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Abstract 

This study examined the relationship of lingual and labial force structure to learning of oral 

motor continuous fine force tasks using a pursuit tracking paradigm. It investigated how error and the 

temporal and frequency structure of force during baseline performance predicted oral motor learning in 

healthy younger and older adults, drawing on dynamical systems (Bernstein, 1967, as cited in Newell et 

al., 2003), bidirectional complexity change (Vaillancourt & Newell, 2002) and optimal variability theories  

(Stergiou, Harbourne, & Cavanaugh, 2006) to explain interacting effects of age and task demand. 

Right-handed younger (18-28 years of age, N = 20) and older (71-79 years of age, N = 21) adults 

participated in 2 days’ practice matching constant, 0.75-Hz sinusoidal, and complex periodic (hereafter 

“multicosine”) visual targets by pursing the lips or elevating the tongue to exert submaximal force 

whose magnitude controlled the height of a visual trace. Targets were centered at 15% of maximal 

voluntary force (MVF) determined individually per participant and effector. Over the two days, 

participants practiced matching each target a total of 35 times with each effector. On the third day, 

learning was assessed in retention trials (unmodified tasks) and transfer trials (multiple task 

characteristics individually, systematically modified; only transfer to 10% and 20% MVF target force 

levels is reported here). 

Measures of force structure (approximate entropy, ApEn; fuzzy measure entropy, FuzzyMEn; 

proportion of power, PoP, in 0-1 Hz, 1-2 Hz and 2-3 Hz bands) and error (normalized root mean square 

error, NRMSE) at baseline (day 1, first trial of each effector x task condition) were related to 

measurements of reduction in error vs. baseline in retention and transfer trials on the third day 

(finalNRMSEret, finalNRMSEtrn), using primarily linear mixed effects modeling. Results are presented 

organized by hypotheses within specific aims. Because each hypothesis was assessed using multiple 

measures, only a selection of the results is covered here for brevity. 

Specific aim 1. Assess applicability of previous findings on effects of age and task to oral effectors. 

Hypothesis 1a. Older adults’ force structure will differ task-dependently from younger adults’ (lower 

entropy and a greater proportion of low-frequency power when the task demands high entropy and 

reduced low-frequency power, and vice versa). 

At baseline, task and age group interacted (ApEn: F(2, 205) = 9.555; FuzzyMEn: F(2, 205) = 9.515; 

both p < 0.0005). Follow-up analysis showed that only younger adults altered entropy across task, 

(ApEn: F(2, 100) = 17.173; FuzzyMEn, F(2, 100) = 20.492, both p <0.0005). Younger adults produced 
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higher-entropy force than older adults only on the constant task (ApEn: F(1, 41) = 9.407, p = 0.004; 

FuzzyMEn, F(1, 41) = 10.297, p = 0.003). 

In retention trials, younger adults’ entropy was higher than older adults’ in the lip x constant 

force condition (ApEn: t(39) = -4.339, p = 0.002; FuzzyMEn: t(39) = -4.295; p = 0.001) and lower in the 

tongue x sine condition (ApEn: t(39) = 4.741; FuzzyMEn: t(39) = 4.191; both p = 0.001). These effects 

suggest younger adults adapted structure of output to task demand more closely than the older adults. 

Hypothesis 1b. Adaptability (immediate): Older adults will change structure of force to meet task 

demands less effectively than younger adults, comparing trial 2 to trial 1 on day 1 within each effector x 

task combination. 

There was no significant effect of age or age-task interaction with this minimal practice. 

Hypothesis 1c. Adaptability (after practice): Older adults will change structure of force to meet task 

demands less effectively than younger adults, comparing day 1 trial 1 to day 3 retention trial 1 within 

each effector x task combination. 

Entropy change with practice depended upon an interaction of age group and task (ApEn: F(2, 

205) = 5.890, p = 0.003; FuzzyMEn: F(2, 205) = 4.950, p = 0.008). For the multicosine task, younger adults 

did not change entropy with practice, while older adults increased it (ApEn: t(67.503) = 2.675, p = 0.014; 

FuzzyMEn: F(1, 41) = 4.559, p = 0.039, NS). For the sine task, younger adults decreased entropy with 

practice, while older adults increased it (ApEn: t(75.08) = 4.308, p = 0.001; FuzzyMEn: F(1, 41) = 9.657, 

p = 0.003). 

Hypothesis 1d. Older adults’ reduction in error vs. baseline on retention and transfer trials after two 

days’ practice will be less than younger adults’. 

On retention trials, age group interacted significantly with both effector (F(1, 205) = 5.702, 

p = 0.018) and task (F(2, 205) = 3.871, p = 0.022). Younger adults showed greater reduction in NRMSE 

than older adults only with the tongue (F(1, 41) = 7.38, p = 0.009) and on the sine task (F(1, 41) = 11.288, 

p = 0.002). 

Hypothesis 1e. Structure of force will differ by task. The constant task will elicit the highest entropy, 

lowest proportion of low-frequency power, and greatest proportion of higher-frequency power. The 

sine task will elicit the lowest entropy, greatest proportion of low-frequency power, and lowest 

proportion of higher-frequency power. The multicosine task will be intermediate. 

At baseline, both younger and older adults responded to the increased high-frequency content 

of the multicosine target compared to the sine target by decreasing power in the 0-1 Hz band and 
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increasing it in the 1-2 Hz band (all p ≤ 0.002; see Table 20). On retention trials, entropy had increased 

with practice to a greater degree for the constant task than for both variable tasks (ApEn, F(2, 205) = 

34.918; FuzzyMEn, F(2, 205) = 32.121; main effects and pairwise comparisons of constant to sine and 

multicosine, all p < 0.0005). 

Specific aim 2. Assess differences in motor variability between oral effectors. 

Hypothesis 2a. The tongue will produce less complex force than the lip (lower-entropy, greater 

dominance of low-frequency power). 

Hypothesis 2b. The effects of age group and effector on entropy will interact. 

At baseline, effector and age group interacted (ApEn: F(1, 205) = 10.806, p < 0.0005; FuzzyMEn, 

F(1, 205) = 9.769, p = 0.002). For older adults only, entropy was higher for the tongue (ApEn: F(1, 105) = 

23.591; FuzzyMEn, F(1, 105) = 20.794; both p < 0.0005). On retention trials, older adults still produced 

higher-entropy force with the tongue (ApEn: F(1, 105) = 22.708; FuzzyMEn, F(1, 105) = 22.767; both 

p < 0.0005). Younger adults’ force production on retention trials showed higher entropy with the lip for 

the constant task (which demands high-entropy force; ApEn: F(1, 20) = 11.950, p = 0.002; FuzzyMEn: F(1, 

20) = 10.768) and slightly lower entropy with the lip for the more structured variable tasks (significant 

only for multicosine, ApEn: F(1, 20) = 10.821, p = 0.004; FuzzyMEn: F(1, 20) = 11.775, p = 0.003), 

suggesting that adaptation to task demand with practice may have been better with the lip. 

Specific aim 3. Assess utility of baseline performance measures in predicting de novo learning of fine-

force pursuit tracking tasks in oral effectors. 

Hypothesis 3. (a) Error at baseline (NRMSEinitial) and a measure of temporal structure, (b) higher maximal 

force entropy (maxApEn or maxFuzzyMEn) at baseline or (c) greater adaptability of entropy at baseline, 

will predict reduction in error vs. baseline on retention and transfer trials (finalNRMSEret, finalNRMSEtrn) 

in pursuit tracking tasks after controlling for age group, effector and task. 

NRMSEinitial was a significant predictor of reduced error compared to baseline for both retention 

and transfer trials in all pairings with the various entropy-based predictors (all p < 0.0005). Parameter 

estimates ranged from -0.89 to -0.91, suggesting that poor initial performance functioned as a marker of 

greater room for improvement. 

Maximum entropy also significantly predicted finalNRMSEret (maxApEn model: F(1, 245.948) = 

7.005, p = 0.009; maxFuzzyMEn model: F(1, 245.823) = 5.414, p = 0.021). 1-unit increases in maxApEn 

and maxFuzzyMEn were estimated to predict changes in finalNRMSEret of 0.32 and 0.14 respectively 

(worsening of performance), after controlling for age group, task, effector and NRMSEinitial. 
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The predictive value of initial change in entropy varied by task for retention trials (initialApEn: 

F(2, 236.302) = 3.514, p = 0.031; initialFuzzyMEn: F(2, 236.860) = 5.229, p = 0.006). For the constant task, 

which demands force output of high entropy, higher entropy on trial 2 than trial 1 on day 1 predicted a 

decrease in finalNRMSEret (i.e. a greater reduction in error by day 3). For the sine target, which requires 

force output of low entropy, higher entropy on trial 2 than trial 1 on day 1 predicted an increase in 

finalNRMSEret (i.e. a lesser reduction in error by day 3). 

Initial change in entropy significantly predicted transfer of learning to tasks with a higher target 

force level in both models (initial ApEn model: F(1, 232.077) = 11.853; initial FuzzyMEn model: F(1, 

234.461) = 10.437, both p = 0.001). 1-unit increases in initial ApEn and initial FuzzyMEn were estimated 

to predict changes in finalNRMSEtrn of -0.17 [-0.27, -0.07] and -0.09 [-0.15, -0.04] respectively (improved 

transfer), after controlling for age group, task, effector and NRMSEinitial. 

These and other results from this study suggest that (Aim 1) task-dependent effects on force 

structure and the bidirectional complexity hypothesis of healthy aging developed in non-oral systems 

can be applied to fine-force control in pursuit tracking tasks using the lip and tongue; (Aim 2) oral 

effectors’ structure of force differs, influenced by age, and (Aim 3) baseline behavioral measures can 

predict learning (measured as reduction in error) after two days’ practice. 

Initial adaptability of entropy predicted better performance on retention trials if the direction of 

change was in line with task demand, and worse performance if the direction of change was counter to 

task demand. This effect comports with the idea of variability in early learning as an exploration of task 

space (Dhawale, Smith, & Ölveczky, 2017; Stergiou, Harbourne, & Cavanaugh, 2006; Wu, Miyamoto, 

Gonzalez Castro, Ölveczky, & Smith, 2014) and therefore an active support of learning, rather than a 

hindrance to be suppressed. Optimal variability in a learning context suggests the ability to shift 

temporal/frequency structure of force output in the direction demanded by a goal or task. The 

reduction in adaptability of force structure seen in the older adult participants may play a role in 

changes in learning with aging. 

This prediction can be made from a small enough data set to have potential clinical applicability. 

Older adults remain robustly able to learn and to adjust complexity of oral force output, though with 

limitations most consistent with the loss of adaptability hypothesis. 
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Introduction 

A Clinical Challenge: Prediction of Therapy Benefit 

The question of potential to benefit from therapy arises in many contexts. Patients and their 

families need to know prognoses and to judge estimated effort, cost and risk of side effects against the 

potential for benefit. Answering the overall question for a particular patient requires asking two further 

questions: what does it mean for this patient to benefit from therapy, and what can predict this type of 

benefit? 

What does it mean to benefit from therapy?  Bain and Dollaghan (1991) proposed a definition 

of clinically significant change as “a change in client performance that (a) can be shown to result from 

treatment rather than from maturation or other uncontrolled factors, (b) can be shown to be real, 

rather than random, and (c) can be shown to be important, rather than trivial.” For a clinically significant 

change to represent benefit, the change must be an improvement, that is, a change in a desired 

direction from a measurement taken at baseline to a later measurement. 

Further description of benefit can be situated within the International Classification of 

Functioning, Disability and Health (ICF), a biopsychosocial model adopted by the World Health 

Organization in 2001. This model attempts to merge the medical and social models of health and 

disability, acknowledging that biological and psychological factors at the individual level, as well as 

interpersonal and societal factors, combine in complex ways to produce the constructs of health and 

disability. The model allows description at various levels (body functions and structures, activities and 

participation), any of which can interact with environmental and personal contextual factors (World 

Health Organization, 2002; Vaillancourt, Larsson, & Newell, 2003). 

For instance, consider a person with dysphagia, who may have disability at any level of the ICF. 

Embarrassment from choking or drooling episodes may restrict participation in meals with family. 

Inability to eat safely by mouth is an activity limitation. A tumor blocking epiglottic inversion, or lingual 

weakness leading to poor bolus formation and propulsion, is a disruption of bodily structure or function. 

Environmental factors such as availability of altered-consistency food and liquid or non-oral feeding 

methods, postural supports, feeding assistance or safety cues interact with personal factors such as 

cognitive status, willingness to consume altered-consistency diets, and emotional importance attached 

to mealtime interactions with loved ones to determine safety, participation and quality of life. Other 

SLP-treated disorders have analogous multilevel effects. 
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Therapeutic benefit can be assessed at any level. For example, a person reliant on non-oral 

feeding for primary nutrition may benefit from therapy training family members to safely provide small 

bites or sips to permit meal participation; from therapy focusing on altering diet/liquid consistencies to 

permit safe oral intake (activity level); or from therapy addressing airway protection during the swallow 

(body function level). 

Judgment of therapeutic benefit can also be affected by timing. When a disorder is the result of 

a condition expected to improve with time, showing that change resulted from therapy can be 

challenging. Bain and Dollaghan (1991) note the need to rule out maturation in younger clients. For 

speech-language pathologists (SLPs) in the acute setting, establishing the additional effect of therapy 

above and beyond the effects of spontaneous recovery is notoriously difficult (Marshall, 1997), though 

some evidence suggests benefit to early intervention for dysphagia (Carnaby, Hankey, & Pizzi, 2006; 

Geeganage, Beavan, Ellender, & Bath, 2012; Momosaki et al., 2015; Takahata, Tsutsumi, Baba, Nagata, & 

Yonekura, 2011). In addition, the time elapsed from baseline to later measurement affects the judgment 

of importance. Within-session improvement may fulfill Bain and Dollaghan’s first two conditions; the 

goal of therapy, however, is to create a more lasting change that generalizes, or transfers, to functional 

situations in the patient’s everyday life. 

Though the time periods for “acute” intervention and analysis of its benefit differ, most cover on 

the order of weeks to months. Marshall (1997) reviewed literature on aphasia treatment in the “early 

post-onset period” covering 1-3 months post-stroke. The early-intervention dysphagia literature cited 

above covers interventions ranging from near-immediate (within 24 hours of hospital admission: 

Takahata et al., 2011) to “acute or subacute…within six months” (Geeganage et al, 2012). All assess the 

effects of an entire course of treatment. However, particularly in the acute hospital setting where 

medical status and fatigue may fluctuate significantly over very short time periods, patients and 

clinicians may need to make on-the-spot judgments about the potential benefit of a single therapy 

session vs. the cost in effort (for the patient) and time (for the clinician). 

Assuming the patient has already been diagnosed with a treatable disorder and deemed to be a 

treatment candidate, the question here is not “should this patient be offered treatment?” but “can this 

patient benefit from the planned treatment right now (vs. later today or tomorrow, or an alternate 

treatment)?” When the primary barrier to participation is an acute medical status change, the decision 

is simple: defer treatment and reassess readiness at the appropriate later time. However, commonly the 

decision is less clear. Conditions such as fatigue, hypotension or hypoxia may occur in acutely ill patients 
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and may affect learning and memory (Du, Romano, Aloyo, & Harvey, 1995; Mizunoya, Oyaizu, Hirayama, 

& Fushiki, 2017; Qaid et al., 2017) or patients’ estimates of available vs. required effort, even when mild 

enough not to simply preclude therapy participation. Their effects on patients’ ability to benefit from 

therapy are unknown. Evidence from healthy young adults practicing unfamiliar motor tasks under 

conditions of exercise-induced fatigue is mixed (Alderman, 1965; Carron, 1969; Carron & Ferchuk, 1971; 

Cochran, 1975; Godwin & Schmidt, 1971; Schmidt, 1969) and does not necessarily generalize to older or 

clinical populations. Should the clinician encourage the patient to participate in therapy, even if 

performance will likely be relatively poor and the patient feels the required effort is high? Alternatively, 

should the clinician defer therapy – allowing the patient to rest, but risking a missed therapy day – or 

switch treatment strategies? What kind of evidence can improve this clinical decision? 

Predictors of benefit may be highly dependent on the type of benefit sought. Because of its 

relevance to treatment of multiple disorders at the body function level, this work focused on the 

prediction of benefit to motor control: that is, voluntary movement and/or force production with 

control of timing, sequence, coordination, placement and/or level of force. Examples include voluntary 

prolongation of the opening of the upper esophageal sphincter during the pharyngeal swallow by 

prolonging laryngeal movement (Kahrilas, Logemann, Krugler, & Flanagan, 1991) and coordination of the 

swallow with phase of respiration (Martin-Harris et al., 2015). Behavioral therapy at this level involves 

learning. Depending on therapeutic need, a patient may be asked to relearn a task, modify performance 

of a previously learned task, or learn a new task. 

What is motor learning? Motor learning is an increase in neural capacity to control an effector 

system (biological or artificial) to produce a desired output. By analogy to Bain and Dollaghan’s (1991) 

definition of clinically significant change, it results from practice (mental and/or physical) producing that 

output, rather than from recovery, maturation, or change in the effector system (though these can all 

coexist with or spur motor learning), and it can be shown to be real, rather than random. 

Under this definition, becoming able to play the piano, speak, use a prosthesis after limb 

amputation, drive a car, write, or type all count as motor learning. Learning the identity of an output 

(e.g. a phone number or a song) is not motor learning, but becoming able to dial that number with little 

to no visual attention, or play the song, is. Recovering the ability to draw due to healing of a broken 

wrist is not motor learning, though learning a new drawing method to compensate for the injury is. 

Lifting a greater weight due to muscular hypertrophy, or drawing a thicker line by using a thicker pencil 

or cursor, changes the effector system but is not motor learning; becoming able to coordinate a lifting 
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effort with respiration and posture-stabilizing muscles’ activations, or varying line width using a stylet on 

a pressure-sensitive tablet, is. 

Increased capacity to control cannot be measured directly. Proxy measures include evaluation of 

changes in behavioral performance and neural activation or microstructure (e.g. cortical maps, synaptic 

organization and white matter changes (Fields, 2015; Hosp & Luft, 2011). Behavioral performance 

change is often measured in terms of accuracy (how closely output produced matches the desired 

output, when this can be known), time to complete task, or an efficiency measure before vs. after 

practice. Learning is assumed to have taken place when practice is followed by increased accuracy or 

efficiency or decreased time, or when these measures are unaffected in the face of task alterations such 

as increased difficulty. 

What predicts single-session therapeutic benefit to motor learning?  One potential reasonable 

expectation of benefit from a single session is that improvement in performance of a task targeted in 

therapy persist until the next therapy session and generalize to closely related therapeutic tasks. Thus 

an intermediate refinement of the question is: what information (low-cost in patient effort, clinician 

time and equipment cost to obtain) can predict single-session improvement in task performance which 

persists for at least one day and transfers to other closely related tasks? An answer may improve short-

term prognostication and could guide choice of treatment timing and strategy. 

Many previously evaluated predictors of learning are either not readily or cheaply available or 

are not practical for evaluation of in-the-moment readiness to learn, e.g. profiles of prefrontal and 

striatal dopaminergic genes (Frank, Doll, Oas-Terpstra, & Moreno, 2009), white and gray matter 

microstructure and neural activation (Della-Maggiore, Scholz, Johansen-Berg, & Paus, 2009; Kincses et 

al., 2008; Tomassini et al., 2011). 

Short-time-frame motor learning, within a single experimental session, has been predicted from 

neural activity. Wu, Srinivasan, Kaur, & Cramer (2014) trained healthy right-handed young adults (8/17 

women, mean age 22.1 ± 3.0 years) in a pursuit rotor task, for which participants were asked to keep a 

cursor on a target oscillating along an arc at 50% of the participant’s maximum movement speed. Task 

performance was measured as percent time that the cursor overlapped the target by greater than 50%. 

Two practice blocks each consisted of four twenty-second trials; three test blocks before, between, and 

after the practice blocks consisted of a single eighty-second trial each. Learning was quantified as 

absolute change in task performance from the first to the last test block. Electroencephalography (EEG) 

data were collected at rest prior to any task performance and during each test block, including average 
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absolute power at each electrode and  coherence (20-30 Hz) between each pair of electrodes (used to 

estimate functional connectivity).  coherence with left M1 (contralateral primary motor area for the 

hand) at rest and during the first test block significantly predicted learning. 

Özdenizci et al. (2017) trained healthy right-handed young adults (7/21 women, mean age 23.8 

± 3.1 years) in a rapid-reaching task with adaptation to a velocity-dependent force field. Participants 

moved a manipulandum, which resisted in a velocity-dependent fashion, from a central resting position 

to one of four randomly selected, equally spaced targets. Task performance was measured as the area 

between the observed movement trajectory to target position and the ideal straight line between those 

points. Improvement was quantified as the ratio of mean performance during trials 1-10 to mean 

performance during trials 30-40. EEG data were recorded for all trials and showed that beta activity in 

sensorimotor areas, fronto-parietal attention networks and parieto-occipital areas was predictive of 

improvement in task performance. No follow-up was done to assess longer-term retention or transfer of 

learning in either study. 

While predictively valuable and focused on immediate readiness for learning, this type of data is 

available only in high-resource settings, and requires more trials than practical for a high-fatigue clinical 

patient. In the context of therapy focused on motor control, motor performance measures may serve as 

low-cost, easily obtainable predictors. 

Stimulability (ability to produce target output with the assistance of a cue or model) has been 

recognized across a variety of populations as a marker of readiness to learn, dating from Milisen (1954, 

as cited in Long & Olswang, 1996). Much of this assessment has been conducted with children. Bain and 

Olswang (1995), for instance, found that for children 30-36 months of age with specific expressive 

language impairment and mean length of utterance from 1.0-1.3 morphemes, greater initial 

stimulability for production of two-word utterances predicted greater language development over nine 

weeks. Beeson, Rising and Volk (2003) , on the other hand, treated older adults with persistent severe 

aphasia at least two years post-stroke, using Copy and Recall Treatment (“repeated copying of target 

words in the presence of pictured stimuli, followed by recall trials in the form of written picture 

naming”) over 4-5 months. The only one of their eight participants to show no response to treatment 

was also the only one who showed no within-session mastery of targeted words (their definition of 

stimulability). 

Stimulability may thus offer a rapid, low-cost predictor of therapeutic benefit. However, it has 

limitations for use in acute care settings, where people with dysphagia often make up a large portion of 
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those referred for SLP services. First, development of procedures for the dynamic assessment of 

stimulability within speech-language pathology has focused on speech and language tasks. This 

limitation could be overcome with development of a dysphagia-specific cueing hierarchy. More 

importantly, it may not be safe to assess stimulability for some target tasks with some patients, e.g. any 

task involving intake of food or liquid by mouth in a patient known to have high risk of aspiration 

sequelae. Any predictive task and measure should be safely useable with this population. 

One promising possibility is the measurement of initial accuracy and variability in performance 

of pursuit tracking tasks. This combination offers a way to rapidly collect data on motor learning in 

control-focused tasks, which at low force should be minimally taxing. 

Pursuit Tracking Task 

The pursuit tracking task allows examination of motor accuracy, variability, and learning. It 

elicits continuous behavior1 as opposed to the discrete movements of a ballistic aiming or stop 

consonant production task. Versions of this task have been used for at least sixty years (Chernikoff, 

Birmingham, & Taylor, 1955; Craik, 1947; Noble, Fitts, & Warren, 1955); the modern version detailed 

here applies to all studies labeled “pursuit tracking” in this work unless otherwise noted. Participants are 

seated in front of a monitor on which a target pattern is displayed. A second visual trace on the same 

monitor moves rightward; participants control its height by pressing on a load cell with greater force to 

move the trace upwards, or reduced force to allow the trace to descend. Participants are asked to make 

the trace match the target pattern. Target force levels are usually determined with respect to 

participants’ maximal voluntary contractions (MVC) and are normally well below maximum force. In all 

such studies described in this document unless otherwise noted, participants used the dominant side for 

non-oral effectors; for studies investigating learning, participants were given knowledge-of-results type 

feedback (e.g. absolute or root mean square error) after each trial. Time series of force output are 

analyzed, with varying short lengths of the initial data cropped to avoid including initial approach to and 

stabilization around the target. In some studies 1-2 final seconds of data are also cropped to avoid 

anticipatory reduction of effort. 

                                                           
 

1
 “Continuous behavior” refers to continuous isometric force in most studies described here, but other variants 

exist. Craik (1947) discusses turning a handle with constant angular velocity or acceleration, and Franks, Wilberg 
and Fishburne (1982) asked participants to pivot a lever to track one-dimensional sinusoidal variation. 
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This paradigm presents several benefits. Because the target is known, deviation from it 

(accuracy and variability) can be quantified; because it is controlled by the experimenter, target shape, 

duration and force level can be systematically manipulated. Because many data points per second can 

be collected, within-trial variability can be assessed, but trials can remain short enough to permit 

multiple repetitions for assessment of inter-trial variability. Because the idea is simple and targets are 

set at participant-specific levels, participants of a wide range of ages and strengths can attempt the task. 

Its main disadvantage is that it is not representative of most functional tasks. 

Motor Learning and Initial Accuracy 

Initial accuracy could theoretically predict learning in two contrasting ways. Higher initial 

accuracy could indicate task aptitude, in which case it should predict greater learning. Under this 

reading, accuracy is related to stimulability: rather than fixing a criterion for acceptable performance 

and assessing the level of support required to achieve it, one fixes a level of support (here, a visible 

target and standard instruction) and assesses the resulting performance. Alternately, initial accuracy 

could indicate room to improve, in which case lower initial accuracy would predict greater learning. This 

interpretation can only be valid where performance improvement is possible for the population 

evaluated – i.e. where room to improve exists. Results supporting this interpretation for relatively easy 

tasks or for healthy populations may not generalize to difficult tasks or clinical populations. 

Limited data support the second interpretation. Barbado Murillo, Caballero Sánchez, Moreside, 

Vera-García, and Moreno (2017) predicted within-session learning during an error-based task (standing 

balance on an unstable surface). Learning was measured as performance improvement: the difference 

from baseline to post-practice in average distance of the center of pressure from its mean position. It 

was significantly correlated with initial performance, with the direction of correlation suggesting that 

worse initial performance indicated greater room for improvement. Wu et al. (2014, reviewed above) 

also evaluated initial accuracy in their pursuit rotor task (percent time on target at test 1) as a predictor 

of within-session motor learning (percent improvement in time on target from test 1 to test 3). It was 

not significant, perhaps because their measure focused on time meeting an arbitrary criterion of 

accuracy rather than distance from target. This work used an accuracy measure quantifying distance 

from target. Because participants were healthy adults and the tasks were expected to be learnable, 

initial accuracy was expected to function as a measure of room for improvement rather than aptitude. 



   8 
 
 

Motor Learning and Variability 

Skilled motor performance requires reliably producing accurate, well-timed responses to varying 

internal and external stimuli in service of diverse goals from a range of starting conditions. When an 

action is performed multiple times, even if the goal and starting conditions are held constant, there will 

be differences between trials in timing, magnitude and/or duration of the action, even if all fall within 

acceptable limits on each trial; or, if an action is prolonged (e.g. maintenance of a posture or a level of 

force), moment-to-moment performance will vary around the goal. Accounting for this variability has 

been an important goal of multiple theories of motor control and learning. 

Information-theoretic perspective. One influential view of motor control, often called the 

information-processing or information-theoretic perspective, can be traced to Shannon’s (1948) work 

developing a general theory of communication (independent of medium or message). He posited a 

model in which a message is transmitted from a source to a destination, with stochastic noise modifying 

the signal. The noise is modeled as white Gaussian noise, which requires independence between 

successive values and equal representation of all frequencies (Pierce, 1980). Applied to motor control, 

the message is a motor command, sent from the motor cortex (source) to an effector (destination). 

Mean performance is assumed to indicate the intended motor command, while variability around the 

mean is assumed to result from noise. This view suggests that variability marks poor skill, is to be 

avoided, and will decrease as a task is learned. Operationally, measures of the magnitude of variability, 

such as standard deviation (SD), coefficient of variation (CV) or spatiotemporal index (STI)2 (Smith, 

Goffman, Zelaznik, Ying, & McGillem, 1995), are predicted to decrease with practice; or the assumed 

signal can be compared to the assumed noise as a signal-to-noise ratio (SNR, mean / SD), which would 

be expected to increase with practice. 

The predicted changes in magnitude of variability with learning have been seen in both oral and 

manual motor control literature. For example, Grigos (2009) examined articulator movement variability 

across productions in a longitudinal study of six typically developing children (initial mean age 20 

months) acquiring a voicing contrast (/p/ vs. /b/). Children began the study, not having acquired the 

voicing contrast, with voice onset time (VOT) for /p/ < 20 ms. They were seen every three weeks until 

                                                           
 

2
 CV = SD / mean (the reciprocal of the signal-to-noise ratio described above). STI is the sum of standard deviations 

calculated at 2% intervals over repetitions of time- and amplitude-normalized trajectories. Lower values indicate 
lesser variability. 



   9 
 
 

they acquired the contrast (12-21 weeks), meaning that they produced VOT for /p/ > 25 ms, plus a 

perceptible voicing contrast on at least 90% of occurrences across two consecutive sessions three week 

apart. In each session, coordinates of reflective markers on the lips and jaw (relative to a forehead 

marker) were captured during videotaping of elicited productions of /papa/ and /baba/ in play scenarios 

and digitized. Articulator movements associated with production of /p/ and /b/ were identified from 

time-aligned acoustic recordings, refined algorithmically based on zero-crossings of the jaw velocity 

signal. STI was calculated to describe variability across productions. For both lips and the jaw, STI 

decreased from pre-acquisition to acquisition, but only for /papa/, not for /baba/. Voice onset time 

increased across sessions as STI decreased, with four of six participants showing a significant negative 

correlation between the two, again for /papa/ only. The author interpreted these findings as evidence 

for learning of articulatory strategy, rather than maturation, which she had hypothesized would affect 

both voiced and voiceless production. 

Reduced magnitude of variability with learning has been found in a nonspeech oral motor task 

in healthy adults as well. Testa, Rolando, and Roatta (2011) asked seventeen participants (9 women; 

mean age 28.4 ± 6.67 years) to complete a pursuit tracking task using unilateral jaw-closing force on an 

intermolar sensor to match five-second constant targets at 10%, 20%, 30%, 50% and 70% maximal 

voluntary contraction (MVC). The set of target force levels was repeated three times per side of the 

mouth, alternating sides, on each of two consecutive days. Performance was assessed using mean 

distance (MD: mean absolute difference between target and force produced; MD > 0), offset error (OE: 

difference between average force and target; OE > 0 indicates overshoot, OE < 0 undershoot) and 

coefficient of variation (CV). Findings included increased accuracy (reduced MD and OE) and decreased 

magnitude of variability (CV) from day 1 to day 2. The authors interpreted these findings as evidence of 

a learning effect, though they cautioned that given the limited practice, learning may not have reached a 

plateau. For the purpose of this work, it is notable that even such a limited training regimen produced a 

decrease in variability. 

Further examples abound (Deutsch & Newell, 2004; Mukherjee, Koutakis, Siu, Fayad, & Stergiou, 

2013; Newell et al., 2003; Sosnoff & Voudrie, 2009). However, while these investigations do support the 

prediction of the information-theoretic perspective that magnitude of variability should decrease or SNR 

increase with practice, they also showcase an important limitation. As noted by Deutsch and Newell 

(2004), mean and standard deviation, because their calculation does not account for data order, cannot 

address the time or frequency structure of the data and therefore cannot test the claim that motor 



   10 
 
 

variability merely represents noise. Multiple studies, therefore, have incorporated measures of time and 

frequency structure3 into their data analyses. Where the structure of motor time series data has been 

found not to fit the characteristics posited within the information-theoretic perspective (successive 

values independent, all frequencies equally represented), then its claim that motor variability represents 

noise has not been supported. Rather, when values show some dependence on previous values, then a 

causal process or multiple interacting processes occurring across time can be hypothesized to exist, and 

these can be associated with characteristic prominent frequencies in the power spectrum. Thus while 

the magnitude of variability changes with practice as predicted by the information-theoretic 

perspective, the structure of variability, rather than representing noise, provides a rich information 

source regarding motor control processes. This approach is the dynamical systems framework. 

Dynamical systems framework. This framework descends from Bernstein’s concept of motor 

learning as mastery of redundant degrees of freedom (Latash, Scholz, & Schöner, 2007; Bernstein, 1967, 

as cited in Newell et al., 2003). “Degrees of freedom” may refer to either the physical system at any level 

of analysis (e.g. joints, muscles, motor units, neurons) or the active or dynamical degrees of freedom 

(dimension) describing a behavior in state space.4 Consider moving an effector to a target location, such 

as the tip of the index finger to a letter on a keyboard or the tip of the tongue to the alveolar ridge. In 

state space, the many possible paths to the target are specified in three dimensions, but at any level of 

motor control, far more than three elements act to produce the desired outcome. 

A goal in state space – a desired configuration of a system – is called an attractor. If the goal is a 

steady state, such as constant isometric force production, the attractor in state space is a fixed point 

with zero dimension (Vaillancourt & Newell, 2002). Higher-dimension attractors can also exist. 

Sinusoidally varying isometric force, for instance, is an example of a limit cycle oscillator with one 

                                                           
 

3
 Each such measurement used by a study included in this review has a brief description in Appendix A. Measures 

used in this study are covered in greater detail. 
4
 “State space” describes the possible states of a system and contains one dimension per descriptor. Time-varying 

system configuration is represented as a path through state space. To describe the relevant state (here, physical 
location) of the index fingertip in the main-text example, the state space needs three dimensions corresponding to 
the three physical spatial dimensions. If the relevant state were “force produced perpendicular to the surface of a 
pressure transducer,” only one dimension would be needed. These state spaces describe outcomes. Approximate 
entropy, correlation dimension and other related measures (Appendix A) use outcome signals to estimate a 
reconstruction of a state space describing the process(es) producing the outcome. 
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dimension. The problem of motor learning can be viewed as learning to keep the system near the 

attractor in state space. 

This does not imply that the dimension of motor output must approach the dimension of the 

task attractor. Newell and Vaillancourt (2001) and Vaillancourt and Newell (2002) proposed that a 

complex control system attempting to maintain output near a steady state must dampen the effects of 

any high-amplitude or dominant rhythms which, unopposed, would cause the system’s state to oscillate 

outside the boundaries of acceptability. This damping is accomplished by multiple other, offset rhythms; 

their summed output maintains the system within a threshold deviation from the fixed goal state. The 

presence of multiple rhythms in system output drives its dimension higher, rather than closer to the 

dimension of the fixed-point attractor (zero). When the attractor is a limit cycle oscillator, on the other 

hand, the dimension of the attractor (one) is higher than that of a fixed-point attractor, but the 

dimension of ideal motor output is expected to be lower than that of ideal motor output for a steady 

state, because a dominant rhythm matching that of the attractor should emerge, while other rhythms 

should be suppressed. This argument is not specific to a particular effector nor even to voluntary motor 

control, and thus should apply to oral motor as well as to manual motor control. 

This viewpoint does not contradict the information-theoretic perspective’s prediction that 

magnitude of variability should decrease with practice, because successful emphasis or damping of 

rhythms maintaining a system near an attractor should reduce variability and error around the target 

state (Newell et al., 2003; Slifkin & Newell, 1999; Slifkin & Newell, 2000; Slifkin, Vaillancourt, & Newell, 

2000). However, it does make two predictions conflicting with the information-theoretic perspective: 1) 

the temporal or frequency structure of variability should differ from random noise, reflecting 

coordination of multiple influences on system behavior, and 2) changes should be expected in the 

structure of variability with practice as system coordination alters to more closely approximate output to 

a task goal, with the direction of these changes dependent upon the dimension of the task attractor. 

Several pursuit tracking studies supporting these predictions across the lifespan, each with 

healthy participants using the dominant hand, are described below. Each study’s analyses included time- 

and frequency-domain measures of force structure: approximate entropy (ApEn) and proportion of 

power (PoP). 

Focusing on children, Deutsch and Newell (2004) investigated the effects of age and practice on 

force variability to determine whether reductions in magnitude of motor variability seen in older 

children and young adults were due to reduction in sensorimotor system noise. Three groups of 
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participants (20 with mean age 6.4 ± 0.29, 18 with mean age 10.6 ± 0.26, 20 with mean age 20.7 ± 1.38; 

handedness unspecified) were asked to use a pinch grip (thumb and index finger against oppositely 

oriented load cells with output combined) to match a constant target in the pursuit tracking task. Within 

each age group, half of participants’ target force levels were set at 5% MVC and half at 25% MVC. 

Participants performed fifteen fifteen-second trials on each of five consecutive days. Their force output 

was recorded at 50 Hz, with the initial five seconds cropped, leaving time series of length 10 s x 50/s = 

500 for analysis. All analyses were completed on the index finger and thumb individually and on their 

combined signal; as results were similar, only those for the combined signal were reported. PoP analysis 

included three frequency bands (0-4, 4-8 and 8-12 Hz). Signal-to-noise ratio (SNR) was calculated as 

mean / standard deviation. 

SNR was found to increase as a function of practice. Practice-associated increase was greater for 

the 25% MVC target level regardless of age group, and greater for the young adult group than the 

children’s groups regardless of target force level. ApEn increased with both age and practice, though the 

effect of practice on ApEn became less as age increased. (No comparisons between specific age groups 

were reported.) Within frequency bands, practice was associated with declining PoP in the 0-4 Hz range, 

but no change within the higher bands. Comparison across frequency bands showed that PoP was 

greater in the 0-4 Hz band than in the higher bands across all age groups, target force levels and days of 

practice. PoP did not differ between the two higher-frequency bands on the first day of practice, but 

was higher from 4-8 Hz than from 8-12 Hz on remaining days. 

The authors interpreted these findings as demonstrating that for 6-, 10- and 20-year-olds, 

practice matching a constant force target led to a less regular (less predictable) force structure with a 

broader frequency profile; chronological or developmental age was responsible for less of the variance 

in performance than practice. That is, the structure of variability in participants’ force production was 

meaningful, not random, and it changed with practice in a way expected from the dimension of the task 

attractor (a fixed, zero-dimension point in state space). 

Newell et al. (2003) recruited young to middle-aged adults to investigate changes in structure of 

force output depending upon practice and the dimension of the task attractor. Separate experiments 

were run for constant vs. sine targets using the dominant index finger in the pursuit tracking task. 

Twelve adults (ages 24-50) practiced matching a constant target, and twelve (ages 22-25) a 1-Hz sine 

target; this frequency was chosen based on previous work finding it to be most participants’ dominant 

output frequency in continuous isometric force production (Slifkin & Newell, 1999; Slifkin et al., 2000). 
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Within each task group, participants were assigned randomly to either 10% or 40% MVC target force 

levels. Participants performed twenty-five twenty-five-second trials on each of six consecutive days. On 

the sixth day, both visual traces (target and participant-controlled) and error feedback were suppressed. 

Force output was recorded at 50 Hz, with the initial five seconds cropped, leaving time series of length 

20 s x 50/s = 1000 for analysis. In addition to root mean square error (RMSE) and ApEn, correlation 

dimension was calculated for a subset of the trials. Proportion of power (PoP) analyses split the 0-5 Hz 

range into 17 equal bins (0.2928 Hz). 

For the adults matching the constant force target, ApEn increased over the five days of practice 

with the target visible, regardless of target force level, then decreased on the sixth day with removal of 

visual information. Modal frequency (unspecified frequency with the greatest power) did not change 

with practice, but the level of power at that frequency decreased, and range in which 95% of the power 

within the 0-5 Hz band was concentrated increased from a mean of 2.25 Hz on the first day to 3.10 Hz 

on the fifth: that is, power spectrum became more broadband. Correlation dimension increased as a 

function of practice and was higher in the 10% MVC target force level group than the 40% MVC group, 

but decreased on withdrawal of visual information. 

For the adults matching the sine force target, ApEn decreased over the five days of practice with 

the target visible, regardless of target force level, then decreased further on the sixth day with removal 

of visual information. Modal frequency (0.99 Hz vs. the 1-Hz target) did not change with practice, but 

the level of power at that frequency increased, and range in which 95% of the power within the 0-5 Hz 

band was concentrated decreased from a mean of 2.11 Hz on the first day to 1.11 Hz on the fifth: that is, 

power spectrum became more narrowband. Correlation dimension decreased as a function of practice 

regardless of target force level group, but increased on withdrawal of visual information. 

The authors interpreted these findings as support for a practice-associated and crucially task-

dependent change in number of dynamical degrees of freedom. In their view, practice-associated 

changes in coordination of system components results from both task goals and physical and other (e.g. 

informational or energetic) constraints on action. 

In their study of younger and older adults, Sosnoff & Voudrie (2009) examined the influences of 

age, task, and practice on the temporal structure of isometric force variability to determine whether 

older adults’ lesser adaptability to task constraints could be attributed to lack of task familiarity or was 

characteristic of aging. Right-handed younger and older adults (36 each, mean ages 22.9 ± 3.4 and 72.1 ± 

4.5 years respectively) were asked to use right index finger flexion onto a load cell to match constant 
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and sinusoidal targets. Targets were centered at 15% MVC, with the sinusoid fluctuating by ±5% MVC at 

1 Hz. Participants performed five twenty-second trials for each target (order counterbalanced) on each 

of five consecutive days. Their force output was recorded at 140 Hz, with the initial seven and final one 

seconds cropped, leaving time series of length 12 s x 140/s = 1680 for analysis. PoP analysis was 

completed separately for three frequency bands (0-4, 4-8 and 8-12 Hz). In addition to ApEn and PoP, 

Sosnoff and Voudrie evaluated adaptability across task (ApEn difference score for individual constant vs. 

sinusoidal trials). Though the authors’ focus was on temporal structure of force, they also calculated 

coefficient of variation (CV = standard deviation / mean) for each time series. Three-way mixed model 

ANOVA (age group x day x target) was used to analyze dependent variables’ mean values over the five 

trials for each target x day condition. 

For both tasks, they found decreasing CV associated with practice, with no further significant 

change following the third day of practice. The effects of practice and age group on force structure 

varied by task. For the constant task, practice was associated with increased ApEn, decreased PoP in the 

0-4 Hz band, and increased PoP in the higher bands; younger adult participants had higher ApEn than 

older adult participants. For the sine task, practice was associated with decreased ApEn, increased PoP 

in the 0-4 Hz band, and decreased PoP in the higher bands; younger adult participants had lower ApEn 

than older adult participants. ApEn difference score increased with practice and was greater for younger 

adults than older adults throughout practice. 

The results are consistent with those of Newell et al. (2003), in that a fixed-point task attractor 

elicited less regular output and reduced pre-eminence of a single frequency band after practice, while 

practice matching a limit cycle attractor was associated with the opposite findings. While the reduction 

in magnitude of variability with practice could be explained by either the information-theoretic or 

dynamical systems perspective, only the latter can explain the systematic practice-associated, task-

dependent changes in structure of variability. 5 

The dynamical systems framework has also been applied to the assessment of motor learning in 

a clinical population. Mukherjee, Koutakis, Siu, Fayad and Stergiou (2013) examined stroke survivors’ 

adaptation to a variable force field in an aiming task to determine how variability of hand movement 

changed as participants learned the task. Twelve premorbidly right-handed participants (four with right-

                                                           
 

5
 This study is discussed further in ‘Generalization to healthy aging.’ 
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sided weakness; two women; 1 hemorrhagic, 11 ischemic strokes, all unilateral; mean age 62.92 ± 8.07 

years; mean time post-onset 18.58 ± 12.47 months) were randomly assigned to experimental and 

control groups. Both groups used their affected hand grasping a robotic manipulandum to control a 

cursor, moving it from a central starting position to one of eight equiangularly spaced peripheral targets. 

Targets were ordered in counterclockwise sequence over cycles of 8 trials. After eighty practice trials, 

participants completed forty trials with no alteration from the baseline task, then 240 trials each on that 

day and the next with an additional force exerted through the manipulandum, perpendicular to hand 

velocity. Participants in the experimental group (unbeknownst to them) had augmented visual feedback 

of error: while cursor position along the line from start to target was unchanged, cursor distance from 

that ideal-performance line was doubled. After the force-altered trials on the second day, participants 

completed a further forty washout trials with no additional force (same as baseline task). One week 

later, participants completed forty more unaltered-task trials to test transfer of skill to a non-dynamic 

environment, followed by forty trials in the practiced dynamic-force environment to test retention. 

Positional time series data were recorded as deviation perpendicular to the line between 

starting position and target; SD and ApEn of these time series were determined. Mixed ANOVAs were 

used to detect significant effects of participant group and trial type on the time series measures. There 

were no main effects of participant group or interactions between group and trial type. ApEn increased 

significantly with practice in the dynamic-force environment, then decreased during washout trials. On 

dynamic-force retention trials, ApEn remained higher than during the early trials of day 1, but this 

increase did not transfer to unaltered-task trials without the additional dynamic force. SD significantly 

increased from baseline when the dynamic force was introduced, decreased with practice within the 

dynamic-force environment, then increased again on washout trials. These practice-related changes in 

SD did not persist until retention trials, and neither SD nor ApEn showed transfer to reaching in the 

absence of the variable force field. 

Because changes in structure of variability were maintained until retention trials, while changes 

in magnitude of variability were not, the authors concluded that structure of variability was a more 

sensitive indicator of motor training than magnitude of variability, for this task and these participants. 

In sum, the dynamical systems framework has been used productively to analyze manual motor 

learning in healthy participants across a wide range of ages, in a clinical population, and using both 

isometric continuous force and aiming tasks. Results suggest that structure of motor variability is not 
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consistent with a “noise” interpretation, but rather contains relevant information on how body systems 

coordinate to learn to produce desired motor output. 

Optimal variability as support for motor learning. Newell et al. (2003) suggested an additional 

idea contrasting with the information-theoretic perspective on variability as a sign of poor performance. 

They describe initial changes in structure of motor output as indicative of attempts to match task 

demands by varying coordination strategies within the space of available system components, their 

possible couplings, and various constraints (efficiency, sensory input, cost-benefit ratio of failure to 

success, etc.). That is, initial structural variability may actually support learning if it indicates improved 

exploration of the task. In this reading it should relate to stimulability, as greater unaided exploration of 

a task space should predispose a learner towards taking advantage of support to either expand the task 

space or exploit previously discovered best strategies within the known task space. 

Wu, Miyamoto, Gonzalez Castro, Ölveczky, and Smith (2014) tested whether early variability 

supported motor learning. They asked participants to trace trajectories shown on a screen, with the 

view of their active hand occluded. Baseline trials were completed without feedback, following which 

participants were trained on trajectories for which they were given knowledge-of-results feedback after 

each trial. Participants whose task-relevant variability during baseline attempts was higher than the 

mean showed more rapid performance improvement over hundreds of trials than those whose baseline 

task-relevant variability was below the mean. 

Stergiou, Harbourne, and Cavanaugh (2006) discuss potential learning-supportive characteristics 

of variability. They describe temporal structure of time series in terms of complexity vs. predictability. A 

simple series such as f(t) = c or f(t) = sin(t) has both low entropy (high predictability) and low complexity. 

A series of random numbers has high entropy (low predictability), while remaining low-complexity, 

because it is generated by a simple random process rather than multiple processes coordinating over 

varying timescales. A high-complexity series may appear to be random, but actually contain underlying 

deterministic structure (with or without a random component), yielding intermediate predictability. See 

Figure 1, adapted from Stergiou et al.’s Figure 2. Stergiou et al. suggest that high-complexity 

(specifically, chaotic) output structure is ideal for physiologic systems in general and specifically for 

motor control, indicating capacity to flexibly adapt to stress, perturbation, and changing goals. 

Chaos arises from deterministic systems with nonlinear responses to perturbation 

(Bassingthwaighte, Liebovitch, & West, 1994; Faure & Korn, 2001). These systems are “sensitively 

dependent upon initial conditions,” as state-space trajectories from similar states may rapidly diverge. 
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Thus despite their deterministic nature, their output is difficult to predict. It is bounded but aperiodic 

and so may appear random or noisy (Pincus, 2001). Such a system is capable of periods of stable output, 

but small perturbations can grow rapidly. The concept of sensitive dependence upon initial conditions is 

important for biological systems in general and motor control in particular because relevant internal and 

external factors (e.g. tongue position and muscle activation level) are in constant flux. 
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Figure 1. Time series complexity vs. predictability. Adapted from Figure 2 of Stergiou, Harbourne and 
Cavanaugh (2006). Lower left series: random. Lower right series: sine. Upper central series: logistic 
equation [xi+1 = kxi(1 – xi), k = 3.6, x0 = 0.5]. 
 

Temporal and frequency structure of time series data is quantified using nonlinear 

measurement tools, including those described in Appendix A. The studies reviewed in the previous 

section showed that these nonlinear analyses can fruitfully characterize structure of motor performance 

data in the context of learning, but why should they suggest an optimal variability? 

A highly regular, ordered (low-entropy) motor output signal (when not required by the task or 

goal) suggests inappropriate domination by a single control process. This type of control may allow only 

limited flexibility to respond to a perturbation or to scale output to a goal, as only one component’s 

frequency, amplitude and phase can be adjusted. At the other extreme, a highly irregular, disordered or 

random signal (high entropy) suggests that no ordered control process has significant influence. A high-
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entropy motor output signal, therefore, may also be associated with poor motor performance because 

no controlling process acts to guide the system towards a goal or in response to a perturbation. Chaotic 

and other complex processes have intermediate levels of order or entropy, suggesting multiple control 

processes coordinated across timescales. Melby (2002) showed that self-adjusting, dynamical systems 

adapt their control parameters to function “at the edge of chaos,” where a small perturbation suffices to 

shift between periodic and chaotic output. This adaptation represents an effective control strategy, as a 

chaotic system can be controlled more rapidly, finely and efficiently than a linear system 

(Bassingthwaighte et al., 1994). 

Rapid, fine, efficient control could support adaptability to stress, perturbation or differing task 

demands (Stergiou et al., 2006; Stergiou & Decker, 2011). Stergiou et al. thus suggest that healthy 

biological systems have optimal variability characterized by complex, chaotic structure; deviation from 

this ideal leads to overly rigid behavior in the case of too-predictable structure, or unstable behavior in 

the case of noisy, too-unpredictable structure, and thus to loss of health. They propose that healthy 

development and learning are also characterized by this complex, chaotic structure of variability 

supporting adaptability to perturbation and differing task demands. Clinical populations with altered 

structure of motor variability might then display motor behavior that is “rigid, inflexible, and highly 

predictable (i.e., stereotypical), or alternatively, random, unfocused, and unpredictable” (Stergiou et al., 

2006, p. 121). Stergiou and colleagues proposed an intervention strategy: nurture development of 

optimal variability by teaching a variety of strategies to promote active engagement of the individual 

within their environment. 

They illustrated their proposed therapeutic and measurement approach with two case studies 

focusing on postural motor control. In the first, two one-year-old boys with right spastic hemiplegic 

cerebral palsy were treated for gross motor delays. One boy (JK) was given physical therapy with a focus 

on increased variability of movement. The other (LM) was given a home exercise program “of a more 

static nature” (p. 125). Center-of-pressure time series during sitting were quantified using linear and 

nonlinear measures. After two months of treatment, both boys achieved independent sitting and 

reaching for objects; only JK also developed multiple other posture-change skills and limited right hand 

use. One month post-intervention, JK’s gross motor development continued to be greater than LM’s, 

with multiple postural changes and early ambulation. The authors attributed JK’s greater progress to 

increased complexity of postural control seen in the nonlinear measurements. 
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The second case study assessed standing postural control in an 18-year-old male athlete 

recovering post-concussion, for whom pre-concussion baseline data were available. Center-of-pressure 

time series during standing were assessed using linear and nonlinear measures (Equilibrium Score and 

ApEn respectively) at the beginning of soccer season and daily for four days after the concussion. While 

Equilibrium Score returned to baseline level by the fourth day post-concussion, ApEn remained below 

baseline and in fact diminished further on the fourth day. The authors suggested that nonlinear 

measures may detect subtle motor impairments not visible using linear measures. 

Optimal variability may support non-motor learning as well, as typically developing children 

could be distinguished from children with dyslexia using nonlinear measures of variability. Wijnants, 

Hasselman, Cox, Bosman, and Van Orden (2012) assessed single-word reading in 15 dyslexic children 

(ages 7-8) and 15 “reading-age”-matched children (ages 6-7). Five hundred fifty one-syllable (2-8 letter) 

words were presented individually on a computer screen, which the children were asked to read as 

quickly and accurately as possible. Response times were recorded with millisecond precision; inter-

stimulus interval was 500 ms. Ordered reaction times series were analyzed using linear (mean, SD) and 

nonlinear measures (PoP, standardized dispersion analysis, detrended fluctuation analysis and 

recurrence quantification analysis). Results showed that, in addition to slower and more variable 

response times (higher mean and SD), dyslexic children’s frequency structure of response times was 

closer to white noise and showed lower recurrence rates and higher fractal dimension, while non-

dyslexic children showed 1/f scaling (indicative of complexity; see Appendix A: Frequency Domain 

Measures: Spectral Slope). Though the study task did not itself involve learning, the participants were 

selected to vary in their ability to learn in the domain tested. The authors argued that their results 

should be interpreted in line with similar results from physical and physiological systems, in which 1/f 

scaling suggests interrelated task-specific control processes coordinating over multiple timescales and 

the emergence of successful behavior from the interactive dynamics of the entire system rather than 

any component in isolation. 

In accord with Stergiou and colleagues’ work (Stergiou, Harbourne, & Cavanaugh, 2006; Stergiou 

& Decker, 2011), the association of task-optimal complexity with improved current performance may 

extend to indicating physiological capacity or readiness of the motor system to change its performance. 

Flexible coordination of motor control processes operating across different time scales may enhance 

both exploration of an unfamiliar task space, via generation of varying responses, and ability to shape 
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fluctuations in performance towards a task goal. Changes in temporal and frequency structure co-

occurring with learning and recovery may thus have predictive value. 

Baseline force structure as a predictor of learning. Prediction of later change from nonlinear 

measures of system function has been previously observed in physiological systems. For instance, 

Fleisher, Pincus, and Rosenbaum (1993) collected heartbeat interval data pre- and post-operatively for 

23 high-risk adult patients undergoing elective surgical procedures. Nine (age 76 ± 9) had post-operative 

ventricular dysfunction, while 14 (age 69 ± 10) did not. While mean pre-operative ApEn of the heartbeat 

interval time series did not differ between groups, lowest post-op ApEn (collected before adverse 

events) was lower in the group with ventricular dysfunction. Two consecutive post-op values of ApEn < 

0.7, 8-10 hours apart, had a sensitivity of 88% and specificity of 79% for association with ventricular 

dysfunction (positive predictive value of 73%, negative predictive value of 92%6). The authors suggested 

that post-operative measurement of heartrate ApEn could provide an early indicator of upcoming 

ventricular dysfunction. Similarly, (Kluge et al., 1988) found that infants who later died of sudden infant 

death syndrome (SIDS) differed from control infants in the extent of coordination between cardiac and 

respiratory activity (extent of respiratory sinus arrhythmia). 

If nonlinear measures can detect subtle indicators of disease (with expected future 

deterioration) or current difficulty learning, they may be able to predict learning as well. There is limited 

evidence in support of this idea. Barbado Murillo et al. (2017; methods review earlier) performed 

detrended fluctuation analysis, a measure of the structure of motor variability, on center-of-pressure 

time series collected during a standing balance task on an unstable surface. They found that participants 

with relatively unstructured motor variability (interpreted as greater ability to adjust posture) improved 

performance within a practice session more than those whose motor variability was highly structured. 

This investigation extends that work to oral motor control, to healthy older adults, to tasks varying by 

structure of ideal performance, and to retention and transfer trials one day after cessation of practice. If 

baseline force structure is predictive of later learned performance, such information could be used to 

improve prognostic estimates and/or guide (re)habilitative strategies for disordered speech or swallow. 

                                                           
 

6
 Calculated from data in the paper; the authors provided only sensitivity and specificity. 
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Measurement of baseline force structure. What measure of baseline force structure is most 

appropriate for prediction of learning? This investigation evaluated two possibilities: (1) maximal 

entropy, and (2) change in entropy from the first to the second attempt at each task. 

Maximal entropy during initial task performance. Humans produce force to match a target via 

coordination of multiple neural oscillators (central drives operating over varying timescales) whose 

contributions add dynamical degrees of freedom, i.e. dimension, to the force signal (Newell et al., 2003). 

A higher-dimensional signal may indicate greater independence among the oscillators, while lower 

dimension may indicate that the oscillators are more tightly coupled. Lower maximal dimensionality 

may indicate lesser ability to decouple oscillators to vary force along independent dimensions, possibly 

limiting flexibility to alter performance. In turn, one would then predict lesser motor learning, because 

more ideal couplings of force control processes may lie outside the available solution space. 

A caveat should be made explicit: task alterations such as changed target force level, isometric 

vs. non-isometric or discrete vs. continuous force may add, subtract or modulate the potential 

contribution of force control processes. Since most functional task goals require absolute rather than 

relative force or timing, individual physiological variability will also dictate limits. Thus a baseline 

measure may be limited to predicting learning in tasks which are similar in some respect such as target 

force level, effector or muscle contraction type. 

How should this hypothesis be operationalized? Though the discussion has been in terms of 

force dimension, this investigation did not use the correlation dimension measurement, because it was 

developed for use with completely deterministic, noiseless systems with unlimited amounts of data and 

was not intended for statistical uses (Pincus, 1995). Pincus recommended approximate entropy due to 

its agreement with dimension changes for low-dimensional systems and its applicability to noisy, finite-

length data sets. This investigation used approximate entropy as well as one of its descendants, fuzzy 

measure entropy, determining a maximum for each effector x task condition. These measures are 

unlikely to accurately represent the true maximum of which a participant is capable and are better 

viewed as an estimate over a small sample of initial attempts at unfamiliar tasks. 

Adaptability of force structure to disparate goals. If the goal of force production (in state-space 

terms) is to match the trajectory of force output to the task attractor, then the ability to produce 

particularly high-dimension output may be less important than the ability to adjust the 

temporal/frequency structure of the output to match the task attractor within the space of possible 

states. Immediate within-task adaptability, or the effectiveness of search strategy within the state space, 
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may then be a better predictor of eventual skill. For instance, if the task demands very regular (low-

entropy) output, and one’s initial attempt produces force of moderate entropy, lower- entropy force on 

the second attempt suggests adaptation in a direction congruent with task demand, while higher- 

entropy force on the second attempt suggests a maladaptive change. 

Predicting learning outcomes from an immediate adaptability measure rather than single-trial 

entropy presents two advantages. First, comparison of successive trials suggests how much a participant 

can learn from the minimum possible increment of practice and feedback, potentially making a stronger 

predictor than a static measure. Second, it may offer improved clinical applicability: if a patient cannot 

perform the goal task at all at baseline, one can still construct a rougher prediction by using a proxy task 

similar in relevant respects to the true goal task, but within the patient’s capabilities. If the proxy task 

were selected to require control processes similar to those required by the goal task, it could function as 

an effective alternate predictor. 

Various measures of adaptability are possible. The ideal measure would account for not only 

absolute change in entropy (e.g. Sosnoff & Voudrie, 2009), but also for the relative change compared to 

both the participant’s maximum possible entropy and the entropy of the target. However, given the 

difficulty of measuring maximum possible entropy, and the known differences between entropy of a 

target trace and entropy of ideal human performance following that trace, absolute difference in 

entropy was used here for simplicity. 

Generalization to oral effectors. It has been suggested that due to the many differences in 

structure and function among oral effectors and between oral and non-oral effectors, findings may not 

generalize from literature evaluating non-oral effectors, or from one oral effector to another (Kent, 

2004). For instance, while lateral difference is an important feature of motor control for much of the 

body, it has a more limited role in oral motor control.7  However, while differences in effector control or 

composition could lead to differences in the level of variability (magnitude or structure) between oral 

and non-oral or among oral effectors, the finding of task-dependent changing variability with practice 

should hold because it relies on the idea that change in behavioral output arises from emerging 

coordination between multiple components of a control system, regardless of the identities of those 

                                                           
 

7
 It has been observed as chewing side preference, correlated with hand, foot, ear and eye side preference (Arslan, 

Ínal, Demir, Ölmez, & Karaduman, 2017; Nissan, Gross, Shifman, Tzadok, & Assif, 2004). Since most speech and 
swallow tasks entail grossly symmetric oral function, oral motor laterality was not a focus of this investigation. 
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components. Likewise, the idea that immediate change in structure of force output may predict future 

learning is not effector-specific. The physical characteristics of effectors are unlikely to be the primary 

driver of the kinds of changes seen in the learning studies reviewed thus far, because in each the 

structure of motor output changed with relatively brief, low-force training less than that ordinarily 

recommended to drive processes such as muscle hypertrophy (American College of Sports Medicine, 

2009). As lips and tongue both contribute to normal speech and swallow functions, and their control 

may be jointly or individually impaired in clinical populations, both effectors were included in this work. 

Support for the principle of reduced magnitude of variability with oral motor learning was 

reviewed previously (Grigos, 2009; Testa et al., 2011). A few studies have compared pursuit tracking in 

oral and non-oral effectors, finding more variable performance in the former (Bronson-Lowe, Loucks, 

Ofori, & Sosnoff, 2013; Loucks, Ofori, & Sosnoff, 2012; Ofori, Loucks, & Sosnoff, 2012; van Steenberghe, 

Bonte, Schols, Jacobs, & Schotte, 1991), but very little evidence addresses intra-oral comparisons or how 

temporal structure of oral force changes with task or with learning. 

McHenry et al. (1999) compared maximal strength, magnitude of variability (as “steadiness”), 

and other measures of force generation in the upper lip, lower lip, tongue and jaw in 10-member groups 

of healthy women aged 20-39 (mean 31.1 ± 5.1 years), 40-59 (mean 48.8 ± 6.9 years), 60-79 (mean 66.8 

± 4.5 years) and 80-100 (mean 85.7 ± 4.69 years). Steadiness was measured in a pursuit tracking task 

with constant targets matched over ten five-second trials per effector. It was calculated as criteria 

percentage (CP), measuring the percentage of time during which force was within 10% of the target 

after first attainment of 90% of the target force. The analyzed level of target force was 0.5 N (an 

absolute rather than relative target, in contrast to most recent pursuit tracking studies). ANOVA was 

performed for each effector separately and found the effect of age group on CP not significant. Effector 

differences and age x effector interaction were not tested. 

Visual inspection of their Figure 3 suggests the possibility of an age x effector interaction, as 

steadiness appears greater for the lips than for the tongue and jaw in the three younger groups and this 

difference appears smaller in the oldest group. Comparison of these results to other pursuit tracking 

tasks reviewed in this work is difficult, however, because the use of an absolute force target across age 
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groups and effectors means that the target varied widely in percentage of maximal force.8 Differences 

between average strength of lower lip and tongue appear relatively small across the three younger age 

groups, meaning that the observed differences in steadiness vs. the absolute target would likely be 

preserved in a comparison of steadiness vs. the relative target. On the other hand, the lower lip appears 

stronger than the upper, meaning that it may have a greater advantage in steadiness vs. a relative target 

than is apparent compared to the absolute target. The upper lip’s strength appears consistently lower 

than that of the tongue, which would tend to reduce its apparent advantage in steadiness if compared 

to the relative target. See “Declining strength in oral and manual effectors.” 

Holtrop, Loucks, Sosnoff, and Sutton (2014) examined submaximal force control of index finger 

flexion, lip pucker and anterior tongue elevation in healthy younger (12 of 18 female, mean age 22.6 ± 

2.0 years) vs. older (8 of 14 female, mean age 67 ± 4.5 years) adults, handedness unspecified, in a 

pursuit tracking task using a constant target. Targets were presented at 10% and 20% MVC for 25 

seconds. Participants were asked to complete three trials per effector at each force level during a single 

session. Force output was recorded at 100 Hz, with the initial five seconds cropped, leaving time series 

of length 20 s x 100/s = 2000 for analysis. Force variability was analyzed for both its magnitude 

(coefficient of variation, CV) and structure (approximate entropy, ApEn). 

Findings included significant interactions of age group and effector for both measures. ApEn 

decreased significantly for the finger and lip, but not for the tongue, in older vs. younger adults. CV was 

higher in older adults for each effector. These age-related changes occurred despite the absence of 

significant difference in MVC between the younger and older adults. The authors did not report the 

significance of effector differences within age group, although it appears from their Table 1 that 

participants’ force had lower ApEn and higher CV for the tongue than the lips in both age groups (across 

force levels, and with unknown significance). That is, force output was more predictable or regular and 

had greater magnitude of variability for the tongue. The effector differences were attributed to differing 

physical composition and habitual task demands of oral vs. non-oral effectors; because the focus was on 

age differences, the discussion did not touch on intra-oral comparisons. 

                                                           
 

8
 Based on their Figure 4, 0.5 N appears to range from approximately one-twenty-fourth (4%) of MVF for the lower 

lip of the average participant in the second-oldest group to approximately one-sixth (17%) of MVF for the upper lip 
of the average participant in the oldest group. 



   25 
 
 

This work adds to this literature by comparing oral effectors’ force variability in both steady and 

varying continuous submaximal force tasks and examining the interaction of effector and baseline force 

structure in prediction of learning. Based on interpretation of data in Holtrop et al. (2014) and McHenry 

et al. (1999), the tongue is expected to produce lower-entropy force than the lip, at least for the 

constant task. 

Generalization to healthy aging. The first use of the dynamical systems framework to explain 

changes in healthy aging was the loss of complexity hypothesis (Lipsitz & Goldberger, 1992). Lipsitz and 

Goldberger suggested that aging entailed decreasingly complex dynamics in all physiologic systems, due 

to loss of or detrimental changes in either the systems’ components or their nonlinear coupling, leading 

to reduced adaptation to stress. They reviewed data on neuroendocrine and cardiovascular function in 

aging (e.g. reduced entropy of heart rate and blood pressure variability) to argue for their theory, but 

did not apply it to voluntary motor tasks. 

Reviewing data on motor control (locomotion and bimanual finger movement) and endocrine 

system function,  Vaillancourt and Newell (2002) argued for a modified, bidirectional complexity 

hypothesis of both aging and disease. That is, what is lost is not complexity itself but rather the capacity 

to adjust output force structure to task demands. A task demanding constant output, for example, can 

be said to have a fixed-point (zero-dimension) attractor in state space. To produce such output, 

dominant (high-amplitude) rhythms must be dampened by the addition of multiple other rhythmic 

components. Since the damping is not perfect, actual output is highly complex and entropy 

measurements will be relatively high. On the other hand, a task demanding oscillatory output has a one-

dimensional limit cycle attractor. To produce this output, the target rhythm must be enhanced and 

competing rhythms suppressed, which will produce relatively simple, low-entropy force structure 

(though of higher complexity than the attractor itself, since the competing rhythms will not be perfectly 

suppressed). If older adults are less able to adapt the structure of their force output to task demand, 

they should be less successful at cancelling out high-amplitude rhythms, yielding lower-entropy force for 

a constant target than younger adults, and less successful at emphasizing a single dominant rhythm, 

yielding higher-entropy oscillatory force than younger adults. 

This prediction has been supported in multiple studies, of which three examples using the 

pursuit tracking task in healthy adults are discussed below. These studies examined a variety of 

isometric index finger force contours at low to moderate forces. 
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Vaillancourt and Newell (2003) investigated the effects of task demand on age-related changes 

in force complexity. They examined time and frequency structure of force output in pursuit tracking 

tasks using constant and 1-Hz sine targets by adults in three age groups each evenly split by gender: 

young (mean age 22.1± 1 years), old (mean age 67 ± 2 years), and older-old (mean age 82 ± 5 years). 

Each target was presented in two consecutive trials at 5%, 10%, 20%, and 40% MVC for 25 seconds 

(force and target order randomized) during a single session. Force output was recorded at 100 Hz, with 

the initial five seconds cropped, leaving time series of length 20 s x 100/s = 2000 for analysis. Analyses of 

variability structure included approximate entropy (ApEn), detrended fluctuation analysis (DFA), spectral 

slope and degrees of freedom (SS and SDF), and proportion of power (PoP) in three frequency bands (0-

4, 4-8, 8-12 Hz). 

Results showed that advancing age was associated with ApEn, SS, and SDF decreasing for the 

constant task and increasing for the sine task, and with the DFA scaling index  increasing for the 

constant task and decreasing for the sine task. PoP analysis, run separately for each task, showed an age 

group by frequency bin interaction due to age group differences in the 0-4 Hz band: while all groups’ 

peak power occurred at a similar frequency (~1 Hz), power increased significantly at that frequency with 

each difference in age (older-old > old > young). 

The authors interpreted their findings as showing that with advancing age, force became less 

complex for the constant task and more so for the sine task, consistent with the idea that older adults 

have more difficulty either increasing or decreasing the dimension of their force output to meet task 

demands. They pointed out that the loss of complexity hypothesis may still hold over longer timescales, 

but at the scale at which external environmental or task demands operate, the bidirectional loss of 

adaptability of force complexity is more relevant. Finally, the concentration of both power and age-

related change in the 0-4 Hz frequency bin suggests that the observed effects of age were due to 

changes in sensorimotor processing rather than physiological tremor. 

Sosnoff, Vaillancourt, and Newell (2004) examined electromyographic (EMG) frequency 

structure during pursuit tracking tasks, to evaluate effects of age and task demand on EMG oscillations 

at multiple time scales, possibly indicating changes in central firing synchronizing the collective activity 

of pools of motor units. Healthy young (6/15 women, mean age 24.9 ± 3.8 years), old (7/15 women, 67.8 

± 4.1 years), and older-old (8/15 women, 79.7 ± 4.2 years) adults were asked to use dominant index 

finger abduction to match 1-, 2-, 3-, and 4-Hz sinusoidal targets each centered at 5% and 25% MVC with 

a range of ±5% MVC. Participants completed three twenty-five-second trials per force x frequency 
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condition during a single session, with order of force and frequency randomized. Force output was 

recorded at 100 Hz, with the initial four and final one seconds cropped, leaving time series of length 20 s 

x 100/s = 2000 for root mean square error (RMSE) and modal force frequency calculations. 

Intramuscular EMG during trials was recorded from the active finger’s first dorsal interosseous muscle 

and processed to enhance low-frequency spectral power. Modal frequency (frequency with greatest 

power density in a spectrum) was determined for both force output and EMG, used to assess how 

modal force frequency related to both target frequencies (1-4 Hz) and modal EMG frequency. 

Proportion of EMG power (PoPEMG) was examined in four unequal frequency bands (0-5, 5-15, 15-35 and 

35-50 Hz, based on the modal analysis and previous work). Coherence analysis (maximal coherence and, 

when coherence was significant over five adjacent frequency bins, phase) between force output and 

EMG signals was used to assess coupling between the two. Mixed model ANOVA (age group x target 

frequency x target force level) was performed for each dependent variable. K-means cluster analysis was 

used to evaluate the relationship of EMG and force modal frequencies separately for each force modal 

frequency9 and age group. 

Findings included an age x target frequency interaction in the force output data: young adult 

participants produced force with a modal frequency near the target frequency for all four targets, while 

modal frequency was significantly lower for the older-old adults for the 3-Hz target and both old and 

older-old adults for the 4-Hz target. Young adult participants’ RMSE was lower than both older age 

groups’ RMSE only for the 1-Hz target. Descriptive/visual analysis of a sample young adult participant’s 

normalized EMG spectra by task suggested that the 1-Hz target elicited a broad spectrum with several 

dominant peaks, while all higher-frequency targets elicited a single dominant peak near the target 

frequency. This observation was supported by the k-means analysis, which sorted young adult 

participants’ modal EMG frequencies into three clusters at the lowest modal force frequency (0.78 Hz), 

but only single clusters (all with mean values < 5) for all higher modal force frequencies. In both older 

age groups, the presence of multiple clusters of modal EMG frequencies persisted at higher modal force 

frequencies. Consistent with the k-means analysis, PoPEMG analysis found that younger adult participants 

                                                           
 

9
 Possible force modal frequency values occurred in increments of 0.78 Hz rather than perfectly overlapping the 

target frequencies due to the bin size attained in the Fourier transformation of the time series to the frequency 
domain. This analysis thus examined the relation of modal EMG frequency to the modal frequency of force actually 
produced rather than to target frequency. 
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had greater relative power in the 0-5 Hz band than the older age groups, but only for the 3- and 4-Hz 

targets. Across age groups, relative power increased in the 5-15 Hz band with increasing target 

frequency. In the 15-35 Hz band, the young group had less relative power than both older groups for the 

3-Hz target at both force levels and the 4-Hz target at the higher force level. In the 35-50 Hz band, young 

adult participants had less relative power than both older groups for the 3- and 4-Hz targets. EMG/force 

coherence was greater for young adult participants than for both older groups, with the difference more 

pronounced at the higher target force level, with the exception of no age effect for the 4-Hz target at 

the lower force level. The phase relationship between EMG and force signals was negative, meaning 

force oscillations followed EMG oscillations. Age group effects on phase were significant only in two 

target force x target frequency conditions: the older-old participants had a smaller phase difference 

than the young participants at 5% MVC for the 1-Hz target, but a greater phase difference at 25% MVC 

for the 2-Hz target. 

The presence of an age effect on EMG-force coherence for almost all target force x frequency 

conditions, coupled with the absence of an age effect on EMG-force phase difference for almost all 

conditions, was interpreted as suggesting that the age-related changes seen in motor performance were 

due to central factors (stronger coupling between task-specific oscillatory drive and motor unit pools) 

rather than peripheral changes in duration of transition from electrical signal to mechanical force. 

Results were interpreted as support for age- and task-mediated changes in EMG frequency structure 

such that older adult participants were less able to shift EMG power across frequency bands to meet 

task demands (e.g. emphasizing a dominant target frequency to synchronize motor unit output for a 

relatively smooth, low-entropy force oscillation, vs. desynchronizing motor units’ output by more 

broadly distributing power across frequencies to produce complex, high-entropy force for constant-

target tasks), suggesting impaired coordination of excitation and inhibition of multiple neural oscillators. 

Recall that Sosnoff and Voudrie (2009) examined whether older adults’ relatively reduced 

adaptability of force structure to task demands could be modified with practice. Briefly, young and old 

adults were asked to use index finger abduction to match constant and 1-Hz sine targets over five days’ 

practice. Though both age groups demonstrated reduced magnitude of variability with practice and 

evolution of force structure in the direction demanded by the task (ApEn increased for the constant task 

and decreased for the sine task), the old adults changed ApEn within a more restricted range than the 

younger adults and showed greater magnitude of variability throughout the study. The authors 

interpreted their findings as support for the hypothesis that loss of adaptability (rather than loss of 
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complexity) is characteristic of aging and is not due to lack of familiarity with a task. They speculated 

that both the changes in the force structure observed with practice and the loss of adaptability seen 

with aging could be due to changes in motor unit synchrony. 

Neither complexity change hypothesis has been directly tested in the oral motor literature. 

However, there is indirect evidence of altered force structure for older adults in oral effectors. Marzullo 

et al. (2010) contrasted normalized EMG lip power during perturbed and nonperturbed word 

repetitions. While both young and old adults produced high-frequency EMG power, only young adults 

were able to increase power from 30-50 Hz to reduce lip displacement during perturbation trials. Older 

adults were unable to make this shift and consequently showed greater lip displacement following 

perturbation. These results can be interpreted as a decrease in adaptability with aging. 

If immediate within-task adaptability of force temporal/frequency structure predicts motor 

learning, but older adults are less able to adapt force structure to task demand, the strength of the 

predictive relationship may vary by age. Consequently, both younger and older adults were included in 

this investigation to assess this possibility. 

The role of strength. It has been suggested that the relative magnitude and the regularity of 

variability may be inversely related to muscle strength (Hamilton, Jones, & Wolpert, 2004; Sosnoff & 

Newell, 2006b) and consequently that changes in variability seen with aging may be explained by 

declining strength. The mechanisms potentially responsible are not clear and may include various 

physiological changes or the inherently greater difficulty of producing low relative magnitude of 

variability at extremely low absolute levels of force (Sosnoff, Valantine, & Newell, 2006). The latter 

factor would disproportionately affect weaker participants, for whom a given relative force target 

equates to a lower absolute force. Other work has found age-related changes in force variability in the 

absence of significant declines in maximal strength (Bronson-Lowe et al., 2013; Sosnoff & Voudrie, 2009; 

Vaillancourt et al., 2003). 

If strength does have a role in older adults’ changing variability of force, its effects may differ 

across effectors. Age-related declines in strength are well established for the tongue (Adams et al., 

2013; Crow & Ship, 1996; Nicosia et al., 2000), but findings for other oral effectors have been less 

consistent (Clark & Solomon, 2012; Fogel & Stranc, 1984; McHenry, Minton, Hartley, Calhoun, & Barlow, 

1999; Wohlert & Smith, 1998). The two studies to measure strength of both lip and tongue were 

focused on strength changes in aging and did not compare the effectors to each other (Clark & Solomon, 

2012; McHenry et al., 1999), but some suggestions can be made based on their reported data. 
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Briefly, Clark and Solomon (2012) evaluated tongue strength (anterior and posterior dorsum 

elevation, protrusion, and lateralization) and lip and cheek compression strength in healthy young 

(43/68 women, mean age 22.9 ± 3.5 years), middle-aged (25/60 women, 44.7 ± 8.8 years) and old (15/43 

women, 70.8 ± 7.1 years) adults. Age and effector interacted significantly: strength was decreased in the 

older group compared to the middle group for all four tongue measures and compared to the younger 

group for protrusion and lateralization, but there was no effect of age group on lip compression 

strength. Effectors were not directly compared, but per their Table 4, lip compression strength was 

lower than all four measures of tongue strength across all age groups. If strength has the proposed role 

in variability, tongue force would have lower relative magnitude of variability and higher entropy 

(opposite to the untested differences reported in Holtrop et al., 2014; their lip task involved puckering 

rather than compression, but this should only have exacerbated strength differences). 

McHenry et al. (1999; see “Generalization to oral effectors”) compared maximal strength and 

other measures of force generation in the upper lip, lower lip, tongue and jaw in 10-member groups of 

healthy women aged 20-39 (mean age 31.1 ± 5.1 years), 40-59 (48.8 ± 6.9 years), 60-79 (66.8 ± 4.5 

years) and 80-100 (85.7 ± 4.69 years). The upper lip and tongue showed trends for decreasing strength 

with age (p < 0.107 and p < 0.045 respectively, both nonsignificant after Bonferroni correction). Effector 

differences were not tested. Visual inspection of their Figure 4 shows somewhat lower strength for the 

lips and tongue in the oldest group, lower strength for the upper lip than for the tongue across age 

groups, and the possibility of an age x effector interaction due to tongue strength declining more than 

upper lip strength in the oldest group. 

Recall that McHenry et al. (1999) also measured variability (as “steadiness”) during a very short 

constant-target pursuit tracking task, with the target set at an absolute level of 0.5 N for all age groups 

and effectors regardless of maximal voluntary force (MVF). Extrapolating from Figures 3 and 4 to 

estimate differences in steadiness with the target expressed relative to MVF (see “Generalization to oral 

effectors”), the lower lip may have greater steadiness/lower magnitude of variability than both the 

tongue and the upper lip, despite having grossly similar strength to the former. If correct, this raises the 

possibility that strength has a stronger influence on variability when effector composition is similar 

(upper vs. lower lip) than when it differs (lip vs. tongue). 

In sum, variability differences have been observed across age groups, and appear to exist in 

reported data on different oral effectors but have not been statistically evaluated. Oral effector strength 

differences also appear, untested, in reported data, but have an unclear relationship to variability 
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differences. Given the lack of clarity and the possibility of an age x effector interaction in strength, the 

interaction term was included in analyses in this work. 

Since the role of strength loss in age-related variability change was not the primary focus of this 

work, participants were recruited only into older and younger adult groups, rather than further 

stratifying the older adults into groups who would and would not be expected to show strength loss. 

Because sex differences in strength in the oral effectors were not observed to change direction with 

advancing age in the single study to evaluate the question (Clark & Solomon, 2012), sex was not 

included as a factor in this investigation. 

Generalization to functional tasks. The pursuit tracking studies reviewed previously have used 

constant and sinusoidal force targets to elicit force whose structure can be clearly differentiated by task. 

These targets were also used in this work for the same reason; however, a visual pursuit tracking task 

with either contour does not resemble any common oral motor task. Visual feedback is seldom relevant 

for either speech or swallow, and neither requires sustained performance of either constant or perfectly 

periodic force. To partially address the second of these limitations, a third contour was chosen to 

balance the constraints of improved similarity to speech with the goal of eliciting force whose structure 

would be clearly differentiable by task. 

Eliciting force more complex (higher-entropy) than that produced for a sine target required a 

target with multiple component frequencies. Plausible learnability and the need to elicit force less 

complex (lower-entropy) than that produced in the effort to match a constant target suggested the 

number of additional frequency components beyond the fundamental should be small. A model of 

speech motor control that views speech articulation as movement at a fast timescale (consonant 

gestures) superimposed on movement at a slower timescale (vowels) suggested that the target’s 

structure should entail reduced amplitude for the higher frequencies (Öhman, 1966)10. 

A waveform developed by Stanley and Franks (1990; hereafter, “multicosine”) fit these 

constraints. It consisted of a fundamental dominant frequency with two superimposed, lower-amplitude 

                                                           
 

10
 Öhman’s model was developed using VCV sequences in which all C were stop consonants. He used vowel 

formant transitions to argue that intervocalic coarticulation took place across the intervening consonant and thus 
“stop-consonant gestures are actually superimposed on a context-dependent vowel substrate that is present 
during all of the consonantal gesture” (p. 165). The multicosine waveform was chosen to mimic only this basic idea 
of multiple-timescale superimposition, not to act as a realistic model of speech. Using a more complex, realistic 
model would have risked reduced differentiation of force complexity from that elicited by the constant target. 
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multiples of the fundamental (parameterization details in Methods). The entropy of the target itself was 

higher than that of either the constant or sine targets, but the expected entropy of force output during 

attempts to match it was intermediate between the others, as the presence of multiple component 

frequencies was expected to drive entropy higher than that seen for a sine target, while the 

preservation of regular, predictable structure and the need to emphasize a small number of dominant 

frequencies was expected to keep entropy lower than that seen for a constant target. 

Within-session practice vs. retained and transferred learning: commentary on methods. The 

studies of practice reviewed earlier shared two important characteristics which may have biased change 

in their participants towards temporary effects only. A 100% knowledge-of-results feedback schedule 

(Sosnoff & Voudrie, 2009; Deutsch & Newell, 2004; Newell et al., 2003) may support improved 

performance during practice sessions, but suppress learning as assessed in retention and transfer trials 

without knowledge of results (Salmoni, Schmidt, & Walter, 1984). Blocked practice, in which a single skill 

is practiced repeatedly (Deutsch & Newell, 2004; Newell et al., 2003; Sosnoff & Voudrie, 2009; Wijnants 

et al., 2009), may enhance performance during acquisition, but depress learning outcomes compared to 

random practice of several tasks (contextual interference, Hall & Magill, 1995; Magill & Hall, 1990). 

Because of its clinical importance, this investigation assessed learning as retention and transfer 

the day after practice, rather than performance change during practice. Tasks were structured to 

maximize retention and transfer even at the expense of performance during practice sessions. Learning 

enhancement techniques included random vs. blocked practice, reduced frequency of knowledge of 

results after initial task familiarization, and integrated variable priority training, in which participants 

complete the whole task on each trial but emphasize different aspects of performance (force amplitude 

vs. timing) on different trials (Fabiani et al., 1989; Gopher, Weil, & Siegel, 1989). This training approach 

has been found to hasten learning and improve task mastery (Boot et al., 2010; Prakash et al., 2012). 

Specific Aims and Hypotheses 

This investigation collected original data for an investigation with three primary aims related to 

motor learning and variability in healthy younger and older adults. See Table 1. 
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Table 1 
 
Specific Aims and Hypotheses 

Specific aims Hypotheses 
1. Assess applicability of previous 
findings on effects of age and task to 
oral effectors. 

1a.* Older adults’ force structure will differ task-dependently 
from younger adults’ (lower entropy and a greater proportion 
of low-frequency power when the task demands high entropy 
and reduced low-frequency power, and vice versa). 
 

1b. Adaptability (immediate): Older adults will change 
structure of force to meet task demands less effectively than 
younger adults, comparing trial 2 to trial 1 on day 1 within 
each effector x task combination. 
 

1c. Adaptability (after practice): Older adults will change 
structure of force to meet task demands less effectively than 
younger adults, comparing day 1 trial 1 to day 3 retention trial 
1 within each effector x task combination. 
 

1d. Older adults will show less reduction in error relative to 
baseline on retention and transfer trials after two days’ 
practice than younger adults. 
 

1e.* Structure of force will differ by task. The constant task will 
elicit the highest entropy, lowest proportion of low-frequency 
power, and greatest proportion of higher-frequency power. 
The sine task will elicit the lowest entropy, greatest proportion 
of low-frequency power, and lowest proportion of higher-
frequency power. The multicosine task will be intermediate. 
 

2. Assess differences in motor 
variability between oral effectors. 

2a.* The tongue will produce less complex force than the lip 
(lower-entropy, greater dominance of low-frequency power). 
 

2b.* The effects of age group and effector on entropy will 
interact. 

3. Assess utility of baseline 
performance measures in predicting 
de novo learning of fine-force pursuit 
tracking tasks in oral effectors. 

3. (a) Error and a measure of temporal structure, (b) higher 
maximal force entropy or (c) greater adaptability of entropy at 
baseline, will predict retention and transfer in pursuit tracking 
tasks after controlling for age group, effector and task. 

  

* These hypothesis are expected to hold before and after practice. 
 

Aim 3 is the main interest, but aims 1 and 2 will be addressed first in Results to build the case for the 

importance of age group, effector, and task in this data set prior to their use as predictors for aim 3.  
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Methods 

Participants 

Younger and older right-handed adults were recruited. Younger adults (10/20 women) ranged in 

age from 18-28 years (M ± SD, 22.887 ± 2.843 years). Older adults (10/21 women) ranged in age from 

71-79 years (M ± SD, 75.322 ± 2.691 years). Younger adults had 16.75 ± 2.45 years of education; older 

adults, 15.67 ± 2.89 years. This difference was not significant (two-tailed independent samples t-test 

with equal variances assumed, t(39) = -1.293, p = 0.204). Other criteria included: 

1. No reported history of neurological, psychiatric or speech-language disorders or motor 

impairments. Investigator (certified speech-language pathologist with six years’ experience with 

geriatric clinical populations) observed for signs of speech or other motor disorders during 

conversation, and rejected one potential participant on this basis (see Results: Missing Data), 

but no formal speech, motor or cranial nerve screening was performed. 

2. No signs, symptoms or diagnosis of temporomandibular joint disorder in the past 5 years 

3. No use of anti-depressant or anticholinergic drugs (e.g. antihistamines, tricyclic antidepressants, 

antipsychotics, antiemetics), anticonvulsants, or antianxiety drugs, any of which may affect 

neural function 

4. No use of dentures 

5. Central and lateral incisors present and functional 

6. Functional vision (natural or corrected) and cognitive-communication skills to understand the 

chart displays used for performance of the experimental task 

7. For the older adult participants, a score of at least 27 on the Mini-Mental State Examination 

(Folstein, Folstein, & McHugh, 1975), or at least 26 if the potential participant had no more than 

an eighth-grade education (O'Bryant et al., 2008; Kukull et al., 1994; Bravo & Hébert, 1997). 

8. No oral pain, infection or lesion (screened prior to inclusion and daily before testing) 

All provided informed consent. Experimental procedures were approved by the Institutional 

Review Board at the University of Illinois prior to participant recruitment. 

Handedness preference (direction and strength) was measured using the handedness subscale 

of the Lateral Preference Inventory (Coren, 1993). To be included, participants had to score at least 1, 

i.e. prefer to use their right hand for at least one more activity than their left hand. Handedness criteria 
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were included in this oral motor control study due to handedness-group differences on multiple visual, 

auditory and motor tasks (Gabbard, 1998) and to control for any potential subtle oral laterality (Arslan 

et al., 2017; Nissan et al., 2004). 

Functional (corrected or uncorrected) vision and chart understanding was assessed with a 

custom screen: During the informed consent process, the potential participant was shown a simulated 

task (replay of previously collected data), and the chart display was explained including identification of 

target and data signals and relationship of pressure on the transducer to behavior of the data line on the 

chart. After a short delay with other screens serving as distractions, the participant was shown two 

simulated tasks and asked to identify in each case the target line, data line, a point at which the person 

providing the data had needed to press more gently to match the target, and a point at which the 

person had needed to press harder. Each question was worth one point, with 7 out of 8 required to 

pass. The only question permitted to be missed was the final one, ‘needed to press harder’ in the 

constant case, because the visible difference between target and data was very small. Appendix B 

includes screenshots of the tested cases. Use of glasses, contacts or hearing aids was noted daily, but 

the functional vision screen was completed only once. 

Instrumentation 

Stimulus presentation. Stimuli were presented on a Lenovo P500 laptop anti-glare screen, 

15.6”/39.6 cm diagonal (16:9 aspect ratio: 1366 x 768 pixels), ~45 cm from the participants’ eyes; chair 

height, screen height and screen angle were adjusted for comfort and best view. Participants were 

encouraged to wear glasses if they normally did so for reading or computer work. 

Targets were presented as a thick red line (R255 G000 B010) on a black background, with the 

participant’s force represented as a thinner blue line (R051 G153 B255) that remained visible when it 

crossed the target line. The plot area of the display was 1246 pixels wide by 207 pixels high, yielding a 

horizontal gain of approximately 78 pixels/sec for a 16-second task. Vertical scale of the chart ranged 

from 0% to 30% of a participant’s effector-specific maximal voluntary force (MVF), yielding a vertical 

gain of 0.145%MVF/pixel. Controlling vertical gain in this way rather than Newtons/pixel allowed for 

visual angle to remain constant across tasks with differing dynamic ranges and across effectors and 

participants with differing maximal strengths. 

Signal collection. Separate transducers, shown in Appendix C, were used to collect lip and 

tongue force signals. The transducers’ sensitivity was under 0.01 Newton. 
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An adjustable chin rest was used to minimize extraneous movement. The lip force transducer 

was fixed using a nonslip-mounted vise on the table. Its two horizontal prongs were placed inside the 

commissures of the lips, to the depth of the prongs’ rounded divots. Pressure was exerted medially 

against the prongs by pursing the lips. The tongue force transducer was held bimanually with elbows 

resting on the table, stabilized within the mouth by indentations for the upper and lower teeth to 

minimize jaw motion. Pressure was exerted by elevating the anterior tongue against the lower surface 

of the curved metal tab protruding from the transducer’s end. 

Transducer signals for all conditions, sampled at 100 Hz, were routed through a bridge amplifier 

(Biocommunication Electronics LLC, Madison, WI). The signals were sent to an NI-USB-9234 signal 

acquisition A/D board and then to custom Labview programs to provide target signals and feedback 

(National Instruments, Austin, TX). 

Any trial interrupted by a perturbation (cough, jostling of chair/table/transducer setup, etc.) was 

restarted; that is, all recorded and analyzed trials were free of perturbation. 

Calibration. Each transducer was calibrated using known test masses (0 – 450 g in increments of 

50 g, not all tested during every calibration; brass scale weights, Ohaus, Parsippany, NJ). Calibration 

before every experimental session and occasionally on non-experimental days began with testing at 0 g 

to check for and correct baseline drift. Multiple nonzero masses were also tested before the majority of 

experimental sessions (60% for the lip transducer, 65% for the tongue transducer) and occasionally on 

non-experimental days. Baseline was also retested and corrected to zero immediately before each 

participant began the day’s trials, and at the beginning of each set of five trials. 

Table 2 lists criteria for accepting a calibration trial, developed empirically based on early 

calibration sessions prior to experimental data collection. Two criteria were chosen: absolute value of 

slope close to zero to ensure values were not drifting appreciably during a trial, and mean close to zero 

when test mass was 0 g, to ensure baseline was close to a known correct value. Figure 2 and Table 3 

show the actual frequency distribution of unique masses tested per session. For both transducers, 86% 

of multi-mass testing sessions had at least 4 test masses. 
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Figure 2. Frequency distribution of unique masses tested per calibration session. 

Table 2 
 
Required Criteria for an Acceptable Calibration Trial and Metrics of Actual Trials 

 Required Actual (M ± SD, # trials) 

  Lip Tongue 
|Linear slope| < 10-4 volts/sec 6.0 x 10-7 ± 1.2 x 10-6 

volts/sec (1079 trials) 
4.5 x 10-6 ± 7.2 x 10-6 
volts/sec (947 trials) 

Mean for trials 
at 0g 

≤ 0.003 volts -0.00025 ± 0.00096 volts 
(346 trials) 

-0.00013 ± 0.0015 volts 
(224 trials) 

Visual review no obvious perturbation achieved for all accepted trials 
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Table 3   
   
Frequency Distribution of Unique Masses Tested per Session 

Unique masses 
tested per 
calibration session 

  Lip    Tongue          _ 

Frequency 
(N, %) 

Cumulative 
frequency 

(% ≥) 
Frequency 

(N, %) 

Cumulative 
frequency 

(% ≥) 
2 4 (4.5%) 100% 0 (0%) 100% 
3 8 (9.0%) 95% 13 (14%) 100% 
4 28 (31%) 87% 30 (31%) 86% 
5 14 (16%) 55% 12 (13%) 55% 
6 27 (30%) 39% 24 (25%) 43% 
7 2 (2.2%) 9.0% 7 (7.3%) 18% 
8 2 (2.2%) 6.7% 5 (5.2%) 10% 
9 1 (1.1%) 4.5% 4 (4.2%) 5.2% 
10 3 (3.4%) 3.4% 1 (1.0%) 1.0% 

 

Linear regression of signal vs. test mass using all acceptable trials was performed to develop 

conversion equations for transducer data from volts to Newtons. Proportion of variance accounted for 

by a linear fit to the data was high for both transducers: r2
lip = 0.81, r2

tongue = 0.94. 

Infection prevention. Following every experimental session, transducers were soaked for eight 

minutes in Revital-Ox RESERT XL (Accelerated Hydrogen Peroxide) High Level Disinfectant (Steris, 

Mentor, OH), then washed for one minute in tap water per manufacturer directions. VERIFY Chemical 

Monitoring Strips for Resert Solutions (Steris) were used once per experimental day to verify activity of 

the disinfectant. New disinfectant was used every 21 days (per manufacturer guidelines) or when a test 

strip indicated reduced activity, whichever came first. Transducers air-dried completely prior to next 

use. Self-adhesive textured plastic wrap was used to cover the portions of the transducer contacting oral 

mucosa, replaced for every session. Computer and desk were cleaned with alcohol wipes before and 

after each session. 

Tasks 

Each task was done using the lips and the tongue separately. All were demonstrated using 

previously recorded data to familiarize the participant with the visual display, target contours and 

feedback function. (See Appendix C.) Instructions were designed to elicit an external focus of attention 

for improved performance and retention (Freedman, Maas, Caligiuri, Wulf, & Robin, 2007; Wulf, Höß, & 

Prinz, 1998; Kal, van der Kamp, & Houdijk, 2013). 
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Figure 3. Maximal voluntary force visual feedback. Red line represents 
current attempt, updating in real time. Horizontal gray line represents 
maximum achieved on previous attempt. 

Maximal voluntary force. Participants were instructed to produce the highest resultant force 

(Barlow & Burton, 1990) or maximal voluntary force (MVF) possible by elevating the tongue or pursing 

the lips (Barlow & Muller, 1991; Loucks et al., 2010). Three MVF trials were conducted with each 

effector, using visual feedback and verbal encouragement. Maximum force reached on each trial was 

marked on subsequent trials by a horizontal target line and participants were encouraged to exceed 

their previous performance. To avoid fatigue, participants were told they did not need to maintain the 

maximal force until trial completion, but could relax once they had made their best effort within a trial. 

See Figure 3. 

Kamen (Kamen, 1983) found that maximal force developed within less than three seconds, but 

his participants were college-aged men and oral effectors were not tested. To allow for possibly slower 

force development, each MVF trial lasted six seconds, with sixty seconds between trials. The highest 

value of the three trials was used, so long as the lowest value was at least 90% of the highest; else, a 

fourth and final trial was completed and the highest value taken. This value was used to calculate target 

force levels for experimental tasks. 
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Figure 4. Multicosine waveform. 

Fine-force stimuli. Participants were asked to match three force contours: constant force, a sine 

wave, and a multicomponent cosine wave. Stimuli were centered at 15% of the effector’s maximal 

voluntary force, ranging ±5% for the variable contours. This force level was chosen to avoid fatigue and 

to be approximately comparable to forces used for speech, which have been estimated to be 20% or less 

of maximal voluntary force for the lips (Goldberg, 2000; Muller, Milenkovic, & MacLeod, 1985). Swallow 

pressures have been estimated at 46-68% of maximal tongue pressure (Youmans, Youmans, & Stierwalt, 

2009); no comparable level of force was used in this work due to the possibility of fatigue. 

All tasks were performed with visual feedback. Both the target waveform and the participant’s 

force were visible, to assess learning of the ability to adapt force complexity to visually specified task 

demand rather than the creation of an internal representation of a particular force profile. Trial length 

was chosen by balancing required N for nonlinear analyses with practical constraints; see Appendix D.  

Multicomponent cosine (multicosine) waveform design. The multicosine stimulus is based upon 

the waveform used by Stanley and Franks (Stanley & Franks, 1990): 

𝑦(𝑡) =  
𝐴

2
+ 𝐶𝑐𝑜𝑠(𝜔𝑡) +

𝐶

2
𝑐𝑜𝑠(2𝜔𝑡) +

𝐶

4
𝑐𝑜𝑠(4𝜔𝑡),      (1) 

where = 2f, A/2 is used to adjust mean force and C to adjust amplitude. Let C = 1 such that 

the relative amplitudes are 1, 0.5 and 0.25 as frequency progressively doubles. On a log power/log-

frequency graph (power proportional to amplitude squared), the slope of the line through those points 

is -2. (This is related to a signal with spectral slope  = -2, but no intermediate frequencies are included. 

It is called three-point slope here to differentiate it from the usual spectral slope.) 

 

 

 

 

 

 

 

Frequency components for variable tasks. Frequency components met two constraints. First, 

overall difficulty: tasks had to be easy enough to permit immediate performance with an expectation of 

improvement upon two days’ practice for both age groups, while challenging enough to allow room for 

improvement and variation across participants. The chosen fundamental frequency (0.75 Hz) is within a 

range that healthy young adults have learned to produce in a visuomotor tracking task with the lip with 
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as little as two trials (Moon, Zebrowski, Robin, & Folkins, 1993). The highest frequency in the multicosine 

stimulus, 3 Hz, is consistent with the speech rate of approximately three to four syllables/second 

reported for young and older adults (Ramig, 1983; Goozée, Stephenson, Murdoch, Darnell, & LaPointe, 

2005), on the low end to allow for task unfamiliarity and older adults’ previously reported difficulty 

producing higher-frequency force fluctuations (Sosnoff et al., 2004). 

Second, targets were to be differentiated and ordered in complexity, both conceptually and per 

entropy measures, to increase from constant to sine to multicosine. The conceptually simplest target 

(constant force) has zero entropy per either measure. Two strategies were considered for the variable 

tasks: matching the multicosine task’s highest frequency to the sine task’s fundamental frequency, vs. 

matching their lowest (fundamental) frequencies. Table 4 compares the resulting targets. The match-

lowest strategy differentiated the targets and ordered them as desired. The match-highest strategy did 

neither, because its multicosine signal’s F0 value was enough lower than the sine’s F0 to reduce its 

entropy to less than the sine signal’s and to near zero. Consequently, the match-lowest target signals 

(right-hand column) were used. 

Table 4 
 
Target Series’ Fuzzy Measure Entropy, Using N = 1100, Sampling Rate Fs = 100 Hz, m = 2, r = 0.2 

                                                   Strategy                                                _ 

Signal 

Match highest: 
sine F0 = 1* Hz 

multicosine = 0.25, 0.5, 1 Hz 

Match lowest: 
sine F0 = 0.75† Hz 

multicosine = 0.75, 1.5, 3 Hz 
Constant 0 0 
Sine 0.249 0.163 
Multicosine 0.069 0.317 

* Not 0.75 Hz: if multicosine’s highest frequency were 0.75 Hz, its lowest-frequency component 
would be 0.1875 Hz, with no integer number of repeats in an integer number of seconds until 3 
periods at 16 seconds, vs. 1 repeat in 4 seconds for 0.25 Hz. 
† Not 1 Hz: the multicosine signal’s highest-frequency component then would have been 4 Hz, 
crowding the limit of physiological feasibility even for younger adults. 
 

Experiment Structure 

Sessions occurred once per day over three continuous days, at a consistent time of day for each 

participant. Participants practiced each force contour fifteen times per effector on day 1 (3 tasks x 15 

trials x 2 effectors = 90 trials total) and twenty times per effector on day 2 (3 x 20 x 2 = 120 trials total). 

Similar studies lasting five days asked participants to perform totals of 75 trials (Deutsch & Newell, 
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2004), 125 trials (Newell et al., 2003), discounting the sixth day with no visual traces) and 25 trials per 

task (Sosnoff & Voudrie, 2009), and these practice amounts were all sufficient to create performance 

change. This design achieved 35 trials per task x effector combination over two practice days, with 

retention and transfer assessed on the third. Since the eventual clinical goal is prediction of learning 

from a single session, a shorter time scale than five days’ practice was preferred, but one day of practice 

(15 trials per task x effector combination) was judged potentially insufficient. 

Because pilot data suggested rapid change over the first few trials, participants were allowed to 

see demonstrations of the tasks during the informed consent process but were not allowed to practice 

them until participating in the experiment. Figure 5 summarizes the experimental structure described in 

more detail in the following sections. For this investigation, only data from the initial trials on day 1 and 

initial trials of ‘retention’ and ‘transfer to altered target force level’ on day 3 were analyzed. 

Day 1. See Figure 6 for Day 1 experiment structure. Following screening and informed consent, 

maximal voluntary force was assessed for each effector, and all days’ tasks were scaled to those MVF 

values. Order of effectors tested was determined randomly for the first participant in each age x sex 

subgroup, then alternated within those groups. Participants rested for one minute after each MVF trial. 

Practice of the pursuit tracking tasks was structured to maximize familiarization with the force 

contours. Following MVF measurement and rest, participants completed three task blocks per effector 

(ordered as above), each block comprising five trials of each task. Tasks within a block were ordered to 

increase in complexity of the target signal: constant, sine, multicosine. All blocks for one effector were 

completed sequentially. Participants rested for at least ten seconds between each trial to reduce history 

effects on force output (Herzog, 2004) and to avoid fatigue. 

For the variable force tasks, participants were guided to focus on matching the amplitude of 

force changes during the first block with each effector (five trials per task), their timing during the 

second block, and both amplitude and timing during the third block (integrated variable priority training; 

Figure 5. Summary experimental structure schematic. MVF = 
maximal voluntary force. PT = pursuit tracking. 
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see instructional scripts in Appendix C). The requested focus of the current trial was always visible on 

the monitor below the target/data plot. Any change in focus at the beginning of a five-trial set was 

announced in a text dialogue box requiring acknowledgment before data collection continued. The 

experimenter also verbally cued the change in focus when the text dialogue box appeared. 

 

Figure 6. Day 1 experiment structure. Task order is top to bottom, with detail increasing to the right. 
Maximal voluntary force and pursuit tracking tasks were ordered by effector; order of effectors 
alternated within age x sex subgroups. For pursuit tracking tasks, within each effector, each of three 
blocks consisted of one five-trial set per task, with sets in a fixed order by task. The only possible focus 
for the constant task is “match amplitude,” because the target does not vary over time. For variable 
tasks, focus varied by block. Each 5-trial set marked with * began with cues to attend to the new focus. 
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Knowledge of results was given after each trial (a graph of normalized root mean square error, 

NRMSE – see Figure 7 and the Measures section below) and each task (average NRMSE for the 5 trials).  

These graphs were shown and explained to participants prior to the experiment and reviewed 

upon first appearance within the experiment. The investigator answered questions and verbally 

confirmed participant understanding of the feedback. Participants were told dot height represented 

“about how far away from the target you were overall during this trial, so the lower the dot, the closer 

you stayed to the target.” Within each set of five trials of a task x effector combination, one new dot 

appeared after completion of each trial, and dots from previous trials remained visible; participants 

were encouraged to compare performance to previous trials in the set and to improve performance on 

the next trial in the set. The feedback graph was only visible after completion of a trial. 

The investigator intermittently gave verbal knowledge-of-performance feedback after a trial 

(e.g. “you overshot,” “your line went up too late”), in line with the current focus. A trial was restarted if 

invalid, e.g. interrupted by a cough, but had to be accepted or rejected before the investigator or 

participant could see knowledge-of-results feedback and was not redone based on that feedback. 

Day 2. Day 2 was structured to maximize learning, using random practice with lower frequency 

of knowledge of results. The most effective frequency of this feedback may depend on task complexity 

(Schmidt, Young, Swinnen, & Shapiro, 1989) and random vs. blocked practice condition (Del Rey & 

Figure 7. Screenshot of knowledge-of-results feedback graph shown to 
participants. See text for description of use. 
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Shewokis, 1993). Since frequency of feedback is not a focus of this work, a consistent absolute rate of 

feedback after every 5 trials was used, which may be optimal (Schmidt, Lange, & Young, 1990). 

Participants completed four task blocks per effector, each still comprising five trials per task 

(Figure 8). Effector x task x single-focus (amplitude or timing, 1 block each) combinations were randomly 

ordered, followed by effector x task x dual-focus combinations (2 blocks) randomly ordered. Participants 

saw knowledge-of-results feedback at the end of each 5-trial combination (graph showing all five trials’ 

NRMSE values and average NRMSE across trials). The investigator gave no feedback until the completion 

of a 5-trial set and then focused on eliciting the participant’s judgment of their own performance. 

 

Figure 8. Day 2 experiment structure. Task order is top to bottom, with detail increasing to the right. 
Within each effector, each of four blocks comprised one five-trial set per task. For variable tasks, focus 
varied by block. Task order was randomized across effector x block (focus) x task combinations, done 
separately for blocks 1 & 2 (1 amplitude, 1 timing) vs. blocks 3 & 4 (both amplitude AND timing). 
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Day 3. Retention and transfer trials took place on Day 3 (Figure 9). Participants were instructed 

to stay as close as possible to the target (i.e. match both amplitude and timing) for all trials. Five 

retention trials of each task were completed first, with effector x task combinations randomly ordered. 

Transfer trials assessed transfer to slightly decreased then slightly increased target force levels: 10% and 

20% MVF (two trials each), vs. the practiced value of 15%. Effector x task combinations were again 

randomly ordered, though within each combination the order of target force levels was not. 

 

Figure 9. Day 3 experiment structure. Retention trials were completed first, followed by transfer trials. 
Within each effector, each task was tested in sets of consecutive trials: 5 for retention, 4 for transfer (2 
each of lower and higher target force levels). Participants were requested to focus on keeping their line 
as close to the target as possible (the instructions from the “amplitude and timing” focus condition) for 
all tasks. Within retention and transfer trials separately, task order was randomized across effector x 
task combinations. 

Measures 

These measures are used for all analyses reported in Results. 

Accuracy. Root mean square error has been used to index accuracy. Its appropriateness for 

pursuit tracking tasks is well established (Deutsch & Newell, 2004; Franks, Wilberg, & Fishburne, 1982; 

Newell et al., 2003). Studies using variable targets for pursuit tracking tasks have calculated RMSE as 
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𝑹𝑴𝑺𝑬 =  √
∑ (𝒇𝒊 − 𝑻𝒊)𝟐𝑵

𝒊=𝟏

𝑵 − 𝟏
 

where fi and Ti refer respectively to the force produced and the target force at time i (Sosnoff et al., 

2004; Sosnoff & Voudrie, 2009). Because participants targeted different absolute levels of force 

(percentage of participant-x-effector-specific maximal voluntary force) and some tasks’ target force 

varied over time, RMSE was normalized by moment-to-moment target force level: 

𝑵𝑹𝑴𝑺𝑬 =  
√∑ (

𝒇𝒊 − 𝑻𝒊
𝑻𝒊

)
𝟐

𝑵
𝒊=𝟏

𝑵 − 𝟏
 

The formula for RMSE is nearly identical to the calculation for sample standard deviation, while 

that for NRMSE simplifies to RMSE/T for a constant target (nearly identical to the calculation for 

coefficient of variation). The difference, and the reason they function as measures of accuracy rather 

than variability, is in the comparison to the target (prescriptive) rather than the mean (descriptive). 

 “Baseline NRMSE” refers to the NRMSE of the first trial per effector of each task the participant 

completed (day 1, block 1, trial 1). “Retention” and “transfer” NRMSE refer to the NRMSE of the first 

day-3 trial per effector x task combination under the named condition (retention: unaltered task; 

transfer: altered target force level). NRMSE was also used to provide feedback to participants. 

Temporal structure of variability. Temporal structure was assessed using approximate entropy 

(Pincus, Gladstone, & Ehrenkranz, 1991) and fuzzy measure entropy (Liu et al., 2013); further 

information on each is available in Appendix A. ApEn was used for comparability to previous literature 

and FuzzyMEn as a potential improvement. The latter offered two particular advantages for this work. 

Firstly, since work on temporal structure of oral motor output is less common than investigations of 

other muscles, it is unknown whether the standard value of r (0.2 times the standard deviation of the 

time series) is the most appropriate, and thus a function less affected by choice of r was preferable. 

More importantly, two of the tasks required nonstationary force to be exerted. Processes causing small 

rapid fluctuations superimposed on the larger voluntary force changes, e.g. normal physiological tremor, 

may create similar vector shapes at different levels of force (Liu et al., 2013). These are best captured by 

an algorithm examining both local and global similarity. 

ApEn and FuzzyMEn were calculated using custom LabVIEW functions written and optimized for 

computational time by the investigator based on MATLAB code for FuzzyMEn provided by Dr. Peng Li. 

Parameter choice and testing of their performance are described in Appendix D. 

(3) 

(2) 
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 “Baseline” ApEn and FuzzyMEn refer to values for the first trial per effector of each task the 

participant completed (day 1, block 1, trial 1). “Retention” refers to the first of five retention trials per 

effector x task combination on day 3. “Transfer” refers to the first transfer trial in each condition (higher 

target force level vs. lower target force level) per effector x task combination on day 3. 

Frequency structure of variability. A power spectral density function was determined using 

Welch’s method: the signal was divided into eight segments, a Gaussian window was applied to each to 

reduce spectral leakage, and the periodograms of each segment were averaged. Using segment length = 

256 with a series length of N = 1100 yielded 52.7% overlap of successive segments. FFT size of 512, with 

a 100 Hz sampling rate, yielded a frequency bin width of 0.195 Hz. 

Proportion of power (PoP) was calculated as power within a frequency band divided by power in 

the entire frequency range (up to 50 Hz - the Nyquist frequency, half the sampling rate). Originally, 0-4 

Hz, 4-8 Hz, and 8-12 Hz bands were used, following previous work (Deutsch & Newell, 2004; Sosnoff & 

Voudrie, 2009)11. This setup was revised to 1-HZ-wide12 bands from 0 to 4 (see Results: Data Quality: 

Reframing of spectral analysis measures). Recall that sine and multicosine tasks targeted fundamental 

frequencies of 0.75 Hz. Ideal performance of either would yield the largest proportion of power in the 0-

1 Hz band; the multicosine target also had successively smaller components at 1.5 and 3 Hz. 

Testing of this methodology with signals of known spectral peaks and slope is described in 

Appendix E. 

Software Development 

Extensive custom routines were written in LabVIEW. A main dashboard was created to calibrate 

the transducers, run task demonstrations and start and stop the experiment. 

Calibration functions included real-time visual data display during trials, systematic generation 

of file names and internal file components, data logging, and parameterized flagging of problematic 

trials for visual review and ‘use/do not use’ decision logging. (See Calibration.) 

                                                           
 

11
 These authors offered different though not mutually exclusive reasons for choosing these frequency bands. 

Deutsch and Newell (2004) stated that “earlier experiments showed these to be the main frequency ranges 
influenced differentially as a function of age” (p. 325, no further details provided). Sosnoff and Voudrie (2009) cite 
earlier work suggesting that the 0-4 Hz band is associated with sensorimotor processing, for instance use of 
feedback, while physiological tremor contributes to power in the 8-12 Hz band. 
12

 100/512 = 0.1953125. Technically all frequency bands discussed here are multiples of this number (0-0.9765625 
Hz, 0.9765625 – 1.953125 Hz etc.). Rounding in category descriptors is used for convenience. 
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Task demonstrations displayed the specified task target, then overlaid it with previously 

recorded data, mimicking the timing of an actual data collection trial. Feedback was provided for up to 

five demonstration trials per task (see Figure 7). This capability was used during the informed consent 

process to teach the participant what to expect and how to interpret it. 

Starting the experiment initiated routines performing multiple tasks: completing the initial and 

daily screens; cuing the participant to ask any questions and confirming consent (required daily before 

data collection but documented only on day 1); generating the daily task list (ordered and randomized 

as described above); presenting all tasks, with effector, task and focus cued at the beginning of each 

block of five trials; recording both raw and cropped time series of the transducers’ data under 

systematically generated filenames; calculating all trial-level analyses (NRMSE, ApEn, etc.) and storing 

them with the trial data; displaying feedback and progress through the task list; and counting down the 

specified rest periods between trials. In the event of a program interruption, the Resume Experiment 

function retrieved the participant’s MVF and the previously generated task list, and prompted 

identification of the last successfully recorded trial to enable continuation from the appropriate point. 

The experiment could be stopped at any point, or a trial could be restarted without stopping and 

restarting the experiment. If a trial was restarted, the rejected trial data could optionally be logged with 

an explanatory comment (e.g. “participant coughed”). 

All data and associated calculations were logged using TDMS file format. This format contains 

internal group and channel structure, as well as file-, group- and channel-level properties, allowing each 

trial run to be labeled with all relevant characteristics and all calculations to be stored with the data 

upon which they were based. 

The current version of the software is capable only of repeating the present work. However, it 

was structured with the intent of being upgradeable to eventually permit collection of data from any 

compatible transducer, using any specified repeating target pattern with investigator-controlled 

numbers of trials, trial order randomization, etc. for flexibility in design of related experiments. 

Pre-Analysis Data Transformation 

Data for the maximal voluntary force task were transformed from volts to Newtons using the 

effector-specific equations developed during calibration. All pursuit task data were transformed to a 

percentage of the used effector’s MVF and detrended using a least-squares linear fit. Normalized root 

mean square error was calculated prior to detrending. These calculations were performed in LabVIEW. 
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Statistical Analysis 

All analyses were performed using SPSS (IBM, Version 24). Only significant results are reported, 

unless a nonsignificant result directly addresses one of the research questions. 

Modeling tools. Linear mixed effects (LME) modeling with random subject intercepts, maximum 

likelihood estimation and type III sums of squares was the primary analysis tool. This method allows 

repeated measurement of the same participant under different conditions (here, combinations of 

effector and task) and includes in the model within-participant similarity of responses across differing 

conditions. When data did not support fitting a random subjects intercept, mixed-model13 repeated 

measures analysis of variance (RMANOVA) was used instead, permitting inclusion of fixed effects only. 

Specific models’ construction is described in the following subsections. In general, for each 

measure, the postulated model was fitted to the corresponding data. Any interaction terms not reaching 

statistical significance were discarded and the simplified model rerun until (i) no significant interactions 

remained in the model or (ii) only significant interactions remained in the model. For case (i), the 

significance of the main effects was evaluated and only the significant main effects were interpreted. 

For case (ii), interactions were further investigated by testing the significance of the corresponding 

simple effects14. Main effects were reported only if the factor in question did not participate in any 

significant interactions; if it did, only its simple effects were reported. Simple simple main effects of age 

group within effector x task conditions were tested using independent-samples t-tests with 

bootstrapping. Bonferroni adjustment of the significance criterion was used to control familywise error, 

meaning that at each level of each analysis path, the chance of falsely rejecting the null hypothesis is 5%. 

Appendix F describes the criteria used for each potential term evaluated. 

One-way analyses of change over time: occurrence of learning. To check that learning occurred 

for both age groups under all conditions, separate analyses were performed for each age group x 

effector x task combination. Normalized root mean square error was compared at two time points: 

baseline (day 1, block 1, trial 1) and either retention or transfer (day 3, trial 1 of each type of task). 

Linear mixed effects models with random subjects intercepts and a main effect of time were fit. 

                                                           
 

13
 In “linear mixed effects,” “mixed” refers to the inclusion of both fixed and random effects. In “mixed-model 

RMANOVA,” “mixed” refers to the inclusion of both between- and within-subjects factors. 
14

 A simple effect means the effect of categorical factor A on the dependent variable for specific levels of 

categorical factor B with which it significantly interacts, e.g. “the effect of task on NRMSE for older adults.” 
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Two-way analysis: maximal voluntary force. MVF was assessed using a two-way linear mixed 

effects model with one between-subjects factor (age group) and one within-subjects factor (effector), 

each with two levels. The initial model included the main effects, the two-way interaction between 

them, and a random subjects intercept. 

Three-way analyses: accuracy and entropy. Analyses of accuracy (NRMSE) and entropy (ApEn, 

FuzzyMEn) characterized initial performance, final performance, initial adaptability and change between 

initial and final performance using LME or RMANOVA to delineate the effects of age group, effector and 

task on specific measures defined in each Results subsection. These models used one between-subjects 

factor (age group, two levels: younger vs older adults) and two within-subjects factors (effector, two 

levels: lip vs tongue; task, three levels: constant, sine, multicosine). Initial models were full-factorial, i.e. 

included all main effects and interactions, as well as random subjects intercepts (LME) where possible. 

Four-way analyses: proportion of power in spectral frequency bands. Spectral analyses 

(proportion of power) were completed using four-way mixed-model RMANOVA, with the factors listed 

above plus frequency band, a within-subjects categorical factor with three levels: 0-1 Hz, 1-2 Hz, and 2-3 

Hz. Only these three were used to avoid unstable modeling results due to multicollinearity (because for 

each trial, the sum of all the bands is 1). The highest-frequency band was omitted because it contained 

relatively little energy. These models were fit using the main effects of each factor, the two-way 

interactions of frequency band with each other factor, and the three-way interactions of age group and 

frequency band with (separately) task and effector. Only terms including frequency band are 

interpreted: varying effector, task, age group or a combination can vary the distribution of proportional 

power across bands, measured by including the frequency band term, but cannot vary the sum across 

bands (always 1). These analyses should be interpreted with caution given the proportional nature of 

the data, which violates the assumption of an unbounded dependent variable. 

Three-way analyses: prediction of change. To test the hypotheses that specific continuous 

quantitative predictor variables (each described in the Results section for its model) would predict 

learning, linear mixed effects models were used. The dependent variable for all of these models was the 

change in normalized root mean square error from initial performance to either retention trials or 

transfer trials to higher target force level: day-3 retention or transfer trial 1 minus day 1, block 1, trial 1 

for each effector x task combination (finalNRMSEret or finalNRMSEtrn). Age group, effector and task were 

included as categorical factors along with two continuous quantitative predictor variables per model: 

normalized root mean square error on day 1, block 1, trial 1 (NRMSEinitial) and one entropy measure. 
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Every model also included the two-way interactions of each categorical factor with the quantitative 

entropy predictor under consideration in that model. Given sample size, no other interaction terms 

were considered, limiting focus to the entropy predictor and its interactions with the categorical factors. 

A significant main effect of a categorical factor was interpreted only if the categorical factor did not 

interact significantly with the entropy predictor. 

Testing of model assumptions and response to violations. Normality of fitted-model residuals’ 

and predicted random effects’ distributions were assessed using the Shapiro-Wilk statistic, 

recommended for groups of N < 50; violations were accepted if skewness fell between -2 and 2. When 

skewness fell outside this range, removal of extreme values or data transformation was used to attempt 

remediation and the analysis was repeated on the altered data. 

Square root and base-10 logarithmic transformation were used for moderately and strongly 

skewed data respectively, after reflect transformation15 if skew was negative. These transformations 

compress the data range, with greater compression as data value increases, to reduce skewness of the 

distribution; compression is more pronounced with the logarithmic than with the square root 

transformation. Square root and logarithm transformations can only be used on positive data and only 

compress its range for certain values (x > 0.25 for square root and x > 1 for logarithm); below these 

inflection points, they instead expand the range. See Figure 10. When data needed to be transformed 

but fell within this problematic range, 1 was added to the data prior to transformation (de Smith, 2015). 

Results of model assumption testing are reported, and transformation or removal of extremes 

was used, only when assumptions were violated. 

 

  

                                                           
 

15
 Reflect transformation subtracts the data from one greater than its maximum value, making all values ≥ 1 and 

reversing their magnitude order. The other transformations do not alter data order. 

Figure 10. Transformations’ shapes. 
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Results 

Organization and Reporting Conventions 

For aims 1 and 2, hypotheses not dependent on practice were evaluated at both initial and final 

performance, followed by hypotheses regarding change with practice. 

In the Data Quality section, where the spread of the actual data sample is relevant, figures are 

reported as mean ± standard deviation. Elsewhere, a probabilistic statement about the probable true 

mean is more appropriate, and figures are reported as mean ± standard error. 

Consistent graphing conventions are used throughout for column plots: age group is 

differentiated by column fill (filled for older adults, unfilled for younger adults) and effector by shade 

(dark gray for tongue, medium gray for lip). Error bars represent ± 1 standard error. Unless otherwise 

noted, all graphs display original (not transformed) data. Significance is indicated on the graphs using a 

single asterisk, with thin horizontal lines indicating grouping of only the single elements directly below 

tick marks in the line (e.g. “all columns for ‘older adult, lip’ across task”) and thick horizontal lines for 

grouping all elements directly below the line (e.g. “all age group x effector combinations within a task”). 

Temporal structure of force was measured by approximate entropy (ApEn) and fuzzy measure 

entropy (FuzzyMEn), both with parameters m = 2, r = 0.2, N = 1100. Because the pattern of significant 

results was the same or very similar for each, the two measures are presented together. 

Most statistical test results are presented within the text. When there is a significant three-way 

interaction with the attendant follow-up analyses for simple two-way interactions, simple simple main 

effects, and pairwise comparisons, statistical results are presented in a table formatted to visually clarify 

the structure of the analysis, and the accompanying text summarizes and interprets the table without 

repeating the numbers. 

Missing Data 

Eleven participants who passed the telephone screen, scheduled and showed up for day 1 of the 

experiment were not included: eight for reasons specific to them and three due to equipment issues. All 

participants were paid for time completed, regardless of whether their data could be used. 

Participant-based. Three participants provided full or nearly full data that could not be used. 

One older man admitted at the end of the final experimental session that his stated age and the 

birthdate on his driver’s license were incorrect; he was actually one year too young to participate. 

One older woman developed mild soreness at the commissure of the lips while using the lip 

transducer on day 3; one prong had rotated and was chafing. There was no visible skin tear or 
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inflammation. She did not complete the remaining lip trials but was able to use the tongue transducer 

without discomfort. There were no other significant adverse events. 

One older woman who completed all three days initially appeared to be an outlier with 

unusually poor performance, but it was established after experiment completion that her lip MVF value 

had been far too low, which led to target forces much lower (and therefore more difficult to control) 

than the intended 15% MVF target. Her performance immediately improved to comparable to her age 

group peers with the correct MVF value, but as she was no longer naïve to the task, she could not redo 

the experiment. 

Five other participants did not complete the experiment. One withdrew after day 1 due to a 

scheduling conflict, and four withdrew early in day 1. Of these, one had spasmodic torticollis with a 

notable head tremor, undisclosed during recruitment screening; two had oral pain due to ill-fitting 

dentures or same-day dental work; one could not find a comfortable posture due to arthritis pain in her 

back and shoulders, which readjustment and additional padding of the chair did not resolve. 

Instrument-based. For one younger man, the transducers’ behavior was unstable, with frequent 

baseline drifts and jumps; he attempted the tasks enough times during the unsuccessful initial session 

that rescheduling was not appropriate. 

The lip transducer experienced one episode of failure to transmit data, with abrupt cessation 

near the end of one participant’s day-2 session. The transducer was returned to the manufacturer for 

repair. (Calibration values after repair were similar to those seen before failure.) That participant and 

another scheduled on the same days, both older men, provided complete tongue data but were 

excluded from analyses. 

To screen for data-capture problems not detected during experimental sessions, all task data 

trials for both transducers were checked for runs of more than 10 consecutive values of exactly 0 

(equivalent to 0.1 seconds at the sampling rate of 100 Hz), and for runs of more than 10 unchanging 

values. Either type of run could have indicated a problem within the transducer or transmission failure 

along the transducer-amplifier-computer path. Trials were also checked for runs of more than 500 

values (5 seconds) less than 5% task-specific MVF, as a general flag to trigger visual review. The only 

trials excluded on these bases were those described above. 

Data Quality 

Recall that any trial during which performance was perturbed (e.g. by a cough) was restarted. 

Such trials were not formally tracked but are estimated to have occurred less often than once per 
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participant, i.e. less than 1% of trials. All trials were reviewed and accepted by the investigator during 

the experiment immediately upon completion, prior to either the experimenter or the participant seeing 

NRMSE feedback. Acceptance required only absence of evidence of perturbation or signal loss and was 

not based on level of success tracking the target. 

The possible effect of transducer noise was assessed by comparing mean transducer signal in 

zero-mass calibration trials to the lowest target (in volts). Across all tasks, the lowest relative target was 

5% MVF (during sine and multicosine transfer trials altering target force level to 10% ± 5% MVF). Across 

all tasks and participants, the lowest absolute target was 5% MVF for the participants with the lowest 

maximal voluntary forces per effector, giving the equation 

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑛𝑜𝑖𝑠𝑒 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 = 100% ∗  
(𝑧𝑒𝑟𝑜 𝑚𝑎𝑠𝑠 𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 𝑡𝑟𝑖𝑎𝑙 𝑚𝑒𝑎𝑛)𝑒𝑓𝑓𝑒𝑐𝑡𝑜𝑟

0.05 ∗ 𝑀𝑉𝐹𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑎𝑐𝑟𝑜𝑠𝑠 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡𝑠 𝑏𝑦 𝑒𝑓𝑓𝑒𝑐𝑡𝑜𝑟
 

(4) 

Zero-mass calibration trial means were -0.00025 ± 0.00096 volts for the lip, -0.00013 ± 0.0015 

volts for the tongue (from Table 2). One of the older women had the lowest MVF for the lip, at 3.06 N 

(0.528 volts); an older man had the lowest MVF for the tongue, at 6.74 N (1.67 volts). Relative 

amplitudes of transducer noise at 5% MVF were 0.946% and 0.155% respectively. Thus even for the 

lowest target forces across all participants, transducer noise would have affected an otherwise perfect 

match to target by less than 1%. 

Reframing of spectral analysis measures. Brief exploratory analysis of proportion of power 

figures showed that power was overwhelmingly concentrated in the 0-4 Hz band: across all analyzed 

trials, mean ± standard error proportion of power in this band was 0.97 ± 0.00062. Seventy percent of 

trials had values above the mean, and 95% had values above 0.90; see Figure 11. There was 

correspondingly little energy above 4 Hz. This suggested that any changes in frequency structure of 

participants’ force output took place within the 0-4 Hz range – plausible given the influence of aging and 

visuomotor processes on power from 0-1 Hz (Baweja, Kennedy, Vu, Vaillancourt, & Christou, 2010; Fox 

et al., 2013) and the specific task demands in this experiment (variable-force targets contained 

frequencies of 0.75, 1.5 and 3 Hz). 
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Consequently, frequencies above 4 Hz were not analyzed. To make statistical discrimination 

among samples more likely by matching measurement scale to scale of expected change, the 0-4 Hz 

band was split into approximately 1-Hz wide bands from 0-1, 1-2, 2-3 and 3-4 Hz (Figure 12). Each was 

composed of the sum of five 0.195-Hz-wide bins. 

 

 

 

 

 

 

 

 

 

 

 

Maximal Voluntary Force 

This analysis used linear mixed effect modeling to evaluate maximal voluntary force in Newtons 

(MVF) to determine how it was affected by age group, effector and their interaction. The interaction did 

Figure 12. Proportion of power distribution using narrower frequency bands. 

Figure 11. Proportion of power distributions using original frequency bands. The 8-12 Hz band 
columns are transparent, not white-filled, for visibility vs. the 4-8Hz distribution. 
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not reach significance in the full model (F(1, 41) = 1.427, p = 0.239) and was dropped for the simplified, 

main-effects-only model. 

MVF did not vary by age group (F(1, 41) = 0.389, p = 0.536) but was greater for tongue than lip 

by 6.29 N (F(1, 41) = 64.362, p < 0.0005, 95% CI 4.71 – 7.87 N). See Figure 13. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pursuit Tracking: Representative Examples 

A representative was chosen from each age group by summing participants’ absolute 

differences from the age group mean NRMSE on each effector x task combination. In each age group, 

the participant with the lowest sum was taken to be overall nearest group-mean performance. The 

participants thus chosen were a younger man, age 24, and an older man, age 73. 

Initial performance. Figures 14-19 and Tables 5-10 show participant force traces on each task’s 

first trial on day 1 and their associated measures. Only the analyzed portion of the trace is shown. 

Proportions of power do not sum to 1.0 due to rounding and exclusion of power above 4 Hz. 

  

Figure 13. Maximal voluntary force(MVF) by age group and effector (Newtons, M ± SE). 
* Significant at p < 0.0005. 
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Table 5 
 
Representative Participants’ Initial Performance Measures for Constant Task Using Lip 

Measure Older adult Younger adult  
NRMSE 0.442 0.043  
ApEn 0.089 0.439  
FuzzyMEn 0.073 0.637  
PoP 0-1 Hz 0.900 0.748  
PoP 1-2 Hz 0.085 0.171  
PoP 2-3 Hz 0.010 0.026  
PoP 3-4 Hz 0.003 0.017  

  

Figure 14. Representative participants’ initial force trace for constant task using 
lip: day 1, trial 1. 
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Table 6 
 
Representative Participants’ Initial Performance Measures for Constant Task Using Tongue 

Measure Older adult Younger adult  
NRMSE 0.248 0.218  
ApEn 0.350 0.409  
FuzzyMEn 0.455 0.532  
PoP 0-1 Hz 0.617 0.465  
PoP 1-2 Hz 0.297 0.366  
PoP 2-3 Hz 0.064 0.128  
PoP 3-4 Hz 0.012 0.020  

  

Figure 15. Representative participants’ initial force trace for constant task using 
tongue: day 1, trial 1. 
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Table 7 
 
Representative Participants’ Initial Performance Measures for Sine Task Using Lip 

Measure Older adult Younger adult  
NRMSE 0.404 0.319  
ApEn 0.129 0.297  
FuzzyMEn 0.131 0.361  
PoP 0-1 Hz 0.944 0.782  
PoP 1-2 Hz 0.041 0.121  
PoP 2-3 Hz 0.008 0.048  
PoP 3-4 Hz 0.002 0.023  

  

Figure 16. Representative participants’ initial force trace for sine task using lip: 
day 1, trial 1. 
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Table 8 
 
Representative Participants’ Initial Performance Measures for Sine Task Using Tongue 

Measure Older adult Younger adult  
NRMSE 0.368 0.343  
ApEn 0.333 0.379  
FuzzyMEn 0.385 0.500  
PoP 0-1 Hz 0.626 0.525  
PoP 1-2 Hz 0.268 0.363  
PoP 2-3 Hz 0.080 0.080  
PoP 3-4 Hz 0.014 0.019  

  

Figure 17. Representative participants’ initial force trace for sine task using 
tongue: day 1, trial 1. 
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Table 9 
 
Representative Participants’ Initial Performance Measures for Multicosine Task Using Lip 

Measure Older adult Younger adult  
NRMSE 0.483 0.265  
ApEn 0.116 0.369  
FuzzyMEn 0.119 0.487  
PoP 0-1 Hz 0.929 0.628  
PoP 1-2 Hz 0.058 0.288  
PoP 2-3 Hz 0.008 0.042  
PoP 3-4 Hz 0.002 0.017  

  

Figure 18. Representative participants’ initial force trace for multicosine task 
using lip: day 1, trial 1. 
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Table 10 
 
Representative Participants’ Initial Performance Measures for Multicosine Task Using Tongue 

Measure Older adult Younger adult  
NRMSE 0.418 0.315  
ApEn 0.304 0.420  
FuzzyMEn 0.382 0.580  
PoP 0-1 Hz 0.670 0.308  
PoP 1-2 Hz 0.250 0.424  
PoP 2-3 Hz 0.053 0.209  
PoP 3-4 Hz 0.017 0.041  

  

Figure 19. Representative participants’ initial force trace for multicosine task 
using tongue: day 1, trial 1. 
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Final performance. Figures 20-25 show force traces from the same participants showcased 

previously, to the same scale. Traces are taken from each participant’s first retention trial on day 3. Time 

scale reflects cropping of first four seconds and last one second of each trial. Proportions of power do 

not sum to 1.0 due to rounding and exclusion of power above 4 Hz. The accompanying tables show 

measures based on those trials. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 11 
 
Representative Participants’ Final Performance Measures for Constant Task Using Lip 

Measure Older adult Younger adult  
NRMSE 0.048 0.055  
ApEn 0.569 0.528  
FuzzyMEn 0.854 0.777  
PoP 0-1 Hz 0.630 0.662  
PoP 1-2 Hz 0.133 0.186  
PoP 2-3 Hz 0.060 0.044  
PoP 3-4 Hz 0.103 0.036  

  

Figure 20. Representative participants’ final force trace for constant task using 
lip: day 3, retention trial 1. 



   65 
 
 

 

 

 

 

 

 

 

 

 

 

 

Table 12 
 
Representative Participants’ Final Performance Measures for Constant Task Using Tongue 

Measure Older adult Younger adult  
NRMSE 0.141 0.157  
ApEn 0.414 0.476  
FuzzyMEn 0.580 0.657  
PoP 0-1 Hz 0.671 0.358  
PoP 1-2 Hz 0.269 0.386  
PoP 2-3 Hz 0.024 0.103  
PoP 3-4 Hz 0.016 0.083  

  

Figure 21. Representative participants’ final force trace for constant task using 
tongue: day 3, retention trial 1. 
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Table 13 
 
Representative Participants’ Final Performance Measures for Sine Task Using Lip  

Measure Older adult Younger adult  
NRMSE 0.328 0.128  
ApEn 0.180 0.317  
FuzzyMEn 0.215 0.410  
PoP 0-1 Hz 0.788 0.875  
PoP 1-2 Hz 0.164 0.085  
PoP 2-3 Hz 0.020 0.019  
PoP 3-4 Hz 0.015 0.007  

  

Figure 22. Representative participants’ final force trace for sine task using lip: day 
3, retention trial 1. 
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Table 14 
 
Representative Participants’ Final Performance Measures for Sine Task Using Tongue 

Measure Older adult Younger adult  
NRMSE 0.312 0.308  
ApEn 0.406 0.373  
FuzzyMEn 0.539 0.477  
PoP 0-1 Hz 0.617 0.745  
PoP 1-2 Hz 0.247 0.180  
PoP 2-3 Hz 0.073 0.023  
PoP 3-4 Hz 0.032 0.024  

  

Figure 23. Representative participants’ final force trace for sine task using tongue: 
day 3, retention trial 1. 
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Table 15 
 
Representative Participants’ Final Performance Measures for Multicosine Task Using Lip  

Measure Older adult Younger adult  
NRMSE 0.293 0.186  
ApEn 0.220 0.313  
FuzzyMEn 0.260 0.412  
PoP 0-1 Hz 0.851 0.760  
PoP 1-2 Hz 0.076 0.182  
PoP 2-3 Hz 0.044 0.032  
PoP 3-4 Hz 0.013 0.012  

  

Figure 24. Representative participants’ final force trace for multicosine task 
using lip: day 3, retention trial 1. 
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Table 16 
 
Representative Participants’ Final Performance Measures for Multicosine Task Using Tongue 

Measure Older adult Younger adult  
NRMSE 0.382 0.257  
ApEn 0.348 0.477  
FuzzyMEn 0.474 0.651  
PoP 0-1 Hz 0.548 0.362  
PoP 1-2 Hz 0.306 0.449  
PoP 2-3 Hz 0.063 0.118  
PoP 3-4 Hz 0.048 0.034  

  

Figure 25. Representative participants’ final force trace for multicosine task 
using tongue: day 3, retention trial 1. 
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Occurrence of learning. Because prediction of learning was the most important aim of the work, 

it was necessary to show that the amount of practice provided was sufficient to elicit learning. These 

linear mixed model analyses evaluated normalized root mean square error (NRMSE) at two time points: 

baseline (day 1, block 1, trial 1) and trial 1 of retention or transfer tasks on day 3. The purpose was to 

determine whether learning occurred for both age groups under each effector x task condition after two 

days’ practice. See Statistical Analysis for details. No graphs are presented for these analyses, which 

focused only on main effect of time across two points. 

Retention. For retention trials, a reduction in NRMSE from baseline indicated improvement in 

performance on the practiced tasks. When models were fit to the original data, those marked in the 

table could not be adequately fit due to model assumption violations. Data transformations led to 

successful fitting for only one of these. Instead, for each, participants with extreme values were 

removed and the analyses re-run on non-transformed data. All alternate analyses were consistent in 

significance and direction of difference with results of the original-data analyses reported here. 

Table 17 
 
Effect of Time on Normalized Root Mean Square Error for Each Combination of Age 
Group, Effector and Task, Comparing Day 1, Trial 1 with Day 3, Retention Trial 1  

Age group Effector Task Test statistic Significance 
Older adult lip constant F(1, 21) = 8.932 p = 0.007* 

sine F(1, 21) = 5.750 p = 0.026* 
multicosine† F(1, 21) = 4.773 p = 0.040* 

tongue constant F(1, 21) = 15.931 p = 0.001* 
sine F(1, 21) = 33.806 p < 0.0005* 
multicosine F(1, 21) = 3.431 p = 0.078 

Younger adult lip constant† F(1, 20) = 10.439 p = 0.004* 
sine F(1, 20) = 43.093 p < 0.0005* 
multicosine† F(1, 20) = 17.505 p < 0.0005* 

tongue constant F(1, 20) = 38.687 p < 0.0005* 
sine F(1, 20) = 73.817 p < 0.0005* 
multicosine F(1, 20) = 41.433 p < 0.0005* 

Note. All significant differences were in the direction of reduction in error on day 3.  
† Alternate analyses were completed (see text); all figures are from original analyses. 

 

Participants demonstrated retention of previously practiced skill after a one-day delay 

regardless of age group, task or effector, with the single exception of older adults performing the 

multicosine task with their tongues, for which the effect of time did not reach significance. See Table 17. 
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This pattern is consistent with comments by the participants, who felt this task combination to be 

particularly difficult. 

Transfer. For transfer trials, lower NRMSE on day 3 than day 1 indicated application of learned 

skill to a related task. Models were fit separately for the two transfer conditions (reduced and increased 

target force level) because of the expected difference in task difficulty. 

Transfer to lower target force. When linear mixed effects models were fit to the original data, 

those starred in the table could not be adequately fit due to model assumption violations. Removal of 

participants with extreme values led to adequate model fit for three models. Paired t-tests with 

bootstrapping were used for the other two. Where alternate analyses agreed with the original model, 

the original model’s test statistics are reported. In the two models for which the alternate analysis failed 

to find the significant effect detected by the original model, the alternate analysis is reported. 

Table 18 
 
Effect of Time on Normalized Root Mean Square Error for Each Combination of Age Group, 
Effector and Task, Comparing Day 1, Trial 1 with Day 3, Transfer Trial 1 when Target Force Level 
was Reduced 

Age group Effector Task Test statistic Significance 
Direction of 

change 
Older adult lip constant F(1, 21) = 3.379 p = 0.080  

sine F(1, 21) = 9.431 p = 0.006* ↑ 
multicosine† F(1, 21) = 0.322 p = 0.576  

tongue constant F(1, 21) = 10.814 p = 0.004* ↓ 
sine F(1, 21) = 0.104 p = 0.750  
multicosine† F(1, 20) = 3.628 p = 0.071  

Younger adult lip constant† F(1, 18) = 2.742 p = 0.115  
sine† F(1, 40) = 1.504 p = 0.227  
multicosine† F(1, 40) = 6.499 p = 0.015* ↑ 

tongue constant F(1, 20) = 16.940 p = 0.001* ↓ 
sine F(1, 20) = 25.418 p < 0.0005* ↓ 
multicosine F(1, 20) = 3.515 p = 0.075  

† Alternate analyses were completed (see text). 
 

NRMSE on transfer trials with lower target force level was lower than baseline error for only 

three conditions, all using the tongue: older and younger adults tracking a constant target and younger 

adults tracking sine targets. NRMSE was significantly higher than baseline for two conditions, both using 

the lip: older adults tracking a sine target and younger adults tracking a multicosine target. For the other 



   72 
 
 

conditions, no significant difference was found. Participants demonstrated inconsistent transfer of skill 

to familiar target patterns at lower force levels. 

Transfer to higher target force. When linear mixed effects models were fit to the original data, 

several (marked in Table 19) could not be adequately fit due to model assumption violations. Removal of 

participants with extreme values led to adequate model fit for four models; a paired-samples t-test with 

bootstrapping was used for the last. All results of alternate analyses were consistent in significance and 

direction of difference with results of the original-data analyses reported here. Participants 

demonstrated consistent transfer of skill to familiar target patterns at higher force levels regardless of 

age group, task or effector. 

Table 19 
 
Effect of Time on Normalized Root Mean Square Error for Each Combination of Age Group, 
Effector and Task, Comparing Day 1, Trial 1 with Day 3, Transfer Trial 1 when Target Force Level 
was Increased 

Age group Effector Task Test statistic Significance 
Direction of 

change 
Older adult lip constant F(1, 21) = 12.211 p = 0.002* ↓ 

sine† F(1, 21) = 40.483 p < 0.005* ↓ 
multicosine* F(1, 21) = 16.922 p < 0.0005* ↓ 

tongue constant† F(1, 21) = 34.426 p < 0.0005* ↓ 
sine F(1, 21) = 50.200 p < 0.0005* ↓ 
multicosine F(1, 21) = 33.351 p < 0.0005* ↓ 

Younger adult lip constant† F(1, 40) = 4.691 p = 0.036* ↓ 
sine F(1, 20) = 63.749 p < 0.0005* ↓ 
multicosine† F(1, 40) = 44.227 p < 0.0005* ↓ 

tongue constant F(1, 20) = 30.903 p < 0.0005* ↓ 
sine F(1, 20) = 95.933 p < 0.0005* ↓ 
multicosine F(1, 20) = 61.812 p < 0.0005* ↓ 

† Alternate analyses were completed (see text). 
 

Specific Aims 1 and 2: Non-Practice-Related Hypotheses 

These hypotheses were expected to hold both before and after practice. 

Hypothesis 1a. Older adults’ force structure will differ task-dependently from younger adults’ 

(lower entropy and a greater proportion of low-frequency power when the task demands high entropy 

and reduced low-frequency power, and vice versa). 

Hypothesis 2a. The tongue will produce less complex force than the lip (lower-entropy, greater 

dominance of low-frequency power). 
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Hypothesis 2b. The effects of age group and effector on entropy will interact. 

Initial task performance. All measurements analyzed in this section are taken from the first trial 

of each condition (effector x task) on day 1. This single trial per condition was chosen for analysis, rather 

than a mean of the five trials per initial block of each condition, to capture performance when the task 

was as nearly novel to the participant as possible (since change in performance even within the first 

block was expected); to provide the baseline measurement against which immediate adaptability (trial 2 

– trial 1) could be compared; and because if these results are to be applicable to clinical populations 

particularly in acute care, significance must be detectable based on very few trials in light of clinical 

participants’ expected decreased stamina. 

Temporal structure. These linear mixed effects analyses separately evaluated approximate 

entropy (ApEn) and fuzzy measure entropy (FuzzyMEn), for which lower values indicate more regular, 

predictable temporal structure of force. The purpose was to determine how age group, effector and task 

affect force temporal structure during initial attempts at unfamiliar tasks. See Figure 26, Figure 27, and 

Statistical Analysis for model details. 

Task and age group interacted (ApEn: F(2, 205) = 9.555; FuzzyMEn: F(2, 205) = 9.515; both p < 

0.0005). Follow-up analysis showed that only younger adults altered entropy across task, (ApEn: F(2, 

100) = 17.173; FuzzyMEn, F(2, 100) = 20.492, both p <0.0005). They showed significantly reduced 

entropy for the sine task vs. both others (vs. constant, both measures p < 0.0005; vs. multicosine, p = 

0.002 for ApEn, p = 0.005 for FuzzyMEn) and perhaps higher entropy for the constant task vs. 

multicosine (p = 0.006 for ApEn, p = 0.067 (NS) for FuzzyMEn). Younger adults produced higher-entropy 

force than older adults only on the constant task (ApEn: F(1, 41) = 9.407, p = 0.004; FuzzyMEn, F(1, 41) = 

10.297, p = 0.003). 

Effector and age group interacted (ApEn: F(1, 205) = 10.806, p < 0.0005; FuzzyMEn, F(1, 205) = 

9.769, p = 0.002). Follow-up analysis showed entropy higher for the tongue for older adults only (ApEn: 

F(1, 105) = 23.591; FuzzyMEn, F(1, 105) = 20.794; both p < 0.0005). For the lip only, younger adults had 

higher entropy (ApEn: F(1, 41) = 7.212, p = 0.010; FuzzyMEn, F(1, 41) = 7.562, p = 0.009). 
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For best comparability to the results of (Holtrop et al., 2014), this analysis was repeated using 

only the data from the constant task. Results were the same. Effector and age group again interacted 

(ApEn: F(1, 41) = 6.625, p < 0.014; FuzzyMEn, F(1, 41) = 6.828, p = 0.012). For older adults only, entropy 

was significantly higher for the tongue (ApEn: F(1, 21) = 7.282, p = 0.013; FuzzyMEn, F(1, 21) = 6.227, p = 

0.021). For the lip only, younger adults showed higher entropy (ApEn: t(39) = -3.344, p = 0.003; 

FuzzyMEn, t(39) = -3.528, p = 0.001). 

Frequency structure. This analysis evaluated proportion of power (PoP) in 1-Hz-wide frequency 

bands from 0 to 3 Hz; measurement values range from 0 to 1 with a higher value indicating a greater 

proportion of the total power in the specified band. The purpose of this analysis was to describe how 

Figure 26. Initial complexity by age group, 
effector and task (ApEn, m = 2, r = 0.2, 
N = 1100; M ± SE): day 1, trial 1. 
* Significant at p < 0.01. 

Figure 27. Initial complexity by age group, 
effector and task (FuzzyMEn, m = 2, r = 0.2, 
N = 1100; M ± SE): day 1, trial 1. 
* Significant at p < 0.01. 
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age group, effector and task affected the proportional distribution of power across the different 

frequency bands during participants’ initial attempts at the tasks on day 1. Recall that the sine and 

multicosine tasks’ targeted fundamental frequencies are 0.75 Hz; the multicosine target has additional, 

successively smaller components at 1.5 and 3 Hz. See Statistical Analysis for model details and cautions. 

When the four-way model was run on all 41 participants, the distribution of studentized 

residuals for one effector x task x frequency band condition had skew > 2, due to a single participant’s 

outlying value. When this participant (an older man) was excluded and the model re-run, all cells’ 

studentized residual distributions had skew within acceptable limits, and the pattern of significant 

results did not differ from the original analysis reported here. 

Due to the large number of comparisons necessitated for follow-up of multiple significant 

interactions, test statistics are reported in Table 20 (following Figure 30). Accompanying text 

summarizes and interprets table results, following the order of presentation in the table, without 

repeating the numbers. 

Within every combination of age group, task and effector, differences between frequency bands 

followed the same pattern: greatest proportion of power in the 0-1 Hz band, followed by the 1-2 Hz 

band, followed by the 2-3 Hz band, with every pairwise comparison significant at p < 0.0005 (omitted 

from the table). See all figures in this section; significance is marked for this contrast only in Figure 28. 

Across effector and within each task, younger and older adults’ frequency band profiles did not 

significantly differ; see Figure 28 for an example. Across effectors, both younger and older adults 

responded to the increased high-frequency content of the multicosine target compared to the sine 

target by decreasing power in the 0-1 Hz band and increasing it in the 1-2 Hz band. Only the younger 

adults were able to decrease power in the 0-1 Hz band for the constant target compared to the sine 

target, congruent with the difference in task demand. For all of these effects, see Figure 29. Across tasks 

and age groups, the lip produced greater power in the 0-1 Hz band than the tongue, while the tongue 

produced greater power than the lip in the higher bands (Figure 30). 
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Figure 28. Initial proportion of power by frequency band and age group 
for the constant task performed with the lip: day 1, trial 1.  
* Significant at p < 0.0005. 

Figure 29. Initial proportion of power by frequency band, task and age group: day 1, trial 1. 
* Significant at p < 0.01. 
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Table 20 
 
Proportion of Power by Age Group, Effector, Task and Frequency Band on Day 1, Block 1, Trial 1  

Term evaluated and level of evaluation Test statistica Significanceb 
2-way interaction (effector x frequency band) b F(1.141, 44.509) = 41.112 p < 0.0005* 
 Simple main 

effect of effector 
band: 0-1 Hz c (L > T) F(1, 39) = 37.718 p < 0.0005* 
band: 1-2 Hz c (T > L) F(1, 39) = 50.454 p < 0.0005* 
band: 2-3 Hz c (T > L) F(1, 39) = 8.139 p = 0.007* 

Simple main 
effect of 
frequency band 

effector = L d F(1.123, 43.779) = 686.898 p < 0.0005* 
effector = T d F(1.150, 44.832) = 350.429 p < 0.0005* 

3-way interaction: age group x task x frequency band b F(1.999, 77.953) = 4.813 p = 0.011* 
 Simple 2-way 

interaction: 
age group x 
frequency band 

task = C c F(1.063, 41.448) = 3.988 p = 0.050 

task = S c F(1.111, 43.334) = 5.041 p = 0.027 

task = M c F(1.190, 46.428) = 0.436 p = 0.546 

Simple 2-way 
interaction: 
task x frequency 
band 

age group = OA d F(2.092, 41.835) = 13.213 p < 0.0005* 

 simple simple 
main effect of 
freq. band 

task = C e F(1.049, 20.974) = 247.061 p < 0.0005* 

task = S e F(1.077, 21.547) = 308.021 p < 0.0005* 

task = M e F(1.136, 22.727) = 94.754 p < 0.0005* 

simple simple 
main effect of 
task 

band: 0-1 Hz e F(2, 40) = 13.834 p < 0.0005* 

 C = S f  p = 1.000 

C > M f  p < 0.0005* 

S > M f  p = 0.002* 

Figure 30. Initial proportion of power by frequency band and 
effector, across task and age group: day 1, trial 1. 
* Significant at p < 0.01. 
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Table 20 (cont.) 

 Simple 2-way 
interaction: 
task x frequency 
band (cont.) 

age group = OA (cont.) 

 simple simple 
main effect of 
task (cont.) 

band: 1-2 Hz e F(2, 40) = 12.318 p < 0.0005* 

 

C = S f  p = 1.000 

C < M f  p = 0.003* 

S < M f  p = 0.001* 

band: 2-3 Hz e F(2, 40) = 9.698 p < 0.0005* 

 

C = S f  p = 0.165 

C < M f  p = 0.001* 

S = M f  p = 0.103 

age group = YA d F(1.825, 34.680) = 22.212 p < 0.0005* 

 

simple simple 
main effect of 
freq. band 

task = C e F(1.072, 20.376) = 122.158 p < 0.0005* 

task = S e F(1.200, 22.795) = 1015.582 p < 0.0005* 

task = M e F(1.247, 23.701) = 120.920 p < 0.0005* 

simple simple 
main effect of 
task  

band: 0-1 Hz e F(2, 38) = 23.603 p < 0.0005* 

 

C < S f  p < 0.0005* 

C = M f  p = 0.145 

S > M f  p < 0.0005* 

band: 1-2 Hz e F(2, 38) = 21.477 p < 0.0005* 

 C = S f  p = 0.005 

C = M f  p = 0.021 

S < M f  p < 0.0005* 

band: 2-3 Hz e F(2, 38) = 7.389 p = 0.002* 

 C = S f  p = 0.081 

C = M f  p = 0.377 

S = M f  p = 0.006 

Note. Age groups: older adults (OA), younger adults (YA). Effectors: lip (L), tongue (T). Tasks: constant 
(C), sine (S), multicosine (M). Formatting shows the structure of follow-up analyses: terms are evaluated 
within italicized levels to the right of the term; if a term is significant at a given level, the next-simplest 
terms are listed below it with further indentation. 

a For interaction and main effects, F-statistic. For pairwise comparisons, mean difference ± standard 
error, [95% confidence interval] – significant if 95% CI does not include 0. 
b For interactions in the full model, the standard for significance is p < 0.05. All follow-up analyses’ p 
criteria were Bonferroni-corrected; see analysis-specific footnotes for the values used and Appendix F 
for their derivation. c Significance criterion is p < 0.017. d Significance criterion is p < 0.025. 
e Significance criterion is p < 0.008. f Significance criterion is p < 0.003. * Meets the criterion for 
statistical significance. 
 

Final task performance. This section examines variables’ values for the first retention trial in 

each effector x task condition on day 3 – the final performance of the unmodified practiced tasks. 
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Temporal structure. These analyses separately evaluated approximate entropy (ApEn) and fuzzy 

measure entropy (FuzzyMEn), for which lower values indicate more regular, predictable temporal 

structure of force. The purpose was to determine how age group, effector and task affect force entropy 

on the first day-3 retention trial in each effector x task condition after two days’ practice of unfamiliar 

tasks. See Figure 31 and Statistical Analysis for model details. Due to the large number of comparisons 

necessitated for follow-up of a significant three-way interaction, test statistics are reported in Table 21. 

Accompanying text summarizes and interprets table results, following the order of presentation in the 

table, without repeating the numbers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Averaged across task, older adults produced higher-entropy force with the tongue than the lip. 

Younger adults’ force production showed higher entropy with the lip for the constant task (which 

demands high-entropy force) and slightly lower entropy with the lip for the more structured variable 

tasks (significant only for multicosine), suggesting that adaptation to task demand with practice may 

have been better with the lip. 

All participants had force entropy ordered by task (constant > multicosine > sine), but for older 

adults only the constant > sine difference was significant. For younger adults, the constant > multicosine  

Figure 31. Final complexity by age group, effector & task (ApEn on the left and FuzzyMEn 
on the right, each m = 2, r = 0.2, N = 1100; M ± SE): day 3, first retention trial. 
Significance not indicated; see text and tables. 
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and constant > sine differences were significant for both effectors, while the multicosine > sine 

difference was significant only for the tongue. 

Younger adults’ entropy was higher than older adults’ in the lip x constant force condition and 

lower in the tongue x sine condition; in both cases, the contrast suggests younger adults adapted 

structure of output to task demand more closely than the older adults. 

Table 21 
 
Approximate Entropy (AE) and Fuzzy Measure Entropy (FZ) on Day 3 Retention Trial 1  

Term evaluated and level of evaluation Test statistica Significanceb 
3-way interaction (age group x effector x task) b AE F(2, 205) = 5.053 p = 0.007* 

FZ F(2, 205) = 4.537 p = 0.012* 

 Simple 2-way 
interaction: 
effector x task 

age group = OA c AE, FZ both NS for interaction; simple 
main effects significant 

 simple main effect: effector c 
(T > L) 

AE F(1, 105) = 22.708 p < 0.0005* 
FZ F(1, 105) = 22.767 p < 0.0005* 

 simple main effect: task c AE F(2, 105) = 5.059 p = 0.008* 
FZ F(2, 105) = 6.777 p = 0.002* 

 C > S d AE  p = 0.007* 
FZ  p = 0.001* 

age group = YA c AE F(2, 100) = 12.185 p < 0.0005* 
FZ F(2, 100) = 10.979 p < 0.0005* 

 

simple simple 
main effect of 
effector  

task = C d 
(L > T) 

AE F(1, 20) = 11.950 p = 0.002* 
FZ F(1, 20) = 10.768 p = 0.004* 

task = M d 
(T > L) 

AE F(1, 20) = 10.821 p = 0.004* 
FZ F(1, 20) = 11.775 p = 0.003* 

simple simple 
main effect of 
task  

effector = L c AE F(2, 40) = 60.379 p < 0.0005* 
FZ F(2, 40) = 57.790 p < 0.0005* 

 C > S e AE  p < 0.0005* 

FZ  p < 0.0005* 

C > M e AE  p < 0.0005* 
FZ  p < 0.0005* 

 effector = T c AE F(2, 40) = 35.382 p < 0.0005* 
FZ F(2, 40) = 29.771 p < 0.0005* 

 C > S e AE  p < 0.0005* 
FZ  p < 0.0005* 

C > M e AE  p < 0.0005* 
FZ  p < 0.0005* 

S < M e AE  p = 0.003* 

FZ  p = 0.023 
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Table 21 (cont.) 

 Simple 2-way 
interaction: 
age group x task 

effector = L c AE F(2, 82) = 23.792 p < 0.0005* 

FZ F(2, 82) = 21.761 p < 0.0005* 

 simple simple 
main effect of 
age group e 

task = C 
(YA > OA) 

AE t(39) = -4.339 p = 0.002* 

FZ t(39) = -4.295 p = 0.001* 

task = M AE t(39) = 0.793 p = 0.424 

FZ t(39) = 0.503 p = 0.624 

effector = T c AE F(2, 82) = 10.995 p < 0.0005* 
FZ F(2, 82) = 8.330 p = 0.001* 

 simple simple 
main effect of 
age group e 

task = S 
(OA > YA) 

AE t(39) = 4.741 p = 0.001* 
FZ t(39) = 4.191 p = 0.001* 

Note. Nonsignificant results are included only when AE and FZ results disagree. Age groups: older adults 
(OA), younger adults (YA). Effectors: lip (L), tongue (T). Tasks: constant (C), sine (S), multicosine (M). 
a For interactions and most main effects, F-statistic. For simple simple main effects of age group, 
independent-samples t-test with bootstrapping. For pairwise comparisons, SPSS provides a significance 
criterion but no test statistic. b For the three-way interaction, standard for significance is p < 0.05. All 
follow-up analyses’ p criteria were Bonferroni-corrected; see analysis-specific footnotes for the values 
used and Appendix F for their derivation. c Significance criterion is p < 0.025. d Significance criterion is p < 
0.017. e Significance criterion is p < 0.008. * Meets the criterion for statistical significance. 
 

Frequency structure. This analysis evaluated proportion of power (PoP) in 1-Hz-wide frequency 

bands from 0 to 3 Hz; values range from 0 to 1 with a higher value indicating a greater proportion of the 

total power in the specified band. The purpose of this analysis was to describe how age group, effector 

and task affected the proportional distribution of power across the different frequency bands during 

day-3 retention trials (first trial in each effector x task condition) after two days’ practice of unfamiliar 

tasks. Recall that the sine and multicosine tasks’ targeted fundamental frequencies are 0.75 Hz; the 

multicosine target has additional, successively smaller components at 1.5 and 3 Hz. 

When the four-way model was run on all 41 participants, the distributions of studentized 

residuals for three effector x task x frequency band conditions were excessively skewed. Because the 

direction of skew was not consistent, no transformation was appropriate. When participants with 

extreme residuals in those conditions (three older adults) were excluded and the model re-run, model fit 

was acceptable. The latter analysis is reported. 

Due to the large number of comparisons necessitated for follow-up of multiple significant 

interactions, test statistics are reported in tables, one per significant three-way interaction. 

Accompanying text summarizes and interprets table results, following the order of presentation in the 

tables, without repeating the numbers. 
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Within every combination of age group, task and effector, differences between frequency bands 

followed the same pattern: greatest proportion of power in the 0-1 Hz band, followed by the 1-2 Hz 

band, followed by the 2-3 Hz band, with every pairwise comparison significant at p < 0.0005 (omitted 

from the table). See all figures in this section; significance for this effect is marked only on Figure 33. 

The three-way interaction of age group, effector and frequency band was significant only when 

participants with extreme values were excluded (the sole difference between the models’ results). For 

both age groups, proportion of power was greater in the lip than in the tongue from 0-1 Hz and greater 

in the tongue above 1 Hz. See Table 22 and Figure 32. 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 32. Proportion of power by age group and effector: day 3, first retention trial. 
* Significant at p ≤ 0.005. 
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Table 22 
 
Proportion of Power by Age Group, Effector, Task and Frequency Band on Day 3, Retention trial 1,  
Part 1: Age Group x Effector x Frequency Band Interaction 

Term evaluated and level of evaluation Test statistic Significancea 
3-way interaction: age group x effector x frequency band a F(1.218, 43.839) = 4.561 p = 0.031* 

 Simple 2-way 
interaction: age 
group x effector 

band: 0-1 Hz b F(1, 36) = 5.326 p = 0.027 

band: 1-2 Hz b F(1, 36) = 3.387 p = 0.074 

band: 2-3 Hz b F(1, 36) = 1.096 p = 0.302 

Simple 2-way 
interaction: 
effector x 
frequency band 

age group = OA c F(1.255, 21.335) = 35.097 p < 0.0005* 

 simple simple 
main effect of 
effector 

band: 0-1 Hz d F(1, 17) = 38.516 (L > T) p < 0.0005* 

band: 1-2 Hz d F(1, 17) = 24.911 (L < T) p < 0.0005* 

band: 2-3 Hz d F(1, 17) = 25.818 (L < T) p < 0.0005* 

simple simple 
main effect of 
freq. band 

effector = L e F(1.070, 18.187) = 482.900 p < 0.0005* 

effector = T e F(1.316, 22.366) = 160.895 p < 0.0005* 

age group = YA c F(1.147, 21.799) = 19.638 p < 0.0005* 

 simple simple 
main effect of 
effector 

band: 0-1 Hz d F(1, 19) = 24.694 (L > T) p < 0.0005* 

band: 1-2 Hz d F(1, 19) = 9.978 (L < T) p = 0.005* 

band: 2-3 Hz d F(1, 19) = 34.090 (L < T) p < 0.0005* 

simple simple 
main effect of 
freq. band 

effector = L f F(1.088, 20.664) = 651.685 p < 0.0005* 

effector = T f F(1.375, 26.133) = 425.326 p < 0.0005* 

Simple 2-way 
interaction: 
age group x 
frequency band 

effector = L c F(1.091, 39.273) = 1.797 p = 0.188 

effector = T c F(1.339, 48.199) = 2.727 p < 0.094 

Note. Age groups: older adults (OA), younger adults (YA). Effectors: lip (L), tongue (T). Tasks: constant 
(C), sine (S), multicosine (M). Formatting shows the structure of follow-up analyses: terms are evaluated 
within italicized levels to the right of the term; if a term is significant at a given level, the next-simplest 
terms are listed below it with further indentation. 
a For 3-way interactions, the standard for significance is p < 0.05. All follow-up analyses’ p criteria were 
Bonferroni-corrected. See footnotes for the values used and Appendix F for their derivation.  
b Significance criterion is p < 0.017. c Significance criterion is p < 0.025. d Significance criterion is p < 
0.008. e Significance criterion is p < 0.013. * Meets the criterion for statistical significance. 
 

The three-way interaction of effector, task and frequency band was significant (see Table 23 and 

Figures 33-35). For all tasks, proportion of power was greater in the lip than in the tongue from 0-1 Hz 

and greater in the tongue above 1 Hz. 
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Figure 33. Proportion of power by frequency band and effector 
for the constant task: day 3, first retention trial. 
* Significant at p < 0.0005. 

Figure 34. Proportion of power by frequency band and effector for the sine 
task: day 3, first retention trial. * Significant at p < 0.0005. 
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Table 23 
 
Proportion of Power by Age Group, Effector, Task and Frequency Band on Day 3, Retention trial 1,  
Part 2: Effector x Task x Frequency Band Interaction 

Term evaluated and level of evaluation Test statistic Significancea 
3-way interaction: effector x task x frequency band b F(2.3, 82.787) = 4.538 p = 0.010* 

 Simple 2-way 
interaction: 
effector x task 

band: 0-1 Hz c F(2, 72) = 4.054 p = 0.021 

 simple main effect of effector c F(1, 36) = 65.013 (L > T) p < 0.0005* 

simple main effect of task c F(1.511, 54.408) = 52.483 p < 0.0005* 

 C < S d p < 0.0005* 

C = M d p = 1.000 

S > M d p < 0.0005* 

band: 1-2 Hz c F(2, 72) = 4.736 p = 0.012* 

 simple simple 
main effect of 
effector 

task = C e F(1, 36) = 32.236 (L < T) p < 0.0005* 

task = S e F(1, 36) = 21.296 (L < T) p < 0.0005* 

task = M e F(1, 36) = 10.592 (L < T) p = 0.002* 

simple simple 
main effect of 
task 

effector = L f F(1.492, 53.707) = 22.855 p < 0.0005* 

 C = S d p = 0.039 

C < M d p < 0.0005* 

S < M d p < 0.0005* 

effector = T f F(1.462, 52.628) = 33.796 p < 0.0005* 

 C > S d p < 0.0005* 

C = M d p = 0.053 

S < M d p < 0.0005* 

Figure 35. Proportion of power by frequency band and effector for the 
multicosine task: day 3, first retention trial. * Significant at p ≤ 0.002. 
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Table 23 (cont.) 

 Simple 2-way 
interaction: 
effector x task 
(cont.) 

band: 2-3 Hz c F(2, 72) = 6.006 p = 0.004* 

 simple simple 
main effect of 
effector 

task = C e F(1, 36) = 31.590 (L < T) p < 0.0005* 

task = S e F(1, 36) = 30.996 (L < T) p < 0.0005* 

task = M e F(1, 36) = 16.518 (L < T) p < 0.0005* 

simple simple 
main effect of 
task 

effector = L f F(1.552, 55.889) = 19.867 p < 0.0005* 

 C > S d p < 0.0005* 

C = M d p = 1.000 

S < M d p < 0.0005* 

effector = T f F(2, 72) = 19.801 p < 0.0005* 

 C > S d p < 0.0005* 

C = M d p = 0.031 

S < M d p = 0.001* 

Simple 2-way 
interaction: task 
x frequency band 

effector = L g F(1.741, 62.680) = 22.918 p < 0.0005* 

 simple simple 
main effect of 
freq. band 

task = C f F(1.158, 41.677) = 487.838 p < 0.0005* 

task = S f F(1.068, 38.437) = 3463.659 p < 0.0005* 

task = M f F(1.050, 37.811) = 169.110 p < 0.0005* 

effector = T g F(2.037, 73.342) = 37.045 p < 0.0005* 

 simple simple 
main effect of 
freq. band 

task = C f F(1.369, 49.296) = 119.087 p < 0.0005* 

task = S f F(1.146, 41.252) = 1025.257 p < 0.0005* 

task = M f F(1.185, 42.653) = 90.947 p < 0.0005* 

Simple 2-way 
interaction: effector 
x frequency band 

task = C c F(1.188, 42.763) = 36.811 p < 0.0005* 

task = S c F(1.121, 40.353) = 31.065 p < 0.0005* 

task = M c F(1.207, 43.461) = 16.760 p < 0.0005* 

Note. Age groups: older adults (OA), younger adults (YA). Effectors: lip (L), tongue (T). Tasks: constant 
(C), sine (S), multicosine (M). Formatting shows the structure of follow-up analyses: terms are evaluated 
within italicized levels to the right of the term; if a term is significant at a given level, the next-simplest 
terms are listed below it with further indentation. 
a For interaction and main effects. For pairwise comparisons, SPSS provides a significance criterion but 
no test statistic. b For interactions in the full model, the standard for significance is p < 0.05. All follow-up 
analyses’ p criteria were Bonferroni-corrected. See analysis-specific footnotes for the values used and 
Appendix F for their derivation. c Significance criterion is p < 0.017. d Significance criterion is p < 0.003. 
e Significance criterion is p < 0.006. f Significance criterion is p < 0.008. g Significance criterion is p < 
0.025. * Meets the criterion for statistical significance. 
 

The three-way interaction of age group, task and frequency band was significant (see Table 24 

and Figures 36 and 37). For the sine task, younger adults’ distribution of force matched the demands of 

the task more closely than older adults’ across all frequency bands, with greater power than the older 

adults in the 0-1 Hz band and less power in the higher bands. In the 0-1 Hz band, younger and older 

adults had similar task differentiation: greater proportion of power for the sine task than for the other 
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tasks. In the 1-2 Hz band, older adults did not differentiate tasks, while younger adults had a clear 

separation of all three, with the greater proportion of power for the multicosine task, intermediate for 

the constant task, and least for the sine task, congruent with task demands. In the 2-3 Hz band, older 

adults had a greater proportion of power for the multicosine task than the sine task. Younger adults 

again differentiated all three tasks, with the greatest proportion of power for the constant task, 

intermediate for the multicosine task and least for the sine task, congruent with task demands. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 Figure 36. Proportion of power by frequency band and task for 
older adults: day 3, first retention trial. * Significant at p < 0.002. 
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Table 24 
 
Proportion of Power by Age Group, Effector, Task and Frequency Band on Day 3, Retention trial 1,  
Part 3: Age Group x Task x Frequency Band Interaction 

Term evaluated and level of evaluation Test statistica Significanceb 
3-way interaction: age group x task x frequency band b F(1.575, 56.690) = 7.107 p = 0.004* 

 
 

Simple 2-way 
interaction: 
age group x 
frequency band 

task = C c F(1.437, 51.720) = 4.564 p = 0.025 

task = S c F(1.134, 40.826) = 29.371 p < 0.0005* 

task = M c F(1.072, 38.591) = 1.262 p = 0.272 

Simple 2-way 
interaction: 
age group x task 

band: 0-1 Hz c F(1.511, 54.408) = 7.710 p = 0.003* 

 simple simple 
main effect of 
age group 

task = C d F(1, 36) = 5.339 p = 0.027 

task = S d F(1, 36) = 35.810 (YA > OA) p < 0.0005* 

task = M d F(1, 36) = 0.002 p = 0.963 

band: 1-2 Hz c F(1.265, 45.526) = 5.462 p = 0.017* 

 simple simple 
main effect of 
age group 

task = C d F(1, 36) = 0.309 p = 0.582 

task = S d F(1, 36) = 16.119 (OA > YA) p < 0.0005* 

task = M d F(1, 36) = 0.2.595 p = 0.116 

band: 2-3 Hz c F(2, 72) = 14.840 p < 0.0005* 

 simple simple 
main effect of 
age group 

task = C d F(1, 36) = 7.533 p = 0.009 

task = S d F(1, 36) = 22.135 (OA > YA) p < 0.0005* 

task = M d F(1, 36) = 9.476 (OA > YA) p = 0.004* 

  

Figure 37. Proportion of power by frequency band and task for 
younger adults: day 3, first retention trial. * Significant at p ≤ 0.004. 



   89 
 
 

Table 24 (cont.) 

 Simple 2-way 
interaction: 
task x frequency 
band 

age group = OA e F(1.670, 28.382) = 9.567 p = 0.001* 

 simple simple 
main effect of 
task 

band: 0-1 Hz f F(2, 34) = 11.003 p < 0.0005* 

 C < S g  p = 0.002* 

C = M g  p = 0.655 

S > M g  p = 0.002* 

band: 1-2 Hz f F(1.300, 22.092) = 7.156 p = 0.009 

band: 2-3 Hz f F(2, 34) = 8.770 p = 0.001* 

 C = S g  p = 0.020 

C = M g  p = 0.700 

S < M g  p = 0.002* 

simple simple 
main effect of 
freq. band 

task = C f F(1.200, 20.402) = 429.487 p < 0.0005* 

task = S f F(1.139, 19.363) = 702.816 p < 0.0005* 

task = M f F(1.081, 18.377) = 76.891 p < 0.0005* 

age group = YA e F(1.408, 26.756) = 48.356 p < 0.0005* 

 simple simple 
main effect of 
task  

band: 0-1 Hz f F(1.305, 24.802) = 52.273 p < 0.0005* 

 C < S g  p < 0.0005* 

C = M g  p = 1.000 

S > M g  p < 0.0005* 

band: 1-2 Hz f F(1.219, 23.154) = 42.963 p < 0.0005* 

 C > S g  p < 0.0005* 

C < M g  p = 0.004* 

S < M g  p < 0.0005* 

band: 2-3 Hz f F(2, 38) = 36.977 p < 0.0005* 

 C > S g  p < 0.0005* 

C > M g  p < 0.0005* 

S < M g  p = 0.001* 

simple simple 
main effect of 
freq. band 

task = C f F(2, 38) = 238.628 p < 0.0005* 

task = S f F(1.090, 20.712) = 5848.305 p < 0.0005* 

task = M f F(1.061, 20.166) = 113.583 p < 0.0005* 

Note. Age groups: older adults (OA), younger adults (YA). Effectors: lip (L), tongue (T). Tasks: constant 
(C), sine (S), multicosine (M). Formatting shows the structure of follow-up analyses: terms are evaluated 
within italicized levels to the right of the term; if a term is significant at a given level, the next-simplest 
terms are listed below it with further indentation. 
a For interaction and main effects. For pairwise comparisons, SPSS provides a significance criterion but 
no test statistic. b For interactions in the full model, the standard for significance is p < 0.05. All follow-up 
analyses’ p criteria were Bonferroni-corrected. See analysis-specific footnotes for the values used and 
Appendix F for their derivation. c Significance criterion is p < 0.017. d Significance criterion is p < 0.006. 
e Significance criterion is p < 0.025. f Significance criterion is p < 0.008. g Significance criterion is p < 
0.003. * Meets the criterion for statistical significance. 
 

Specific Aim 1: Practice-Related Hypotheses 

These hypotheses related to changes expected with practice. 



   90 
 
 

Hypothesis 1b. Adaptability (immediate): Older adults will change structure of force to meet 

task demands less effectively than younger adults, comparing trial 2 to trial 1 on day 1 within each 

effector x task combination. All reported measurements were calculated as day 1: block 1: [trial 2 – trial 

1] for each effector x task combination. 

Temporal structure. These linear mixed effects models evaluated the effects of age group, 

effector and task on immediate change in entropy (initialApEn and initialFuzzyMEn separately). A positive 

number indicates increase in entropy from trial 1 to trial 2, a negative number a decrease. See Statistical 

Analysis and Figure 38 for model details. For both measures, the full model had no statistically 

significant interaction terms; only two main effects reached significance. 

Immediate change in entropy was greater for the lip than the tongue (initialApEn: F(1, 205) = 

6.133, p = 0.014; initialFuzzyMEn: F(1, 205) = 7.436, p = 0.007). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Immediate change in entropy differed by task (initialApEn: F(2, 205) = 8.279; initialFuzzyMEn: F(2, 

205) = 8.030; both p < 0.0005). Pairwise comparisons showed that immediate change was greater for 

Figure 38. Immediate change (day 1, block 1, trial 2 - trial 1) in entropy by age group, effector and 
task (ApEn and FuzzyMEn, each m = 2, r = 0.2, N = 1100; M ± SE). * Significant at p ≤ 0.014. 
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the constant task than for both other tasks (vs. sine: initialApEn,   p < 0.0005; initialFuzzyMEn, p = 0.001; 

vs. multicosine: initialApEn, p = 0.008; initialFuzzyMEn, p = 0.007). 

Proportion of power. The purpose of this analysis was to determine how age group, effector 

and task affect immediate changes in proportional distribution of power from 0-3 Hz from initial to 

second attempts at unfamiliar tasks. See Statistical Analysis for details. Change in proportion of power 

(PoP) was calculated for each of three frequency bands (0-1, 1-2, 2-3 Hz). A positive number indicates 

that PoP in the specified band increased from trial 1 to trial 2, a negative number that it decreased. 

Mean change in PoP from trial 1 to trial 2 did not vary by frequency band, or by age group, 

effector, or task interacting with each frequency band (main effects and interactions all non-significant). 

Hypothesis 1c. Adaptability (after practice): Older adults will change structure of force to meet 

task demands less effectively than younger adults, comparing day 1 trial 1 to day 3 retention trial 1 

within each effector x task combination. 

Temporal structure. Change in complexity was assessed by subtracting entropy (ApEn or 

FuzzyMEn) on initial performance (day 1, block 1, trial 1 for each effector x task combination) from 

entropy on the first retention trial (Figure 39). A positive result indicated an increase in entropy. 

There was equivocal evidence that entropy change with practice may depend upon an 

interaction of effector and task. For ApEn, the interaction was significant (F(2, 205) = 4.307, p = 0.015), 

but the simple main effect of effector did not reach significance within any task (closest for the constant 

task, F(1, 41) = 4.696, p = 0.036, with Bonferroni-adjusted criterion for significance 0.017). For 

FuzzyMEn, the interaction was significant in the full factorial model (F(2, 205) = 3.061, p = 0.049), but no 

longer so (F(2, 205) = 2.951, p = 0.055) when the non-significant three-way interaction was omitted.  

Entropy change with practice depended upon an interaction of age group and task (ApEn: F(2, 

205) = 5.890, p = 0.003; FuzzyMEn: F(2, 205) = 4.950, p = 0.008). ApEn task-specific submodels did not all 

support random subjects effects; independent-samples t-tests with bootstrapping and equal variances 

not assumed are reported instead. For the multicosine task, younger adults did not change entropy with 

practice, while older adults increased it (ApEn: t(67.503) = 2.675, p = 0.014; FuzzyMEn: F(1, 41) = 4.559, 

p = 0.039, NS). For the sine task, younger adults decreased entropy with practice, while older adults 

increased it (ApEn: t(75.08) = 4.308, p = 0.001; FuzzyMEn: F(1, 41) = 9.657, p = 0.003). 

The simple main effects of task were significant, and in the same direction, for every level of 

effector and every level of age group; only the overall main effect and pairwise comparisons are 

reported. Entropy increased with practice to a greater degree for the constant task than for both 
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variable tasks (ApEn, F(2, 205) = 34.918; FuzzyMEn, F(2, 205) = 32.121; main effects and pairwise 

comparisons of constant to sine and multicosine, all p < 0.0005). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Frequency structure. The purpose of this analysis was to determine how spectral power from 0-

3 Hz changed with practice, depending on effector used, task performed, and participant’s age group. 

See Statistical Analysis for details. Change in proportion of power (PoP)was calculated for each of three 

frequency bands (0-1, 1-2, 2-3 Hz) by subtracting band-specific PoP on initial performance (day 1, block 

1, trial 1 for each effector x task combination) from PoP on the first retention trial (Figure 40). A positive 

number indicates that PoP in the specified band increased, a negative number that it decreased. 

Change in the distribution of spectral power across frequency bands with practice was 

significantly affected by task (F(2.102, 81.978) = 10.681, p < 0.0005). Follow-up analyses (see Table 25, 

following Figure 40) showed that the amount of change differed by frequency band for the constant and 

sine tasks. For the constant task, participants decreased PoP in the 0-1 Hz and 1-2 Hz bands and 

increased it in the 2-3 Hz band. See Figure 40. For the sine task, participants increased power in the 0-1 

Hz band and decreased it in the 1-2 Hz band. The pattern for the multicosine task was similar to that for 

Figure 39. [Retention – baseline] approximate and fuzzy measure entropies (m = 2, r = 0.2, 
N = 1100) by age group, task & effector (M ± SE). Significance not indicated; see text and tables. 
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the sine task, but because the increase at 0-1 Hz and decrease at 1-2 Hz were less extreme, the effect of 

frequency band did not reach significance. 

Amount of change also differed by task within frequency band. In the 0-1 Hz band, PoP was 

decreased for the constant task and increased for the others, which did not differ from each other. In 

the 2-3 Hz band, PoP was increased for the constant task and unchanged for the others. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 40. Change in proportion of power by frequency band and task 
from initial performance (day 1, trial 1 of each condition) to first 
retention trial (day 3). Significance not indicated; see text and tables. 
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Table 25 
 
Change in Proportion of Power by Frequency Band from Day 1, Block 1, Trial 1 to Day 3, 
Retention Trial 1.  

Term evaluated and level of evaluation Test statistic a Significance b 
Simple main 
effect of 
frequency band 

task = C c  F(1.313, 51.201) = 7.507 p = 0.005* 
 0-1 = 1-2 Hz d  p = 0.760 

1-2 < 2-3 Hz d  p = 0.004* 

0-1 < 2-3 Hz d  p = 0.001* 
task = S c F(1.231, 48.012) = 24.414 p < 0.0005* 
 0-1 > 1-2 Hz d  p < 0.0005* 

1-2 < 2-3 Hz d  p < 0.0005* 
0-1 > 2-3 Hz d  p = 0.002* 

task = M c  F(1.136, 44.321) = 5.246 p = 0.023 

Simple main 
effect of task 

band: 0-1 Hz c F(1.714, 66.838) = 14.054 p < 0.0005* 

 C < S d  p < 0.0005* 
C < M d  p = 0.004* 
S = M d  p = 0.850 

band: 1-2 Hz c F(1.710, 66.686) = 2.092 p = 0.138 
band: 2-3 Hz c F(1.684, 65.677) = 23.073 p < 0.0005* 
 C > S d  p < 0.0005* 

C > M d  p < 0.0005* 
S = M d  p = 1.0 

Note. Tasks: constant (C), sine (S), multicosine (M). Formatting shows the structure of 
follow-up analyses: terms are evaluated within italicized levels to the right of the term; 
if a term is significant at a given level, the next-simplest terms are listed below it with 
further indentation.  
a For interaction and main effects, F-statistic. For pairwise comparisons, SPSS provides 
a significance criterion but no test statistic. b For the task x frequency band interaction 
in the full model, the standard was p < 0.05. All follow-up analyses’ p criteria were 
Bonferroni-corrected; see analysis-specific footnotes for the values used and Appendix 
F for their derivation. c Significance criterion is p < 0.017. d Significance criterion is p < 
0.008. * Meets the criterion for statistical significance. 
 

Hypothesis 1d. Older adults’ reduction in error vs. baseline on retention and transfer trials after 

two days’ practice will be less than younger adults’. This section characterizes initial accuracy, final 

accuracy, and learning by age group, effector and task. 

Initial accuracy. This analysis used linear mixed effects modeling to evaluate normalized root 

mean square error (NRMSE), for which a lower value indicates more accurate performance, for the first 

trial of each effector x task combination on day 1. The purpose was to determine how age group, 

effector and task affect accuracy during initial attempts at unfamiliar tasks. See Figure 41 and Statistical 

Analysis for model details. 
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Model fitting to the original data yielded strongly positively skewed residuals (skew = 3.118). 

Residuals remained excessively skewed after data were square-root transformed (skew = 2.207). When 

a logarithmic transformation was used instead, both model residuals’ and random effects’ values of 

skewness were acceptable (1.649 and 1.013 respectively). Reported test statistics refer to the analysis of 

logarithm-transformed data, but the pattern of significance did not differ from the original analysis. 

The only significant interaction in the final model occurred between age group and effector (F(1, 

205) = 9.459, p = 0.002). Follow-up analysis of simple main effects showed that for younger adults only, 

NRMSE was greater for the tongue (F(1, 100) = 21.991, p < 0.0005), while for both effectors, older 

adults’ NRMSE was greater than younger adults’ (lip: F(1, 41) = 22.010, p < 0.0005; tongue: F(1, 41) = 

10.228, p = 0.003). 

Accuracy differed by task (F(2, 205) = 31.182, p < 0.0005). Pairwise comparison showed that 

NRMSE was lower on the constant task than the variable tasks (sine and multicosine, both p < 0.0005). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Final accuracy. This linear mixed model analysis evaluated normalized root mean square error 

(NRMSE), for which a lower value indicates more accurate performance. The purpose was to determine 

Figure 41. Initial performance normalized root mean square error (NRMSE) by age group, 
effector and task (M ± SE): day 1, trial 1. Significance not indicated; see text. 
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how age group, effector and task affect accuracy on the first day-3 retention trial after two days’ 

practice of unfamiliar tasks. See Figure 42 and Statistical Analysis for model details. 

When the full model was fit to the original data, both level-1 and level-2 residuals had skew > 2. 

Only the former was corrected with a square-root transformation, while both were resolved with a 

logarithm transformation. Reported test statistics refer to the analysis of logarithm-transformed data. 

The pattern of significant results was the same as for the original data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The effects of age group and task interacted (F(2,205) = 5.998, p = 0.003). Follow-up analysis 

showed that older adults’ NRMSE was higher than younger adults’ for all tasks (constant: F(1, 41) = 

32.391; sine: F(1, 41) = 72.549; multicosine, F(1, 82) = 65.41016, all p < 0.0005). 

Both age groups’ NRMSE differed by task (older adults: F(2, 105) = 53.352; younger adults, F(2, 

100) = 94.339; both p < 0.0005). Though participants in both age groups showed the same pattern, with 

NRMSE increasing from constant to sine to multicosine force targets, only the younger adults had each 

                                                           
 

16
 For task = multicosine only, model validity was questionable due to zero random subjects effects. A mixed-model 

RMANOVA analysis of age group and effector simple main effects for task = multicosine found the same age group 
difference, F(1, 39) = 72.344, p < 0.0005. 

Figure 42. Normalized root mean square error (NRMSE) by age group, task & 
effector (M ± SE): day 3, first retention trial. Significance not indicated; see text. 
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task significantly differentiated from both others (all p < 0.0005). For the older adults, the two variable 

tasks had higher NRMSE than constant force (p < 0.0005) but did not differ significantly from each other. 

NRMSE was greater for the tongue than the lip (F(1,205) =11.180, p = 0.001) by 0.012 ± 0.003. 

Reduction in error following practice. The purpose of these analyses was to determine how age 

group, effector and task affect learning after two days’ practice of unfamiliar tasks. Learning was 

assessed by subtracting NRMSE on initial performance (day 1, block 1, trial 1 for each effector x task 

combination) from the corresponding NRMSE on trial 1 of retention and transfer conditions. For 

retention trials, a negative number, i.e. reduction in error, indicated improvement in performance. For 

transfer trials, a negative number indicated application of learned skill to a related task. Linear mixed 

effects models were fit; see Statistical Analysis. 

Retention trials. See Figure 43. When the full model was fit to the original data, residuals were 

negatively skewed. This issue was resolved with a reflect + square root transformation. The pattern of 

significance in the original-data model was the same as the transformed-data analysis reported here. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 43. [Retention – baseline] normalized root mean square 
error (NRMSE) by age group, task & effector (M ± SE).  
* Significant at p ≤ 0.024. 
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Age group interacted significantly with both effector (F(1, 205) = 5.702, p = 0.018) and task (F(2, 

205) = 3.871, p = 0.022). 

Only younger adults’ reduction in NRMSE differed by effector, with greater change for the 

tongue (F(1, 100) = 5.276, p = 0.024). Younger adults showed greater reduction in NRMSE than older 

adults only with the tongue (F(1, 41) = 7.38, p = 0.009). 

Only younger adults’ reduction in NRMSE differed by task (F(2, 100) = 10.943, p < 0.0005), with 

greater improvement on the sine task than both others (p = 0.002 vs. multicosine, p < 0.0005 vs. 

constant). Younger adults showed greater reduction in NRMSE than older adults only on the sine task 

(F(1, 41) = 11.288, p = 0.002). 

Transfer trials. See Figure 44. Models were fit separately for the two transfer conditions (lower 

and higher target force) because of the difference in presence vs. absence of transfer seen previously. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For transfer to lower target force, age group interacted with task (F(2, 205) = 4.336, p = 0.014). 

Both groups’ transfer of skill depended on task (younger adults: (F(2, 100) = 20.215, p < 0.0005; older 

adults: (F(2, 105) = 7.062, p = 0.001). For younger adults, transfer of skill was greater for constant and 

Figure 44. [Transfer – baseline] for transfer to lower and higher target force levels 
normalized root mean square error (NRMSE) by age group, task & effector (M ± SE). 
Significance not indicated; see text. 
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sine tasks than multicosine (both p < 0.0005). For older adults, transfer of skill was greater for the 

constant task than for both others (p = 0.009 vs. sine, p = 0.002 vs. multicosine). Within task, the effect 

of age group was significant only for the sine task (F(1, 41) = 15.127, p < 0.0005), for which the younger 

adults showed transfer of skill and the older adults did not. 

For transfer to higher target force, when the full model was fit to the original data, residuals 

were negatively skewed. This issue was resolved with a reflect + square root transformation. With one 

exception noted below, the pattern of significance in the original-data model was the same as the 

transformed-data analysis reported here. 

Age group interacted significantly with both effector (F(1, 205) = 5.238, p = 0.023) and task (F(2, 

205) = 3.114, p = 0.047). The latter interaction was not significant in the original-data model (F(2, 205) = 

2.954, p = 0.054) and is not marked on the graph, which shows original data. For the lip only, older 

adults showed a larger difference from baseline to higher-force transfer tasks than younger adults (F(1, 

41) = 7.806, p = 0.008). 

Younger adults’ transfer of skill varied by task (F(2, 100) = 15.933, p < 0.0005): it was greater on 

both variable tasks than on the constant task (vs. sine, p < 0.0005; vs. multicosine, p = 0.002). For the 

constant task only, older adults showed a larger difference from baseline to higher-force transfer tasks 

than younger adults (F(1, 41) = 7.078, p = 0.011).  

Specific Aim 3: Prediction of Learning 

The purpose of all analyses in this section was to test the hypotheses that specific continuous 

quantitative predictor variables (each described in the subsection for its model) would predict learning; 

see Statistical Analysis for details. The dependent variable for all of these models was the change in 

normalized root mean square error from initial performance to either retention trials or trials of transfer 

to higher target force level: day-3 retention or transfer trial 1 minus day 1, block 1, trial 1 for each 

effector x task combination (finalNRMSEret or finalNRMSEtrn). For finalNRMSEret, a more negative number 

indicated reduction in error from baseline (improvement in performance on the practiced tasks). For 

finalNRMSEtrn, lower normalized root mean square error on day 3 than day 1 indicated application of 

learned skill to a related task. These are the same outcomes analyzed in “Hypothesis 1d: Reduction in 

error following practice,” which showed that age group, effector and task had significant influence. 

Thus, these factors were retained for this predictive modeling. 

Hypotheses 3a and 3b. (a) Error and (b) higher maximal force entropy at baseline will predict 

retention and transfer in pursuit tracking tasks after controlling for age group, effector and task. The 
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primary continuous quantitative predictor of interest for these analyses was maximum entropy 

(maxApEn, maxFuzzyMEn) out of the five trials of the first block for each effector x task condition on day 

1. The predictor of secondary interest was normalized root mean square error on day 1, block 1, trial 1 

(NRMSEinitial). The choice to evaluate both a maximum entropy measure and NRMSEinitial in the same 

model was made based on results of the opposite choice, explained below. 

Recall that NRMSEinitial has two potential interpretations as a predictor of reduced error after 

practice. If NRMSEinitial is not merely an indicator of performance in the moment but also measures 

aptitude for or ability to learn the task, then higher (worse) NRMSEinitial will predict higher finalNRMSEret 

(also worse) and the parameter estimate will be positive. On the other hand, if higher initial 

performance error only provides a benchmark and does not indicate aptitude, then higher NRMSEinitial 

allows greater room for improvement with practice, and the parameter estimate will be negative. 

Retention. Initial models were fit using maximum entropy as the only quantitative predictor 

(along with categorical factors of age group, effector and task, and each one’s interaction with 

maximum entropy). These models were unstable: random subjects effects were not supported,17 and 

stepwise discarding of nonsignificant interaction terms with the highest p-values erased the significance 

of previously significant terms with each step, until a main-effects only model remained with no 

significant terms. Residuals in the initial model were strongly negatively skewed, and while a reflect + 

logarithm transformation mitigated this issue, it did not allow random subjects effects to be fit. Table 26 

shows this instability for the model fitting process using maxApEn; the pattern was the same with 

maxFuzzyMEn. As the table shows, maximum entropy was often significant or nearly so, alone or in 

interaction with effector. However, given the model instability, these results are questionable. 

Unlike analyses in previous sections, RMANOVA could not be used as an alternate analysis when 

random subjects effects were not supported in the LME models; it can fit a quantitative predictor for 

each subject, but not for each condition within subject. An alternate linear mixed effects modeling 

approach was therefore tried, including NRMSEinitial as a second quantitative predictor rather than 

assessing its predictive utility separately. 

 

                                                           
 

17
 SPSS warnings: “The final Hessian matrix is not positive definite although all convergence criteria are 

satisfied…Validity of subsequent results cannot be ascertained”; “This covariance parameter [subject ID] is 
redundant. The test statistic and confidence interval cannot be computed.” 
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Table 26 
 
Changes in Significance of Quantitative Predictor and Interacting Terms during Unstable Stepwise 
Modeling Process  

Model Term Test statistic Significance 
Model 1: main effects + 
all 2-way interactions 
with maxApEn 

effector F(1, 246) = 3.078 p = 0.081 
maxApEn F(1, 246) =3.918 p =0.049* 

age group x maxApEn F(1, 246) = 0.714 p = 0.399 
effector x maxApEn F(1, 246) = 4.877 p = 0.028* 

task x maxApEn F(1, 246) = 1.284 p = 0.279 

↓ 
Remove nonsignificant interaction terms. 

↓ 

Model 2: main effects + 
1 previously significant 
2-way interaction 

effector F(1, 246) = 2.301 p = 0.131 
maxApEn F(1, 246) = 6.157 p = 0.014* 

effector*maxApEn F(1, 246) = 3.348 p = 0.069 

↓ 
Remove formerly significant interaction term. 

↓ 

Model 3: main effects 
only 

effector F(1, 246) = 1.364 p = 0.244 
maxApEn F(1, 246) = 2.782 p = 0.097 

↓ 
No significant terms remaining. 

Note. Age group and task main effect terms were included in all of these models but remained 
nonsignificant throughout and are not shown here. 
* Significant at the p < 0.05 level. 
 

NRMSEinitial was a potentially important contributor to the model for two reasons. Firstly, 

controlling for initial performance could stabilize the model. Secondly, controlling for initial performance 

changes the tested hypothesis from ‘After controlling for age group, effector and task, maximum 

entropy will predict reduction in error with practice’ to ‘After controlling for age group, effector, task, 

and initial performance, maximum entropy will predict reduction in error with practice.’ This difference 

is important because the latter version makes the results more generalizable to other populations who 

might be expected to perform differently. 

This alternate approach was partially successful in improving model quality. These models 

permitted fitting of random subjects effects, but model stability remained questionable: the initial 

models’ residuals were excessively skewed, and both removal of two participants with extreme residuals 

and (separately) square root transformation led again to models unable to support random subjects 

effects. Thus the following results should be interpreted cautiously. 
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One borderline-significant interaction term was retained in the alternate models because of its 

consistent significance or near-significance across the variety of models tested: the interaction of 

effector with maximum entropy (maxApEn model: F(1, 241.787) = 3.786, p = 0.053; maxFuzzyMEn 

model: F(1, 245.823) = 2.550, p = 0.112). Controlling for this term as well as for age group, effector and 

task main effects, both quantitative predictors were significant. 

NRMSEinitial significantly predicted finalNRMSEret (maxApEn model: F(1, 242.978) = 797.01; 

maxFuzzyMEn model: F(1, 243.240) = 791.607; both p < 0.0005), with a 1-unit increase (worsening) in 

NRMSEinitial estimated to predict a change of -0.90 in finalNRMSEret per both models (improvement in 

performance with practice) after controlling for age group, task, effector and maximum entropy. 

Maximum entropy also significantly predicted finalNRMSEret (maxApEn model: F(1, 245.948) = 

7.005, p = 0.009; maxFuzzyMEn model: F(1, 245.823) = 5.414, p = 0.021). 1-unit increases in maxApEn 

and maxFuzzyMEn were estimated to predict changes in finalNRMSEret of 0.32 and 0.14 respectively 

(smaller reduction in error), after controlling for age group, task, effector and NRMSEinitial. 

Transfer. Initial linear mixed effects models were fit with main effects of age group, effector, 

task, NRMSEinitial, and maxApEn or maxFuzzyMEn. For both models, all interaction terms were 

nonsignificant, leaving only main effects in the final models. Both models also had excessively skewed 

random effects, which were resolved by the removal of a single older adult with extreme values. Pattern 

of significance was the same without this participant as in the original analysis reported here. 

NRMSEinitial significantly predicted change in error from baseline to transfer for higher target 

force levels in both models (maxApEn model: F(1, 243.256) = 1181.922; maxFuzzyMEn model: F(1, 

243.315) = 1184.732, both p < 0.0005). A 1-unit increase (worsening) in NRMSEinitial was estimated to 

predict a change of -0.91 in finalNRMSEtrn per both models (improved transfer) after controlling for age 

group, task, effector and maximum entropy. 

Maximum entropy did not significantly predict change in error from baseline to transfer for 

higher target force levels in either model (maxApEn model: F(1, 240.019) = 0.008, p = 0.927; 

maxFuzzyMEn model: F(1, 240.638) = 0.043, p = 0.836). 

Hypotheses 3a and 3c. (a) Error and (c) greater adaptability of entropy at baseline will predict 

retention and transfer in pursuit tracking tasks after controlling for age group, effector, task and the 

other continuous quantitative predictor. The quantitative predictor of primary interest for these 

analyses was the difference in entropy from trial 1 to trial 2 of the first block for each effector x task 
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combination on day 1 (initialApEn or initialFuzzyMEn). It was evaluated jointly with NRMSEinitial because 

NRMSEinitial was shown in the previous analyses to be a significant predictor. 

Retention. After stepwise removal of nonsignificant interactions, the final models included main 

effects of the categorical factors and quantitative predictors, plus the interaction of task with 

initialentropy. Models’ residuals were moderately positively skewed. Rerunning the models sans the two 

participants with extreme values (the same two for each model) mitigated this weakness and produced 

the same pattern of results as in the original analyses reported here, with the exception noted below. 

NRMSEinitial remained significant in these models (initialApEn model, F(1, 245.966) = 757.115; 

initialFuzzyMEn model, F(1, 245.974) = 773.854, both p < 0.0005), with 1-unit changes estimated to 

predict changes in finalNRMSEret of -0.89 and -0.90 respectively, after controlling for age group, effector, 

task and initialApEn/initialFuzzyMEn. 

The effect of initial change in entropy varied by task (initialApEn: F(2, 236.302) = 3.514, p = 

0.031; initialFuzzyMEn: F(2, 236.860) = 5.229, p = 0.006). Follow-up analyses were affected by inclusion 

vs. exclusion of participants with extreme residuals. See Table 27. Initial change in entropy met the 

adjusted criterion for significance for each task under one circumstance: for the constant task, 

initialApEn was significant in the all-participants model; for the sine task, initialFuzzyMEn was significant 

when participants with extreme residuals were excluded. The direction of the effect varied by task. For 

the constant task, which demands force output of high entropy, higher entropy on trial 2 than trial 1 on 

day 1 predicted a decrease in finalNRMSEret (i.e. a greater reduction in error by day 3). For the sine 

target, which requires force output of low entropy, higher entropy on trial 2 than trial 1 on day 1 

predicted an increase in finalNRMSEret (i.e. a lesser reduction in error by day 3). 
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Table 27 
 
Effect of Initial Change in Entropy on Change in Normalized Root Mean Square Error After Practice, 
Within Task, in Models Using All Participants vs. Excluding Two with Extreme Residuals 

Task Entropy measure Model Test statistic Significance 
Parameter 
estimate 

Constant initial ApEn N = 41 F(1, 80.703) = 6.877 p = 0.010* -0.138 
N = 39 F(1, 78.000) = 5.540 p = 0.021 -0.100 

initial FuzzyMEn N = 41 F(1, 81.482) = 5.715 p = 0.019 -0.074 
N = 39 F(1, 78.000) = 4.983 p = 0.028 -0.055 

Sine initial ApEn N = 41 F(1, 77.164) = 2.105 p = 0.151 0.247 
N = 39 F(1, 77.982) = 3.411 p = 0.069 0.251 

initial FuzzyMEn N = 41 F(1, 80.686) = 4.875 p = 0.030 0.222 
N = 39 F(1, 77.139) = 6.318 p = 0.014* 0.197 

Multicosine initial ApEn N = 41 F(1, 82) = 0.710 p = 0.402 0.167 
N = 39 F(1, 68.048) = 0.005 p = 0.946 -0.010 

initial FuzzyMEn N = 41 F(1, 82) = 1.349 p = 0.249 0.126 
N = 39 F(1, 68.399) = 0.192 p = 0.663 0.036 

Note. Neither initial entropy change measure was significant for the multicosine task in any model. 
Bonferroni-adjusted significance criterion is p < 0.017 (0.05 / 3 tasks). 
* Significant at the p < 0.017 level. 
 

Transfer. No interactions were significant; the final models included main effects of the 

categorical factors (age group, effector, task) and quantitative predictors (NRMSEinitial and initial change 

in entropy). Both models also had excessively skewed random effects, which were resolved by the 

removal of a single older adult with extreme values. Pattern of significance was the same without this 

participant as in the original analysis reported here. 

NRMSEinitial significantly predicted change in error from baseline to transfer for higher target 

force levels in both models (initial ApEn model: F(1, 243.505) = 1148.820; initial FuzzyMEn model: F(1, 

243.303) = 1149.167, both p < 0.0005). A 1-unit increase (worsening) in NRMSEinitial was estimated to 

predict a change of -0.89 [-0.94, -0.84] in finalNRMSEtrn per both models (improved transfer) after 

controlling for age group, task, effector and initial change in entropy. 

Initial change in entropy significantly predicted transfer of learning to tasks with a higher target 

force level in both models (initialApEn model: F(1, 232.077) = 11.853; initialFuzzyMEn model: F(1, 

234.461) = 10.437, both p = 0.001). 1-unit increases in initialApEn and initialFuzzyMEn were estimated to 

predict changes in finalNRMSEtrn of -0.17 [-0.27, -0.07] and -0.09 [-0.15, -0.04] respectively (improved 

transfer), after controlling for age group, task, effector and NRMSEinitial. 
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Summary of Findings 

Table 28 
 
Summary of Significant Findings by Specific Aim and Hypothesis 

Specific Aim 1. Assess applicability of previous findings on effects of age and task to oral effectors. 
Hypothesis 1a. Older adults’ force structure will differ task-dependently from younger adults’ (lower 
entropya and a greater proportion of low-frequency power when the task demands high entropy 
and reduced low-frequency power, and vice versa). 

At baseline: 
 Entropy, YA only: both measures, C > S, M > S; FZ only: C > M.b 
 Entropy, task C only: YA > OA. 
 PoP, 0-1 Hz band, YA only: C < S. b 

In retention trials: 
 Entropy: for OA, C > S; for YA, C > M  and C > S for both effectors, M > S only for T. b 
 Entropy: YA > OA in the “L x C” condition, YA < OA in the “T x S” condition. 
 PoP, task S: YA > OA in the 0-1 Hz band, YA < OA in higher bands. 
 PoP, 1-2 Hz band: OA did not differentiate tasks; YA differentiated all three, M > C > S. b 
 PoP, 2-3 Hz band: OA had M > S. YA differentiated all three, C > M > S. b 

Hypothesis 1b. Adaptability (immediate): Older adults will change structure of force to meet task 
demands less effectively than younger adults, comparing trial 2 to trial 1 on day 1 within each 
effector x task combination. 
 Entropy: immediate change was affected by effector and task, but not by age group. 
 PoP: No tested factors had significant influence on immediate change. 

Hypothesis 1c. Adaptability (after practice): Older adults will change structure of force to meet task 
demands less effectively than younger adults, comparing day 1 trial 1 to day 3 retention trial 1 
within each effector x task combination. 
 Entropy, task M: YA did not change with practice; OA increased. 
 Entropy, task S: YA decreased with practice b; OA increased. 

Hypothesis 1d. Older adults will show less reduction in error relative to baseline on retention and 
transfer trials after two days’ practice than younger adults. 

In retention trials: 
 NRMSE reduction vs. baseline, T only: YA > OA. 
 NRMSE reduction vs. baseline, task S only: YA > OA. 

In transfer trials: 
 NRMSE reduction vs. baseline, transfer to lower target force, task S only: YA > OA. 

NRMSE reduction vs. baseline, transfer to higher target force, L only: OA > YA. 

NRMSE reduction vs. baseline, transfer to higher target force, task C only: OA > YA. 
Hypothesis 1e.c Structure of force and its change with practice will differ by task. The constant task 
will elicit the highest entropy, lowest proportion of low-frequency power, and greatest proportion of 
higher-frequency power. The sine task will elicit the lowest entropy, greatest proportion of low-
frequency power, and lowest proportion of higher-frequency power. The multicosine task will be 
intermediate. 

At baseline: 
 PoP: in 0-1 Hz band, M < S; 1-2 Hz band, M > S 
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Table 28 (cont.) 
 

Retention – baseline change: 
 Entropy increase vs. baseline: C > S, C > M. 
 PoP change vs. baseline, task C: 0-1 Hz and 1-2 Hz, ↓; 2-3 Hz, ↑ 

 PoP change vs. baseline, task S: 0-1 Hz, ↑; 1-2 Hz, ↓ 

Specific Aim 2. Assess differences in motor variability between oral effectors. 
Hypothesis 2a. The tongue will produce less complex force than the lip (lower-entropy, greater 
dominance of low-frequency power). 

At baseline AND in retention trials: 

 PoP: L > T in the 0-1 Hz band; T > L in the higher bands. 
Hypothesis 2b. The effects of age group and effector on entropy will interact. 

At baseline: 
 Entropy, OA only: T > L. 
 Entropy, L only: YA > OA. 

In retention trials: 
 Entropy, OA only: T > L. 
 Entropy, YA only: task C, L > T; task M, T > L. 
 Entropy, YA only: C > M  and C > S for both effectors; M > S only for T. 
 Entropy: YA > OA in the “L x C” condition, YA < OA in the “T x S” condition. 

Specific Aim 3. Assess utility of baseline performance measures in predicting de novo learning of fine-
force pursuit tracking tasks in oral effectors. 

Hypothesis 3. (a) Error and a measure of temporal structure, (b) higher maximal force entropy or (c) 
greater adaptability of entropy at baseline, will predict retention and transfer in pursuit tracking 
tasks after controlling for age group, effector and task. 
 NRMSEinitial predicted reduction in error on both retention and transfer trials in all models. 
In retention trials: 

 Higher baseline maximum entropy predicted smaller reduction in error. 

 The effect of initial change in entropy varied by task: task C, initialApEn > 0 predicted greater 

reduction in error; task S, initialFuzzyMEn > 0 predicted lesser reduction in error. 
In transfer trials: 
 Immediate increase in entropy at baseline predicted improved transfer to higher target force. 

Key: 
 Supportive of the hypothesis. 
 No difference found. 

 Difference was opposite the expected direction. 
AE = approximate entropy 
FZ = fuzzy measure entropy 
PoP = proportion of power 

 
NRMSE = normalized 
root mean square error 

YA = younger adults 
OA = older adults 
L = lip 
T = tongue 

 
C = constant task 
M = multicosine task 
S = sine task 

a “Entropy” refers to both entropy measures. If a finding was significant for only one, the measure 
abbreviation is used. 
b Also supportive of Hypothesis 1e. 
c Only main effects of task or interactions with effector are listed here. Interactions of age group and 
task are listed under other Aim 1 hypotheses. 
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Discussion 

Specific Aim 1 

Results from this study suggest that the bidirectional complexity hypothesis of healthy aging, 

which posits age-related loss of the ability to adapt structure of motor output to task demand rather 

than a unidirectional simplification of motor output (Vaillancourt & Newell, 2002), can be applied to 

fine-force control in pursuit tracking tasks using the lip and tongue. 

Even during initial performance, younger adults responded to differing tasks’ demands by 

producing force differentiable in entropy and frequency structure. Older adults, on the other hand, did 

not initially differentiate the entropy of their force output by task and did not reduce power in the 

lowest frequency band as needed for the constant target compared to the sine. Sosnoff and Voudrie’s 

(2009) older participants appear to have performed similarly using index finger flexion: though the 

effect of task within age group was not reported, their Figure 3 suggests older adult participants’ 

entropy did not initially differ between constant and sine tasks. 

Following two days’ practice, both older and younger adults differentiated force structure by 

task on retention trials, but remaining differences showed that, consistent with Sosnoff and Voudrie 

(2009), practice had not entirely compensated for age-related loss of adaptability of force structure.  

The effects of task on force structure seen in this data set were as expected from the manual 

motor control literature (Newell & Vaillancourt, 2001; Vaillancourt & Newell, 2002). With a single 

exception (the older adults had increased entropy for the sine task after practice), all significant 

differences in entropy and proportion of power by task, whether assessing a single time point (baseline 

or retention trials) or the change between the two, supported the idea that compared to the other 

tasks, a constant target should elicit force with relatively high entropy and a greater proportion of 

higher-frequency power, the sine target should elicit the opposite pattern (low entropy, lowest-

frequency force dominating to the greatest extent among the tasks), and performance should evolve 

towards higher entropy for constant tasks and lower entropy for sine tasks with practice. 

The age x task interaction expected from the bidirectional loss of adaptability hypothesis 

evaluated in the manual motor control literature (Sosnoff & Newell, 2008; Sosnoff, Vaillancourt, & 

Newell, 2004; Sosnoff & Voudrie, 2009; Vaillancourt & Newell, 2002) partially held in this data set: the 

sine target, requiring low-entropy force dominated by a single frequency, elicited higher-entropy force 

in older adults than younger adults when using the tongue, while the constant target, requiring high-

entropy force with a broader spectrum containing more high-frequency energy, elicited lower-entropy 
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force in the older adult than the younger adult participants using the lip. In both cases, the contrast 

suggests younger adults adapted structure of output to task demand more closely than the older adults. 

After practice, younger adults had maintained or decreased the entropy of their force for the variable 

tasks (in line with task demand), while older adults had increased entropy on these tasks (counter to 

task demand). The proportion of power analysis was similarly supportive, showing age x task interaction 

for every analyzed frequency band. The older adults showed greater power than the younger adults in 

the higher-frequency bands for the variable tasks and lesser power in the lowest band, consistent with 

the idea of reduced adaptability. The differential effect of effector could suggest that fine force control 

is better preserved in oral than manual effectors, in which case loss of adaptability should be significant 

in all oral effectors in participants older than the older adults in this data set. It may also suggest 

differential preservation of function within the oral motor system. Over all tasks in both age groups, the 

tongue had more power in the higher frequencies than the lip, and the lip had more power in the lower 

frequencies than the tongue; it is precisely in the tasks challenging these propensities (sine task for the 

tongue, constant task for the lip) where age differences were significant. 

Though the significant differences predicted by the bidirectional complexity hypothesis did not 

appear under all conditions, the frequent interactions of age and task make this hypothesis a better fit 

than the two primary alternatives. The information-theoretic perspective (Shannon, 1948), based on the 

idea of variability as random sensorimotor noise increasing with age, would have predicted higher 

entropy and more broadband spectra (more high-frequency power) for older adults regardless of task. 

The loss of complexity hypothesis (Lipsitz & Goldberger, 1992) would have predicted lower entropy and 

more narrowband (dominant low-frequency) spectra for older adults, again regardless of task. 

Though EMG data were not collected, the task-specific age group differences seen in frequency 

structure of force on retention trials are consistent with Sosnoff et al.'s (2004) proposal that elders’ loss 

of adaptability of temporal structure of force is related to the impaired coordination of neural oscillators 

(motor neuron pools) whose contributions to central drive of the effectors occur on different time scales 

and thus add degrees of freedom (dimension) to the force signal. 

Specific Aim 2 

The existence of an effector difference was supported, but the hypothesized direction was not. 

Effector differences were found on both initial and final (retention) task performance. Older adults 

produced higher-entropy force with the tongue than the lip at both time points. Also at both times, 

across tasks and age groups, the lip produced greater power in the 0-1 Hz band than the tongue 
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(consistent with lower entropy), while the tongue produced greater power than the lip in the higher 

frequency bands (consistent with higher entropy). These results differ from those reported without 

statistical testing by Holtrop et al. (2014). Potential causes of difference include participant age (similar 

averages for the young adults, but older adults approximately eight years older on average in this study); 

differing target force levels (15% MVF vs. 10% and 20% MVF), the very different number of trials (three 

per effector per force level = 6 per effector during a single session, vs. 35 per effector per task = 105 per 

effector over two days), and most importantly, the inclusion of tasks requiring differing force structure 

vs. constant force only. 

In retention trials, only the younger adult participants increased entropy of lip force for the 

constant task. The older adult participants were not able to make this adjustment in response to task 

demand. Holtrop et al. (2014) may have found a precursor to this effect of age in their somewhat 

younger old-adult participants: at 10% MVC (the lower and more difficult of their two target force 

levels), older adults had higher ApEn in the tongue than the lip – that is, in the most stressful condition, 

their participants performed more like the older adults in this data set. Further investigation can be 

done with the current data set, as the transfer trials used target force levels of 10% and 20% MVF. 

Though these trials took place after significant practice, vs. the unpracticed trials in Holtrop et al., the 

target force levels are the same and the comparison will be more direct. If older adults in this work 

continue to show higher entropy for the tongue at 10% and 20% MVF, the consistent difference would 

support an argument that even a sub-decade change in age for older adults may produce a differential 

effect of aging on the lip and tongue, with fine force control better preserved in the tongue at least for 

tasks requiring high-complexity output. Older adults were noted here to be less able to reduce entropy 

in the tongue for the sine task than younger adults, but no comparison can be made with results 

obtained by Holtrop et. al., who did not investigate variable tasks. 

Immediate adaptability of entropy within task was greater for the lip across age groups. On final 

performance, effector differences in entropy by task suggested that for younger adults, adaptation of 

temporal structure of force to task demand with practice may have been better with the lip. 

Age group and effector interacted significantly at both time points and in the change over time, 

in measures of both accuracy and force structure. While the effectors differed in strength, neither 

decreased significantly in strength with age, suggesting that the interactive effects of age and effector 

on force structure are more likely due to changing neural control with aging working on differently 

structured effectors than to declining strength, contra the suggestion of Sosnoff and Newell (2006). 
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Specific Aim 3 

Three baseline behavioral measures each achieved success in predicting learning (measured as 

reduction in error) after two days’ practice. Initial error was the strongest predictor. Consistent with 

Barbado Murillo et al. (2017), higher initial error represented greater room for improvement, suggesting 

that the measure functions as a performance benchmark rather than as a measure of aptitude or 

potential to learn the tasks. In participants with intact motor-learning capabilities, it is unsurprising that 

many participants were able to make this improvement with intense practice. In clinical populations 

whose disorders may directly bear on capacity for motor learning, the relation between current and 

eventual performance will likely be modified by other factors. 

After controlling for age group, effector, task, and initial performance, greater baseline 

maximum entropy predicted smaller reduction in error (i.e. reduced learning) on retention trials only. 

The direction of the relationship between initial maximum entropy and performance change was 

contrary to the predicted relationship, which was hypothesized based on the ideas that (i) a greater 

maximum value of entropy indicated a system with fewer constrained degrees of freedom and thus 

greater potential adaptability to task demands with practice and (ii) maximal entropy values on the tasks 

(particularly the constant task) might be a reasonable proxy for this maximum value. However, while (ii) 

might be accurate after considerable practice (which pairs improved performance on the constant task 

with increased complexity), initial complexity values do not appear to indicate anything about a possible 

maximum. Two of the three tested tasks demand relatively low-complexity output. If high entropy on 

initial trials of these tasks is an indicator of poorer intra-trial adaptability to task, rather than a measure 

of a participant’s maximal possible complexity, its prediction of smaller reduction in error with practice 

fits with the results from the initial adaptability analysis. 

Initial adaptability of entropy predicted better performance on retention trials if the direction of 

change was in line with task demand, and worse performance if the direction of change was counter to 

task demand. This effect comports with the idea of variability in early learning as an exploration of task 

space (Dhawale, Smith, & Ölveczky, 2017; Stergiou, Harbourne, & Cavanaugh, 2006; Wu, Miyamoto, 

Gonzalez Castro, Ölveczky, & Smith, 2014) and therefore an active support of learning, rather than a 

hindrance to be suppressed. “Optimal” variability in a learning context suggests the ability to shift 

temporal/frequency structure of force output in the direction demanded by a goal or task. The 

reduction in adaptability of force structure seen in the older adult participants may play a role in 

changes in learning with aging. 
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Measure Choice: Approximate vs. Fuzzy Measure Entropy 

Based on its more nuanced mathematics and previous improved performance vs. earlier entropy 

algorithms (including ApEn) in classifying heart failure vs. healthy control patients (Liu et al., 2013), 

FuzzyMEn was expected to perform better than ApEn in detecting subtle age group or effector 

differences. This expectation was not borne out; the measures performed nearly identically. As 

comparison of the measures was not the focus of this work, no analyses attempted to parse reasons for 

the difference in relative performance compared to previous literature. Parameter choice, frequency 

content of the analyzed signals, or their interaction may play a role. It may also be the case that in this 

data set, runs of data with lengths m and then m + 1 fell either well within or well outside of the 

tolerance r used to judge similarity, meaning that the additional nuance offered by FuzzyMEn for 

borderline cases had little effect. 

Currently neither measure can be recommended over the other for analysis of data similar to 

that presented here. ApEn is slightly faster to calculate than FuzzyMEn, but the difference is of practical 

significance only when many calculations (thousands) are performed together. 

Limitations 

The most significant limitations of this work in terms of its applicability to predicting therapeutic 

benefit in clinical populations is that the participants were all healthy and the tasks required de novo 

learning, which is a less likely focus in therapy than relearning of lost skills. M1 damage or post-lesion 

reorganization, interference from previously learned motor skills, dysfunctional spontaneous 

reorganization or differences between healthy and damaged white matter microstructure and its 

response to learning may mean that mechanisms and patterns of relearning differ from de novo learning 

(Hosp & Luft, 2011; Johansen-Berg, Scholz, & Stagg, 2010). However, the importance of this limitation 

may differ between the predictors assessed. Room to improve (the supported interpretation of initial 

accuracy as a predictor) is likely to be specific to the population and task. 

On the other hand, the arguments for entropy-based predictors relied on the idea of 

coordination between multiple components of a system – whatever those components might be and in 

whatever condition. Suppose healthy system H uses three components to perform a task, refining the 

coordinative relationships between them during the learning process. After an injury affecting H, 

substitute system S is used to perform the same task. S’s components might be the same components 

and relationships or a subset thereof, some or all of which might be changed by the injury, or might 

incorporate some or all new components and relationships. But in any of those cases, the early efforts of 
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the components of S to establish, mend, or alter their relationships should predict how S as it now exists 

will be able to learn or relearn the task. In healthy adults or in clinical populations with chronic 

disorders, in which physical system components and links between them are not expected to change 

rapidly, entropy-based predictors could potentially predict change over a somewhat longer time frame 

than that examined here. In clinical populations in an acute recovery phase, the components of the 

system or their relationships may be changing enough as recovery takes place to limit the utility of 

predictions to short periods in which the relevant systems are in similar physical condition. 

Related to the issue of de novo learning is the issue of task functionality or relevance. The visual 

targets used in this study were designed to differ maximally in complexity within the limits of plausible 

short-term learnability, to provide the best chance of eliciting differently complex output. In that sense 

task design was successful, but at the cost of similarity to any normal functional speech or swallowing 

task. Neither continuous fine force in a highly predictable pattern, nor the use of visual feedback to 

judge force output of one’s own lips or tongue, closely resemble everyday experience. Thus 

generalizability to oral motor learning of functional tasks is questionable; it is not yet clear whether use 

of immediate adaptability to task demand to predict short-term therapy benefit is indicated. (It is 

unlikely to predict long-term benefit.) 

No physiological or neurophysiological data (respiratory traces, electromyography etc.) were 

collected. Other than the observed differences in distribution of power, sources of complexity difference 

between effectors or age groups remain unknown. Some previous work on sustained force has asked 

participants to refrain from breathing during the task (Burnett, Laidlaw, & Enoka, 2000). Though this 

work did not ask participants to alter respiration, some commented that they held their breath or 

otherwise modified their breathing during trials. 

Others commented that part of initial learning was deciding on “how to hold my tongue on this 

thing” (the transducer). Tongue posture and contact point with the transducer may have varied across 

participants and within participants across trials, although contact point was limited to anterior dorsal 

tongue surface. Consequently muscle activation patterns are also likely to have varied, potentially 

accounting for some portion of performance variability across and within participants. This early 

variability due to exploration of the task space may have contributed to participants’ learning (Wu et al., 

2014), but its extent, and therefore importance, cannot be assessed from the captured data. 

The measure of performance accuracy (normalized root mean square error) is designed to 

assess how closely the participant matched the target from moment to moment and thus effectively 
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detects decreases in overshoot or undershoot (mismatch of force amplitude to target). However, it is 

less likely to detect improvement in timing of force amplitude change. A correctly shaped and level-

matched pattern offset in time (phase) from a time-varying target may still score poorly. Several 

participants were observed to produce what both participant and investigator agreed were “better” 

target matches than their previous attempts without concomitant decrease in NRMSE, likely due to this 

issue. Reliance on NRMSE for feedback may consequently have biased participants towards focusing on 

matching the amplitude of the target, reducing their attention to matching temporal characteristics of 

the varying targets, and consequently reducing change in the complexity of their force output. 

(Changing only the amplitude of a signal does not alter its complexity.) Future work may need to 

incorporate a time-based performance measure in addition to NRMSE. 

Current methodology relied on establishing a maximal voluntary force for each effector for 

consistent target scaling. Three to four trials per effector were used, with one-minute rests after each, 

which was adequate to avoid fatigue (per participant report) in this healthy adult population. In a clinical 

setting with high-fatigue patients, this regimen is both likely to exacerbate fatigue and unlikely to 

establish a value that is either consistent or representative of the patient’s non-fatigued maximum. It 

may be more effective to allow the patient to set the target force level, for instance “press gently, at a 

level you feel you can comfortably control for ten seconds.” 

Future Directions 

This study represented a first step in establishing the ability to predict very short-term therapy 

benefit from limited data on in-the-moment capacity for motor learning, using entropy measurements 

sensitive to the coordination of multiple control processes acting across different timescales. Further 

exploration of variability as a predictor of motor learning may support Stergiou et al.’s recommendation 

of variability as a therapy strategy, or suggest ways in which this strategy can be modified to better suit 

oral effectors and functional communication and swallowing tasks. 

While the equipment used for the current study remains impractical for clinical use, study 

methods could potentially be adapted to more widely clinically available equipment such as the Iowa 

Oral Pressure Instrument (IOPI Medical LLC, Redmond, Washington). 

Maximum entropy among an initial trial set, and change in entropy from the first to second trial, 

predicted small to moderate changes in amount of learning after two days’ practice by healthy younger 

and older adults. 
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The predictive value of initial entropy adaptability may be improved by increasing the number of 

trials over which entropy change is assessed, though the amount of predictive improvement will have to 

be balanced against increased demand on participants (minimal for healthy adults but potentially 

prohibitive for high-fatigue clinical participants). Another possible route to improvement would be a 

change in the calculation of entropy adaptability to take into account the target complexity. An estimate 

of the true target in skilled human performance might involve the addition of a participant-specific 

neural noise estimate (based on signal from 30-50 Hz after correcting for equipment noise as in Sosnoff 

& Newell, 2011) to the mathematically generated target. 

Effectiveness of entropy algorithms to detect and predict change may improve if their 

parameters can be systematically chosen to match expected data characteristics. Calculation of ApEn 

and FuzzyMEn with systematically varied parameters (m from 1 to 6 in increments of 1, r from 0.1 to 0.3 

in increments of 0.05, N from 100 to 1100 in increments of 100) was performed for each trial across all 

three days of the experiment, but that analysis was outside the scope of this report. This work will be 

completed on the already-collected data from healthy adults and on signals of controlled content before 

application to clinical populations is attempted. While determining the appropriate values of m and r is 

most likely to contribute by improving sensitivity of measurement, N has particular practical relevance. 

Shorter trials would be preferable for clinical populations with significant fatigue, if adequate 

measurements can be obtained with a lower N. 

Based on the investigator’s observations during experimental sessions, participants appeared to 

demonstrate different patterns of learning over time and possibly per task: some seemed to make 

initially rapid then decelerating progress, while others showed slow but steady or initially slow but 

accelerating progress. Several appeared to experience a sudden improvement, particularly with the 

multicosine pattern, at varying times including as late as the last block of trials on the second day. Data 

and NRMSE/entropy measurements were recorded for all trials but have not yet been analyzed; a 

growth curve analysis might allow more fine-grained prediction of how and whether participants are 

likely to learn. 

Several participants commented on metaphor-related learning strategies: “[the multicosine 

target] looks like a W, so I am drawing a W with my tongue” ; “I think of [the multicosine target] like a 

European ambulance sounds, you know, up and down like wooOOoo wooOOoo? I’m trying to do that.” 

These participants felt that their mental visual or auditory images helped to improve their performance, 

although analysis of their claims in this data set is not possible, as not all participants reported on their 
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strategies. (After a few participants volunteered comments, the rest were asked about learning 

strategies.) It is possible that metaphorical expression of motor goals could be an effective therapy tool, 

particularly for effectors not ordinarily subject to visual observation, as there are links between 

metaphor, motor imagery or mental practice, and learning (Feltz & Landers, 1983; Mulder, 2007; 

Mulder, Zijlstra, Zijlstra, & Hochstenbach, 2004). (Note that the second commenter was trying to 

connect oral force production with sound, a much more normal sensorimotor match than the visual 

biofeedback used here.) 

Conclusions 

Entropy measurements of continuous fine force production, particularly change in entropy over 

time, show promise for predicting learning and support the concept of variability as an exploration of 

task space and a support of early learning. 

This prediction can be made from a small enough data set to have potential clinical applicability. 

Older adults remain robustly able to learn and to adjust complexity of oral force output, though with 

limitations most consistent with the loss of adaptability hypothesis. 
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Appendix A: Common Measures of Time Series’ Temporal and Frequency Structure 

Consider two time series, shown below. The one on the left is entirely deterministic (rule-governed) and 

highly regular (predictable). The one on the right is a random reordering of the same values. 

 

 

 

 

 

Any measure ignoring order of the values (e.g. mean, standard deviation) will yield the same 

result for both. To differentiate between them, a measure must account for their internal structure. This 

can be done in the time domain or, complementarily, the frequency domain. Many measurements of 

time series structure have been proposed (Bassingthwaighte et al., 1994; Faure & Korn, 2001), though 

their use in oral motor control research has been limited. Measures used primarily in non-oral motor 

control literature are briefly reviewed here. 

Time Domain Measures 

Entropy measures (approximate, sample, fuzzy and fuzzy measure entropy) are covered first as 

they were the most commonly used in the studies reviewed and two were used in this work. Other 

measures of temporal structure appear next in alphabetical order. 

Entropy measures. Within a time series of length N, if two data runs of length m have similar 

values (within a tolerance r), approximate entropy ApEn(m, r, N) measures the likelihood that the runs 

will remain similar as the next data point is added to each run. ApEn can be described as measuring 

signal regularity, predictability or stability. Values close to zero indicate more regular, predictable output 

(e.g. a sine wave or other signal with power concentrated in a narrow frequency range) whereas values 

closer to 2 may represent a more irregular, unpredictable signal (e.g. white noise or other broadband 

signal; (Pincus, 1998). Chaotic systems have intermediate ApEn values (Deffeyes, Harbourne, Stuberg, & 

Stergiou, 2011). ApEn was developed for use with finite or noisy data in response to the limitations of 

measures intended for use with truly chaotic processes (Pincus, 1991; Pincus et al., 1991), such as the 

need for time-series length of 10m to 30m points (Wolf, Swift, Swinney, & Vastano, 1985) and the 

Figure 45. Time series: left, f(t) = [sin(t)]/t; right, random reordering. 
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inability to discriminate some noisy series (Pincus, 1998). Normalized ApEn, which calculates r as a 

fraction of the time series standard deviation, is preferred for clinical applications (Pincus, 2000; Slifkin 

& Newell, 1999) and has been used in studies with methods similar to those used here. Standard 

parameter values of m = 2 and r = 0.2 or 0.25 were used for studies described in this work unless 

otherwise noted. ApEn does not specify the number of degrees of a freedom in a system, but can 

suggest increase or decrease in the dimension of an attractor dynamic (Newell et al., 2003) and has 

been observed to be positively correlated with results of formal dimensional tests (Pincus, 1998).  

ApEn is limited by sensitivity to all three input parameters (m, r and N) and a bias towards 

regularity (Yentes et al., 2013). Sample entropy (SampEn) simplifies the ApEn algorithm to reduce bias 

and dependence on N (Richman & Moorman, 2000) but is otherwise conceptually similar. 

Fuzzy entropy (FuzzyEn) has four advantages over ApEn and SampEn (Chen, Zhuang, Yu, & 

Wang, 2009). It does not count vector self-matches and so lacks the bias towards regularity of ApEn. It is 

less sensitive to time series length. It judges similarity by vector shape rather than absolute coordinate 

and thus is less susceptible to nonstationarity. Finally, it classifies vectors’ similarity using a fuzzy 

function to provide a gradual transition in similarity rating rather than the binary classification used by 

approximate and sample entropy. Thus, it is less sensitive to choice of r. 

Fuzzy measure entropy (FuzzyMEn) refines FuzzyEn by measuring both local and global entropy, 

yielding finer discrimination of both constructed mathematical sequences and clinical vs. non-clinical 

populations (Liu et al., 2013). 

Past investigations of motor control have typically used ApEn or SampEn to quantify temporal 

structure of an output signal such as steady force (Sosnoff & Newell, 2006a), postural sway (Deffeyes et 

al., 2011) or cyclic movements (Kal et al., 2013). FuzzyEn and FuzzyMEn have been used to examine EMG 

signals during manual motor tasks (Chen et al., 2009) and heart rate variability of normal and heart-

failure patients (where both performed better than non-fuzzy entropy measures, and FuzzyMEn better 

than FuzzyEn; Liu et al., 2013). While time series lengths as short as N = 75 have been used in the 

calculation of ApEn (Pincus, 1998), N = 200 has elsewhere been suggested as a minimum (Yentes et al., 

2013), and the motor control literature reviewed in the Introduction tended to have N > 1000. See 

Appendix D. 

Correlation dimension (CD). CD (Grassberger & Procaccia, 1983) is an algorithm used to 

estimate fractal dimension, which can discriminate data produced from a deterministic process involving 

a few independent variables from randomly produced data. It characterizes purely deterministic 
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systems in detail, but discriminates poorly when data are noisy; this shortcoming motivated the 

development of ApEn (see (Bassingthwaighte et al., 1994) and (Pincus, 1998). 

Detrended Fluctuation Analysis (DFA). DFA evaluates the presence of long-term autocorrelation 

within a time series with a scaling index, . If the data are uncorrelated (random fluctuation),  = 0.5;  

> 0.5 suggests persistence and  < 0.5 suggests antipersistence (Barbado Murillo et al., 2017; Peng, 

Havlin, Stanley, & Goldberger, 1995). 

Lyapunov Exponent (LE). LE measures sensitivity of a system’s dependence upon its initial 

conditions, a key marker of chaotic behavior. A system is chaotic if one or more of its exponents, whose 

values relate to the speed with which the system loses predictability, are positive (Wolf et al., 1985). 

Recurrence Quantification Analysis (RQA). RQA uses time-delayed copies of a single-variable 

time series as stand-ins for the dimensions of the multidimensional space needed to capture the 

dynamics of the system producing the time series (Riley & Van Orden, 2005). It can indicate the extent 

to which a system’s behavior is random vs. deterministic, system stability, and the complexity of the 

system’s attractor. 

Standardized Dispersion Analysis (SDA). SDA measures the fractal dimension (FD) of a time 

series (the degree to which a line graph of the time series deviates from a one-dimensional straight line 

to occupy space in the second dimension of the graph). White noise has FD = 1.5. Correlated noise, 

suggesting coordination among system components, has 1 < FD < 1.5 (Holden, 2005; Van Orden, Holden, 

& Turvey, 2003). 

Frequency Domain Measures: Power Spectral Analyses 

These measures characterize a time series in the frequency domain. Power spectral analysis 

(Gilden, Thornton, & Mallon, 1995; Wing, Daffertshofer, & Pressing, 2004) determines power across a 

range of frequencies. Controlling processes active at different timescales during force production 

contribute power at characteristic frequencies, e.g. around 2 Hz for visuomotor feedback (Miall, Weir, & 

Stein, 1985) or 8-12 Hz for upper limb physiological tremor (Takanokura & Sakamoto, 2001). 

Spectral slope (SS). Spectral power can be modeled as a function of frequency, P(f) = af. SS is 

the slope of the log power/log frequency graph. White noise ( = 0, flat SS) reflects a random signal with 

no correlation between successive values (Gilden, 2001; Slifkin et al., 2000) and suggests either lack of 

control or relatively equal influence of contributing processes (Wing et al., 2004). Interactions between 

controlling processes regulate the relative amplitudes of their characteristic spectral peaks, leading to 

nonzero SS. Brown noise ( = -2) is characteristic of a random-walk system dominated by a few low-
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frequency processes (Sosnoff & Newell, 2008; Gilden, 2001), while intermediate pink or 1/f noise ( = -1) 

results from limited interaction between multiple physiological control systems operating over a range 

of timescales (Sosnoff & Newell, 2008; Lipsitz, 1995). Rather than resulting from particular physical 

interactions, 1/f noise may be diagnostic of complex systems in general, representing a midpoint 

between extremes of order and randomness (Gilden et al., 1995; Gilden, 2001). 

SS has two primary limitations. 1/f-like noise may be produced by both deterministic nonlinear 

and certain linear controlling processes, though there are distinguishing characteristics (Wing et al., 

2004). Additionally, it is a summary measure. A more fine-grained picture of power allocation in force 

output is obtained through examination of proportion of power in each of multiple bandwidths. 

Proportion of power (PoP). This measurement examines how signal power is divided among 

equal bandwidths to assess the relative contribution of low-, intermediate- and high-frequency 

processes to output. See Wing, Daffertshofer and Pressing (Wing et al., 2004) and Hayes (Hayes, 1996) 

for its calculation. 

Investigations of motor control often use power spectral analysis to associate motor processes 

with characteristic spectral peaks or slopes (Gilden, 2001; Takanokura & Sakamoto, 2001; Voss & Clarke, 

1975; Smith et al., 1993) or determine the effects of various factors such as age, feedback modality or 

task demand upon motor output (Sosnoff & Newell, 2008; Vaillancourt & Newell, 2003; Ofori et al., 

2012). Power spectral analyses are limited by inconsistencies or bias in standard spectral estimation 

methods (e.g. fast Fourier transform, FFT) when data contain outliers or nonstationarities (Pincus, 2001). 

Spectral degrees of freedom (SDF). SDF estimates number of frequency bins in a spectrum 

contributing power to the spectrum (Blackman & Tukey, 1958), calculated as the ratio of the squared 

sum of each bin’s power estimate to the sum of squares of the bins’ power estimates. A theoretical 

perfectly sharp peak (100% of spectral power in one bin, 0% in all other bins) would have SDF = 1, while 

a perfect white-noise spectrum (equal power in each bin) would have SDF equal to the number of bins. 

For colored-noise signals, SDF decreases as spectral slope of the signal becomes more steeply negative, 

i.e. as the output becomes dominated by a lower number of control processes. 
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Appendix B: Functional Vision and Cognition/Communication Screen 

The screenshots below show the charts the participant is asked to interpret (sans arrows). Full-size, they 

occupy the entire width of the 39.6 cm (aspect ratio 16:9) monitor and are approximately 5 cm high. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Participant: these questions check your ability to clearly see the chart. 
 

1. Which line is the target to match? [red line] 

2. Which line shows how hard the person is pressing? [blue line] 

3. When did they need to press more gently? [examples: yellow down arrows] 

4. When did they need to press harder? [examples: green up arrows] 

  

Figure 46. Multicosine simulated data used for vision screen. 

Figure 47. Constant simulated data used for vision screen. 
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Appendix C: Transducer Images, Task Instruction Scripts and Screenshots 

Transducer Images 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Maximal Voluntary Force Tasks Script 

Now we will test the strength of your lips. Position these prongs just inside the corners of your mouth. Is 

the chair adjusted so that you are comfortable and the prongs are not pushing up or pulling down on 

your mouth? Keep your mouth closed and teeth together, but don’t clench your jaw. You are going to 

purse your lips as hard as you can, while breathing out through your nose, like this. [Investigator 

demonstrates, not actually using transducer.] Show me what you are going to do. [Re-explain/re-

demonstrate as needed.]  Once I hit start, do that again. When you do, the red line will go up farther the 

harder you purse. Make the line go up as high as you can. On the second and third tries, you’ll see gray 

lines showing how high you’ve already gone, like in the demonstration. Try to get higher. You have six 

seconds, and you get to try three times. Do you have any questions? Say ‘mm-hmm’ when you’re ready. 

Now we will test the strength of your tongue. Put this in your mouth, with your teeth in these 

grooves. Bite gently to keep the transducer in a stable position, but don’t clench your jaw. You are going 

to push up against this part with your tongue as hard as you can, while breathing out through your nose, 

Figure 48. Left: lip transducer. Right: tongue transducer. 
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like this. [Investigator demonstrates, not actually using transducer.] Show me what you are going to do. 

[Re-explain/re-demonstrate as needed.] Some people have found this task to be uncomfortable. You do 

not have to press so hard that it hurts – if it hurts, stop. [Remainder of script is the same as for the lip.] 

Constant, Sine and Multicosine Tasks Script 

For the rest of the tasks, you are going to match a line on a screen by pressing up with your 

tongue or pursing your lips. You will not have to press very hard. Keep your lips/tongue relaxed until I 

press ‘start,’ then try to make your line get as close to the target line as you can and stay with it. 

Sometimes the line will be straight. Sometimes it will be a simple up-and-down. Sometimes it will be a 

more complicated wave. 

 

 

 

 

 

 

 

Figure 49. Maximal voluntary force visual feedback. Red line represents current attempt, 
updating in real time. Horizontal gray line represents maximum achieved on previous attempt. 

Figure 50. Sine task target. Constant and multicosine targets were shown in Appendix B. 
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For the variable tasks, participants were asked to vary their focus during different trial blocks. 

Amplitude focus. This time, try to match how high and low the line goes, even if your timing is a 

little off. So get your line this high and this low [investigator points to maxima and minima], even if it 

happens a little before or after the target line is that high or that low. 

Timing focus (variable tasks only). This time, try to match the timing of the target line. Get your 

line as high or as low as it’s going to go at the same time as the target line, even if that means your line 

is a little too high or low. Make sure you don’t let your line go all the way to the bottom of the screen. 

Amplitude and timing focus (variable tasks only). This time, match both the timing of the target 

line and how high or low it is. Just stay as close to the line as you can. 
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Appendix D: Fuzzy Measure Entropy and Approximate Entropy Parameters 

Approximate entropy and its descendant algorithms are highly sensitive to their input parameters (m, r 

and N), and the ways in which they change with these parameters may depend upon the type of time 

series, e.g. periodic vs. logistic (Yentes et al., 2013; Liu et al., 2013). Yentes et al. recommended m =  2, N 

≥ 200, and examination of several r values for ApEn (0.2 * time series standard deviation has been most 

often used). (Pincus, 1998) pointed out that ApEn becomes less reliable if m is “relatively large” or r is 

“too small,” because matching runs become rare events as run length increases or match tolerance 

decreases. Parameter recommendations have not been established for FuzzyMEn, but similar logic 

should apply. Prior to data collection, the variable target time series used in this investigation were used 

to estimate the most appropriate parameter values for ApEn and FuzzyMEn. The constant target series 

was not used as its entropy was zero regardless of algorithm or parameters. 

The test series were created in Matlab with F0 = 0.75 Hz, sampling frequency Fs = 100 Hz to 

mimic the target time series used in data collection. Length was N = 1100 to match the length of 

cropped data series analyzed. 

 

Table 29 
 

  

Variable Target Series 

Series Equation form Matlab code 
Sample times 
 
 

𝑡𝑖 = 𝑖∆𝑡 =
𝑖

𝐹𝑠
 

t = [0:1099]/100; 

Sine 
 
 

𝑓𝑠𝑖𝑛𝑒(𝑡𝑖) = 𝑠𝑖𝑛(2𝜋𝐹0𝑡𝑖) s0_75 = [sin(t*pi*3/2)]; 

Multicosine 𝑓𝑚𝑢𝑙𝑡𝑖𝑐𝑜𝑠𝑖𝑛𝑒(𝑡𝑖) = 𝑐𝑜𝑠(2𝜋𝐹0𝑡𝑖)
+ 0.5𝑐𝑜𝑠(2𝜋(2𝐹0)𝑡𝑖)
+ 0.25𝑐𝑜𝑠(2𝜋(4𝐹0)𝑡𝑖) 

mc0_75 = [cos(t*pi*3/2) + 
0.5*cos(t*pi*3) + 
0.25*cos(t*pi*6)]; 

Note. This version was used for establishing ApEn and FuzzyMEn parameters. The targets used 
during data collection were created in LabView and had N = 1600 rather than N = 1100 to allow for 
cropping. LabView code is available from the author. 

 

Liu et al. (2013) tested FuzzyMEn to show consistency and discrimination across a range of r 

values. That is, if FuzzyMEn(seriesA) > FuzzyMEn(seriesB) for one value of r, the algorithm is consistent if 

the inequality holds true as r varies. The algorithm discriminates well if, when tested on multiple series 

of known relative complexity, the values of the algorithm change consistently with changes in the series’ 
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complexity. A similar procedure was used here. It was expected that the multicosine series would be 

rated more complex than the simple sine across a range of m and r values and that FuzzyMEn would 

show more consistent results than ApEn. 

Choice of m 

FuzzyMEn and ApEn values were evaluated at integer values of m from 1 to 6. Figures 51 and 52 

show that FuzzyMEn discriminated the two series at all values of m and consistently ranked the 

multicosine series more complex than the sine series, while ApEn discriminated well only for m = 1 and 

m = 2. Consequently the conventional value of m = 2 was used in this study. 
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Figure 51. FuzzyMEn as a function of m for sine and multicosine series. For both series, 
N = 1100, r = 0.2, Fs = 100 Hz. 
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Choice of r 

FuzzyMEn and ApEn values were calculated for each series with r (ApEn) and  rL = rF (FuzzyMEn) 

ranging from 0.01 to 1, incrementing by 0.01, m = 2, N = 1100 (Figures 53 and 54). The figures suggest 

that FuzzyMEn consistently ranks the complexity of the multicosine series above that of the simple sine 

series across r, while ApEn is consistent for these series only for r ≥ 0.11. Both discriminate the series at 

the conventional value of r = 0.2, though FuzzyMEn changes more smoothly. This investigation therefore 

used r = 0.2 for comparability to previous literature. 
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Figure 52. ApEn as a function of m for sine and multicosine series. For both series, 
N = 1100, r = 0.2, Fs = 100 Hz. 
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Figure 53. FuzzyMEn for tested target series as a function of filter size, 0.01 ≤ r ≤ 1.0. For all 
series, m = 2, N = 1100. 

 

 

Figure 54. ApEn for tested target series as a function of filter size, 0.01 ≤ r ≤ 1.0. For all series,  
m = 2, N = 1100. 
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Choice of N 

Given a fixed sampling rate (100 Hz), choice of N determines trial length. N was chosen to fit the 

following constraints: 

1. Recommended N ≥ 200 for nonlinear analyses (Yentes et al., 2013) 

2. LabVIEW 2013 (the software used to display target and transducer signals and record data) has 

no type of graphical display inherently permitting a static pattern to be shown while another 

dynamic pattern develops. A sweep-refreshing graph was used to display the target signal only 

on its first run, then to refresh the target with the transducer signal visible on its second. The 

target signal and its refreshed version had to align, meaning trial length needed to 

accommodate an integer number of repeats of either variable-force pattern. Both had F0 = 0.75 

Hz, meaning the lowest integer number of seconds with an integer number of periods was four 

(4 seconds = 3 periods). Thus trial length had to be a multiple of four seconds. 

3. Following previous work (Bronson-Lowe et al., 2013) the first 4 and last 1 seconds were to be 

discarded to avoid ramp-up and end-anticipatory effects. Thus the multiple of four seconds 

chosen had to be large enough to allow for the subtraction of five seconds of data (N = 500). 

Eight seconds would leave N = 300 (2 x 4 sec x 100 samples/sec – 500 samples). 

4. Trial length needed to balance providing a large enough N for entropy calculations with short 

enough length to avoid fatiguing participants and to permit a useful number of trials in a 

reasonable amount of time for participant convenience and cost. 

Fuzzy measure entropy and approximate entropy of the variable target signals were evaluated 

for N from 50 to 1100 (corresponding to a trial length of 16 seconds – 5 seconds’ cropped data) in 

increments of 25. The following figures show that both measures ranked the target series’ complexity 

correctly and discriminated well once N reached 100. The algorithms rapidly converged on stable values 

for both series, though small fluctuations continued to occur at higher values of N.  
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Figure 55. FuzzyMEn as a function of N for sine and multicosine series. For both series, m = 2, 
 r = 0.2, Fs = 100 Hz. 

 

 

Figure 56. ApEn as a function of N for sine and multicosine series. For both series, m = 2, r = 0.2, 
Fs = 100 Hz. 

 

To judge whether these fluctuations justified extending the series to yet higher N, fluctuation 

size was quantified by calculating the range of ApEn and FuzzyMEn values over the last five points (N = 

1000 to N = 1100) as a percentage of their maximum. All were below 5%; see Table 30. 
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Table 30 
 
Range of ApEn and FuzzyMEn Values over Five Values of N (1000 to 1100 in 
Increments of 25) as a Percentage of Their Maxima over Those Values of N. 

Series ApEn FuzzyMEn  
Sine 4.62% 3.58%  
Multicosine 1.47% 1.96%  

 

ApEn and FuzzyMEn values were next calculated out to N = 10,000 (m = 2, r = 0.2) for the sine 

series, since their variation by N was greater for that series. Little additional change was seen for either 

algorithm: ApEn(N = 1100) differed from ApEn(N = 10,000) by -0.11%, while FuzzyMEn(N = 1100) was 

0.25% greater than FuzzyMEn(N = 10,000). The figure below shows how negligible the additional 

reduction in entropy fluctuation is over the range up to N = 10,000. The small benefit of increasing N 

was judged not to outweigh its costs. Trial length was not reduced, on the other hand, because of the 

likelihood that fluctuations in entropy based on series length would be greater for human fine-force 

data than for simple, highly regular mathematical functions. 
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Figure 57. Approximate and fuzzy measure entropy by series length: sine, F0 = 0.75 Hz,  
Fs = 100 Hz, m = 2, r = 0.2. 
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Choice of Fuzzy Function 

For fuzzy measure entropy, the fuzzy function used to classify vectors as close or distant was 

𝑓(𝑑𝑖𝑗 , 𝑟) = 𝑒
−(

𝑑𝑖𝑗
𝑟⁄ )

𝑛

 

as recommended by (Chen et al., 2009) and (Liu et al., 2013). dij describes distance between vectors i 

and j and r is a proportion of time series standard deviation. Values of n > 1 preferentially weight vector 

pairs with the lowest values of 
𝑑𝑖𝑗

𝑟
 (those with greatest similarity) while giving a smooth transition to 

more extreme values. See Figure 58. Following Liu et al. (2013), this work used nL = 3, nF = 2. 

 

 

Figure 58. Fuzzy classification function f(dij,r). 
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Appendix E: Spectral Analysis Testing 

To test the function of the spectral analysis code and parameters, two types of signals were generated 

and analyzed using the parameters described in the power spectral analysis discussed in the Measures 

section.. All test signals had length = 1100, sampling rate 100 Hz to match experimental data. 

First, colored noise signals were used to test accuracy of spectral slope calculation. Results are 

reported in Table 31. Least-squares linear fit of expected vs. mean calculated slopes yielded slope = 

0.881(expected) - 0.0302, r2 = 0.981. 

 

Table 31  
 
Testing Spectral Analysis Parameters: Signals with Approximately Known Spectral Slope 

Noise 
color Generation method 

                  Spectral slope 
Expected Analyzed 

(mean ± std. error, 1000 trials) 
White Custom codea 

LabVIEW Uniform White Noise.vi, default 
parameters 
Spectral synthesis approximationb 
Created in Sound Forge 

0  -0.00101 ± 0.00159 
 -0.00207 ± 0.00166 

 
 0.00177 ± 0.00195 

 0.000657 ± 0.00156 
    
Pink Filtering of white noise signal #1 abovec 

Filtering of white noise signal #2 aboved 
Spectral synthesis approximation 
Created in Sound Forge 

-1  -0.898 ± 0.00297 
 -0.895 ± 0.00280 
 -0.788 ± 0.00343 
 -1.01 ± 0.00271 

    
Brown Running sum of white noise signal #1 above 

Filtering of white noise signal #2 abovec 
Spectral synthesis approximation 
Created in Sound Forge 

-2  -1.87 ± 0.00647 
 -1.85 ± 0.00691 
 -1.96 ± 0.00449 
 -1.95 ± 0.00554 

    
Black Spectral synthesis approximation -3 -2.38 ± 0.0123e 
a Samples from a uniform random distribution 0 ≤ x < 1, with 0.5 subtracted so that mean = 0. 
b (Cuddington & Yodzis, 1999) c Infinite impulse response filter (Kasdin, 1995), appropriate for 
expected slopes 0 < x < 2. d LabVIEW’s Inverse f Filter.vi, filter specifications 0.1 – 50 Hz (Nyquist 
frequency), 10th order. This VI uses a zero-pole method of filter generation based on (Corsini & 
Saletti, 1988), appropriate for expected slopes -2 < x < 2. e Bimodal distribution with peaks around -
2.2 and -3.2 

 

Second, the target signals used for the variable force-matching tasks (sine and multicosine; see 

Fine-force stimuli in the Methods chapter) were analyzed to test accuracy of spectral peak detection. 

Results are reported in Table 32. Both target signals’ spectra contained the expected number of peaks, 



   146 
 
 

at the closest frequency bin boundaries to the targeted frequencies, with less than 4% divergence from 

the expected relative heights. 

 

Table 32 
 
Testing Spectral Analysis Parameters: Signals with Known Peaks 

Signal 
Peaks expected Peaks found 

Frequencies (Hz) Heights (relative) Frequencies (Hz) Heights (relative) 
Sine 0.75 1 0.781 1 
Multicosine 0.75 1 0.781 1 

1.5 0.25 1.56 0.241 
3.0 0.0625 2.93 0.0607 
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Appendix F: Bonferroni-Adjusted Significance Criteria by Level of Analysis and Preceding Pattern of 

Significance 

Analysis paths (full model significant finding → follow-up analysis): 
A: 3-way interaction → simple 2-way interactions → simple simple main effects → pairwise comparisons 
B: 2-way interaction → simple main effects → pairwise comparisons 
C. Main effect → pairwise comparisons 
Pairwise comparisons were used only for investigating main effects of task and frequency band (each 3 
levels, compared in pairs). They were not necessary for factors with two levels. 

Analysis paths by 
corresponding steps Factor(s) tested 

Bonferroni 
correction 

A0. 3-way interaction 
B0. 2-way interaction 
C0. Main effect 

A. F1 x F2 x F3 
B. F1 x F2 
C. F1 

n/a: p < 0.05 

A1. Simple 2-way interaction 
B1. Simple main effect 
C1. Pairwise comparisons 

among main effect levels 

A. F2 x F3 
B. F2 

at each level of F1 0.05 / L1 

C. pairs of levels of F1 0.05 / (# pairs) 

A2. Simple simple main effect 
B2. Pairwise comparisons 

among simple main effect 
levels 

A. F3 at each level of F2, within each level of F1 
for which F2 x F3 was significant 

0.05 / (L2 x L1*) 

B. pairs of levels of F2, within each level of F1 for 
which F2 was significant 

0.05 / (# pairs x L1*) 

A3. Pairwise comparisons 
among simple simple main 
effect levels 

A. pairs of levels of F3, within each level of F2 for 
which F3 was significant, within each level of 
F1 for which F2 x F3 was significant 

0.05

# 𝑝𝑎𝑖𝑟𝑠 𝑥 𝐿2∗ 𝑥 𝐿1∗
 

Substitution rules: 
# pairs = 3 
Li = 2 or 3 
Li* = 1, 2 or 3 
Arithmetic is shown for step 3. Ignore ‘1’ terms to find step 1-2 
equivalents. 

Correction 
0.05 / (2 x 1 x 1) 
0.05 / (2 x 1 x 2) 
0.05 / (2 x 2 x 2) 
0.05 / (3 x 1 x 1) 
0.05 / (3 x 2 x 1) 
0.05 / (3 x 2 x 2) 

Criterion 
p < 0.025 
p < 0.013 
p < 0.006 
p < 0.017 
p < 0.008 
p < 0.004 

Note. Analysis paths are shown first; then correction algebra is shown for corresponding steps of the 
various paths (step number indicates number of terms in correction denominator); arithmetic is collated 
last. 
 
Abbreviations: 
Fi = any factor 
Li = number of levels in Fi = number of tests performed, regardless of significance 
Li* = number of levels in Fi for which tested term was significant 
  



   148 
 
 

Appendix G: Copies of IRB Documentation 
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