly increasing function of θ. In

particular, we assume

C(θ) = cmin +G(θ),

where

cmin , inf
θ>0

C(θ) ≥ 0

is the minimum (baseline) cost, and G(θ) is an increasing and twice differ-

entiable incremental cost function with G(0) = 0. In the sequel, we focus on

three classes of cost functions: convex, linear, and concave function of θ.

We define a class of repetition-based strategies that fuse the outputs of

several computational units to estimate Y . For any positive integer N , a

repetition-based strategy SN , with weights

w = (w1, . . . , wN) ∈ RN

and fidelities

θ = (θ1, . . . , θN) ∈ (0,∞)N ,

linearly combines the outcomes of N parallel unreliable units with fidelities

θ using the weights w. That is, if we denote the outcome of a unit with

fidelity θi and cost C(θi) as

Zθi = Y + Uθi ,

for i = 1, . . . , N , then the final output of this strategy SN is

ŶN(w;θ) , wTZθ = Y
(
wT1

)
+ wTUθ, (3.2)

where Zθ , (Zθ1 , . . . , ZθN ), Uθ , (Uθ1 , . . . , UθN ), and 1 = (1, . . . , 1) ∈ RN is

a vector of ones. In particular, we assume that Uθis are uncorrelated to each

other.
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The cost incurred by the strategy SN with fidelities θ is

N∑
i=1

C(θi) +D(N),

where D(N) is the fusion cost, i.e., the cost of linear combination. We assume

that the function

D : Z+ → R+

is increasing, as fusing the outcomes of a larger number of computational

units has higher cost than fewer. Note that the fusion cost is super-linear

in N in that it requires at least O(N) multiplications and additions. In

particular, we assume that D(N) is convex in N .

3.3 Performance Analysis

Here, we consider the MSE performance of each repetition-based strategy in

estimating the error-free computation Y . For any positive integer N , the

strategy SN with a weight vector w ∈ RN and a fidelity vector θ ∈ (0,∞)N

achieves the MSE

MSE(w,θ) , E
[(
ŶN(w;θ)− Y

)2
]
. (3.3)

In particular, we derive the minimum MSE (MMSE) achievable by this strat-

egy SN while producing an unbiased output:

MSEo(θ) , min
wT 1=1

MSE(w,θ),

where wo is the corresponding minimizer.

Lemma 3.3.1. Suppose that for any positive integer N , the strategy SN fuses

the outcomes of N parallel computational units with fidelities θ ∈ (0,∞)N .

Then the MMSE achievable by this strategy SN while producing an unbiased

estimate of Y , and the corresponding weights are

MSEo(θ) =
1

θT1
, wo =

θ

θT1
, (3.4)

respectively.
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Proof. The MSE of the strategy SN with a given θ ∈ (0,∞)N is

MSE(w,θ) = E
[(
Y
(
wT1− 1

)
+ wTUθ

)2
]
,

where (3.2) is substituted in (3.3). Since Y and Uθ are uncorrelated:

MSE(w,θ) = E
[
Y 2
](

wT1− 1
)2

+ wTΣUθ
w, (3.5)

where ΣUθ
is the covariance matrix of the perturbation vector Uθ. If we

impose the condition that wT1 = 1 in (3.5), then

MSE(w,θ) = wTΣUθ
w.

To minimize this over weights that satisfy wT1 = 1, we first form the La-

grangian

J(w, λ) =
1

2
wTΣUθ

w + λ
(
1−wT1

)
,

and then compute the gradient with respect to w to get

ΣUθ
w − λ1 = 0,

which is satisfied if and only if

w = λΣ−1
Uθ

1.

With wT1 = 1, we obtain

λ =
1

1TΣ−1
Uθ

1
,

which yields the optimal weights

wo =
1

1TΣ−1
Uθ

1
Σ−1

Uθ
1.

When we substitute this result in MSE(w,θ), we achieve

MSEo(θ) = wT
o ΣUθ

wo
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=
1

1TΣ−1
Uθ

1
.

We finally note that

ΣUθ
= diag

(
θ−1

1 , . . . , θ−1
N

)
,

which leads to the desired result.

Thus, Lemma 3.3.1 provides the strategy SN achieving the MMSE for a

given fidelity vector θ ∈ (0,∞)N . For any positive integer N , whenever we

refer to the strategy SN , we use the optimal weights given in (3.4), so that

its output is

ŶN(wo;θ) = wT
o Zθ =

θTZθ

θT1
.

We next study a particular scenario, where Uθ is sub-Gaussian.

3.3.1 Sub-Gaussian Perturbations

Here, we consider a case where the perturbation Uθ is sub-Gaussian with

parameter θ−1, which implies [56]

E
[
eλUθ

]
≤ exp

(
λ2

2θ

)
, ∀λ ∈ R, (3.6)

or equivalently, the probability of absolute deviation of Zθ from Y satisfies,

for any ε > 0,

Pr(|Zθ − Y | ≥ ε) ≤ 2 exp
(
−ε2θ/2

)
. (3.7)

The tail bound in (3.7) decreases faster (with increasing θ) than the bound

in (3.1). Sub-Gaussian distributions can be used to model a wide range

of stochastic phenomena including Gaussian and uniform distributions, or

distributions with finite or bounded support. Note that a weighted sum

of finitely many sub-Gaussian random variables is also sub-Gaussian [56].

By applying this result to the output of a strategy SN with w ∈ RN and
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θ ∈ (0,∞)N , we get, for any ε > 0,

Pr
(∣∣∣ŶN(w;θ)− Y

∣∣∣ ≥ ε
)
≤ 2 exp

(
− ε2∑N

i=1w
2
i /θi

)
.

The weights minimizing the upper bound under wT1 = 1, and the resulting

bound are known to be

wo =
θ

θT1
,

and

Pr
(∣∣∣ŶN(wo;θ)− Y

∣∣∣ ≥ ε
)
≤ 2 exp

(
−ε2θT1/2

)
,

for any ε > 0, respectively.

We emphasize that, in this case, even though the performance is measured

in terms of probability of absolute deviation from the error-free computa-

tion, the optimal weights are exactly the same as the ones minimizing the

MSE. Hence, same results apply to both cases when comparing the cost-

performance tradeoff of the repetition-based strategies.

In this section, we analyzed the MSE performance of repetition-based

strategies. More precisely, for any positive integer N and a fidelity vec-

tor θ ∈ (0,∞)N , we derived the optimal weights for the strategy SN in terms

of minimizing the MSE. Based on these results, we next investigate the cost-

performance tradeoff for a wide variety of repetition-based strategies.

3.4 Cost-Performance Tradeoff

We investigate the performance of repetition-based strategies under convex,

linear, and concave cost functions in terms of the tradeoff between the total

incurred cost and the final MSE performance in estimating the error-free

computation.

We first analyze the case where the cost C(θ) is a convex function of the

fidelity θ. We characterize the optimal strategy, based on the desired MSE

performance as well as the baseline and fusion cost functions. In particular,

we show that the optimal cost-performance tradeoff may be achieved by some

strategy SN with N > 1 under certain conditions.
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We next consider the case where the cost C(θ) is a linear function of the

fidelity parameter θ, and show that strategy S1 is optimal among repetition-

based strategies. We finally study the concave cost scenario, and demonstrate

results similar to the linear cost function case.

To compare cost-performance tradeoffs of repetition-based strategies, we

constrain each strategy to guarantee the same MSE performance. More pre-

cisely, given some τ > 0, we assume that the strategy SN with θ ∈ (0,∞)N

satisfies

τ = MSEo(θ) =
1

θT1
,

or equivalently, τ−1 = θT1, for any positive integer N . We also define the

total cost incurred by strategy SN , which achieves MSEo(θ) = τ , as

Costτ (N) ,
N∑
i=1

C(θi) +D(N).

3.4.1 Convex Cost Functions

We study the cost-performance tradeoff for the class of repetition-based

strategies under a convex cost function. This case turns out to correspond

to a law of diminishing returns between cost and fidelity, which may drive

the dispersion of cost across several less reliable computational units with

smaller individual costs. We show that there are two main cases, where, in

the first case, some strategy SN with N > 1 may incur the minimum total

cost achievable by the repetition-based strategies while achieving the same

MSE, whereas in the second case, the strategy S1 is optimal in terms of

cost-performance tradeoff, i.e., no repetition or fusion is required.

Consider a uniform fidelity distribution across several unreliable computa-

tional outcomes, given by

θi ,
1

τN
, i = 1, . . . , N, (3.8)

which implies that the constraint MSEo(θ) = τ is satisfied. In fact, the

following lemma shows that the optimal fidelity distribution satisfying the

MSE constraint in terms of minimizing the total cost is in fact uniform.
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Lemma 3.4.1. For any τ > 0, the uniform fidelity distribution given by

(3.8) is the unique solution to the optimization problem:

min
θ∈RN+

N∑
i=1

C(θi)

subject to θT1 = τ−1 when the cost function C(θ) is convex.

Proof. The proof is given in Appendix B.1.

Hence, we only consider the case where the strategy SN , for each positive

integer N , uses the fidelities in (3.8). The total cost incurred by this strategy

SN is

Costτ (N) =
N∑
i=1

C

(
1

τN

)
+D(N)

= NG

(
1

τN

)
+Ncmin +D(N). (3.9)

To investigate the behavior of the total cost, we define its continuous re-

laxation as

Costτ : [1,∞)→ (0,∞)

Costτ (a) , aG

(
1

τa

)
+ acmin +D(a),

where D(a) is a twice differentiable continuous relaxation of the fusion cost

function D(N). We first demonstrate that Costτ (a) is a convex function in

a.

Lemma 3.4.2. The total cost function Costτ (a) is convex in a.

Proof. The proof is provided in Appendix B.2.

Convexity of Costτ (a) implies that it has a unique minimizer on any given

compact subset of its domain [1,∞). In particular, note that

Costτ (1) = G
(
τ−1
)

+ cmin,

and

Costτ (a)→∞
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as a→∞. Therefore, the total cost function Costτ (a) has a unique and finite

minimizer ao(τ) ∈ [1,∞). Also, there exists a corresponding unique optimal

repetition-based strategy, which we denote as the strategy SNo(τ) where

No(τ) = arg min
N∈{bao(τ)c,dao(τ)e}

Costτ (N) (3.10)

is a finite positive integer (a function of τ), that minimizes the total incurred

cost while achieving the desired MSE of τ > 0.

We next characterize conditions under which the optimal repetition-based

strategy either uses a single but more reliable computational unit, that is,

No(τ) = 1, or distributes the cost across several unreliable computational

units and fuses their outcomes, that is, No(τ) > 1. In the latter case, we

implicitly derive the optimal strategy as a function of the desired MSE level

τ , the baseline cost cmin, and the fusion cost function D(·). The next theorem

characterizes these cases in terms of the first derivative of the fusion cost and

the baseline cost.

Theorem 3.4.1. For any given τ > 0, the minimizer of Costτ (a) satisfies

ao(τ) > 1 if and only if

cmin +D′(1) < V (τ)

where

V (τ) , τ−1G′
(
τ−1
)
−G

(
τ−1
)
. (3.11)

Proof. We define

κτ (a) , ∂Costτ (a)/∂a,

and observe that from Lemma 3.4.2, κτ (a) is nondecreasing and continuous

in a since Costτ (a) is a twice differentiable and convex function of a. Hence,

whenever

κτ (1) ≥ 0,

we have κτ (a) ≥ 0 for any a > 1. It implies that Costτ (a) is a nondecreasing

function of a on [1,∞), and minimized at ao(τ) = 1. When

κτ (1) < 0,
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Costτ (a) is minimized at some finite ao(τ) > 1, since

Costτ (a)→∞

as a→∞. The proof follows by noting that

κτ (1) = G
(
τ−1
)
− τ−1G′

(
τ−1
)

+ cmin +D′(a) < 0

if and only if

cmin +D′(1) < V (τ),

where V (τ) is defined in (3.11).

Based on these results, we can characterize the optimal repetition-based

strategy. If

cmin +D′(1) ≥ V (τ),

then

No(τ) = 1

since ao(τ) = 1. Otherwise, we get ao(τ) > 1, which is in this case implicitly

given by

∂Costτ (a)

∂a

∣∣∣
a=ao(τ)

= G

(
1

τao(τ)

)
− 1

τao(τ)
G′
(

1

τao(τ)

)
+ cmin +D′(ao(τ))

= 0. (3.12)

If 1 < ao(τ) < 2, then we may get

No(τ) = 1 or No(τ) = 2,

based on (3.10). When ao(τ) ≥ 2, we get

No(τ) > 1.

We finally consider the optimal repetition-based strategy as the target

MSE τ changes. In the following lemma, we investigate the function V (τ)

defined in (3.11) as τ changes.
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Lemma 3.4.3. V (τ) is non-negative and nonincreasing on (0,∞), and in

particular, we have limτ→∞ V (τ) = 0, and

L , lim
τ→0

V (τ) > 0, (3.13)

if V (τ) is bounded as τ → 0, or else, the limit does not exist.

Proof. We first observe that from (3.11)

V ′(τ) = − 1

τ 2
G′
(
τ−1
)
− 1

τ 3
G′′
(
τ−1
)

+
1

τ 2
G′
(
τ−1
)

= − 1

τ 3
G′′
(
τ−1
)
≤ 0,

for any τ > 0, as G(·) is convex and twice differentiable. Thus, the function

V (τ) is decreasing on (0,∞). We next note that

lim
τ→∞

V (τ) = lim
τ→∞

(
τ−1G′

(
τ−1
)
−G

(
τ−1
))

= lim
τ→∞

τ−1G′
(
τ−1
)
−G(0) = 0,

since G(0) = 0 and G′(0) is finite. Therefore, V (τ) is non-negative on (0,∞).

This implies that the function V (τ) either converges to a finite limit (if and

only if V (τ) is bounded on (0,∞)), or is unbounded as τ → 0.

It may appear that from (3.10) and (3.12), as the target MSE τ decreases,

the optimal repetition-based strategy may need to fuse more units, i.e., No(τ)

may increase. More rigorously, we next characterize the behavior of the

minimizer ao(τ) of the total cost Costτ (a) as the target MSE τ changes.

Theorem 3.4.2. If the limit in (3.13) exists, and

L ≤ cmin +D′(1),

then ao(τ) = 1 for all τ > 0. If, on the other hand, the limit does not exist,

or it exists and

L > cmin +D′(1),

we define

T , inf V −1(cmin +D′(1)) > 0,
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where V −1(x) is the inverse image of a point x under the function V for any

x > 0. Then we obtain ao(τ) = 1 whenever τ ≥ T , and ao(τ) > 1 whenever

0 < τ < T .

Proof. Suppose the limit in (3.13) exists, and L ≤ cmin +D′(1). Then

V (τ) ≤ cmin +D′(1),

and ao(τ) = 1, for all τ > 0.

Suppose next that the limit in (3.13) either does not exist, or it exists and

L > cmin +D′(1). Since V (τ) is a monotone function,

V −1(cmin +D′(1))

is either a singleton or an interval. Then for any τ ≥ T , we have

V (τ) ≤ cmin +D′(1),

which implies ao(τ) = 1, and when 0 < τ < T , we have

cmin +D′(1) < V (τ),

which implies ao(τ) > 1.

In this section, we investigated the cost-performance tradeoff for repetition-

based strategies under convex cost functions. In particular, we characterized

the optimal repetition-based strategy in terms of the baseline cost, the be-

haviors of the incremental and fusion cost functions with different param-

eters, for different values of the target MSE level τ . We next study the

cost-performance tradeoff under linear cost functions.

3.4.2 Linear Cost Functions

We consider the optimal repetition-based strategy in terms of cost-efficiency

when the underlying cost function is linear, where we can express it as

C(θ) = cmin + αθ, θ > 0,

58



where α > 0 is an application-dependent constant. This case corresponds to

a law of proportional returns. We show that the strategy S1 is the optimal

repetition-based strategy for any target MSE τ > 0. There is no gain in

repetition-based approaches in terms of cost-efficiency for linear cost func-

tions.

Theorem 3.4.3. When the cost function C(θ) is linear, that is, C(θ) =

cmin +αθ for some α > 0, then the optimal repetition-based strategy in terms

of minimizing the incurred cost while achieving the same MSE is the strategy

S1.

Proof. Let τ > 0 be given. The total cost of the strategy SN , for any positive

integer N , is given by

Costτ (N) = Ncmin + α
N∑
i=1

θi +D(N),

= Ncmin + ατ−1 +D(N)

> cmin + ατ−1 = Costτ (1).

This implies the cost incurred by the strategy S1 is smaller than that of the

strategy SN for any N > 1 and τ > 0.

For proportional costs a single more reliable unit is always more cost-

efficient than a fusion of several less reliable units in the sense that it incurs

a smaller cost while achieving the same MSE.

3.4.3 Concave Cost Functions

We consider the cost-performance tradeoff of each strategy in the class of

strategies when the cost function is concave. This case corresponds to a law

of increasing returns, as opposed to a law of diminishing returns. That is, the

incremental cost for performance decreases, making single, high-cost, high-

performance elements more attractive. Before proving the main theorem of

this section, we present a lemma that proves that the concave incremental

cost function is sub-additive.
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Lemma 3.4.4. If a function f with the domain [0,∞) is concave, and f(0) ≥
0, then it is sub-additive, i.e., for any x, y ≥ 0,

f(x) + f(y) ≥ f(x+ y).

Proof. We provide the proof in Appendix B.3.

The next theorem characterizes the optimal repetition-based strategy in

terms of minimizing the total incurred cost while achieving the same MSE

performance for a given τ > 0.

Theorem 3.4.4. When the cost function C(θ) is concave, and each repetition-

based strategy achieves the same MSE level τ > 0, then the strategy S1 is

always the optimal strategy in terms of incurring the smallest cost for any

τ > 0.

Proof. Let τ > 0 be given. Then, for any positive integer N , the total cost

incurred by the strategy SN is given by

Costτ (N) =
N∑
i=1

C(θi) +D(N)

=
N∑
i=1

G(θi) +Ncmin +D(N).

We note that by Lemma 3.4.4, the incremental cost function is sub-additive,

since it is concave and G(0) ≥ 0, implying that

N∑
i=1

G(θi) ≥ G

(
N∑
i=1

θi

)
= G

(
τ−1
)
. (3.14)

Note that the cost incurred by the strategy S1 is given by

Costτ (1) = G
(
τ−1
)

+ cmin,

implying Costτ (N) > Costτ (1) for any N > 1. Hence, the strategy S1 is the

optimal strategy for any desired MSE.

Strategy S1, which is formed by exhausting all available budget for a sin-

gle computational unit, is more cost-efficient as compared to any strategy
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SN with N > 1, which allocates available cost across several less reliable

computational units.

In this section, we considered the cost-performance tradeoff of repetition-

based strategies under convex, linear, and concave cost function classes. We

showed that under convex cost functions the optimal cost-performance trade-

off may be achieved either by the strategy S1 or by some strategy SN with

N > 1 under certain conditions. For linear and concave costs, optimality is

always achieved by strategy S1 for any target MSE performance. In the next

section, we consider applications of our results into a number of contexts.

3.5 Applications

Here, we show how our cost-fidelity formulation and theoretical results are

connected to problems from different fields.

3.5.1 Neuroscience

We review a particular application of our framework in a theoretical neuro-

science context. We focus on two principal tasks of the brain where synapses

play essential roles, namely, information storage and information processing.

Typical central synapses exhibit noisy behavior due, for instance, to proba-

bilistic transmitter release. The firing of the presynaptic neuron is inherently

stochastic and occasionally fails to evoke an excitatory postsynaptic potential

(EPSP). In this sense, we can cast each noisy synapse as an unreliable com-

putational unit, contributing to the overall neural computation carried out

by its efferent neuron. We focus on two distinct cost-fidelity formulations,

where we show that experimental results [23, 57] agree with our theoretical

predictions. We note that recall corresponds to a form of “in-memory com-

puting” whereas processing corresponds to a form of “in-sensor computing”.

In-Memory Computing:

Revisiting [23], we first consider an information-theoretic framework to study

the information storage capacity of synapses under resource constraints,

where memory is seen as a communication channel subject to several sources

of noise. Each synapse has a certain SNR, where increasing the SNR in-
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creases the information storage capacity in a logarithmic fashion. However,

this increase comes at a cost, namely, the synaptic volume. Hence, from an

information storage perspective, we cast capacity as the fidelity of a noisy

synapse and the volume as the cost. If we denote the information storage

capacity of a synapse and its average volume by CI and V , respectively, then

taking Shannon’s AWGN channel capacity formula [58] for concreteness:

CI =
1

2
ln

(
1 +

V

VN

)
,

where VN is the volume of a synapse with a unit SNR. This relationship

assumes the power law
V

VN
=

(
A

AN

)2

,

which is supported by experimental measurements [23], where A is the mean

EPSP amplitude and AN is the noise amplitude. We rewrite the volume as

a function of capacity as

V = VN
(
e2CI − 1

)
,

and observe that this is an exponential cost function, a particular example

of convex costs. For exponential costs, fusion of several less reliable compu-

tational units may lead to better cost-efficiency than a single more reliable

computational unit. Therefore, our cost-fidelity framework applied to infor-

mation recall under resource constraints recovers the principle that several

small and noisy synapses should be present in brain regions performing stor-

age and recall, rather than large and isolated synapses [23,59].

Moreover, [60–64] show that the noisiness of the synapses leads to efficient

information transmission. That is, transmitting the same information over

several less reliable but metabolically cheaper synapses requires less energy,

as compared to the case where the information is transmitted over a single,

more reliable but metabolically more expensive synapse. The idea that noise

can facilitate information transmission is also present in neuronal networks.

In particular, the authors in [65] show that a neuron is a noise-limited device

of restricted bandwidth, and an energy-efficient nervous system will split the

information and transmit it over a large number of relatively noisy neurons

of lower information capacity.
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Figure 3.1: Exponential cost function (3.15).

In-Sensor Computing:

We next consider an information processing perspective, and view the SNR of

a synapse itself as its fidelity and the synaptic volume as the cost. We adopt a

data-driven approach using two different data sets. This joining is necessary

since joint electrophysiology and imaging experiments are technically diffi-

cult, where electrophysiology experiments to measure voltages require live

tissue while electron micrograph imaging experiments to measure volumes

require fixing and slicing the tissue [57].

The first data set [23] includes EPSP measurements across 637 distinct

synapses over 43 trials for each synapse. Based on these measurements, we

generate an empirical distribution of the mean EPSP measurements of a

synapse. The second data set [57] includes volume measurements across 357

synapses, which is used to compute a distribution of a synapse volume.1

We first generate T = 500 random variables {Yt}Tt=1 from the calculated

volume distribution. We next generate T random variables from the calcu-

lated mean EPSP distribution, and sort them assuming a monotonic rela-

1We thank Dmitri B. Chklovskii for providing data from [57].
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Figure 3.2: A data-driven cost (volume in µm3) versus fidelity (SNR) func-
tion.

tionship between the mean EPSP and the volume of synapses [23]. From

the sorted mean EPSP amplitudes, we compute the corresponding SNRs

{Xt}Tt=1. We plot the resulting pairs {(Xt, Yt)}Tt=1 in Fig. 3.2. This plot indi-

cates that the cost function is approximately concave as a function of SNR.

More rigorously, we assess convexity using a nonparametric hypothesis test

based on a simplex statistic, a descriptive measure of curvature described

in [66]. When applied to this data, the test yields a p-value of 3.25 × 10−4,

which can be interpreted as a strong evidence in favor of the hypothesis that

the cost (volume) is a concave function of the SNR (fidelity). This suggests

that the brain may achieve cost-efficiency by using a single large and reli-

able synapse, instead of several smaller and less reliable synapses, from an

information processing perspective.

To compare this prediction with experimental findings, we focus on a par-

ticular synapse called the calyx of Held, the largest synapse in the mammalian

auditory central nervous system that connects principal neurons within the
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Figure 3.3: Total cost function (3.16).

auditory system [67–69]. The calyx of Held plays a crucial role in certain

information processing tasks of the brain. For instance, the principal cells

connected by the calyx of Held enable interaural level detection, a vital role

in high-frequency sound localization [70, 71]. The signals derived from the

calyx of Held generate large excitatory postsynaptic currents with a short

synaptic delay, where the transmission speed and fidelity of the calyx is very

reliable in mature animals [72].

Hence, the calyx of Held may be regarded as a very reliable but costly

synapse, as compared to the ones performing information storage tasks,

which are noisier and less costly in terms of brain resources. We observe

that these experimental findings agree with our prediction that the cost-

efficiency results from employing a single reliable and costly synapse (calyx

of Held), outperform several less reliable and metabolically cheaper synapses,

under a concave cost function.
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3.5.2 Circuits

Next, let us consider signal processing systems implemented on unreliable

circuit fabrics. As CMOS technology scales beyond 10 nm, the operation of

CMOS devices begins to suffer from static defects as well as dynamic opera-

tional non-determinism [38,39,73]. Moreover, spintronics, which use electron

spin for computing, exhibit an unreliable behavior, where there is a tradeoff

between reliability and energy consumption [21, 22]. That is, probability of

failure is smaller when more energy is used. Hence, deeply scaled CMOS

and spintronics based systems must operate in the presence computational

errors.

In [42], von Neumann studied noise in circuits and showed that even when

circuit components are unreliable, reliable computations can be performed

by using repetition-based schemes. Repeated computations followed by a

majority vote have also been used extensively in error-tolerant circuit de-

sign [74,75]. Also, Hadjicostis [76] investigated redundancy-based approaches

to build fault-tolerant dynamical systems out of cheap but unreliable com-

ponents.

Moreover, a statistical error compensation technique called Algorithmic

Noise Tolerance (ANT) has been studied in [77, 78], and compensates for

errors in computation in a statistical manner by fusing outcomes of sev-

eral unreliable computational branches that operate at different points along

energy-reliability tradeoffs. The ANT framework can also be cast as a CEO

problem in multiterminal source coding [79].

Stochastic behavior in circuit fabrics may also arise when computation is

embedded into low-sensing, analog parts of a system such as either memory,

which leads to in-memory computing [80], or sensing, which leads to in-

sensor computing [81], to achieve cost-efficiency [82]. Note that in-memory

computing and in-sensor computing may lead to fundamentally different cost-

performance tradeoffs. In particular, we demonstrate that the difference

between in-memory computing and in-sensor computing may be modeled

through our framework by using different cost-fidelity function classes.

Example Case:

Here, we present an application of the results of this section to spintronics.

In particular, an exponential cost has been shown to approximately model
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the functional dependence between energy and reliability for a typical spin

device [22]. Consider the exponential cost

C(θ) = cmin + α
(
eβθ − 1

)
, θ > 0, (3.15)

for some α, β > 0. We illustrate this cost function in Fig. 3.1. Moreover, for

illustration purposes, we assume that the fusion cost function is

D(N) = γ(N − 1),

for N ≥ 1 and γ > 0. Then the total cost function is given by

Costτ (N) = αN
(
e
β
τN − 1

)
+N(cmin + γ)− γ, (3.16)

for any positive integer N . In Fig. 3.3, we plot this total cost function with

parameters

α = 1, β = 1, γ = 1, cmin = 7

for different values of the target MSE τ > 0. We observe that Fig. 3.3

illustrates how No(τ) increases as τ decreases, as discussed in this section.

In particular, we note that No(τ) = 1, 6, 13 for τ = 2, 0.1, 0.05, respectively.

Finally, the total cost function (3.16) yields

V (τ) = α exp
(
βτ−1

)(
βτ−1 − 1

)
+ α, (3.17)

implying V (τ)→∞ as τ → 0. Hence there exists a threshold

T = V −1(cmin + γ) > 0

such that ao(τ) = 1 when τ ≥ T , and ao(τ) > 1 when τ < T . These cases

are illustrated in Fig. 3.4 for cmin = 7, γ = 1.

3.5.3 Crowdsourcing

Crowdsourcing assigns a task to a large number of less expensive but unre-

liable workers, instead of a small number of more expensive and reliable ex-

perts. Monetary payment to incentivize workers has been shown to affect the

quality and the quantity of work in such scenarios [83]. Recently, motivated
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gions.

by reliability issues of crowdsourced workers and limited budgets, several re-

searchers have pursued the limits of achievable performance from estimation-

theoretic [83], information-theoretic [84], optimization [85, 86], and empiri-

cal [87] perspectives.

The authors of [87] studied the relation between monetary incentives and

work quality in a knowledge task. More precisely, they performed an exper-

iment on 451 unique workers on Amazon Mechanical Turk, and investigated

the effect of bonus payments on the work quality in the task of proofreading

an article. They measured the quality by the number of typographical errors

found in a given article. In this scenario, each worker is paid a base salary

(minimum cost), and an additional bonus (incremental cost), which is shown

to yield an improvement in the work quality. In this sense, the bonus pay-

ment, i.e., the incremental cost, can be viewed as a function of the number

of errors found. In particular, experiments in [87] showed that increasing the

bonus payment has diminishing returns in terms of the work quality. That

is, the incremental cost is a convex function of the work quality.
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More recently, Lahouti and Hassibi [84] considered the crowdsourcing prob-

lem as a human-based computation problem where the main task is inference.

They formulated an information-theoretic framework, where unreliable work-

ers are modeled as parallel noisy communication channels. They represented

the queries of the workers and the final inference using a joint source chan-

nel encoding/decoding scheme. Similarly, Khetan and Oh [86] studied the

tradeoff between budget and accuracy in crowdsourcing scenarios under the

generalized Dawid-Skene model, where they introduced an adaptive scheme

to allocate a budget across unreliable workers.

We observe that there is a tradeoff between cost (monetary payments,

bonus) and fidelity (quality of work) in a wide range of crowdsourcing sce-

narios. In particular, assigning a task to several workers, distributing the

limited budget among them, and fusing their unreliable outputs have been

problems of interest in the crowdsourcing literature. In this sense, our cost-

fidelity formulation and repetition-based approaches may have relevance in

crowdsourcing problems.

3.6 Conclusion and Future Directions

We considered fusing outcomes of several unreliable computational units that

perform the same task. We modeled unreliability in a computational outcome

using an additive perturbation, where the fidelity is inversely related to the

variance of the perturbation. We investigated cost-performance tradeoffs

achievable through repetition-based approaches. Here, each computational

unit incurs a baseline cost as well as an incremental cost, which is a function

of its fidelity.

We defined a class of repetition-based strategies, where any repetition-

based strategy distributes the cost across several unreliable computational

units and fuses their outcomes to produce a final output, where it incurs cost

to perform the fusion operation. We considered the MSE of each strategy

in estimating the error-free computation. In particular, we defined the op-

timal repetition-based strategy as the one incurring the smallest cost while

achieving the desired MSE performance.

When the cost is a convex function of fidelity, the optimal repetition-based

strategy may distribute cost across several less reliable computational units
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instead of using a single more reliable unit under certain conditions. For the

classes of concave and linear cost functions we preserved that the optimal

strategy uses only a single and relatively reliable computational unit, instead

of a fusion of several less costly but less reliable units.

We assumed that outcomes produced by different computational units are

uncorrelated. This framework can be extended to a correlated outcome set-

ting, where a model that captures both the cost-fidelity tradeoff and the

correlation between computational units may be employed. When studying

the fundamental tradeoff between cost and performance, we assumed that the

fusion operation is error-free. We can extend this to the case where the fu-

sion operation also produces noisy results under cost and fidelity constraints

by considering the tradeoff in allocating a budget to the fusion operation as

well. Moreover, we focused on a particular fusion operation, i.e., linear com-

bination, which is common in certain applications. More generally, we can

consider nonlinear fusion rules to compute the final estimate of the error-free

computation. For instance, midrange [83] and median-of-means [88] estima-

tors have been considered as alternatives to linear estimators under different

scenarios to improve performance. Extension to this framework would be of

interest for different network topologies, as opposed to the centralized fusion

setting of this chapter, as in [89].
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CHAPTER 4

EE-GRAD: EXPLORATION AND
EXPLOITATION FOR COST-EFFICIENT

MINI-BATCH SGD

4.1 Introduction

Stochastic gradient methods are widely used to solve large-scale optimization

problems in machine learning. Given a differentiable objective function

F : Rd → R

with a gradient ∇F , a stochastic gradient descent (SGD) algorithm chooses

an initial iterate w1 ∈ Rd, and, on each iteration k = 1, . . . , K, it uses a

noisy gradient G(wk) instead of ∇F (wk) to set the next iterate as

wk+1 = wk − ηkG(wk),

where ηk > 0 is a step size. The overall performance of stochastic gradient

methods is controlled by the noise in G(wk) with respect to ∇F (wk) [90].

Often, noisy gradients with large variances lead to slower convergence and

degraded performance [91].

Mini-batch stochastic gradient methods, as well as their distributed or par-

allelized variants, have been proposed to tackle some of these issues [92, 93].

Recently, federated learning [94] has been proposed as a decentralized opti-

mization framework, where SGD runs on a large dataset distributed across

a number of devices performing local model updates and sending them to a

centralized server that aggregates them, under privacy and communication

constraints. In typical resource- and budget-constrained applications, as the

mini-batch size increases, the cost available to be allocated to each single

stochastic gradient in the mini-batch decreases, so that its quality degrades,

i.e., its noise variance increases. A common approach is to focus on the

tradeoff between the rate of convergence and the computational complexity
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of stochastic gradient methods, where the dependence of the noise variance

on the cost allocated to stochastic gradients is often omitted.

In this chapter, we propose an alternative framework and consider the

tradeoff between fidelity and cost of computing a stochastic gradient. In par-

ticular, we model a noisy gradient as an unbiased estimate of the true gradi-

ent, where the noise variance depends on the incurred cost, and this depen-

dence is formalized through a cost-fidelity function. We focus on mini-batch

oracles, where each mini-batch oracle distributes a limited budget across a

mini-batch of stochastic gradients and aggregates them to form a final gra-

dient estimate. We assume that the aggregation operation also incurs a cost

from a fixed budget, as does each of the noisy gradients in the mini-batch.

The optimal mini-batch size in minimizing the noise variance depends on the

underlying cost-fidelity function.

We focus on determining the optimal mini-batch oracle in terms of the

cost-fidelity tradeoff when the cost-fidelity function is unknown. In particu-

lar, we propose and analyze EE-Grad: an algorithm that, on each iteration,

performs sequential trials over different mini-batch oracles to explore the per-

formance of each mini-batch oracle with high precision and exploit the current

knowledge to focus on the one that seems to provide the best performance,

i.e, the smallest noise variance. We demonstrate that the proposed algorithm

performs almost as well as the optimal mini-batch oracle on each iteration in

expectation. We apply this result to the case of strongly convex objectives,

and prove performance guarantees in terms of the rate of convergence.

4.1.1 Organization

This chapter is organized as follows. In Section 4.2, we propose a model for

stochastic gradients in terms of the true gradient and the noise variance. In

particular, we formalize the dependence of the cost incurred to compute a

stochastic gradient and its fidelity. We next describe mini-batch stochastic

gradient oracles subject to budget constraints. In Section 4.3, we propose an

algorithm that, on each iteration of the SGD, aggregates stochastic gradients

computed over sequential trials, where at each trial, based on an estimate

of the optimal mini-batch size, allocates the per-round budget to query the

corresponding mini-batch oracle. We provide performance guarantees for the
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proposed algorithm in Section 4.4, where we prove an upper bound on its

noise variance, and compare it to the noise variance achieved by the optimal

mini-batch oracle. We next apply these results to the case of strongly convex

objective functions with Lipschitz continuous gradients in Section 4.5. In

Section 4.6, we finally provide a numerical example to illustrate our theoret-

ical results. We conclude the chapter with certain remarks in Section 4.7.

4.2 Cost-Fidelity Tradeoff and Mini-Batch Stochastic

Gradient Oracles

Suppose that, on each iteration, a stochastic gradient g(w, θ) and the gradi-

ent ∇F (w) are related as

g(w, θ) = ∇F (w) + U(w, θ), (4.1)

where U(w, θ) is a zero-mean perturbation with a positive definite and di-

agonal covariance matrix θ−1M(w) for θ > 0. That is,

Ew[U(w, θ)] = 0,

Ew

[
U(w, θ)U(w, θ)T

]
= θ−1M(w),

where Ew[·] is the conditional expectation given w. Here, θ is the fidelity of

the stochastic gradient g(w, θ). We assume that ith element of U(w, θ) is

sub-Gaussian with the parameter θ−1M(w)i,i, i.e.,

Ew

[
eλU(w,θ)i

]
≤ eλ

2M(w)i,i/2θ, ∀λ ∈ R, (4.2)

for i ∈ [d].1 A mini-batch stochastic gradient is computed by averaging n

independent noisy gradients

gi(w, θ) = ∇F (w) + Ui(w, θ),

1For any positive integer N , [N ] , {1, . . . , N}.
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i ∈ [n], each with fidelity θ:

G(w) =
1

n

n∑
i=1

gi(w, θ), (4.3)

which has the covariance matrix M(w)/nθ, and satisfies

Ew

[
‖∇F (w)−G(w)‖2

2

]
=
S(w)

nθ
,

where

S(w) = Tr(M(w))

is the trace of the covariance matrix.

A stochastic gradient g(w, θ) with fidelity θ > 0 incurs a cost C(θ), which

is a strictly increasing function of θ with

lim
θ→0

C(θ) = cmin ≥ 0.

We assume that the cost function C(θ) is unknown. There is also an aggrega-

tion cost D(n) to perform the averaging operation, where D(n) is increasing

with D(1) = 0. Hence, given a budget B > 0, the maximum feasible mini-

batch size is

N = max{n ∈ Z+ |B > ncmin +D(n)}.

Here, we define, for each n ∈ [N ], a mini-batch oracle MBO(n,B,w) that

computes a mini-batch stochastic gradient G(w, n) as in (4.3) using the

fidelity

θn , C−1

(
B −D(n)

n

)
.

That is, each individual stochastic gradient in the mini-batch is allocated

(B −D(n))/n in cost. Therefore, the covariance matrix of G(w, n) is σ2
nM(w),

where

σ2
n ,

1

nθn

is unknown, since the cost function C(θ) is assumed unknown. Note that,

given ∇F (w), the concentration of G(w, n) around ∇F (w) is completely
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governed by σ2
n for each n ∈ [N ]. The optimal mini-batch size in terms of

the cost-fidelity tradeoff is given by

n∗ , arg min
n=1,...,N

σ2
n,

and

σ2
∗ , σ2

n∗ .

In particular, we define the suboptimality gap of each mini-batch oracle

MBO(n,B,w)

∆n , σ2
n − σ2

∗ ≥ 0.

Since the cost function is unknown, the optimal mini-batch size n∗ and σ2
∗,

and hence the optimal mini-batch oracle

MBO(n∗, B,w),

are unknown. In the next section, we propose an algorithm that attempts to

learn the optimal mini-batch oracle over sequential trials in the sense that

its noise variance is almost as small as the optimal mini-batch oracle on each

iteration.

4.3 The EE-Grad Algorithm

In this section, we present EE-Grad: an algorithm that, on each iteration

of the SGD, aggregates stochastic gradients computed over sequential trials,

where at each trial it estimates the optimal mini-batch size and uses the

available per-round budget to query the corresponding mini-batch oracle.

EE-Grad constructs a high confidence bound on the variance estimate of each

mini-batch oracle by exploiting the sub-Gaussian assumption on the noisy

gradients. We demonstrate that, in expectation, the algorithm performs

almost as well as the optimal mini-batch oracle at each iteration.

On each SGD iteration, EE-Grad performs the following T -round proce-

dure. On round t = 1, . . . , T , it picks a mini-batch size nt ∈ [N ] based on

a strategy introduced later in this section, and uses the per-round budget B
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to query the mini-batch oracle MBO(nt, B,w). The oracle returns

Gt(w) = Gt(w, nt),

an unbiased estimate of ∇F (w), with covariance matrix σ2
ntM(w). After T

rounds, the algorithm outputs the stochastic gradient

G(w) =
1

T

T∑
t=1

Gt(w).

We denote the number of rounds the algorithm picks MBO(n,B,w) up to

round t as γt(n), index its outputs as

G1(w, n), . . . ,Gγt(n)(w, n),

and write its sample mean and sample covariance matrix as

mt(n) =
1

γt(n)

γt(n)∑
i=1

Gi(w, n),

Covt(n) =
1

γt(n)− 1

γt(n)∑
i=1

(Gi(w, n)−mt(n))(Gi(w, n)−mt(n))T ,

respectively, for n ∈ [N ]. The algorithm computes the trace of the sample

covariance matrix, denoted by

Vt(n) = Tr(Covt(n))

=
1

γt(n)− 1

γt(n)∑
i=1

(Gi(w, n)−mt(n))T (Gi(w, n)−mt(n))

for each n ∈ [N ]. Note that

Ew[Vt(n)] = σ2
nS(w),

which implies that for each MBO(n,B,w), the trace of its sample covariance

matrix is an unbiased estimate of σ2
nS(w).

We emphasize that this framework is similar to the stochastic multi-armed

bandit setup that involves an exploration/exploitation tradeoff when picking
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different arms over sequential trials [25]. In particular, algorithms that ex-

ploit the available knowledge on the current best arm and explore the other

arms to estimate the actual best arm with higher precision have been shown

to yield satisfactory performance [24,25]. We adopt a similar approach here,

and propose an algorithm that simultaneously performs exploration and ex-

ploitation. More precisely, EE-Grad is initialized by picking each mini-batch

oracle exactly twice, so that γt(n) = 2 for each n ∈ [N ] at trial t = 2N , and

then picks the mini-batch oracle at trial t = 2N + 1, . . . , T according to

nt ∈ arg min
n=1,...,N

[
Vt(n)− f

(
α ln(t)

γt(n)− 1

)]
, (4.4)

for some α > 2, where

f(x) , βP

√
xd

c
max

(
1,

√
x

cd

)
, (4.5)

and c > 0 is a universal constant that comes from the use of Hanson-Wright

inequality, as detailed in the proof of Theorem 4.4.1, and we assume that β

and P are known constants such that

σ2
n ≤ β

for each n ∈ [N ], and

S(w) ≤ P.

This algorithm constructs an upper confidence bound (UCB) on the trace of

the sample covariance matrix of each mini-batch oracle, and picks the one

with the best estimate. The overall scheme, presented as Algorithm 6, will be

analyzed using techniques similar to those used in UCB strategies [24,95,96],

as explained in the proof of Theorem 4.4.1.
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Algorithm 6 EE-Grad

Input: Number of mini-batch oracles N > 1, number of sequential trials

T > 1, per-round budget B.

Initialization:

for t = 1 : 2N do

Set n = dt/2e, and use the mini-batch size nt = n.

Distribute the budget B to MBO(nt, B,w), which reveals Gt(w, n),

and set

Gt(w) = Gt(w, n).

end for

Main Loop:

for t = 2N + 1 : T do

Compute Vt(n) for each n ∈ [N ], and pick a mini-batch size nt based

on (4.4).

Distribute the budget B to MBO(nt, B,w), which reveals Gt(w, n),

and set

Gt(w) = Gt(w, n).

end for

Compute the final gradient estimate as

G(w) =
1

T

T∑
t=1

Gt(w).

4.4 EE-Grad Performance Guarantees

In this section, we investigate the performance of EE-Grad. In particular,

we prove an upper bound on its noise variance, and compare it to the noise

variance achieved by the optimal mini-batch oracle.

Theorem 4.4.1. On each iteration, the stochastic gradient computed by EE-

Grad satisfies

Ew

[
‖G(w)−∇F (w)‖2

2

]
≤ ZT (w)S(w),
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where

ZT (w) =
σ2
∗
T

+

(
lnT

T 2

)
C1(w) +

(
1

T 2

)
C2,

and

C1(w) ,
∑

n:∆n>0

α∆n

φ(∆nS(w)/2)
,

C2 ,

(
N∑
n=1

∆n

)
2(α− 1)

α− 2
,

φ(ε) ,
cε

βP
min

(
1,
ε/d

βP

)
.

Also, the stochastic gradient G∗(w) computed by the optimal mini-batch or-

acle satisfies

Ew

[
‖G∗(w)−∇F (w)‖2

2

]
=
σ2
∗
T
S(w).

Proof. We prove this theorem in several steps. We first analyze the difference

between the noise variance of the stochastic gradient generated by EE-Grad

and that of the optimal mini-batch oracle. We next show that this quantity is

related to the pseudo-regret term that appears in stochastic multi-armed ban-

dit problems, where UCB-type strategies are used to achieve upper bounds

on the pseudo-regret by leveraging concentration inequalities. We present a

similar formulation to analyze the behavior of the proposed algorithm with

respect to the optimal mini-batch oracle. To prove the upper bound, we first

demonstrate that the trace of the sample covariance matrix for each mini-

batch oracle, which is used to pick an oracle on each trial in (4.4), can be

written as a quadratic form of independent sub-Gaussian random variables.

We combine this observation with the Hanson-Wright inequality [97] to prove

a high probability tail bound on the estimate of the optimal mini-batch size.

This result also is the derivation of the rule in (4.4). Based on these results,

we prove a pseudo-regret bound and connect this bound to the noise variance

achieved by EE-Grad.

Note that, on each iteration, the stochastic gradient of the optimal mini-
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batch oracle after T rounds is

G∗(w) ,
1

T

T∑
t=1

Gt(w, n∗),

where

G1(w, n∗), . . . ,GT (w, n∗)

are independent. We observe that

Ew

[
‖G(w)−∇F (w)‖2

2

]
− Ew

[
‖G∗(w)−∇F (w)‖2

2

]
=

1

T 2

(
T∑
t=1

Ew

[
‖Gt(w)−∇F (w)‖2

2

]
−

T∑
t=1

Ew

[
‖Gt(w, n∗)−∇F (w)‖2

2

])

=
1

T 2

(
T∑
t=1

Ew

[
‖Gt(w)−∇F (w)‖2

2

]
− Tσ2

∗S(w)

)
, (4.6)

where in (4.6) we used

Ew

[
‖Gt(w, n∗)−∇F (w)‖2

2

]
= σ2

∗S(w)

for each t ∈ [T ]. We next observe that

Ew

[
‖Gt(w)−∇F (w)‖2

2

]
= Ew

[
Ew

[
‖Gt(w)−∇F (w)‖2

2 | nt
]]

= Ew

[
σ2
nt

]
S(w), (4.7)

where in (4.7) the expectation is with respect to the randomness in nt. In

particular, we can write

Ew

[
σ2
nt

]
=

N∑
n=1

σ2
n Pr(nt = n) (4.8)

for each t ∈ [T ]. If we substitute (4.8) into (4.7) and use the result in (4.6),

then we obtain

Ew

[
‖G(w)−∇F (w)‖2

2

]
− Ew

[
‖G∗(w)−∇F (w)‖2

2

]
=

1

T 2

(
N∑
n=1

σ2
n

T∑
t=1

Pr(nt = n)− Tσ2
∗

)
S(w),

80



=
1

T 2

(
N∑
n=1

σ2
n

T∑
t=1

Ew[1{nt = n}]− Tσ2
∗

)
S(w) (4.9)

=
1

T 2

(
N∑
n=1

σ2
n Ew[γT (n)]− σ2

∗

N∑
n=1

Ew[γT (n)]

)
S(w) (4.10)

=
1

T 2
Ew

[
N∑
n=1

∆nγT (n)

]
S(w), (4.11)

where in (4.9) we used

Pr(nt = n) = Ew[1{nt = n}],

in (4.10) we used

γT (n) =
T∑
t=1

1{nt = n}

and
N∑
n=1

γT (n) = T,

and in (4.11) we used

∆n = σ2
n − σ2

∗.

We note that the term

Ew

[
N∑
n=1

∆nγT (n)

]
S(w)

is similar to the pseudo-regret term that appears in stochastic multi-armed

bandit problems, where there are N arms with unknown reward distributions

[25]. We derive the strategy in (4.4) based on similar arguments, where we

leverage a novel application of the Hanson-Wright inequality to the trace of

the sample covariance matrix of each mini-batch oracle to prove concentration

inequalities.

To prove an upper bound on (4.11), we first show in Lemma C.1.1 that

Vt(n) can be written as a quadratic form of sub-Gaussian random variables

as

Vt(n) = sTt,nAt,nst,n, n ∈ [N ],
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where

st,n ,
(
G1(w, n)T , . . . ,Gγt(n)(w, n)T

)T
,

and

At,n =
1

γt(n)− 1

(
I− 1

γt(n)
E

)
,

I ∈ Rdγt(n)×dγt(n) is an identity matrix, and

E ∈ Rdγt(n)×dγt(n)

is a block matrix with d×d identity blocks. We next apply the Hanson-Wright

inequality [97,98] to Vt(n) for each n ∈ [N ] to obtain high confidence bounds.

This inequality provides a tail probability bound for an arbitrary quadratic

function of independent sub-Gaussian random variables. We present this

inequality in the appendix for completeness. Moreover, Lemma C.3.1 shows

that the tail probability of the trace of the sample covariance matrix of each

mini-batch oracle satisfies, for any ε > 0,

Pr
(
Vt(n)− σ2

nS(w) > ε
)
≤ exp(−(γt(n)− 1)φ(ε)), (4.12)

where

φ(ε) ,
cε

βP
min

(
1,
ε/d

βP

)
,

for each n ∈ [N ]. We observe that φ = f−1, where f is defined in (4.5).

Note that (4.12) is equivalent to stating that, for any δ ∈ (0, 1),

Vt(n)− f
(

1

γt(n)− 1
ln

(
1

δ

))
≤ σ2

nS(w) (4.13)

with probability at least 1− δ. Using this result, we propose the UCB-type

strategy in (4.4) to pick the mini-batch oracle on round t. In particular, we

show in Lemma C.4.1 that, for any α > 2, we have

Ew

[
N∑
n=1

∆nγT (n)

]
S(w) ≤ (C1(w) ln(T ) + C2)S(w), (4.14)
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where

C1(w) ,
∑

n:∆n>0

α∆n

φ(∆nS(w)/2)
,

C2 ,

(
N∑
n=1

∆n

)
2(α− 1)

α− 2
.

Finally, if we use (4.14) in (4.11), then we obtain

Ew

[
‖G(w)−∇F (w)‖2

2

]
− Ew

[
‖G∗(w)−∇F (w)‖2

2

]
≤ 1

T 2
(C1(w) ln(T ) + C2)S(w), (4.15)

where substituting

Ew

[
‖G∗(w)−∇F (w)‖2

2

]
=
σ2
∗S(w)

T

in (4.15) yields the desired result.

4.5 SGD Performance under Strongly Convex

Objectives

In this section, we investigate the performance of EE-Grad with strongly

convex objective functions with Lipschitz continuous gradients. That is, we

assume that the gradient ∇F is Lipschitz continuous with Lipschitz constant

L > 0, i.e.,

‖∇F (w)−∇F (w)‖2 ≤ L‖w −w‖2, ∀w,w ∈ Rd,

and there exists m > 0 such that

F (w) ≥ F (w) +∇F (w)T (w −w) +
1

2
m‖w −w‖2

2, ∀w,w ∈ Rd.

Let

w∗ = arg min
w∈Rd

F (w)
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be the global minimizer. We first describe the optimal mini-batch SGD al-

gorithm that uses the optimal mini-batch oracle on each iteration. We next

compare its performance to EE-Grad in terms of the rate of convergence to

the global solution w∗. Note that the cost function C(θ), and hence the

optimal mini-batch size, is allowed to vary across iterations of the SGD al-

gorithm. We use the subscript k, which denotes the SGD iteration, for the

quantities introduced in Section 4.2 and Section 4.3 to emphasize the itera-

tion dependence whenever necessary.

On each iteration k = 1, . . . , K, the optimal mini-batch SGD algorithm

that knows the optimal mini-batch oracle

MBO(n∗,k, B,w
o
k)

distributes the per-round budget Bk to it producing

Go
t (w

o
k) = Go

t (w
o
k, n∗)

on each trial t = 1, . . . , T . After T trials, it computes its final stochastic

gradient as

Go(wo
k) =

1

T

T∑
t=1

Go
t (w

o
k),

and sets the next iterate as

wo
k+1 = wo

k − ηGo(wo
k).

We observe that wk and wo
k may be different over iterations, so the true

gradients ∇F (wk) and ∇F (wo
k) also may differ. Also, note that Go(wo

k)

satisfies

Ew

[
‖Go(wo

k)−∇F (wo
k)‖

2
2

]
=
σ2
∗S(wo

k)

T
,

where S(wo
k) , Tr(M(wo

k)) for each k ∈ [K]. In this section, we focus on

the case where

M(w) , diag
(
∇F (w)2

1, . . . ,∇F (w)2
d

)
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for any w ∈ Rd, which implies that

S(w) = ‖∇F (w)‖2
2.

We define the expected gaps of EE-Grad and of the optimal mini-batch

SGD algorithm with respect to the global minimizer w∗ on each iteration k

as

Jk,η , E[F (wk)]− F (w∗),

Jo
k,η , E[F (wo

k)]− F (w∗), (4.16)

respectively. The next theorem shows how these expected gaps evolve over

iterations.

Theorem 4.5.1. Suppose that the step size ηk is sufficiently small so that it

satisfies

0 < ηk <
2

L(1 + ZT (wk))
. (4.17)

Then, on each iteration k, the expected gap of the optimal mini-batch SGD

algorithm satisfies

Jo
k+1,η ≤ τ o

k (ηk)J
o
k,η,

where

0 < τ o
k (ηk) , mLη2

k

(
1 + σ2

∗,k/T
)
− 2mηk + 1 < 1.

Moreover, the expected gap of the EE-Grad algorithm on iteration k satisfies

Jk+1,η ≤ τk(ηk)Jk,η,

where

0 < τk(ηk) , τ o
k (ηk) +mLη2

kOT,k < 1,

and

OT,k , ZT (wk)−
σ2
∗,k

T
=

C1,k(w) lnT

T 2
+

C2,k

T 2
> 0,
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where OT,k → 0 as T →∞.

Proof. First note that since ∇F is Lipschitz continuous with Lipschitz con-

stant L > 0, it satisfies [90]

F (w) ≤ F (w) +∇F (w)T (w −w) +
1

2
L‖w −w‖2

2, ∀w,w ∈ Rd,

which implies that on each iteration k, we have

F (wk+1)− F (wk) ≤ −ηk∇F (wk)
TG(wk) +

1

2
Lη2

k‖G(wk)‖2
2. (4.18)

By taking conditional expectations of both sides and rearranging the terms,

we obtain

Ek[F (wk+1)]− F (wk) ≤ −ηkS(wk)

(
1− 1

2
ηkL(1 + ZT (wk))

)
. (4.19)

Performing the same steps on the optimal mini-batch SGD algorithm yields

Ek
[
F
(
wo
k+1

)]
− F (wo

k) ≤ −ηkS(wo
k)

(
1− 1

2
ηkL
(
1 + σ2

∗,k/T
))
. (4.20)

Since F is assumed to be m-strongly convex, the optimality gap for any

w ∈ Rd satisfies [90]

F (w)− F (w∗) ≤
1

2m
‖∇F (w)‖2

2. (4.21)

The assumption in (4.17) guarantees that

1− ηkL(1 + ZT (wk))/2 > 0.

Thus, using (4.21) in (4.19), subtracting F (w∗) on both sides, and rearrang-

ing terms give

Ek[F (wk+1)]− F (w∗) ≤ F (wk)− F (w∗)− ηkS(wk)

(
1− 1

2
ηkL(1 + ZT (wk))

)
≤ F (wk)− F (w∗)

− 2mηk(F (wk)− F (w∗))

(
1− 1

2
ηkL(1 + ZT (wk))

)
=
(
mLη2

k(1 + ZT (wk))− 2mη + 1
)
(F (wk)− F (w∗)),
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= τk(ηk)(F (wk)− F (w∗)).

Here if we take expectations of both sides and note the definition in (4.16),

then we obtain

Jk+1,η ≤ τk(ηk)Jk,η.

Similar steps for the optimal mini-batch SGD algorithm imply

Jo
k+1,η ≤ τ o

k (ηk)J
o
k,η,

where τk(ηk) = τ o
k (ηk) +mLη2

kOT,k, so that

τk(ηk)− τ o
k (ηk)→ 0

as T →∞.

Here, we note that τk(ηk) is a quadratic function of ηk, minimized at

ηk =
1

1 + ZT (wk)
,

and τk(ηk) < 1 for all ηk satisfying (4.17). Similarly, τ o
k (ηk) is a quadratic

function of ηk, minimized at

ηk =
1

1 +
σ2
∗,k
T

,

and τ o
k (ηk) < 1 for all ηk satisfying (4.17). Also, we observe that

τk(ηk) = τ o
k (ηk) +mLη2

kOT,k > τ o
k (ηk)

for all ηk > 0, i.e., τk(ηk) is uniformly larger than τ o
k (ηk), which implies that

the optimal mini-batch SGD algorithm enjoys faster convergence rate than

the proposed algorithm. However, the gap between them is proportional to

OT,k for any given step size ηk > 0, which is the gap between EE-Grad and

the optimal mini-batch SGD algorithm, as shown in Theorem 4.4.1. Finally,

we note that this gap diminishes as the number of trials T increases, at the

expense of larger total incurred cost. In the next section, we illustrate our

theoretical results with numerical examples.
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4.6 Numerical Results

In this section, we present a numerical example based on synthetic data to

illustrate our main results. We consider the d = 2 dimensional case, where

the per-iteration budget is B = 1, and the objective function and its gradient

are

F (w) =
wTw

2

and ∇F (w) = w, respectively, where F (w∗) = 0 with w∗ = (0, 0)T .

We assume that

M(w) = diag
(
w2

1, w
2
2

)
,

and each stochastic gradient g(w, θ) with fidelity θ > 0 has uncorrelated

Gaussian components with the parameters w2
1/θ and w2

2/θ, respectively. We

next assume that the unknown parameters of the mini-batch oracles are given

by σ2
1 = 50, σ2

2 = 26, σ2
3 = 16.7, and run the EE-Grad algorithm and the mini-

batch oracles with a randomly generated initial iterate for T = 50 trials and

K = 5 iterations by using the constant step size η = 0.85, where we obtain

expected results over 2000 independent realizations. We plot the resulting

expected gaps achieved by EE-Grad and the mini-batch oracles in Fig. 4.1a.

We repeat the same procedure for T = 200 and T = 3000 and plot the results

in Fig. 4.2a and Fig. 4.2b, where we note that σ2
i are scaled accordingly, so

that the results over different T s are comparable.

We observe that for this numerical example, the expected gap achieved

by the EE-Grad algorithm is close to that of the optimal mini-batch oracle,

where the performance difference between them shrinks with increasing T at

the expense of increased total cost, as we proved in Theorem 4.5.1.

4.7 Discussion

We presented a new framework to analyze the tradeoff between fidelity and

cost of computing a stochastic gradient, where we modeled a noisy gradient

as an unbiased estimate of the true gradient such that the noise variance

depends on the cost incurred to compute it. We investigated mini-batch or-

acles that distribute a limited budget to a mini-batch of stochastic gradients

and averages them to estimate the true gradient, where the averaging opera-
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Figure 4.1: Expected gaps achieved by the EE-Grad algorithm and the mini-
batch oracles for different values of T = 50, 100 over K = 5 iterations.
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(a) T = 200.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Iteration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ex
pe

ct
ed

 G
ap

Performance of EE-Grad and Mini-batch Oracles (T = 3000)
MBO(1,B,w)
MBO(2,B,w)
MBO(3,B,w)
EE-Grad Alg

(b) T = 3000.

Figure 4.2: Expected gaps achieved by the EE-Grad algorithm and the mini-
batch oracles for different values of T = 200, 3000 over K = 5 iterations.
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tion is also assumed to be costly (i.e., aggregation cost). In this framework,

the optimal mini-batch size in minimizing the noise variance depends on the

underlying cost-fidelity function, which is assumed to be unknown.

We proposed the EE-Grad algorithm that performs sequential trials over

different mini-batch oracles to explore the performance of each mini-batch

oracle with high precision and exploit the current knowledge to allocate the

budget to the one that seems to provide the best performance. We demon-

strated that the proposed algorithm performs almost as well as the optimal

mini-batch oracle on each iteration in expectation. We next applied this re-

sult to the strongly convex objectives with Lipschitz continuous gradients,

and provided a performance guarantee on the rate of convergence with re-

spect to the optimal mini-batch oracle. We finally illustrated our theoretical

results through numerical experiments on synthetic data.
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CHAPTER 5

EXTENSIONS AND OPEN PROBLEMS

In this chapter we first present some extensions to the problems considered

in the earlier chapters of this dissertation. We next propose new problems

that may be explored in future work.

In Chapter 3, we investigated cost-performance tradeoffs in fusing unreli-

able computational units subject to cost and fidelity constraints, where we

assume that outputs produced by different computational units are uncorre-

lated. However, this assumption may not hold in certain applications such

as crowdsourcing [99]. This setting can be extended to a more general case

where outputs produced by different unreliable computational units are al-

lowed to be correlated, where the correlation structure may depend on the

underlying application.

We next note that when studying the fundamental tradeoff between cost

and performance, we assumed that the fusion operation is error-free. This

assumption can be relaxed to a case where the fusion operation may also

produce noisy results under cost and fidelity constraints. In this case, the

fusion operation may also be subject to a cost-fidelity tradeoff.

Moreover, we focused on a particular fusion operation, i.e., linear com-

bination, which is common in certain applications. More generally, we can

consider nonlinear fusion rules to compute the final estimate of the error-free

computation. For instance, midrange [83] and median-of-means [88] estima-

tors have been considered as alternatives to linear estimators under different

scenarios to improve performance. Extension of the centralized fusion setting

of Chapter 3 and Chapter 4 to decentralized settings under different network

topologies, as in [89], is another potential extension.

We next present a new problem formulation where the error-free compu-

tation and outputs of the unreliable computational units are binary-valued,

and where it is later extended to M -ary alphabet case.
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5.1 A Cost-Fidelity Framework under a Binary

Alphabet

Suppose that an error-free computation is given by

Y = f(X) ∈ {0, 1},

where X ∈ Rd is an input signal and f(·) is a desired function. An unreliable

computational unit outputs Zc incurring a cost c ≥ cmin ≥ 0, where cmin is

the minimum cost,

Pr(Zc = Y ) = p(c),

and p(c) is assumed to be a strictly increasing, differentiable, and concave

function with

lim
c→0

p(c) = 1/2,

lim
c→∞

p(c) = 1.

Note that this function controls the tradeoff between cost and accuracy. As

an example, we can consider a class of exponential functions as

p(c) = 1− exp(−αc)/2

for α > 0. Under this setting, suppose that we are given a limited budget

B > 0, and consider a class of repetition-based strategies that fuse outputs of

several unreliable computational units to recover the error-free computation.

For a positive integer n, a repetition-based strategy Sn with a cost budget

B distributes the budget across n independent computational units incurring

costs

c = (c1, . . . , cn),

where ci ≥ cmin for each i = 1, . . . , n, and fuses their outputs to estimate the

error-free computation Y . We assume that fusing outputs of n computational

units incurs an additional cost D(n), which is a strictly increasing function

with D(1) = 0. Thus the cost vector c must satisfy

B =
n∑
i=1

ci +D(n).
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The next lemma applies Neyman and Pearson’s result [100] on the optimal

fusion of n independent Bernoulli random variables with fixed parameters in

terms of minimizing the probability of error to the output of the strategy Sn,

and characterizes the optimal strategy Sn with budget B, given Zc1 , . . . , Zcn

incurring costs c1, . . . , cn, respectively.

Lemma 5.1.1. Given independent estimates Zc1 , . . . , Zcn of the error-free

computation Y with accuracies p(c1), . . . , p(cn), respectively, the probability

of error in estimating Y is minimized by

Ŷn(c;B) =


1 if

N∑
i=1

w(ci)Zci ≥
1

2

N∑
j=1

w(cj)

0 otherwise,

(5.1)

where

w(ci) = log

(
p(ci)

1− p(ci)

)
for i = 1, . . . , n.

Although this weighted majority voting scheme is optimal in minimizing

the probability of error, there are no analytical expressions for this minimum

probability of error. However, Berend and Kontorovich [101] prove an upper

bound on the probability of error achieved by the weighted majority voting

scheme using independent variables with fixed accuracies. The next lemma

applies this result to the strategy Sn with budget B based on the fusion rule

given in (5.1).

Lemma 5.1.2. Given a budget B > 0, the output Ŷn(c;B) of the strategy

Sn with a cost vector c, where ci ≥ cmin for i = 1, . . . , n and

n∑
i=1

ci = B −D(n),

satisfies

Pr
(
Ŷn(c;B) 6= Y

)
≤ exp(−ψ(c)/2), (5.2)
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where

ψ(c) =
n∑
i=1

φ(ci)

and

φ(ci) = (p(ci)− 1/2)w(ci)

for each i = 1, . . . , n.

One potential approach to analyze and optimize the performance of the

repetition-based strategies under a cost budget is to minimize the upper

bound (5.2) on the probability of error achieved by the output Ŷn(c;B) of

the strategy Sn with a cost vector c. We can formulate this approach as a

constrained optimization problem as follows:

maximize
c∈Rn

ψ(c)

subject to ci ≥ cmin, i = 1, . . . , n,
n∑
i=1

ci = B −D(n).

(5.3)

We can further define

gi ,
ci − cmin

u(n)
≥ 0

for i = 1, . . . , n, where

u(n) , B − ncmin −D(n) > 0,

and g = (g1, . . . , gn), so that gi ≥ 0 for i = 1, . . . , n, and

n∑
i=1

gi = 1.

We also define

Sn(g) , ψ(u(n)g + a),

where a = (cmin, . . . , cmin). Hence the optimization problem in (5.3) is equiv-

alent to

maximize
g∈∆n

Sn(g) (5.4)
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where

∆n ,

{
g ∈ Rn

∣∣∣gi ≥ 0, i = 1, . . . , n, and
n∑
i=1

gi = 1

}
is n− 1-dimensional standard simplex, which is a convex set.

5.2 M -ary Alphabet Version

Here we describe an M -ary alphabet version of the problem presented in

Section 5.1. Suppose that the error-free computation Y = f(X) and outputs

of unreliable computational units are limited to a finite set

Y , {0, 1, . . . ,M − 1},

where M > 2 is an integer. In this case, an output of an unreliable compu-

tational unit incurring cost c ≥ cmin can be written as

Pr(Zc = i | Y = j) =

 q(c) if i = j
1− q(c)
M − 1

otherwise
(5.5)

for any i, j ∈ Y . In general, we can consider a function

q : [cmin,∞)→
[

1

M
, 1

)
that are strictly increasing in c and satisfy

q(cmin) =
1

M
,

lim
c→∞

q(c) = 1.

Note that this function controls how increasing cost translates into improved

(decreased) probability of error. We can write the output Zc of an unreliable

computational unit equivalently as

Zc = Y + Uc mod M,
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where, for any i ∈ Y ,

Pr(Uc = i) =

 q(c) if i = 0
1− q(c)
M − 1

if i = 1, . . . ,M − 1.
(5.6)

We remark that the uniform noise given in (5.6) can be seen as the worst-case

model in terms of information [99]. We note that Zhang and Shanbhag [102]

studied probabilistic error models for machine learning kernels implemented

on low signal-to-noise (SNR) circuit fabrics where errors arise due to voltage

overscaling, process variations, or defects. In particular, they investigate

error models that are additive over algebraic fields to predict the performance

of machine learning kernels under hardware errors.

We first present repetition-based strategies that distribute a limited cost

budget across several unreliable computational units and aggregates their

outputs using a fusion rule, which is an extension of the weighted majority

voting scheme given in (5.1) to the M -ary case, to make a final decision

on the error-free computation Y . We next provide another fusion scheme

that, instead of performing a majority voting across unreliable outputs, per-

forms coding across several unreliable outputs to introduce additional error-

correction capability. Design and use of such schemes have been considered

in distributed decision-making for wireless sensor networks [103, 104] and

machine learning [105].

5.2.1 Repetition-Based Strategies

Suppose that there are n independent unreliable unreliable computational

outcomes Zc1 , . . . , Zcn incurring costs c1, . . . , cn, respectively, where

B =
n∑
i=1

ci +D(n) > 0

is a budget, and D(n) is a fusion cost. The weighted majority voting is

performed as follows. We first represent each class in Y with a bit vector of

length m , log2M , where we assume that m is an integer, and divides n. We

denote the binary representation of each unreliable computational outcome

Zci with a binary vector bi = [b1,i, . . . , bm,i] ∈ {0, 1}m, for each i = 1, . . . , n.
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The fusion rule uses the weighted majority vote of the ith bit of b1, . . . ,bn

for each i = 1, . . . ,m to decide on each bit location separately, and then

concatenates the results to yield the final result Ŷn(c;B) ∈ Y . More precisely,

if we denote the binary representation of Ŷn(c;B) with

ŷ = [ŷ1, . . . , ŷm],

then we have, for each i = 1, . . . ,m,

ŷi =

 1 if
n∑

=1

wjbi,j ≥
1

2

n∑
k=1

wk

0 otherwise

, (5.7)

where

wi , log

(
si

1− si

)
, i = 1, . . . , n, (5.8)

and

si ,
M(1− q(ci))

2(M − 1)
(5.9)

is the probability of bit error in any given location for the unreliable compu-

tational unit incurring cost ci, for each i = 1, . . . , n.

The next lemma presents an upper bound on the probability of error at-

tained by the weighted majority voting scheme given in (5.7) in terms of

estimating Y . Note that the final output is correct if and only if the decision

on each bit location is correct. This result is a straightforward application

of the upper bound proven in Lemma 5.1.2 for the binary case.

Lemma 5.2.1. The probability of error of a majority-based fusion scheme

in (5.7) satisfies

Pr
(
Ŷn(c;B) 6= Y

)
≤ 1−

(
1− exp

(
−1

2
Φ

))m
,

where

Φ ,
N∑
i=1

(
si −

1

2

)
wi,
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and wi and si are defined in (5.8) and (5.9), respectively.

We next present a coding-based fusion scheme that aggregates outputs

of several unreliable computational units by incorporating additional error-

correction capability.

5.2.2 Coding-Based Strategies

Suppose that we have n independent unreliable computational units incurring

costs c1, . . . , cn, respectively. We represent the fusion scheme with an M × n
binary code matrix A. The rows of A are denoted by r0, . . . , rM−1, where

ri ∈ {0, 1}n is a codeword assigned to the hypothesis i ∈ Y . The columns of

A are denoted by c1, . . . , cN , where cj ∈ {0, 1}M represents the decision rule

corresponding to the jth unreliable computational unit for each j = 1, . . . , n.

Since the matrix A is binary, each column is designed to discriminate between

only two classes.

We make a local binary decision, vi ∈ {0, 1}, for each noisy computational

outcome Zci based on the ith column of the code matrix A for each i =

1, . . . , n. Then the fusion rule receives the n-bit vector

v = [v1, . . . , vn],

a single bit from each unreliable computational outcome, and employs the

minimum Hamming distance criterion to give its final computation:

Ŷ c
n (c;B) = arg min

0≤j≤M−1
d(v, rj),

where, for any a,b ∈ {0, 1}n,

d(a,b) ,
n∑
i=1

|ai − bi|

is the Hamming distance between a and b. Note that in general the quality of

an error-correcting code can be measured by the minimum Hamming distance

between any pair of code words, which in this case is given by

dmin , min
i 6=j

d(ri, rj).
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For any i ∈ Y , the decision region Di of the codeword ri is defined as

Di , {s ∈ {0, 1}n | d(s, ri) ≤ d(s, rj) for any j ∈ Y}.

We note that the coding matrix based fusion operation introduces a cost

overhead. In particular, we can define the fusion cost as F (M,n), where

F : Z× Z→ R+.

Intuitively, the fusion cost in our framework plays a similar role to the decoder

complexity in communications theory, which increases significantly when try-

ing to achieve arbitrarily low bit error probabilities using only finite transmit

power [106].

By constraining the local decisions through the code matrix A, binary

local decisions are sufficient for an M -ary hypothesis testing problem without

losing information regarding the hypotheses [103]. We remark that the code

matrix A is employed for both local decision rules and the final fusion rule

so that its design plays a crucial rule in the overall performance.

Note that Vempaty, et al. [99] considered a multi-class labeling problem

in crowdsourcing framework where the workers are unreliable. They employ

an error-correcting code based approach to improve the final decision per-

formance. The main distinction is that in their framework the workers are

anonymous, and their misclassification probabilities are assumed to be ran-

domly drawn from a probability distribution. In our framework, however,

we assume that the probability of error achieved by each unreliable compu-

tational unit is determined and controlled by the cost incurred to obtain it

in a deterministic fashion.
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CHAPTER 6

CONCLUSIONS

In this dissertation we focused on decision-making systems and algorithms

under uncertain environments from an abstract point of view. We focused on

robustness and reliability, which are significant concerns in a wide range of ap-

plications including machine learning and optimization, circuits and systems,

neuroscience, crowdsourcing, communications, investment, and wireless sen-

sor networks. One particular motivation behind this thesis work is the im-

plementation of information processing tasks on modern circuit fabrics such

as nanoscale CMOS or spintronics, which are stochastic in nature. We pro-

posed and investigated two generic frameworks to study the robustness and

reliability issues that critically impact the design and analysis of systems and

algorithms based on unreliable components, respectively. We first presented

the framework of online optimization, and used this framework to study

robustness of online decision-making systems and algorithms under worst-

case adversarial perturbations. We next proposed a cost-fidelity framework

to study the performance of repetition-based approaches in decision-making

systems and algorithms based on unreliable components. We finally investi-

gated a partial information version of the cost-fidelity framework, where the

cost-fidelity function is unknown, and applied our results to the problem of

stochastic gradient descent.

We first formulated a game-theoretic framework of online optimization un-

der adversarial perturbations to study robustness of decision-making systems

and algorithms. This framework includes a large class of machine learning

problems as special cases. More specifically, we introduced and investigated

an adversarial worst-case perturbation framework for online optimization,

where an online player’s strategy is subject to perturbations by an adversary.

We cast this problem as a new repeated game, where a randomized player

is pitted against two opponents, namely, Nature and a strategy-perturbing

adversary. We introduced a robust randomized algorithm and presented an
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upper bound on its worst-case expected regret under our worst-case model.

In particular, we proved that this algorithm is Hannan-consistent even under

adversarial perturbations, when certain regularity conditions are satisfied.

We presented some numerical experiments to illustrate our theoretical re-

sults.

We turned our attention to the reliability issue, and considered the problem

of fusing several unreliable computational units performing the same task in

parallel subject to cost and fidelity constraints. We proposed a new frame-

work, where any unreliable computational unit has a certain level of fidelity

and an associated cost that is a function of that fidelity. In particular, we

formalized the relation between cost and fidelity of an unreliable computa-

tional unit using different classes of cost functions, and investigated the limits

of achievable performance by using repetition-based strategies. We showed

that a single and more reliable computational unit incurs less than a fusion

of several less costly and less reliable computational units while achieving

the same performance under concave and linear costs. When the cost func-

tion is convex, we demonstrated that fusing several cheaper but unreliable

computational units may yield a better cost-performance tradeoff than an

expensive and reliable unit under certain conditions.

We next proposed and investigated an application of our cost-fidelity frame-

work to a stochastic gradient descent problem, where the underlying cost-

fidelity function is assumed to be unknown. We considered a class of mini-

batch oracles, which distributes a limited budget across a number of stochas-

tic gradients and aggregates them to produce a final stochastic gradient,

which is used to estimate the true gradient. Since the optimal mini-batch

oracle depends on the unknown cost-fidelity function, we have propose an al-

gorithm that explores the performance of mini-batch oracles and exploits the

current knowledge to estimate the best mini-batch oracle in an online manner.

We demonstrated performance guarantees for this algorithm with respect to

the optimal mini-batch oracle, and illustrated our results for strongly convex

objectives with Lipschitz continuous gradients.

We finally provided some extensions of the problems considered in this

thesis, as well as some open problems for future research.
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APPENDIX A

PROOFS OF CHAPTER 2

A.1 Proof of Lemma 2.4.1

At any time t = 1, . . . , T , we have

η E[`t(Xt)] = η

∫
X

dMt(x)`t(x)

=

∫
X

dMt(x) ln(exp(η`t(x)))

=

∫
X

dMt(x) ln

(
µt(x)

Ztwt+1(x)

)
=

∫
X

dMt(x) ln

(
dMt(x)

dWt+1(x)

)
− ln(Zt).

Using the similar lines as in the proof of Lemma 2.2.1, we get∫
X

dMt(x) ln

(
dMt(x)

dWt+1(x)

)
= η E[`t(Xt)] + ln(Zt)

= ln
(
E
[
e−η(`t(Xt)−E[`t(Xt)])

])
≤ (ηC diam(X))2

8
.

Hence, we conclude that

E[`t(Xt)] ≤ −
1

η
ln(Zt) +

η(C diam(X))2

8
.
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A.2 Proof of Corollary 2.4.1

To prove (2.44), we first note that ln(1 + x) ≤ 1 + ln(x) holds for any x ≥
1/(e− 1). Then, we can write

ln

(
Γu + exp(ηC diam(X))

1− Γl

Γl

)
≤ 1 + ln

(
exp(ηC diam(X))

1− Γl

Γl

)
(A.1)

= 1 + ln

(
1− Γl

Γl

)
+ ηC diam(X),

where (A.1) holds since exp(ηC diam(X)) ≥ 1 and Γl ≤ 1−exp(−1), yielding

exp(ηC diam(X))
1− Γl

Γl

≥ 1

e− 1
.

Hence we get

Fη(Γl,Γu) ≤ 2C diam(X) +
1

η
ln

(
e(1− Γl)

Γl(1− Γu)

)
.

Therefore, by Theorem 2.4.1, we get

E
[
R

(o,p)
T

(
XT

r ;L,P,Aw
k

)]
≤ 1

η

(
r + k ln

(
e(1− Γl)

Γl(1− Γu)

))
+
Tη(C diam(X))2

8

+ 2kC diam(X) .

If we set η = ηo, then we get

E
[
R

(o,p)
T

(
XT

r ;L,P,Aw
k

)]
≤
√
T (A1(r) + kA2(r,Γl,Γu)) + 2kC diam(X) .

Moreover, if k = o
(√

T
)

, then it follows that

E
[
R

(o,p)
T

(
XT

r ;L,P,Aw
k

)]
= o(T ). (A.2)
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In general, when the learning rate satisfies η = O
(

1/
√
T
)

and k = o
(√

T
)

,

the result (A.2) holds.
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APPENDIX B

PROOFS OF CHAPTER 3

B.1 Proof of Lemma 3.4.1

We solve this optimization problem using the method of Lagrange multipliers,

where we first form the Lagrangian

J(θ1, . . . , θN , λ) ,
N∑
i=1

C(θi) + λ

(
τ−1 −

N∑
i=1

θi

)
.

Then, we set the derivative of the Lagrangian with respect to θj to 0, which

is given by

∂J

∂θj
(θ1, . . . , θN , λ) = C ′(θj)− λ = 0,

for each j = 1, . . . , N . Hence the necessary conditions for optimality are

given by λ = C ′(θj) for j = 1, . . . , N .

Here, we note that the cost function C(θ) is convex and strictly increas-

ing in θ, and its derivative C ′(θ) is nondecreasing. This implies that it is

invertible, so we can write

θj = (C ′)
−1

(λ),

for each j = 1, . . . , N , where (C ′)−1 is the inverse of the function C ′. That

is, θ1 = · · · = θN . Moreover, by imposing the MSE constraint, we get

θj = (τN)−1 for any j = 1, . . . , N , which yields the desired result.

106



B.2 Proof of Lemma 3.4.2

We first differentiate the total cost function as

∂Costτ (a)

∂a
= G

(
1

τa

)
− 1

τa
G′
(

1

τa

)
+ cmin +D′(a).

We next find its second derivative as

∂2Costτ (a)

∂a2

= − 1

τa2
G′
(

1

τa

)
+

1

τa2
G′
(

1

τa

)
+

1

τ 2a3
G′′
(

1

τa

)
+D′′(a)

=
1

τ 2a3
G′′
(

1

τa

)
+D′′(a),

which is non-negative since the incremental cost function G(·) and the fusion

cost function D(·) are both convex and a > 0.

B.3 Proof of Lemma 3.4.4

Suppose that λ ∈ [0, 1]. Since f is concave, we have

f(λx) = f(λx+ (1− λ)0)

≥ λf(x) + (1− λ)f(0) ≥ λf(x).

Then, for any x, y > 0, we can write

f(x) + f(y) = f

(
(x+ y)

x

x+ y

)
+ f

(
(x+ y)

y

x+ y

)
.

≥ x

x+ y
f(x+ y) +

y

x+ y
f(x+ y)

= f(x+ y),

where we use x/(x+ y), y/(x+ y) ∈ [0, 1].
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APPENDIX C

PROOFS OF CHAPTER 4

C.1 Trace of the Sample Covariance Matrix as a

Quadratic Form

Lemma C.1.1. On each round t, the trace of the sample covariance matrix

Covt(n) can be written as

Vt(n) = sTt,nAt,nst,n, n = 1, . . . , N,

where

st,n =
(
G1(w, n)T , . . . ,Gγt(n)(w, n)T

)T
,

At,n = (γt(n)− 1)−1(I− γt(n)−1E
)
,

I ∈ Rdγt(n)×dγt(n) is an identity matrix, and E ∈ Rdγt(n)×dγt(n) is a block matrix

with d× d identity blocks.

Proof. Note that

Vt(n) = Tr(Covt(n))

=
1

γt(n)− 1

γt(n)∑
i=1

(Gi(w, n)−mt(n))T (Gi(w, n)−mt(n))

=
1

γt(n)− 1

γt(n)∑
i=1

Gi(w, n)TGi(w, n)− γt(n)mt(n)Tmt(n)

,
where

mt(n)Tmt(n) =
1

γt(n)2

γt(n)∑
i=1

Gi(w, n)T

γt(n)∑
j=1

Gj(w, n)
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=
1

γt(n)2

γt(n)∑
i=1

γt(n)∑
j=1

Gi(w, n)TGj(w, n)

=
1

γt(n)2 sTt,nEst,n.

Noting
γt(n)∑
i=1

Gi(w, n)TGi(w, n) = sTt,nst,n,

we get

Vt(n) =
1

γt(n)− 1

(
sTt,nst,n −

1

γt(n)
sTt,nEst,n

)
= sTt,nAt,nst,n.

This concludes the proof.

C.2 Hanson-Wright Inequality

Lemma C.2.1. Suppose that for m > 1,

W = [W1, . . . ,Wm]T ∈ Rm,

where Wi are zero-mean sub-Gaussian with a parameter σ2 > 0. Then, given

an arbitrary matrix A ∈ Rm×m, we have, for any ε > 0,

Pr
(
WTAW − Ew

[
WTAW

]
> ε
)
≤ exp

(
−cmin

(
ε2

σ4‖A‖2
F

,
ε

σ2‖A‖

))
,

where ‖A‖F and ‖A‖ are Frobenius and operator norms of A, and c > 0 is

an absolute constant.
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C.3 Concentration Result on the Trace of the Sample

Covariance Matrices

Lemma C.3.1. Suppose that γt(n) > 1. Then the tail probability of Vt(n)

satisfies, for any ε > 0,

Pr
(
Vt(n)− σ2

nS(w) > ε
)
≤ exp(−(γt(n)− 1)φ(ε)),

where

φ(ε) ,
cε

βP
min

(
1,
ε/d

βP

)
,

for n = 1, . . . , N , where c > 0 is an absolute constant.

Proof. Note that

I− 1

γt(n)
E

is a dγt(n)× dγt(n) block matrix with d× d blocks, where the diagonal and

non-diagonal matrices are given by

(γt(n)− 1)

γt(n)
I,

and

− 1

γt(n)
I,

respectively, and

‖I‖2
F = d.

This implies that

‖At,n‖2
F =

1

(γt(n)− 1)2

(
γt(n)

(
γt(n)− 1

γt(n)

)2

‖I‖2
F + (γt(n)− 1)γt(n)

1

γt(n)2‖I‖
2
F

)
=

d

γt(n)− 1
.

Next suppose that

v =
(
vT1 , . . . ,v

T
γt(n)

)T ∈ Rdγt(n)
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such that vi ∈ Rd and ‖v‖2= 1. Then we write

‖At,nv‖2
2 =

1

(γt(n)− 1)2

(
‖v‖2

2 +
1

γt(n)2‖Ev‖2
2 −

2

γt(n)
vTEv

)

=
1

(γt(n)− 1)2

1− 1

γt(n)

∥∥∥∥∥∥
γt(n)∑
i=1

vi

∥∥∥∥∥∥
2

2


≤ 1

(γt(n)− 1)2 ,

where equality is achieved by v =
(
vT1 , . . . ,v

T
γt(n)

)T
such that

v1 =

(
1√
2
, 0, . . . , 0

)
,

v2 = −v1,

and vi = (0, . . . , 0) for i = 3, . . . , γt(n). This yields

‖At,n‖ = sup
‖v‖2=1

‖At,nv‖2

= (γt(n)− 1)−1.

We finally note that the trace of the sample covariance matrix can be

written as

Vt(n) =
1

γt(n)− 1

γt(n)∑
i=1

(Gi(w, n)−mt(n))T (Gi(w, n)−mt(n))

=
1

γt(n)− 1

γt(n)∑
i=1

(Qi(n)− qt(n))T (Qi(n)− qt(n)),

where

Qi(n) , Gi(w, n)−∇F (w)

for i ∈ [γt(n)], and

qt(n) = (1/γt(n))

γt(n)∑
i=1

Qi(n).

This implies the same expression holds for the mean-removed versions of
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Gi(w, n)s. Hence, we can assume that

Ew[Gi(w, n)] = 0.

We apply Lemma C.2.1 to Vt(n) by using Lemma C.1.1 to get, for any ε > 0,

Pr
(
Vt(n)− σ2

nS(w) > ε
)
≤ exp(−(γt(n)− 1)φn(ε)),

where

φn(ε) ,
cε

σ2
nS(w)

min

(
1,

ε/d

σ2
nS(w)

)
,

which is strictly increasing in ε, for n ∈ [N ], where c > 0 is an absolute

constant. Finally, we note

φn(ε) ≥ φ(ε),

since we assumed

max
n=1,...,N

σ2
n ≤ β,

and

S(w) ≤ P.

This concludes the proof.

C.4 Pseudo-Regret Bound

Lemma C.4.1. For any α > 2, the pseudo-regret term in (4.11) satisfies,

for any T ,

Ew

[
N∑
n=1

∆nγT (n)

]
S(w) ≤ (C1(w) ln(T ) + C2)S(w),

where

C1(w) ,
∑

n:∆n>0

α∆n

φ(∆nS(w)/2)
,

C2 ,

(
N∑
n=1

∆n

)
2(α− 1)

α− 2
. (C.1)
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Proof. We follow along similar steps to the proof of Theorem 2.1 in [25].

Suppose that nt = n, and consider the events

Et,1 ,

{
Vt(n∗)− f

(
α ln(t)

γt(n∗)− 1

)
≥ σ2

∗S(w)

}
,

Et,2 ,

{
Vt(n) < σ2

nS(w)− f
(

α ln(t)

γt(n)− 1

)}
,

Et,3 ,

{
γt(n) < 1 +

α ln(T )

φ(∆nS(w)/2)

}
.

We claim that

Et,1 ∪ Et,2 ∪ Et,3

must occur. Assume, by contradiction, that Et,i are all false. We obtain

Vt(n∗)− f
(

α ln(t)

γt(n∗)− 1

)
< σ2

∗S(w)

= σ2
nS(w)−∆nS(w)

≤ Vt(n) + f

(
α ln(t)

γt(n)− 1

)
−∆nS(w). (C.2)

By assumption Et,3 is false, and we have

γt(n)− 1 ≥ α ln(T )/φ(∆nS(w)/2),

which is equivalent to

∆nS(w) ≥ 2f

(
α ln(T )

γt(n)− 1

)
, (C.3)

If we use (C.3) in (C.2), then we obtain the following result, which contradicts

the rule in (4.4):

Vt(n∗)− f
(

α ln(t)

γt(n∗)− 1

)
< Vt(n)− f

(
α ln(t)

γt(n)− 1

)
.

For all n such that ∆n > 0, we define

Mn ,

⌈
α ln(T )

φ(∆nS(w)/2)

⌉
.
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We next upper bound Ew[γT (n)] as

Ew[γT (n)] = E

[
T∑
t=1

1{nt = n}

]

= Ew

[
T∑
t=1

1{nt = n and γt(n) < Mn}

]

+ Ew

[
T∑
t=1

1{nt = n and γt(n) ≥Mn}

]

≤Mn + Ew

[
T∑

t=Mn+1

1{nt = n and γt(n) ≥Mn}

]
. (C.4)

In (C.4), we observe that

γt(n) ≥Mn

is equivalent to Et,3 being false, which is further equivalent to

Et,1 ∪ Et,2

being true, i.e., Et,1 or Et,2 must occur. Therefore we can further upper

bound (C.4) as

Ew[γT (n)] ≤Mn + Ew

[
T∑

t=Mn+1

1{Et,1 or Et,2 is true}

]

= Mn +
T∑

t=Mn+1

Pr(Et,1 ∪ Et,2 is true)

≤Mn +
T∑

t=Mn+1

Pr(Et,1) +
T∑

t=Mn+1

Pr(Et,2). (C.5)

where we used the union bound. We upper bound Pr(Et,1) for each t =

Mn + 1, . . . , T . Note that

Pr(Et,1 = 1) = Pr

(
Vt(n∗)− f

(
α ln(t)

γt(n∗)− 1

)
≥ σ2

∗S(w)

)
, (C.6)

where γt(n∗) can take values in {2, . . . , t}. Hence we apply the union bound
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in (C.6), which yields

Pr(Et,1 = 1) ≤
t∑

s=1

Pr

(
V ′s (n∗)− f

(
α ln(t)

s

)
≥ σ2

∗S(w)

)

≤
t∑

s=1

1

tα

= t1−α, (C.7)

where (C.7) follows from (4.13). Here, V ′s (n∗) is the trace of a sample co-

variance matrix given s + 2 independent random vectors with sub-Gaussian

components with the parameter σ2
∗S(w). Hence we obtain

T∑
t=Mn+1

Pr(Et,1 = 1) ≤
T∑

t=Mn+1

t1−α

≤
∞∑
t=1

t1−α

≤ 1 +

∫ ∞
1

t1−αdt

=
α− 1

α− 2
. (C.8)

The same upper bound holds for Pr(Et,2 = 1) so that

T∑
t=Mn+1

Pr(Et,2 = 1) ≤ α− 1

α− 2
.

By incorporating these upper bounds into (C.5) we obtain

Ew[γt(n)] ≤Mn + 2(α− 1)/(α− 2).

Finally we use this result to get

Ew

[
N∑
n=1

∆nγT (n)

]
S(w) ≤ (C1(w) ln(T ) + C2)S(w),

where C1(w) and C2 are defined in (C.1).
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