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ABSTRACT

This thesis presents the design, modeling, and control of a quadcopter equipped

with a Delta-type parallel manipulator. Such systems present demanding

challenges in both control theory and task planning, which are addressed with

novel mechanical features, modern flight controllers, and optimal trajectory

generation. They are primarily designed for versatile indoor pick-and-place

tasks where the characteristics of the proposed solution introduce useful

kinematic properties. We explore these traits to address critical deficiencies

found in previous approaches.

First, we introduce and discuss the mechanical design of the coupled

system. Second, we derive the kinematics and dynamic relationships between

all bodies. Third, we develop the flight controller, where baseline, feedforward,

and adaptive components are combined and used in unison with an optimal

trajectory generation algorithm. Finally, we present simulation results which

reflect the feasibility of the concepts.
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CHAPTER 1

INTRODUCTION

Aerial manipulation has undoubtedly become a major robotics research area

in the past few years. The industry has driven this interest with investments

in areas such as inspection, mapping, agriculture, age in place, and urban

environments. The need for an autonomous aerial vehicle endowed with

a robotic arm arises when a simple gripper attached to the bottom of the

aircraft does not possess enough reach and/or DoFs to execute a given mission

with sufficient robustness. This thesis’ research arose from the age in place

problem, where there exists a fundamental need for technologies to assist

the ever-increasing elderly population [2, 3, 4]. The project “Automation

Supporting Prolonged Independent Residence for the Elderly” (ASPIRE) [5]

was funded by the NSF to investigate the use of indoor compact aerial and

terrestrial co-robots. Following this framework, a compact quadcopter and

robotic manipulator vehicle is designed for indoor pick-and-place tasks. Aerial

vehicles typically excel in such environments given their ability to traverse

common obstacles such as stairs and furniture and of reaching objects in a

higher altitude, where ground robots would be unable to do so. The problem

is, however, generalizable to a multitude of different frameworks.

Previous works tackled this problem in one of two ways. Either the

system has a large quadcopter to manipulator mass ratio, giving it high flight

actuation overhead, or it is developed for a constrained set of tasks, both of

which make the stabilization problem easier to tackle. The former, although

certainly feasible, is not representative of the current trend in quadcopter

downsizing [6], and is hardly scalable. The latter is efficient and scalable but

undermines the idea of a versatile platform reminiscent of having a flying

multirole robotic arm.

Currently, aerial manipulation systems tend to be endowed with a serial ma-

nipulator, most notably [7, 8] recently attained strong results. The reasoning

for this is understandable, seeing as serial manipulators are more accessible

1



to model, control, design and implement. They also provide the aircraft with

the much-needed reach, an area in which these types of manipulators excel.

It does, however, come at a cost: the dynamics are strong, in the sense that

the force/torque wrench generated at the base of the manipulator (i.e. the

quadcopter) is high in magnitude.

In this thesis, the use of a parallel manipulator is explored. Due to its mass

properties and actuator topology, Delta-type manipulator introduces fewer

disturbances to the quadcopter as well as higher end-effector bandwidth at

the cost of a smaller work volume and a complicated model. By designing

the manipulator around the quadcopter these shortcomings are attenuated.

In addition, the usefulness of the base to end-effector parallelism as well as

the increased speed and precision are attained. In [9] the authors success-

fully implement a similar parallel manipulator in a quadcopter, achieving

satisfactory performance and task execution. The work utilizes most of the

components of this thesis approach. Their design mounts the manipulator in

such a way that most of the disturbances are transmitted to the (non-critical)

yaw axis and, although interesting, this topology severely constrains the set

of possible tasks. Ultimately, this makes the vehicle fall into the task-specific

category, as it is unable to grasp objects beneath the aircraft and, at the same

time, imposing a constant mass asymmetry. In [10] the authors implemented

a 6-DoF version of the Delta-type topology, however, their goals revolved

around stabilization of the end-effector, instead of pick-and-place tasks.

The design and control of an aerial manipulation system with a low quad-

copter to manipulator mass ratio and satisfactory reach and end-effector

bandwidth is developed in this work to provide critical contributions to aerial

manipulation research which are unattainable by previous approaches. We

build upon previous works [11], which will be contrasted against the design

presented here. The autonomous aircraft is designed to have little flight actu-

ation overhead as well as wide task execution versatility. The autonomous

aircraft displayed in Figure 1.1 is intended for small manipulation tasks such

as pick-and-place of small objects (medicine, papers, glasses, etc.). This

is achieved by the novel integration of a parallel 3-DoF manipulator with

a compact, high-performance quadcopter. The manipulator is designed to

attain a large workspace and fast servo motors are used to reach desired

performance indexes. A torque compensating feedforward controller is added

to the baseline autopilot to account for the fast dynamics of the manipulator.
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Figure 1.1: Autonomous quadcopter equipped with a 3-DoF parallel
manipulator in and indoor environment.

In addition, an L1 adaptive controller is designed to account for unknown

disturbances and improve tracking performance. A trajectory generation

technique is developed where an optimal control algorithm minimizes energy

while accounting for the kinematics of the coupled system. The design process

of all components is discussed extensively.

This thesis is organized as follows: Chapter 2 discusses key design aspects

for the coupled system; Chapter 3 develops the mathematical background to

study the dynamics, and to design the controllers; Chapter 4 presents the

control laws to attain stable flight; Chapter 5 develops an optimal end-effector

trajectory generation algorithm. Lastly, Chapter 6 presents simulation results,

concluding satisfactory performance, and Chapter 7 provides the conclusion

and future directions of developments. The author would like to acknowledge

the work done in [11] and its authors for the contributions to this thesis.
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CHAPTER 2

MECHANICAL DESIGN

2.1 Quadcopter Design

Since it is intended for this framework to excel in indoor tasks, a compact

and powerful quadcopter is necessary. To the knowledge of the author, no

commercial counterpart provides the size/power ratio with enough flexibility,

hence a new model needs to be developed for this purpose. In [11] a vehicle is

designed which has a thrust to weight ratio greater than 7 before the addition

of the manipulator, totaling over 1.6kg of maximum take-off load. In this

iteration a slight increase in size yields a substantial increase in performance,

allowing for the heavier parallel mechanism to fly with similar flight times.

The resize allows the use of high-performance stiff two blade carbon fiber

7-inch propellers with slightly bigger motors, resulting in a total take-off load

of around 2.4kg while having lower noise levels than the smaller prototype.

The price paid is the increase in size and loss of agility. To accommodate

for these changes a Lithium-Polymer battery with greater capacity is used

(9.5Wh versus 5Wh). The controller of choice is the Crazyflie 2.0 nano

quadcopter platform [12]. The platform provides all of the instrumentation

and processing power that is necessary while offering a customizable serial

channel, paramount for the complete integration of all the electronics. The

control board is adapted for the larger frame and for use with brushless

motors; it also includes a tunable cascaded PI/PID as the baseline flight

controller. Factory gains stabilizes the larger vehicle, however retuning is

necessary for satisfactory performance.
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Figure 2.1: UAS prototype, the manipulator is printed using nylon SLS.

5



2.2 Manipulator Design

Manipulators, in general, are engineered on a task-specific basis, since each

family of robotic arms provides the designer with a different set of advantages

over the others. Traditional approaches utilizing serial manipulators aim

to explore the better reach, ease of dynamics modeling, and use of readily

available literature. In this parallel design, we consider the real needs an

aerial manipulation system has along with the known ground-based results in

order to elevate what is currently expected from this family of systems.

The first prototype in [11] is a serial manipulator with 2-DoF; however,

having only 2-DoF requires the quadcopter to act as the third actuator for

complete 3-DoF reachability and proper positioning of the end effector. Since

it is logically desired for the end-effector to have a higher bandwidth than

the vehicle in all of its axes of motion, a 3-DoF manipulator is needed. This

immediately causes design conflicts for a serial type as at least one of the

actuators would contribute negatively to the stability of the system by having

to be placed in a moving part of the arm. The parallel-delta manipulator

(often referred as Clavel’s Manipulator [13]) however, manages no place all

three actuators at its base, greatly reducing the dynamics induced on the

aircraft. The move from serial to parallel changes several aspects of design,

as shown in Table 2.1, where improvements of interest to this work over the

serial type are highlighted in green, while declines in red.

This approach provides us several advantages such as improved stiffness,

better accuracy, better manufacturing error rejection and others at the cost

of a reduced workspace and complicated dynamics. The two major downsides

are the small workspace and difficult dynamics since calibration can be done

mid-flight utilizing modern positioning systems and a pseudo-inverse-Jacobian

method in the outer loop (shown in Chapter 5). To increase the workspace,

exceptional stiffness is explored. The stiffness of these devices is so abundant

that any load heavy enough to cause deflection in the links would be far too

heavy for the aircraft to lift. By curving the ends of the secondary links

with Bézier curves to guarantee continuous lines (reducing mechanical stress),

the design is able to achieve nearly 180 degrees of motion while maintaining

enough stiffness to lift the maximum allowable payload. Figure 2.2 exemplifies

the folding capabilities of these joints, and Figure 2.3 compares it to the

industry-standard approach for ground-based delta-type parallel manipulators.
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Feature Serial Parallel

Workspace Large Average and complex
Workspace/robot ratio High Low

Forward kinematics Easy Very difficult
Inverse kinematics Difficult Easy

Position error Accumulates Averages
Force error Averages Accumulates

Maximum force Single actuator Sum of actuators
Stiffness Low High

Dynamics characteristics Poor Excellent
Solving Dynamics Relatively simple Complex

Inertia Large Small
Payload/weight ratio Low High

Speed and acceleration Low High
Accuracy Low High

Component uniformity Low High
Calibration Simple Complex

Table 2.1: Serial and Parallel Topology Comparison

The actuators of choice are the Dynamixel RX-24F [14], which communicates

via an RS-485 bus directly to the Crazyflie 2.0 board.

By utilizing this novel design the device nearly attains the reach of the serial

manipulator variant while increasing accuracy, precision, stiffness, bandwidth

and adding one extra degree of freedom. The only true downside is the

increased weight, although future prototypes are expected to utilize compact,

better-optimized actuators and links which will undoubtedly improve both

load capacity and flight performance. An additional property to bear in mind

is that the end-effector is now always parallel to the aircraft, which translates

to a loss in the ability to orient the gripper as desired. This, however, is

often unnecessary. Having a 4-DoF (three from the manipulator plus one

from the quadcopter’s yaw) platform eliminates the need for a more articulate

end-effector, and in the rare occasions where it is required, the modular

tool-base allows for interchangeable, mission-specific grippers to be installed.
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Figure 2.2: Folding property of the design, top and right views.

 80.91° 

SOLIDWORKS Educational Product. For Instructional Use Only

(a) Bézier joint design

 20.61° 

SOLIDWORKS Educational Product. For Instructional Use Only

(b) Spherical joint design.

Figure 2.3: Comparison of joint design angular travel: (a) Bézier design
attains ∼± 81◦ and (b) spherical design attains ∼± 21◦.
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CHAPTER 3

DYNAMICS

3.1 Vehicle Dynamics

3.1.1 Coordinate System

This thesis uses the equations of motion of [15]. The first step towards deriving

the equations of motion is to define the rotation matrices. Using standard

Euler rotations we write the rotation from world frame W to body frame B
as

RW
B = Rz,ψRy,θRx,ψ

=

 cψ sψ 0

−sψ cψ 0

0 0 1


cθ 0 −sθ

0 1 0

sθ 0 cθ


1 0 0

0 cφ sφ

0 −sφ cφ



=

cψcθ cψsθsφ − cφsψ sψsφ + cψcφsθ

cθsψ cψcφ + sψsθsφ cφsψsθ − cψsφ
−sθ cθsφ cθcφ

 , (3.1)

where cα and sα are abbreviations of cos(α) and sin(α) for compactness. Then

the Canonical mapping from W to B is

xB = RW
B

[
1 0 0

]>
,

yB = RW
B

[
0 1 0

]>
,

zB = RW
B

[
0 0 1

]>
.
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3.1.2 Translational Equations of Motion

Using Newton’s laws we write the equations of motion of the aircraft in W as

mẍ = −mgzW + ufzB,

ẍ = −gzW +
uf
m
zB,

where x ∈ R3 is the position vector of the vehicle in W , m is the mass of the

vehicle, g is the gravitational constant, and uf ∈ R is the thrust force exerted

across all actuators.

3.1.3 Rotational Equations of Motion

The diagonal inertia tensor I is

I =

Ixx 0 0

0 Iyy 0

0 0 Izz

 ,
where Ixx, Iyy, Izz ∈ R are the vehicle’s scalar moments of inertia. We wish

to find an expression for the angular acceleration dynamics of the quadrotor

as a function of vehicle properties and the total moments acting on the body.

The total moment acting on the vehicle can be written as

uq =

uc1uc2

uc3

 = um + ua =

uφuθ
uϕ

+

 τrollτpitch

0

 ,
where [uφ, uθ, uϕ]> ∈ R3 are the moments from the propellers in the roll,

pitch, and yaw directions respectively, and τ is the torque induced by the

manipulator in the pitch and roll directions, which will be derived in Section

3.3. We write the the relationship between input torque and rotational states

as

uq = I · Ω̇B + ΩB × (I · ΩB) ,
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where ΩB = [p, q, r]> ∈ R3 is the angular velocity of the vehicle in B. The

angular accelerations in B are

Ω̇B = I−1 (−ΩB × I · ΩB + uc)ṗq̇
ṙ

 =


1
Ixx 0 0

0 1
Iyy 0

0 0 1
Izz



(Iyy − Izz) qr + uc1

(Izz − Ixx) pr + uc2

(Ixx − Iyy) pq + uc3


 .

The angular acceleration about each of the body axes can be defined as

ṗ =
1

Ixx
((Iyy − Izz) qr + uc1) ,

q̇ =
1

Iyy
((Izz − Ixx) pr + uc2) ,

ṙ =
1

Izz
((Ixx − Iyy) pq + uc3) .

3.1.4 Motor Mapping

For a desired control signal u = [uf , uφ, uθ, uϕ]> the actuator commands

[u1, u2, u3, u4] are mapped as follows:
uf

uφ

uθ

uϕ

 =


kF kF kF kF

− kF√
2
L − kF√

2
L kF√

2
L kF√

2
L

− kF√
2
L kF√

2
L kF√

2
L − kF√

2
L

−kQ kQ −kQ kQ


︸ ︷︷ ︸

A


u1

u2

u3

u4

 ,

where kF is the thrust coefficient, kQ is the torque coefficient, and L is length

of the quadrotor arm. If the matrix A is invertible we have the solution
u1

u2

u3

u4

 =
1

4


1
kF
−
√
2

kFL
−
√
2

kFL
− 1
kQ

1
kF
−
√
2

kFL

√
2

kFL
1
kQ

1
kF

√
2

kFL

√
2

kFL
− 1
kQ

1
kF

√
2

kFL
−
√
2

kFL
1
kQ



uf

uφ

uθ

uϕ

 .
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3.2 Manipulator Kinematics

The kinematics of a manipulator describe the relationship between the angular

position and rates of the actuators and the position and velocities of the

end-effector. To develop these equations we first define the geometry. The

angular position of the actuator are denoted by θi, i = 1, 2, 3 while the

coordinate of the moving platform (here moving platform is the alternate

name for the end-effector, which is a standard substitution in manipulator

kinematics literature) is described in standard Euclidean coordinates. Here

we follow the loop-closure method, the geometric definitions are taken from

[13]. First, convenient points shown in Figure 3.1 are defined; these are points

of interest as they simplify the equations. Other necessary quantities are:

sB – Side of the equilateral triangle at the base.

sP – Side of the equilateral triangle ate the moving platform.

L – Length of the first links.

l – Length of the second links.

wB – Distance from Ob to Bi.

uB – Distance from Ob to the base triangle vertices.

wP – Distance from Op to Pi.

uP – Distance from Op to the moving platform triangle vertices.

Next we define the vectors:

BBi – Vector from OB to each actuated axis.

PPi – Vector from OP to each passive platform joint.

BLi – Vector described by the first link (l1).

Bli – Vector described by the second link (l2).

BPP – Cartesian coordinates of the platform.

The Loop-Closure vector equation has the form:

BBi + BLi + Bli = BPP + PPi, i = 1, 2, 3.

12



θ1

θ2

θ3

l1

l2

A1

B1

P1

xb

zb yb

xp

zp
yp

Figure 3.1: Kinematically significant points for the derivation of the
equations of motion.

Fixing the second links to li = l, one gets

li =
∥∥Bli∥∥2 =

∥∥BPP + PPi − BBi − BLi

∥∥
2

i = 1, 2, 3.

The constant vectors are:

BB1 =

 0

wB

0

 , BB2 =


√
3
2
wB

1
2
wB

0

 , BB3 =

 −
√
3
2
wB

1
2
wB

0



PP1 =

 0

−uP
0

 , PP2 =


sP
2

wP

0

 , PP3 =

 −
sP
2

wP

0

 .
Geometrically, we need to find the intersection between two parallel circular

planes. From Figure 3.2 we can see that the intersection between these

planes yields two solutions. Naturally we select the outermost solution as it

provides a larger workspace. Solving the vector-loop equation yields the final

relationship:
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2L(y + a) cos θ1 + 2zL sin θ1

+ x2 + y2 + z2 + a2 + L2 + 2ya− l2 = 0,

− L(
√

3(x+ b) + y + c) cos θ2 + 2zL sin θ2

+ x2 + y2 + b2 + c2 + L2 + 2xb+ 2yc− l2 = 0,

L(
√

3(x− b)− y − c) cos θ3 + 2zL sin θ3

+ x2 + y2 + b2 + c2 + L2 − 2xb+ 2yc− l2 = 0. (3.2)

Figure 3.2: Kinematics solution: two solutions exist.

3.2.1 Inverse Kinematics

Utilizing (3.2) we can write the three independent inverse kinematics equations

Ei cos θi + Fi sin θi +Gi = 0, i = 1, 2, 3,
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where

E1 = 2L(y + a) cos θ1,

F1 = 2zL sin θ1,

G1 = x2 + y2 + z2 + a2 + L2 + 2ya− l2,

E2 = −L(
√

3(x+ b) + y + c) cos θ2,

F2 = 2zL sin θ2,

G2 = x2 + y2 + b2 + c2 + L2 + 2xb+ 2yc− l2,

E3 = L(
√

3(x− b)− y − c) cos θ3,

F3 = 2zL sin θ3,

G3 = x2 + y2 + b2 + c2 + L2 − 2xb+ 2yc− l2,

a = wB − uP ,

b = sP/2,

c = wP − wB/2.

Solving for each θi yields the quadratic formula

θi = 2 atan

(
−Fi ±

√
E2
i + F 2

i −G2
i

Gi − Ei

)
,

where we select the smallest root for the outermost position solution.

3.2.2 Forward Kinematics

The solution to the forward kinematics follows in a similar way. The algebraic

equations are much longer (as expected from Table 2.1) and, hence, are

solved using symbolic toolboxes. The algorithm is provided in Appendix C.

Figure 3.3 exemplifies how the equations hold by going backward and forward

between joint space and workspace.
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Figure 3.3: Kinematics mapping: from workspace to joint space and back.

3.2.3 Rate Analysis

The relation between the linear speed of the end-effector and the (often

angular) speed of the actuators is given trough the system’s Jacobian matrix:

ṗ = J(q)q̇.

This matrix can be found by differentiating (3.2) and grouping the terms.

The velocity equations are

xẋ+ (y + a)ẏ + Lẏ cos θ1 + zż + Lż sin θ1

= L(y + a)θ̇1 sin θ1 − Lzθ̇1 cos θ1, (3.3)

2(x+ b)ẋ+ 2(y + c)ẏ − L(
√

3ẋ+ ẏ) cos θ2 + 2zż + 2Lż sin θ2

= −L(
√

3(x+ b) + y + c)θ̇2 sin θ2 − 2Lzθ̇2 cos θ2, (3.4)

2(x− b)ẋ+ 2(y + c)ẏ + L(
√

3ẋ− ẏ) cos θ3 + 2zż + 2Lż sin θ3

= L(
√

3(x+ b)− y − c)θ̇3 sin θ2 − 2Lzθ̇2 cos θ3, (3.5)
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which can be written in matrix form as x y + a+ L cos θ1 z + L sin θ1

2(x+ b)−
√

3L cos θ2 2(y + c)− L cos θ2 2(z + L sin θ2)

2(x− b) +
√

3L cos θ3 2(y + c)− L cos θ3 2(z + L sin θ3)


︸ ︷︷ ︸

Jp

ṗ

=

Jq1 0 0

0 Jq2 0

0 0 Jq3


︸ ︷︷ ︸

Jq

q̇,

where

Jq1 = L((y + a) sin θ1 − z cos θ1),

Jq2 = −L((
√

3(x+ b) + y + c) sin θ2 + 2z cos θ2),

Jq3 = L((
√

3(x− b)− y − c) sin θ3 − 2z cos θ3).

We can write the Jacobian as

J(q) = J−1p Jq, (3.6)

where q = (θ1, θ2, θ3).

3.3 Manipulator Dynamics

3.3.1 Computed Torque

In robotic manipulator control literature, the Computed Torque Control

method relies on calculating the expected torque generated by the dynamics

of the manipulator, and feeding it forward to the actuators via a torque

controller, augmenting the position PID controller. Since the Delta-type

robot is widely used in the industry, these equations are well known. For

this application, however, some changes have to be made so that the result

reflects the torque generated at the actuators fixture to the base, instead

of on its rotor. We mainly follow results of [16] which are modified as

follows: For a given end-effector trajectory p = (p, ṗ, p̈) and actuator topology

17



φ = (φ1, φ2, φ3) = (−π/2, π/6, 5π/6) the three torques are computed as

τ1 = (I1 +m2l
2
1)θ̈1 − (m1l1c +m2l1)gc cos(θ1)−

2l1λ1[(p1 cos(φ1) + p2 sin(φ1) + b− a) sin(θ1)− p3 cos(θ1)],

τ2 = (I1 +m2l
2
1)θ̈2 − (m1l1c +m2l1)gc cos(θ2)−

2l1λ2[(p1 cos(φ2) + p2 sin(φ2) + b− a) sin(θ2)− p3 cos(θ2)], (3.7)

τ3 = (I1 +m2l
2
1)θ̈3 − (m1l1c +m2l1)gc cos(θ3)−

2l1λ3[(p1 cos(φ3) + p2 sin(φ3) + b− a) sin(θ3)− p3 cos(θ3)],

where the Lagrangian multipliers λi are obtained by solving the system

2
3∑
i=1

λi(p1 + b cos(φi)− a cos(φi)− l1 cos(φi) cos(θi)) = (mp + 3m2)p̈1,

2
3∑
i=1

λi(p2 + b sin(φi)− a sin(φi)− l1 sin(φi) cos(θi)) = (mp + 3m2)p̈2,

2
3∑
i=1

λi(p3 − l1 sin(θi) = (mp + 3m2)(p̈3 − gc). (3.8)

The explicit symbolic solution to the system above exists, but it is extraor-

dinarily long and, thus, omitted. The actuator topology φ represents the

position of each actuator and the joint-space trajectory (θi, θ̈i) is obtained by

applying inverse kinematics and passing it through the high fidelity actuator

model. The remaining parameters are described in Table 3.1.

a Radius of the fixed base (center of the base to actuator)
b Radius of the moving platform (center of the platform to joint)
li Length of link i
m1 Mass of link 1
m2 Half of mass of link 2
mp Mass of the moving platform
l1c Length of the center of mass of link 1
I1 Moment of inertia of link 1
gc Gravity component orthogonal to the moving platform

Table 3.1: Kinematic parameters and mass properties of the Delta
manipulator.

The transformation to the x − y plane of the aircraft is then done by
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projecting each actuator torque into the x− z and y − z planes following the

topology φ as seen in Figure 3.4. The final torque mapping is

τ̂ =

[
τx

τy

]
=

[∑3
1 τix∑3
1 τiy

]
(3.9)

where the operatorˆdenotes estimation and τ̂ is the estimated torque vector

Figure 3.4: Topology of actuators and directions of torque vectors

in the x− y plane. No torque exists on the z axis by construction.

Matrix Form

It is often convenient to have the equations in matrix form for computational

purposes. First we rewrite (3.8) asλ1λ2
λ3

 = A−1

 (mp + 3m2)p̈1

(mp + 3m2)p̈2

(mp + 3m2)(p̈3 − gc)

 ,
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where

A =

[
(p1+bcφ1−acφ1−l1cφ1cθ1 ) (p1+bcφ2−acφ2−l1cφ2cθ2 ) (p1+bcφ3−acφ3−l1cφ3cθ3 )
(p2+bsφ1−asφ1−l1sφ1cθ1 ) (p2+bcφ2−acφ2−l1cφ2cθ2 ) (p2+bcφ3−acφ3−l1cφ3cθ3 )

(p3−l1sθ1 ) (p3−l1sθ2 ) (p3−l1sθ3 )

]
.

Rewriting (3.7) yields

τ = Q(θ̈)−G(θ)−M(θ, p̈),

where

Q =

(I1 +m2l
2
1)θ̈1 0 0

0 (I1 +m2l
2
1)θ̈2 0

0 0 (I1 +m2l
2
1)θ̈3

 ,

G(θ) =

g11 0 0

0 g22 0

0 0 g33

 ,

M(θ, p̈) = L(θ)

λ1λ2
λ3

 ,

L(θ) =

l11 0 0

0 l22 0

0 0 l33

 ,
gii = (m1l1c +m2l1)gc cos(θi),

lii = 2l1[(p1 cos(φi) + p2 sin(φi) + b− a) sin(θi)− p3 cos(θi)].

Note that as long as the manipulator is not in a singularity position, A is

invertible and, thus, a solution exists.

3.3.2 Inertia Estimation

The goal of inertia estimation is to cancel out the high disturbance-inducing

masses of the system. Utilizing the Jacobian and the statics/dynamics duality

we have

τI = J(q)TFI , (3.10)
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where τI are the torques necessary to cancel the extra inertia caused by the

platform, tool, and second links, J(q) is the Jacobian matrix defined in (3.6),

and FI is the force the manipulator needs to exert at the end-effector to keep

the platform in place. To apply the foregoing relation, we first estimate the

vehicle rates and calculate the force necessary to keep the payload in place

(i.e. not moving with respect to the quadcopter frame of reference), which

follows from

~FI = (mp +ml) · ~ap ⇒ τI = (mp +ml)J
Tap,

where ap is the platform acceleration with respect to the global frame. The

last step is feedforwarding τI along with the previously defined ones.

3.4 End-effector Position Hold

This section concludes the chapter. The challenge is to account for the yaw

axis and hold a global end-effector desired position. We start by writing the

coordinate systems and position vectors as in Figure 3.5. In this solution, W
is the world frame, B the quadcopter reference frame, and E is the end-effector

reference frame. The vectors ~rq, ~rp and ~re are the quadcopter position in W ,

the end-effector position in B, and the end-effector position inW , respectively.

Then we have vector-loop equation

~rq +Rz~rp = ~re.

The rotation matrix about the z axis Rz represents the effect of the yaw angle

ϕ. Solving for ~re and substituting the coordinates yields

xe = R−1z (xd − xq) (3.11)

where xe is the end-effector position command, xd is the desired end-effector

position in the global frame and xq is the quadcopter position in the global
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frame. Additionally:

Rz(ϕ) =

cosϕ − sinϕ 0

sinϕ cosϕ 0

0 0 1

 .
The final step is to pass xe trough the inverse kinematics mapping yielding

the desired configuration θe and use it as the joints command signal. Pro-

ceeding the same way we can extend to full pitch-roll-yaw compensation by

using the complete Euler rotation matrix:

xe =
(
RW
B

)−1
(xd − xq) ,

where RW
B is defined in (3.1).

W

B

E

x
y

z

xq
yq

y
x

zq

xp
yp

y
x

zp

~rq
~rp

~re

ϕ

Figure 3.5: Coordinates systems.
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CHAPTER 4

CONTROLLER DESIGN

In this section, the design of control laws is discussed. This process is using

a realistic model of the system, where all signals flow as they would on the

aircraft. Throughout the rest of this paper, the generalized coordinates of the

system are Q(t) = [ϕ1(t), ϕ2(t), θ1(t), θ2(t), θ3(t)], where [ϕ1(t), ϕ2(t)] = ϕ(t)

are the pitch and roll angles respectively and [θ1(t), θ2(t), θ3(t)] = θ(t) are the

manipulator actuators angular position. The subscript c indicates a command

(i.e. θ1c indicates the angular position command for the first manipulator

actuator). We first state the problem formulation:

Problem Formulation 4.1 (Stabilizing controller for a manipulation UAS)

Given a quadcopter equipped with a Delta-type parallel manipulator and an

end-effector trajectory p, find a control signal u that stabilizes the vehicle.

Assumptions:

1. The trajectory p remains strictly inside the workspace.

2. Throughout the trajectory p the payload never exceeds the allowable

maximum.

3. All manipulator actuators don’t saturate torque, speed or acceleration.

The assumptions here are mainly in place to not allow non-feasible trajectories.

Assumption 1 stops the manipulator from reaching singularity positions,

Assumption 2 guarantees that at every point in the trajectory stable flight is

attainable, and Assumption 3 restricts the trajectories to the ones that the

manipulator can perform.

4.1 General Control Scheme

Figure 4.1 shows the general control scheme of the system. The commanded

joint-space trajectory θc and commanded pitch and roll attitudes ϕc are fed to
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the system. The manipulator dynamics generate the disturbance τm while the

Computed Torque Feedforward (CTF) algorithm estimates this disturbance

and generates a control signal consistent with the vehicle dynamics. The

baseline controller is a cascaded PI/PID (rate PI and attitude PID) controller

which is augmented with the L1 adaptive controller.

Figure 4.1: General control scheme

4.2 Baseline Controller

The baseline controller follows a cascaded PI/PID attitude structure as shown

below:

ubi(t) = kP1 (ϕ̇ic(t)− ϕ̇i(t)) +KI1

∫ t

0

(ϕ̇ic(t)− ϕ̇i(t)) dτ

where

ϕ̇ic(t) = kP2 (ϕic(t)− ϕi(t)) +KI2

∫ t

0

(ϕic(t)− ϕi(t)) dτ + kDϕi(t)

and kP1, kI1, kP2, kI2, kD ∈ R are manually tuned control gains. Here,

ub = [ub1 ub2 ] is the vector of the baseline pitch and roll control signals

respectively.
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4.3 L1 Adaptive Control Augmentation

The aerial manipulator can pick up a large variety of objects, varying in mass,

inertia, density, shape, etc. With a flight controller augmented only with

the feedforward torque compensation of the manipulator, there is no way to

account for the induced torques and forces from these uncertain payloads. To

reject uncertainties introduced by unknown payloads, the L1 adaptive control

structure is chosen as a robust augmentation.

An L1 adaptive control augmentation with piecewise constant adaptation

law from [17] is considered. Here we implement this structure on the pitch

and roll axis separately; this is possible due to the decoupling between the

x and y torque axis of the manipulator. Let xI1(t) and xI2(t) denote the

states of the integrator in the rate and attitude in each of the loops of the

baseline controller respectively. Then, the rotational equation of motion of

the quadrotor with the L1 augmentation can be expressed as

ẋ(t) = Amx(t) +Brr(t) +Bm (ua(t) + f1(t, x)) +Bumf2(t, x),

y(t) = Cmx(t),

x(0) = x0,

(4.1)

where x(t) = [ϕ1(t), ϕ̇1(t), xI1(t), xI2(t)]
> is the vector of the system states,

r(t) = ϕic(t) is the reference attitude command, f1(t, x) : R × R4 → R is a

nonlinear function containing information on the residual of the feedforward

torque compensation for the disturbance torque from the manipulator and

the matched uncertainty, f2(t, x) : R × R4 → R3 is a nonlinear function

representing additional modeling uncertainty, Am ∈ R4×4 is a known Hur-

witz matrix defining the desired system dynamics, Br ∈ R4×1 is the known

command matrix, Bm ∈ R4×1 is the known control matrix, Cm ∈ R1×4 is

a known full-rank constant matrix, and Bum ∈ R4×3 is a matrix such that

B>mBum = 0 and [Bm Bum] has full rank. The product Bumf2(t, x) represents
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the unmatched uncertainty. The matrices Am, Br, and Bm can be written as

Am =


0 1 0 0

−kP1kP2

J0

kP1kD
J0

kI1
J0

kP1kI2
J0

−kP2 kD − 1 0 kI2

−1 0 0 0

 ,

Br =


0

kP1kP2

J0

kP2

1

 , Bm =


0
1
J0

0

0

 .

For the system given in (4.1), the elements of the L1 adaptive controller are

given below.

4.3.1 State Predictor

Taking the same structure as the system in 4.1, the state predictor is given by

˙̂x(t) = Amx̂(t) +Brr(t) +Bm (ua(t) + σ̂1(t)) +Bumσ̂2(t),

x̂(0) = x0,

where x̂(t) is the predictor state, σ̂1(t) ∈ R and σ̂2(t) ∈ R3 are the estimates

of the nonlinear functions f1(·) and f2(·) respectively.

4.3.2 Adaptation Law

Given an adaptation rate Ts > 0, the estimates σ̂1(t) and σ̂2(t) are updated

according to the following piecewise constant adaptation law:[
σ̂1(t)

σ̂2(t)

]
=

[
σ̂1(iTs)

σ̂2(iTs)

]
, t ∈ [iTs, (i+ 1)Ts)[

σ̂1(iTs)

σ̂2(iTs)

]
= −

[
1 0

0 I3

]
[Bm Bum]−1 Φ−1(Ts)e

AmTsx̃(iTs),

i = 0, 1, 2, 3, ...,

(4.2)
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where

Φ−1(Ts) = A−1m
(
eAmTs − I4

)
and x̃(t) = x̂(t)− x(t) is the state prediction error.

4.3.3 Control Law

The control law is generated as the output of the following system:

ua(s) = −kaD(s)η̂(s), (4.3)

where η̂(s) is the Laplace transform of the signal

η̂(t) , ua(t) + η̂1(t) + η̂2(t)

with η̂1(t) = σ̂1(t) and η̂2(s) = H−11 (s)H2(s)σ̂2(s) and

H1(s) = Cm(sI− Am)−1Bm,

H2(s) = Cm(sI− Am)−1Bum.

Here ka is a feedback gain and D(s) is a strictly proper transfer function,

which lead to a strictly proper stable

C(s) ,
kaD(s)

1 + kaD(s)
,

where C(s) is a low pass filter with DC gain C(0) = 1.

4.4 Solution Steps for the Stabilizing Flight Controller

We can summarize the steps to solve the stabilization problem as:

1. Find the joint-space trajectory (inverse kinematics, section 3.2.1).

2. Estimate θ̈i with the actuator model.

3. Solve the Lagrangian Multipliers and the torques (section 3.3).

4. Feedforward the torques to the flight controller.
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5. Augment with L1 to account for unknown payloads and model discrep-

ancies.

Note that the quadcopter trajectory is implicitly included in the inertia

cancellation algorithm and in the direction of the gravity vector. In addition,

we assume that being a difficult task to perform with a perfect controller,

the quadcopter trajectory is composed of relatively small angles. The next

chapter discusses the generation of these trajectories.
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CHAPTER 5

OPTIMAL TRAJECTORY GENERATION
FOR REDUNDANT AERIAL
MANIPULATION SYSTEMS

This chapter discusses a novel approach to task planning for these kinds of

UAS based on real-world proven control techniques of redundant manipulators.

The idea revolves around exploring the additional DoF’s provided by the

quadcopter and transform the system into a redundant manipulator, that is,

the mapping from joint-space to workspace becomes onto. The implications

are that now there are infinitely many solutions for every desired end-effector

position and traditional workspace trajectory generation techniques fail. In

this case, we propose a modification to optimal rate control methods so that

these can be used on a UAS. First, we state the problem formulation:

Problem Formulation 5.1 (Optimal Trajectory Generation for a Redun-

dant Manipulation UAS) Find a minimum energy joint-space trajectory

q̇ that reaches a desired end-effector destination while satisfying mission-

specific constraints. This is equivalent to the minimization problem

min
q̇

‖q̇‖22
s.t. Mission constraints.

(5.1)

Assumptions:

1. A stabilizing controller exists that tracks the solution of (5.1).

2. The yaw angle always remains aligned with the global frame W.

The assumptions are realistic given the results of the preceding chapter.

The most traditional constraints are spatial (desired end-effector location),

mechanical (maximum joint travel) and energy-weighted (control cost of some

joints over the others). The careful reader will note that this is a least-squares

minimization problem. As another remark, we note that ‖q̇‖22 is not exactly

energy, but only proportional to it. Later in this chapter, there will be
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mathematical relations developed to better translate this problem into real

minimum energy. Before continuing it is also important to note what is

being optimized. The objective of the solution of 5.1 is to generate the next

joint-space waypoint from the current location. The choice of this point takes

into account the mission and, most notably, how expensive it is to move

each joint. The optimality of the solution exists in the sense that from the

infinite set of joint-space trajectories (from the redundancy property) to get

to the next waypoint we’re choosing the one which minimizes the norm of the

joint-space velocity, based on user-defined weights. We can now show how to

bridge the gap between redundant manipulator trajectory planning theory

and any aerial redundant manipulator system.

5.1 Realization as a Unified Manipulation System

In order to proceed with the concept we, first, need to realize the UAS as

single manipulation system. The idea is relatively natural: any quadcopter

has four DoF which can be attained in steady-state: a position in SE(3) and

the yaw angle, which we denote as the generalized coordinates (xq, yq, zq, ψ).

Combining those with the degrees-of-freedom of a euclidean position-oriented

manipulator we will have a redundant system. Since the yaw angle does not

overlap with the manipulator coordinates it can be commanded externally

and, thus, won’t be a part of the unified system. Let s = (xq, yq, zq) be the

quadcopter position and p be position of the manipulator’s moving platform.

We have

ṗ = J(q)q̇

as the mapping from joint rates to position rates. Let x ∈ SE(3) be the

global end-effector position and q = (s, q) be the joints of the unified system.

Then

ẋ = Ju(q)q̇,
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where Ju(q) is the Jacobian of the unified system:

Ju(q) =
[
In×n J(q)

]
(5.2)

and n is the dimension of the workspace (usually 2 or 3). This realization

opens many doors for trajectory generation and tracking, which are explored

throughout the rest of this chapter. Note that the non-squareness of Ju makes

a kinematics-based approach to trajectory generation impossible.

5.2 Exact Unconstrained Solution

This solution (together with many others discussed in this chapter) is presented

in [18]. For a given desired end-effector velocity we have that the exact solution

is

q̇ = J†uẋ, (5.3)

where J†u is the Moore-Penrose pseudoinverse and we omit its dependency

on q for the benefit of compactness. In addition, (5.3) is a solution to the

unconstrained version of (5.1). If Ju is non-singular, then J†u = JTu (JuJ
T
u )−1.

This compact result reflects the efficiency one can attain by moving away

from position-based methods. It is still required to account for singularity

positions and mission constraints, as shown in the following sections.

5.3 Spatial Constraints

A basic constraint is a final end-effector position. This constraint is formulated

as a running cost by setting ẋ to be proportional to the position error with a

saturation function:

ẋ = sat(kx(xd − xe), δ), (5.4)

where δ is a column vector containing the maximum speed of each joint, xd

and xe are the desired and current end-effector positions, respectively, and

kx is manually tuned proportional gain. The saturation function convention
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throughout this thesis is

sat(α, β) =


β, α > β

α, −β ≥ α ≥ β

−β, α < −β

,

where in the case of the arguments being vectors the operations are evaluated

element-wise. Substituting (5.4) into any of the solutions presented in this

chapter will generate a trajectory which asymptotically converges to the

desired position.

5.4 Singularity Avoidance

As the system approaches a singularity (which may happen for a variety

of reasons), the norm of the joint velocities becomes arbitrarily large [1].

To avoid this undesirable behavior a manually tuned damping factor λ is

introduced, which yields the result seen in Figure 5.1.

Figure 5.1: Effect of damping on the norm of the joint velocity where σ is a
singular value of Ju [1].
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The damped solution is

q̇ =
(
JTu Ju + λ2I

)−1
JTu ẋ. (5.5)

From (5.5) it becomes clear that the constant diagonal matrix will always

make the bracketed term invertible, seeing as JTu Ju � 0 is symmetric.

5.5 Mechanical Constraints

In an aerial manipulation system it is often required to satisfy two forms

of mechanical constraints: (i) the arm cannot attain a configuration which

will impede proper function of the propellers, and (ii) the quadcopter cannot

get too close to certain objects while the end-effector can. The formulation

(5.2) allows us to satisfy these constraints in one step. First, we write the

augmented form of (5.5):

q̇ =
(
JTu Ju +WLA(q) + λ2I

)−1
JTu ẋ, (5.6)

where an example weight matrix for this thesis’ UAS is

WLA(q) =



L1(q1) 0 0 0 0 0

0 L2(q2) 0 0 0 0

0 0 L3(q3) 0 0 0

0 0 0 L4(q4) 0 0

0 0 0 0 L5(q5) 0

0 0 0 0 0 L6(q6)


(5.7)

and Li(qi) represents a potential function for the i-th joint. The potential

function is manually tuned according to the following guidelines:

• A zero value allows the joint to move freely.

• A high value is equivalent to introducing a high damping factor and,

thus, tends to stop the joint.

• A small negative value repels the joint in the opposite direction to the

unconstrained optimal.

• A large negative value is equivalent to a high value.
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The reasoning behind these rules is obvious. The potential function should

be smooth and usually it suffices to have an exponential form.

5.6 Energy-Weighted Solution

This section aims to allow the mission planner to increase the cost of moving

one joint over another. Not only this is a way of better approximating the

minimization problem to real energy but also enables a high-level controller

to decide when it is beneficial or necessary to move the manipulator, as any

such movement introduces undesirable dynamics.

A simple modification to (5.6) will achieve the desired results:

q̇ =
(
JTu Ju +WLA(q) + λ2WA

)−1
JTu ẋ, (5.8)

where an example weight matrix for this thesis’ UAS is

WA =



A1 0 0 0 0 0

0 A2 0 0 0 0

0 0 A3 0 0 0

0 0 0 A4 0 0

0 0 0 0 A5 0

0 0 0 0 0 A6


. (5.9)

Here, Ai represents the actuation cost for the i-th joint. If the mission planner

wants an exact minimum energy solution the weights will be the moving mass

or inertia (depending on type) of each link. Similarly, a high weight will

be equivalent to aggressively damping the joint automatically reducing its

speed. It is worth to state the remark that excessive damping applied to too

many joints will cause the tracking error per step to increase, slowing the

convergence rate to the desired end-effector position.
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5.7 Additional Task Constraints

The goal here is to modify the cost function in order to to reach a desired

manipulator configuration goal. This is equivalent to writing

q̇ =
(
JTu Ju +WLA(q) + JTTWTJT + λ2WA

)−1 (
JTu ẋ + JTTWT q̇T

)
, (5.10)

where an example weight matrix for this thesis’ UAS is

WT =

T1 0 0

0 T2 0

0 0 T3

 (5.11)

JT =
[
03×3 I3×3

]
, (5.12)

and Ti represents the weight given for each joint’s additional task. For example:

if it is paramount that θ1 reaches a desired goal, then T1 >> Ti, i = 2, 3.

Similar to (5.4) we define the additional task’s desired velocity as

q̇T = sat(kq(qad − qa), ζ), (5.13)

where ζ is the column vector containing the manipulators’ joints maximum

speeds, qad
is the desired final configuration, qa is the current configuration,

and kq is a manually tuned proportional gain.
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CHAPTER 6

SIMULATION RESULTS

6.1 Stabilizing Controller

This section discusses simulation results for the stabilizing controller which

solves Problem 4.1.

6.1.1 Simulation Setup

The simulation scenario is a simple movement which pulls the end-effector

from 80mm to a position aligned with the z axis of the center of mass of the

quadcopter. The choice of scenario is motivated to compare this prototype

with the one developed in [11]. The simulation scenario is depicted in Figure

6.1. The simulation environment is a realistic simulator which includes the

battery, motor, atmosphere, sensor, and radio models, among other details,

which add realistic uncertainties and noise to the system. Additionally, Figure

6.2 depicts the workspace and joint space trajectories.

2 seconds

80mm

Figure 6.1: Simulation scenario.
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Figure 6.2: Simulation scenario kinematic trajectories.

6.1.2 Computed Torque Feedforward (CTF)

Here we first simulate the system without any payload. As we can see

from Figure 6.3, in the absence of a payload the uncertainties are minimal

and, thus, we attain satisfactory performance. This does not reflect reality,

however. Figure 6.4 shows how the addition of a payload increases the model

uncertainty dramatically and, thus, the performance degrades.

0 1 2 3 4 5 6
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-0.4
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-0.1

0

0.1

Figure 6.3: Simulation: baseline versus CTF, no payload.
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Figure 6.4: Simulation: baseline versus CTF, 25g payload.

6.1.3 L1 Adaptive Controller

The addition of the L1 adaptive controller proves to be necessary to account for

model uncertainties. Figure 6.5 compares the different levels of compensation.

Figure 6.6 includes sensor noise.
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Figure 6.5: Simulation: baseline versus CTF versus L1-augmented, 25g
payload.
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Figure 6.6: Simulation with sensor noise: baseline versus CTF versus
L1-augmented, 25g payload.

6.1.4 Comparison against serial-type

One main result of this thesis is how the novel UAS design fares against the

traditional serial-type approach. Figure 6.7 shows the time evolution of τm.

The torques on the serial-type change much faster than the ones in the parallel

case. At four seconds the parallel robot changes from 0 to −5mNm, while

the seria-type chamges from 0 to −30mNm. This behaviour is detrimental to

tracking performance as the quadcopter is unable to handle the fast dynamics

in a satisfactory manner. Figure 6.8 depicts the pitch response for both

systems. At two seconds, the parallel-type jumps to 0.005◦ and the serial-type

jumps to 0.03◦; a direct impact for the fast dynamics. For this comparison,

the same actuator is used on both models to better isolate the contribution

of the mechanical topology to the performance. Both systems are using the

same actuators and attached to the same aircraft; we can conclude from the

smaller tracking error that the parallel robot offers better performance. One

might argue that the improvement is not significant, but it is important to

note that the true benefit lies in the addition of the extra DoF as well as

other advantages discussed in Section 2.2.
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Figure 6.7: Torque profile: all controllers engaged, parallel versus serial-type,
25g payload.
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Figure 6.8: Simulation: all controllers engaged, parallel versus serial-type,
25g payload.

6.1.5 Multi-axis stabilization

So far we’ve only shown movements in the y − z plane which only directly

affect the pitch attitude. To showcase simultaneous pitch and roll stabilization

we use the trajectory in figure 6.9, which utilizes all of the available DoF’s.
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Figure 6.9: Simulation scenario kinematic trajectories for multi-axis
manipulation.
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Figure 6.10: Simulation with sensor noise: all controllers engaged, multi-axis
trajectory, 25g payload.

6.2 Optimal Trajectory Generation

For the benefit of simplicity, we will use a 2D example which illustrates

the optimal trajectory generation algorithm functionality. The example is a

quadcopter moving in the y− z plane equipped with a 2-link rotational serial

manipulator aligned with the same plane. Geometrically we have a n = 2

dimensional workspace and m = 4 DoF’s, so the system is indeed redundant

with d = m− n = 2 degrees of redundancy.
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6.2.1 Spatially constrained scenario

The first task is a simple movement with no further constraints. Figure 6.11

shows the achieved behavior. The algorithm prefers to move the arm when no

weights are given. In figure 6.12 weights are added to reflect the dynamic cost

of moving the manipulator, and the end-effector and quadcopters trajectories

become nearly identical, meaning there is minimal movement executed by the

manipulator.
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Figure 6.11: Mission: go from start to end.
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Figure 6.12: Mission: go from start to end, minimize kinetic energy.
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6.2.2 Mechanically constrained scenario with additional task.

This scenario is similar to the previous one, but now there are two added

constraints: collision avoidance and desired final configuration. In this sce-

nario, we desire to reach the endpoint with the arm fully extended and with

no collision between the quadcopter and the object (here depicted by a solid

black sine wave). Figure 6.13 shows the achieved trajectory, the dashed line

represents the region of influence, where the potential function is activated.

We notice how the trajectory is adjusted as the aircraft flies into the region

of influence.
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Figure 6.13: Mission: go from start to end with no collision arriving with a
desired configuration.

Impossible task and relaxation

This is a modification of the previous scenario where the mission planner

added more constraints than the system is able to resolve. The endpoint

resides in a position where the system would either collide or not reach the

desired configuration. Figures 6.14 and 6.15 show the impossible and relaxed

mission respectively; in the former collision is avoided due to the higher weight

given to that task, and in the latter the mission is relaxed to be attainable.
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Figure 6.14: Impossible mission: go from start to end with no collision
arriving with a desired configuration.
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Figure 6.15: Relaxed mission: go from start to end with no collision.
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CHAPTER 7

CONCLUSION

This thesis presented a new approach to aerial manipulation design. We

developed the mechanism and it’s equations to successfully stabilize an aircraft

in the presence of uncertainties an then follow an optimal trajectory which

satisfies flexible mission constraints. Realistic simulations provided results

which support the theory behind the coupled system.

7.1 Future Directions

The next goal is flight testing. The major stepping stone towards it is the

implementation of embedded algorithms for CTF and L1. The vehicle has

flown with full control over both elements, however, the poor performance of

the baseline controller reflected the critical need for the robust augmentation

methods. Once these methods are validated, a high-level mission planner

needs to be developed to complete the chain between user and machine.
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APPENDIX A
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APPENDIX B

INVERSE KINEMATICS ALGORITHM

function [ t , reach ] = FastInvKin(x,y,z,L,l,a,b,c)

sqrt3 = sqrt (3);

reach = 1;

t = zeros (3,1);

E(1) = 2*L*(y+a);

F(1) = 2*z*L;

G(1) = x*x+y*y+z*z+a*a+L*L+2*a*y-l*l;

E(2) = -L*(sqrt3 *(x+b)+y+c);

F(2) = 2*z*L;

G(2) = x^2+y^2+z^2+b^2+c^2+L^2+2*(x*b+y*c)-l^2;

E(3) = L*( sqrt3*(x-b)-y-c);

F(3) = 2*z*L;

G(3) = x^2+y^2+z^2+b^2+c^2+L^2+2*( -x*b-y*c)-l^2;

if((G(1)-E(1))==0||(G(2)-E(2))==0||(G(3)-E(3))==0)

t = 0;

reach = 0;

return

end

for i=1:3

t(i) = 2*atan(-F(i)-sqrt(E(i)^2+F(i)^2-G(i)^2))

/(G(i)-E(i));

end

end
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APPENDIX C

FORWARD KINEMATICS ALGORITHM

function [p] = FastFwdKin(t,L,l,wb ,wp,up,sp)

A1 = [0 -wb -L*cos(t

(1))+up -L*sin(t(1))];

A2 = [sqrt (3) /2*(wb+L*cos(t(2)))-sp/2 1/2*( wb+L*

cos(t(2)))-wp -L*sin(t(2))];

A3 = [-sqrt (3) /2*(wb+L*cos(t(3)))+sp/2 1/2*(wb+L*

cos(t(3)))-wp -L*sin(t(3))];

%solve the intersection of spheres (Ai,l)

l1 = l;

l2 = l;

l3 = l;

x1 = A1(1);

x2 = A2(1);

x3 = A3(1);

y1 = A1(2);

y2 = A2(2);

y3 = A3(2);

z1 = A1(3);

z2 = A2(3);

z3 = A3(3);

a11 = 2*(x3-x1);

a12 = 2*(y3-y1);

a13 = 2*(z3-z1);
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a21 = 2*(x3-x2);

a22 = 2*(y3-y2);

a23 = 2*(z3-z2);

b1 = l1^2-l3^2-x1^2-y1^2-z1^2+x3^2+y3^2+z3^2;

b2 = l2^2-l3^2-x2^2-y2^2-z2^2+x3^2+y3^2+z3^2;

a1 = a11/a13 -a21/a23;

a2 = a12/a13 -a22/a23;

a3 = b2/a23 -b1/a13;

a4 = -a2/a1;

a5 = -a3/a1;

a6 = (-a21*a4 -a22)/a23;

a7 = (b2-a21*a5)/a23;

a = a4^2+1+a6^2;

b = 2*a4*(a5-x1) -2*y1+2*a6*(a7-z1);

c = a5*(a5 -2*x1)+a7*(a7 -2*z1)+x1^2+y1^2+z1^2-l1^2;

y = (-b-sqrt(b^2-4*a*c))/(2*a);

x = a4*y+a5;

z = a6*y+a7;

p = [x y z];

end

49



APPENDIX D

OPTIMAL TRAJECTORY GENERATION
ALGORITHM

%% Q2 Arm Control by Inverse Jacobian

clc

close all

%% Simparam

l1 = 3; %parameters

l2 = 2;

theta1 = deg2rad (120); %initial conditions

theta2 = deg2rad (60);

d1 = 0;

d2 = 0;

t = 7; %end time

dt = 0.001; %control period

tol = 0.0001; %sim tolerance

cdes = [ -11.5;6]; %desired position

kx = 5; %proportional gain on x axis

ky = 5; %proportional gain on y axis

sat = 3;%velocity control saturation

jsat = 10;%joint speeds saturation

Wt = 10*[5 0 ; 0 5]; %desired angles
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W = 2*[1 0 ; 0 1]; %task

Jt = [0 0 1 0 ; 0 0 0 1]; %desired angles

Jla = 1*eye(4); %angle limiter

Wla = zeros (4); %angle limiter

Wa = eye(4) +0* diag ([0 0 500 500]); %actuation cost

lambda = 0.75;

qmin = deg2rad (30);

qmax = deg2rad (150);

buff = deg2rad (10);

posOx = 0; %origin

posOy = 0;

J = jacb(theta1 ,theta2 ,l1 ,l2);

syms xobj %object

bar = matlabFunction (5*sin(xobj /3)+6);

xobj = -10*rg :0.1:10* rg;

yobj = bar(xobj);

ro = 1.5;

%% Start of simulation

d1dot = 0;

d2dot = 0;

theta1dot = 0;

theta2dot = 0;

x = [posOx pos1x pos2x pos3x pos4x]; %manipulator "

body"

y = [posOy pos1y pos2y pos3y pos4y];

xe = x(3); %end effector position

ye = y(3);

f = 1;
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for i = 0:dt:t

error = cdes - [xe(end) ye(end)]'; %error

pdes = min(sat ,max(-sat ,kx.*error)); %desired

speed

tdes = [kx*(pi/2-theta1) kx*(pi/2-theta2)]';

%desired joint speed

if d1 <(bar(d2)-ro)

Wla(1,1) = 0;

elseif bar(d2)>=d1&&d1 >=(bar(d2)-ro)

Wla(1,1) = -exp ( -(1.15*d1-bar(d2)))-pi/2; %

exponential potential

elseif d1>bar(d2)

Wla(1,1) = -1.5;

end

if theta1 <qmin

Wla(3,3) = 5000;

elseif qmin <= theta1 &&theta1 <=qmin+buff

Wla(3,3) = 5000/2*( cos(pi*(theta1 -qmin)/buff

)); %angular potential

elseif qmin+buff <theta1 &&theta1 <qmax -buff

Wla(3,3) = 0;

elseif qmax -buff <= theta1 &&theta1 <=qmax

Wla(3,3) = 5000/2*( cos(pi*(qmax -theta1)/buff

));

else

Wla(3,3) = 5000;

end

if theta2 <qmin

Wla(4,4) = 5000;

elseif qmin <= theta2 &&theta2 <=qmin+buff

Wla(4,4) = 5000/2*( cos(pi*(theta2 -qmin)/buff

)); %angular potential
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elseif qmin+buff <theta2 &&theta2 <qmax -buff

Wla(4,4) = 0;

elseif qmax -buff <= theta2 &&theta2 <=qmax

Wla(4,4) = 5000/2*( cos(pi*(qmax -theta2)/buff

));

else

Wla(4,4) = 5000;

end

J = jacb(theta1 ,theta2 ,l1 ,l2);

qotim = (J'*W*J+Jla '*Wla*Jla+Jt '*Wt*Jt+lambda ^2*

Wa)...

\(J'*W*pdes+Jt '*Wt*tdes); %optimal law

d1 = d1 + dt*qotim (1);

d2 = d2 + dt*qotim (2);

theta1 = theta1 + dt*qotim (3);

theta2 = theta2 + dt*qotim (4);

xe = [xe pos4x];

ye = [ye pos4y];

if(norm(error)+(max(max(Wt)) >0)*1/1600* norm(tdes

) <=800*tol)

break %stop condition

end

end
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