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Abstract

Mathematical modeling and computer simulations have long been the central technical topics in
practically all branches of science and technology. Tremendous progress has been achieved in
revealing quantitative connections between numerical predictions and real-world observations.
However, because computer models are reduced representations of the real phenomena, there
are always discrepancies between ideal in silico designed systems and real-world manufactured
ones. As a consequence, uncertainties must be quantified along with the simulation outputs
to facilitate optimal design and decision making, ensure robustness, performance or safety
margins. Forward uncertainty propagation requires knowledge in the statistical information for
computer model random inputs, for example, the mean, variance, Probability Density Functions
(PDFs), upper and lower bounds, etc. Historically, “expert judgment” or “user self-evaluation”
have been used to specify the uncertainty information associated with random input parameters.
Such ad hoc characterization is unscientific and lacks mathematical rigor.

In this thesis, we attempt to solve such “lack of uncertainty information” issue with inverse
Uncertainty Quantification (UQ). Inverse UQ is the process to seek statistical descriptions of
the random input parameters that are consistent with available high-quality experimental data.
We formulate the inverse UQ process under the Bayesian framework using the “model updating
equation”. Markov Chain Monte Carlo (MCMC) sampling is applied to explore the posterior
distributions and generate samples from which we can extract statistical information for the
uncertain input parameters. To greatly alleviate the computational burden during MCMC
sampling, we used systematically and rigorously developed metamodels based on stochastic
spectral techniques and Gaussian Processes (also known as Kriging) emulators.

We demonstrated the developed methodology based on three problems with different levels
of sophistication: (1) Point Reactor Kinetics Equation (PRKE) coupled with lumped parameter
thermal-hydraulics feedback model based on synthetic experimental data; (2) best-estimate
system thermal-hydraulics code TRACE physical model parameters based on OECD/NRC
BWR Full-size Fine-Mesh Bundle Tests (BFBT) benchmark steady-state void fraction data; (3)
fuel performance code BISON Fission Gas Release (FGR) model based on Risø-AN3 on-line
time-dependent FGR measurement data. Metamodels constructed with generalized Polynomial
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Chaos Expansion (PCE), Sparse Gird Stochastic Collocation (SGSC) and GP were applied
respectively for these three problems to replace the full models during MCMC sampling.

We proposed an improved modular Bayesian approach that can avoid extrapolating the
model discrepancy that is learnt from the inverse UQ domain to the validation/prediction
domain. The improved approach is organized in a structure such that the posteriors achieved
with data in inverse UQ domain is informed by data in the validation domain. Therefore,
over-fitting can be avoided while extrapolation is not required. A sequential approach was also
developed for test source allocation (TSA) for inverse UQ and validation. This sequential TSA
methodology first select tests for validation that has a full coverage of the test domain to avoid
extrapolation of model discrepancy term when evaluated at input setting of tests for inverse UQ.
Then it select tests that tend to reside in the unfilled zones of the test domain for inverse UQ, so
that inverse UQ can extract the most information for posteriors of calibration parameters using
only a relatively small number of tests.

The inverse UQ process successfully quantified the uncertainties associated with input
parameters that are consistent with the experimental observations. The quantified uncertainties
are necessary for future uncertainty and sensitivity study of nuclear reactor simulators in
system design and safety analysis. We applied and extended several advanced metamodeling
approaches to nuclear engineering practice to greatly reduce the computational cost. The
current research bridges the gap between models and data by solving “lack of uncertainty
information” issue, as well as providing guidance for improving nuclear reactor simulators
through the validation process.
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Chapter 1

INTRODUCTION AND LITERATURE
SURVEY

1.1 Background and Motivation

During the last four decades, the importance of computer simulations has increased dramatically
in furthering our understanding of the responses of engineered systems in real world. Large
computer codes that implement complex mathematical models have been successfully applied
in the design and performance assessment of real systems in many areas of scientific research.
Computer modeling is especially significant to the nuclear engineering community, as physical
experimentation is usually too costly or sometimes impossible.

1.1.1 Essential components of computer modeling

To bring up the motivation to perform inverse Uncertainty Quantification (UQ), we first briefly
mention some other essential components for computer modeling, including forward UQ:

1. Verification: “the process of determining that a model implementation accurately repre-
sents the developer’s conceptual description of the model and the solution to the model”
([103], p. 215). In other words, verification aims to identify, quantify, and reduce errors
during the mapping from mathematical model to a computer code.

2. Code Verification: the process to access the reliability of the software coding, which
includes two activities, numerical algorithm verification and software quality engineering
(SQE) [102]. In other words, code verification deals with adequacy of the numerical
algorithms and the fidelity of the computer programming to implement these algorithms.
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3. Solution Verification: also referred to as calculation verification [136], or numerical
error estimation [102], is the process to evaluate the numerical accuracy of the solutions
to a computer code. The primary difference between code and solution verification is that
there is generally no known exact solution to the system of interest for the latter. Solution
verification strongly depends on the quality and completeness of code verification, and
both processes should be performed prior to validation, as defined below.

4. Validation: “the process of determining the degree to which a model is an accurate
representation of the real world from the perspective of the intended uses of the model”
([103], p. 215). In other words, validation aims to determine the degree of accuracy of
the considered model in representing real world phenomena. Verification and Validation
together are often termed “V&V”;

5. Forward UQ: the process of quantifying the uncertainties in Quantity-of-Interest (QoIs)
by propagating the uncertainties in input parameters through the computer model [126].
QoIs predictions along with uncertainties are necessary for validation;

6. Sensitivity Analysis (SA): the study of how uncertainties in the QoIs of can be appor-
tioned to various random input parameters [120];

7. Optimization: the process of maximizing or minimizing an object function by systemat-
ically choosing input values from within an allowed set [38] [111];

8. Calibration: the process of adjusting a set of input parameters implemented in the code
so that the agreement of the computer code predictions with corresponding experimental
data is maximized [136];

9. Data Assimilation: the process to incorporate observations of the actual system into the
model state of a numerical model of that system [35]. Data assimilation can be treated
as the calibration of dynamic models, which arise in many fields of geosciences such as
weather forecasting.

10. Benchmark: “A benchmark is a choice of information that is believed to be accurate
or true for use in verification, validation or calibration” ([136], p. 1333). For example,
benchmarks can be measurements of QoIs from physical experiments or solutions from
highly accurate numerical tests;

Figure 1.1 shows the connections between some essential components of computer mod-
eling. From Figure 1.1 it is obvious to see that the forward UQ process always starts with
characterization of the input uncertainties, for example, the mean values, variances, Probability
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Fig. 1.1 Some essential parts of computer modeling (a non-exclusive list)

Density Functions (PDFs), upper and lower limits, etc. Unfortunately, such information is not
always readily available to the code users, which is termed the “lack of input uncertainty
information” issue. Previously in uncertainty, sensitivity and validation studies of nuclear
engineering, “expert opinion” or “user self-assessment” have been widely used, see reviews
in [150] [156] [155]. Such ad-hoc specifications of input uncertainty information have been
considered reasonable for a long time. However, in many cases they are subjective, unscientific
and lacks mathematical rigor. For example, researchers from different institutions may use
different choices for the same problem with the same code, resulting in inconsistencies. It is
also risky to heavily rely on “expert opinion” because the information we find from previous
literature may not always come from “experts”.

The “lack of input uncertainty information” issue necessitates the research on inverse UQ.
Inverse UQ, also referred to as inverse problem or parameter inference, is the process to de-
termine the uncertainties in input parameters that characterize the model or code given relevant
experimental measurements and code simulations. Inverse UQ seeks statistical descriptions of
the uncertain input model parameters that are consistent with the observed data.

The purpose of this thesis is to replace ad-hoc expert judgment of the statistical prop-
erties of input model parameters in nuclear reactor simulation. Bayesian analysis will be
used to establish the inverse UQ problems based on experimental data, with systematic
and rigorously derived surrogate models.

An early appearance of the term “inverse UQ” can be found in [103], in which it was also
termed “backward problem”. Some other researchers called it “inverse uncertainty propagation
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or adjoint method” [137]. According to Oberkampf and Trucano, “The backward problem
asks whether we can reduce the output uncertainty by updating the statistical model using
comparisons between computations and experiments” ([103], p. 256). Inverse UQ is known to
be conceptually and mathematically much more difficult than forward UQ.

1.1.2 The necessity to perform inverse UQ

Mathematical modeling and computer simulations are naturally affected by a relatively large
amount of uncertainty in the input data such as model coefficients, forcing terms, boundary
conditions, geometry, etc. As a consequence, confidence in modeling & simulation (M&S)
must be critically assessed which requires model V&V [102] [103].

The input data uncertainty can be included in the mathematical model adopting a proba-
bilistic setting. In this framework, enough information is required for a complete statistical
characterization of the physical system, and the input data is then modelled as random vari-
ables. Uncertainties must be quantified along with the simulation outputs to facilitate optimal
design and decision making, ensure robustness, performance or safety margins. UQ aims at
determining the effect of such input uncertainties on response QoIs and it plays a vital role in
the validation process.

M&S are naturally augmented by extensive uncertainty and sensitivity requirements in
areas where high efficiency and safety is of critical importance. For example, in nuclear reactor
system design where uncertainties must be quantified in order to prove that the investigated
design stays within acceptance criteria. In nuclear engineering, UQ and SA are used together to
demonstrate that important safety limits are respected with a high confidence level or to identify
the main sources of the uncertainties that have to be reduced in order to decrease response
variations to acceptable values.

The importance of UQ-supported M&S will continue to grow in the 21th century nuclear
engineering, which faces the increasingly stringent demand for risk-informed safety margin
characterization and plant performance optimization. This demand is intensified due to the fact
that the licensing of nuclear installations has shifted from conservative to Best Estimate plus
Uncertainty (BEPU) methodologies .

Historically in nuclear system design and assessment, the conservative approach has
been used to calculate the output response of a code using extreme (unfavorable) values of
input parameters. This approach quantifies reactor designs with a considerable margin to
assure its safety and avoid under-prediction of safety-relevant parameters (e.g. peak cladding
temperature (PCT)) by modeling the physical phenomena such that it always predicts the
worst-case scenario . Consequently, as shown in Figure 1.2 the conservative approach leads
to considerable inaccuracy in M&S. For example, it consistently over-estimates the PCT and
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hence under-predicts the time to cladding failure, damaging the economic performance of
nuclear systems.

Safety limit

Regulatory acceptance criterion

Real value

worst-case scenario

Actual
Safety
margin

BEPU

Conservative 
margin

BEPU 
margin

Fig. 1.2 Illustration of conservative and BEPU safety margins

In the 1980s, risk-based safety analysis strategy started to be embedded in the Code Scaling
Applicability and Uncertainty (CSAU), and Phenomena Identification and Ranking Table
(PIRT) concepts, which was accepted by the U.S. Nuclear Regulatory Commission (USNRC).
This strategy is commonly referred to as the BEPU methodology [27] [54] [148]. The goal of
BEPU methodologies aims to capture the physical phenomena as realistically as possible by
implementing a wide range of modeling options and increasingly precise calculation methods
to capture physical phenomena at a greater fidelity. According to the BEPU methodology,
uncertainties must be quantified in order to prove that the investigated design stays within
acceptance criteria.

Validation and thus forward and inverse UQ play a more significant role in nuclear engineer-
ing as we are always dealing with high-consequence systems. The decision-making process,
development of public policy and preparation of safety procedures all rely on reliable computer
codes that have undergone extensive validation process and proven to be of high credibility.
Given the limited work on inverse UQ among the nuclear community, we devote this thesis to
this topic, hoping to draw more attention into this area and raise the interest on these topics to a
higher level in our community.
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1.2 Inverse UQ vs. Calibration

Inverse UQ aims to quantify the uncertainty in input parameters such that the discrepancies
between code output and observed experimental data can be minimized. Such definition
looks very similar with calibration. In this subsection we would like to address the differences
between calibration and Inverse UQ. Calibration can be classified as deterministic and statistical
calibration [19] [136]. Deterministic calibration merely determines the point estimates of best-
fit input parameters such that the discrepancies between code output and observed experimental
data can be minimized. However, statistical calibration, sometimes referred to as Bayesian
calibration [71], probabilistic inversion [139] or Calibration Under Uncertainty (CUU)
[136], produces statistical descriptions like distributions. In this sense, inverse UQ is same
with Bayesian calibration and indeed they do share the same techniques. For example, both of
them employ the Bayesian inference theory [44] and explore the posterior PDF with Markov
Chain Monte Carlo (MCMC) sampling [50]. They both favour surrogate models when the
computational model is expensive. So what makes inverse UQ in the current study different
from Bayesian calibration?

0.5 1 1.5 2 2.5 3 3.5 4 4.5

X

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

Y

computer simulation
experimental data

Fig. 1.3 A simple case when calibration won’t improve the agreement between simulation and
measurement.

Inverse UQ only has very subtle differences with Bayesian calibration. Inverse UQ includes
some techniques that implements the Expectation-Maximization (E-M) algorithm [125] rather
than sampling of the posterior PDF, even though the former is not as widely applicable as the
latter. Bayesian calibration aims at reducing the difference between experiment and simulation,
while inverse UQ emphasizes quantifying the input uncertainties. When the model outputs agree
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very well with experimental data, we may conclude that no calibration is needed. However, the
inverse UQ is still useful because the underlying uncertainties in model input parameters have
to be quantified. Figure 1.3 illustrates such a case, when the differences between simulation
and measurement approximately follow Gaussian noise with a small variance. In that case,
calibration is unlikely to improve the agreement between simulation and observation. In
essence, in cases where there is no need to do Bayesian calibration, inverse UQ may still be
useful. We prefer the term inverse UQ to Bayesian calibration as it is in agreement with the
term forward UQ. And it is obvious that they are done in opposite directions.

The advantage of inverse UQ (or Bayesian calibration) over deterministic calibration and
“parameter tuning” is apparent. Firstly, information on QoIs from experiments is never suf-
ficiently accurate to allow inference of the “true” or “exact” values of the input parameters.
Instead, we can only hope to reduce our ignorance of the parameters by achieving less un-
certainties in them (the so-called uncertainty reduction). Secondly, it is highly possible that
various combinations of input parameters will yield simulations that have similar agreement
with the field data. Deterministic calibration, which relies on optimization techniques to select
best-fit values, may end up with getting only one of a set of equally well-fitting values. This is
especially true for over-parameterized models given limited data [139]. Thirdly, it is difficult
for deterministic calibration to quantify correlations among the estimates. Finally, The observed
data usually contains certain degree of uncertainty, which should be considered during the
inference process of calibration parameters.

1.3 Literature Survey for Inverse UQ

Very limited work has been one on the topic of inverse UQ in nuclear engineering, or even
calibration. Some representative examples will be discussed in the following. Most of them
are based on deterministic methods, few of them rely on Bayesian analysis. The application of
metamodels during inverse UQ only appears very recently in nuclear engineering.

One of the earlier work on inverse UQ1 was the “Circé method” presented in [28], which
was developed to quantify the uncertainties in the closure laws of Cathare 2 code. The Circé
method implemented the E-M algorithm in conjunction with the Maximum Likelihood Estimate
(MLE) method. This approach was later extended to a richer mathematical framework includes
Maximum a Posteriori (MAP) [125]. In [65], MLE, MAP and MCMC algorithms were used
to quantify the uncertainty of two physical models used in TRACE: subcooled boiling heat
transfer coefficient (HTC) and interfacial drag coefficient. However, the application of these

1Most of the mentioned previous work did not use the term “inverse UQ”. But according to our definition they
are equivalent to inverse UQ.
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methods are limited by several strong assumptions: (1) the relation between the QoI and the
input parameter was assumed to be linear; (2) the input parameters were assumed to follow a
normal distribution; (3) local sensitivity analysis was required to provide the necessary input
for MLE. Furthermore, the performance of this method appears to degenerate when the input
dimension increases.

Cacuci and Arslan [17] applied a predictive modeling procedure to reduce the uncertainties
in calibration parameters and time-dependent boundary conditions in the large-scale reactor
analysis code FLICA4 based on BFBT benchmark, yielding best-estimate predictions of axial
void fraction distributions. Bui and co-workers [14] [15] proposed the concept of “total
model-data integration” which is based on the theory of Bayesian calibration and a mechanism
to accommodate multiple data-streams and models. Such concept allows assimilation of
heterogeneous multivariate data in comprehensive calibration and validation of computer
models. This approach was demonstrated to the cases of subcooled boiling two-phase flow in
nuclear thermal-hydraulics (TH) analysis. Bachoc et al. [7] applied the Bayesian calibration
approach to the TH code FLICA 4 in a single-phase friction model. The model discrepancy is
modeled with Gaussian Process (GP). This work made inference of the model error for each
new potential experimental point, extrapolated from what had been learnt from the available
experimental data. The computer code predictive capability was reported to be improved based
on the tested case. In another work [142], Bayesian calibration was applied to calibrate the
reflowed model parameters in TRACE code. Furthermore, this work considered multivariate
time-dependent output and considered the model discrepancy term. However, no results for the
model discrepancy term were presented and its extrapolation to the validation and prediction
domain was not discussed.

GP emulator-based Bayesian calibration was also applied to fuel performance codes. Hig-
don et al. [62] used the full Bayesian approach to inversely quantify the uncertainties in four
tuning parameters of the FRAPCON code based on fission gas release data from 42 experiments.
The measurement uncertainty and the model discrepancy term were quantified simultaneously.
Kriging-based calibration was used to quantify the calibration parameters in the fission gas
behavior model of fuel performance code BISON [99] [166]. Single experiment was used in
[166] while multiple integral experiments were used in [99]. However, they only resulted in an
optimized set of fission gas behavior model parameters rather than posterior distributions.

Surrogate-based calibration was also used in other nuclear engineering applications other
than TH and fuel performance. Stripling et al. [133] developed a method for calibration and data
assimilation using the Bayesian Multivariate Adaptive Regression Splines (MARS) emulator as
a surrogate for the computer code. Their method started with sampling of the uncertain input
space. The emulator was then used to assign weights to the samples which were applied to
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produce the posterior distributions of the inputs. This approach was applied to the calibration
of a Hyades 2D model of laser energy deposition in beryllium. The major difference of this
approach with MCMC-based Bayesian calibration is that, it generates samples beforehand and
the candidate acceptance routine in MCMC sampling is replaced with a weighting scheme.
Note that such approach does not include a model discrepancy term. Yurko et al. [167]
used the Function Factorization with Gaussian Process (FFGP) priors model to emulate the
behavior of computer codes. Calibration of a simple friction-factor example using a Method of
Manufactured Solution (MMS) with synthetic observational data was used to demonstrate the
key properties of this method. This approach is better suited for the emulation of complex time
series outputs.

The investigation of inverse problems has a longer history in other areas than nuclear
engineering, resulting in abundant collection of references, see reviews in [39] [134]. Previous
research on inverse UQ problems primarily lie in the context of source inversion and calibration
of model input parameters. Some representative examples are identification of source term and
deposition velocity in nuclear radiation release [71], source inversion in transient diffusion [88]
[89], source inversion in heat conduction and permeability estimation in flow through porous
media [82], recovery of the location and intensity of a radiation source in the urban area [129].
Other applications can be found for simply supported beam [4], charged particle accelerator
and spot welding experiment [63], shock physics, materials science, cosmology, and particle
physics [61], thermally decomposing foam [91], process-based forest models [139] and climate
model with terrestrial carbon cycle [144], etc.

1.4 Outline of the Thesis

This thesis is organized in the following wa. Chapter 2 will introduce the formulation of
inverse UQ problem under the Bayesian framework, full and modular Bayesian approaches,
an improved modular Bayesian approach and MCMC sampling techniques. Chapter 3 will
provide details of stochastic spectral methods. Chapter 4 will demonstrate how to use GP
to build emulators for deterministic computer models. We will demonstrate the established
inverse UQ methodology for several problems of different level of sophistication in Chapter 5 -
8. Chapter 9 summarizes this thesis and provides a discussion on future work.
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Chapter 2

INVERSE UQ FORMULATION

In this chapter, the general theory for inverse UQ within the Bayesian framework is introduced.
In Section 2.1, the formulation of the inverse UQ problem for a general computer model is
provided. In Section 2.2, the full Bayesian and modular Bayesian approaches are introduced,
compared and their limitations are explained. In Section 2.3, we propose an improved modular
Bayesian approach that is capable of accounting for model discrepancy, as well as avoiding the
extrapolation issue associated with full and modular Bayesian approaches. In Section 2.4, a few
adaptive MCMC sampling algorithms are presented to efficiently explore the posterior PDF.

2.1 Inverse UQ Problem Formulation

In this Section, We start with a classification of the inputs parameters. Then the “model
updating equation" is introduced that incorporates the model discrepancy term. Finally, the
Bayesian solution for the inverse UQ process is included.

2.1.1 Classification of input parameters

Consider a general computer model yM = yM (x,θθθ) where yM is the model output (also called
response or QoI) which can be either a scalar or vector that corresponds to multi-dimensional
outputs. The vector x = [x1,x2, . . . ,xr]

⊤ is the vector of design variables (also called system
inputs, control variables, or observable variables), and θθθ = [θ1,θ2, . . . ,θd]

⊤ is the vector of
calibration parameters (sometimes called ancillary variables). Examples of design variables
are initial conditions (ICs) and boundary conditions (BCs). Calibration parameters are specified
as inputs to the computer model but are unknown or not measurable when conducting the
physical experiments. In this work we use a broad definition of calibration parameters similar
to [144], which include:
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1. physical constants, such as physical model parameters like material properties and heat
transfer coefficients (HTC);

2. tuning parameters, which are needed to make the model perform well, like multiplicative
or additive factors. Tuning parameters are usually notional and of little or no physically
interpretable meaning.

3. context-specific constants, such as switch between different scenarios. For example,
switch between various flow regimes in nuclear reactor system thermal-hydraulics analy-
sis.

Design or 

controllable variables

Initial condition

Computer model

x

M M( , )y y x θ

θ

Boundary condition

Calibration 

parameters

Physical constants 

Tuning parameters 

context-specific 

constants 

Multiplicative or additive factors 

Switch between scenarios 

Material properties, HTC, etc 

Pressure, heat flux, etc

Initial temperature, etc

Fig. 2.1 Classification of input parameters for a general computer model.

Figure 2.1 shows the classification of input parameters for a general computer model. We
would like to point out a few distinctions between x and θθθ as it is important to avoid the
confusions before inverse UQ:

1. Design variables are usually required by both computer simulation and physical experi-
mentation, while calibration parameters are only needed by the former.

2. Design variables usually have clear and unambiguous physical meaning, while calibration
parameters may have a physical meaning in nature or be purely numerical.

3. Design variables are used to describe scenarios/experiments that have been observed or
to be performed, while the calibration parameters are assumed to have “real" or “true"
values that remain unchanged across all scenarios of interest [19].

4. Design variables are usually assumed to be known or at least observable during ex-
perimentation. They can also subject to uncertainties due to “variability", which are
assumed to be reported along with the benchmark. Calibration parameters, however, have
unknown uncertainties and are usually characterized by prior or posterior distributions
representing epistemic uncertainty rather than variability.
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5. The distinction between x and θθθ is not important for many purposes like forward UQ
and sensitivity analysis. But in the context of inverse UQ, calibration parameters are the
only targets.

It has to be noted that some different definitions or classifications on models inputs have
appeared in previous work on calibration, validation or model updating. In the work of Camp-
bell [19], “inputs” and “parameters” are used to represent design variables x and calibration
parameters θθθ respectively. However, this can easily cause confusion for the readers. Therefore,
we assume no difference between “input", “variable” and “parameter” and will use “design”
and “calibration” in front of these terms to explicitly refer to x and θθθ . In the work of Kennedy
and O’Hagan [71], design variables x are also called “variable inputs". We referred the readers
to their work for a more complete taxonomy of the uncertainties involved in computer models.

2.1.2 Model updating equation

We use “experiment”, “observation” and “measurement” interchangeably in this work, assuming
no difference between them and also use the terms “physical” or “field” in front of them in
order to be consistent with the open literature. The connections between computer model
simulation, reality and experiments are illustrated in Figure 2.2. Given an experimental
condition characterized by design variables x, to learn about the reality or true value of the
QoIs yR(x), we run the computer model to get yM(x,θθθ ∗). We use θθθ

∗ to represent the “best” or
“true1” but unknown values for the calibration parameters, the learning of which is the goal of
inverse UQ process.

Computer model 

prediction
Reality

Experimental 

condition

x M( , )y x θ ( ) x E( )y xR( )y x ε

Experimental 

data

Model discrepancy Measurement error

Fig. 2.2 The connections between computer model prediction, reality and experimental data.

Because computer models are always reduced rep 2.2resentations of the reality, we introduce
the term δ (x) to represent the discrepancy between computer simulation and reality. δ (x) is the
model uncertainty, also called model discrepancy, model inadequacy or model bias/error

1By “best” we mean that the model run at θθθ
∗ gives the most accurate prediction. However, it has to be noted

that the “best” value may be different from the “real” value. θθθ
∗ is the “best” value only in the sense of most

accurately representing the measurement data. Due to model discrepancy, model prediction may not agree well
with reality when the model runs at the “real” value. However, since the “real” value can never be learnt, by
convention the “best” value and “real” value are treated as the same.
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[4] [13] [71]. Model discrepancy δ (x) is due to incomplete or inaccurate underlying physics,
numerical approximation errors, and/or other inaccuracies that would exist even if all the
parameters in the computer model were known. We now have the following relation:

yR(x) = yM (x,θθθ ∗)+δ (x) (2.1)

To learn the reality yR(x), we also perform experiments to get observation yE(x). In the
experimental process we will inevitably have measurement error/noise:

yE(x) = yR(x)+ εεε (2.2)

where εεε ∼ N (µµµ,ΣΣΣεεε) represents the measurement error. Note that there can be multiple
measurements and it is widely accepted to have homoscedastic experimental errors ΣΣΣεεε = σ2

ε I.
Also, µµµ = 0 is frequently used, assuming that the instrumentation has no systematic bias and
the mean value of the measurement is same with reality.

The model discrepancy term was first addressed in the seminal work of Kennedy and
O’Hagan [71]. It is important to consider model discrepancy δ (x) as otherwise we would have
an unrealistic level of confidence in the computer model predictions [13]. Equation 2.1 shows
that without δ (x) we will have “model = reality”, which is not reasonable and will cause “over-
fitting”. Over-fitting means that the calibration parameters are so over-calibrated according to
certain set of experiments that the computer code may perform poorly when applied to other
experiments. In the TRACE application we will demonstrate that the introduction of the model
discrepancy term into the methodology presented in Section 2.3 is capable of avoid over-fitting.
By combining Equations 2.1 and 2.2 we have:

yE(x) = yM (x,θθθ ∗)+δ (x)+ εεε (2.3)

Equation 2.3 is frequently referred to as “model updating formulation/equation” [4]. The
model updating equation will serve as the starting point of the inverse UQ process. In the work
of Kennedy and O’Hagan [71], they also used a similar equation. However, they assigned an
unknown regression parameter ρ along with the model output yM(x,θθθ ∗). In this work, we
choose not to use such a parameter. In the next subsection, we will use Bayesian inference and
model updating equation to formulate the posterior distributions for the “true” values θθθ

∗ of the
calibration parameters.
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2.1.3 Bayesian solution for inverse UQ problem

The inverse UQ process seeks input values that are most consistent with the measurement
data, the computer model and any prior beliefs gained through previous experiments or expert
judgment. The Bayesian inference theory [44] is used to find the posterior PDF of the “best”
input parameters θθθ

∗ which is defined as p
(
θθθ
∗|yE,yM), where yE and yM are the ensembles of

field observations and computer simulations respectively. According to the Bayesian theory we
have:

p
(
θθθ
∗|yE,yM)

∝ p
(
yE,yM|θθθ ∗) · p(θθθ ∗) (2.4)

where p(θθθ ∗) is the prior and p
(
yE,yM|θθθ ∗) is the likelihood function. In brief, prior and

posterior probabilities represent degrees of belief about possible values of θθθ
∗, before and after

observing the experimental data yE. Given a prior for θθθ
∗, the likelihood function measures the

probability of the observed data yE being drawn from it. Once we have a specification for the
likelihood function, finding the posterior PDF is essentially just an integral calculation which
can be done by using techniques like MCMC [50]. Analytical solutions of the posterior may
be also possible in rare conditions when the prior and likelihood are sufficiently simple. The
formulation of the likelihood function p

(
yE,yM|θθθ ∗) is a challenging task as we need proper

definitions for model discrepancy.
We have previously treated the measurement error εεε as i.i.d. zero-mean Gaussian noise,

whose variance is expected to be reported along with measurement data since the error rates
for most instrumentation are known. The model discrepancy δ (x) needs a proper formulation.
This is still an area of active research [79]. GP with uninformative prior on any parameters in
δ (x) is a popular choice [61] [63] [71] [144]. However, such formulation is usually problem
specific [144]. A more detailed and complete discussion of the model discrepancy term will be
presented in Section 2.2 where we introduce the modular Bayesian approach.

Besides a proper formulation, another important issue associated with model discrepancy
δ (x) is called the “identifiability” [23]. Identifiability answers the question that whether the
“true” value θθθ

∗ can theoretically be inferred based on the available measurement data, as it is
difficult to know how much of the difference between computer output and field experiments
should be attributed to the uncertainty of θθθ

∗, model discrepancy δ (x) and measurement error εεε

respectively. In other words, different combinations of uncertainties caused by θθθ
∗, δ (x) and εεε

can account for the same distinction between model prediction and field measurements, making
the “true” value θθθ

∗ not identifiable.
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Given the above discussion, εεε = yE(x)− yM (x,θθθ ∗)− δ (x) follows a multi-dimensional
Gaussian distribution. The posterior can be written as:

p
(
θθθ
∗|yE,yM)

∝ p(θθθ ∗) · 1√
|ΣΣΣ|

exp
[
−1

2
[
yE −yM −δ

]⊤
ΣΣΣ
−1 [yE −yM −δ

]]
(2.5)

If heteroscedastic experimental errors are assumed between different measurements or different
QoIs, we should use εεε ∼N (0,ΣΣΣεεε) where ΣΣΣεεε is the covariance matrix for measurement error.
The diagonal entries represent the variances for each error component while the off-diagonal
elements are their covariance. Note that ΣΣΣεεε is only part of the likelihood covariance matrix ΣΣΣ,
which includes other sources of uncertainties as shown in Figure 2.3.

Experiment uncertainty Measurement noise

Covariance of 

the likelihood

Model uncertainty

Model bias/discrepancy

Model inadequacy

Missing physics

Numerical approximations 

Code uncertainty

Interpolation uncertainty
Application of metamodels 

bias
Σ

expΣ

code
Σ

Σ

Fig. 2.3 Components of the covariance matrix of the likelihood function.

From Figure 2.3, We have:

ΣΣΣ = ΣΣΣexp +ΣΣΣbias +ΣΣΣcode (2.6)

where ΣΣΣexp = ΣΣΣεεε is the experimental uncertainty caused by measurement noise. The second
term ΣΣΣbias represents the model uncertainty due to, as we have discussed previously, incom-
plete or inaccurate underlying physics and numerical approximation errors. The third term
ΣΣΣcode is called code uncertainty, or interpolation uncertainty, because we do not know the
computer code outputs at every input, especially when the code is computationally prohibitive.
In this case, we might choose to use some kind of metamodels. For example, GP is a very good
choice for metamodels as it provide an estimation of the code uncertainty ΣΣΣcode.

However, in practical application is not always possible to include the model discrepancy
term in the analysis. In those cases we have to neglect δ (x), and the posterior in Figure 2.5
becomes Equation 2.7. Neglecting the model discrepancy will cause over-fitting as we have
commented before.

p
(
θθθ
∗|yE,yM)

∝ · p(θθθ ∗)√
|ΣΣΣexp +ΣΣΣcode|

exp
[
−1

2
[
yE −yM]⊤ (

ΣΣΣexp +ΣΣΣcode
)−1 [yE −yM]] (2.7)
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2.1.4 Motivation for using metamodels

The posterior PDF p
(
θθθ
∗|yE,yM) is the Bayesian solution to the inverse UQ problem. Posterior

PDF represents the uncertainty about θθθ
∗ informed by given experimental data. Various statis-

tical moments and probability densities can be computed as long as we manage to generate
samples that the follow posterior PDF p

(
θθθ
∗|yE,yM). The general idea is to generate samples

that follow a probability density which is approximately equal to the posterior PDF without
knowing the normalizing constant. In Section 2.4 we will introduce a few efficient adaptive
MCMC sampling techniques. The most important issue with MCMC sampling is that tens of
thousands of MCMC samples are usually required to sufficiently explore the posterior PDF,
which poses challenges for computationally prohibitive codes as each MCMC sample requires
a full model execution. This issue is frequently bypassed by using metamodels.

Metamodels are approximations of the input/output relation of a computer model. They are
also called surrogate models, response surfaces or emulators2 . They are built from a limited
number of runs of the full model at specially selected values of the random input parameters
(the so-called experimental design [119] [121]) and a learning algorithm. Metamodels usually
take much less computational time than the full model while maintaining the input/output
relation to a desirable accuracy. Once validated, metamodels can be used to perform uncertainty
and sensitivity analysis, validation, optimization, etc., for which the other available methods
can incur an excessive computational burden as they require hundreds or thousands of computer
model simulations.

A computer model is already a reduced representation or an abstraction of phenomena in
the real world. A metamodel is yet another approximation of a computer model, highlighting
properties of the model itself. Therefore, no real physics is considered during the construction
of a metamodel. Metamodels are widely used in Verification, Validation and Uncertainty
Quantification (VVUQ) and optimization study. However, when it comes to explain the real
world phenomena, the computer model should be used instead of the metamodel.

Typically examples of metamodels are low-order polynomial regression, Moving Least-
Squares (MLS), Radial Basis Functions (RBF), Artificial Neural Network (ANN), Support
Vector Machine (SVM), Gaussian Process (GP, also called Kriging), generalized Polynomial
Chaos Expansion (PCE), Sparse Grid Stochastic Collocation (SGSC), etc. See [38] [111] for
detailed reviews of metamodels. Previously, metamodels built with stochastic spectral methods
like PCE and SGSC [82] [87] [88] [89] [149] [150] [152] [156] [158] and GP emulators [7]

2The term “emulator” (as a comparison, the original or full model is called a “simulator”) is often used for
probabilistic response surfaces whose estimation at an untried input is a distribution rather than a point value.
Therefore an emulator is a statistical approximation of the simulator.
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[61] [63] [71] [91] [104] [139] [144] [153] [155] [166] [167] are especially popular and have
been widely used in Bayesian inference/calibration.

2.2 Full vs. Modular Bayesian Approach

In this section, we introduce the full and modular Bayesian approaches that have been used in
the literature for inverse UQ. The majority of their implementations follow the seminal work of
Kennedy and O’Hagan [71], hereafter referred to as the “KOH” method. The KOH method
became part of the later developed framework called Bayesian Analysis of Computer Code
Outputs (BACCO) [104]. Research in DACE (Design and Analysis of Computer Experiments)
[119] [121] was the forerunner of BACCO. The BACCO approach uses GP to build emulators
for complex computer models, and the use these emulators to perform calibration, uncertainty
and sensitivity analysis.

Bayesian analysis simultaneously incorporate all relevant information and deals with all
uncertainties in the model. In full Bayesian approach, all the unknown hyperparameters
in the GP emulators for both the computer model and its discrepancy term are treated in
a similar way as the calibration parameters. They are assigned priors, enter the likelihood
function and eventually their posteriors are solved simultaneously. Full Bayesian analysis
results in an extremely complicated function for the posterior of calibration parameters and
GP hyperparameters. Then the GP hyperparameters need to be integrated out from the joint
posterior to get marginal distributions of the calibration parameters [9]. However, in modular
Bayesian approach, the estimation of calibration parameters, GP hyperparameters for computer
model and model discrepancy are all separated. The details of both approaches will be described
in the following subsections. We will use θθθ instead of θθθ

∗ to represent the target of inverse UQ.
In Bayesian analysis, all unknowns are considered random. Therefore, we drop the superscript
for notational simplicity.

2.2.1 Full Bayesian approach

The key components of full Bayesian approach are illustrated in Figure 2.4. Given experimental
observations, a test source allocation (TSA) algorithm is first implemented to separate them for
inverse UQ yE(xIUQ) and validation yE(xVAL) because the same data should not be used for
both purposes. Next two GP emulators are built for the computer model and its discrepancy
term:

yM (x,θθθ)∼ GP
{(

fM (x,θθθ)
)⊤

βββ
M,σ2

MRM
〈(

x(i),θθθ (i)
)
,
(

x( j),θθθ ( j)
)〉}

(2.8)
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δ (x)∼ GP

{(
fδ (x)

)⊤
βββ

δ ,σ2
δ
Rδ

〈
x(i),x( j)

〉}
(2.9)

Note that the first GP emulator takes both x and θθθ as inputs, while the second GP emulator
only takes x. The basis functions fM and fδ are chosen by the user. The hyperparameters for the
computer model ΨΨΨ

M =
{

βββ
M,σ2

M,θθθ M,pM
}

and the model discrepancy ΨΨΨ
δ =

{
βββ

δ ,σ2
δ
,θθθ δ ,pδ

}
are unknown. Replacing yM (x,θθθ) and δ (x) in the “model updating equation” we get:

yE = GP
{(

fM)⊤
βββ

M,σ2
MRM

}
+GP

{(
fδ

)⊤
βββ

δ ,σ2
δ
Rδ

}
+ εεε (2.10)
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Fig. 2.4 Workflow of the full Bayesian approach.

Following the KOH approach, the computer model yM (x,θθθ), model discrepancy δ (x)
and measurement error εεε are assumed independent. Such assumption has been adopted in all
the previous work on Bayesian calibration and significantly simplifies the calculations. Full
Bayesian approach then proceeds with assigning prior distributions for all the unknowns shown
below: {

θθθ ,ΨΨΨM,ΨΨΨδ ,σ2
ε

}
=
{

θθθ ,βββ M,σ2
M,θθθ M,pM,βββ δ ,σ2

δ
,θθθ δ ,pδ ,σ2

ε

}
(2.11)
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Note that the measurement error σ2
ε is sometimes treated as known [144] because the

error rates for most instrumentation tools are known. We assume that it will usually be
reported with the benchmark data. If the σ2

ε is unknown, it can be learnt simultaneously
with the calibration parameters and GP hyperparameters [10] [63] [61]. Furthermore, upon
selection of a correlation kernel, the roughness parameters pM and pδ are usually known.
However, even after assuming they are known, we are still left with many parameters to
evaluate

{
θθθ ,ΨΨΨM,ΨΨΨδ

}
=
{

θθθ ,βββ M,σ2
M,θθθ M,βββ δ ,σ2

δ
,θθθ δ
}

. There is no guidance for the selection
of proper prior distributions for them, especially the hyperparameters. Previously, researchers
have been using distributions like normal, gamma, beta and inverse gamma [24][25][31], but
there are no explanations about how the distribution parameters were chosen.

Next a joint likelihood function is formulated for all the unknowns {θθθ ,ΨΨΨM,ΨΨΨδ}. Given
the inverse UQ measurement data yE(xIUQ) and computer model training samples yM(xIUQ,ΘΘΘ)

where Θ represents the training domain, MCMC sampling can be used to generate samples
for the unknowns. In this way, full Bayesian analysis achieves the uncertainties in calibration
parameters and model discrepancy term simultaneously. Marginalization is required to integrate
out {ΨΨΨ

M,ΨΨΨδ} to get θθθ
Posterior. After inverse UQ, θθθ

Posterior can be directly used for validation
and prediction. Validation and prediction are not the focus in this thesis, they are mentioned
only to complete the introduction of the workflow of full Bayesian analysis shown in Figure
2.4.

2.2.2 Modular Bayesian approach

Modularization is a technique to separate various modules in Bayesian analysis to prevent
suspect information belonging to one part from overly influencing another part [80]. The
most important difference of modular Bayesian with full Bayesian is that the former separates
the estimation of {θθθ ,ΨΨΨM,ΨΨΨδ}. Modular Bayesian uses plausible estimates (e.g. MLEs) of
{ΨΨΨ

M,ΨΨΨδ} and treat them as if they were the true values of {ΨΨΨ
M,ΨΨΨδ} [71].

Figure 2.5 shows the detailed flowchart of the modular Bayesian approach, which includes
the following major distinctions with full Bayesian approach:

1. Module 1 replaces the computer code yM with a GP emulator, whose hyperparameters
ΨΨΨ

M is estimated based on the computational results at the training sites yM (xIUQ,ΘΘΘ
)
.

The evaluation process of ΨΨΨ
M is straightforward using the methods described in Chapter

4, such as MLE.

2. Module 2 fits a second GP emulator to the model discrepancy term δ (x). The hyperpa-
rameters ΨΨΨ

δ are estimated given the GP emulator from module 1, the measurement data
yE(xIUQ) and the prior of the calibration parameters θθθ

Prior. Starting from the “model
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Fig. 2.5 Workflow of the modular Bayesian approach.

updating equation”, one forms a likelihood function for yE (xIUQ) based on module 1
and θθθ

Prior and then evaluates the MLEs of ΨΨΨ
δ . Closed forms of the likelihood function

is possible using Gaussian correlation kernel, constant basis functions and normal [71]
or uniform [4] priors for θθθ

Prior.

3. Once module 1 and module 2 become known, module 3 achieves the posterior θθθ
Posterior

from the likelihood function through MCMC sampling. Note that unlike the full Bayesian
approach in which marginalization is required, here θθθ

Posterior is conditioned on the
estimations of the GP hyperparameters {ΨΨΨ

M,ΨΨΨδ}. However, this is also a limitation
of the modular Bayesian approach, because the uncertainties in {ΨΨΨ

M,ΨΨΨδ} are not
considered as they have been fixed at plausible estimates. This is why such a method is
only “empirical or partial” Bayesian [10], as opposed to “full” Bayesian.

Note that the definition of modules is not unanimous in literature. For example, [80] chose
the (1) computer model yM, (2) the model discrepancy δ and (3) the field data yE as three
modules, while in [4], the (1) computer model yM, (2) model discrepancy δ , (3) posterior
θθθ

Posterior and (4) prediction of yE and δ were treated as four modules. In the current work we
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use definition similar to [4] as shown in Figure 2.5. However, we do not treat evaluation of yE

and δ in the prediction domain as a fourth module because extrapolated prediction is not a part
of inverse UQ.

2.2.3 Comparison of full vs modular Bayesian approaches

Full Bayesian analysis is theoretically superior, but computationally intractable. There have
been a lot of research using the modular Bayesian approach in literature [4] [10] [13] [57]
[80] [144], while the work using full Bayesian is quite limited [61] [62] [63]. Full Bayesian
requires that the user have reasonably good priors for the GP hyperparameters {ΨΨΨ

M,ΨΨΨδ}. This
is very difficult in practice especially for the model discrepancy term. The joint posterior for
all the unknowns shown in Equation 2.11 can be extremely complicated and have very high
dimension, posing challenges for MCMC sampling and subsequent marginalization.

Full Bayesian analysis takes into account the uncertainties in the hyperparameters. How-
ever, for the calibration-validation-prediction process, the uncertainties in θθθ and ΨΨΨ

δ tend to
overwhelm the uncertainties in computer model approximations (i.e. ΨΨΨ

M ). It was found that
using MLE plug-in typically yields much the same answers as the full Bayesian. Therefore,
researchers recommended using the partial/empirical Bayesian rather than full Bayesian [10].

Liu et al. [80] also mentioned some other advantages of modularization. For example,
separating good modules from suspect modules can avoid information “contamination”. Suspect
modules are modules that are unknown or improperly specified (especially when there is no
better choice). Moreover, modularization reduces the computational complexity by reasonable
simplification. It also makes scientific understanding and development more convenient.
Mixing and convergence of MCMC sampling can be improved by modularization. Finally,
modularization also helps alleviate the issue of confounding or lack of identifiability.

2.2.4 Discussions on the modeling of model discrepancy term

In Section 2.1, we have briefly talked about the model discrepancy term δ (x). Model discrep-
ancy accounts for inadequacies that are caused by missing or insufficient physics and numerical
approximations built into the simulation model, which leads to systematic differences between
the simulation model and the reality [61]. Ignoring model discrepancy during inverse UQ will
cause over-fitting and subsequent prediction errors. However, due to the inherent difficulty
in the mathematical description of the model discrepancy or limited amount of data, in many
previous work on Bayesian calibration it is simply ignored [82] [91] [89] [87] [129] [139]
[150] [156] [155]. Some representative work that consider model discrepancy are [4] [61] [62]
[63] [71] [144].
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The primary challenge in dealing with model discrepancy is that there are no direct obser-
vations from the discrepancy. Another difficulty is that model discrepancy is almost always
seriously “confounded” with other model unknowns such as the calibration parameters [80].
All of the previous research follows the full or modular Bayesian approaches described above
to provide mathematical descriptions of the model discrepancy term. Such a choice has been
proven successful in many applications as shown in the aforementioned publications. How-
ever, there is an important issue associated with such a method: extrapolation of the model
discrepancy to validation and prediction domains.

As shown in Figure 2.4 and 2.5, after learning about θθθ
Posterior, the realities in the validation

and prediction domain are described as:

yR
(

xVAL
)
= yM

(
xVAL,θθθ Posterior

)
+δ

(
xVAL

)
(2.12)

yR (xPRED)= yM
(

xPRED,θθθ Posterior
)
+δ

(
xPRED) (2.13)

where xVAL and xPRED stand for the designs variables in the validation and prediction domain
respectively. The first term on the right yM can be either the computer model itself or the GP
emulator, while the second term δ is always the GP emulator. Because the information acquired
about the model discrepancy hyperparameters (ΨΨΨδ )Posterior or (ΨΨΨδ )Estimation is based on model
simulation yM(xIUQ,ΘΘΘ) and measurement data yE(xIUQ) on the inverse UQ domain, Equation
2.12 and 2.13 involve extrapolation of such information to the validation and prediction domain.

Inverse UQ with both full and modular Bayesian are fully data-driven. Therefore, these
methods should be used with great caution. Extrapolation outside the range of the inverse
UQ domain is questionable. As discussed in [61], the quality of such extrapolation largely
depends on the reliability of the model discrepancy term. What we have learnt about the model
discrepancy at the inverse UQ domain may not be applicable to the validation and prediction
domain. See [63] for an example in which the model discrepancy is large in magnitude, but the
posterior distribution is similar with that obtained when the model discrepancy is zero.

Besides the reliability of the model discrepancy term, extrapolation using GP emulator is
inherently dangerous. GP emulator usually has large mean prediction errors and significant vari-
ance outside of the training domain. Even though the full and modular Bayesian methodologies
outlined above have been accepted for a long time, we recommend making some improvement
of the description of the model discrepancy term to avoid extrapolation.
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2.3 Improved Modular Bayesian Approach

An improved modular Bayesian approach is developed and described in this section. It is much
more straightforward to understand and apply, and it is capable of avoiding the issue of extrapo-
lation of the GP emulators. We also use a GP emulator to represent the model discrepancy term

δ (x)∼ GP

{(
fδ

)⊤
βββ

δ ,σ2
δ
Rδ

}
. To solve for the GP hyperparameters ΨΨΨ

δ =
{

βββ
δ ,σ2

δ
,θθθ δ ,pδ

}
we need training data whose input is x and output is the computer code simulation error (recall
that model discrepancy is also called model error/bias/uncertainty/inadequacy). Because there
is no direct observations of δ (x), we need substitutes of such “observation data for simulation
error”. Three intuitively natural modularization schemes were compared in [80] to fix ΨΨΨ

δ .

1. Modular approach 1: Treat the differences between experimental observations and model
simulations (run at prior means or nominal values of calibration parameters, but using the
same design variables with measurement data) as the realizations of model discrepancy.
Then ΨΨΨ

δ can be estimated with methods like MLE and fixed.

2. Modular approach 2: Sample the calibration parameters from their prior distributions.
Then sample ΨΨΨ

δ from their posteriors, which is generated conditioning on the samples
of θθθ

Prior. The posterior sample mean will be used as the fixed values of ΨΨΨ
δ .

3. Modular approach 3: Initially assume the model is perfect (model discrepancy is zero).
Then solve for θθθ

Posterior based on this assumption. The resulting posterior will be used as
a “new” prior and proceed with modular approach 1.

Modular approach 1 was demonstrated to have the best performance for the simple test
problem in [80]. Actually such treatment has been used in other related research, for example
design-driven validation [20] and Bayesian validation [141]. In the examples of [141], it was
shown that the model discrepancy posterior using the modular Bayesian approach is same
as that obtained by fitting a single GP to yE −yM. Whether this conclusion applies to more
complicated real problem is unknown.

The revised modular Bayesian approach takes the modular approach 1 and its main compo-
nents are shown in Figure 2.6, which consists of the following steps:

1. Step 1: separate the measurement data for inverse UQ and validation:
This step is shown as black arrows in Figure 2.6. Instead of random selection, we use a
carefully designed an sequential algorithm for TSA, which will be discussed in Chapter
7. For now, we assume that the given tests have already been separated.

2. Step 2: mathematical description of the model discrepancy term δ (x):
This step is shown as green arrows in Figure 2.6. The computer code yM (x,θθθ) is first
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Fig. 2.6 Flowchart of the improved modular Bayesian approach

executed at the input settings of all the tests xIUQ ∪xVAL, with the calibration parameters
fixed at nominal values or prior mean values θθθ

0 which can be viewed as our current
best knowledge of θθθ . The resulting simulations are denoted as yM(xtest,θθθ 0). Then xVAL

and
{

yE(xVAL)−yM(xVAL,θθθ 0)
}

are used as training inputs and output respectively to

fit a GP emulator called GPbias. Evaluating GPbias at xIUQ results in an estimation of
the model discrepancy term δ

(
xIUQ), which will enter the likelihood function during

MCMC sampling.

3. Step 3: fit a GP emulator for the computer code:
This step is shown as purple arrows in Figure 2.6. Another GP emulator called GPcode is
fitted to replace the computer code during MCMC sampling. GPcode uses (xIUQ,θθθ Prior)

as training inputs and yM(xIUQ,θθθ Prior) as training outputs. GPcode needs to be built with
an experimental design of θθθ following the distributions of θθθ

Prior.
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4. Step 4: MCMC sampling:
This step is shown as red arrows in Figure 2.6. GPcode, δ

(
xIUQ) and yE (xIUQ) enters

the posterior PDF which is then explored with MCMC sampling to achieve θθθ
Posterior.

5. Step 5: validation of θθθ
Posterior:

This step is shown as light blue arrows in Figure 2.6. Computer code simulations based
on θθθ

Posterior and yE (xVAL) are compared for validation with certain validation metrics.

Note that in the validation domain (and future prediction domain as well), we use yR (xVAL)=
yM(xVAL,θθθ Posterior) instead of yR(xVAL) = yM(xVAL,θθθ Posterior)+δ (xVAL) to avoid extrapola-
tion. Because of the specially designed TSA process in step 1 (see details Chapter 7) and
treatment of model discrepancy in step 2, θθθ

Posterior is informed by the experimental data in the
validation tests so that the model discrepancy term δ (xVAL) is no longer needed to correct the
model simulation yM(xVAL,θθθ Posterior). Such treatment of model discrepancy term is novel and
in Chapter 7, we will demonstrate that it is capable of avoid over-fitting, even when only partial
of the QoIs are used for inverse UQ.

2.4 Markov Chain Monte Carlo Sampling

2.4.1 General Introduction

MCMC [45] methods are commonly used to numerically approximate integrals of the following
form:

I( f ) =
∫

f (x)π(x)dx (2.14)

where π(x) is the target probability density function, and the objective is to produce a set of
random samples (xi)

N
i=1 from the target distribution π and approximate the integral of I( f )

by 1
N ∑

N
i=1 f (xi). (xi)

N
i=1 is called a Markov chain, with π defined as the unique invariant

distribution.
MCMC is widely used to sample from complicated distributions without explicitly knowing

the normalizing constant. The most popular algorithm is the Metropolis-Hastings (MH)
algorithm [45], which defines a family of possible transitions from one Markov chain state to
the next from a proposal distribution (e.g. Gaussian). Algorithm 0 shows a popular choice of
MH algorithm in which the Symmetric Random Walk Metropolis algorithm (SRWM) is
used to produce transitions [3].
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Algorithm 0 Metropolis-Hastings (MH) algorithm
1: Initialize x0
2: Choose appropriate proposal distribution g(x∗|x)
3: for iteration i+1, i ≥ 0, given xi do
4: Proposal a sample ξ ∼ g(ξ |xi)

5: Calculate the acceptance probability α = min
[
1, π(ξ )·g(xi|ξ )

π(xi)·g(ξ |xi)

]
6: Sample η ∼ uniform(0,1)
7: if α ≥ η then
8: Accept the proposed sample, xi+1 = ξ

9: else Reject the proposed sample, stay at the current location, xi+1 = xi
10: end if
11: end for

2.4.2 Adaptive MCMC Sampling

Although the symmetric random-walk MH algorithm is simple in design and widely applicable
(even in high-dimension problems), the convergence is usually very slow and special attention is
required to adjust the acceptance rate. Adaptive methods are useful in tuning critical parameters
that are necessary for efficient mixing. One approach for an adaptive method is to optimally
adjust the variance of transition probability, however without care the adaptive process will
lose its ergodic properties (consistency of estimates and convergence to the target distribution).
Therefore, rules must be defined to provide acceptable approximate sampling methods of
optimizing the transition probability to ensure that ergodicity is maintained asymptotically.

Andrieu and Thoms [3] outlined several algorithms that incrementally implement adaptive
MCMC techniques, and in the current study three adaptive algorithms have been implemented
to examine their practical capabilities.

The first algorithm, called the “Adaptive Metropolis (AM)” algorithm, uses the classical
multivariate Gaussian as the proposal distribution and recursively updates the distribution
covariance to converge to the optimal choice of the true covariance of the target distribution. In
this algorithm, the covariance matrix of the proposal distribution is scaled by λ . It is shown
[45] that the “optimal” covariance matrix for the normal symmetric random walk MH algorithm
is 2.382

Nx
·Σπ where Σπ is the true covariance matrix of the target distribution π and Nx is the

dimension of the input space. This value is later used as the “optimal scaling factor” in AM
algorithm by [55]. In this way, the true covariance matrix Σπ is learned “on-the-fly”. Note that
in Algorithm 1 the value of the scaling factor is not updated.

The second algorithm (“Rao-Blackwellized AM”) [3] takes the Rao-Blackwell approach
and adjusts the estimator to update the covariance matrix depending on weighted averages
using the current acceptance probability. The adjusted recursions for the mean and variance are
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Algorithm 1 Adaptive Metropolis (AM) algorithm
1: Initialize x0, µ0 and Σ0
2: for iteration i+1, i ≥ 0, given xi, µi and Σi do
3: Proposal a sample ξ ∼N (xi,λΣi)
4: Accept the proposed sample with probability α(xi,ξ ), xi+1 = ξ ; otherwise keep the

current sample, xi+1 = xi
5: Update:

µi+1 = µi + γi+1(xi+1 −µi)

Σi+1 = Σi + γi+1 [(xi+1 −µi)(xi+1 −µi)
⊺−Σi]

6: end for

explicitly defined as:

µi+1 = µi + γi+1 [α(xi,ξ ) · (ξ −µi)+(1−α(xi,ξ )) · (xi −µi)] (2.15)

Σi+1 = Σi + γi+1 [α(xi,ξ ) · (ξ −µi)(ξ −µi)
⊺+

(1−α(xi,ξ )) · (xi+1 −µi)(xi+1 −µi)
⊺−Σi] (2.16)

We define the short notation:

xi+1 = α(xi,ξ ) ·ξ +(1−α(xi,ξ )) · xi (2.17)

(xi+1 −µi)(xi+1 −µi)⊺ = α(xi,ξ ) · (ξ −µi)(ξ −µi)
⊺+

(1−α(xi,ξ )) · (xi+1 −µi)(xi+1 −µi)
⊺ (2.18)

The steps for Rao-Blackwellized AM is shown in Algorithm 2.

Algorithm 2 Rao-Blackwellized AM algorithm
1: Initialize x0, µ0 and Σ0
2: for iteration i+1, i ≥ 0, given xi, µi and Σi do
3: Proposal a sample ξ ∼N (xi,λΣi)
4: Accept the proposed sample with probability α(xi,ξ ), xi+1 = ξ ; otherwise keep the

current sample, xi+1 = xi
5: Update:

µi+1 = µi + γi+1(xi+1 −µi)

Σi+1 = Σi + γi+1

[
(xi+1 −µi)(xi+1 −µi)⊺−Σi

]
6: end for

The third algorithm (“AM with global adaptive scaling”) [3] attempts to adjust the scaling
of proposal covariance matrix to adjust the sampling to a target acceptance probability, rather
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than using a pre-set constant for the scaling factor . Specifically, the log of the scaling
parameter is adjusted recursively to the predefined “optimal acceptance rate” αopt (e.g. 0.234 is
recommended) [55]. This allows the algorithm to control its rate of exploration by adjusting the
scale if the acceptance rate is lower or higher than the optimum acceptance rate. The advantage
of this algorithm is that one might expect a more rapid exploration of the target distribution
following a poor initialization.

Then Algorithm 3 consists of the following steps:

Algorithm 3 AM algorithm with global adaptive scaling
1: Initialize x0, µ0 and Σ0
2: for iteration i+1, i ≥ 0, given xi, µi and Σi do
3: Proposal a sample ξ ∼N (xi,λΣi)
4: Accept the proposed sample with probability α(xi,ξ ), xi+1 = ξ ; otherwise keep the

current sample, xi+1 = xi
5: Update:

log(λi+1) = log(λi)+ γi+1
(
α(xi,ξ )−α

opt)
µi+1 = µi + γi+1(xi+1 −µi)

Σi+1 = Σi + γi+1

[
(xi+1 −µi)(xi+1 −µi)⊺−Σi

]
6: end for

There are many other adaptive methods available, such as “Component-wise AM” [3].
Component-wise adaption addresses the issue that adaptive scaling may not be efficient in all
directions simultaneously, and strategizes to use “timid” moves to initiate sampling. However,
in our experience these adaptive methods will not capture the correlation between different
input parameters well enough, since the chains for highly correlated parameters usually do not
mix well. Another issue is that most component-wise adaptive algorithms require posterior
evaluation for every dimension when a new sample is proposed. In this case, the algorithm
will be at least times more expensive than Algorithms 1, 2 and 3 listed above. Therefore,
component-wise adaptive method is not considered appropriate for this study.

2.5 Numerical Studies

In this thesis, we will use four examples to test the developed approach for inverse UQ.

1. Chapter 5: a simplified nuclear reactor simulation model, which is the Point Reactor
Kinetics Equation (PRKE) coupled with lumped parameter TH feedback model based on
synthetic experimental data, with Polynomial Chaos Expansion (PCE) surrogate model.
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2. Chapter 6: best-estimate system TH code TRACE physical model parameters based on
OECD/NRC BWR Full-size Fine-Mesh Bundle Tests (BFBT) benchmark steady-state
void fraction data, with Sparse Grid Stochastic Collocation (SGSC) surrogate model.

3. Chapter 7: the same problem with Chapter 6 but with GP emulator.

4. Chapter 8: fuel performance code BISON Fission Gas Release (FGR) model based on
Risø-AN3 on-line time-dependent measurement data, with GP emulator.

Note that because of the data available, only the application in Chapter 7 fully follow the im-
proved modular Bayesian approach developed in Section 2.3 and considers model discrepancy.
Application in Chapter 5 and 6 aim to demonstrate the power of stochastic spectral surrogate
models (PCE and SC). The example in Chapter 8 deals with the case when time series data
is available and good agreement cannot be achieved with any combinations of calibration
parameters because the shapes of simulation and data have drastic difference.
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Chapter 3

STOCHASTIC SPECTRAL METHODS

In this chapter, details of the stochastic spectral techniques will be presented. We introduce the
generalized Polynomial Chaos Expansion (PCE) and Stochastic Collocation (SC), as well as
the methods to solve for generalized PCE and Sparse Grid Stochastic Collocation (SC).

3.1 Overview of Stochastic Spectral Techniques and Their
Applications

While an extraordinary progress was made during the past decade in developing advanced con-
cepts, methods and tools for uncertainty and sensitivity analysis, there remains a significant gap
in bringing these advances to nuclear engineering practice, particularly in the areas of nuclear
TH, fuel performance and multi-physics simulation. In recent years a growing emphasis has
been given to stochastic spectral methods based on generalized Polynomial Chaos Expansion
(PCE) and Stochastic Collocation (SC) methods due to their relatively simple application and
excellent accuracy, efficiency and convergence. Stochastic spectral techniques approximate
stochastic processes involved in the mathematical model by means of a spectral expansion in
the random space. Figure 3.1 shows the hierarchy of stochastic spectral methods.

3.1.1 Generalized Polynomials Chaos Expansion

PCE is a method that expands the model outputs with respect to orthogonal polynomials
in the random model inputs and then projects the expansion onto the space spanned by the
same orthogonal polynomials [78] [161]. This stochastic projection provides a compact and
convenient representation of the model output variability with respect to the random inputs.
The idea for this spectral representation was first introduced by Wiener to represent Gaussian
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processes with Hermite polynomials [143]. It was later extended by Xiu and Karniadakis
[164] so that other types of stochastic processes could also be addressed. The Wiener-Askey
scheme [164] consists of a family of orthogonal polynomials which can be used to represent
different family of stochastic processes. For example, Hermite polynomials are best suited
to represent Gaussian random variables, Legendre polynomials have better performance for
uniform distributions. The generalization of Wiener’s original “Homogeneous Chaos” theory
[143] results in the generalized PCE technique that is widely used today.

Ghanem and co-workers first applied generalized PCE for UQ of solid mechanics problems
[48] [49]. Later, generalized PC found application in model uncertainty in diffusion [163] and
fluid flow [97] [165]. Error bounds and convergence studies [29] [34] have shown that these
methods exhibit fast convergence rates with increasing orders of expansion. The convergence
studies assume that the solution is sufficiently smooth in the random space.

Applying stochastic spectral techniques means determining the spectral expansion coef-
ficients. These techniques can be categorized as intrusive and non-intrusive [30] [31] [32],
depending on whether it requires modification of the original model (e.g. source code) for its
application. The PCE method for the forward uncertainty propagation involves the substitution
of uncertain variables in the governing equations with their polynomial expansions. In general,
an intrusive approach will calculate the unknown polynomial coefficients by projecting the
resulting equations onto a basis functions (orthogonal polynomials) for different modes (ex-
pansion coefficients). With intrusive approaches (mainly referred to as Galerkin projection), a
new mathematical problem is defined after the Galerkin projection, where the solution is the
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set of expansion coefficients. A new solver is required and this may be prohibitive for many
complex computational problems where modification of an existing code is too difficult and
time consuming. Depending on the dimension of the original problem uncertain inputs and the
order of PCE, the new mathematical system can be significantly larger than the original one.

Generalized PCE also suffers from the so-called Curse of dimensionality which means
that the number of simulations required increases exponentially with the dimensions of com-
puter models. This makes generalized PCE most applicable for low-to-moderate-dimensional
problems. Despite these difficulties, PCE based on Galerkin projection approach exhibit several
substantial advantages over MC sampling and perturbation methods. Spectral convergence
rates are achieved for most conditions [164]. Furthermore, in cases where non-linearities and
large uncertainties in random variables are a problem for perturbation methods, PCE can deal
with these problems much easier.

On the other hand, non-intrusive techniques use the original model as a “black box” and the
calculation of PCE coefficients for the outputs is based on a set of model response evaluations.
Non-intrusive methods may be categorized as either Non-Intrusive Spectral Projection (NISP)
methods, or regression-based approach [31] [32]. Numerical integration methods may be
further categorized as either tensor product quadrature or sparse grid Smolyak cubature, which
can be sub-divided further as either isotropic or anisotropic.

3.1.2 Stochastic Collocation

SC [5] [160] [162] is another stochastic expansion technique that is closely related to PCE.
Whereas generalized PCE estimates coefficients for known orthogonal polynomial basis func-
tions, SC forms Lagrange interpolation functions for known coefficients [30] [31]. The SC
expansion is formed as a sum of a set of multidimensional Lagrange interpolation polynomials,
one polynomial per collocation point. Since these polynomials have the feature of being equal
to 1 at their particular collocation point and 0 at all other points, the coefficients of the expansion
are just the response values at each of the collocation points.

The implementation of SC methods is straight-forward as it only requires solution of the
corresponding deterministic problem at each interpolation point, similar to MC sampling
method at each sampling point. Such property makes SC methods good alternative to MC
sampling and intrusive Galerkin-based PCE. The core issue is the construction of a set of
interpolation points, and it is non-trivial in multidimensional random space. For such cases,
point sets based on tensor products of one-dimensional quadrature points are not suitable, as
the number of points grows too fast with increasing dimensions. This difficulty is alleviated by
the application of sparse grid interpolation method based on the Smolyak algorithm [8] [46]
[47] [75] [127]. Further improvements include the application of isotropic, anisotropic and
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adaptive sparse grids [22] [23] [40] [101] [135], which can reduce the number of interpolation
nodes by several orders of magnitude for high-dimensional problems.

In essence, stochastic spectral methods approximate a model output as a polynomial
function of random input parameters. Such a function of the output constitutes a meta-model of
the original problem and can be used to describe stochastic nature of the output in terms of its
mean, variance, covariance, distribution, etc..

3.2 Polynomial Chaos Expansion

3.2.1 Properties of Orthogonal Polynomials

Suppose we have a system of polynomials {Qn(x),n ∈ N} where Qn(x) is a polynomial of
exact degree n and N = {0,1,2, . . .}. This system of polynomials is called orthogonal with
respect to some real positive measure φ(x) if the following orthogonality relation is satisfied:∫

S
Qn(x)Qm(x)dφ(x) = h2

nδmn, m,n ∈ N (3.1)

where S is the support of the measure φ(x) and hn’s are non-zero constants. The system is
called orthonormal if hn = 1. δmn is the Kronecker delta. The measure φ(x) usually has a
density of w(x) for continuous case or weights wi at points xi in the discrete case.

Equation 3.1 can be written as:∫
S

Qn(x)Qm(x)w(x)dx = h2
nδmn, m,n ∈ N (3.2)

in the continuous case, or

M

∑
i=0

Qn(xi)Qm(xi)wi = h2
nδmn, m,n ∈ N (3.3)

for discrete case.
The density function w(x) or weights wi are also commonly referred to as the weighting

function. In the next section, it will be shown that the weighting functions for some orthogonal
polynomials are similar to certain probability functions. For example, the weighting function
for the Hermite polynomials differs with the PDF formula of the Gaussian distribution by only a
constant. This fact plays an important role in representing stochastic processes with orthogonal
polynomials.
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3.2.2 The Homogeneous Chaos

The original polynomial chaos, also called the homogeneous chaos, was first introduced
by Wiener [143]. Homogeneous chaos provides a way for expanding second-order random
processes in terms of Hermite polynomials. Second-order random processes are processes
with finite variance, which applies to most physical processes. Define a probability space
as (Ω,F,P), where Ω is the sample space, F is the σ -algebra over Ω and P is a probability
measure defined on F. For a set of orthonormal standard Gaussian random variables {ξi(ω)}∞

i=1

on F, any second-order random process X(ω) : Ω → R can be represented as:

X(ω) = a0Γ0 +
∞

∑
i1=1

ai1Γ1 (ξi1(ω))+
∞

∑
i1=1

i1

∑
i2=1

ai1i2Γ2 (ξi1(ω),ξi2(ω))

+
∞

∑
i1=1

i1

∑
i2=1

i2

∑
i3=1

ai1i2i3Γ3 (ξi1(ω),ξi2(ω),ξi3(ω))+ · · · (3.4)

In Equation 3.4, Γn (ξi1,ξi2, . . . ,ξin) denotes the Hermite polynomials of order n in terms
of ξξξ = [ξi1,ξi2 ,ξi3, . . . ,ξin]

⊤. The constants ai1i2...in are the expansion coefficients, also called
modes. Equation 3.4 is the discrete version of the original Wiener homogeneous chaos, where
the continuous integrals are replaced by summations. The general expression of a multivariate
Hermite polynomial Γ(ξξξ ) of order n is given by:

Γn (ξi1 ,ξi2, . . . ,ξin) = e
1
2 ξξξ

⊤
ξξξ · (−1)n · ∂ n

∂ξi1∂ξi2 . . .∂ξin

(
e

1
2 ξξξ

⊤
ξξξ

)
(3.5)

The one-dimensional Hermite polynomials Γn(ξ ) are:

Γ0(ξ ) = 1

Γ1(ξ ) = ξ

Γ2(ξ ) = ξ
2 −1

Γ3(ξ ) = ξ
3 −3ξ . . .

For notation convenience, the expansion shown in Equation 3.4 can be simplified by
reformulating the equation from an order-based indexing to a term-based indexing:

X(ω) =
∞

∑
i=0

xiΨi (ξξξ ) (3.6)
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There is a one-to-one correspondence between the expansion coefficients ai1i2...in and xi , as
well as between expansion polynomials Γn (ξi1,ξi2, . . . ,ξin) and Ψi. Each of the Ψi is a multi-
dimensional Hermite polynomial and can be generated from univariate Hermite polynomials
by taking tensor products. This new expansion in Equation 3.6 is simply a re-numbering with
the polynomials of lower order counted first.

The Hermite polynomial chaos forms a complete orthogonal basis in the L2 space of the
Gaussian random variable: 〈

Ψi,Ψ j
〉
=
〈
Ψ

2
i
〉

δi j (3.7)

where ⟨·, ·⟩ denotes the ensemble average. This is the inner product in the Hilbert space of the
Gaussian random variable f (ξξξ ) and g(ξξξ ):

⟨ f (ξξξ ),g(ξξξ )⟩=
∫

f (ξξξ )g(ξξξ )ω(ξξξ )dξξξ (3.8)

in which the weighting function ω(ξξξ ) is:

ω(ξξξ ) =
1√
(2π)n

· e 1
2 ξξξ

⊤
ξξξ (3.9)

where n is the dimension of ξξξ . What distinguishes the Wiener–Hermite expansion from many
other possible complete sets of orthogonal polynomial expansions is that the polynomials
here are orthogonal with respect to the weighting function ω(ξξξ ) which has the form of the
multi-dimensional independent Gaussian probability distribution with unit variance. We will
use the term Hermite chaos hereafter to denote the Wiener polynomial chaos.

3.2.3 The Generalized PCE

In order to deal with more general random distributions, the generalized PCE was developed.
It was derived from the family of hypergeometric orthogonal polynomials known as the
Askey scheme [164], for which the Hermite polynomials originally employed by Wiener are a
subset. Table 3.1 presents the correspondence of different type of continuous Wiener-Askey
polynomials to different type of probability distributions. The density and weighting functions
differ by a constant due to the requirement that the integral of the PDF over the support range
is one.

In practice, the infinite expansion is truncated at a finite number of random variables and a
finite expansion order:

X (ξξξ ) =
P

∑
i=0

xiΨi(ξξξ ) (3.10)
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Table 3.1 Correspondence of the various continuous Wiener-Askey polynomial chaos to
different type of random distributions

Distribution PDF Orthogonal polynomial Weight function Support

Normal 1
2π

e−
x2
2 Hermite Hen(x) e−

x2
2 (−∞,∞)

Gamma xα e−x

Γ(α+1) Generalized Laguerre Lα
n (x) xα e−x [0,∞)

Exponential e−x Laguerre Ln(x) e−x [0,∞)

Beta (1−x)α (1+x)β

2α+β+1B(α+1,β+1)
Jacobi Pα,β

n (x) (1− x)α(1+ x)β [−1,1]

Uniform 1
2 Legendre Pn(x) 1 [−1,1]

Since each type of polynomial from the Askey scheme forms a complete basis in the Hilbert
space determined by their corresponding support, we can expect each type of Askey-chaos to
converge to any L2 functional in the L2 sense in the corresponding Hilbert functional space as a
generalized result of Cameron–Martin theorem [18].

There are (P+1) expansion terms, which depends on the dimension N of ξξξ and the highest
order d of the polynomials Ψi.

P+1 = 1+
d

∑
s=1

1
s!

s−1

∏
r=0

(n+ r) = 1+
d

∑
s=1

(n−1+ s)!
(n−1)!s!

=
(n+d)!

n!d!
(3.11)

Equation 3.11 shows clearly that as n or d increases, the number of the expansion terms
increases rapidly, which is called the Curse of Dimensionality [29]. This will impose some
practical limitations on the efficiency of numerical solution by the generalized PCE.

3.2.4 Statistical Moments based on the Generalized PCE

Given the truncated expansion as shown in Equation 3.10, for UQ purposes we would like to
know the mean and variance of a certain random variable X . The mean of X is:

X̄ = E[X(ξξξ )] =
∫ P

∑
i=0

xiΨi(ξξξ )p(ξξξ )dξξξ =
P

∑
i=0

xi

∫
Ψi(ξξξ )p(ξξξ )dξξξ

=
P

∑
i=0

xi

∫
Ψi(ξξξ )Ψ0(ξξξ )p(ξξξ )dξξξ =

P

∑
i=0

xi ⟨Ψ0,Ψi⟩= x0 (3.12)
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The variance of the solution is obtained by:

Var(X) = E
〈
X2(ξξξ )− x2

0
〉
= E

〈
P

∑
i=0

P

∑
k=0

xiΨi(ξξξ )xkΨk(ξξξ )

〉
− x2

0

=
P

∑
i=0

P

∑
k=0

xixk ⟨Ψi,Ψk⟩δik − x2
0 =

P

∑
k=1

x2
k
〈
Ψ

2
k
〉

(3.13)

Therefore, the mean value is the expansion coefficient with index zero. The variance only
depends on the rest expansion coefficients since

〈
Ψ2

k

〉
is known analytically once the orthogonal

polynomials are chosen.
For generalized PCE as shown in Equation 3.10, the orthogonal polynomials Ψi(ξξξ ) are

chosen by the user according to the type of random distribution of X(ξξξ ). The correspondence
of different random distribution and different family of generalized orthogonal polynomials can
be found in Table 3.1. The expansion coefficients are the unknowns. We need methods to solve
for these unknown modes to get a closed solution of PCE. Available methods are intrusive
Galerkin Projection, NISP and regression-based methods. In the following we will only briefly
introduce the intrusive Galerkin projection method.

3.2.5 Intrusive Galerkin Projection

The Galerkin projection method is based on the orthogonality of the polynomials:

〈
Ψi(ξξξ ),Ψ j(ξξξ )

〉
=
∫

Ψi(ξξξ )Ψ j(ξξξ )d p(ξξξ ) =
∫

Ψi(ξξξ )Ψ j(ξξξ )w(ξξξ )dξ = δi j
〈
Ψ

2
i
〉

Galerkin projection consists of pre-multiplying Equation 3.10 by Ψk(ξξξ ) and taking the
expectation of both sides:

E [XΨk(ξξξ )] = ⟨X ,Ψk(ξξξ )⟩=
〈

P

∑
i=0

xiΨi(ξξξ ),Ψk(ξξξ )

〉
= E

[
P

∑
i=0

xiΨiΨk

]

=
P

∑
i=0

xi ⟨Ψi,Ψk⟩=
P

∑
i=0

xi
〈
Ψ

2
i
〉

δik = xk
〈
Ψ

2
k
〉

(3.14)

xk =
E [XΨk(ξξξ )]〈

Ψ2
k

〉 =
⟨X ,Ψk⟩〈

Ψ2
k

〉 , k = 0,1,2, . . . (3.15)

Next, consider a stochastic Ordinary Differential Equation (ODE) or Partial Differential
Equation (PDE):

L(x, t,u;ω) = f (x, t;ω) (3.16)
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where u = u(x, t;ω) is the solution and f (x, t;ω) is the source term. Operator L in the
differential equation generally involves differentiations in space/time and can be nonlinear.
Appropriate initial and boundary conditions are assumed. The existence of randomness ω

is due to the introduction of uncertainty into the system via BCs, ICs, material properties or
parameters in the differential equation.

The solution u, which is treated as a random process, can be expanded using the generalized
PCE as:

u(x, t;ω) =
P

∑
i=0

ui (x, t)Φi (ξξξ (ω)) (3.17)

The source term is also random and can be expanded in a similar way:

f (x, t;ω) =
P

∑
i=0

fi (x, t)Φi (ξξξ (ω)) (3.18)

Next, we substitute the expansion of u(x, t;ω) and f (x, t;ω) into the original differential
equation:

L

(
x, t,

P

∑
i=0

uiΦi

)
=

P

∑
i=0

fiΦi (3.19)

Then, a Galerkin projection of the above equation is done onto each polynomial basis Φi in
order to ensure that the approximation error is orthogonal to the functional space spanned by
the finite-dimensional basis Φk. For k = 0,1,2, . . . ,P, we have:〈

L

(
x, t,

P

∑
i=0

uiΦi

)
,Φk

〉
=

〈
P

∑
i=0

fiΦi,Φk

〉
=

P

∑
i=0

fi
〈
Φ

2
i
〉

δik = fk
〈
Φ

2
k
〉

(3.20)

Using the orthogonality of the polynomial basis, we obtain a set of (1+P) coupled equations
for each random mode ui (x, t) where i = {0,1,2, . . . ,P}. It should be noted that by utilizing
the generalized PCE, the randomness is effectively transferred into the basis polynomials. Thus,
the governing equations for the expansion coefficients {ui}P

i=0 resulted from the above equation
are deterministic. Discretization in space x and time t can be carried out by any conventional
deterministic techniques.

3.3 Stochastic Collocation

SC and PCE both belong to a large class of UQ methods called stochastic spectral techniques.
PCE estimates coefficients for known orthogonal polynomial basis functions, whereas SC
forms interpolation functions for known coefficients [31] (which are function evaluations).
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There are several advantages of using SC over PCE to solve PDEs/ODEs: (1) SC results in
series of uncoupled deterministic sub-problems for which legacy code can be used essentially
unmodified; (2) unlike MC sampling, SC can take advantage of the smooth dependence of the
solution on the random parameters to yield spectral convergence; (3) nonlinear problems pose
no additional difficulty (unlike intrusive Galerkin projection used to solve for PCE).

The basic idea of the SC technique is to approximate the multi-dimensional stochastic
space of the problem f (x) with interpolation functions [31] [160] at a set of collocation points
{xi}d

i=1. Deterministic solutions of the problem at each point xi are used to construct an
interpolant of f (x) by using linear combinations of f (xi). There are two choices for such
multi-dimensional interpolation; full tensor product of one-dimensional interpolation rules
or sparse grid interpolation rules based on the Smolyak algorithm [31] [127]. Sparse grid
can be used for both numerical integration and interpolation, but in the following we will use
interpolation for illustration.

Suppose we want to approximate smooth functions f : [−1,1]d → R, using a finite number
of function values. For a one-dimensional problem we use:

Ui( f ) =
mi

∑
j=1

f (xi
j) ·α i

j (3.21)

where i ∈ N denotes that the rule is in the ith dimension. mi is the number of nodes. {α i
j}mi

j=1 ∈
C([−1,1]) are the Lagrange polynomials for interpolation and {xi

j}mi
j=1 ∈ [−1,1] are nodes in

the ith dimension. Finally, { f (xi
j)}mi

j=1 are evaluation of function at these interpolation nodes.
We assume that a sequence of formulas is given for {i = 1,2, ...,d}. For the multivariate

case d > 1 we first define tensor product formulas:

(
Ui1 ⊗·· ·⊗Uid

)
( f ) =

mi1

∑
j1=1

· · ·
mid

∑
jd=1

f
(

xi1
j1, · · · ,x

id
jd

)
·
(

α
i1
j1 ⊗·· ·⊗α

id
jd

)
(3.22)

which serves as building blocks for the Smolyak algorithm [127]. The above product formula
needs

(
∏

d
j=1 mi j

)
function evaluations. If we have the same number of nodes mi in each dimen-

sion then the total number of nodes will be (mi)
d . The number of nodes grows exponentially as

the number of dimensions d increases and quickly exceeds the available computational power.
Therefore, like generalized PCE, SC also suffers from the "curse of dimensionality".

The Smolyak algorithm A(q,d), where q is called the level of the sparse grid that is
independent of the dimension d, is a linear combination of product formulas in one dimension
with the following key properties. Only products with a relatively small number of nodes are
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used and the linear combination is chosen in such a way that the interpolation property for
d = 1 is preserved for d > 1 [8] [46].

For i ∈ N, define the difference operator:

U0( f ) = 1 (3.23)

∆
i( f ) = Ui( f )−Ui−1( f ) (3.24)

Moreover, define |i|= i1 + i2 + . . . id for i ∈ Nd . Then, the Smolyak algorithm A(q,d) is
given by:

A(q,d)( f ) = ∑
|i|≤q+d

(
∆

i1 ⊗·· ·⊗∆
id
)
( f ) (3.25)

Another form of the Smolyak algorithm is:

A(q,d)( f ) = ∑
q+1≤|i|≤q+d

(−1)q+d−|i|
(

d −1
q+d −|i|

)
·
(
Ui1 ⊗·· ·⊗Uid

)
( f ) (3.26)

To compute A(q,d)( f ), one only needs to know function values at the “sparse grid” defined
as:

H(q,d) =
⋃

q+1≤|i|≤q+d

(
Xi1 ⊗·· ·⊗Xid

)
(3.27)

where Xik =
{

xik
j1,x

ik
j2, . . . ,x

ik
jd

}
⊂ [−1,1] denotes the set of interpolation nodes used by Uik .

To build the sparse grid, one should start from one-dimensional interpolation/integration
rules (for example, Gauss rules and Clenshaw-Curtis rules). Figure 3.2 shows the comparison
of full tensor grids and sparse grids using Clenshaw-Curtis rule for isotropic grids of level
4 and 5. Full tensor grids include 289 and 1089 nodes for levels 4 and 5 respectively, while
sparse grids only need 65 and 145 nodes respectively. The sparse grid is more advantageous
with increasing number of levels, as the reduction of nodes becomes significant.

The grid of nodes is considered isotropic when an equal number of nodes is assigned for
each dimension. Although the number of nodes increase at the rate md for isotropic full tensor
grids, the rate of increase is mlog(d) for isotropic sparse grids [31] [160]. When the dimension
is very high (d ≥ 20), even a sparse grid requires a large number of nodes. Dimension-adaptive
sparse grids have been used based on the fact that not all input parameters are equally important
to the output [47]. For dimensions where the output is very smooth, less nodes can be used
to alleviate the computational burden. See [152] [156]for a few examples of SGSC and their
applications.
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Fig. 3.2 Comparison of full tensor grid and classical isotropic sparse grid based on
Clenshaw-Curtis rule.

3.4 Summary and Comments

Both intrusive and non-intrusive approaches are more efficient than brute-force MC sampling
up to very high random dimensionality. The main disadvantage of Galerkin-PCE method is
that it requires a large new coding effort. It results in a new coupled system of equations that is
P times larger than the original system of equations, P increase quickly with the dimension of
random input parameters and the order of PCE. Galerkin-PCE approach can also be challenging
when the governing equations take complicated forms. In this case, the derivation of explicit
equations for the generalized PCE coefficients can be very difficult, if not impossible.

On the other hand, NISP techniques as non-intrusive methods rely only on the definition
of the sampling points in the random space. Consequently, the extension of NISP to large
scale problems is straightforward. As long as the quadrature points are chosen, an existing
simulation code can be used as “black box” for the calculation of their values. SC methods
generally result in a larger number of equations than a typical Galerkin-PCE method. However,
these equations are completely decoupled, which makes them easier to solve and require only
multiple runs of a deterministic solver. Therefore, for problems with complicated governing

41



equations, SC methods should perform better. A SC algorithm is similar to MC sampling
approach in that only repetitive realization of a deterministic solver are required by choose a
set of nodes. However, based on the theory of multivariate polynomial interpolations, it also
possesses the nature of high accuracy and fast convergence of Galerkin-PCE.

Once the PCE coefficients are solved, the model output is approximated as a polynomial
function of random input parameters, which can be used to describe stochastic nature of
the output in terms of its mean, variance, covariance, distribution, etc. The PCE essentially
constitutes a meta-model of the original problem and can be used as surrogates during the
inverse UQ process. There are four steps in Bayesian inference of inverse UQ using metamodel
constructed by PCE:

1. Construct generalized PCE for each random input parameter, according to prior uncer-
tainty distributions. Solve for the PCE coefficients;

2. Substitute these expansions (with known PCE coefficients) into the governing equations
of the full model and use Galerkin projection to obtain a new coupled system of equations
for the generalized PCE coefficients. The solution for the new system of equations will
be the PCE coefficients for QoIs.;

3. Solve this system of equations to get the PCE modes;

4. Formulate the posterior with available experimental data and PCE metamodel;

5. Explore this posterior with MCMC sampling strategy.
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Chapter 4

GAUSSIAN PROCESS MODELING

Gaussian Process (GP) modeling, also known as Kriging, or spatial correlation modeling [74],
was originally developed by geologists in the 1950s to predict distribution of minerals over
an area of interest given a set of sampled sites [24] [25] [90] [130]. It was made popular in
the context of modeling and optimization by Sacks et al. [26] [119] and Jones et al. [69]
respectively. GP has been widely used to construct metamodels for deterministic computer
models in many areas [74] [86]. A GP model is a generalized linear regression model that
accounts for the correlation in the residuals between the regression model and the observations.
Here the “observations” are realizations of the computer code at selected locations of the inputs,
rather than experimental data. The only assumption for GP modeling is that the model QoI is
continuous and smooth over the input domain [38], which is true for most computer models.
We thus believe that if two points are close to each other in the input domain, the residuals
in the regression model should be close [69]. It follows that we do not treat the residuals
as independent, assume that the correlation between the residuals are related to the distance
between the corresponding input points.

In this section, we will present a self-contained introduction of GP, including the general
theory, correlation kernels, prediction and Mean Square Error (MSE) formula, design of
computer experiments, parameter estimation, accuracy assessment and implementations issues.
However, we understand that the richness of the GP modeling filed is just hinted in this section,
given the fact that several books have been devoted on this topic [24] [25] [90] [115] [121]
[130]. But we hope that the process to use GP metamodeling technique can be made apparent
to the nuclear engineering community.

43



4.1 GP General Theory

4.1.1 Mathematical Formulation

Consider a mathematical model of the general form y = yM(x) (not to be confused with
the definition of computer model in Chapter 2, here x include both design and calibration
parameters). Without loss of generality, assume that y is a scalar and x = [x1,x2, . . . ,xd]

representing d input parameters. Assume that the computer model output is known at m design
sites (also called training sites):

X =
[
x(1),x(2), . . . ,x(m)

]⊤
(4.1)

where X is a m×d design matrix. The corresponding output values are:

y = [y1,y2, . . . ,ym]
⊤ =

[
yM(x(1)),yM(x(2)), . . . ,yM(x(m))

]⊤
(4.2)

The mathematical form of a GP model has two parts:

y(x) =
n

∑
j=1

β j f j(x)+ z(x) = f⊤(x)βββ + z(x) (4.3)

Here y(x) is the output prediction at a general location denoted by x. The first part is a
linear regression of the data with n regressors modeling the drift of the mean, also called the
“trend”. The set of basis functions f = [ f1, f2, . . . , fn]

⊤ is known and chosen by the user, while
the vector βββ = [β1,β2, . . . ,βn]

⊤ contains the unknown regression coefficients. The second
part z(x) is a stationary Gaussian random process with zero mean and covariance:

Cov
[
z
(

x(i)
)
,z
(

x( j)
)]

= σ
2R
(

x(i),x( j)
)

(4.4)

where σ2 is a scalar parameter called process variance of GP and R(·, ·) is called the corre-
lation function or correlation kernel. The inclusion of the second part z(x) generalizes the
linear regression model to a “stochastic process model”.

4.1.2 Correlation Kernels

An arbitrary function for R
(

x(i),x( j)
)

is generally not valid unless the following conditions
are satisfied:
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• The correlation function should be symmetric, i.e., for two arbitrary points x(i) and x( j)

in the input domain:
R
(

x(i),x( j)
)
= R

(
x( j),x(i)

)
• The resulting correlation matrix should be a positive semi-definite matrix.

The correlation kernel is often chosen to be a function of the distance:

R
(

x(i),x( j)
)
= R

[
d
(

x(i),x( j)
)]

(4.5)

Instead of using the Euclidean distance that weights all the variables equally, we use a
specially weighted distance formula defined below:

d
(

x(i),x( j)
)
=

d

∑
k=1

|x(i)k − x( j)
k |pk

θk
(4.6)

For example, if we choose the power-exponential function for the correlation kernel R(·, ·),
the covariance becomes:

Cov
[
z(x(i)),z(x( j))

]
= σ

2 · exp

[
−

d

∑
k=1

|x(i)k − x( j)
k |pk

θk

]
(4.7)

The unknown parameters p = [p1, p2, . . . , pd] are called roughness parameters, which
control the smoothness of the correlation function. It is usually required that pk ∈ [1,2] [69].
Note that some others adopted a wider range pk ∈ [0,2] [37] [104] [118]. It can be seen from
Figure 4.1 (left) that when the distance h between two points approaches 0, the correlation
gets closer to 1. And the correlation decreases when the distance gets larger. The value p = 2
corresponds to smooth functions with a continuous gradient at h = 0 and p values near 1 or
less correspond to less smoothness.

The unknown parameters1 θθθ = [θ1,θ2, . . . ,θd] (θk ≥ 0) are called characteristic length-
scales [115], which are essentially width parameters that control how far a sample point’s
influence extends [38]. As shown in Figure 4.1 (right), given p = 2 and at the same distance,
larger θk values result in higher correlation, indicating that output values are close. Smaller θk

values lead to lower correlation, meaning that there will be large difference between outputs
even for nearby points.

1Note that we use symbol θθθ here to be consistent with the previous literature. θθθ represents the characteristic
length-scales only in this chapter. In other chapters, θθθ still stands for the calibration parameters while the
characteristic length-scales will be represented by θθθ with certain superscripts.
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Fig. 4.1 Demonstration of the correlation with different values of roughness parameter p (left)
and characteristic length scale θ (right). The x-axis h means the distance between two points in

one-dimension. The left subfigure fixes θ = 1 while the right subfigure fixes p = 2.

Table 4.1 Common spatial correlation kernels (the distance h and correlation kernel formulas
are defined for each dimension for notational clarity).

Name Expression
(

h = |x(i)−x( j)|
)

Linear R(h) = max
(

0,1− |h|
θ

)
Exponential R(h) = exp

(
− |h|

θ

)
Power-exponential R(h) = exp

(
−
(
|h|
θ

)p)
Gaussian R(h) = exp

(
− |h|2

2θ 2

)
Matérn ν = 3/2 R(h) =

(
1+

√
3|h|
θ

)
exp
(
−

√
3|h|
θ

)
Matérn ν = 5/2 R(h) =

(
1+

√
5|h|
θ

+ 5h2

3θ 2

)
exp
(
−

√
5|h|
θ

)

From the above discussion, apparently the choice of the correlation kernel is crucial to the
performance of GP metamodel. It is required that the kernel is positive definite. A commonly
accepted approach is to select the correlation kernel beforehand from kernels that are known
to be positive definite. Table 4.1 shows some commonly used correlation kernels. Note
that the parameter θ can be different for each of the d dimensions. Among these kernels,
Matérn family kernels have been suggested by statisticians, while engineers often favour the
Gaussian (or square-exponential) kernel [86]. The latter results in a smooth and infinitely
differentiable function which is desirable for many engineering applications. For some other
detailed discussion of the correlation kernels, see [38] [77] [115].
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4.1.3 Prediction and Mean Square Error Formulas

Given the design matrix X and corresponding output values y, to predict the output value at a
new input location x∗ using the GP model, we first define the following:

1. The set of regression functions f = [ f1, f2, . . . , fn]
⊤ evaluated at the untried point x∗:

f(x∗) = [ f1(x∗), f2(x∗), . . . , fn(x∗)]⊤ (4.8)

2. The set of regression functions evaluated at the m design sites, which is also called the
information matrix:

F =
[
f
(

x(1)
)
, f
(

x(2)
)
, . . . , f

(
x(m)

)]⊤
=


f1(x(1)) f2(x(1)) · · · fn(x(1))
f1(x(2)) f2(x(2)) · · · fn(x(2))

...
... . . . ...

f1(x(m)) f2(x(m)) · · · fn(x(m))

 (4.9)

3. The correlation of x∗ with the m design points:

r(x∗) =
[
R
(

x∗,x(1)
)
,R
(

x∗,x(2)
)
, . . . ,R

(
x∗,x(m)

)]⊤
(4.10)

4. The correlation between the m design points:

R =


R
(

x(1),x(1)
)

R
(

x(1),x(2)
)

· · · R
(

x(1),x(m)
)

R
(

x(2),x(1)
)

R
(

x(2),x(2)
)

· · · R
(

x(2),x(m)
)

...
... . . . ...

R
(

x(m),x(1)
)

R
(

x(m),x(2)
)

· · · R
(

x(m),x(m)
)

 (4.11)

The dimensions and descriptions of all the symbols are summarized in Table 4.2. The
prediction, or mean value of the output at the untried input x∗ is:

ŷ(x∗) = µŷ(x∗) = f⊤(x∗)β̂ββ + r⊤(x∗)R−1
(

y−Fβ̂ββ

)
(4.12)

where β̂ββ is the least squares estimate of the regression coefficients βββ , also called the Best
Linear Unbiased Estimator (BLUE):

β̂ββ =
(

F⊤R−1F
)−1

F⊤R−1y (4.13)
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Table 4.2 Symbols used in GP metamodel formulation

Symbol Dimension Description

d 1×1 number of input factors

m 1×1 number of design points

n 1×1 number of basis functions

βββ n×1 vector of regression coefficients

β̂ββ n×1 estimator of βββ

f n×1 vector of regression functions f = [ f1, f2, . . . , fn]
⊤

x(i) d ×1 vector of ith design point, x(i) =
(

x(i)1 ,x(i)2 , . . . ,x(i)d

)⊺
yi 1×1 output value of ith design point, yi = yM(x(i))

X m×d collection of m design points, X =
[
x(1),x(2), . . . ,x(m)

]⊤
y m×1 vector of output values at X, y = (y1,y2, . . . ,ym)

⊤

x∗ d ×1 untried input point, to be predicted

f(x∗) n×1 f evaluated at untried location x∗

F m×n f evaluated at design sites X

r(x∗) m×1 correlation between x∗ and design sites X

R m×m correlation between design sites X

ŷ(x∗) or µŷ(x∗) 1×1 predicted output at x∗

MSE [ŷ(x∗)] or σ2
ŷ (x

∗) 1×1 variance of the prediction at x∗

The predictor ŷ(x∗) in Equation 4.12 can be proven to be the Best Linear Unbiased
Predictor (BLUP) [119] [121]. The MSE or variance of the predictor ŷ(x∗) is:

MSE [ŷ(x∗)] = σ
2
ŷ (x

∗) = σ
2

1−
[
f⊤(x∗) r⊤(x∗)

][0 F⊤

F R

]−1[
f(x∗)
r(x∗)

] (4.14)

Equation 4.14 can be expanded in another popular form for the MSE:

MSE [ŷ(x∗)] = σ
2
ŷ (x

∗) = σ
2
[
1− r⊤(x∗)R−1r(x∗)+(

F⊤R−1r(x∗)− f(x∗)
)⊤(

F⊤R−1F
)−1(

F⊤R−1r(x∗)− f(x∗)
)]

(4.15)

Detailed derivation of the predictor and MSE can be found in Appendix F. Because GP
assumes that the output at untried input x∗ follows a Gaussian distribution, in the following we
will use the mean value µŷ(x∗) and variance σ2

ŷ (x
∗) to represent the predictor and MSE.
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4.1.4 Different Types of GP

In the literature, different naming of Kriging are defined depending on the trend functions used:

1. Equation 4.12 - 4.15 formulate the most general and flexible case of Kriging model,
named Universal Kriging (UK). UK uses a linear combination of prescribed functions,
e.g.polynomials, as the trend.

2. Ordinary Kriging (OK) is a special case of UK when the basis functions reduce to [1],
while the trend has a constant yet unknown value β0:

f⊤(x)βββ = β0 (4.16)

β̂0 =
1⊤mR−1y

1⊤mR−11m
(4.17)

µŷ,OK(x∗) = β̂0 + r⊤(x∗)R−1
(

y−1mβ̂0

)
(4.18)

σ
2
ŷ,OK(x

∗) = σ
2

[
1− r⊤(x∗)R−1r(x∗)+

[
1−1⊤mR−1r(x∗)

]2
1⊤mR−11m

]
(4.19)

where 1m is a length-m column vector of ones.

3. Simple Kriging (SK) is the case when the trend is a known constant value µ:

µŷ,SK(x∗) = µ + r⊤(x∗)R−1 (y−1mµ) (4.20)

σ
2
ŷ,SK(x

∗) = σ
2
[
1− r⊤(x∗)R−1r(x∗)

]
(4.21)

It is obvious that OK and SK are special cases of UK. The most commonly used basis
functions are constant, linear and quadratic.

f⊤(x)βββ = β0

f⊤(x)βββ = β0 +
n

∑
j=1

β jx j

f⊤(x)βββ = β0 +
n

∑
j=1

β jx j +
n

∑
j1=1

n

∑
j2=1

β j1 j2x j1x j2

In theory one can choose polynomials of arbitrary order for the trend. However, it turns out
unnecessary for most engineering problems. Because GP is an interpolator (to be shown later),
trend functions have little effect within the design domain. They only have major influence
beyond the design sites when GP is used as extrapolator. Furthermore, we do not have a prior
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knowledge of trend of the computer model. Arbitrarily specifying the trend function may
introduce inaccuracies. In fact, OK is the most widely used version of GP.

4.1.5 Interpolation Property

One important property of GP emulator is that the mean prediction is a linear combination of
basis functions shown in Equation 4.12, which interpolates the design sites. Furthermore, The
predicted variance increases as new point get further away from design sites.

To prove that the GP metamodel interpolates the design sites, we need to show that
µŷ(x(i)) = yi and σ2

ŷ (x
∗) = 0. Let x∗ = x(i), which is one of the design sites. f⊤(x∗) becomes

the ith row of the information matrix F:

f⊤(x∗) = f⊤(x(i)) =
[

f1(x(i)), f2(x(i)), . . . , fn(x(i))
]
= Fi· (4.22)

r⊤(x∗) becomes the ith row of the correlation matrix R:

r⊤(x∗) = r⊤(x(i)) =
[
R
(

x(i),x(1)
)
,R
(

x(i),x(2)
)
, . . . ,R

(
x(i),x(m)

)]
= Ri· (4.23)

Given ei as the unit column vector in the ith dimension, we have:

r⊤(x∗)R−1 = Ri·R−1 = e⊤i (4.24)

The predictor in Equation 4.12 becomes:

µŷ(x∗) = f⊤(x∗)β̂ββ + r⊤(x∗)R−1
(

y−Fβ̂ββ

)
= Fi·β̂ββ + e⊤i

(
y−Fβ̂ββ

)
= Fi·β̂ββ + yi −Fi·β̂ββ

= yi

(4.25)

Also:
F⊤R−1r(x∗)− f(x∗) = F⊤R−1R⊤

i· −F⊤
i· = F⊤ei −F⊤

i· = 0 (4.26)

The MSE in Equation 4.15 becomes:

σ
2
ŷ (x

∗) = σ
2
ŷ (x

(i))

= σ
2
[

1− e⊤i R⊤
i· +

(
F⊤R−1R⊤

i· −F⊤
i·
)⊤(

F⊤R−1F
)−1(

F⊤R−1R⊤
i· −F⊤

i·
)]

= σ
2
[

1−1+0⊤
(

F⊤R−1F
)−1

0
]
= 0

(4.27)
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Fig. 4.2 A demonstration of the GP metamodeling with 5 training points (left) and 10 training
points (right), based on a simple test function.

Figure 4.2 demonstrates GP metamodeling results for a simple test function over the range
of [0,10]. The true function is only known at 5 and 10 training points respectively. The dash-dot
lines correspond to 95% confidence intervals (CIs) of the prediction, which is the interval given
by
[
µŷ(x∗)−1.96 ·σ2

ŷ (x
∗),µŷ(x∗)+1.96 ·σ2

ŷ (x
∗)
]
. From Figure 4.2 we can see that:

• GP metamodel always interpolates the design sites.

• The MSE of the prediction decreases as the untried point gets closer to training points.
At training points the variance of prediction is zero. When the number of training sites
increases from 5 to 10, the agreement of the GP mean with true function is greatly
improved and the MSEs become very small.

Given the mathematical form of GP and the formulas for prediction and MSE, the process
of using GP metamodeling involves a few other issues. They are: (1) estimation of hyperparam-
eters, (2) selection of design/training sites, (3) assessment of metamodel accuracy to reproduce
the computer model outputs.

4.2 Parameter Estimation

The formulas in Section 4.1 are presented given that we already know all the parameters in the
GP metamodel. In this section the evaluation of the unknown parameters will be discussed,
which is called the parameter estimation process. Right now we have (2d +n+1) unknown
parameters in the GP model:

1. n regression coefficients βββ
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2. 1 process variance {σ2}2

3. d correlation kernel characteristic length-scales θθθ

4. d correlation kernel roughness parameters p3

They are often referred to as hyperparameters of the GP emulator4: φφφ =
{

βββ ,σ2,θθθ ,p
}

.
Parameter estimation is the process to find the set of parameters for the GP model that shows
the best possible predictive performance. Parameter estimation is usually done by Maximum
Likelihood Estimation (MLE) or Cross Validation (CV). Detailed comparison of these two
methods can be found in [6] [77] [86]. Both methods are based on solving an optimization
problem as shown below.

4.2.1 Maximum Likelihood Estimation

Base on the fundamental assumption of GP metamodeling, the output values y of the design
sites follow a joint Gaussian distribution:

y|φφφ = y|
{

βββ ,σ2,θθθ ,p
}
∼N

(
Fβββ ,σ2R

)
(4.28)

The idea behind MLE is to find the set of hyperparameters φφφ that maximize the likelihood
of the observations y. The likelihood function is defined as:

L
(
y|
{

βββ ,σ2,θθθ ,p
})

=
1(√

2πσ
)m√

det(R)
exp

[
−(y−Fβββ )⊤R−1 (y−Fβββ )

2σ2

]
(4.29)

where the correlation matrix R is dependent on {θθθ ,p}.
We first assume that the correlation kernel parameters {θθθ ,p} are known, based on which

we solve for
{

βββ ,σ2} in closed forms. The set of regression coefficients βββ are estimated by
generalized least-squares as shown in Equation 4.13 and we copy it below. See Appendix D for
the derivation.

β̂ββ |{θθθ ,p}= β̂ββ (θθθ ,p) =
(

F⊤R−1F
)−1

F⊤R−1y (4.30)

The log-likelihood function given the estimator β̂ββ for βββ becomes:

2Note that some researchers often use the term “precision” defined as λ = 1/σ2 [10] [61] [63] [80].
3Note that these parameters are usually known once we have chosen a certain correlation kernel. For example,

for Gaussian kernels these parameters will all be 2.
4Some researchers only call correlation function-related parameters θθθ and p as hyperparameters.
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logL
(

y|
{

β̂ββ ,σ2,θθθ ,p
})

=−m
2

log(2π)− 1
2

log(det(R))

−m log(σ)−

(
y−Fβ̂ββ

)⊤
R−1

(
y−Fβ̂ββ

)
2σ2 (4.31)

The first two terms m
2 log(2π) and 1

2 log(det(R)) are constants because we have fixed {θθθ ,p}.
Because the log-function is monotically increasing, maximizing the log-likelihood is equivalent
to maximizing the likelihood and minimizing the following temporary function:

g
(

y|
{

β̂ββ ,σ2,θθθ ,p
})

= m log(σ)+

(
y−Fβ̂ββ

)⊤
R−1

(
y−Fβ̂ββ

)
2σ2 (4.32)

Take the derivative with respect to σ :

dg
(

y|
{

β̂ββ ,σ2,θθθ ,p
})

dσ
=

m
σ
−

(
y−Fβ̂ββ

)⊤
R−1

(
y−Fβ̂ββ

)
σ3

=
m
σ3

σ
2 −

(
y−Fβ̂ββ

)⊤
R−1

(
y−Fβ̂ββ

)
m

 (4.33)

The estimator for minimizing g
(

y|
{

β̂ββ ,σ2,θθθ ,p
})

thus maximizing the log-likelihood
function is given by:

σ̂2|{θθθ ,p}= σ̂2 (θθθ ,p) =
1
m

(
y−Fβ̂ββ

)⊤
R−1

(
y−Fβ̂ββ

)
(4.34)

Now we can substitute Equation 4.30 and Equation 4.34 into the likelihood function
(Equation 4.29) or log-likelihood function (Equation 4.31), which will depend only on the
correlation kernel parameters {θθθ ,p}. If we choose the likelihood function, we get the so-called
“concentrated likelihood function” [69]. Here we choose the log-likelihood function for
numerical convenience:

− logL
(

y|
{

β̂ββ , σ̂2,θθθ ,p
})

=
m
2

log(2π)+
1
2

log(det(R))+
m
2

log
(

σ̂2
)
+

m
2

=
m
2

log
(

2πσ̂2
)
+

1
2

log(det(R))+
m
2

(4.35)

The MLE of {θθθ ,p} can be achieved by minimizing Equation 4.35:

{
θ̂θθ , p̂

}
= arg min

D(θθθ ,p)

(
m
2

log
(

2πσ̂2
)
+

1
2

log(det(R))+
m
2

)
(4.36)
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where D(θθθ ,p) means the domain for possible values of {θθθ ,p}. Equation 4.30, 4.34 and 4.36
together are the MLE results of the hyperparameters. Note that this process can be made easier
if we fix the values of p by choosing correlation kernels beforehand.

4.2.2 Cross Validation

The basic idea of CV is to leave out one or a few design sites and the corresponding obser-
vation(s) and then predict it (them) back based on the remaining points. The optimization
problem is designed to minimize such prediction error which typically requires looping over all
the design sites. Consider a general case of “K-fold CV” [6] [77] which divides the domain
D(X) of the design sites X into K mutually exclusive and collectively exhaustive subsets:

D(X) = {Dk,k = 1,2, . . . ,K}

such that:

Di ∩D j =∅ ∀(i, j) ∈ {1,2, . . . ,K}2

∪K
k=1Dk =D(X)

Suppose we have left out the kth set of design sites, we build the GP metamodel based on
the remaining (K −1) sets of observations and make predictions on that specific kth set that
we have removed. Such predictions are called “cross-validated predictions” and denoted by
µŷ,(−k)

(
x(k)
)

. A special case is when K = m which means that every set only contains one
design site. We repeat the process with k = {1,2, . . . ,K} and then minimizing certain objective
function to get estimation of the hyperparameters. A common choice of the objective function
is given by [6] [121]:

K

∑
k=1

[
yM
(

x(k)
)
−µŷ,(−k)

(
x(k)
)]2

(4.37)

The CV estimate of {θθθ ,p} can be achieved by minimizing the above objective function:

{
θ̂θθ , p̂

}
= arg min

D(θθθ ,p)

K

∑
k=1

[
yM
(

x(k)
)
−µŷ,(−k)

(
x(k)
)]2

(4.38)

The CV estimate of σ2 is calculated using [6] [25]:

σ̂2|
{

θ̂θθ , p̂
}
=

1
K

K

∑
k=1

[
yM
(

x(k)
)
−µŷ,(−k)

(
x(k)
)]2

σ2
ŷ,(−k)

(
x(k)
) (4.39)
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where σ2
ŷ,(−k)(x

(k)) is the MSE of the GP predictor based on all the training sites except for
the kth set Dk. The most widely case of CV is when K = m which means that every set only
contains one design site. This is called the Leave-One-Out Cross-Validation (LOOCV).

4.2.3 Comparison of MLE and CV

Martin and Simpson [86] investigated six test problems to compare the performance of MLE
and CV for parameter estimation. It was found that MLE was generally better than CV. CV
has the potential to perform slightly better, but it also has the risk of performing much worse.
In a recent study, Bachoc [6] also performed numerical study to compare MLE and CV and it
was concluded that when the model is mis-specified, CV performs better than MLE. However,
MLE is more likely to yield the best predictions as long as the correlation is properly specified.
Therefore, CV is suitable for cases when one gives robustness over best possible performance.

Both MLE and CV result in multi-dimensional optimization problems as shown in above.
Any local or global optimization techniques can be used but in many cases the optimal one
is not known a priori. For more details see the listed local/global optimization techniques in
[77] [85] [123] and several hybrid optimization approaches in [129]. During the optimization
process for MLE, several issues exist, for example, the multi-modality and long ridges of the
log-likelihood function and ill-conditioning of the correlation matrix. For more details and
solutions the interested readers are referred to the discussion in [85] [86].

4.3 Experimental Design

A dense design matrix will produce a GP metamodel that has better predictive capability.
However, this is in contradiction with the purpose of use GP, which is to greatly reduce the
computational burden. A good balance can be achieved by improving the selection of the
design sites, which is called “design of computer experiments” [119] [121]. Simple or crude
Monte Carlo (MC) sampling [58] [60] selects samples randomly according to the specified
probability distributions. Simple MC generally do not have a good coverage of the sampling
space. Consequently, more samples are usually required to have similar accuracy than those
space-filling designs such as Latin Hypercube Sampling (LHS) and low discrepancy sequences.

LHS [59] [92] is one of the stratified sampling technique, which divides the range of
each input into NLHS segments of equal probability. NLHS is the number of desired samples.
The relative lengths of the segments are determined by the nature of the prescribed PDF. For
example, the segment lengths will be equal for a uniform distribution. LHS selects one sample
randomly from each of the segments that have equal probability, resulting in NLHS samples for
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each input. Based on a specified correlation structure, these samples are then combined in a
shuffling operation to create a set of NLHS multi-dimensional samples. Consequently, an obvious
feature of resulting sample set is that every row and column has exactly one sample in the
hypercube of partitions. LHS has been widely used for experimental designs. It requires fewer
samples than simple MC sampling to achieve the same statistical accuracy, but it still can be
prohibitively expensive. A popular variation of LHS that has been widely used in choosing
training points is the “maximin LHS design” [68] [94], which select the one with the largest
minimum distance among multiple designs to achieve a good coverage of the sampling space.

Low-discrepancy sequences, also called quasi-random or sub-random sequences [93] [100],
is “less random” than a crude MC sequence. It contains samples that tend to be located “more
uniformly” than crude MC samples. Here discrepancy refers to the non-uniformity of the
samples within the unit hypercube. Low discrepancy sequences have an advantage over LHS
design of being generated sequentially, which makes adding extra points convenient once
required. They are widely used for approximation of integrals in higher dimensions or for
global optimization because superior convergence can be achieved. Example of low discrepancy
sequences are Sobol sequence [12] [128] and Halton sequence [93] [100].

By looking at the MSE we directly obtain a local error measure for any untried input
location. This measure can be used to detect regions of low prediction accuracy, which can
provide guidance to enrich the current experimental design. An overall increase in the GP
metamodel prediction accuracy can be achieved by placing more samples to the region with
large prediction variance. This procedure is referred to as “adaptive experimental design”.

4.4 Accuracy Assessment

The GP metamodel’s accuracy needs to be assessed before using it for further study. The quality
of a metamodel is usually assessed with two approaches [86]: (1) accuracy to reproduce the
design observations; (2) accuracy when predicting the computer model at untried locations.
As GP is an interpolator it can reproduce the design samples exactly. Therefore, the first
approach should be applied with CV. The second approach can be done by measuring the
error when using GP to predict the QoIs for an independent “validation” or “test” samples. By
“independent” it means that the validation sample set is different from the training sample set.
However, this may require more simulator runs than those used for training the metamodels,
which is in conflict with the motivation of using metamodels to reduce the computational cost.

CV and another method called Akaike’s Information Criterion (AIC) were compared in
[86]. Both CV and AIC do not require additional computer model runs to assess the accuracy
of the metamodel. However, AIC is more appropriate for metamodel selection based on the

56



predictive capability. Several approaches were presented in [9] for diagnostics of GP emulators,
including individual prediction errors, Mahalanobis distance, variance decomposition and
graphical methods, etc. Through literature review and our own experience, we found the
following approaches are usually sufficient and most convenient to implement, including CV,
predictivity coefficient and graphical inspection.

4.4.1 Cross Validation and Error Estimation

A CV procedure can be used to assess the accuracy of metamodels without sampling any
additional points beyond those used to train the metamodels. In section 4.2 we have demon-
strated that CV can be used for hyperparameter estimation. For validation of a metamodel,
CV employs a similar idea to divide the training samples into K sets but only cares about the
prediction error instead of minimizing the objective functions shown in Equation 4.38. Now
we will use the LOOCV as an example as it is the most popular version of CV [86].

The basic idea is to leave out one observation and predict it back using the metamodel built
based on the (m−1) remaining points. By doing this in turn for each training sample we can
get the residuals for each prediction, the average of which is called the “LOOCV error”:

ELOOCV =
1
m

m

∑
i=1

[
yM
(

x(i)
)
−µŷ,(−i)

(
x(i)
)]2

(4.40)

In principle, evaluating the LOOCV error requires m different prediction residuals, which
means we need to re-estimate the hyperparameters associated with m different GP metamodels.
This is cumbersome and inconvenient for the validation. As suggested by Jones et al. [69],
unless there are very few training samples or major outliers, dropping a single sample from
the training set usually has a negligible effect on the MLE of hyperparameters. Therefore, in
practice we keep the hyperparameters

{
σ̂2, θ̂θθ , p̂

}
evaluated based on all the training samples

as constant, but only use the remaining m−1 points in computing regression coefficients β̂ββ ,
correlation matrix R and information matrix F used in Equation 4.12 - Equation 4.15.

4.4.2 Predictivity Coefficient

The Predictivity Coefficient Q2 gives the percentage of the output variance explained by the
emulator:

Q2 = 1−
∑

Nval
i=1

[
yM
(

x(i)
)
−µŷ

(
x(i)
)]2

∑
Nval
i=1

[
yM
(
x(i)
)
− yM

]2 (4.41)
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Where Nval is the size of the validation sample set, yM(x(i)) is the output from full model
simulation, yM is their empirical mean value and µŷ(x(i)) is the predicted value using GP
metamodel. A Q2 value close to 1.0 means that the model is accurate. In practical situations, a
metamodel with Q2 value above 0.7 is often considered as a satisfactory approximation of the
full model [66] [84]. However this requires full model executions at perhaps a larger sample
set than that used to train the GP model.

Equation 4.41 can be re-wrote in a form that incorporates CV errors. In this case, no further
simulator runs are required. Note that Nval becomes the size of training sample set m. The
“cross-validated predictions” µŷ,(−i)(x(i)) are also used to replace µŷ(x(i)).

Q2 = 1−
∑

m
i=1

[
yM
(

x(i)
)
−µŷ,(−i)

(
x(i)
)]2

∑
m
i=1

[
yM
(
x(i)
)
− yM

]2 (4.42)

4.4.3 Graphical Inspection

The difference between simulator and emulator runs for error estimation. Define the following:

EIPE

(
x(i)
)
= yM

(
x(i)
)
−µŷ

(
x(i)
)

(4.43)

EIPE, CV

(
x(i)
)
= yM

(
x(i)
)
−µŷ,(−i)

(
x(i)
)

(4.44)

EISE

(
x(i)
)
=

yM
(

x(i)
)
−µŷ

(
x(i)
)

√
σ2

ŷ

(
x(i)
) (4.45)

EISE, CV

(
x(i)
)
=

yM
(

x(i)
)
−µŷ,(−i)

(
x(i)
)

√
σ2

ŷ,(−i)

(
x(i)
) (4.46)

They are called “individual prediction errors (IPE)”, “CV individual prediction errors”,
“individual standardized errors (ISE)” and “CV individual standardized errors”, respectively.
Note that the term “errors” in these definitions are sometimes called “residuals” in previous
literature [69]. The definitions of EIPE and EISE can be found in some earlier work [9], while
EIPE, CV and EISE, CV are defined in the current work to avoid additional simulator runs.

Graphical inspection is an efficient way to investigate the quality of GP metamodel and to
verify the Gaussian assumption when building the emulator. The following plots can be made
and inspected. Note that a GP metamodel of high quality should pass the diagnostic criteria of
all the following graphs.
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• Plot the predictions from the simulator against the emulator. For an accurate metamodel,
the points on this graph should fall on the diagonal line.

• Plot EIPE or EIPE, CV against the emulator’s predictions. This graph is useful for detecting
problems in the mean function of the GP metamodel. Patterns like systematic positive or
negative errors in some particular ranges of the outputs indicate mis-specifications of the
mean function.

• Plot EISE or EISE, CV against the emulator’s predictions. Because EISE or EISE, CV are EIPE or
EIPE, CV divided by the standard deviations of the emulator’s prediction variances, this graph
also provide some information for the prediction variances. Firstly, if the underlying
Gaussian assumption is valid, 99.7% of the points should lie within the interval [−3,3]
[69]. Secondly, these standardized errors should not demonstrate systematic bias.

• Quantile-Quantile plot, which is the quantiles of EISE or EISE, CV versus the quantiles from
random samples of the same size from a standard normal distribution. The points should
lie close to the 45° line, suggesting that the standardized residuals are close to being
normally distributed.

4.4.4 CV vs. generating new test samples

It is generally up to the user to select between using CV or generating new test samples
for evaluating the accuracy of the GP metamodel. Firstly, the computational cost should be
considered. Emulator is chosen because the inverse UQ involves hundreds of thousands of
simulator runs. But if a few hundred extra runs are easily affordable, we can just generate new
test runs for metamodel validation, this is referred to as “test sample approach” in literature [66].
Secondly, it has to be noted that test sample approach can provide misleading and erroneous
results, especially when the test sample size is small and the test sample locations are not
properly chosen. For example, if most of the limited number of test samples are generated
close to training samples, the GP metamodel will nearly “interpolate” the test samples, giving
the wrong impression that the metamodel is accurate. A “sequential validation design” was
proposed in [66] that can put test sample points in the unfilled region of the training sample
design. This algorithm can optimize the distance between the test set and training set and assess
the metamodel predictivity with a minimum number of test sample points.
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4.5 Implementation Issues

Many packages or codes have been developed to implement GP metamodeling, examples are
DACE [81], DAKOTA [1] [2], DiceKriging [118], GPML [114], GPM/SA [42] [145] and
UQLab [83]. We would like to mention some techniques which identify the mean functions
through some data-analytic procedures, for example, Blind Kriging [70] and Polynomial-chaos-
based Kriging [123]. However, one should bear in mind that such processes will add the
complexity of GP model and thus the computational cost, which may eventually outweigh
the increased accuracy. Some other variations of Kriging take advantage of the derivative
information, for example, the gradient-enhanced Kriging and Hessian-enhanced Kriging [2]
[38]. These techniques clearly have the potential of building more accurate predictions, at the
cost of increased size of the correlation matrix and more expensive parameter estimation.

In the parameter estimation process using MLE, all calculations should be performed in
logarithms to avoid issues with finite precision arithmetic. The correlation matrix R needs to
be inverted at various stages, e.g., evaluation of the regression coefficients by Equation 4.13,
the predictor by Equation 4.12, the MSE by Equation 4.14 or 4.15. The size of the correlation
matrix is (m×m) which increases with the number of design sites. Inversion of such a matrix
is well known to suffer from numerical instabilities, especially when two design sites are close,
resulting in very similar columns. To solve this problem, a widely used practice is to add a
small value τ2 to the diagonal entries of R, which is called the “nugget” or “jitter” Rii = 1+τ2.
Such a term serves as a noise factor and will prevent the interpolation of the training sites. It
is a convenient way to make sure the covariance matrix is always invertible by introducing
negligible errors.

When building the GP emulator, the training inputs are suggested to be scaled between 0
and 1, which correspond to minimum and maximum values from the training set, respectively.
Furthermore, the output data can be centralized and standardized so that they have mean 0 and
variance 1. Such data processing can reduce the arithmetic errors in matrix inversion and is
suggested in [4] [61] [63] [86].

Finally, like almost any other computational tools, an important question for GP is how does
the computational cost increase with the dimensionality. Intuitively higher dimension causes
more space between points and the number of training/design points will increase rapidly with
the number of inputs. However, in practice computer models never respond strongly to all of
their input parameters. Adaptive construction of the GP emulator is possible by progressively
assigning more training points to important dimensions which has less smoothness. It was
claimed in [104] that GP can be implemented effectively with up to 50 inputs. Considering the
booming computational power in the last decade, GP can deal with much higher dimensions
with modern computing platforms.
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Chapter 5

APPLICATION TO SIMPLIFIED
REACTOR SIMULATIONS

In this chapter, inverse UQ is applied to a simplified nuclear reactor simulation problem, the
Point Reactor Kinetics Equation (PRKE) coupled with lumped parameter TH feedback model.
Metamodel constructed by PCE is adopted during MCMC sampling and direct numerical
simulation is also performed as a reference solution. In this case, MCMC sampling using the
metamodel will only be evaluation of polynomials which has negligible computational cost.
The work presented in this chapter is also published in [149] [150] [159].

5.1 Problem Definition

In this Section, the simplified reactor simulation model used to demonstrate the inverse UQ
under the Bayesian framework is introduced, which is the PRKE coupled with lumped parameter
TH feedback model [64] [112]. Similar model has also been used in [51] to demonstrate forward
UQ capability of PCE. In the current research, we have elaborated this model to make it more
representative of a real Pressurized Water Reactor (PWR).

5.1.1 Simplified Reactor Simulation Model

The PRKE with lumped parameter TH feedback model describes the transient behavior of
the normalized power level p(t), the delayed neutron precursor concentrations C(t), and the
core effective fuel and coolant temperatures, Tfuel(t) and Tcool(t). The model employs the
standard neutron point kinetic equations and couples them to simple 0-D (core average) fuel
heat conduction and fluid energy balance models via the reactivity function. In this model, the
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reactivity depends on both fuel and coolant temperatures. The system of coupled nonlinear
ODEs is given by:

d p(t)
dt

=
ρ(t,Tfuel,Tcool)−β

Λ
p(t)+λC(t) (5.1)

dC(t)
dt

=
β

Λ
p(t)−λC(t) (5.2)

dTfuel(t)
dt

=
Ωpow

ρfuelcp,fuel
p(t)− 1

ρfuelcp,fuelR̂th
[Tfuel(t)−Tcool(t)] (5.3)

dTcool(t)
dt

=−2u
H

[
Tcool −T in

cool

]
+

Afuel

Aflow

1
ρcoolcp,coolR̂th

[Tfuel(t)−Tcool(t)] (5.4)

Note that only one-group effective delayed neutron is considered. Table 5.1 shows the
parameters definition and values used in the model.

The fuel and cladding material properties are based on LWR fuel and cladding properties
[154] [157]. The lumped parameter (i.e. averaging the unknown values over the whole domain)
description of the reactor fuel and coolant temperatures allows the elimination of the spatial
dependencies and therefore focuses on the time-dependent part. In the TH equations, the
thermal resistance R̂th accounts for the conduction through the fuel pellet, gap and cladding,
and the convection at the clad-coolant interface. The lumped fluid equation is based on an
enthalpy conservation for a fluid being advected and heated in a channel of hydraulic cross
sectional area Aflow. The convection heat transfer coefficient hconv is given by the Dittus-Boelter
correlation for turbulent-flow convection.

R̂th =
Afuel

2π
·
[

1
Rgaphgap

+
1

kclad
ln

Rfuel

Rgap
+

1
Rcladhconv(Tcool)

+
w

2kfuel(Tfuel)

]
(5.5)

hconv(Tcool) ·L
kcool(Tcool)

= 0.023×
[

ρcool(Tcool)uL
µcool(Tcool)

]0.8

×
[

cp,cool(Tcool)µcool(Tcool)

kcool(Tcool)

]0.4

(5.6)

The parameters used to calculate R̂th are shown in Table 5.2. Coolant properties ρcool(Tcool),
cp,cool(Tcool), µcool(Tcool) and kcool(Tcool) all depend on coolant temperature at a given constant
pressure. These properties are calculated using MATLAB water properties functions Xsteam.

In this model, the neutronics equations (the first two equations) are coupled to the TH equa-
tions (i.e., the last two equations) via the temperature dependent total reactivity ρ(t,Tfuel,Tcool)

that contains the external reactivity term (e.g., control rod movement), the fuel temperature
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Table 5.1 Parameters used in the PRKE coupled with lumped parameter TH feedback model

Variable Detail Unit Value

p(t) normalized nuclear reactor power p(0) = 1

C(t) normalized precursor concentration

ρ(t,Tfuel,Tcool) total reactivity

Tfuel(t) average fuel temperature K

Tcool(t) average coolant temperature K

λ decay constant of the precursor s−1 7.662e-02

β total delayed neutron fraction 6.500e-03

Λ neutron mean generation time s 5.596e-05

ρfuel(Tfuel) fuel density kg/m3

ρcool(Tcool) coolant density kg/m3 Xsteam

cp,fuel(Tfuel) fuel specific heat J/(kg ·K)

cp,cool(Tcool) coolant specific heat J/(kg ·K) Xsteam

Ωpow = P0/Vfuel
conversion factor from normalized

W/(m3) 3.530e+08
power p(t) into power densities

P0 total initial power in the entire core W

Vfuel fuel volume in the entire core m3

Afuel = πR2
fuel surface of fuel pin of radius Rfuel m2 5.281e-05

Aflow average flow area around a fuel pin m2 8.995e-05

R̂th fuel thermal resistance (m3 ·K)/W

u inlet coolant flow velocity m/s 5.0

H reactor height m 4.0

T in
cool coolant inlet temperature K 563.15

reactivity and the coolant temperature reactivity:

ρ(t,Tfuel,Tcool) = ρext −αD[Tfuel(t)−Tfuel(0)]−αc[Tcool(t)−Tcool(0)] (5.7)

In the above equation, ρext, αD and αc are external reactivity insertion, Doppler reactivity
coefficient and coolant temperature coefficient, respectively. These three parameters are treated
as uncertain input parameters in the model. The QoIs in this model are p(t), C(t), Tfuel(t) and
Tcool(t).
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Table 5.2 Parameters used to calculate R̂th

Variable Detail Unit Value

Rfuel single fuel pin radius m 0.0041

Rgap gap radius m 0.00411

Rclad clad radius m 0.00468

hgap gap conductance W/(m2 ·K) 1.0e+04

hconv(Tcool)
wall-coolant forced convection

W/(m2 ·K) Xsteam
heat exchange coefficient

L characteristic length m 0.02447

kfuel(Tfuel) fuel thermal conductivity W/(m ·K)

kclad(Tfuel) clad thermal conductivity W/(m ·K)

w

weighting factor used in the

4/9effective fuel temperature formula:

Tfuel = wT centerline
fuel +(1−w)T surface

fuel

kcool(Tcool) coolant thermal conductivity W/(m ·K) Xsteam
µcool(Tcool) coolant dynamic viscosity Pa · s Xsteam
P coolant pressure MPa 15.5

5.1.2 Uncertain Input Parameters

For forward UQ with both MC sampling and PCE, prior uncertainties are required. The three
random input parameters are modelled as lognormal random variables because we want them to
be strictly positive (even though in reality they do not have to be positive). Normal distributions
are avoided here because all of the three input parameters have very small mean values, and
they can easily fall into the negative part if modelled as Gaussian. By this lognormal definition,
we will be able to see a transient in which the power will increase very fast during a short
time period and then the system will go to a new steady state because of the negative reactivity
feedback from the fuel and coolant.

Table 5.3 Priors of three random input parameters “std” represents standard deviation)

Parameters
Prior 1 Prior 2 Prior 3

mean std/mean mean std/mean mean std/mean

ρext 0.8 ·ρext,0 20% 0.8 ·ρext,0 10% 1.1 ·ρext,0 20%

αD 0.8 ·αD,0 40% 0.8 ·αD,0 20% 1.5 ·αD,0 40%

αc 0.8 ·αc,0 40% 0.8 ·αc,0 20% 1.5 ·αc,0 40%
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Three different priors are considered here and they are shown in Table 5.3. They will
be referred to as Prior 1, Prior 2 and Prior 3. In Table 5.3, ρext,0 = β , αD,0 = 3.18×10−3β ,
αc,0 = 8.2186×10−3β are reference values used in [64]. Prior 1 and Prior 2 have the same
mean values but different variances, while Prior 3 has different mean values. Figure 5.1 shows
the comparison of PDFs based on the priors.
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Fig. 5.1 Prior PDFs of three lognormal distributed random input parameters.

5.2 Formulation of Stochastic Problem by PCE

5.2.1 Approximate Uncertain Input Parameters with PCE

To construct the stochastic version of the model using PCE, first the random input quantities
are approximated using the PCE in the following way:

ρext(ξ1) =
P

∑
i=0

ρ
i
extΨi(ξ1) (5.8)

αD(ξ2) =
P

∑
i=0

α
i
DΨi(ξ2) (5.9)

αc(ξ3) =
P

∑
i=0

α
i
cΨi(ξ3) (5.10)

Hermite orthogonal polynomials are chosen in this problem. The reason is that lognormal
PDFs are close to normal PDFs in shape, so we expect a relatively low order expansion in
Hermite polynomials to be accurate. Note that right now we are ignorant of the distributions of
the four QoIs. We can still use the Hermite polynomials and if QoIs are not Gaussian we will
obtain a slower convergence.
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The question now is how to approximate lognormal random variables with Hermite polyno-
mials? We start with a general case in which k is an arbitrary type random variable that we want
to approximate with orthogonal polynomials {Ψi(ξ )}P

i=0, where ξ is another random variable.

k =
P

∑
i=0

kiΨi(ξ ) (5.11)

To solve for the expansion coefficients {ki}P
i=0 we start with the spectral projection.

ki =
⟨k,Ψi⟩〈

Ψ2
i
〉 =

1〈
Ψ2

i
〉 ∫ kΨi(ξ )g(ξ )dξ , i = 0,1,2, . . . (5.12)

where g(ξ ) is the weighting function for the chosen orthogonal polynomials. In order to
conduct the above projection, we need to transform the full correlated random variable k and
ξ to the same probability space. Recall that the inverse CDF of any distribution follows the
uniform distributions u ∈ U(0,1). Define the PDFs for k and ξ as f (k) and g(ξ ) respectively:

du = f (k)dk = dF(k)

du = g(ξ )dξ = dG(ξ )

where F(k) and G(ξ ) are the CDFs for k and ξ respectively:

F(k) =
∫ k

−∞

f (t)dt

G(ξ ) =
∫

ξ

−∞

g(t)dt

Since we are transferring k and ξ to the same uniform random variable u ∈ U(0,1):

k = F−1(u)

ξ = G−1(u)

ki =
1〈

Ψ2
i
〉 ∫ kΨi(ξ )g(ξ )dξ =

1〈
Ψ2

i
〉 ∫ 1

0
F−1(u)Ψi

(
G−1(u)

)
du (5.13)

Once we have chosen the orthogonal polynomials {Ψi(ξ )}P
i=0,

〈
Ψ2

i
〉

will be known by
simple numerical integration. To evaluate the above integral, we can use MC sampling or
Gaussian quadrature rules easily.

Tables 5.4 - 5.6 show the PCE modes for the three lognormal input parameters using
Hermite polynomials, for different priors and up to order 10 (for one variable, number of PCE
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modes equals polynomial order plus one). Data in Table 5.4 - 5.6 are visualized in Figure 5.2.
It can be seen that by increasing polynomial order, the expansion modes decay quickly to zero,
indicating that we do not need such high order PCE to approximate these lognormal input
parameters.

Table 5.4 PCE modes for three lognormal input parameters, Prior 1

Modes index ρext αD αc

0 5.20E-03 1.65E-05 4.27E-05
1 1.03E-03 6.37E-06 1.65E-05
2 1.02E-04 1.23E-06 3.17E-06
3 6.51E-06 1.56E-07 4.02E-07
4 -1.77E-08 1.25E-08 3.23E-08
5 -2.50E-07 -1.19E-09 -3.09E-09
6 -2.36E-07 -1.61E-09 -4.15E-09
7 -9.66E-08 -8.41E-10 -2.17E-09
8 -5.03E-08 -3.43E-10 -8.86E-10
9 -1.01E-08 -8.69E-11 -2.25E-10
10 -1.57E-09 -1.04E-11 -2.70E-11

Table 5.5 PCE modes for three lognormal input parameters, Prior 2

Modes index ρext αD αc

0 5.20E-03 1.65E-05 4.27E-05
1 5.19E-04 3.27E-06 8.46E-06
2 2.58E-05 3.24E-07 8.37E-07
3 7.63E-07 2.07E-08 5.35E-08
4 -2.27E-07 -5.62E-11 -1.45E-10
5 -1.18E-07 -7.94E-10 -2.05E-09
6 -1.74E-07 -7.52E-10 -1.94E-09
7 -4.39E-08 -3.07E-10 -7.94E-10
8 -3.78E-08 -1.60E-10 -4.13E-10
9 -4.61E-09 -3.21E-11 -8.29E-11
10 -1.21E-09 -5.01E-12 -1.29E-11

Figure 5.3 shows the convergence of approximation of the prior mean values and standard
deviations by Hermite polynomials up to PCE of order 5. Y-axis is the absolute difference
between PCE approximation and true values shown in Table 5.3. It can be seen that increasing
the PCE order does not improve the mean value since the error is already extremely small with
order 1. The approximation error of standard deviations stops decreasing at order 3. In the
following analysis, PCE of order 3 will be used to solve for the expansion modes for the three
random input parameters.
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Table 5.6 PCE modes for three lognormal input parameters, Prior 3

Modes index ρext αD αc

0 7.15E-03 3.10E-05 8.01E-05
1 1.42E-03 1.19E-05 3.09E-05
2 1.40E-04 2.30E-06 5.94E-06
3 8.95E-06 2.92E-07 7.54E-07
4 -2.43E-08 2.35E-08 6.06E-08
5 -3.43E-07 -2.24E-09 -5.79E-09
6 -3.25E-07 -3.01E-09 -7.78E-09
7 -1.33E-07 -1.58E-09 -4.07E-09
8 -6.91E-08 -6.43E-10 -1.66E-09
9 -1.39E-08 -1.63E-10 -4.21E-10
10 -2.16E-09 -1.96E-11 -5.06E-11
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Fig. 5.2 PCE modes for approximation of uncertain input parameters with Hermite polynomials

5.2.2 Derivation of the Stochastic Version of the Model

Once we have the PCE modes for the random input parameters, we can perform similar
expansion for the four QoIs, with ξξξ = [ξ1,ξ2,ξ3]

⊤:

p(t,ξξξ ) =
P

∑
i=0

pi(t)Ψi(ξξξ ) (5.14)

C(t,ξξξ ) =
P

∑
i=0

Ci(t)Ψi(ξξξ ) (5.15)

Tfuel(t,ξξξ ) =
P

∑
i=0

T i
fuel(t)Ψi(ξξξ ) (5.16)

Tcool(t,ξξξ ) =
P

∑
i=0

T i
cool(t)Ψi(ξξξ ) (5.17)
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Fig. 5.3 Convergence of the approximations of prior mean values and standard deviations by
PCE up to polynomial order 5

Note that in the previous subsection three input parameters (ρext, αD and αc) are expanded
with three i.i.d. standard Gaussian random variables (ξ1,ξ2,ξ3), respectively, because they are
mutually independent. However, when solving for the expansion of the four QoIs, they should
depend on all of the three standard Gaussian random variables. That’s why ξξξ = [ξ1,ξ2,ξ3]

⊤ is
used.

Substituting the above expansions into the PRKE coupled system of ODEs and projecting
the four equations on the sth Hermite polynomial for s = 0,1, ...,P, we obtain:

d ps(t)
dt

=−β

Λ
ps(t)+λCs(t)+

1
Λ

P

∑
i=0

P

∑
j=0

Ti js
[
ρ

i
ext +Tfuel(0)α i

D +Tcool(0)α i
c
]

p j(t)

− 1
Λ

P

∑
i=0

P

∑
j=0

P

∑
l=0

Ti jls

[
α

i
DT l

fuel(t)+α
i
cT l

cool(t)
]

p j(t) (5.18)

dCs(t)
dt

=
β

Λ
ps(t)−λCs(t) (5.19)

dT s
fuel(t)
dt

=
Ωpower

ρfuelcp,fuel
ps(t)− 1

ρfuelcp,fuelR̂th
[T s

fuel(t)−T s
cool(t)] (5.20)

dT s
cool(t)
dt

=
Afuel

Acool

1
ρcoolcp,coolR̂th

[T s
fuel(t)−T s

cool(t)]−
2u
H

[
T s

cool(t)−T in
cool ·δ0s

]
(5.21)
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The derivation is presented in Appendix B. The new system of ODEs is P times larger than
the original system of ODEs. They can be solved by classical Runge-Kutta methods. It has to
be mentioned that the model analyzed in the current research is not computationally prohibitive
(each simulation takes less than one second) and it is only used to demonstrate the applicability
of PCE as a metamodel. We are able generate up to 50,000 MCMC samples in an acceptable
time period using direct model simulation, which serves as a reference solution to those using
PCE surrogates.

5.3 Forward UQ Results

In this part, forward UQ results are presented. The simulation results for the four QoIs are first
shown at the nominal values of three random input parameters to demonstrate the transient
evolution of the model. Then the mean values and standard deviations from MC sampling and
PCE are compared.

5.3.1 Simulation Results at Nominal Values of Uncertain Input Parame-
ters

We assume that the system starts from the following initial conditions:

p(t = 0) = p0 = 1.0

C(t = 0) =
β

λΛ
p0

Tfuel(t = 0) = Tcool(0)+Ωpow · R̂th · p0

Tcool(t = 0) = T in
cool +

H
2u

· Afuel

Aflow
· Ωpow p0

ρcoolcp,cool

Figures 5.4 and Figure 5.5 show the simulation results at nominal values of the three
uncertain input parameters. Prior 1 and Prior 2 have the same results as the mean values are the
same. With the introduction of external reactivity, the power quickly increases to about 4 and
10 times of the initial state. Consequently, the fuel and coolant temperature increase introduces
negative feedback to counter-interact the external reactivity, and the power returns to a new
lower value. The increase in coolant temperature is small and the negative reactivity feedback
caused by the coolant is negligible, which causes the system to be insensitive to the coolant
temperature coefficient αc.
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Fig. 5.4 Reactivity evolutions at nominal values of the uncertain input parameters

time (s)
0 0.2 0.4 0.6 0.8 1

p

0

2

4

6

8

10

time (s)
0 0.2 0.4 0.6 0.8 1

C

1500

1550

1600

1650

1700

1750

time (s)
0 0.2 0.4 0.6 0.8 1

T
f
u
el

(K
)

800

850

900

950

1000

time (s)
0 0.2 0.4 0.6 0.8 1

T
co

ol
(K

)

582

584

586

588

590

592

prior 1
prior 2
prior 3

Fig. 5.5 Simulation results of four QoIs at nominal values of the uncertain input parameters

5.3.2 Forward UQ Results with PCE

In this part the superiority of PCE for forward UQ is shown. Given the prior uncertainties for
three random inputs, we perform PCE with intrusive Galerkin projection approach up to order
5 to solve for the modes. Table 5.7 shows the number of PCE terms required with order 1 to 5,
for the current problem with three uncertain input parameters.

Table 5.7 Number of terms required by PCE of order 1 to 5

PCE order 1 2 3 4 5

Number of terms 4 10 20 35 56
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Figure 5.6 shows the convergence of mean values and standard deviations of four QoIs by
MC sampling at the peak power time (∼0.1s) using Prior 1 (Prior 2 and Prior 3 have similar
results). Y axis is the absolute change in mean and standard deviation when more samples are
added. 5000 samples are sufficient to produce a good reference solution to mean and standard
deviations as the absolute changes are already very small. The large fluctuations in Figure 8 are
caused by the high sensitivity of the model to input parameters, especially ρext. As shown in
Figure 5.5, changing from Prior 1 to Prior 3 causes the peak power to increase from 4 times
to 10 times of the initial value. If a certain MC sample has high ρext value and small αD and
αc values (causing small negative feedback), the QoI mean and standard deviation will have a
larger absolute change, resulting in fluctuations in Figure 5.6.
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Fig. 5.6 Convergence of the mean values and standard deviations for four QoIs using MC
sampling, Prior 1

Figure 5.7 shows the comparison of the mean values for four QoIs predicted by the MC
sampling and PCE with order up to 5 for different priors. Here we only compare results at 21
time points which are uniformly distributed between 0 and 1 second. There is an excellent
agreement of these results. PCE can accurately predict the mean values even at a very low
expansion order.

Figure 5.8 shows the comparison of the standard deviations for four QoIs predicted by
the MC sampling and PCE with order up to 5 for different priors. For p (normalized power)
and C (delay neutron precursors) the PCE predicted standard deviations converge to the MC
sampling values, while for Tfuel and Tcool PCE predictions converge to values that are slightly
different than MC sampling standard deviations. They are likely to be caused by the PCE low
order truncation in both inputs and outputs. The ODEs for Tfuel and Tcool include many material
properties that depend on Tfuel and Tcool themselves, causing them to be more sensitive to small
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Fig. 5.7 Mean values of four QoIs by MC sampling and PCE (lines with no symbols are for
Prior 1; lines with “+” symbols are for Prior 2; lines with “o” symbols are for Prior 3)
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Fig. 5.8 Standard deviations of four QoIs by MC sampling and PCE (lines with no symbols are
for Prior 1; lines with “+” symbols are for Prior 2; lines with “o” symbols are for Prior 3)

errors than p and C, which are only affected by Tfuel and Tcool. However, these discrepancies
are very small compared to the mean values of those QoIs.

Note that PCE of order higher than 2 is already converged, their mean values and standard
deviations are practically indistinguishable. Figure 5.9 shows the PCE modes of different PCE
orders for the four QoIs at the peak power time (∼0.1s) using Prior 1 (Prior 2 and Prior 3 have
similar results). It is shown that:
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1. Low-index of higher order PCE modes overlap with lower order PCE modes. For
example, PCE of order 2 (pink symbols) have 10 terms, but the first 4 terms are the same
as PCE of order 1 (blue symbols). Similar results can be observed for PCE of order 3-5.

2. The PCE modes are very close to 0 above order 2. This explains the fact that increasing
the PCE order does not improve the results since all the higher-order coefficients are
approaching 0.
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Fig. 5.9 PCE modes at peak power time for four QoIs, Prior 1

Comparing the mean values and standard deviations produced by PCE and MC sampling,
it is found that even at a low order of 2, PCE produces mean values and standard deviations
very close to the MC sampling. Here, the MC sampling requires solving the original system of
ODEs 5000 times. The PCE technique, however, requires solving the new system of ODEs only
once. The new system of ODEs, as mentioned before, is P times larger than the original system
of ODEs, where (P+1) can be found in Table 5.7. The simulation time for MC sampling with
5000 samples is 43 minutes, while the simulation time for PCE order 1 to 5 ranges from less
than 1 second to 9 seconds.

Application of PCE for forward UQ means approximating model QoIs as polynomial
functions of random input parameters. Such functions have demonstrated that they can success-
fully represent the stochastic nature of the outputs in terms of their mean values and standard
deviations. The PCE essentially constitutes a metamodel of the original problem and can be
used as surrogates during the inverse UQ process.
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5.4 Inverse UQ Results

In this Section, we will demonstrate the application of PCE as metamodel for the inverse UQ
process. First, synthetic experimental data of the fuel temperature Tfuel is introduced, which
is intentionally designed to be different from simulation results. The purpose is to test if the
inverse UQ process is capable of quantifying the uncertainties (mean, variances and PDFs) of
the three random input parameters given the (synthetic) experimental data. Direct simulation is
also performed to provide a reference solution.

5.4.1 Synthetic Experimental Data

Note that the σ term in the posterior definition is the standard deviation of the measurement
error, and it can be different for each measurement points. The measurement error is assumed
to be 0.5% of the measurement values. Since Tfuel mean values (Figure 5.7) are around 1000K,
this corresponds to ±5K measurement noise, which is a realistic choice. Even though we
expect this term to be reported with the experimental data, there can be a mistake in the reported
value or in some cases it will be missing. Therefore, three different σ values are tested, they
are σexp,1 = 0.5%, σexp,2 = 1.0% and σexp,3 = 0.25%.

Synthetic experimental data for Tfuel is shown in Figure 5.10, together with the simulation
results at nominal values of the three random inputs from different priors. The synthetic
experimental data is generated at ρext,0, αD,0 and αc,0 plus Gaussian random perturbation with
standard deviation σexp,1 (percentage of mean values).
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5.4.2 Convergence of MCMC Samples

50,000 MCMC samples were generated by direct simulation, as well as PCE metamodels of
order 1 to 5. Table 5.8 shows the time used to generate 50,000 MCMC samples. PCE surrogates
only involve polynomial evaluations and the time is reduced by 2-3 orders of magnitude
compared with the direct simulation. In practical situation, where a single direct simulation
takes hours to days, the computational time will be reduced by much larger orders of magnitude.

Table 5.8 Time taken to generate 50,000 MCMC samples

Models used in MCMC Time (minutes)

Direct simulation 425.0
PCE surrogate order 1 0.6
PCE surrogate order 2 1.2
PCE surrogate order 3 2.3
PCE surrogate order 4 4.3
PCE surrogate order 5 7.2

Table 5.9 shows all the 5 cases considered for inverse UQ and each case includes running
PCE metamodels from order 1 to 5. By comparing cases A, B and C, we can evaluate the
influence of using different σexp’s on the posterior. By comparing cases A, D and E, we can see
the influence of using different priors on the posterior.

Table 5.9 Difference cases considered for MCMC sampling

Cases Direct simulation PCE surrogates

A σexp,1 Prior 1, σexp,1

B σexp,2 Prior 1, σexp,2

C σexp,3 Prior 1, σexp,3

D σexp,1 Prior 2, σexp,1

E σexp,1 Prior 3, σexp,1

For each case (A - E) and each simulation type (full model direct simulation, or PCE
metamodels of order 1 - 5), the first 10,000 of 50,000 MCMC samples are discarded for
burnin. Burnin [44] is the practice of throwing away some iterations at the beginning of a
Markov chain. Burnin is intended to give the Markov chain time to reach its equilibrium
distribution, as starting from a “bad” point may over-sample regions that are actually very low
probability under the equilibrium distribution. Because consecutive samples in a Markov chain
are dependent, “thinning” is also performed to reduce auto-correlation among the samples,
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Fig. 5.11 Trace plots and auto-correlation functions of the Markov chain from direct simulation
of Case A

which means discarding all but every kth sample. For the current research, we choose k = 10
for thinning of the chain, leaving us with 4000 samples.

Figure 5.11 shows the trace plot and auto-correlation function (ACF) for the Markov chains
for case A using direct simulation. The other Markov chains show similar behavior so they are
not reported here. The trace plot shows a good mixing of the Markov chain. The fast decay of
the Markov chain ACF after thinning also indicates a good mixing, which is consistent with the
trace plot. Figure 5.12 shows the convergence of means and standard deviations of ρext, αD

and αc that is similar to Figure 5.6. Figure 5.12 shows that it is sufficient to use 50,000 MCMC
samples because the mean values and standard deviations converged.
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5.4.3 Bayesian Solution for Posterior Statistical Moments

The MCMC samples (after burnin and thinning) will be analyzed to look at the statistical
moments (mean values and standard deviations) and PDFs. Table 5.10 - 5.12 present the mean
values and standard deviations for the posteriors of three random input parameters for all 5
cases. The same data sets are plotted in Figure 5.13 - 5.15. In all the tables and figures, “Direct”
refers to full model direct simulation, and “PCE #” means using PCE metamodel of order #.

Table 5.10 Statistical moments of the posteriors for External reactivity insertion ρext

Cases moments PC-1 PC-2 PC-3 PC-4 PC-5 Direct

Case A
mean 6.36E-03 6.32E-03 6.55E-03 6.48E-03 6.49E-03 6.48E-03
std 1.58E-04 8.89E-05 9.83E-05 1.18E-04 9.60E-05 8.47E-05

Case B
mean 6.84E-03 6.18E-03 6.65E-03 6.44E-03 6.45E-03 6.38E-03
std 2.98E-04 1.96E-04 2.87E-04 2.12E-04 2.00E-04 1.74E-04

Case C
mean 6.66E-03 6.32E-03 6.59E-03 6.54E-03 6.51E-03 6.52E-03
std 1.21E-04 5.73E-05 5.15E-05 4.67E-05 4.37E-05 4.13E-05

Case D
mean 6.33E-03 6.52E-03 6.51E-03 6.53E-03 6.52E-03 6.46E-03
std 2.46E-04 3.83E-05 4.38E-05 4.05E-05 4.42E-05 8.50E-05

Case E
mean 6.22E-03 6.42E-03 6.51E-03 6.52E-03 6.54E-03 6.50E-03
std 1.10E-04 6.61E-05 6.12E-05 6.54E-05 6.52E-05 8.49E-05

Table 5.11 Statistical moments of the posteriors for Doppler reactivity coefficient αD

Cases moments PC-1 PC-2 PC-3 PC-4 PC-5 Direct

Case A
mean 2.10E-05 2.01E-05 2.03E-05 1.97E-05 1.96E-05 2.06E-05
std 3.40E-06 1.01E-06 1.06E-06 1.16E-06 1.97E-06 1.32E-06

Case B
mean 3.81E-05 1.76E-05 2.36E-05 1.88E-05 1.87E-05 1.82E-05
std 5.28E-06 2.52E-06 5.54E-06 3.03E-06 2.30E-06 3.01E-06

Case C
mean 3.16E-05 1.99E-05 2.03E-05 2.08E-05 2.11E-05 2.16E-05
std 4.05E-06 8.78E-07 5.35E-07 4.67E-07 5.15E-07 6.12E-07

Case D
mean 1.87E-05 2.18E-05 2.03E-05 2.05E-05 2.04E-05 2.02E-05
std 1.24E-05 1.14E-06 1.08E-06 1.27E-06 1.21E-06 1.39E-06

Case E
mean 2.44E-05 2.18E-05 2.17E-05 2.20E-05 2.22E-05 2.08E-05
std 1.51E-06 7.33E-07 7.98E-07 7.59E-07 7.68E-07 1.35E-06

The “true” values at which to generate the synthetic experimental Tfuel data are ρext,0 =

6.500×10−3, αD,0 = 2.067×10−5 and αc,0 = 5.342×10−5. By analyzing the posterior mean
values for ρext, αD and αc, the following can be summarized:

1. The mean values of PCE metamodels generally approach the solutions of direct simula-
tion at higher order.
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Table 5.12 Statistical moments of the posteriors for coolant temperature coefficient αc

Cases moments PC-1 PC-2 PC-3 PC-4 PC-5 Direct

Case A
mean 5.48E-04 3.00E-04 3.04E-05 4.17E-05 4.30E-05 3.87E-05
std 8.38E-04 4.63E-04 1.19E-04 1.81E-05 3.17E-05 2.57E-05

Case B
mean 6.60E-02 1.64E-02 2.52E-03 5.44E-05 6.39E-05 9.67E-05
std 8.04E-02 1.87E-02 4.56E-03 1.17E-04 3.01E-05 6.60E-05

Case C
mean 2.55E-03 1.96E-05 2.18E-05 2.35E-05 2.81E-05 1.46E-05
std 2.87E-03 1.09E-05 1.59E-05 2.46E-05 7.96E-06 1.12E-05

Case D
mean 2.06E-02 5.98E-03 5.03E-04 3.31E-04 7.15E-05 4.59E-05
std 4.34E-02 8.49E-03 8.75E-04 6.88E-04 1.15E-04 2.86E-05

Case E
mean 9.76E-04 7.25E-04 2.75E-04 1.58E-04 1.19E-04 3.68E-05
std 1.10E-03 1.09E-03 3.24E-04 3.24E-04 1.66E-04 2.67E-05
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Fig. 5.13 Comparison of mean values and standard deviations for ρext
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2. The mean values using different priors (cases A, D, E) are very close to each other,
especially if we look at direct simulations and PCE surrogates of order higher than 3.
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3. Solutions using different σexp values are also very close to each other, especially for ρext

and αD. For αc the posterior mean values using different σexp are less close.

4. Finally, for ρext and αD the mean values from inverse UQ are very close to “true”
(synthetic) values of ρext,0 and αD,0. The results for αc are not close to αc,0 for many
cases. The reason is that the model is not sensitive to this parameter. The inverse UQ
process is unable to quantify its value.

The agreement for the posterior standard deviations is less obvious. But again it can be
observed that the results of direct simulation and high order PCE metamodels are close for ρext

and αD, and less satisfactory for αc.

5.4.4 Bayesian Solution for Posterior PDFs

Figures 5.16 - 5.20 show the posterior PDFs of ρext, αD and αc, for cases A - E. This is another
way to check if the posterior solutions with PCE surrogates will converge to the posterior
solutions by direct simulation. If we can confirm this, real models that are computationally pro-
hibitive (hours to days for a single simulation) can be confidently substituted by a metamodels
constructed by the PCE or other stochastic spectral techniques.

Based on Figure 5.16 - 5.20, it is obvious that with the increasing of PCE order the solutions
with PCE surrogates converge to the solution with direct simulation. There are some minor
exceptions, and sometimes the convergence is not monotonic with PCE order. Nonetheless, the
solutions by PCE surrogates up to order 5 demonstrate excellent accuracy and efficiency if we
take the execution time into consideration.

An important question that remains is: what is the relationship between a prior and its
corresponding posteriors? Figure 5.21 shows the comparison of priors 1 - 3 and posteriors A -
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Fig. 5.16 Posterior PDFs for ρext, αD and αc, case A
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Fig. 5.17 Posterior PDFs for ρext, αD and αc, case B

E. Posterior results are from PCE surrogate of order 5, which are close to results from direct
simulations.

From Figure 5.21 it can be seen that:

• For all three parameters ρext, αD and αc, posteriors A, D and E are very close. This is
desirable because it means that we will arrive at the same posterior solution with the
inverse UQ no matter what prior we start with. Therefore, whenever we want to do
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Fig. 5.18 Posterior PDFs for ρext, αD and αc, case C
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Fig. 5.19 Posterior PDFs for ρext, αD and αc, case D

inverse UQ for a new model given experimental data, we can start with a prior that better
reflect our ignorance about the input uncertainty.

• Posteriors A, B and C are different, indicating that σexp values do have important influence
during the inverse UQ process. Larger σexp values (σexp,2 for posterior B) results in larger
posterior variance, while smaller σexp values (σexp,3 for posterior C) results in smaller
posterior variance.
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Fig. 5.20 Posterior PDFs for ρext, αD and αc, case E
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Fig. 5.21 Comparison of prior and posterior PDFs

• For ρext, posterior uncertainties are much less than prior uncertainties (smaller variance),
which means our ignorance about this parameter is greatly reduced. The results for αD

are less satisfactory (posterior B has large variance) but still acceptable.
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• The results for αc are not as good because the posteriors have larger variance than priors.
It has been mentioned earlier in the chapter that the model is insensitive to this uncertain
input parameter because the change in coolant temperature is very small. Inverse UQ
process failed to reduce the uncertainty associated with αc.

On the other hand, if the model is insensitive to certain uncertain input parameter, it is
meaningless to try to reduce its uncertainty since the model can have close QoIs with a wide
range of this parameter. Therefore, it is reasonable to hold a wider uncertainty range to better
reflect our ignorance about this parameter.

5.5 Validation Results

Now that the posterior distributions for ρext, αD and αc has been calculated by the inverse
UQ process, they can be used instead of the priors (expert judgements) in a new forward UQ
process. And this time we would like to see if the updated uncertainties (posterior A - E) in
the three uncertain input parameters will produce outputs that agree better with the synthetic
experimental data.

By looking at Figure 5.21, it is obvious that the posterior PDFs of all three random input
parameters have shapes that are close to Gaussian distributions. Therefore, for the new forward
UQ process (based on posterior), we can model the three input parameters as normal instead of
lognormal. Again, we use PCE for the new forward UQ process since it has been demonstrated
to have an excellent accuracy and efficiency. Note, that if we approximate normal random
variable with Hermite polynomials, an expansion of order 1 will be exact:

I(ξ ) =
P

∑
i=0

Ii
Ψi(ξ ) =

1

∑
i=0

Ii
Ψi(ξ ) = I0 + I1

ξ

The reason is that all we need to characterize a normal random variable is its mean value
and standard variation, which are I0 and I1, respectively. Here ξ is a standard normal random
variable ξ ∼N(0,1).

Figure 5.22 and Figure 5.23 show the mean values and standard deviations, respectively,
for the new forward UQ process based on posteriors A - E. It is found that the mean values
are very close for different posteriors. Standard deviations based on posterior A, D and E are
close but they are very different with posterior B and C. This is because posterior B has larger
variance for ρext, αD and αc while posterior C has smaller variance.

Finally, Figure 5.24 shows the comparison of synthetic experimental data with the forward
UQ results based on posteriors A - E. The dashed lines are the upper and lower error bounds
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Fig. 5.22 Mean values of four QoIs based on posteriors from case A - E

Time (s)
0 0.2 0.4 0.6 0.8 1

p

0

0.2

0.4

0.6

0.8

1

Time (s)
0 0.2 0.4 0.6 0.8 1

C

0

5

10

15

20

25

30

Time (s)
0 0.2 0.4 0.6 0.8 1

T
f
u
el

(K
)

0

5

10

15

20

25

Time (s)
0 0.2 0.4 0.6 0.8 1

T
co

ol
(K

)

0

0.2

0.4

0.6

0.8

1

1.2

posterior A
posterior B
posterior C
posterior D
posterior E

Fig. 5.23 Standard deviations of four QoIs based on posteriors from case A - E

which are calculated by adding and subtracting the standard deviations from the mean values.
The following conclusion can be made about validation based on Figure 5.24:

1. By using the posterior uncertainties, the agreement between the mean values and the
synthetic experimental data is greatly improved for all 5 cases.

2. The synthetic experimental data falls within one standard deviations of the simulation
results for posteriors A, B, D and E. Posterior C result has the smallest standard deviation
such that it fails to envelop some data points.
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Fig. 5.24 Comparison of fuel temperature synthetic experimental data with simulation results
based on posteriors

We can do another inverse UQ process, using the current posteriors as new priors until
the uncertainty cannot be reduced any further. For a general uncertain PDE/ODE model, it is
suggested to choose a less informative prior (one with larger variance) and repeat the inverse
UQ process until the uncertainty in input parameters cannot be reduced.

5.6 Discussions

The application in this chapter has some limitations even though satisfactory results have been
achieved:

1. Galerkin-PCE as surrogate model only works for special cases when we know the exact
functional form the computer model. We have to re-code the model in an intrusive way.
For complex real world applications when we need to treat the computer code as a black
box, Galerkin-PCE cannot be used. However, NISP can be used to solve for the PCE
coefficients, but we may not achieve a optimal rate of convergence.

2. The PRKE coupled with lumped parameter TH feedback model is only used to demon-
strate the idea of inverse UQ in the Bayesian framework. For more sophisticated ap-
plications, the metamodeling technique will change, while the general procedure of
performing inverse UQ remains the same.
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Chapter 6

APPLICATION TO TRACE PHYSICAL
MODEL PARAMETERS

In this chapter, the uncertainties associated with physical model parameters of system TH
analysis code TRACE [138] will be quantified, based on steady-state void fraction data from
the international OECD/NRC BWR Full-size Fine-Mesh Bundle Tests (BFBT) benchmark
[98]. The inverse UQ process adopts metamodels built with Sparse Grid Stochastic Collocation
(SGSC) method. Starting with 36 physical model parameters, we performed SA to identify
5 significant parameters for inverse UQ. This research addresses the problem of lacking
uncertainty information about TRACE physical input parameters, which has been often ignored
or described using expert opinion or personal judgment in prior uncertainty and SA work. The
work presented in this chapter is also published in [152] [156] [158].

6.1 Problem Definition

For best-estimate system TH codes, significant uncertainties also come from the closure
laws (also known as correlations or constitutive relationships) which are used to describe the
transfer terms in the balance equations. For example, the physics portrayed in TRACE [138]
is simulated by a two-fluid model for the two-phase flow, for which a number of constitutive
and closure models must be used for model completeness. These physical models govern the
mass, momentum and energy exchange between the fluid phases and surrounding medium
(walls), varying according to the type of two-phase flow regime. When the closure models were
originally developed, their accuracy and reliability were studied with a particular experiment.
However, once they are implemented in a TH code as empirical correlations and used for
prediction of different physical systems, the accuracy and uncertainty characteristics of these
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correlations are no longer known to the code user. Previously in the uncertainty and sensitivity
study of such codes, physical model uncertainties are simply ignored, or described using expert
opinion or self-judgment. This necessitates the work to accurately quantify the uncertainties in
physical models of best-estimate system codes like TRACE [138] and RELAP5 [36].

6.1.1 Overview of System TH Analysis

In nuclear engineering, “system codes” are computer codes that are used to analyze complex
reactor systems during normal operations as well as accident or transient conditions, especially
for the TH analysis. A typical system TH code consists of the capabilities to model the reactor
components, such as pipes, pressurizers, valves, and pumps, as well as multiple phase flows
within the hydrodynamic models.

The history of system TH codes dates back to the beginning of the 1970s when first system
code utilized the homogeneous equilibrium model with three balance equations to describe the
two-phase flow [109]. Nowadays the most advanced system TH codes are built upon solutions
of the so-called “two-phase two-fluid model” which results in at least six balance equations.
The two-phase two-fluid model consists of mass, momentum and energy conservation equations
for fluid and vapor phases separately supplemented by a suitable set of constitutive equations.
The number of constitutive equations required to close the equation system is dependent on the
number of balance equations. Furthermore, two-phase flows consist of different flow regimes
based on their appearance and the flow structure. The regimes are used to select appropriate
closure relationships to model heat transfer, interfacial drag, and other flow conditions.

Some of the most famous system TH codes are TRACE [138] (TRAC/RELAP Advanced
Computational Engine), RELAP5 [36] (Reactor Excursion and Leak Analysis Program), ATH-
LET [16] (Analysis of THermal-hydraulics of LEaks and Transients), CATHARE [11] [33].
See reviews of system TH codes in [109] [116] [117]. Also, detailed comparison of the afore-
mentioned system TH codes are presented with respect to their (1) conservation equations, flow
regimes, numerics and significant assumptions [116], and (2) closure relations, validation, and
limitations [117].

Major challenges for current system TH modeling are caused by our lack of understanding
and proper techniques to model the interaction mechanism at the interface between the liquid
and vapor phases. Empirical correlations are widely used to model the interfacial transfer mech-
anism (especially the interfacial momentum transfer). Consequently, substantial uncertainties
can be propagate from these correlations to predictions of two-phase tow-fluid model.
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6.1.2 TRACE Physical Model Parameters

TRACE [138] has been designed to perform best-estimate analyses of loss-of-coolant accidents
(LOCAs), operational transients, and other accident scenarios in PWRs and boiling water
reactors (BWRs). It can also model phenomena occurring in experimental facilities designed to
simulate transients in reactor systems.

TRACE takes a component-based approach to modeling a reactor system. Each physical
piece of equipment in a flow loop can be represented as some type of component, and each
component can be further nodalized into a number of physical volumes (also called cells) over
which the fluid, conduction, and neutron kinetics equations are averaged.

TRACE uses the two-fluid six-equation two-phase flow model that solves the conservation
equations for mass, momentum and energy for the separate liquid and vapor phases of water
with a common pressure field. For non-condensible phases in vapor, mixture equations for the
conservation of momentum and energy are utilized. For these conservation equations, additional
closure laws and constitutive relations are required to obtain a closed solution, which results in
ten parameters that must be modeled: interfacial area, interfacial mass transfer, interfacial drag,
liquid and vapor wall drag, interfacial liquid and vapor heat transfer, liquid-to-vapor sensible
heat transfer coefficient, and the wall liquid and vapor heat transfer coefficients.

TRACE version 5.0 Patch 3 [138] includes options for user access to 36 physical model
parameters from the input file. See Appendix C for a complete list of the 36 parameters and
their descriptions. For forward uncertainty propagation, the users are free to perturb these
parameters by addition or multiplication according to their personal or expert judgment. The
work presented in this chapter will inversely quantify the uncertainties of the parameters
relevant to the considered experimental data using SGSC metamodel by MCMC sampling. All
quantified uncertainties will be multiplicative factors of the nominal values.

6.2 BFBT Benchmark

6.2.1 Overview of BFBT Benchmark

The international OECD/NRC BFBT [98] benchmark, based on the Nuclear Power Engineering
Corporation (NUPEC) database, was created to encourage advancement in sub-channel analysis
of two-phase flow in rod bundles, which has great relevance to the nuclear reactor safety
evaluation. In the frame of the BFBT test program, single- and two-phase pressure losses, void
fraction, and critical power tests were performed for steady-state and transient conditions. The
BFBT benchmark has been widely used for uncertainty, sensitivity and validation studies.
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Fig. 6.1 Void fraction measurement structure.

The facility is full-scale BWR assembly, with measurement performed under typical reactor
power and high-pressure, high-temperature fluid conditions found in BWRs. The full-scale
fuel assembly inside the pressure vessel corresponds to the General Electric 8 × 8 assembly rod
design, where each rod is electrically heated to simulate an actual reactor fuel rod. The heated
length of the bundle corresponds to 3.7 m. Five different types of bundle assembly design with
different combinations of geometries and power shapes were tested in the void distribution
experiments.

Two types of void distribution measurement systems were employed: an X-ray computer
tomography (CT) scanner and an X-ray densitometer. Under steady-state conditions, fine mesh
void distributions were measured using the X-ray CT scanner located 50 mm above the heated
length (i.e. at the assembly outlet). The X-ray densitometer measurements were performed at
three different axial elevations from the bottom (i.e. 682 mm, 1706 mm and 2730 mm) under
both steady-state and transient conditions. For the each of the four different axial locations, the
cross-sectional averaged void fraction was also measured. Figure 6.1 shows the void fraction
measurement facility and locations. The void fraction data will be used in the current study,
and they will be referred to respectively from lower to upper positions as VoidF1, VoidF2,
VoidF3 and VoidF4 in the following.
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6.2.2 Selection of Experimental Data for Inverse UQ

The BFBT benchmark contains 392 steady-state void distribution test cases. For the current
study, it is not practical to use all the test cases (each test case consists of 4 measurements, 1
at each of 4 axial elevations). Starting from the 86 test cases in assembly 4, we select the test
cases by the following criteria:

1. Remove all the tests with negative void fraction data;

2. Remove all the tests that have lower void fractions at higher elevations;

3. Only keep one set of any duplicated tests;

4. Only keep measurements performed at high pressure and high power (above 7 MPa
and 3MW), as these combinations will produce high void fractions thus more accurate
metamodel.

5. Remove all the tests that have low void fraction (less than 1%) at low elevations;

Only 8 test cases satisfy these criteria and are selected for inverse UQ, their process
conditions and void fraction data are included in Table 6.1.

Table 6.1 Process conditions and void fraction data for 8 selected cases of assembly 4

Test ID Pressure Flow rate Inlet subcooling Power VoidF1 VoidF2 VoidF3 VoidF4

(MPa) (t/h) (kJ/kg) (MW) (%) (%) (%) (%)

4101-58 7.152 54.58 50.6 3.52 5.80 43.4 63.4 64.5
4101-59 7.190 54.57 52.1 4.88 17.4 56.7 73.5 73.7
4101-60 7.178 54.62 50.5 4.89 17.3 56.8 73.3 74.0
4101-61 7.180 54.65 52.5 6.48 29.0 66.7 79.8 80.7
4101-67 7.248 69.58 54.6 4.48 4.50 42.1 63.0 66.8
4101-68 7.275 69.56 56.0 6.22 14.9 56.5 72.7 75.1
4101-84 8.680 54.66 53.2 3.35 3.80 37.4 57.9 60.2
4101-86 8.705 54.59 54.2 4.62 13.5 52.8 69.7 69.8

6.2.3 Void Fraction Data Correction

The X-ray densitometers can only capture the void fraction between the rod rows, therefore
the measured data only shows the void fraction of a limited area of the subchannel. However,
void fraction in the subchannel is not equally distributed as pointed out in [53]. For example,
at low void fraction with bubbly flow, the void is concentrated in small bubbles close to the
heat surface, while at high void fractions with slug flow, large bubbles are more likely to be
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located in the subchannel center. Consequently, the void fractions are under predicted at low
void fractions and over predicted at high void fractions with the present X-ray densitometers.
To resolve this issue, data correction has been suggested [53] and applied [67]. The correction
formulas are proposed in [53], and the correction for assembly 4 data is shown in Equation 6.1.

αcorrected =
αmeasured

1.167−0.001 ·αmeasured
(6.1)
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Fig. 6.2 Comparison of void fractions from BFBT measurement and TRACE simulation for all
86 test cases of assembly 4

All the void fractions are in (%) and Equation 6.1 is recommended for measured void
fractions between 20% and 90% (note that VoidF4 is not corrected because it is measured by
CT scanner which does not have the aforementioned limitations of an X-ray densitometer).
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Fig. 6.3 Comparison of void fractions from BFBT measurement and TRACE
simulation for 8 selected test cases of assembly 4
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Figure 6.2 shows a comparison of void fraction from BFBT measurements (with and
without correction) and TRACE simulations. All 86 test cases are presented. Before data
correction, the majority of the void fractions are under predicted especially for VoidF1, VoidF2
and VoidF3. After data correction, the data points are more concentrated close to the diagonal
line, meaning that the agreement between measurement (BFBT) and calculation (TRACE) is
improved. Figure 6.3 shows the comparison of the 8 selected cases. The improvement in the
data is clear with void fraction correction for the selected cases.

6.2.4 Outline of Workflow

The workflow of follow-up study is outlined below:

1. Starting with 36 physical model parameters, perform a centered parameter study to
remove parameters that are not utilized by TRACE.

2. Perform global SA for new (relevant) list of parameters, using Sobol’ indices and
correlation coefficients. Some parameters are expected to have much lower effect
compared to others; these parameters will be removed.

3. The above two steps calculate the final list of physical model parameters whose uncer-
tainty will be studied in the inverse UQ process.

4. Build SGSC metamodel of TRACE with selected input parameters.

5. Validate the metamodels.

6. Replace TRACE with the metamodel in MCMC sampling for the inverse UQ process.

7. Perform convergence diagnostics of MCMC chains and study the posterior distributions
of selected physical model parameters.

6.3 Results for Global SA

As none of the methods for calculating Sobol’ indices can effectively treat problems with
dimensions as high as 36, we need to remove some parameters through a preliminary reduction
study [1]. Many of the closure models are not relevant to the BFBT benchmark and will not be
called by TRACE. For example, stratified flow (parameter P1003 and P1007) and reflooding
(parameter P1034 and P1035) do not occur in the BFBT benchmark experiment.
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6.3.1 Centered Parameter Study

This preliminary selection was done by centered parameter study, in which each parameter was
perturbed a few steps around the nominal value (which is 1.0) one-by-one. DAKOTA [1] was
used here to perturb each parameter 10 steps above and below nominal values with a step size
of 0.02. The void fraction variance was calculated for each parameter. As expected, most of the
variances are 0 or very close to 0. Ultimately, only 8 parameters produce variances larger than
10−3 for at least one of the output parameters VoidF1, VoidF2, VoidF3 and VoidF4. These 8
parameters are shown in Table 6.2.

Table 6.2 List of 8 selected physical model parameters selected after centered parameter study

Parameter Description

P1008 Single phase liquid to wall HTC

P1009 Single phase vapor to wall HTC

P1012 Subcooled boiling HTC

P1013 Nucleate boiling HTC

P1022 Wall drag coefficient

P1023 Form loss coefficient

P1028 Interfacial drag (bubbly/slug Rod Bundle - Bestion) coefficient

P1029 Interfacial drag (bubbly/slug Vessel) coefficient

6.3.2 Sobol’ Indices and Correlation Coefficients

For the 8 selected physical model parameters, global SA was performed with both Sobol’ indices
and PCC/SRCC [158]. The Sobol’ indices are calculated using PCE method in DAKOTA [1].
Table 6.3 and 6.4 show the Sobol’ indices (both main and total effects) and PCC/SRCC of 8
selected parameters, for void fractions at four different elevations. Figure 6.4 and 6.5 visualize
the data in Table 6.3 and 6.4, respectively.

Several major conclusions can be drawn from the tables and figures:

1. P1009, P1013 and P1023 have negligible Sobol’ indices and their PCC and SRCC are
also very small, indicating that void fraction is not sensitive to those parameters. They
will be removed from further study.

2. Positive correlation coefficients indicate that void fraction increases with this parameter,
and vice versa.

3. P1029 is only important for VoidF4.
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Table 6.3 Sobol’ indices (main and total effects) for 8 selected physical model parameters

Parameter
VoidF1 VoidF2 VoidF3 VoidF4

main total main total main total main total

P1008 8.51E-02 8.56E-02 9.10E-02 9.42E-02 1.20E-02 1.20E-02 1.17E-03 1.17E-03
P1009 4.02E-28 4.17E-28 5.93E-25 6.53E-25 5.50E-25 5.61E-25 4.66E-25 4.84E-25
P1012 9.12E-01 9.13E-01 1.28E-01 1.31E-01 1.20E-02 1.20E-02 1.16E-03 1.16E-03
P1013 4.05E-28 4.20E-28 5.20E-25 5.81E-25 5.46E-25 5.58E-25 4.64E-25 4.84E-25
P1022 1.13E-03 1.14E-03 2.07E-01 2.07E-01 2.79E-01 2.79E-01 6.93E-01 6.94E-01
P1023 4.22E-11 4.26E-11 2.13E-09 2.45E-09 1.38E-09 1.98E-09 1.80E-07 1.82E-07
P1028 9.52E-04 9.86E-04 5.71E-01 5.71E-01 6.97E-01 6.97E-01 7.79E-02 7.81E-02
P1029 1.58E-07 1.59E-07 6.90E-06 6.94E-06 1.72E-06 1.73E-06 2.25E-01 2.26E-01
Sum 0.9994 1.0006 0.9967 1.0033 0.9997 1.0003 0.9990 1.0010

Table 6.4 PCC and SRCC for 8 selected physical model parameters

Parameter
PCC SRCC

VoidF1 VoidF2 VoidF3 VoidF4 VoidF1 VoidF2 VoidF3 VoidF4

P1008 -0.2897 -0.2907 -0.0946 -0.0291 -0.2801 -0.2873 -0.0970 -0.0247
P1009 0.0047 0.0084 0.0041 0.0113 0.0053 0.0186 0.0127 0.0123
P1012 -0.9497 -0.3511 -0.1055 -0.0259 -0.9555 -0.3290 -0.0917 -0.0298
P1013 0.0058 -0.0037 -0.0048 -0.0014 0.0059 -0.0014 -0.0069 -0.0067
P1022 -0.0160 -0.4499 -0.5271 -0.8320 -0.0207 -0.4395 -0.5076 -0.8395
P1023 -0.0013 0.0064 0.0052 -0.0022 -0.0009 0.0089 0.0105 0.0007
P1028 0.0267 0.7548 0.8334 0.2772 0.0306 0.7568 0.8377 0.2581
P1029 0.0045 -0.0058 -0.0039 0.4743 0.0084 -0.0035 -0.0062 0.4534

4. The sensitivity ranking for each of the parameters is mostly consistent between Sobol’
indices and PCC/SRCC.

5. Sobol’ indices are better measures of sensitivity than correlation coefficients, as they
directly represent the part of output variance that can be attributed to each parameter.
PCC/SRCC cannot consistently reflect this relative importance as well as Sobol’ indices.
For example, Sobol’ indices show that only P1022 and P1028 are important for VoidF3,
while PCC/SRCC show that P1008 and P1012 should be included, too.

Taking into account the details of each parameter, the observed sensitivity ranking can be
explained as below:
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Fig. 6.4 Sobol’ indices (main and total effects) for 8 physical model parameters.
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Fig. 6.5 PCC and SRCC ranking for 8 physical model parameters.

1. The significance of P1008 (single phase liquid to wall HTC) decreases to almost zero at
higher elevations. This is because single-phase liquid exists only in the lower elevations
of the bundle.

2. Similarly, P1012 (subcooled boiling HTC) is only important at lower elevations because
this is where subcooled boiling occurs.

3. P1022 (wall drag coefficient) increases at higher elevations.

4. P1028 (interfacial drag bundle coefficient) dominates at intermediate locations.

Finally, the sum of main effects for all four QoIs is very close to 1.0, meaning that the
interacting effects are negligible for the current study. Simply investigating the main effects
and total effects are sufficient.
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6.4 Sparse Grid Stochastic Collocation Metamodels

6.4.1 Constructing the Metamodels

In this work, we use the SG module of the Toolkit for Adaptive Stochastic Modeling And
Non-Intrusive Approximation (TASMANIAN), developed at Oak Ridge National Laboratory
[131] [132]. To construct the SGSC surrogate models we need the range of each physical model
parameter, which is defined by the prior distributions and will be discussed later. Clenshaw-
Curtis rule and a more recently developed R-leja rule [21] are used as the one-dimensional
building block.

The growth of the nodes in R-leja rule is linear rather than exponential as in Clenshaw-
Curtis rule. For five-dimensional surrogate model, Leja rule of precision 4 requires 126 nodes,
while Clenshaw-Curtis rule of precision 3 and 4 require 145 and 301 nodes, respectively. Here,
“precision” means that the underlying one-dimensional rule can exactly interpolates polynomials
of a degree up to and including the precision value. Figure 6.6 illustrates the adopted sparse
grids in two dimensions.
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Fig. 6.6 Demonstration of two-dimensional nodes for Leja rule (precision 4), Clenshaw-Curtis
rule (precision 4) and Clenshaw-Curtis rule (precision 3)

6.4.2 Validating the Metamodels

The metamodels constructed by SGSC method has to be validated before it can be applied in
the inverse UQ process. It should be able to reproduce TRACE simulation results over a wide
range of the 5 physical model parameters. DAKOTA is used to generate 100 samples using
LHS of the input parameters for each of the 8 test cases and then act as a driver to use TRACE
to calculate those samples. The metamodel was also evaluated with the DAKOTA-generated
samples of input parameters to obtain the void fraction prediction. Table 6.5 presents the
maximum absolute error in void fraction prediction among 100 samples for each test case. All
of the metamodels are able to reproduce the TRACE void fraction results accurately. Leja-4
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sparse grid rule is used for the inverse UQ process, as it utilizes the least number of TRACE
runs for the construction of the metamodel.

Table 6.5 Validation results for metamodel constructed from different sparse grid rules

Metamodel Test ID
Maximum absolute error

VoidF1 VoidF2 VoidF3 VoidF4

4101-58 1.02E-03 1.08E-03 3.18E-05 5.44E-04
4101-59 2.32E-03 3.25E-04 8.64E-05 1.66E-04
4101-60 1.64E-03 2.75E-04 8.50E-05 1.64E-04

Leja-4 4101-61 4.57E-03 2.35E-04 3.05E-05 1.57E-04
4101-67 9.42E-04 1.51E-03 4.80E-05 5.11E-04
4101-68 6.38E-04 5.06E-04 1.53E-04 1.97E-04
4101-84 7.51E-04 1.65E-03 2.89E-05 6.33E-04
4101-86 5.22E-04 7.13E-04 2.79E-05 2.44E-04

4101-58 8.01E-04 3.05E-04 1.99E-05 3.28E-04
4101-59 6.48E-04 1.12E-04 4.29E-05 3.32E-05
4101-60 1.44E-03 9.35E-05 4.02E-05 3.36E-05

Clenshaw-Curtis-4 4101-61 1.49E-03 7.42E-05 1.20E-05 6.67E-05
4101-67 9.88E-04 3.27E-04 4.01E-05 2.90E-04
4101-68 2.48E-04 1.81E-04 3.08E-05 3.57E-05
4101-84 7.18E-04 2.96E-04 1.92E-05 5.49E-04
4101-86 2.33E-04 1.92E-04 2.94E-05 4.96E-05

4101-58 7.68E-04 1.12E-03 6.16E-05 5.44E-04
4101-59 1.78E-03 3.40E-04 6.58E-05 2.77E-04
4101-60 1.80E-03 2.83E-04 6.69E-05 2.75E-04

Clenshaw-Curtis-3 4101-61 3.20E-03 1.90E-04 5.01E-05 2.45E-04
4101-67 8.67E-04 1.57E-03 6.88E-05 4.95E-04
4101-68 6.40E-04 5.85E-04 9.59E-05 3.02E-04
4101-84 6.22E-04 1.74E-03 5.49E-05 5.79E-04
4101-86 5.52E-04 7.49E-04 5.20E-05 3.32E-04

6.5 Results for Inverse UQ

The measurement error is assumed to be 5% of BFBT void fraction data, which is needed for
the variance term in the posterior formulation.
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6.5.1 Selection of the Prior Distributions

Non-informative uniform priors are used in this study to reflect our ignorance with respect to
the input parameters. These uniform priors will be a constant in the posterior function (Equation
4), and their ranges are important in building the SGSC metamodel. Intuitively priors with wide
ranges should be used, but these will require much more nodes to build the metamodel. We
decide the prior ranges using an iterative process: (1) begin with a wide range ([0,10]) for each
parameter, and build a low-precision metamodel; (2) adjust the prior ranges according to the
posterior samples. If the samples for a certain parameter concentrate on a smaller range, narrow
down its prior range accordingly. Otherwise if many posterior samples cluster on the boundary
of its prior, increase the prior range; (3) build higher-precision metamodel on adjusted prior
ranges. Table 6.6 shows the final chosen prior ranges for different physical model parameters.

Table 6.6 Prior uniform distribution ranges

Parameter Uniform ranges

P1008 [0.5, 2.5]
P1012 [0.5, 1.5]
P1022 [0.0, 5.0]
P1028 [0.0, 4.0]
P1029 [0.0, 10.0]

6.5.2 MCMC Convergence Diagnostics

Algorithms 1 - 3 in Section 2.4 are used for MCMC sampling. 100,000 samples are generated
for each case. All three algorithms take about 72 core-minutes to produce 100,000 samples
using a current generation Intel CPU, which would otherwise take about 1167 core-hours (48
core-days) using direct TRACE simulation with the same processor. The first 10,000 samples
are discarded as burn-in and then every 20th sample was kept from the remainder for thinning
of the chain, leaving us with 4500 samples. Thinning is performed to reduce auto-correlation
among the samples, which is shown in Figure 6.7.

Figure 6.7 shows mixing for the five parameters and the decay of the auto-correlation
function of the Markov chain for Algorithm 3 (Markov chains for Algorithm 1 and 2 show
very similar behavior). Note that all the five parameters are enforced to be positive, as negative
values would not be physical. Very good mixing can be identified, and the auto-correlations
for all the five parameters decay quickly after thinning, lending confidence that the Markov
chain has converged. Figure 6.8 shows the convergence of mean values and standard deviations
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for each parameter. All mean values and standard deviations approach a constant value, also
indicating the convergence of the Markov chain.
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6.5.3 Investigating the MCMC Samples

Table 6.7 presents the statistics of MCMC chains for each parameter. The mean values and
standard deviations from different MCMC algorithms are very similar for each parameter. In
the following analysis the Markov chain from Algorithm 3 will be used, as it is representative
of the other two Markov chains.
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Table 6.7 MCMC chain statistics for different physical model parameters. Chain (1) - (3) are
from adaptive MCMC Algorithms 1 - 3, respectively.

Parameter
Chain 1 Chain 2 Chain 3

mean std mean std mean std

P1008 1.5359 0.1115 1.5315 0.1159 1.5384 0.1141
P1012 1.0005 0.0387 1.0015 0.0399 1.0000 0.0387
P1022 1.0113 0.6634 1.0478 0.6937 1.0095 0.6842
P1028 1.3000 0.6084 1.2861 0.6126 1.3046 0.6128
P1029 4.4053 2.0451 4.3410 2.0374 4.4119 2.0570
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Fig. 6.9 MCMC chain pairwise joint density contours and marginal densities

Figure 6.9 shows the plot for pairwise joint density contours and marginal densities for
the five physical model parameters. The marginal PDFs are evaluated using Kernel Density
Estimation (KDE). This plot is useful for identifying potential correlation between the parame-
ters. Highly linear correlations are observed between some parameters, such as P1008 (single
phase liquid to wall HTC) and P1012 (subcooled boiling HTC). This indicates that in future
forward uncertainty propagation studies, these input parameters should be sampled jointly, not
independently, so that their correlation is captured. Table 6.8 shows the correlation coefficient
matrix of all the parameters.
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Table 6.8 Correlation matrix

Parameter P1008 P1012 P1022 P1028 P1029

P1008 1.00
P1012 -0.84 1.00
P1022 -0.73 0.39 1.00
P1028 0.52 -0.45 -0.06 1.00
P1029 0.29 -0.39 -0.02 0.27 1.00

6.5.4 Fitted Posterior Distributions

To make these results more applicable to our eventual forward uncertainty propagation, we
need to fit posterior samples to well-known distributions, such as Normal or log-normal
distributions, so that they will be more easily sampled. From the marginal PDFs in Figure
6.9, it is obvious that for P1008, P1012 and P1029, we can consider these parameters as
normal random variables. For P1022 and P1028, the PDFs are more skewed toward 0. Natural
choices for these distributions include Gamma and log-normal. Gamma distributions are chosen
because log-normal distribution has a longer tail which results in a poor match with these
samples.

Table 6.9 Fitted distribution for each physical model parameter

Parameter Distribution type Distribution parameter 1 Distribution parameter 2

P1008 Normal µ = 1.5377 σ = 0.1131
P1012 Normal µ = 1.0001 σ = 0.0386
P1022 Gamma α = 1.7581 β = 0.5767
P1028 Gamma α = 4.3106 β = 0.3027
P1029 Normal µ = 4.4080 σ = 2.0594

Figure 6.10 and Table 6.9 show the fitted distribution for each physical model parameter
and the parameters associated with each distribution, i.e. mean (µ) and standard deviation (σ)

for normal distribution, shape α and scale β parameter for Gamma distribution. All the fitted
distributions are accepted by Kolmogorov–Smirnov test at the 5% significance level. Figure
6.11 shows that good agreement can be achieved between the empirical cumulative distribution
function (CDF) and fitted CDF for every parameter.

The fitted normal distribution for P1029 has very large standard deviation and a mean value
that deviates significantly from the nominal value. This is most likely because the TRACE
model for BFBT benchmark is insensitive to P1029 (as shown in Section 6.3, P1029 only
affects VoidF4), therefore our ignorance with regards to P2019 cannot be reduced by using
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Fig. 6.11 Comparison of empirical CDFs and fitted CDFs.

observation data from this benchmark in our inverse UQ process. More informative data or
P1029-sensitive benchmarks are required to better quantify its uncertainty.

6.6 Discussions

There are some limitations in the current application:
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1. Model discrepancy is not considered in this study. In next Chapter, a different approach
that can account for model discrepancy will be applied to the same problem.

2. SGSC surrogate model has demonstrated remarkable reduction in the simulation cost.
However, stochastic spectral surrogate models suffer greatly from the “Curse of Dimen-
sionality”. SGSC can only be applied to problems with a relatively low dimension.

3. More advanced sparse grid methods can further reduce the computational cost (number
of grid points), e.g. adaptive sparse grids.

4. The current study only used 8 out of 86 experiment tests from BFBT benchmark test
assembly No.4. We have used some ad-hoc criteria to select these 8 tests. For instance,
only observation data from high pressure and high power were used. All the tests with
very low void fractions were abandoned. In future analysis more tests should be used.

5. Only void fraction data from upper elevations are used for inverse UQ because void
fraction measurements at lower elevations are sometimes physically wrong (negative).
However, those negative values are very close to zero. Given that the void fractions at
those conditions may be very small, those slightly negative data can still be used.
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Chapter 7

APPLICATION TO TRACE PHYSICAL
MODEL PARAMETERS WITH GP

In this chapter, we use the same code and benchmark data with Chapter 6, but with GP
metamodel. SGSC surrogate model can also greatly reduce the computational cost. However,
unlike GP, it cannot be used to represent the model discrepancy during inverse UQ. In this
work, we have greatly improved the application in the following aspects:

1. GP is used to construct metamodel for TRACE code, which requires even less TRACE
runs than SGSC surrogate model used in Chapter 6. Furthermore, as shown in Chapter 4
GP metamodel provides MSE (variance) of its prediction which is essentially the “code
uncertainty”.

2. The work in Chapter 6 only used 8 experiment tests from BFBT benchmark test assembly
No.4. In this work we will use all the 86 test cases.

3. Only void fraction data from upper elevations are used for inverse UQ in Section 6
because void fraction measurements at lower elevations are sometimes physically wrong
(negative). In this work, we will use all the void fraction data considering that those
negative void fraction measurements are very close to zero.

4. The work in Chapter 6 did not consider model discrepancy during inverse UQ. Therefore,
the results are likely to be over-fitted to the selected test cases. In this work, we will
describe the model discrepancy term with GP to avoid over-fitting, following the steps
outlined in Chapter 2.

An unresolved issue for inverse UQ is “test source allocation (TSA)”. TSA is the process
to separate given experimental data for training (calibration) and testing (validation), as same
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data should not be used for both purposes. Very little previous research on Bayesian calibration
dealt with TSA. Some researchers simply used random selection to separate observation data
[110]. In Chapter 6, we separated tests by certain ad-hoc criteria, for example, tests with high
pressure and high power are selected for inverse UQ. In another work [151], because the BFBT
benchmark experiments are arranged according to the magnitude of power, pressure and mass
flow rate, the authors simple picked every third test for inverse UQ and used the rest tests for
validation.

A data partition methodology adapted from cross-validation was presented in [95]. The
method aimed at separating legacy data for calibration and validation purposes. It considered
all possible partitions and tried to find the optimal partition satisfying the following desiderata:
(1) the model is sufficiently informed by the calibration tests, (2) the validation tests challenges
the model as much as possible with respect to the QoIs. However, this method is extremely
expensive. For an original data set of size N, the number of inverse (calibration) problems to
solve is 2N −2. For example, for 10 experiment tests, 1022 inverse problems need to be solved.
This approach is apparently not practical to our application which has 86 test cases. Recently, a
test selection methodology was developed [96] that involves an optimization framework for
integrating calibration and validation data to make a prediction. In this approach, the TSA is
motivated by uncertainty reduction in prediction. However, this method is design for a situation
where the actual experiments have not been conducted yet, rather than selection among existing
experiments.

In this chapter, we proposed an sequential approach for TSA. This algorithm includes three
steps: (1) selecting an initial set for validation from all the tests; (2) selecting an initial set
for inverse UQ after removing the initial validation set; (3) sequentially adding test cases for
inverse UQ from the remaining tests. This algorithm guarantees that the tests used for validation
have a maximum coverage of the test domain. Meanwhile, the tests used for inverse UQ have
the lowest discrepancy which means that they explore the test space to the largest extent. The
work presented in this chapter is also published in [151].

7.1 Problem Definition

In this study, yM(x,θθθ) is TRACE code. The outputs yM are void fractions. x stands for the
four test conditions: ICs/BCs, including pressure, mass flow rate, power and inlet temperature.
θθθ represents the five uncertain physical model parameters, including P1008, P1012, P1022,
P1028 and P1029. Again we use BFBT assembly 4 void fraction data because it has high
burnup which has 86 test cases. The version of TRACE we used in this chapter (version 5.0
Patch 4) in slightly different with what was used in Chapter 6 (version 5.0 Patch 3).
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Figure 7.1 shows a comparison of void fraction from BFBT measurements (before and after
correction) and TRACE simulations. All 86 test cases are included. Before data correction, the
majority of the void fractions are under-predicted especially for VoidF1, VoidF2 and VoidF3.
After data correction, the data points are more concentrated close to the diagonal line, indicating
good agreements between BFBT and TRACE.
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Fig. 7.1 Comparison of void fractions from BFBT and TRACE for all 86 tests of assembly 4.

It can be noticed that many of VoidF1 and VoidF2 values are very close to zero. In fact many
of them are negative and were not considered in Chapter 6 because they are physically wrong.
However, in this study we do not abandon these measurements considering that they are only
slightly negative. There are also some measurement data that have substantially higher void
fractions at lower elevations (e.g. VoidF3 > VoidF4). We decide to remove these non-physical
observations. Finally, from Figure 1 (right) we can see some outliers, for instance, the notable
VoidF3 by BFBT (∼ 20%) for which TRACE simulation is much smaller (∼ 4%). These
outliers are removed because they have remarkable TRACE simulation errors compared with
the majority. They are believed to be caused by measurements failures. Eventually, 8 tests
are removed from the original 86 tests. The remaining 78 tests (78 ∗ 4 = 312 void fraction
observations) will be used in the following study.

7.1.1 Dimension reduction using sensitivity analysis

We used the sensitivity study results in Chapter 6 to identify the significant parameters for this
problem. Table 7.1 shows the five parameters selected after dimension reduction. The nominal
values for all these calibration parameters are 1.0 since they are multiplication factors. The
prior ranges are chosen as [0,5] for all the parameters which will be used in design of computer
experiments.
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Table 7.1 Selected TRACE physical model parameters after sensitivity analysis

Parameter (multiplication factors) Parameter Uniform ranges Nominal

Single phase liquid to wall HTC P1008 [0.0, 5.0] 1.0
Subcooled boiling HTC P1012 [0.0, 5.0] 1.0
Wall drag coefficient P1022 [0.0, 5.0] 1.0
Interfacial drag (bubbly/slug Rod Bundle - Bestion) coefficient P1028 [0.0, 5.0] 1.0
Interfacial drag (bubbly/slug Vessel) coefficient P1029 [0.0, 5.0] 1.0

Again only main effects and total effects are calculated. Main effect represents the stan-
dalone influence of a certain input on the QoI, while total effect also accounts for the interaction
of this input with the others. The fact that a certain input has close main and total effects means
that this input has no interaction with others (e.g. P1028). If total effect is larger than the
main effect, this input has interaction with others (e.g. P1008 and P1012), the degree of which
depends on the difference between main and total effects.
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Fig. 7.2 Sobol’ indices (main and total effects) for selected five physical model parameters.

7.1.2 Workflow for the investigated problem

The study in this chapter will follow the improved modular Bayesian approach presented in
Section 2.3. The flowchart in Figure 2.6 consists of five major steps. In the following sections,
each step will be discussed.
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7.2 Test Source Allocation

In this section, a sequential approach for efficient TSA is developed (blocks connected by black
arrows in Figure 2.6). This section starts with a brief introduction of discrepancy measures,
which is later used as a measure of the degree of uniformity for the distribution of inverse
UQ tests cases in the whole test domain. The following sub-sections describe the sequential
approach for TSA, as well as two algorithms to select initial sets for validation and inverse UQ.

7.2.1 Discrepancy measure

In Chapter 4, we briefly mentioned low-discrepancy sequences for design of computer experi-
ments. Low discrepancy sequences are deterministic designs constructed to uniformly fill the
space. Various discrepancy measures can be used to judge the uniformity quality of the design,
see discussions in [66]. Discrepancy measures based on L2 norms can be analytically expressed
which makes them the most popular in practice among others. For example, given a design
X(n) =

{
x(i)k , i = 1,2, ...,n,k = 1,2, ...,d

}
where n is the number of design points and d is the

dimension of each design point, the centered L2 discrepancy is calculated as:
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Where
{

u(i)k , i = 1,2, ...,n,k = 1,2, ...,d
}

are the normalized values of X(n) in the interval

[0,1] . A design sequence with a smaller centered L2 discrepancy has a better coverage of
the domain. Another recommended discrepancy measure is the wrap-around L2 discrepancy
defined in Equation 7.2, which allows to suppress bound effects [66] (by wrapping the unit
cube for each dimension).
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Besides their application in design of computer experiments, researchers have found other
applications of low discrepancy sequences. For example, a “sequential validation design” was
developed in [66] to select test points for the validation of metamodels. Suppose the metamodel
was originally trained based on the sample set Xs. Test points from a low discrepancy sequence
X f (e.g. Sobol, Halton, Hammersley, etc.) were selected one-by-one according to the criterion
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that among all the remaining points in X f , the selected point results in the minimal centered
L2 discrepancy after being added to Xs. This design algorithm can avoid the possibility of too
strong proximity between training sites and test sites, because it is capable of putting points in
the unfilled zones of the training design.

7.2.2 A sequential approach for test source allocation

In the current work, we employ the similar idea with “sequential validation design” to separate
the test cases for inverse UQ and validation. Given Ntest experimental tests on the test domain
xtest, we would like to select NIUQ tests for inverse UQ and the rest NVAL tests to validate the
updated model after inverse UQ. Denote the inverse UQ domain and validation domain as xIUQ

and xVAL respectively. Then we have:

xtest = xIUQ ∪xVAL, Ntest = NIUQ +NVAL

Following the notations in Chapter 2, each of the input settings is a r-dimensional vector
x = [x1,x2, ...,xr]

⊤ representing r different design variables. In the current work r = 4. Figure
7.3 shows the workflow of the sequential approach for TSA. It includes the following key steps:

• Step 1: find initial set for validation:
The initial set for validation is denoted as xVAL,init. The set xVAL,init tests are selected
from all the tests in xtest. The selection criterion is that the validation experiments should
have a full coverage of the test domain. The motivation and solution are explained later.

• Step 2: find initial set for inverse UQ:
After removing the validation initial set from the test domain, the remaining tests are
defined as xrest = xtest\xVAL,init. In this step we select initial set for inverse UQ from xrest.
The selection criterion is that the tests in xIUQ,init tend to be “far away” from other tests
in the domain of interest. The motivation and solution are explained later.

• Step 3: sequentially add more tests for inverse UQ:
Again we remove xIUQ,init from xrest : xrest = xrest\xIUQ,init. This step loops through
all the remaining tests in xrest to add one test each time to xIUQ. At the beginning,
xIUQ = xIUQ,init. Then the algorithm find the test x(i∗) from xrest such that after being
added to xIUQ, the minimum centered L2 discrepancy D2

[
xIUQ ∪x(i∗)

]
or wrap-around

L2 discrepancy W 2
[
xIUQ ∪x(i∗)

]
is achieved. Next the test x(i∗) will be moved to the

inverse UQ set: xIUQ = xIUQ ∪x(i∗),xrest = xrest\x(i∗).
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• Step 4: decision about terminating the sequential approach:
This step decides whether the desirable number of tests for inverse UQ has been reached
NIUQ = ⌊Ntest ·α⌋ or not. The round-down symbol ⌊N⌋ means we take the largest integer
that does not exceed N. In the current study we choose α = 25% which means we
use about 25% of all the tests for inverse UQ, and all the rest for validation xVAL =

xtest\xIUQ. If the desirable number is reached, we proceed to perform inverse UQ with
xIUQ. Otherwise, repeat step 3 to add another test for xIUQ.
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Fig. 7.3 The sequential approach for test source allocation.

Apparently, following the steps outlined in Figure 7.3, xIUQ,init and xVAL,init will be subsets
of and xVAL, respectively. The step 3 of the proposed sequential approach will select the test
“furthest away” from the existing tests in xIUQ. By choosing the test whose input setting is in
the unfilled zone of the existing test domain, we aim at extracting the most information for
θθθ

Posterior using only a relatively small number of NIUQ.
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7.2.3 Method to select initial set for validation

In our improved modular Bayesian approach outlined in Figure 2.6, the computer code yM (x,θθθ)
is first executed at the input settings of all the tests xtest, with the calibration parameters fixed at
nominal values or prior mean values θθθ

0. The resulting simulations are denoted as yM(xtest,θθθ 0).
Then xVAL and

{
yE(xVAL)−yM(xVAL,θθθ 0)

}
are used as training inputs and output respectively

to fit a GP emulator called GPbias. Evaluating GPbias at xIUQ results in an estimation of
the model discrepancy term δ

(
xIUQ), which will enter the likelihood function during MCMC

sampling. Such a treatment of model discrepancy provide the following implications for TSA:

• Because generally a larger training sample size results in a more accurate GP model,
NVAL should be relatively larger than NIUQ. That’s why we have picked α = 25% in Step
4 of the sequential approach for TSA. In this way, about 75% of the measurement data
will be used for validation. Furthermore, a relatively smaller number of tests for inverse
UQ leads to smaller computational cost of MCMC sampling.

• It was also demonstrated in Chapter 4 that GP emulator is very accurate for interpolation
but can cause large errors when used for extrapolation. This fact implies that since
GPbias is trained with xVAL and evaluated at xIUQ, the inverse UQ domain xIUQ should
be encompassed by the validation domain xVAL to avoid extrapolation. Note that this
does not mean that xIUQ should be a subset of xVAL. Each test must be either in xIUQ

or in xVAL. If xIUQ is a subset of xVAL, δ
(
xIUQ) will have zero mean and zero variance,

given the fact that GP is an interpolator.

Fig. 7.4 Algorithm to select experimental tests for initial validation set xVAL, init
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The selection of xVAL,init can be guided by the above two implications, which states that
validation tests xVAL should have a full coverage of the test domain xtest. The term “coverage”
refers to the extent to which xVAL explore the test domain (especially the boundaries) of the
selected benchmark data. The estimation of the model discrepancy term δ

(
xIUQ) will be

limited if the tests with which GPbias is trained have insufficient coverage of the test domain.
The sequential approach for TSA determines the coverage of the test domain based on convex
hull. Convex hull, also called convex envelope, is the smallest convex domain that envelops all
the physical experiments. The coverage ηC is calculated using the following equation:

ηC =
Volume

[
Ω
(
xVAL)]

Volume [Ω(xtest)]

Where Ω
(
xVAL) is the convex hull of the domain defined by xVAL, Ω(xtest) is the convex hull

defined by xtest. Function Volume[·] calculates the volume of convex hull.
The procedure to select xVAL,init is shown in Figure 7.4. This algorithm tries to re-order

xtest to u. The major steps are briefly described below:

1. Firstly, the volume of the convex hull Ω(xtest) is calculated;

2. Secondly, choose starting tests for u, because at least (r+1) tests are required to calculate
the volume of a convex hull of dimension r. Such starting tests can be those whose input
settings contain the minimum or maximum values of each design variable. Denote these
starting tests as ustart.

3. Thirdly, loop through all the remaining tests in urest, select the one that maximize the
coverage ratio if it is added to the current u. Repeat this process until there is no more
test in urest.

4. Eventually, step 3 results in a set u which has the same number of tests with xtest.
However, these tests are reordered in u such that for any number (Nu, start+1)≤ n ≤ Ntest,
the first n tests in u has the largest coverage ηC of the whole test domain among all the
other possible combinations. xVAL,init will include the first NVAL,init tests in u such that
the coverage ratio becomes 1.0.

7.2.4 Method to select initial set for inverse UQ

The procedure to select tests for xIUQ,init is shown in Figure 7.5 and briefly described below:

1. Firstly, remove xVAL,init from xtest: xrest = xtest\xVAL,init, and xIUQ,init will be selected
from xrest.
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2. Secondly, select a desirable number of tests NIUQ,init for xIUQ,init. For example, NIUQ,init =

⌊Ntest ·β⌋ where β is chosen by the user, e.g. β = 0.05.

3. Thirdly, starting at each of the tests in the test domain
{

x(i) ∈ xrest, i = 1,2, ...,Nrest

}
,

follow the step 3 in Algorithm 2 to select the rest (NIUQ,init −1) tests for xIUQ,init,(i).

4. Eventually we will have Nrest different sets
{

xIUQ,init,(i), i = 1,2, ...,Nrest
}

, each set in-
cludes NIUQ,init experimental tests and the index (i) means the starting test. All together
there are Nrest ·NIUQ,init counts of single test appearances, of which many tests will have
multiple appearances. The fact that a certain test appears more frequently means that
it is likely to be in an unfilled region in the test domain. We then rank the counts of
appearance and select the top NIUQ,init tests to form the initial inverse UQ set xIUQ,init.

Fig. 7.5 Algorithm to select experimental tests for initial inverse UQ set xIUQ, init

The Algorithm 2 in Figure 7.5 can efficiently identify those tests that are “far away” from
other tests. Such tests have a higher possibility to be selected by the sequential approach in
Figure 7.3. However, putting them in the initial set xIUQ,init will speed up the TSA process.

7.2.5 TSA results for the BFBT problem

Figure 7.6 shows the increasing of the coverage ratio with the number of tests in u for the
current problem. The fact that x-axis starts at 6 means that there are 6 tests in ustart which
include all the lower and upper bounds of the four design variables. We found that a coverage
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ratio of 1.0 is reached with the first 25 tests in u. Therefore, xVAL,init takes all these 25 tests and
xIUQ,init will be searched for among all the remaining tests.

In this study, we chose β = 0.05, which means xIUQ, init contains ⌊78× 0.05⌋ = 3 tests.
Furthermore, we use a value of 0.25 for α so that xIUQ consists of ⌊78× 0.25⌋ = 19 tests.
Figure 7.7 shows the values for the four design variables: pressure, mass flow rate, power and
inlet temperature. It is obvious that the tests for inverse UQ distribute evenly in the test domain.
In fact, they have the lowest wrap-around L2 discrepancy among all the possible combinations
of the same number of tests. Figure 7.8 shows the void fractions for the two separated sets.
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Fig. 7.6 Relation of the coverage ratio with the number of tests in u.

7.3 Modeling the TRACE model discrepancy

This section presents the results for the modeling of TRACE model discrepancy δ (x) (blocks
connected by green arrows in Figure 2.6). The TRACE code is first evaluated at the input
settings of all the tests xtest, with the calibration parameters fixed at nominal values or prior
mean values θθθ

0. The resulting model simulations yM(xtest,θθθ 0) can be compared with yE (xtest)

to get TRACE prediction errors. Figure 7.9 shows the TRACE prediction errors for inverse
UQ tests

{
yE(xIUQ)−yM(xIUQ,θθθ 0)

}
and validation tests

{
yE(xVAL)−yM(xVAL,θθθ 0)

}
. The

x-axis is the test ID ranges from 1 to 86. It can be seen that TRACE tends to under-predict
VoidF3 and VoidF4, while over-predict VoidF1.

Next, xVAL and the corresponding TRACE prediction errors
{

yE(xVAL)−yM(xVAL,θθθ 0)
}

are used as training inputs and outputs for the GP emulator GPbias. At any x∗, GPbias will
provide a prediction of the model discrepancy, which is a Gaussian distribution. Evaluating
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Fig. 7.7 Design variables distribution for xIUQ and xVAL.
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Fig. 7.8 Void fractions for yE (xIUQ) and yE (xVAL).
GPbias at xIUQ results in δ (xIUQ) and ΣΣΣbias, where the former is a mean vector that contains
the “expected prediction error” of TRACE at xIUQ, and the latter is a matrix whose diagonal1

entries are the variances of the mean vector. The mean vector δ (xIUQ) and covariance matrix
ΣΣΣbias will enter the likelihood function (Equation 2.5) during MCMC sampling.

1In this work, ΣΣΣbias is a diagonal matrix because we do not have enough information for the correlation of the
prediction errors in different QoIs. But the proposed inverse UQ approach can readily be extended to incorporate
such correlations once available.
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Fig. 7.9 The error in TRACE void fraction simulation for inverse UQ and validation test sets.

Figure 7.10 shows the comparison of the “actual TRACE prediction errors” yE(xIUQ)−
yM(xIUQ,θθθ 0) and the “expected or interpolated TRACE prediction errors” δ

(
xIUQ). Also note

that the standard deviations
√

MSE [δ (xIUQ)] are plotted as errorbar. Recall the likelihood:

exp
[
−1

2

[
yE(xIUQ)−yM −δ (xIUQ)

]⊤ [
ΣΣΣbias +ΣΣΣcode +ΣΣΣexp

]−1 [yE(xIUQ)−yM −δ (xIUQ)
]]√

|ΣΣΣbias +ΣΣΣcode +ΣΣΣexp|

There are three possibilities:

• δ (xIUQ)≈ yE −yM,
√

MSE [δ (xIUQ)]≈ 0. Nothing enters the likelihood function. This
inverse UQ test is “not informative”. For example, test ID 32 for VoidF3.;

• δ (xIUQ)≈ yE −yM,
√

MSE [δ (xIUQ)] ̸≈ 0. The standard deviation provides some infor-
mation for the likelihood function. This inverse UQ test is “informative” For example,
test ID 70 for VoidF2.;

• δ (xIUQ) ̸≈ yE −yM. This inverse UQ test is “very informative”. This is true for most
inverse UQ tests.

7.4 Building and Validating GP Metamodel for TRACE

In this section, another GP emulator called GPcode is built for TRACE (blocks connected by
purple arrows in Figure 2.6). Even though TRACE simulation for the BFBT benchmark in the
present study is not very expensive (each TRACE simulation takes around 41 seconds), we
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Fig. 7.10 Results of GPbias evaluated at xIUQ.

use it as a placeholder for more computationally prohibitive codes. For those expensive codes
there will only be a limited number of runs (a few hundred) available for follow-on analysis.
Moreover, 50,000 MCMC samples require the same number of TRACE full model evaluations,
which could still take around 24 days with a single processor, making the application of GP
emulator necessary.

7.4.1 Build the GP metamodel

The major difference of GPcode with GPbias is shown in Table 7.2. GPbias uses xVAL as
inputs and {yE(xVAL)−yM(xVAL,θθθ 0)} as outputs for training, while GPcode uses (xIUQ,θθθ Prior)

as inputs and yM(xIUQ,θθθ Prior) as outputs because it is intended to serve as a surrogate model
for TRACE. The prior θθθ

Prior are uniform distributions over the ranges in Table 7.1. Such
non-informative priors are used to reflect our ignorance about θθθ . The prior ranges are very
important since during MCMC sampling, any trial walk outside the prior ranges will have a
zero acceptance probability, meaning that posterior samples will never fall beyond the prior
ranges. If the prior ranges are too limited and do not include the “true values” of θθθ , inverse UQ
can never converge at these “true values”.
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Table 7.2 Training inputs and outputs for GPbias and GPcode

GPbias GPcode

Training inputs xVAL
(

xIUQ,θθθ Prior
)

Training outputs yE
(
xVAL

)
−yM

(
xVAL,θθθ 0

)
yM
(

xIUQ,θθθ Prior
)

Another notable difference is that, GPbias only uses existing values of xVAL and does not
perform a design of computer experiments at other x values where no measurement data exist.
However, GPcode needs to be built with an experimental design of θθθ following the distributions
of θθθ

Prior, while keeping xIUQ fixed. For every test in xIUQ, we generated Ndesign design samples
of θθθ using maximin LHS. At this moment we do not know how many design samples are
enough to construct an accurate GPcode metamodel for TRACE, we tried Ndesign = 3, 6, 9, 12,
15 and 20. Therefore, for every Ndesign value, GPcode is trained with NIUQ ×Ndesign samples.
MLE is used for estimation of the GP hyperparameters.

7.4.2 Validate the GP metamodel

In this work, to evaluate the accuracy of GPcode we calculate the predictivity coefficients Q2

and LOOCV errors. Table 7.3 shows the convergence of these two indicators with different
Ndesign values. Figure 7.11 and 7.12 visualize the results in Table 7.3. It is apparent that with
the increasing of Ndesign, Q2 values quickly converge to 1.0 for all four QoIs, and LOOCV
errors decrease towards zeros. In Section 2.3 we have mentioned that in literature a metamodel
with Q2 value above 0.7 is often considered as a satisfactory approximation of the full model.
In this work, we used a more stringent criterion and require the Q2 values to be above 0.95.
Eventually we pick Ndesign = 20 to build the GPcode emulator. It can readily be used to replace
TRACE during MCMC sampling since its accuracy has been proven.

Table 7.3 Predictivity coefficients and LOOCV errors for each design

Ndesign
Predictivity coefficient LOOCV error

VoidF1 VoidF2 VoidF3 VoidF4 VoidF1 VoidF2 VoidF3 VoidF4

3 0.0636 0.0456 0.0077 0.0870 2325.10 11159.00 14174.00 2797.40
6 0.6228 0.9482 0.9017 0.9443 67.41 26.84 51.71 20.05
9 0.9091 0.9716 0.9814 0.9829 12.78 15.14 9.31 6.02

12 0.9008 0.9564 0.9908 0.9978 13.07 23.89 4.59 0.77
15 0.9494 0.9670 0.9953 0.9971 6.92 17.77 2.34 1.01
20 0.9698 0.9841 0.9930 0.9959 4.26 8.58 3.50 1.43
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The increase of Q2 values and decrease of LOOCV errors are expected to be monotonic.
However, the results in Figure 7.11 and 7.12 show that the evolution of these two indicators
are not monotonic. This is caused by the randomness of the design of computer experiments.
Our conclusion will not be affected as long as the overall trend is consistent with expected
monotonic behavior.
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Fig. 7.11 Convergence of LOOCV errors.
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Fig. 7.12 Convergence of predictivity coefficients.
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7.5 Results for Posteriors by MCMC Sampling

In this section, we present the results for posteriors by MCMC sampling (blocks connected by
red arrows in Figure 2.6). The measurement error is assumed to be 2% relative to BFBT void
fraction data, which is needed for the variance term in the posterior. Such a value is reported
in BFBT benchmark specification [98]. Note that the benchmark only provides measurement
noise related to X-ray CT scanner (VoidF4). We assign the same experimental error for X-ray
densitometer (VoidF1, VoidF2 and VoidF3) as there is no better choice.

We used the adaptive MCMC sampling approaches described in Section 2.4. 50,000
samples were generated using GPcode. It took about 37 core-minutes using GP metamodel
with a current generation Intel CPU, which would otherwise take about 24 core-days using
TRACE full model with the same processor. The first 10,000 samples were discarded as burn-in
and then every 10th sample were kept from the remainder for thinning of the chain, leaving us
with 4000 samples. Thinning was performed to reduce auto-correlation among the samples.
We also generated another MCMC chain without considering the model discrepancy, while
keeping everything else the same. In that case, the likelihood function has a form shown in
Equation 2.7.

Table 7.4 Posterior statistical moments

Parameter
With model discrepancy Without model discrepancy

Mean STD Mode Mean STD Mode

P1008 0.6162 0.2113 0.4967 1.5275 0.1923 1.3651
P1012 1.2358 0.0890 1.0559 1.0844 0.0592 1.0380
P1022 1.4110 0.1833 1.4096 0.2452 0.1153 0.2600
P1028 1.3385 0.1155 1.2044 1.4746 0.0414 1.4300
P1029 1.2340 0.3453 1.0675 0.4321 0.0833 0.2700

When inverse UQ is performed without considering the model discrepancy, all the actions
indicated by green arrows in Figure 2.6 will be gone. The posterior θθθ

Posterior is expected to
be over-fitted to yE (xIUQ) and we want to prove that with the current treatment of model
discrepancy in Section 2.3, such over-fitting can be avoided.

Table 7.4 shows the posterior statistical moments including mean values, standard deviations
(STD) and modes. The mode of posterior samples for a certain calibration parameters is the
value that appears most often, which is essentially the Maximum A Posteriori (MAP) estimation.

Figure 7.13 and 7.14 show the posterior pair-wise joint densities and marginal densities
for the five physical model parameters, with and without considering the model discrepancy
respectively. The marginal PDFs are evaluated using Kernel Density Estimation (KDE). The x
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Fig. 7.13 Posterior pair-wise joint and marginal densities when model discrepancy is
considered
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Fig. 7.14 Posterior pair-wise joint and marginal densities when model discrepancy is not
considered
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and y axes of joint densities and x axis of the marginal densities are the prior ranges. Apparently,
the posterior distributions demonstrate a remarkable reduction in prior input uncertainties.
These density plots are also useful for identifying potential correlations between the parameters,
as well as the type of marginal distribution for each parameter. For example, highly linear
negative correlation is observed between P1008 and P1012. This indicates that in future
forward uncertainty propagation studies, these input parameters should be sampled jointly, not
independently, so that their correlation is captured.

By comparing results with and without model discrepancy in Table 7.4, Figure 7.13 and
7.14, it can be noticed that when model discrepancy is not considered, the posterior standard
deviations are very small and pair-wise joint distributions are more concentrated. This fact
is preferable in the sense that more uncertainty reduction is achieved. However, it is also an
indication of potential over-fitting. At this point, we do not know which one of the results in
Figure 7.13 and 7.14 is “closer” to the truth. Validation of TRACE based on these posteriors is
needed to make a decision.

7.6 Results for Validation Using Posteriors

In this section, preliminary validation is performed (blocks connected by light blue arrows in
Figure 2.6) for the posteriors (with and without mode discrepancy) achieved in Section 7.5.

7.6.1 Validate posteriors from inverse UQ

Figure 7.15 shows the following:

• Green symbol: yE(xVAL)−yM(xVAL,θθθ 0), TRACE prediction error when evaluated at
the prior nominals.

• Blue symbol: yE(xVAL)−yM(xVAL,θθθ Posterior), difference between measurement data and
mean values of TRACE evaluated at posterior samples. Model discrepancy (called “bias”
in the figure) is not considered and the standard deviations of yM(xVAL,θθθ Posterior) are
plotted as errorbar;

• Red symbol: yE(xVAL)−yM(xVAL,θθθ Posterior), different between measurement data and
mean values of TRACE evaluated at posterior samples. Model discrepancy is considered
and the standard deviations of yM(xVAL,θθθ Posterior) are plotted as errorbar;

Note that in Section 7.5, after burn-in and thinning there are 4,000 samples left. For
validation if we run TRACE code at these samples the computational cost is still consider-
able. To avoid this, we can create another GPcode for TRACE with (xVAL,θθθ Posterior) and
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yM(xVAL,θθθ Posterior) and training input and outputs. Again for each test in xVAL, a maximin
LHS design is generated with Ndesign samples and all together NVAL×Ndesign new TRACE runs
are needed to train the GP emulator. Because NVAL is two times larger than NIUQ, one may
question that the computational cost will be high. The simulation cost is not really high due to
two reasons: (1) the fact that NVAL ≈ 3×NIUQ means that a smaller value of Ndesign (e.g. 10)
will be sufficient to build an accurate GP emulator for TRACE; (2) The θθθ

Posterior has significant
uncertainty reduction compared with θθθ

Prior so that much fewer design samples are needed.
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Fig. 7.15 Comparison of validation data with TRACE simulation based on prior and posterior

It can be observed from Figure 7.15 that when model discrepancy is considered, the
mean of TRACE evaluated at posterior samples yM(xVAL,θθθ Posterior) are generally closer to
yM(xVAL,θθθ 0). Recall that θθθ

0 represents our current best knowledge and recommended by
TRACE model developers, any audacious change of θθθ

0 may be questionable. For example,
without model discrepancy, the inverse UQ process suggests changing P1022 to 0.2452 and
P1029 to 0.4321 which may be unacceptable by model developers and other users. Although
with model discrepancy, inverse UQ still suggests 23%− 41% change from θθθ

0 to θθθ
Posterior

mean, the standard deviations of θθθ
Posterior are much larger.

Also, it is generally true (with a few exceptions) that yE(xVAL)−yM(xVAL,θθθ Posterior) are
larger when model discrepancy is not considered. This is because without model discrep-
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ancy, all the connections from green arrows in Figure 2.6 are gone, the posteriors θθθ
Posterior

achieved using yE (xIUQ) are completely ignorant of yE(xVAL). The posteriors are slightly
over-fitted to yE (xIUQ) such that when TRACE is evaluated at θθθ

Posterior, larger yE(xVAL)−
yM(xVAL,θθθ Posterior) are observed.
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Fig. 7.16 Comparison of validation data with TRACE simulation based on prior and posterior,
when inverse UQ is only performed with VoidF3 and VoidF4.

However, the over-fitting is not obvious. To demonstrate a scenario with strong over-
calibration, we repeated the whole inverse UQ process using only two QoIs: VoidF3 and
VoidF4. These two QoIs are picked because P1008 and P1012 have trivial influence on them,
which means these two parameters will not be identifiable with only VoidF3 and VoidF4.
Figure 7.16 shows the same comparison with Figure 7.15 when only VoidF3 and VoidF4 are
used for inverse UQ. Tremendous TRACE prediction errors yE(xVAL)−yM(xVAL,θθθ Posterior)

are observed when model discrepancy is not considered, especially for VoidF1 and VoidF2.
The posteriors are so over-fitted to yE(xIUQ) that they lead to bad agreement with yE(xVAL).
However, our proposed treatment of model discrepancy demonstrates that it can avoid over-
fitting in this scenario. The only influence on yM(xVAL,θθθ Posterior) is that the standard deviations
have increased.
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7.6.2 Fitted posterior distributions

After demonstrating the validity of the improved modular Bayesian approach. The posterior
θθθ

Posterior when model discrepancy is considered is the preferred results for inverse UQ. To make
these results more applicable to future forward UQ, sensitivity analysis and validation studies,
the posterior samples for each physical model parameter can be fitted to certain well-known
distributions, e.g. Gaussian distribution. Figure 7.17 and Table 7.5 show the fitted distributions
for each physical model parameter and the parameters associated with each distribution, i.e.
mean (µ) and standard deviation (σ ) for normal distribution, shape (α) and scale (β ) parameter
for Gamma distribution, non-centrality (s) and scale (σ ) parameter for Rician distribution. All
the fitted distributions are accepted by Kolmogorov–Smirnov test at the 5% significance level.
Figure 7.18 shows that good agreement can be achieved between the empirical cumulative
distribution function (CDF) and fitted distribution CDF for every physical model parameter.
Finally, Table 7.6 reports the correlation coefficients between the five calibration parameters.
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Fig. 7.17 Fitted posterior marginal probability densities

Table 7.5 Fitted distribution type and distribution parameters

Parameter Distribution type Distribution parameter 1 Distribution parameter 2

P1008 Rician s = 0.5709 σ = 0.2218
P1012 Gaussian µ = 1.2358 σ = 0.0890
P1022 Gaussian µ = 1.4110 σ = 0.1833
P1028 Gaussian µ = 1.3385 σ = 0.1155
P1029 Gamma α = 12.6511 β = 0.0975
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Table 7.6 Correlation coefficients of five physical model parameters

Parameter P1008 P1012 P1022 P1028 P1029

P1008 1.0000
P1012 -0.8338 1.0000
P1022 -0.3543 0.0969 1.0000
P1028 0.3264 -0.2121 0.1978 1.0000
P1029 -0.1941 0.0251 0.4047 -0.2246 1.0000

7.7 Discussions

The improved modular Bayesian approach presented in Section 2.3 has been successfully
demonstrated to be able to inversely quantify the uncertainties in calibration parameters and
avoid over-fitting in the meantime. The proposed inverse UQ approach is robust in the sense that
satisfactory results can be achieved even only partial QoIs data are used. GP-based metamodel
can greatly reduce the computational cost by several orders of magnitude, as shown in Table
7.7.

Table 7.7 Simulation cost for each step in the workflow shown in Figure 2.6

.

Simulation cost TRACE full model GPbias GPcode for inverse UQ GPcode for validation

Cost in TRACE runs 50,000 86 380 590
Extra CPU time 36.7 mins

However, there are some limitations in this study that need further investigations:
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1. Inverse UQ only takes 5 of the 36 TRACE physical model parameters for this study,
because only these 5 parameters are significant for BFBT benchmark problem. To
inversely quantify the uncertainties in other parameters, different benchmark data are
required. For example, parameters P1034 and P1035 will need experimental data that
involves reflooding. However, by separated inverse UQ for different groups of parameters,
the correlations between the groups will not be quantified. For instance, if parameter
groups A and B are significant to benchmarks A and B respectively, then inverse UQ will
only result in correlations of parameters within each group but not across the two groups.

2. The current problem has four-dimensional QoIs (VoidF1 – VoidF4) which are supposed
to be correlated. However, because we do not have enough information to quantify
the correlations between them, they are assumed to be independent to each other when
constructing the multi-dimensional GP emulator GPbias and GPcode. As a result, all the
three components of the covariance matrix of the likelihood function ΣΣΣexp+ΣΣΣbias+ΣΣΣcode

are diagonal matrices. The inverse UQ is more solid if the correlation structure of the
QoIs can be quantified and incorporated in the evaluation of the likelihood.

3. In this study, we used α = 25% of the experimental data for inverse UQ and the rest
for validation. Even though the sequential algorithm for TSA is rigorous and justified,
further numerical investigation is needed to see if different values can cause significant
changes in the inverse UQ results.

4. In Section 7.6, “graphical validation” method is used which is only qualitative. It provides
very limited quantitative information of the variation of the code performance with the
design variables. We are working on quantitative validation metrics that can account for
the correlations between different QoIs.

5. Model updating is an iterative process. Sequential inverse UQ of the computer model
can be done by using the current posterior as new prior for the next inverse UQ process.

6. Finally, there is an important issue for inverse UQ that is not addressed in this work:
the “identifiability” problem. In Section 2.3 we have briefly commented on this issue.
Inverse UQ problems are usually ill-posed. Many different combinations of the model
discrepancy and parameter variability can account for the same amount of error between
code simulation and experimental observation, making the true values of the calibration
parameters not “identifiable”. We have discovered some connections between the sensi-
tivity and identifiability, which will be published in the near future once more extensive
numerical tests are finished.
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Chapter 8

APPLICATION TO BISON FISSION
GAS RELEASE MODEL

In this chapter, we quantified the uncertainties for the input parameters of fuel performance
code BISON fission gas release (FGR) model, based on Risø-AN3 benchmark time series FGR
measurement data. GP metamodel is used during MCMC sampling. This specific problem
has a few features that pose challenges for inverse UQ, i.e., (1) time series data correspond
to high-dimensional correlated outputs; (2) we have only one measurement setting available
to use which is insufficient to provide a model for model discrepancy of BISON; (3) the time
series from BISON and measurement data have drastic difference, which can cause unexpected
random walks if the FGR data is used directly. The work presented in this chapter is also
published in [153] [155].

8.1 Problem Definition

Nuclear reactor fuel performance studies the thermo-mechanical behavior of fuel rods and
verify their compliance with safety criteria under both normal operation and accidental condi-
tions. Various complex phenomena need to be considered in nuclear reactor fuel performance
analysis [147], for example: (1) for fuel: fission product swelling, densification, thermal and
irradiation creep, fracture, and fission gas production and release; (2) for cladding: cladding
plasticity, irradiation growth, and thermal and irradiation creep; (3) for others: gap heat transfer,
mechanical contact, and evolution of the gap/plenum pressure with plenum volume, gas tem-
perature, and fission gas addition, etc. Example of some popular fuel performance codes are
BISON [147], TRANSURANUS [76], ENIGMA [72], FRAPCON [113] and FALCON [43].
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8.1.1 Fission Gas Behavior in Nuclear Fuel

In this chapter, we focus on the behavior of the fission gases xenon and krypton in uranium
dioxide fuel. The fundamental physical processes, which control the kinetics of FGR in
irradiated UO2, may be outlined as follows [105] [106]:

1. Fission gas atoms generated in the fuel grains diffuse towards the grain boundaries
through repeated trapping in and irradiation-induced resolution from nanometer-size
intra-granular bubbles.

2. Gas accumulates at grain faces as a result of intra-granular diffusion and of gas sweeping
by moving grain boundaries as the grain growth process takes place.

3. Although a part of the gas atoms at the grain faces is dissolved back to the grain interior
by irradiation, the majority diffuses into grain-face bubbles acting to increase the bubble
internal pressure and generally maintaining bubbles in a non-equilibrium state.

4. Micron-size grain-face bubbles grow with inflow of gas atoms and with absorption of
vacancies driven by the bubble over-pressure.

5. Bubble growth brings about bubble coalescence and inter-connection, eventually leading
to the formation of a tunnel network through which a fraction of the gas is released to the
fuel rod free volume (thermal release).

The complex behavior of the fission gases xenon and krypton in UO2 significantly affects
the thermo-mechanical performance of the nuclear fuel rods employed in current LWRs due to
the following reasons [105] [106] [107]:

1. The fission gases tend to precipitate into bubbles after production which results in fuel
swelling and promotes fuel rod gap closure and the ensuing Pellet-Cladding Mechanical
Interaction (PCMI).

2. The released fission gas accumulates in fuel rod free volume (fuel-cladding gap), causing
pressure build-up and thermal conductivity degradation of the fuel rod filling gas (helium).

3. The precipitated gas bubbles in fuel rod also has a negative effect on the fuel thermal
conductivity, and consequently the temperature distribution in the fuel pellet.

4. The increase of fuel temperature will in turn lead to higher amount of released fission
gases which forms a positive feedback. Eventually the rod will fail due to cladding
ballooning and cladding burst.

The accurate modeling of fission gas behavior in nuclear fuel performance simulation is
vital considering its detrimental nature. However, the numerical analysis of FGR and swelling
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involves treatment of several complicated and interrelated physical processes, which inevitably
depend on uncertain input parameters. For example, the state-of-the-art fuel performance code
BISON [147] incorporates an advanced physics-based FGR model that depends on several
model parameters whose uncertainties are only known by expert judgement [107]. This poses
difficulties in the uncertainty and sensitivity analysis of BISON for other applications. The
objective of this chapter is to inversely quantify the uncertainties associated with such model
parameters in BISON FGR model based on available experimental data.

8.1.2 BISON FGR Model

BISON is a finite element-based nuclear fuel performance code developed at Idaho National
Laboratory (INL) [147]. BISON is built on MOOSE (Multi-physics Object Oriented Simulation
Environment) framework [41], which is a parallel computational framework designed for rapid
production of new simulation tools. BISON solves the fully-coupled equations of thermo-
mechanics and species diffusion in an implicit and parallel way, for either 1-D spherical, 2-D
axisymmetric or 3-D geometries. It incorporates a wide variety of material models for both fuel
and zircaloy cladding. Other capabilities of BISON include applicability to both steady-state
and transient conditions.3 Extensive Verification, Validation and assessment work has been
done with BISON code, see [56] [146] [108].

Given the unfavorable nature of fission gases as a potential life-limiting factor of nuclear
fuel rods, a reliable modeling of FGR and swelling represents a primary requisite for fuel
performance codes. Previously, the modeling of FGR in nuclear fuel performance codes have
been relying on empirical models which are not applicable beyond their range of calibration
[105]. Recently a more efficient and flexible physics-based FGR and swelling model that can
describe a wider range of reactor operation conditions have been implemented in BISON [106].
This new model is called “Simple Integrated Fission Gas Release and Swelling (SIFGRS)”,
which uses a physics-based modeling approach described in [105] [106]. Several fundamental
features of fission gas behavior are incorporated in this model, including gas generation,
diffusion and precipitation in grains, growth and coalescence of gas bubbles at grain faces,
grain growth and grain boundary sweeping, thermal, athermal, and transient gas release.
Furthermore, in contrast with historical empirical approaches, the SIFGRS model allows the
simulation of the FGR and swelling as inherently coupled processes, while remaining a level of
complexity suitable for application to engineering scale fuel performance analysis [105] [106].

The BISON SIFGRS model includes five uncertain input parameters, all of which are scale
parameters as shown in Table 8.1. The lower and upper bounds are suggested by SIFGRS
developers in a recent BISON uncertainty and sensitivity study [107]. Such uncertainty
bounds specification is based on the scatter in the available experimental data from a fairly
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Table 8.1 Uncertain input parameters in BISON SIFGRS model

Parameter (scale factor) Description Lower bound Upper bound Nominal

Temperature temperature_scalef 0.95 1.05 1.0
Grain radius grainradius_scalef 0.4 1.6 1.0
Intra-granular gas atom diffusion coeff. igdiffcoeff_scalef 0.1 10.0 1.0
Intra-granular resolution parameter resolutionp_scalef 0.1 10.0 1.0
Grain-boundary diffusion coeff. gbdiffcoeff_scalef 0.1 10.0 1.0

extensive literature review and is consistent with the information in the open literature. Normal
distributions are assumed for the first two parameters. The last three parameters adopt log-
uniform distributions so that the logarithms of them follow uniform distribution on [−1,1]
[107]. We can see that the uncertainty ranges for the last three parameters have lower and upper
bounds that differ by a factor of 100. Apparently a more robust and appropriate specifications
of the input uncertainties should be sought that are consistent with available experimental
data. This is the primary mission of the inverse UQ analysis in this study, and we have chosen
Risø-AN3 benchmark which includes on-line, time-dependent measurement of FGR.

8.2 Risø-AN3 Experimental Data

8.2.1 Risø-AN3 Benchmark

The Risø-AN3 experiment is one of the fuel rod irradiation experiments from the International
Fuel Performance Experiments (IFPE) database [73] [122]. It comprises base irradiation in the
BIBLIS A PWR (Germany) and ramp test in the DR3 research reactor at Risø (Denmark). The
mother rod, CB8, was irradiated over four reactor cycles up to a burnup of about 40.9 GWd/t,
and re-fabricated to a shorter length. The re-fabricated rod, CB8-2R, was instrumented with a
fuel centerline thermocouple and a pressure transducer. Table 8.2 presents the specifications for
the re-fabricated rod which was extracted from an irradiated full length rod. The thermocouple
hole was at the top of the fuel rod and did not penetrate the entire fuel stack.

The power history for the base irradiation of the full length fuel rod is shown in Figure
8.1. Figure 8.2 presents the ramp test power history of the re-fabricated rod. The ramp test
takes about 72 hours with a peak power of approximately 40 kW/m, resulting in a final burnup
of 41.8 GWd/t. A prescribed axial power profile for both base irradiation and ramp test was
provided in the FUMEX-II data [73], along with the measured clad surface temperature as a
function of time which was used as a boundary condition for this simulation. Additional reactor
operation conditions can be found in BISON assessment manual section M [108].
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Table 8.2 Specifications of Risø-AN3 re-fabricated test rod (TD means Theoretical Density)

Description Property Value Unit

Material

Fill gas He
Mother rod fill gas pressure 2.31 MPa
Re-fabricated rod fill gas pressure 1.57 MPa
Fuel material UO2

Fuel enrichment 2.95 wt% 235U
Fuel density 93.74 %TD
Cladding material Zircaloy-4
Average grain radius 4.7 µm

Geometry

Overall length 39.058 cm
Fuel stack height 286.8 mm
Nominal plenum height 60.96 mm
Pellet inner diameter 2.5 mm
Pellet outer diameter 9.053 mm
Dish diameter 6.65 mm
Dish depth 0.13 mm
Chamfer width 0.46 mm
Chamfer depth 0.16 mm
Cladding inner diameter 9.258 mm
Cladding outer diameter 10.81 mm
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Fig. 8.1 Risø-AN3 benchmark base irradiation power history.

8.2.2 BISON Modeling of Risø-AN3 Benchmark

The BISON code incorporating the most recent SIFGRS model was applied to the analysis of
Risø-AN3 irradiation experiment, using nominal values for the five uncertain scale parameters.
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Fig. 8.2 Risø-AN3 benchmark ramp test power history.

We used a 2D axisymmetric model for the fuel. Other main models and characteristics of
the BISON code can be found in [147]. We followed the implementation details described in
BISON assessment manual [108], for example, the geometry and mesh, material and behavioral
models, boundary and operating conditions. The simulations were performed using INL’s
high performance computing cluster. For each simulation, it takes around 1.75 hours using 32
processors.

Figure 8.3 shows the comparison of fuel temperature at thermocouple position during ramp
test from Risø-AN3 measurement data and BISON prediction. The fuel centerline temperature
is taken at a node approximately 36.4 mm from the top of the fuel stack. The comparison
indicates that BISON code is able to capture the fuel temperature evolution within 10% of
the measurement throughout the duration of the transient. However, BISON systematically
under-predicts the fuel centerline temperature.

Figure 8.4 presents the comparison of the rod internal pressure. BISON over-predicts the
rod internal pressure by 20% - 40% over the ramp test. Rod internal pressure is affected by
many factors such as plenum pressure and volume, rod axial growth, fuel and cladding creep,
etc. It is unsure which one is the main factor that causes the over-prediction. The burst of rod
internal pressure around 50 hours after the start of transient may be partially associated with
gap and cracking opening during the sudden power drop.

Figure 8.5 shows the comparison of measured and BISON simulated FGR during the ramp
test. The FGR is defined as the ratio between the amount of fission gas released and generated in
the irradiated fuel rod. BISON under-predicts the FGR over the most of the ramp test. It is able
to qualitatively reproduce the rapid increase of FGR around 50 hours after the start of transient,
albeit only by a much lower magnitude. A possible explanation, as pointed out in [146], is that
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Fig. 8.3 Comparison of fuel centerline temperature from Risø-AN3 measurement and BISON
simulation with nominal values of uncertain input parameters.
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Fig. 8.4 Comparison of rod internal pressure from Risø-AN3 measurement and BISON
simulation with nominal values of uncertain input parameters.

the magnitude of the release burst measured by pressure transducer is over-estimated. Another
reason is that the gap and cracking opening during the sudden power drop can cause delayed
detection of gas released from the fuel prior to the transient [73] [105].

Considering the difficulty and inherent uncertainties of simulating FGR during ramp tests
by means of engineering-scale fuel performance codes, it is commonly regarded as satisfactory
when the code FGR predictions deviate less than a factor of 2 from the measured values [107]
[146]. Actually the accuracy of the FGR calculation for Risø-AN3 obtained by BISON as
shown in Figure 8.5 is similar or better than the state-of-the-art [73] [146].
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Fig. 8.5 Comparison of FGR time series from Risø-AN3 measurement and BISON simulation
with nominal values of uncertain input parameters.

Even though fuel centerline temperature and rod internal pressure measurement data are
also available in Risø-AN3 benchmark, they present immediate responses to the transient power
changes and thus have multiple discontinuities when the power suddenly changes, as shown in
Figure 8.3 and Figure 8.4. FGR evolution with time is relatively smoother and it is the primary
quantity that we are interested in. Therefore we choose the time-dependent FGR measurement
data for the inverse UQ study.

8.3 Dimension Reduction

There are two unresolved issues before using the Risø-AN3 FGR time series data for inverse
UQ of BISON FGR model:

1. The experimental FGR data is time-dependent, which corresponds to a multivariate
output. As these output variables are highly correlated, a multivariate GP emulator is
required instead of independent emulators for each variable. Making separate GP model
for each variable is too cumbersome and it will need special treatment to account for the
high correlation.

2. It can be seen in Figure 8.5 that the shapes of FGR evolution from BISON and Risø-AN3
have drastic difference, mainly due to the under-estimation of the burst release of FGR
when power drops suddenly. Moreover, at a different input combinations of the five scale
parameters, BISON FGR simulations will have similar shapes. Therefore, inverse UQ is
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not expected to find an optimal “posterior” PDF for the random input parameters such that
the BISON calculations will “match” the measurement. Clearly, this drastic difference
is caused by model discrepancy δ (x). However, we do not have enough available field
data to train a GP model for δ (x) In this case, the magnitude of the measurement error is
insufficient to account for the misprediction, and we are likely to have a poor model fit
during the inverse UQ process.

The first problem has been tackled with dimension reduction by Principal Component
Analysis (PCA) in previous research [61] [62] [144] [166] [142]. PCA is the projection of
high-dimensional data onto a lower-dimensional subspace (also called principal subspace) such
that the projected data has maximized variance and are uncorrelated [124]. PCA can be done
through eigen-decomposition of the covariance matrix of the data. However, Singular Value
Decomposition (SVD) of the data matrix is often preferred for numerical reasons.

8.3.1 Principal Component Analysis

Suppose we have picked p points from BISON simulated FGR evolution with time. The FGR
values at those points will correspond to p output variables which is usually a large number
resulting in a high-dimensional problem (e.g., 100). We believe that it not necessary to represent
the FGR time series with so many variables. To learn the underlying evolution pattern of the
time series, we sample the uncertain input parameters N times, run BISON at these inputs and
collect the FGR data which form a p×N data matrix A. We are aware of the high correlation
between the rows of this data matrix and we would like to de-correlate the data with a linear
transformation PA = B, where P is a p× p transformation matrix, B is a p×N data matrix and
the rows of B represent uncorrelated new variables. PCA is the process to find P and the steps
are shown below:

1. Center the original data matrix A. Define u as the column vector of the row means. We
get the centered data matrix Acentered by subtracting u from each column of A.

2. Find the SVD of Acentered :
Acentered = UΛΛΛV⊤ (8.1)

where

• U is a p× p orthogonal matrix whose columns are the left-singular vectors of
Acentered

• V is a N ×N orthogonal matrix whose columns are the right-singular vectors of
Acentered
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• ΛΛΛ is a p×N diagonal matrix whose diagonal entries are the singular values of
Acentered

• The non-zero singular values are the square roots of the non-zero eigenvalues of
AcenteredA⊤

centered or A⊤
centeredAcentered.

• The magnitude of the diagonal entries of ΛΛΛ are arranged in descending order and
large singular values points to important features in data matrix Acentered [124].

3. Choose P = U⊤, then we have:

PAcentered = U⊤Acentered = ΛΛΛV⊤ = B (8.2)

Apparently the covariance matrix of B is diagonal. The rows of P (which are the
columns of U) are called the Principal Components (PCs), also known as loadings. The
transformed variables (rows of B) are called PC scores. PC scores are the representations
of the original data Acentered in the principal subspace. The columns of B correspond
to observations. The eigenvalues of the covariance matrix of Acentered are called PC
variances, which correspond to the square of the diagonal entries in ΛΛΛ.

4. Decide on the dimension of the principal subspace p∗ which is much smaller than p. It
is quite normal that the PC variances decrease very quickly. PCs with larger associated
variances represent important structure, while those with lower variances represent noise
[57]. A widely used criterion is that we only keep the first p∗ PCs whose corresponding
PC variances can account for over 95% or 99% of the total variance. The first p∗ PCs
form a p∗× p transformation matrix P∗ :

P∗Acentered = B∗ (8.3)

where B∗ is a p∗×N matrix whose rows represented new variables after dimension
reduction. Now we have reduced the number of variables from p to p∗.

Once we have the PCs as rows of matrix P∗ and PC scores stored in matrix B∗, we build
the GP metamodel for the p∗ PC scores instead of the p output variables in the original space
(as shown by step 1 in Figure 8.6). The data matrix B∗ will serve as the training sample for the
GP metamodel. The GP prediction for a certain input will be a p∗×1 vector b∗, where the “∗”
superscript is used to indicate that it is a prediction in PC subspace. We can transformed it back
to the original space with P∗:

a = P∗⊤b∗+u (8.4)
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Fig. 8.6 Workflow and data processing steps.

where is a p×1 vector represents the FGR time series in the original space. Note that we need
to add the mean vector u back. In all the previous work that used PCA dimension reduction for
Bayesian calibration [61] [62] [144] [166] [142], the metamodel predictions for the PC scores
were transformed back to the original space (as shown by step 2 in Figure 8.6). However, in
this research we do not perform the “backward transformation”. Instead we also transformed
the measurement data to the PC subspace and use the transformed data during the inverse UQ
process (as shown by step 3 in Figure 8.6). The motivation will be illustrated at the beginning
of Section 8.5, in which we will show that by this approach we can deal with the second
unresolved issue listed at the beginning of this section.

8.3.2 Results for Dimension Reduction

Before using the Risø-AN3 FGR time series data for the inverse UQ of BISON FGR model,
data smoothing is performed because the measurement values are noisy as shown in Figure 8.5,
especially at the last 20 hours of the ramp test. MATLAB “lowess” function with a spanning
parameter of 0.05 is used for the data smoothing. Such spanning parameter is just enough
to make the FGR monotonically increases with time over the most of the ramp test without
smearing out too much of the original data. Figure 8.7 shows the smoothed FGR time series
data. Data smoothing was also performed in a previous deterministic calibration performed for
BISON FGR model [166].

We picked p = 100 points from the FGR evolution that are equally spaced over the ramp
test to represent p outputs in the original space. Such a number is also chosen in a previous
study by Yankov [166]. Next we need to find the dimension p∗ for the PC subspace. As we are
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Fig. 8.7 Smoothing Risø-AN3 FGR time series data.

unaware of how many samples are needed for getting a good sense of the dimension reduction,
we tried N = 25, 50, 100 and 200. Max-min LHS is used to generate samples over the input
domain defined in Table 8.1. For each case of N we iterate the design 1000 times and select the
one with the maximum minimum distance such that the input space is sufficiently explored.
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Fig. 8.8 Collection of BISON FGR simulation results from different max-min LHS designs.

The BISON FGR model developers choose uniform distributions for the first two parameters
and log-uniform distributions for the last three parameters in Table 8.1 [107]. However, in that
case equal number of samples will be generated for the ranges [0.1,1] and [1,10] for the last
three parameters, resulting in insufficient exploration of the range [1,10]. In the current study
we choose uniform distributions for all the five input parameters during the LHS design. Figure
8.8 shows the collection of BISON FGR simulations with 25, 50, 100 and 200 LHS samples
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respectively. The figure confirms that by change the values of the five input parameters, the
shapes of BISON FGR simulations remain similar. The FGR calculations for all the designs
are close to “envelop” the Risø-AN3 FGR time series data, indicating that the choice of using
uniform distributions over the prior ranges is reasonable.

Next we performed PCA for each of the four cases with different number of training samples.
Figure 8.9 shows the decrease of the PC variances for the first few principal dimensions. It is
apparent that the PC variances drop so quickly that the variances associated with higher index
become trivial compared with the first few variances.
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Figure 8.10 shows the percentage of variation explained by the first few principal dimensions.
The percentage of variation explained is the ratio of the PC variance in certain principal
dimension over the sum of the variances in all the principal dimensions. Figure 8.11 shows
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the cumulative percentage of variation explained by the first few principal dimensions. The
first principal dimension explains over 95% of all the variations. The first two PC dimensions
together are able to account for over 99.7% percent of the total variation, suggesting that we
only need to keep these two dimensions for the dimension reduction.
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In the following, we will build GP metamodels only for the first p∗ = 2 PC scores, instead
of build metamodels for p = 100 outputs in the original space. Since the dimension p∗ of
reduced space is larger than 1, we still have a multivariate problem. We can build a multivariate
emulator, but building independent GP metamodels for each PC score often performs as well
as a multivariate emulator because the PC scores are not correlated [144].

Figure 8.12 shows the first two PCs. Recall that each PC or loading vector is a 1× p vector,
whose elements are essentially weighting factors for the linear transformation. The weighting
factor in each PC has a one-to-one correspondence with the time that we have chosen for the p
FGR outputs. There is no considerable difference between the PCs calculated using different
sample sizes.

8.4 GP Metamodels for BISON

8.4.1 Building the GP Metamodels

In this subsection, we present the results for building and validating of GP metamodels. We
used the PC scores from Section 8.3 as training samples. Again we considered different training
sizes to study how many training samples are sufficient to build an accurate GP metamodel.
In the current research we use the Matérn 5/2 correlation kernel, constant trend functions and
MLE hyperparameter estimation method. Such choices are the most popular combinations in
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Fig. 8.12 First two PCs after dimension reduction.

literature. We did perform a comparative study for different correlations kernels and different
trend functions and the current selection shows the best results, see Figure 8.13 - Figure 8.15.
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Fig. 8.13 Prediction at nominal values of inputs using GP metamodels built with different
correlations kernels.

As a tentative study to evaluate the accuracy of GP metamodels with different correlations
kernels and trend functions, we only look at the accuracy of the predictions at BISON nominal
inputs.

1. Figure 8.13 compares the Matérn 5/2, exponential and linear correlation kernels, all with
constant trend functions and 100 training samples. Apparently exponential correlation
kernel results in larger MSE while linear correlation kernel leads to bad prediction.
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Fig. 8.14 Prediction at nominal values of inputs using GP metamodels built with different trend
functions.
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Fig. 8.15 Prediction at nominal values of inputs using GP metamodels built with different
number of training samples.

2. Figure 8.14 compares the constant, linear and quadratic trend functions, all with Matérn
5/2 correlation kernel and 100 training samples. No obvious difference can be observed.
All the trend functions have good predictions and small MSEs. In fact ordinary GP that
uses constant trend functions is the most popular version of GP.

3. Figure 8.15 compares GP predictions that are built with different number of training
samples, all with Matérn 5/2 correlation kernel and constant trend function. All the
GP metamodels have similar predictions, while the MSEs decrease with more training
sampled added. This is expected because the MSE decreases when an untried location
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gets closer to training samples. More training samples in the input domain means that
any untried location has a high opportunity to have a training sample nearby.

8.4.2 Validating the GP Metamodels

For the validation of GP metamodels built with different number of training samples, we first
calculated the Predictivity Coefficient Q2 for CV to get a general idea of their accuracy. The
results are shown in Table 8.3. All the four cases have very high accuracy for the first PC
score, while for the second PC score the GP metamodel built with 25 training samples has a
bad performance. Realizing that it appears unnecessary to use 200 samples to train the GP
metamodels, we use this sample set as a “validation set” for more robust validation.

Table 8.3 Predictivity Coefficients for CV using different number of training samples

Training sample size First score Second score

25 0.9804 0.5578
50 0.9720 0.8469
100 0.9895 0.9789
200 0.9921 0.9874

We followed the validation process used in [9] [69]. Figure 8.16 shows the comparison of
first and second PC scores from BISON simulations (after projection onto the PC subspace)
and GP metamodel predictions. Accurate GP metamodels should have predictions that fall
on the diagonal lines. For the first PC score, GP emulators built with different number of
training samples have similar accuracy, while for the second PC score, GP emulators built
with more samples produce predictions that are more concentrated to the diagonal line. These
observations are consistent with the results shown in Table 8.3.

We also calculated the standardized residuals, which is the differences between BISON sim-
ulation and GP prediction divided by the corresponding standard deviations of GP predictions.

yM(x)− ŷM(x)√
MSE [ŷM(x)]

(8.5)

The GP metamodel is approximately 99.7% confident that the standardized residuals should
lie within the interval [−3,3]. Figure 8.17 demonstrates the standardized residuals for first and
second PC scores with GP metamodels trained by 25, 50 and 100 LHS samples. The x-axis is
the predicted values for PC scores. Clearly the standardized residuals from GP metamodels
trained with 25 and 50 samples have many points fall above 3 or below -3. The GP metamodel
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Fig. 8.16 Comparison of first and second PC scores from BISON simulation and GP
metamodel prediction.

built with 100 training samples have over 99.7% points that stay within [−3,3], suggesting that
this metamodel is valid.

Figure 8.18 shows the Q-Q plot, which is the quantiles of standardized residuals versus
the quantiles from random samples of the same size from a standard normal distribution. The
strong linearity suggests that the standardized residuals are close to being normally distributed.
However, we do have a few outliers that make the points deviate from linear line.

8.5 Results for Inverse UQ

8.5.1 Pre-processing the Time Series Measurement Data

After performing the dimension reduction using PCA, building and validating the GP meta-
models, we are ready to apply the metamodels in the inverse UQ process. Note that the GP
metamodels are built for the responses in the reduced space, i.e., the first and second PC scores.
During the inverse UQ process, we have two options to use the measurement data.
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Fig. 8.17 Standardized residuals for first and second PC scores.
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Fig. 8.18 Q-Q plot of the standardized residuals for first and second PC scores.
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1. Every vector of GP predictions of the first two PC scores can be transformed back to
the original space. Then the Risø-AN3 FGR measurement data will enter the likelihood
function directly to decide the acceptance of this MCMC sample. This option is shown
by step 2 in Figure 8.6.

2. In another option, instead of transforming the prediction vector to the original space, we
transform the Risø-AN3 experimental data to the PC subspace. During MCMC sampling
we will use the reduced representation of the experimental data. This option is shown by
step 3 in Figure 8.6.

In the current study we chose the second option. Define a p×1 vector d which represents
the FGR time series in the original space. By centering this vector we get dcentered = d−u.
Projecting this centered vector onto the PC subspace:

P∗dcentered = g∗ = [g∗1,g
∗
2]
⊤ (8.6)

where g∗1 and g∗2 are the PC scores for the time series data. Because the loading matrix P∗

and mean vector u are calculated using ensemble of BISON executions, projecting g∗ back
to the original space will results in a FGR time series that has a similar shape with BISON
simulations. The backward projection is defined as:

P∗⊤g∗+u = p∗
1
⊤g∗1 +p∗

2
⊤g∗2 +u (8.7)

Where p∗
1 and p∗

2 are the first and second PCs corresponding to the rows of P∗ . Figure 8.19
shows the comparison of original measurement data, smoothed data and reconstructed data
using first, second and both PC scores. Due to the complexity and strong-non-linearity of FGR
phenomenon and limited representation in current BISON FGR model, it is impossible to find
a set of input parameters to make BISON prediction and Risø-AN3 measurements agree well.
The reason to choose the second option is that the time series of the reconstructed data using
both PCs is the “best match” for the original measurement data that we can find for BISON
simulation.

We have defined the covariance matrix for the measurement error as ΣΣΣε . If we assume
independence among all the measurements, ΣΣΣε is a p× p diagonal matrix with measurement
noises as diagonal entries ΣΣΣε = σ2

ε I. In the current we assume 10% measurement error as
suggested by BISON FGR developers [108]. Recall that in Chapter 2 Section 2.1 we mentioned
the code/interpolation uncertainty, which is caused by using metamodels to replace the full
model. Statistical models like GP emulator provide estimation of the MSE associated with
each prediction, making it possible to account for this source of uncertainty. Define ΣΣΣk as
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Fig. 8.19 FGR evolution: a comparison of original measurement data, smoothed data and
reconstructed data after being projected onto the PC subspace.

the covariance matrix for the PC score predictions by GP, which is also a p∗× p∗ diagonal
matrix with the MSE for each PC score as the diagonal entries. The covariance matrix of the
likelihood function in the reduced space is defined below, where the first term represents the
transformation of the measurement error from the original space to the reduced space:

ΣΣΣ = P∗
ΣΣΣεP∗⊤+ΣΣΣk (8.8)

8.5.2 Global Sensitivity Analysis using GP Metamodels

The GP metamodels can be evaluated very fast, making Monte Carlo sampling for global SA
possible. We use the validated GP metamodels to calculate the Sobol’ indices using the “’D-3’
method listed in [52]. Figure 8.20 shows the calculated Sobol’ indices for PC score 1 and score 2.
It can be seen that temperature_scalef, grainradius_scalef and igdiffcoeff_scalef

are significant input parameters, while resolutionp_scalef and gbdiffcoeff_scalef are
relatively trivial.

8.5.3 Investigation of MCMC Samples

We applied the adaptive MCMC sampling approach Algorithm 3 to generate 100,000 samples.
This number is usually more than enough for a Markov chain. We used the UQLab MATLAB
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Fig. 8.20 Sobol’ indices calculated with GP metamodels.
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Fig. 8.21 Mixing and auto-correlation functions of the MCMC samples.

package [83] and it takes about 6.5 minutes to generate all the samples with one processor,
which would otherwise take 7291 days by running BISON full model with 32 processors.
After discarding the first 20,000 samples for burnin, we keep only every 10th of the remaining
samples for thinning of the chain. We investigated the trace plots and decay of auto-correlations
to determine the convergence of chain, which are shown in Figure 8.21. Very good mixing can
be identified for all the input parameters and the fast decay of the auto-correlations suggest
nearly independence.

Table 8.4 shows the statistical moments and 95% Credible Intervals (CIs) for the five input
parameters. The 95% CIs are calculated using Highest Posterior Density (HPD) intervals,
which are the narrowest intervals including the mode. Only the scale factor for temperature
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Table 8.4 Posterior statistical moments and 95% CIs for five uncertain input parameters.

Parameter Mean values Standard deviations Modes 95% CI

temperature_scalef 0.9985 0.0212 0.9985 [0.9577, 1.0367]
grainradius_scalef 0.4903 0.0660 0.4512 [0.4001, 0.6213]
igdiffcoeff_scalef 6.4707 2.0521 7.3210 [2.7721, 9.2956]
resolutionp_scalef 5.7717 2.4799 6.8576 [1.4260, 9.3975]
gbdiffcoeff_scalef 2.4686 1.8652 1.0716 [0.1806, 6.4401]

is close to the nominal value 1.0. Large standard deviations are found for the last three scale
factors.

Table 8.5 Correlation matrix based on MCMC samples

temperature_scalef grainradius_scalef igdiffcoeff_scalef resolutionp_scalef gbdiffcoeff_scalef

temperature_scalef 1.00
grainradius_scalef 0.36 1.00
igdiffcoeff_scalef -0.68 0.12 1.00
resolutionp_scalef -0.22 0.11 -0.04 1.00
gbdiffcoeff_scalef -0.73 -0.54 0.16 0.12 1.00
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Fig. 8.22 Posterior marginal and joint distributions for the five uncertain input parameters
based on MCMC samples.
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Table 8.5 presents the correlation matrix. All the last four scale factors have certain degree
of correlation with the temperature scale factor. This is expected as they are essentially more
or less dependent on temperature [154]. Figure 8.22 shows the marginal and pair-wise joint
distributions of the five uncertain input parameters. The pair-wise joint densities clearly show
that some parameters are correlated, which is consistent with results in Table 8.5.

8.5.4 Fitted Posterior Distributions

To make these results more applicable to future analysis, we need to fit posterior samples to
well-known distributions, such as Normal distribution, so that they will be more easily sampled.
Figure 8.23 and Table 8.6 show the fitted distribution for each uncertain scale factors and the
parameters associated with each distribution, i.e. mean (µ) and standard deviation (σ ) for
normal distribution, shape (α) and scale (β ) parameter for Gamma distribution, location (µ),
scale (σ ), and shape parameter (k) for generalized extreme value distribution. All the fitted
distributions are accepted by Kolmogorov-Smirnov test at the 5% significance level. Figure
8.24 shows that good agreement can be achieved between the empirical CDF based on MCMC
samples and fitted CDF for every parameter.
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Fig. 8.23 Fitted posterior probability densities
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Table 8.6 Fitted distributions for each uncertain input parameters

Parameter Distribution type Distribution parameters

temperature_scalef Normal µ = 0.9985,σ = 0.0211
grainradius_scalef Generalized Extreme Value µ = 0.1290,σ = 0.0469,k = 0.4569
igdiffcoeff_scalef Generalized Extreme Value µ =−0.5123,σ = 2.2303,k = 5.9814
resolutionp_scalef Generalized Extreme Value µ =−0.5237,σ = 2.7053,k = 5.1948
gbdiffcoeff_scalef Gamma α = 1.7671,β = 1.3940
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Fig. 8.24 Comparison of empirical CDFs from MCMC samples and fitted CDFs.

8.6 Results for Forward UQ based on Posteriors

Posterior probabilities are the degree of belief about possible values of the uncertain input
parameters after observing the experimental data. From Section 8.5 we have achieved the
posterior distributions. To show that these updated uncertainty information is indeed consistent
with Risø-AN3 FGR time series data, we performed a forward uncertainty propagation for
BISON FGR simulation using posterior distributions. We generated a new set of 200 Monte
Carlo samples using max-min LHS design, based on the fitted distributions from Section 8.5.
This number of samples is an arbitrary choice and we have demonstrated in Section 8.3 that it
is enough to provide a good sense of the lower and upper bounds. Note that these samples are
generated by considering the correlation of the five input scale factors as shown in Table 8.5.
Figure 8.25 shows the generated samples.
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Fig. 8.25 Samples generated based on fitted posterior distributions.
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Fig. 8.26 Comparison of FGR time series from Risø-AN3 benchmark original measurement
data, reconstructed measurement data, BISON simulation with nominal inputs and BISON

simulation with posterior samples.
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Figure 8.26 shows the comparison of FGR time series from (1) Risø-AN3 measurement
data; (2) Risø-AN3 data reconstructed using both PCs; (3) BISON simulation at prior nominal
inputs (1.0); (4) Mean, lower and upper bounds of BISON simulations at 200 LHS samples
generated according to posterior distributions. Note that we also run GP metamodel at these
samples and very close statistical results (mean, lower and upper bounds) are observed to
BISON full model simulations. In Figure 8.26 we only show BISON full model simulation
results. It can be observed that:

1. The mean of BISON simulations are very close to the reconstructed Risø-AN3 time
series data. In Section 8.5 we have pointed out that such reconstructed time series data is
the best we can do under two constraints: (1) it is consistent with original measurement
data; (2) it has a shape that is similar with BISON simulations.

2. The mean of BISON simulations according to posterior distributions demonstrates a
much better agreement with measurement data, compared with the simulation using prior
nominal inputs. Furthermore, BISON simulations at mean values and modes that are
listed in Table 8.4 are very close to the means of BISON simulations at these max-min
LHS samples. Therefore, if we use the posterior mean values as new nominal input
values, BISON FGR prediction will be close with the red curve (labeled “BISON, mean”)
in Figure 8.26.

3. The lower and upper bounds do not envelop the original Risø-AN3 measurement data
anymore. However, this is not a constraint for posterior distributions.

Figure 8.27 and Figure 8.28 show the fuel centerline temperature and rod internal pressure
based on the posterior respectively. No obvious change can be observed for fuel centerline
temperature. Even though FGR and fuel temperature form a positive feedback as explained in
[154], the increased FGR does not cause the fuel temperature to increase because the transient
is too short.

The agreement of rod internal pressure from BISON simulation based on the posterior
and Risø-AN3 benchmark gets worse compared with prior nominal values. It is expected to
have a higher rod internal pressure when the released fission gases increase Note that BISON
already over-predicts the rod internal pressure with prior nominal values. Therefore, possible
explanations can be that (1) the rod internal pressure measurement is severely under-estimated;
(2) there are some missing or insufficient physics in BISON simulation of rod internal pressure,
which causes the over-estimation of the pressure.
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Fig. 8.27 Comparison of fuel centerline temperature from Risø-AN3 benchmark, BISON
simulation with nominal inputs and BISON simulation with posterior samples.
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Fig. 8.28 Comparison of rod internal pressure from Risø-AN3 benchmark, BISON simulation
with nominal inputs and BISON simulation with posterior samples.
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8.7 Discussions

Some limitations of the applied approach and results in this chapter are:

1. It is certain that the disagreement between BISON FGR simulations and experiment mea-
surements are caused not just by the uncertainty in the five scale factors, but also model
discrepancy arising from missing or insufficient physics and numerical approximations.
For example, as claimed by the FGR model developers [106] [146], an example of insuf-
ficient physics is the burst release of fission gases accumulated at the grain boundaries
during a sudden power drop. Due to the complexity of the phenomena, the present model
is BISON is useful but limited.

2. Even though we have shown that over 99.7% percent of the total variation can be
accounted for by the first two principal dimensions, it is unclear how much extra uncer-
tainties will be introduced by discarding all the rest principal dimensions. The authors
in [144] consider data loss by using Gaussian multipliers of the discarded basis vectors.
But in the current research we did not do it as the inverse UQ process was done in the
reduced space rather than the original space.

3. We did not consider model discrepancy as there was not enough information available.
We used only one set of time series measurement data in the present work. There are
several other benchmarks that have FGR measured [62] [108]. However, only very few
of them have on-line, time-dependent measurement of FGR. These measurement data
are not enough to train a statistical model for the model discrepancy.

4. Though we have fitted BISON FGR model to Risø-AN3 time series measurement data, it
is questionable if the confidence in FGR predictions can be improved when BISON is
applied to different fuel designs or irradiation conditions.
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Chapter 9

CONCLUSIONS AND FUTURE WORK

9.1 Conclusions

Mathematical modeling and computer simulations have long been the central technical topics
in practically all branches of science and technology. They are naturally affected by a relatively
large amount of uncertainties coming from numerical algorithms, model parameters, initial and
boundary conditions, user effects, etc. Confidence in modeling and simulation must be critically
assessed which requires model V&V. Forward UQ plays a vital role in the validation process.
However, Uncertainties pertaining to input parameters are ubiquitous because: (1) even the
best computer models are reduced representations of the real phenomena; (2) our knowledge of
the underlying physics is incomplete. Identification and characterization of input parameter
uncertainties are essentially the beginning step for computer model uncertainty analysis.

However, previously “expert judgment” or “user self-evaluation” haven been widely used
to address the “lack of input uncertainty information” issue for random input parameters.
The thesis seeks to replace such ad-hoc specification of input uncertainties by inverse UQ
process, which adopts a Bayesian setting and uses MCMC sampling to explore the posterior
distributions. Inverse UQ aims to quantify the uncertainty in input parameters such that the
discrepancies between code output and observed experimental data can be minimized. Because
usually hundreds of thousands of samples are required during MCMC sampling, accurate and
fast-running metamodels are developed to replace the full model especially when the full model
is computationally prohibitive. We investigated the stochastic spectral techniques and GP
modeling to build metamodels.

In Chapter 5, inverse UQ is applied to a simplified nuclear reactor simulation problem,
the PRKE coupled with lumped parameter TH feedback model. Three input parameters are
considered random, i.e., the external reactivity insertion, the Doppler temperature coefficient
and the coolant temperature coefficient. Generalized PCE approximates model QoIs as polyno-
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mial functions of random input parameters. Such functions have demonstrated that they can
successfully represent the stochastic nature of the outputs in terms of their mean values and
variances. The PCE essentially constitutes a metamodel of the original problem and can be
used as surrogates during the inverse UQ process. Based on the results from inverse UQ, we
found a very good agreement of the statistical moments and PDFs of posteriors between full
simulation and using PCE metamodels (with enough high order).

When PCE are used as metamodels, only polynomial evaluations are required for MCMC
sampling, which reduces the simulation time by 2-3 orders of magnitude compared to direct
simulation of the full model, even for a simple model considered here. Furthermore, once the
PCE metamodels are ready (modes calculated), they can be used without modification when
new experimental data is available. It has also been demonstrated that different priors will
result in close posteriors. Based on the validation results, it can be concluded that the inverse
UQ with Bayesian analysis can update prior uncertainties such that the simulation results will
agree better with experimental data and simulation uncertainty envelops the measurement data.

In Chapter 6, we applied inverse UQ under the Bayesian framework using a SGSC meta-
model to quantify the uncertainties in TRACE physical model parameters based on BFBT
benchmark steady-state void fraction data. Two global sensitivity analysis methods, Sobol’
indices and correlation coefficients, were used to identify the important TRACE physical model
parameters for the BFBT benchmark. Starting with 36 possible physical models, 8 physical
models were selected using centered parameter study, and their Sobol’ indices and PCC/SRCC
were calculated to evaluate their significance with regards to the void fraction data. Based on
the two global sensitivity measures, 5 input parameters were selected upon which the inverse
UQ study was performed.

SGSC metamodels were constructed for TRACE based on selected BFBT test cases.
MCMC samples provided statistical information for the 5 input parameters (i.e. the mean
values, standard deviations, and PDFs). Lastly, Gaussian and Gamma distributions were fitted
for 5 physical model parameters and the parameters for these distributions were reported. This
research addresses the problem of lacking uncertainty information about TRACE physical
input parameters, which has been often ignored or described using expert opinion or personal
judgment in prior uncertainty and sensitivity analysis work. The results of inverse UQ of
TRACE physical model parameters are critical for future uncertainty and sensitivity study of
TRACE code for use in nuclear reactor system design and safety analysis.

In Chapter 7, the same problem with Chapter 6 was analyzed with the improved modular
Bayesian approach developed in Chapter 2 Section 2.3. In Chapter 2, We provided a detailed
introduction and comparison of the full and modular Bayesian approach for inverse UQ. Inverse
UQ with both full and modular Bayesian are fully data-driven. Therefore, these methods should
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be used with great caution. The extrapolation of the model discrepancy term apparently depends
on the error/uncertainty structure in the validation/prediction domain. As the model discrepancy
term is trained based on experimental data in the inverse UQ domain, its extrapolation in the
validation/prediction domain is a sophisticated and unresolved issue. We proposed an improved
modular Bayesian approach that can avoid extrapolating the model discrepancy that is learnt
from the inverse UQ domain to the validation/prediction domain. The improved approach
is organized in a structure such that the posteriors achieved with data in inverse UQ domain
is informed by data in the validation domain. Therefore, over-fitting can be avoided while
extrapolation is not required.

A sequential approach was also developed for test source allocation (TSA) for inverse UQ
and validation. This sequential TSA methodology first select tests for validation that has a full
coverage of the test domain to avoid extrapolation of model discrepancy term when evaluated
at input setting of tests for inverse UQ. Then it select tests that tend to reside in the unfilled
zones of the test domain for inverse UQ, so that inverse UQ can extract the most information
for posteriors of calibration parameters using only a relatively small number of tests.

The model discrepancy term is described with a GP emulator GPbias. Numerical tests have
demonstrated that such treatment of model discrepancy can avoid over-fitting. Furthermore,
we constructed a fast-running and accurate GP emulator GPcode to replace TRACE full model
during MCMC sampling. The number of TRACE runs is reduced by about two orders of
magnitude (from 50,000 to less than 500), and the MCMC sampling time is reduced from about
24 core-days to 37 core-minutes.

In Chapter 8, inverse UQ was applied to fuel performance code BISON FGR model
based on Risø-AN3 FGR time series measurement data. Kriging metamodels were applied
to greatly alleviate the computer burden during MCMC sampling. Because the time series
data corresponds to high-dimensional outputs, we performed dimension reduction using PCA.
In this way we bypassed the issues related to building a Kriging metamodel and built a few
independent metamodels for the PC scores instead. Unlike previous studies that reconstruct
Kriging predictions to the original space by inverse projection, we performed inverse UQ on
the PC subspace. The original FGR time series data is projected onto the PC subspace as
“new experimental data”. Such an approach is chosen because BISON FGR simulation differs
severely in shape with measurement data. It is shown that the reconstructed time series data is
the best we can do under two constraints: (1) it is consistent with original measurement data;
(2) it has a shape that is similar with BISON simulations.

A forward uncertainty propagation based on the fitted distributions shows that the agreement
between BISON simulation and Risø-AN3 time series measurement data is greatly improved.
We provided uncertain distributions for the five random scale factors in BISON FGR model
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by a rigorous inverse UQ process, which can be used to replace the relatively arbitrary expert
specifications for future uncertain propagation.

9.2 Future Work

The development of advanced computational platforms allows the simulation of sophisticated
multi-physical phenomena within nuclear reactors in a coupled fashion. Current physical
phenomenon involved in nuclear reactor modeling include neutron transport, thermal-hydraulics,
fuel performance, and coolant chemistry. There are some inherent difficulties associated with
these modules that pose immense challenges to the nuclear-related VVUQ study:

1. The experimental observations may be noisy, time-dependent and correlated. The ap-
plication of such data can result in a computationally intractable problem if each of
the highly correlated observations is to be considered individually. For example, it is
inefficient to build metamodels for observations at each time step. We have demonstrated
the application of PCA for dimension reduction when performing inverse UQ for fuel
performance code fission gas release model. Dimension reduction techniques should
be further improved for dealing with more complicated data. The common Bayesian
framework (i.e. assuming i.i.d. additive Gaussian noise) will also be adapted for such
specific requirements.

2. Even though the state-of-the-art nuclear reactor simulators have achieved tremendous
successes in representing real phenomena, as an approximation to reality they are still
expected to be biased, the form and magnitude of which is not necessarily known. As
a solution, a statistical model based on GP should be employed to represent the model
discrepancy/bias term [4] [13] [168]. Such effort is essential to avoid over-fitting the
calibration to a specific dataset, thus rendering the results not applicable in new dissimilar
conditions.

3. Given the limited amount of multi-physics data available in the nuclear engineering
field, Bayesian hierarchical modeling [110] [140] should be used, which allows the
incorporation of multiple data sources for solving stochastic inverse problems. For
example, temperature, void fraction and pressure drop will be folded together to provide
a holistic and multi-physics calibration approach.

4. Results from inverse UQ and validation should be integrated to improve the computer
model predictive capability. Note that since both processed are fully data-drive, extrapo-
lation of information should be avoided, e.g. the model discrepancy term.
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Appendix A

Classical Orthogonal Polynomials

In this appendix, some classical continuous orthogonal polynomials are introduced, including
Hermite, Laguerre, Legendre and Jacobi polynomials.

A.1 Hermite Polynomials

Definition and differential equation:

There are two different but closely related definition of Hermite polynomials, namely, the
“probabilists’ Hermite polynomials” and the “physicists’ Hermite polynomials”.

The “probabilists’ Hermite polynomials” are given by:

Hen(x) = (−1)ne
x2
2

dn

dxn e−
x2
2 =

(
x− d

dx

)n

·1 (A.1)

While the “physicists’ Hermite polynomials” are given by:

Hn(x) = (−1)nex2 dn

dxn e−x2
=

(
2x− d

dx

)n

·1 (A.2)

Note that each one of the two definitions are actually a rescaling of the other, with the
following relations:

Hn(x) = 2
n
2 ·Hen(

√
2x)

Hen(x) = 2−
n
2 ·Hn(

1√
2

x)
(A.3)
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The Hermite Polynomials are solutions of the following differential equations:

y′′− xy′+ny = 0, n ∈ N, for Hen(x)

y′′−2xy′+2ny = 0, n ∈ N, for Hn(x)
(A.4)

Here we will only look at the “physicists’ Hermite polynomials” Hen(x).

Recurrence relation:

The Hermite polynomials can be generated in practice by the following recurrence relations:

Hen+1(x) = xHen(x)−He′n(x), for n = 0,1,2, · · · (A.5)

The first few probabilists’ Hermite polynomials are given by:

He0(x) = 1

He1(x) = x

He2(x) = x2 −1

He3(x) = x3 −3x

He4(x) = x4 −6x2 +3

He5(x) = x5 −10x3 +15x

He6(x) = x6 −15x4 +45x2 −15

(A.6)

Figure A.1 shows the plot of Hermite polynomials up to order 5.

Orthogonality:

Given Hermite polynomials Hen(x) of degree n = 0,1,2, · · · , they are orthogonal with respect
to properly chosen weight functions, which are

w(x) = e−
x2
2 (A.7)

Now we have: ∫
∞

−∞

Hem(x)Hen(x)w(x)dx = h2
nδmn =

√
2πn!δmn (A.8)

where δmn is the Kronecker delta.
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Fig. A.1 Hermite Polynomials (Probabilists’)

Since 1√
2π

e−
x2
2 is the probability density function (PDF) of the standard normal distribution,

the “probabilists’ Hermite polynomials”, Hen(x) are orthogonal with respect to the PDF of
standard normal distribution:∫

∞

−∞

Hem(x)Hen(x)
1√
2π

e−
x2
2 dx = n!δmn (A.9)

A.2 Laguerre Polynomials

Definition and differential equation:

The Laguerre polynomials Ln(x) are solutions of Laguerre’s equation:

xy′′+(1− x)y′+ny = 0, n ∈ N (A.10)

If we introduce arbitrary real value α , we get the generalized Laguerre polynomials Lα
n (x),

or associated Laguerre polynomials from the following differential equation:

xy′′+(α +1− x)y′+ny = 0, n ∈ N (A.11)
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The closed form for Ln(x) is:

Ln(x) =
n

∑
k=0

(
n
k

)
(−1)k

k!
xk (A.12)

Recurrence relation:

To generate Laguerre polynomials Ln(x) recursively, use the following recurrence relation:

(n+1)Ln+1(x) = (2n+1− x)Ln(x)−nLn−1(x), for n = 1,2,3, . . . (A.13)

For generalized Laguerre polynomials Lα
n (x), the recurrence relation is:

(n+1)Lα
n+1(x) = (2n+1+α − x)Lα

n (x)− (n+α)Lα
n−1(x), for n = 1,2,3, . . . (A.14)

The first few Laguerre polynomials are:

L0(x) = 1

L1(x) =−x+1

L2(x) =
1
2
(x2 −4x+2)

L3(x) =
1
6
(−x3 +9x2 −18x+6)

L4(x) =
1

24
(x4 −16x3 +72x2 −96x+24)

L5(x) =
1

120
(−x5 +25x4 −200x3 +600x2 −600x+120)

L6(x) =
1

720
(x6 −36x5 +450x4 −2400x3 +5400x2 −4320x+720)

(A.15)

Figure A.2 shows the plot of Laguerre polynomials up to order 5.

Orthogonality:

The generalized Laguerre polynomials Lα
n (x) are orthogonal over [0,∞] with respect to the

following weighting function:
w(x) = xαe−x (A.16)∫

∞

0
Lα

m(x)L
α
n (x)w(x)dx = h2

nδmn =
Γ(n+α +1)

n!
δmn (A.17)
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Fig. A.2 Laguerre Polynomials

For the special case when α = 0, we will have:∫
∞

0
Lm(x)Ln(x)e−xdx =

Γ(n+1)
n!

δmn = δmn (A.18)

A.3 Jacobi Polynomials

Definition and differential equation:

The Jacobi polynomials P(α,β )
n (x), sometimes called hypergeometric polynomials, are the

solution of the following differential equation:

(1− x2)y′′+[β −α − (α +β +2)x]y′+n(n+α +β +1)y = 0, n ∈ N (A.19)

The closed form for P(α,β )
n (x) is:

P(α,β )
n (x) =

Γ(n+α +1)
Γ(n+α +β +1)n!

n

∑
k=0

(
n
k

)
Γ(n+ k+α +β +1)

Γ(k+α +1)

(
x−1

2

)k

(A.20)
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Another definition is given by the Rodrigues’ formula:

P(α,β )
n (x) =

(−1)n

2nn!
(1− x)−α(1+ x)−β dn

dxn

{
(1− x)α(1+ x)β (1− x2)n

}
(A.21)

Recurrence relation:

The recurrence relation for the Jacobi polynomials is:

2n(n+α +β )(2n+α +β −2)P(α,β )
n (x) =

(2n+α +β −1)
{
(2n+α +β )(2n+α +β −2)x+α

2 −β
2}P(α,β )

n−1 (x)−
2(n+α −1)(n+β −1)(2n+α +β )P(α,β )

n−2 (x), for n = 2,3,4, . . . (A.22)

Orthogonality:

The Jacobi polynomials P(α,β )
n (x) are orthogonal with respect to the following weight function

on the interval [−1,1]:

w(x) = (1− x)α(1+ x)β (A.23)∫ 1

−1
P(α,β )

m (x)P(α,β )
n (x)(1− x)α(1+ x)β dx = h2

nδmn, α,β ,α +β >−1 (A.24)

h2
n =

2α+β+1

2n+α +β +1
Γ(n+α +1)Γ(n+β +1)

Γ(n+α +β +1)n!
(A.25)

A.4 Legendre Polynomials

Definition and differential equation:

The Legendre polynomials Pn(x), are special cases of Jacobi polynomials P(α,β )
n (x) with

α = β = 0. They are the solution of the following Legendre’s differential equation:

(1− x2)y′′−2xy′+n(n+1)y = 0, n ∈ N (A.26)

With Rodrigues’ formula:

Pn(x) =
(−1)n

2nn!
dn

dxn

{
(1− x2)n}= 1

2nn!
dn

dxn (x
2 −1)n (A.27)
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Recurrence relation:

The Legendre polynomials Pn(x) have the following recurrence relation:

(n+1)Pn+1(x) = (2n+1)xPn(x)−nPn−1(x), n = 1,2,3, . . . (A.28)

The first few Laguerre polynomials are:

P0(x) = 1

P1(x) = x

P2(x) =
1
2
(3x2 −1)

P3(x) =
1
2
(5x3 −3x)

P4(x) =
1
8
(35x4 −30x2 +3)

P5(x) =
1
8
(63x5 −70x3 +15x)

P6(x) =
1

16
(231x6 −315x4 +105x2 −5)

(A.29)

Figure A.3 shows the plot of Legendre polynomials up to order 5.
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Orthogonality:

Similar with the Jacobi polynomials P(α,β )
n (x), Legendre polynomials are orthogonal with

respect to the following weight function on the interval [−1,1]:

w(x) = 1 (A.30)∫ 1

−1
Pm(x)Pn(x)dx = h2

nδmn =
2

2n+1
δmn (A.31)
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Appendix B

Derivation of PRKE Coupled with
Lumped Parameter TH Model with
Generalized PCE

In this Appendix, the stochastic version of the PRKE with lumped parameter TH feedback
model is presented using PC method. Recall that we have three random input parameters,
which are all expanded with respect to Hermite polynomials in the following form:

ρext(ξ1) =
P

∑
i=0

ρ
i
extΨi(ξ1) (B.1)

αD(ξ2) =
P

∑
i=0

α
i
DΨi(ξ2) (B.2)

αc(ξ3) =
P

∑
i=0

α
i
cΨi(ξ3) (B.3)

where ξ1 , ξ2 and ξ3 are independent and identically distributed (i.i.d.) standard normal random
variables. By defining ξξξ = [ξ1,ξ2,ξ3]

⊺ we have for the four QoIs:

p(t,ξξξ ) =
P

∑
i=0

pi(t)Ψi(ξξξ ) (B.4)

C(t,ξξξ ) =
P

∑
i=0

Ci(t)Ψi(ξξξ ) (B.5)

Tfuel(t,ξξξ ) =
P

∑
i=0

T i
fuel(t)Ψi(ξξξ ) (B.6)
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Tcool(t,ξξξ ) =
P

∑
i=0

T i
cool(t)Ψi(ξξξ ) (B.7)

Note that the P in QoI expansions can be different from the P in input expansions. Here
we use the same symbol for notational conciseness. Substitute the above expansions into
the original system of ODEs and the reactivity equation, the stochastic version of the PRKE
coupled system is:

d p(t,ξξξ )
dt

=
ρ(t,ξξξ )−β

Λ
p(t,ξξξ )+λC(t,ξξξ ) (B.8)

dC(t,ξξξ )
dt

=
β

Λ
p(t,ξξξ )−λC(t,ξξξ ) (B.9)

dTfuel(t,ξξξ )
dt

=
Ωpower

ρfuelcp,fuel
p(t,ξξξ )− [Tfuel(t,ξξξ )−Tcool(t,ξξξ )]

ρfuelcp,fuelR̂th
(B.10)

dTcool(t,ξξξ )
dt

=
Afuel

Acool

[Tfuel(t,ξξξ )−Tcool(t,ξξξ )]
ρcoolcp,coolR̂th

− 2u
H

[
Tcool(t,ξξξ )−T in

cool

]
(B.11)

Substituting the expansions into the reactivity equation and simplifying, we obtain:

ρ(t,ξξξ ) = ρext(ξ1)−αD(ξ2) [Tfuel(t,ξξξ )−Tfuel(0)]−αc(ξ3) [Tcool(t,ξξξ )−Tcool(0)]

=
P

∑
i=0

ρ
i
extΨi(ξ1)−

P

∑
i=0

α
i
DΨi(ξ2)

[
P

∑
l=0

T l
fuel(t)Ψl(ξξξ )−Tfuel(0)

]

−
P

∑
i=0

α
i
cΨi(ξ3)

[
P

∑
l=0

T l
cool(t)Ψl(ξξξ )−Tcool(0)

]
(B.12)

With further algebraic substitutions, the power equation becomes:

P

∑
i=0

d pi(t)
dt

Ψi(ξξξ ) =−β

Λ

P

∑
i=0

pi(t)Ψi(ξξξ )+λ

P

∑
i=0

Ci(t)Ψi(ξξξ )+
1
Λ

P

∑
j=0

p j(t)Ψ j(ξξξ )·[
P

∑
i=0

ρ
i
extΨi(ξ1)+Tfuel(0)

P

∑
i=0

α
i
DΨi(ξ2)+Tcool(0)

P

∑
i=0

α
i
cΨi(ξ3)

]
− 1

Λ

P

∑
j=0

p j(t)Ψ j(ξξξ )·[
P

∑
i=0

α
i
DΨi(ξ2)

P

∑
l=0

T l
fuel(t)Ψl(ξξξ )+

P

∑
i=0

α
i
cΨi(ξ3)

P

∑
l=0

T l
cool(t)Ψl(ξξξ )

]
(B.13)
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The precursor balance equation becomes:

P

∑
i=0

dCi(t)
dt

Ψi(ξξξ ) =
β

Λ

P

∑
i=0

pi(t)Ψi(ξξξ )−λ

P

∑
i=0

Ci(t)Ψi(ξξξ ) (B.14)

The fuel temperature balance equation becomes:

P

∑
i=0

dT i
fuel(t)
dt

Ψi(ξξξ ) =
Ωpower

ρfuelcp,fuel

P

∑
i=0

pi(t)Ψi(ξξξ )

− 1
ρfuelcp,fuelR̂th

[
P

∑
i=0

T i
fuel(t)Ψi(ξξξ )−

P

∑
i=0

T i
cool(t)Ψi(ξξξ )

] (B.15)

The coolant temperature balance equation becomes:

P

∑
i=0

dT i
cool(t)
dt

Ψi(ξξξ ) =
Afuel

Acool

1
ρcoolcp,coolR̂th

[
P

∑
i=0

T i
fuel(t)Ψi(ξξξ )−

P

∑
i=0

T i
cool(t)Ψi(ξξξ )

]

− 2u
H

[
P

∑
i=0

T i
cool(t)Ψi(ξξξ )−T in

cool

] (B.16)

Finally, the above equations are projected on the sth Hermite polynomial for s = 0,1, ...,P:

d ps(t)
dt

=−β

Λ
ps(t)+λCs(t)+

1
Λ

P

∑
i=0

P

∑
j=0

Ti js
[
ρ

i
ext +Tfuel(0)α i

D +Tcool(0)α i
c
]

p j(t)

− 1
Λ

P

∑
i=0

P

∑
j=0

P

∑
l=0

Ti jls

[
α

i
DT l

fuel(t)+α
i
cT l

cool(t)
]

p j(t) (B.17)

dCs(t)
dt

=
β

Λ
ps(t)−λCs(t) (B.18)

dT s
fuel(t)
dt

=
Ωpower

ρfuelcp,fuel
ps(t)− 1

ρfuelcp,fuelR̂th
[T s

fuel(t)−T s
cool(t)] (B.19)

dT s
cool(t)
dt

=
Afuel

Acool

1
ρcoolcp,coolR̂th

[T s
fuel(t)−T s

cool(t)]−
2u
H

[
T s

cool(t)−T in
cool ·δ0s

]
(B.20)
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Note that in the power equation, we have two tensor terms Ti js and Ti jls . They are due to
the strong non-linearity of the model. If we have the following double summation:

a(ξ )b(ξ ) =
P

∑
i=0

P

∑
j=0

aib jΨi(ξ )Ψ j(ξ ) =
P

∑
s=0

fsΨs(ξ ) (B.21)

Projecting it on the sth Hermite polynomial corresponds to performing the following
operation:

fs =
P

∑
i=0

P

∑
j=0

aib j
⟨ Ψi,Ψ j,Ψs⟩
⟨ Ψs,Ψs⟩

=
P

∑
i=0

P

∑
j=0

aib jTi js (B.22)

Therefore the three-dimensional tensor Ti js is defined as:

Ti js =
⟨ Ψi,Ψ j,Ψs⟩
⟨ Ψs,Ψs⟩

(B.23)

Similarly, for triple summation we need a four dimension tensor:

a(ξ )b(ξ )c(ξ ) =
P

∑
i=0

P

∑
j=0

P

∑
l=0

aib jclΨi(ξ )Ψ j(ξ )Ψl(ξ ) =
P

∑
s=0

fsΨs(ξ ) (B.24)

Projecting it on the sth Hermite polynomial:

fs =
P

∑
i=0

P

∑
j=0

P

∑
l=0

aib jcl
⟨ Ψi,Ψ j,Ψl,Ψs⟩

⟨ Ψs,Ψs⟩
=

P

∑
i=0

P

∑
j=0

P

∑
l=0

aib jclTi jls (B.25)

The four-dimensional tensor Ti js is defined as:

Ti jls =
⟨ Ψi,Ψ j,Ψl,Ψs⟩

⟨ Ψs,Ψs⟩
(B.26)
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Appendix C

List of TRACE Physical Model
Parameters

In this appendix, we provide the full list for 36 physical model parameters implemented in
TRACE that can be calibrated. These parameters are referred to as UQ Sensitivity Coefficients
in TRACE manual [138]. All of them are Multiplicative factors, with only one exception
that parameter filmTransBoilTMin can be Scalar, Additive or Multiplicative. The nominal
values for all the Multiplicative factors are 1.0. HTC stands for heat transfer coefficient.

Table C.1 List of 36 physical model parameters implemented in TRACE

ID Mnemonic Name Description

1000 bubSlugLiqIntHTC Liquid to interface bubbly-slug HTC

1001 annMistLiqIntHTC Liquid to interface annular-mist HTC

1002 transLiqIntHTC Liquid to interface transition HTC

1003 stratLiqIntHTC Liquid to interface stratified HTC

1004 bubSlugVapIntHTC Vapor to interface bubbly-slug HTC

1005 annMistVapIntHTC Vapor to interface annular-mist HTC

1006 transVapIntHTC Vapor to interface transition HTC

1007 stratVapIntHTC Vapor to interface stratified HTC

1008 singlePhaseLiqWallHTC Single phase liquid to wall HTC

1009 singlePhaseVapWallHTC Single phase vapor to wall HTC

1010 filmTransBoilTMin Film to transition boiling Tmin criterion temperature

1011 dispFlowFilmBoilHTC Dispersed flow film boiling HTC

1012 subBoilHTC Subcooled boiling HTC

1013 nucBoilHTC Nucleate boiling HTC
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Table C.1 List of 36 physical model parameters implemented in TRACE

ID Mnemonic Name Description

1014 DNB_CHF Departure from nucleate boiling / critical heat flux

1015 transBoilHTC Transition boiling heat transfer coefficient

1016 gapConductance Gap conductance coefficient

1017 fuelThermalCond Fuel thermal conductivity

1018 cladMWRX Cladding metal-water reaction rate coefficient

1019 fuelRodIntPress Rod internal pressure coefficient

1020 burstTemp Burst temperature coefficient

1021 burstStrain Burst strain coefficient

1022 wallDrag Wall drag coefficient

1023 formLoss Form loss coefficient

1024 bubblyIntDrag Interfacial drag (bubbly) coefficient

1027 dropletIntDrag Interfacial drag (droplet) coefficient

1028 bubSlugIntDragBundle Interfacial drag (bubbly/slug Rod Bundle - Bestion) coefficient

1029 bubSlugIntDragVessel Interfacial drag (bubbly/slug Vessel) coefficient

1030 annMistIntDragVessel Interfacial drag (annular/mist Vessel) coefficient

1031 dffbIntDrag Interfacial drag (dispersed flow film boiling) coefficient

1032 invSlugIntDrag Interfacial drag (inverted slug flow) coefficient

1033 invAnnIntDrag Interfacial drag (inverted annular flow) coefficient

1034 tempFlood Flooding coefficient temperature coefficient

1035 lengthFlood Flooding coefficient length coefficient

1036 invAnnVapWallHTC Vapor to wall inverted annular HTC

1037 invAnnLiqWallHTC Liquid to wall inverted annular HTC

175



Appendix D

Linear Least Squares

In this appendix, some theory for linear least squares regression will be presented, which is
highly relevant for Gaussian Process modeling. The simple linear regression will be introduced
first, followed by multiple linear regression and Generalized Least Squares.

Define Y which is a scalar as dependent variable, also called response. Also define a set of
independent variables {X1,X2, . . . ,Xd}, also called regressors or predictors. We would like to
quantify the relationship between {X1,X2, . . . ,Xd} and the mean of Y in the form of a function,
which can be used to predict Y .

D.1 Simple Linear Regression

For simple linear regression, we start with only one predictor X and one response Y . The mean
function E(Y |X) expresses the expected value of Y as a function of X . Regression models
focus on estimation of this mean function from data. There is also a variance function Var(Y |X)

expresses the variance of Y as a function of X . As we will treat X as a fixed and known value
rather than a random variable, we can write the mean and variance function as E(Y ) and Var(Y )
for notational convenience.

The simple linear regression model assumes the mean function as:

E(Y ) = β0 +β1X (D.1)

where β0 is the intercept and β1 is the slope. Together they are called the coefficients of the
linear regression.

The variance function is assumed to be a constant that does not depend on X :

Var(Y ) = σ
2 (D.2)
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Given n observed data points that come in pairs:

(x1,y1),(x2,y2), . . . ,(xn,yn) (D.3)

In theory, we regard the yi values as realizations of random variables Y . For purposes of
regression, we regard the xi values as known constants. The model equation for simple linear
regression is:

yi = β0 +β1xi + ei, i = 1,2, . . . ,n (D.4)

where ei is the displacement of yi from its mean.
The Gauss-Markov conditions require {e1,e2, . . . ,en} to:

• have mean zero:
E(ei) = 0

• be homoscedastic:
Var(ei) = σ

2

• be uncorrelated:
Cov(ei,e j) = 0 for i ̸= j

Next, we need to evaluate the parameters β0 and β1 based on data. Denote β̂0 and β̂1 as
their estimates respectively. Also denote the ith fitted value at xi (also called predicted value at
xi, or the prediction of yi) as:

ŷi = β̂0 + β̂1xi (D.5)

The difference between yi and its prediction ŷi is called the ith residual:

êi = yi − ŷi (D.6)

The least squares estimate of β0 and β1 in simple linear regression are the values that
minimize the Residual Sum of Squares (RSS):

RSS(β0,β1) =
n

∑
i=1

e2
i =

n

∑
i=1

(yi −β0 −β1xi)
2 (D.7)

One method of finding the minimizer is to differentiate with respect to β0 and β1 , set the
derivatives equal to 0, and solve

∂RSS(β0,β1)

∂β0
=−2

n

∑
i=1

(yi −β0 −β1xi) = 0 (D.8)
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∂RSS(β0,β1)

∂β1
=−2

n

∑
i=1

xi (yi −β0 −β1xi) = 0 (D.9)

Re-arrange terms, we get:

β0n+β1

n

∑
i=1

xi =
n

∑
i=1

yi (D.10)

β0

n

∑
i=1

xi +β1

n

∑
i=1

x2
i =

n

∑
i=1

xiyi (D.11)

Solve for β0 and β1:

β̂0 = ȳ− β̂1x̄ (D.12)

β̂1 =
∑xiyi −nx̄ȳ
∑x2

i −nx̄2 (D.13)

where x̄ = 1
n ∑

n
i=1 xi adn ȳ = 1

n ∑
n
i=1 yi. Using the following notations:

SXX =
n

∑
i=1

(xi − x̄)2 =
n

∑
i=1

x2
i −nx̄2 (D.14)

SXY =
n

∑
i=1

(xi − x̄)(yi − ȳ) =
n

∑
i=1

xiyi −nx̄ȳ (D.15)

We have the estimate β̂0 and β̂1 as:

β̂0 = ȳ− β̂1x̄ (D.16)

β̂1 =
SXY
SXX

(D.17)

D.2 Multiple Linear Regression

Multiple linear regression model consider d independent variables {X1,X2, . . . ,Xd} in the model
for response Y . The mean function takes the form:

E(Y ) = β0 +β1X1 +β2X2 + . . .+βdXd (D.18)

The variance function:
Var(Y ) = σ

2 (D.19)
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The n observations come in with the form of:

(y1,x11,x12,x13, . . . ,x1d)

(y2,x21,x22,x23, . . . ,x2d)

. . .

(yn,xn1,xn2,xn3, . . . ,xnd)

The scalar model equation for multiple linear regression is:

yi = β0 +β1xi1 +β2xi2 + . . .+βdxid + ei, i = 1,2, . . . ,n (D.20)

where {e1,e2, . . . ,en} still satisfy the Gauss-Markov conditions.
Define the following notations:

Y =


Y1

Y2
...

Yn

 , e =


e1

e2
...

en

 , βββ =


β0

β1

β2
...

βd

 , X =


1 x11 x12 . . . x1d

1 x21 x22 . . . x2d
...

...
... . . . ...

1 xn1 xn2 . . . xnd


Then the regression equations can be written together in matrix form:

Y = Xβββ + e (D.21)

Similarly for the mean and variance functions:

E(Y) = Xβββ , Var(Y ) = σ
2I (D.22)

Again we would like to find the estimator β̂ββ of βββ given the data:

β̂ββ =
[
β̂0, β̂1, β̂2, . . . , β̂d

]⊤
(D.23)

Then the vector of fitted values (or predicted values) and residuals are:

ŷ = Xβ̂ββ (D.24)

ê = y− ŷ (D.25)

where y is a realization of Y, in this case, the set of observed responses y = [y1,y2, . . . ,yd]
⊤.
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The RSS function is:

RSS(βββ ) = e⊤e = (y−Xβββ )⊤ (y−Xβββ )

= y⊤y+βββ
⊤X⊤Xβββ −2y⊤Xβββ

(D.26)

To minimize the RSS function, differentiate it with respect to βββ and set the derivative to 0,
we get the normal equations:

X⊤Xβββ = X⊤y (D.27)

Note that the normal equations can be direct result of requiring the residual vector e to be
orthogonal to every column of X. If the inverse of X⊤X exists, as it will if the columns of X
are linearly independent, the least squares estimates are unique and are given by:

β̂ββ =
(

X⊤X
)−1

X⊤y (D.28)

The estimator β̂ββ is the Best Linear Unbiased Estimator (BLUE) for βββ . Using the rules for
means and variances of random vectors, we can find the mean and variance of this estimator:

E
(

β̂ββ

)
= E

((
X⊤X

)−1
X⊤Y|X

)
=
(

X⊤X
)−1

X⊤E(Y|X)

=
(

X⊤X
)−1

X⊤Xβββ = βββ

(D.29)

which shows that β̂ββ is an unbiased estimator of βββ .

Var
(

β̂ββ

)
= Var

((
X⊤X

)−1
X⊤Y|X

)
=
(

X⊤X
)−1

X⊤Var(Y|X)X
(

X⊤X
)−1

=
(

X⊤X
)−1

X⊤ [
σ

2I
]

X
(

X⊤X
)−1

= σ
2
(

X⊤X
)−1

(D.30)

D.3 Generalized Least Squares for Linear Regression

In previous sections for simple and multiple linear regressions, we have assumed that ei’s
have equal variances and are uncorrelated Var(e) = σ2I. Now we consider the case where this
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condition is not satisfied. It still assumed that E(e) = 0, but the variance:

Var(e) = σ
2
ΣΣΣ (D.31)

for some invertible matrix ΣΣΣ (symmetric and positive definite) and some constant σ2.
It is obvious that unless ΣΣΣ is a multiple of the identity matrix I, the Gauss-Markov conditions

are not satisfied, and the ordinary least squares estimator shown in Equation is not necessarily
a BLUE.

To derive the BLUE, the generalized least squares method is used given matrix ΣΣΣ. Instead
of minimizing RSS, we minimize the Generalized Residual Sum of Squares (GRSS) function:

GRSS(βββ ) = (y−Xβββ )⊤ΣΣΣ
−1 (y−Xβββ ) (D.32)

The corresponding GLS estimate for βββ that minimize GRSS is:

β̂ββ =
(

X⊤
ΣΣΣ
−1X

)−1
X⊤

ΣΣΣ
−1y (D.33)

The corresponding GLS estimator is a BLUE for this generalized linear regression. To
prove this, consider a matrix decomposition of ΣΣΣ

−1:

ΣΣΣ
−1 = C⊤C (D.34)

C is a square matrix and:

C−1
(

C⊤
)−1

= ΣΣΣ (D.35)

Multiply both sides of Equation D.21 by C:

CY = CXβββ +Ce (D.36)

Define:
Z = CY, M = CX, δδδ = Ce (D.37)

The model is transformed to:
Z = Mβββ +δδδ (D.38)

For δδδ we have:

E(δδδ ) = E(Ce) = CE(e) = 0 (D.39)

Var(δδδ ) = Var(Ce) = CVar(e)C⊤ = Cσ
2
ΣΣΣC⊤ = σ

2I (D.40)
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Apparently, for the transformed model, the Gauss-Markov conditions are satisfied. The
BLUE (Equation D.33) is then obtained as the transformed model’s least squares estimator:

β̂ββ =
(

M⊤M
)−1

M⊤z

=
(

X⊤C⊤CX
)−1

X⊤C⊤Cy

=
(

X⊤
ΣΣΣ
−1X

)−1
X⊤

ΣΣΣ
−1y

(D.41)

where z = Cy. Moreover, this estimator minimizes:

(z−Mβββ )⊤ (z−Mβββ ) = [C(y−Xβββ )]⊤ [C(y−Xβββ )]

= (y−Xβββ )⊤C⊤C(y−Xβββ )

= (y−Xβββ )⊤ΣΣΣ
−1 (y−Xβββ )

= GRSS(βββ )

(D.42)

The mean of this estimator:

E
(

β̂ββ

)
= E

((
X⊤

ΣΣΣ
−1X

)−1
X⊤

ΣΣΣ
−1Y|X

)
=
(

X⊤
ΣΣΣ
−1X

)−1
X⊤

ΣΣΣ
−1E(Y|X)

=
(

X⊤
ΣΣΣ
−1X

)−1
X⊤

ΣΣΣ
−1Xβββ = βββ

(D.43)

which shows that β̂ββ is an unbiased estimator of βββ .
The variance of this estimator:

Var
(

β̂ββ

)
= Var

((
X⊤

ΣΣΣ
−1X

)−1
X⊤

ΣΣΣ
−1Y|X

)
=
(

X⊤
ΣΣΣ
−1X

)−1
X⊤

ΣΣΣ
−1Var(Y|X)ΣΣΣ

−1X
(

X⊤
ΣΣΣ
−1X

)−1

=
(

X⊤
ΣΣΣ
−1X

)−1
X⊤

ΣΣΣ
−1 [

σ
2
ΣΣΣ
]

ΣΣΣ
−1X

(
X⊤

ΣΣΣ
−1X

)−1

= σ
2
(

X⊤
ΣΣΣ
−1X

)−1

(D.44)
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Appendix E

Derivation of the Inverse of Block Matrix

In this appendix, some general formula for matrix inversion in block form are presented.

1. Matrix Inversion Lemma:
Let W be a non-singular n×n matrix, Y be a non-singular m×m matrix, X and Z be
arbitrary n×m and m× n matrix such that

(
Y−1 +ZW−1X

)
is a non-singular m×m

matrix. then

(W+XYZ)−1 = W−1 −W−1X
(
Y−1 +ZW−1X

)−1 ZW−1 (E.1)

2. Matrix Inversion in Block form:
Let a (m+n)× (m+n) matrix M be partitioned into a block form:

M =

[
Am×m Bm×n

Cn×m Dn×n

]
(E.2)

Suppose M is non-singular and it has inverse matrix:

M−1 =

[
Em×m Fm×n

Gn×m Hn×n

]
(E.3)

It will be shown how to derive elements of M−1 in terms of elements of M. One
sufficient condition for the non-singularity of M is that matrix A and matrix C are
invertible. However, in general they are not necessary conditions.
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Given invertible matrices A and matrix C:

MM−1 =

[
A B
C D

][
E F
G H

]

=

[
AE+BG AF+BH
CE+DG CF+DH

]

=

[
Im 0m×n

0n×m In

] (E.4)

where I denotes the unit matrix and 0 a zero matrix,

Now we have the following system of equations:

AE+BG = Im (E.5)

AF+BH = 0m×n (E.6)

CE+DG = 0n×m (E.7)

CF+DH = In (E.8)

It follows from Equations E.6 and E.7 that:

F =−A−1BH (E.9)

G =−D−1CE (E.10)

Substitute Equations E.9 and E.10 into Equations E.5 and E.8(
A−BD−1C

)
E =−Im (E.11)(

D−CA−1B
)

H =−In (E.12)

We get:

E =
(
A−BD−1C

)−1
(E.13)

H =
(
D−CA−1B

)−1
(E.14)

Substitute Equations E.13 and E.14 into Equations E.9 and E.10:

F =−A−1B
(
D−CA−1B

)−1
(E.15)
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G =−D−1C
(
A−BD−1C

)−1
(E.16)

Finally, we have:

M−1 =

[
E F
G H

]

=

[ (
A−BD−1C

)−1 −A−1B
(
D−CA−1B

)−1

−D−1C
(
A−BD−1C

)−1 (
D−CA−1B

)−1

] (E.17)

Also, since MM−1 = M−1M, we can also get:

M−1 =

[ (
A−BD−1C

)−1 −
(
A−BD−1C

)−1 BD−1

−
(
D−CA−1B

)−1 CA−1 (
D−CA−1B

)−1

]
(E.18)

It can be proved that Equation E.17 and Equation E.18 are equivalent.

3. In the above it is mentioned that invertible matrices A and C are sufficient for the non-
singularity of M but not necessary. Now consider the case when A is not invertible. A−1

does not exist so we need to modify the equation for M−1 as shown in Equation E.17.
Based on Equation E.1:(

D−CA−1B
)−1

= D−1 −D−1C
(
BD−1C−A

)−1 BD−1

= D−1 +D−1CQ−1BD−1
(E.19)

where Q =
(
A−BD−1C

)
, which is non-singular. Replacing

(
D−CA−1B

)−1 with
Equation E.19 in Equation E.17:

M−1 =

[
Q−1 −A−1B

(
D−1 +D−1CQ−1BD−1)

−D−1CQ−1 D−1 +D−1CQ−1BD−1

]
(E.20)

Also, from Equation E.19:

D−CA−1B =
(
D−1 +D−1CQ−1BD−1)−1

A−1B = C−1
[
D−

(
D−1 +D−1CQ−1BD−1)−1

] (E.21)
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Substituting into Equation E.20, we get:

−A−1B
(
D−1 +D−1CQ−1BD−1)=−C−1D

(
D−1 +D−1CQ−1BD−1)+C−1

=−C−1DD−1CQ−1BD−1

=−Q−1BD−1

(E.22)

Finally, we have:

M−1 =

[
Q−1 −Q−1BD−1

−D−1CQ−1 D−1 +D−1CQ−1BD−1

]
(E.23)

4. Given that matrix A is not invertible, we further assume that A = 0:

Q = A−BD−1C =−BD−1C (E.24)

And we require that Q is a non-singular matrix. Equation E.23 becomes:

M−1 =

[
0 B
C D

]−1

=

[
−
(
BD−1C

)−1 (
BD−1C

)−1 BD−1

D−1C
(
BD−1C

)−1 D−1 −D−1C
(
BD−1C

)−1 BD−1

] (E.25)

For the application in Universal Kriging, we will have B = C⊤. In this case the inverse
for block matrix is:

M−1 =

[
0 C⊤

C D

]−1

=

[
−
(
C⊤D−1C

)−1 (
C⊤D−1C

)−1 C⊤D−1

D−1C
(
C⊤D−1C

)−1 D−1 −D−1C
(
C⊤D−1C

)−1 C⊤D−1

] (E.26)
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Appendix F

Derivation of the GP Predictor and MSE

In this appendix, the prediction formula of the GP metamodel at an unknown point x∗ is derived,
as well as the MSE of this prediction. They are denoted by ŷ(x∗) and MSE [ŷ(x∗)] respectively.
The notations µŷ(x∗) and σ2

ŷ (x
∗) are also widely used to emphasis that GP metamodel at untried

input x∗ follows a Gaussian distribution, and the GP predictor and MSE are the mean value and
variance respectively. In this thesis, we use these two sets of notations interchangeably and
assume no difference between them.

F.1 Derivation of the Predictor

The UK metamodel takes the form of:

y(x) =
n

∑
j=1

β j f j(x)+ z(x) = f⊤(x)βββ + z(x) (F.1)

where f(x) is the set of known regression/basis functions evaluated at a general input point x,
and βββ is the vector of unnknown regression coefficients as shown in Table 4.2. The definitions
of F, R and r(x∗) (to appear) are also same with those defined in Table 4.2.

Given the design sites X and the corresponding output values y, our goal is to find the best
linear unbiased predictor (BLUP) ŷ(x∗) at an untried input x∗. We start with the general linear
regression predictor ŷ(x∗) = c⊤y and solve for the one that has minimal MSE.

ŷ(x∗)− y(x∗) = c⊤y− y(x∗)

= c⊤ (Fβββ + z)−
(

f⊤(x∗)βββ + z(x∗)
)

= c⊤z− z(x∗)+
(

F⊤c− f(x∗)
)⊤

βββ (F.2)
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where z =
[
z(x(1)),z(x(2)), . . . ,z(x(m))

]⊤
is the vector of the residuals of this linear predictor

at the design sites.
To enforce the unbiasedness of this linear predictor, we require:

E [ŷ(x∗)] = E [y(x∗)] (F.3)

c⊤Fβββ = f⊤(x∗)βββ (F.4)

F⊤c− f(x∗) = 0 (F.5)

Equation F.5 holds because the vector βββ cannot be a zero vector. The MSE for this linear
predictor is defined as:

MSE [ŷ(x∗)] = E
[
(ŷ(x∗)− y(x∗))2

]
= E

[(
c⊤z− z(x∗)+

(
F⊤c− f(x∗)

)⊤
βββ

)2
]

= E
[(

c⊤z− z(x∗)
)2
]

= E
[
c⊤zz⊤c−2c⊤zz(x∗)+ z2(x∗)

]
= c⊤E

[
zz⊤
]

c−2c⊤E [zz(x∗)]+E
[
z2(x∗)

]
(F.6)

Since z(x) is a zero-mean stationary Gaussian process with covariance:

Cov
[
z(x(i)),z(x( j))

]
= σ

2R
(

x(i),x( j)
)

we have:

E
[
zz⊤
]
= σ

2R (F.7)

E [zz(x∗)] = σ
2r(x∗) (F.8)

E
[
z2(x∗)

]
= σ

2 (F.9)

Therefore, Equation F.6 becomes:

MSE [ŷ(x∗)] = σ
2
[
1+ c⊤Rc−2c⊤r(x∗)

]
(F.10)
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To minimize the MSE shown in Equation F.10 with respect to c under the constraint of
unbiasedness denoted by Equation F.5, we define the Lagrangian function:

L(c,λλλ ) = σ
2
[
1+ c⊤Rc−2c⊤r(x∗)

]
−λλλ

⊤
(

F⊤c− f(x∗)
)

(F.11)

The gradient (Jacobian matrix) of Equation F.11 with respect to c is:

JJJc(L) = 2σ
2 (Rc− r(x∗))−Fλλλ (F.12)

Requiring it to be 0 we get:

Rc− r(x∗) =
Fλλλ

2σ2 (F.13)

The system of equations to be solved can be written in the following form:[
0 F⊤

F R

][
− λλλ

2σ2

c

]
=

[
f(x∗)
r(x∗)

]
(F.14)

The solution to Equation F.14 is:[
− λλλ

2σ2

c

]
=

[
0 F⊤

F R

]−1[
f(x∗)
r(x∗)

]
(F.15)

Using Equation E.26 from Appendix E:[
0 F⊤

F R

]−1

=

[
−
(
F⊤R−1F

)−1 (
F⊤R−1F

)−1 F⊤R−1

R−1F
(
F⊤R−1F

)−1 R−1 −R−1F
(
F⊤R−1F

)−1 F⊤R−1

]
(F.16)

The solution for c is:

c = R−1F
(

F⊤R−1F
)−1

f(x∗)+R−1r(x∗)−R−1F
(

F⊤R−1F
)−1

F⊤R−1r(x∗)

= R−1r(x∗)−R−1F
(

F⊤R−1F
)−1(

F⊤R−1r(x∗)− f(x∗)
) (F.17)

The linear predictor, or the BLUP becomes:

ŷ(x∗) = c⊤y = r⊤(x∗)R−1y−
(

F⊤R−1r(x∗)− f(x∗)
)⊤(

F⊤R−1F
)−1

F⊤R−1y (F.18)

Note that we have used the matrix symmetry properties:(
R−1)⊤ = R−1
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((
F⊤R−1F

)−1
)⊤

=
(

F⊤R−1F
)−1

Based on the theory on least squares estimate in Appendix D (Equation D.33) we know
that the Best Linear Unbiased Estimator (BLUE) for βββ is:

β̂ββ =
(

F⊤R−1F
)−1

F⊤R−1y (F.19)

It follows that:

ŷ(x∗) = µŷ(x∗)

= r⊤(x∗)R−1y−
(

F⊤R−1r(x∗)− f(x∗)
)⊤

β̂ββ

= f⊤(x∗)β̂ββ + r⊤(x∗)R−1
(

y−Fβ̂ββ

) (F.20)

Equation F.20 is the prediction formula for UK metamodel.

F.2 Derivation of the MSE

Based on Equations F.5, F.10, F.13 and F.15:

MSE [ŷ(x∗)] = σ
2
ŷ (x

∗)

= σ
2
[
1+ c⊤Rc−2c⊤r(x∗)

]
= σ

2
[

1+ c⊤
(

r(x∗)+F
λλλ

2σ2

)
−2c⊤r(x∗)

]
= σ

2
[

1+ c⊤r(x∗)+ f⊤(x∗)
λλλ

2σ2 −2c⊤r(x∗)
]

= σ
2
[

1+ f⊤(x∗)
λλλ

2σ2 − c⊤r(x∗)
]

= σ
2
[

1+ f⊤(x∗)
λλλ

2σ2 − r⊤(x∗)c
]

= σ
2

[
1−
[
f⊤(x∗) r⊤(x∗)

][− λλλ

2σ2

c

]]

= σ
2

1−
[
f⊤(x∗) r⊤(x∗)

][0 F⊤

F R

]−1[
f(x∗)
r(x∗)

]

(F.21)
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Equation F.21 is the MSE or variance of the prediction ŷ(x∗). This is the form of MSE used
in [119] and [121].

To get the expanded form of the MSE instead of the matrix version as shown in Equation
F.21, we expand the matrix:

[
f⊤(x∗) r⊤(x∗)

][0 F⊤

F R

]−1[
f(x∗)
r(x∗)

]
=

[
−f⊤(x∗)

(
F⊤R−1F

)−1
+ r⊤(x∗)R−1F

(
F⊤R−1F

)−1

f⊤(x∗)
(
F⊤R−1F

)−1 F⊤R−1 + r⊤(x∗)R−1 − r⊤(x∗)R−1F
(
F⊤R−1F

)−1 F⊤R−1

]⊤[
f(x∗)
r(x∗)

]

=− f⊤(x∗)
(

F⊤R−1F
)−1

f(x∗)+ r⊤(x∗)R−1F
(

F⊤R−1F
)−1

f(x∗)+ r⊤(x∗)R−1r(x∗)

+ f⊤(x∗)
(

F⊤R−1F
)−1

F⊤R−1r(x∗)− r⊤(x∗)R−1F
(

F⊤R−1F
)−1

F⊤R−1r(x∗)

= r⊤(x∗)R−1r(x∗)+ f⊤(x∗)
(

F⊤R−1F
)−1(

F⊤R−1r(x∗)− f(x∗)
)

− r⊤(x∗)R−1F
(

F⊤R−1F
)−1(

F⊤R−1r(x∗)− f(x∗)
)

= r⊤(x∗)R−1r(x∗)+
(

f⊤(x∗)− r⊤(x∗)R−1F
)(

F⊤R−1F
)−1(

F⊤R−1r(x∗)− f(x∗)
)

Note that both the first and second part of the above equation are scalars.

[
f⊤(x∗) r⊤(x∗)

][0 F⊤

F R

]−1[
f(x∗)
r(x∗)

]
= r⊤(x∗)R−1r(x∗)−(

F⊤R−1r(x∗)− f(x∗)
)⊤(

F⊤R−1F
)−1(

F⊤R−1r(x∗)− f(x∗)
)

(F.22)

Finally, the MSE becomes:

MSE [ŷ(x∗)] = σ
2
ŷ (x

∗) = σ
2
[
1− r⊤(x∗)R−1r(x∗)+(

F⊤R−1r(x∗)− f(x∗)
)⊤(

F⊤R−1F
)−1(

F⊤R−1r(x∗)− f(x∗)
)]

(F.23)

Equation F.23 is a convenient form of the MSE that has also been widely used.
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