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ABSTRACT

Margin hyperplane classifiers such as support vector machines are strong

predictive models having gained considerable success in various classification

tasks. Their conceptual simplicity makes them suitable candidates for the

design of embedded machine learning systems. Their accuracy and resource

utilization can effectively be traded off each other through precision. We

analytically capture this trade-off by means of bounds on the precision re-

quirements of general margin hyperplane classifiers. In addition, we propose

a principled precision reduction scheme based on the trade-off between in-

put and weight precisions. Our analysis is supported by simulation results

illustrating the gains of our approach in terms of reducing resource utiliza-

tion. For instance, we show that a linear margin classifier with precision

assignment dictated by our approach and applied to the ‘two vs. four’ task

of the MNIST dataset is ∼ 2× more accurate than a standard 8 bit low-

precision implementation in spite of using ∼ 2 × 104 fewer 1 bit full adders

and ∼ 2× 103 fewer bits for data and weight representation.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Because of their high computational and storage complexity, today, machine

learning systems are deployed in the cloud and on large-scale general-purpose

computing platforms such as CPU and GPU-based clusters [1]. A key chal-

lenge today is to incorporate inference capabilities into untethered (embed-

ded) platforms such as cell phones, autonomous unmanned vehicles, and

wearables. Such platforms, however, have stringent limits on available en-

ergy, computation, and storage resources. Enabling such on-device intelli-

gence necessitates a fresh look at the design of resource-constrained learning

algorithms and architectures.

Precision of data, weight vector, and internal signal representations in a

machine learning implementation have a profound impact on its overall com-

plexity. Not surprisingly, recent works have empirically studied the effect of

moderate [2] and heavy [3–6] quantization on the performance of learning

systems. Signal-to-quantization noise ratio (SQNR) has also been used as a

metric to understand precision-accuracy trade-offs for the forward path [7]

and training [8] of deep neural networks. These works raise the following

questions: Is there a systematic way of choosing the minimum precision of

data, weights, and internal signal representations? Are these precisions inter-

dependent? How should one choose the precision of the training algorithm?

Our work addresses these questions for the general case of margin hyperplane

classifiers.

In fact, the questions listed above have been answered for the popular

least mean-squared (LMS) adaptive filter [9–15] in the context of digital

signal processing and communications systems. It turns out that there is a

trade-off between data and coefficient precision in order to achieve a desired
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Figure 1.1: Illustration of the geometry of a margin hyperplane classifier.

SQNR at the output. Furthermore, the precision of the LMS weight update

block needs to be greater than that of the coefficient in the filter to avoid

a premature termination of the convergence process. This thesis leverages

these insights in the design of fixed-point machine learning algorithms.

1.2 Background

1.2.1 The Classification Problem

Given a feature vector x of dimension D, with a corresponding unknown

true label y ∈ {±1}, it is desired to predict the class it belongs to. There are

several approaches to solving the problem, amongst which are hyperplane

classifiers. These separate the feature space by means of a hyperplane and

assign a predicted label ŷ based on the relative position of the feature vector

with respect to the hyperplane. For generalizability, it is often desired to

determine a maximum margin separating hyperplane in the feature space

(see Fig. 1.1) as is the case for SVMs [16]. The classifier is said to have a

soft margin when some of the feature vectors are allowed to lie within the

margin and hence may be misclassified.

The simplest, yet effective, such classifier is a linear classifier which predicts

2



the label as follows:

wTx + b
ŷ=1

R
ŷ=−1

0 (1.1)

where w is the weight vector and b is the bias term. For notational conve-

nience, we reformulate (1.1) into an equivalent affine form:

wTx
ŷ=1

R
ŷ=−1

0 (1.2)

by absorbing the bias term b into the weight vector and extending the feature

space by one: w←
[
b wT

]T
and x←

[
1 xT

]T
. Often, data statistics make

the classification problem linearly non-separable in the input feature space.

To circumvent this issue, one method is to map the input feature space to

a higher dimension, i.e., x → φ(x) such that it becomes linearly separable,

i.e.:

wTφ(x)
ŷ=1

R
ŷ=−1

0 (1.3)

We refer to this method as non-linear input mapping (NLIM). The non-linear

map φ(x) typically lifts the data to a much higher dimension. Consequently,

the dimension of the weight vector w in (1.3) is greater than that in (1.2).

Sometimes, it is impractical to map the input into a space where the data

is linearly separable. The reason is that the corresponding dimension may

be too large or even infinite. A remedy to this problem is the popular kernel

trick which we refer to as non-linear output mapping (NLOM). The idea is to

perform the similarity operation (projection, distance, etc.) in the original

(lower dimensional) feature space and then apply a kernel to the result, as

shown below:
Ns∑
i=1

αiK(si,x) + b
ŷ=1

R
ŷ=−1

0 (1.4)

where K(·, ·) is the kernel, b is a bias term, si’s are called support vectors,

and αi’s are the Ns constants associated with the Ns support vectors. The

support vectors found during training characterize the margin of the sepa-

rating region. Their number depends on the size of the training set and the

dimensionality of the input and output spaces. Note that since the support

vectors are obtained through training, it is not possible to absorb the bias

term into the kernel in a similar fashion as in (1.2).

3



For the dot product kernel K(si,x) = sTi x, it can be seen that (1.2)

and (1.4) are identical by letting w =
∑Ns

i=1 αisi and extending the feature

space by one. A slightly more sophisticated kernel is the polynomial kernel:

K(si,x) = (sTi x)d where d is the order of the polynomial. Another popular

kernel is the radial basis function (RBF): K(si,x) = exp(−1
2
‖si − x‖2). This

kernel maps the data into an infinite-dimensional space.

In [17], a reformulation for the second order polynomial kernel SVM was

proposed. Essentially, using the fact that (si
Tx)2 = xT (sis

T
i )x, one can

reformulate (1.4) as:

xTKx
ŷ=1

R
ŷ=−1

0 (1.5)

where K =
∑Ns

i=1 αisis
T
i . Note that extending the feature space by one

allowed us to absorb the bias term into the matrix K. This reformulation

is attractive for of two reasons: (1) the computational cost reduces from Ns

inner products in RD to D + 1 inner products in RD (typically Ns � D);

(2) there is no need to store any support vectors.

1.2.2 Learning Classifier Parameters

It is possible to train hyperplane margin classifiers on the fly using the

stochastic gradient descent (SGD) algorithm. For a linear classifier, the in-

stantaneous loss function is:

Q(yn,xn,w) = λ ‖w‖2 + max{0, 1− ynwTxn} (1.6)

where yn is the true label corresponding to the nth sample xn. The hinge loss

term in (1.6) contributes to the margin and λ is a regularizer. The optimum

weight vector w that minimizes this loss function can be determined using

SGD via the following updates [18]:

wn+1 = (1− γ λ)wn +

0 if ynw
T
nxn > 1,

γ yn xn otherwise
(1.7)

4



For NLIM classifiers, the weights can be trained in a similar manner as

follows:

wn+1 = (1− γ λ)wn +

0 if ynw
T
nφ(xn) > 1,

γ yn φ(xn) otherwise
(1.8)

For NLOM classifiers, we will consider only the decision directed mode. This

is because NLOM requires knowledge of the support vectors that arise during

training, and hence obtaining an SGD procedure to train such a system is

difficult.

Finally, the quadratic form of (1.5) suggests a straightforward SGD train-

ing method. Indeed, as the gradient∇K

(
xTKx

)
= xxT , the update equation

is given by:

Kn+1 = (1− γ λ)Kn +

0 if ynx
T
nKxn > 1,

γ yn xnx
T
n otherwise

(1.9)

where L2 regularization is applied to K.

Figure 1.2 depicts the architectures of the various classifiers considered

with online training weight update blocks shown for linear, NLIM, and

quadratic form classifiers. The multiplications and additions are element-

wise. The precision assignment per dimension for each signal considered in

the upcoming analysis is highlighted. These are input precision BX , weight

precision BF , and weight update precision BW . In this thesis, we obtain

bounds on these precisions in order to achieve a desired level of accuracy.

1.3 Reduced Precision Machine Learning

Traditional high-precision computations implemented in modern CPUs em-

ploy 64 bit floating-point representations and arithmetic. In the past decade,

GPUs have gained increased popularity as machine learning accelerators

thanks to their parallelization capabilities. Most GPUs employ 32 bit floating-

point representations and arithmetic. Such high precision severely impacts

the costs of computation, storage, and communications associated with the

implementations of machine learning algorithms. Understandably, there has

been a wave of research in the recent past that considers other models of
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Figure 1.2: Architectures of various margin hyperplane classifiers showing the
precision assignments per dimension, and the classifier and weight update
blocks for: (a) linear, (b) NLIM, (c) quadratic form, and (d) the NLOM
classifier. DP denotes a dot product block, MVM denotes a matrix vector
multiplier, and TP denotes a tensor product block.

computations and representations at much lower precisions.

A common approach to representing and computing in reduced precision

is to employ fixed-point quantization [19]. This approach was used in some

popular machine learning accelerators such as Eyeriss [20], the Diannao fam-

ily [21], and Google’s tensor processing unit (TPU) [22]. In fixed-point,
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quantization levels are scattered uniformly across the quantization domain.

Fixed-point implementations are attractive because they are efficient. Fur-

thermore, one advantage of fixed-point quantization is the extensive work on

quantization noise analysis [9, 10, 23] generally allowing for an intuitive un-

derstanding of the precision requirements of machine learning algorithms [19]

as will be shown in the remainder of this thesis.

One possibility is to consider reduced precision floating-point representa-

tions. While it has not been thoroughly investigated as of today, floating-

point quantization seems promising due to its better dynamic range, making

it more robust at the algorithm level. The main difficulty remains in the

multiplicative noise model traditionally considered [23, 24]. Such a model is

both pessimistic and mathematically less tractable than that of fixed-point

quantization noise. Furthermore, the costs of implementing reduced preci-

sion floating-point algorithms are comparable to fixed-point implementations,

giving the former no clear advantage.

Recently, some empirical works have demonstrated the possibility of using

extreme measures in reduced precision. Those include log quantization or

power of 2 quantization [25], binarization [5], and ternarization [26]. Such

approaches seem to reduce the costs of implementation by a great deal; nev-

ertheless, it is observed that the deployment of such quantization schemes

is only made possible through algorithmic extensions rendering the overall

complexity worse than a fixed-point counterpart [27]. In addition, the effects

of those quantization methodologies are still not well understood analytically.

Hence, in the remainder of this thesis we shall focus on reduced fixed-point

precision in the context of the design and implementation of hyperplane clas-

sifiers.

1.4 Contributions

In this thesis, we propose an analytical framework to predict precision vs.

accuracy trade-offs in the design of fixed-point learning algorithms thereby

eliminating the need for trial-and-error. A simplified version of this work,

addressing the issue of fixed-point linear support vector machines (SVM),

can be found in [19]. Those results are extended in this thesis to obtain a

complete and rigorous set of bounds for general margin hyperplane classifiers.
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Specifically, we consider classifiers using non-linear input mapping (NLIM),

non-linear output mapping (NLOM), also known as kernels, and quadratic

forms. We analyze the trade-off between data and weight precisions. In

addition, we propose a principled approach to reduce the precision of various

algorithmic parameters while maintaining fidelity to the ideal (floating-point)

accuracy. We quantify the benefits of this precision reduction in terms of

computational (# of 1 b full adders) and representational (# of bits) costs.

We test and validate all our results through simulations on the Breast Cancer

Dataset from the UCI Machine Learning Repository [28] and the MNIST

Dataset for handwritten character recognition [29].
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CHAPTER 2

PRECISION ANALYSIS OF FIXED-POINT
HYPERPLANE CLASSIFIERS

2.1 Classifier Precision

In this section, we assume that the classifier has been pretrained in floating-

point and we analytically study how much can it be quantized and how

its accuracy varies with its precision. In our analysis, we assume without

loss of generality that all quantities of interest lie between ±1. This can

be achieved for data via scaling and for the weights by forcing saturation

upon each iteration. Finally, unless otherwise stated, we allow the precision

of internal signals to grow arbitrarily. That is, we do not incorporate inter-

mediate round-offs in our analysis. The bit growth phenomenon only adds

a logarithmic term to the computational complexity. The upcoming analy-

sis can be extended by considering round-off noise terms but would become

much less tractable. Figure 1.1 shows the geometric configuration of a mar-

gin hyperplane classifier. This illustration reveals interesting insights upon

which we build our analysis.

2.1.1 Geometric Lower Bounds

The first result exploits the geometry of the classifier to provide a lower

bound on the precision which guarantees that the quantized feature vec-

tors lying outside the margin are classified correctly. The geometric lower

bounds (GLB) are conservative in the sense that they are sufficient conditions

for fixed-point classifiers to have an average accuracy close to their trained

floating-point counterparts.
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Finite precision computation modifies (1.2) to:

(w + qw)T (x + qx)
ŷ=1

R
ŷ=−1

0 (2.1)

where qx ∈ RD and qw ∈ RD are the quantization noise terms in x and w

respectively. Each element of qx, except the first one, is a random variable

uniformly distributed with support [−∆X

2
, ∆X

2
], where ∆X = 2−(BX−1) is the

input quantization step. The first term in qx is zero. Similarly, each element

of qw is a random variable uniformly distributed with support [−∆F

2
, ∆F

2
],

where ∆F = 2−(BF−1) is the coefficient quantization step. This uniform as-

sumption is standard [10], has been found to be accurate in signal processing

and communications systems, and is validated by the experimental results

in our thesis. Note that quantization perturbs both the feature vector x and

the separating hyperplane defined by w.

In what follows, for a feature vector x, let us denote by ŷfl(x) the label

predicted by the floating-point classifier and by ŷfx(x) the one predicted by

the corresponding fixed-point classifier. The notation a denotes a vector a

without the first element. We start with the linear classifier and consider the

GLB on BX .

Theorem 1 (Geometric Lower Bound on BX for a Linear Classifier).

Given BF , and w, ∀x ∈ RD such that |wTx| > 1, ŷfx(x) = ŷfl(x) if

BX > log2

(
||w ||

√
D − 1

1− 2−BF ||x||
√
D

)
(2.2)

where BF > log2

(
||x||
√
D
)

.

Proof. See this chapter’s addendum (Section 2.3.1).

The GLB for a linear classifier reveals the following insights: (1) larger

margin (i.e., smaller ||w|| in Fig. 1.1) allows a greater reduction of BX , (2)

there is a trade-off between BX and BF , and (3) input precision BX increases

with dimension D and ||x|| . Figure 2.1 shows the trade-off between BX and

BF for several values of the dimension D. In each case, the starting value of

BF corresponds to the condition of Theorem 1.

Note that Theorem 1 is specific to a single feature vector x and can be

extended to a dataset.
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Figure 2.1: Illustration of the GLB for a linear classifier showing trade-off
between input (BX) and weight (BF ) precisions, and dependence on the
dimension (D). In this example, the values of ||w || and ||x|| are taken to be
the mean norm of the corresponding vectors assuming each entry is random
and uniformly distributed between -1 and 1.

Corollary 1.1 (Geometric Lower Bound on BX for a Linear Classifier on a

Dataset).

Given BF , and w, ∀x ∈ RD such that |wTx| > 1, ŷfx(x) = ŷfl(x) if

BX > log2

 ||w ||
√
D − 1

1− 2−BF max
x∈X
||x||
√
D

 (2.3)

where BF > log2

(
max
x∈X
||x||
√
D

)
.

In Table 2.1, we list the GLB for the different classifiers. These lower

bounds on precision guarantee that any feature vector lying outside the mar-

gin of a floating-point classifier is identically classified by the fixed-point

counterpart. The GLB is a guideline on the safe exploitation of the margin.

Note that we may derive a GLB on BX given BF or on BF given BX . Each

of these GLBs can be extended for a classifier operating on a dataset as in

Corollary 1.1. Please refer to this chapter’s addendum (Section 2.3.1) for the

proofs.

Figure 2.2 shows a comparison across linear, NLIM, and quadratic form

classifiers. It appears that the NLIM classifier has the highest input precision

requirement, followed by the quadratic form and linear classifiers, in that or-

der. The quadratic form classifier seems to have the highest weight precision

requirement.
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Table 2.1: Table of GLBs for linear, NLIM, NLOM, and quadratic form clas-
sifiers. The classifier parameters, for each case, are as defined in Section 1.2.
The precision assignments are as shown in Fig. 1.2. Under these conditions
we have ŷfx(x) = ŷfl(x). The first row identical to Theorem 1. The proofs
of these bounds can be found in this chapter’s addendum (Section 2.3.1).

Linear classifier

GLB on BX

given BF

BX > log2

(
||w ||

√
D−1

1−2−BF ||x||
√
D

)
,

where BF > log2

(
||x||
√
D
)

.

GLB on BF

given BX

BF > log2

(
||x||
√
D

1−2−BX ||w ||
√
D−1

)
,

where BX > log2

(
||w ||

√
D − 1

)
.

Remarks x ∈ RD, |wTx| > 1

NLIM classifier

GLB on BX

given BF

BX > log2

(
||w ||
√
Dφ−1

1−2−BF ||φ(x)||
√
Dφ

)
,

where BF > log2

(
||φ(x)||

√
Dφ

)
.

GLB on BF

given BX

BF > log2

(
||φ(x)||

√
Dφ

1−2−BX ||w ||
√
Dφ−1

)
,

where BX > log2

(
||w ||

√
Dφ − 1

)
.

Remarks φ ∈ RDφ , |wTφ(x)| > 1

NLOM classifier

GLB on BX

given BF

BX > log2

( √
D‖∑Ns

i=1 αi∇xK(si,x)‖
1−2−BF

√
D
∑Ns
i=1‖αi∇siK(si,x)‖

)
,

where BF > log2

(√
D
∑Ns

i=1 ‖αi∇siK(si,x)‖
)

.

GLB on BF

given BX

BF > log2

( √
D
∑Ns
i=1‖αi∇siK(si,x)‖

1−2−BX
√
D‖∑Ns

i=1 αi∇xK(si,x)‖

)
,

where BX > log2

(√
D
∥∥∥∑Ns

i=1 αi∇xK(si,x)
∥∥∥).

Remarks x ∈ RD,

∣∣∣∣ Ns∑
i=1

αiK(si,x), +b

∣∣∣∣ > 1

Quadratic form classifier

GLB on BX

given BF

BX > log2

(
2‖(Kx) ‖

√
D−1

1−2−BFD‖x‖2

)
,

where BF > log2

(
D ‖x‖2).

GLB on BF

given BX

BF > log2

(
D‖x‖2

1−2−(BX−1)‖(Kx) ‖
√
D−1

)
,

where BX > log2

(
2 ‖(Kx) ‖

√
D − 1

)
.

Remarks x ∈ RD, |xTKx| > 1
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Figure 2.2: Comparison of the GLB across classifier types. The input di-
mension is arbitrarily chosen to be D = 50. For the NLIM classifier, the
map considered is the second order polynomial one (Dφ = D2). For each
case, inputs and weights are random, uniformly distributed between -1 and
1, per dimension. To obtain average bounds, 1000 datasets are generated.
The GLBs plotted are the mean bounds in each case.

2.1.2 Probabilistic Upper Bounds

The GLB provides a lower bound on the precision requirements to ensure that

fixed-point decisions are identical to floating-point for feature vectors lying

outside the margin of the classifier. However, it does not provide quantitative

guarantees on the fixed-point accuracy. Probabilistic upper bounds (PUBs),

introduced next, upper bound the worst-case fixed-point accuracy for a given

precision.

In what follows, we employ capital letters for random variables. We define

probability of mismatch pm between the decisions made by the floating-point

and fixed-point algorithms as pm = Pr{Ŷfx 6= Ŷfl}, where Ŷfx is the output of

the fixed-point classifier and Ŷfl is the output of the floating-point classifier.

A small mismatch probability indicates that the classification accuracy of

the fixed-point algorithm is very close to that of the floating-point algorithm.

Indeed, if we know the accuracy of the floating-point system quantified by

its probability of error pe,fl = Pr{Ŷfl 6= Y } (Y is the true output), then we

can obtain an upper bound on the fixed-point probability of error pe,fx =

Pr{Ŷfx 6= Y }:

13



Table 2.2: List of E1 and E2 appearing in the PUB (Theorem 2) for linear,
NLIM, NLOM, and quadratic form classifiers. For each case, the classifier
parameters, as defined in Section 1.2, are pre-trained in floating-point. The
expectations are taken over random inputs. The precision assignments are
as shown in Figure 1.2.

Classifier
type

E1 E2

Linear E
[
‖w ‖2
|wTX|2

]
E
[
‖X‖2
|wTX|2

]
NLIM E

[
‖w ‖2

|wTφ(X)|2

]
E
[
‖φ(X)‖2
|wTφ(X)|2

]
NLOM E


∥∥∥∥∥Ns∑i=1

αi∇XK(si,X)

∥∥∥∥∥
2

∣∣∣∣∣Ns∑i=1
αiK(si,X)+b

∣∣∣∣∣
2

 E

 Ns∑
i=1
‖αi∇siK(si,X)‖2∣∣∣∣∣Ns∑i=1
αiK(si,X)+b

∣∣∣∣∣
2


Quadratic

form
4E
[
‖(KX) ‖2
|XTKX|2

]
E
[
‖X‖4

|XTKX|2

]
Proposition 1. The fixed-point probability of error is upper bounded as fol-

lows:

pe,fx ≤ pe,fl + pm (2.4)

The right-hand side represents the union bound of two events: (1) misclas-

sification, and (2) incorrect classification due to quantization.

Note that pe,fx is the quantity of interest as it characterizes the accuracy

of the fixed-point system. While pe,fl is a metric of the algorithm itself and

does not depend on quantization, pm is the term that captures the impact

of quantization on accuracy and we hence use it as a proxy for pe,fx in order

to evaluate the accuracy of a fixed-point system. In what follows, we obtain

analytical upper bounds on pm as a function of the precision of the fixed-point

system.

It turns out that, for all the classifiers considered in Fig. 1.2, the mismatch

probability pm is upper bounded as follows:

Theorem 2 (Probabilistic Upper Bound on pm). Given BX and BF , the

upper bound on the mismatch probability of a hyperplane classifier is given

by:

pm ≤
1

24

(
∆2
XE1 + ∆2

FE2

)
(2.5)

where, for each case, the values of E1 and E2 are listed in Table 2.2.

Proof. See this chapter’s addendum (Section 2.3.2).
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In practice, the statistics (i.e., the expected values E1 and E2 in (2.5)) are

calculated empirically. Note that the mismatch probability bound is increas-

ing in ∆X and ∆F , which is expected as higher quantization noise variance

leads to increased mismatch between fixed and floating-point algorithms.

Equation (2.5) reveals an interesting trade-off between input precision BX

and weight precision BF . Indeed, in (2.5), the first term, ∆2
XE1, is the

input quantization noise power gain while the second, ∆2
FE2, is the weight

quantization noise power gain. Depending on the values taken by E1 and

E2, it might be that one of the two terms dominates the sum. If so, then it

would imply that BF or BX is unnecessarily large and hence can be reduced

without increasing pm. An intuitive first step to obtain a tighter upper bound

is to make the two terms of comparable order, i.e., set ∆2
XE1 = ∆2

FE2 by

constraining BX and BF as follows:

BX −BF = round

(
log2

√
E1

E2

)
(2.6)

where round() denotes the rounding operation. This is an effective way to

handle one of the two degrees of freedom introduced by (2.5).

One way to employ (2.6) is to consider minimizing the upper bound in

(2.5) subject to the constraint BX + BF = c for some constant c. Indeed, it

can be shown that (2.6) would be a necessary condition of the corresponding

solution.

From the expressions of E1 and E2 in Table 2.2 we note two points. First,

for each classifier, the denominator within the expectation operator repre-

sents the confidence in classification. This means that, the better the clas-

sifier separates the data, the smaller E1 and E2 are expected to be. Hence,

better data separability implies better tolerance to quantization, which is to

be expected. Second, the numerators represent functions of the magnitudes

of weight and input vectors in the decision space. Such magnitudes are di-

rect functions of dimensionality and margin. Consequently, we may infer that

higher dimensionality, or smaller margin, increases the values of E1 and E2,

and hence leads to an increase in the precision requirements of the classifier.

This correlates well with our observations in the case of the GLB.

The results presented in this section provide useful insights to determine

suitable precision allocations for inputs and weights. First, the GLBs offer
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a condition under which the behavior of a fixed-point system is expected to

be similar to that of the corresponding floating-point one. However, they

do not provide analytical guarantees on the resulting accuracy. The PUBs

do, and (2.6) captures an interesting trade-off between both precisions. In

practice, it is possible to use both sets of bounds to efficiently determine

minimal precisions for a fixed-point implementation. For example, (2.6) can

first be used to determine the optimal difference between BX and BF , then

the GLB can be used to find a suitable pair of (BX , BF ). Finally, the PUB

can be used to estimate the expected accuracy loss. We shall demonstrate

this approach in Chapter 3.

2.2 Precision in Training

In the preceding discussion, all learning parameters were assumed to have

been obtained after full-precision training. In practice, it is standard to first

implement a floating-point algorithm with desirable convergence properties

and then quantize so as to preserve the convergence behavior unaltered. In

this section, we consider the problem of finding precision requirements on

BW in the updates when training is done in fixed-point with feedforward

precisions set to BX and BF .

Consider a linear classifier. Note that the right-hand side of (1.7) includes

an attenuation term (1−γ λ)wn and an update term equal to 0 or γ yn xn =

±γxn where xi ∈ [−1, 1] for i = 1 . . . D. Without loss of generality, we

assume that floating point convergence is achieved for λ = 1 and some small

value of γ. Therefore, the attenuation factor (1 − γ λ) is less than or close

to unity independent of BW .

Our next result ensures that the non-zero update term in (1.7) is non-zero

during training in spite of weight update quantization.

Theorem 3 (Weight Update Requirements for a Linear Classifier).

The following lower bound on weight update precision BW is a sufficient

condition to ensure full convergence:

BW ≥ BX − log2(γ) (2.7)

when BX and BF are the input and coefficient precisions, respectively.
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Proof. Each step in (1.7) has magnitude |γx| where x is a scalar value taken

by the different components of x. For any non-zero update to remain non-

zero after quantization, we need |γx| > 1
2
bmin where bmin = 2−(BW−1) is the

value of the least significant bit (LSB) in the weight update block. So we

require |γ||x| > 1
2
2−(BW−1) = 2−BW . This has to be satisfied for any non-zero

value of x, but the minimum non-zero value taken by |x| is 2−(BX−1). So we

get |γ| · 2−(BX−1) > 2−BW , which can be written as:

BW > BX − 1− log2(γ)⇔ BW ≥ BX − log2(γ)

Theorem 3 provides a sufficient condition for convergence. As the SGD

approximates the true gradient at every step, fewer bits than specified in

(2.7) may work occasionally. We refer to these as boundary cases and present

a detailed analysis of the corresponding learning behavior in this chapter’s

addendum (Section 2.3.3).

For a NLIM classifier, the exact same discussion applies. This is because

(1.7) and (1.8) are structurally equivalent. For a quadratic form classifier the

results change a little bit. Indeed, every entry (i, j) in the matrix K has an

update term equal to |γxixj| in absolute value. The product of two scalars

increases the precision by a factor of 2. Following the same argument as in

Theorem 3, we have the following result:

Corollary 3.1 (Weight Update Requirements for a Quadratic Form Classi-

fier).

The following lower bound on weight update precision BW is a sufficient con-

dition to ensure full convergence:

BW ≥ 2BX − log2(γ) (2.8)

when BX and BF are the input and coefficient precisions, respectively.

While the required precision for full convergence has been slightly modified

in this case, the discussion of the learning behavior for lower precisions is

exactly the same as that following Theorem 3. This is because that discussion

observes the inputs starting from the most significant bit (MSB) and towards

the LSB. The set [−1, 1] being closed under multiplication, the update terms
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Table 2.3: Output quantization noise No and corresponding upper bounds
on its magnitude needed to prove the GLB for each classifier type. Note that
qx, qw, qφ(x), qsi , qK are the quantization noise terms of x, w, φ(x), si, and
K, respectively.

Classifier
type

Output quantization
noise No

Upper bound on
output quantization
noise magnitude |No|

Linear qTwx + wTqx
2−BF ||x||

√
D

+2−BX ||w ||
√
D − 1

NLIM qTwφ(x) + wTqφ(x)
2−BF ||φ(x)||

√
Dφ

+2−BX ||w ||
√
Dφ − 1

NLOM

∑Ns
i=1 αiq

T
si
∇siK(si,x)

+
∑Ns

i=1 αiq
T
x∇xK(si,x)

2−BF
√
D
∑Ns

i=1 ‖αi∇siK(si,x)‖
+2−BX

√
D
∥∥∥∑Ns

i=1 αi∇xK(si,x)
∥∥∥

Quadratic
form

2qTxKx + xTqKx
2−(BX−1) ‖(Kx) ‖

√
D − 1

+2−BF ‖x‖2D

are just as significant as those in the case of a linear classifier when looking

at the MSB and onwards.

2.3 Addendum: Proofs and Boundary Cases

2.3.1 Proofs of Geometric Lower Bounds

The proof of the GLB is done in three steps:

• Step 1: Determine the output quantization noise No at the output of

the classifier. In this step, we neglect cross products of quantization

noise terms as their contribution is very small. For the NLOM classifier,

this is equivalent to a first order Taylor expansion on the kernel. For

the linear classifier we have:

No = qTwx + wTqx

• Step 2: Upper bound the magnitude of No using the triangle and

Cauchy-Schwarz inequalities. Input quantization noise terms are upper

bounded by 2−BX and weight quantization noise terms by 2−BF . For
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the linear classifier we have:

|No| ≤ |qTwx|+ |wTqx|

≤ ‖qw‖ ‖x‖+ ‖w‖ ‖qx‖

≤ 2−BF ||x||
√
D + 2−BX ||w ||

√
D − 1.

• Step 3: Set the upper bound on |No| to be less than the functional

margin of the classifier which is equal to 1 (see Fig. 1.1).

Step 3, up to a rearrangement of terms, is equivalent to the GLB as de-

scribed in Section 2.1. In Table 2.3, we list the output quantization noise

and corresponding upper bound for each classifier type.

2.3.2 Proofs of Probabilistic Upper Bounds

The PUB is proved in 4 steps:

• Step 1: For a single input, obtain the total output quantization noise

No. This is identical to the Step 1 in the proof of the GLB above. This

output quantization noise is a sum of independent input and weight

quantization noise terms.

• Step 2: Compute the variance (σ2
No

) of this output quantization noise.

Because of independence, it is the sum of the input (σ2
qx→o) and weight

(σ2
qw→o) quantization noise variances referred to the output. For the

linear classifier we have:

σ2
No =

∆2
X

12
||w ||2 +

∆2
F

12
||x||2

• Step 3: Use this computed variance and Chebyshev’s inequality to de-

termine the probability of the quantization noise being larger in mag-

nitude than the floating-point soft output zo of the classifier. Because

the quantization noise has a symmetric distribution, this probability

needs to be divided by 2 (the mismatch is only caused when quantiza-

tion noise and output have opposing signs). The upper bound is hence
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Table 2.4: Input (σ2
qx→o) and weight (σ2

qw→o) quantization noise variances
referred to output and classifier floating-point output (zo).

Class.
type

Linear NLIM NLOM
Quadratic

form

σ2
qx→o

∆2
X

12
||w ||2 ∆2

X

12
||w ||2 ∆2

X

12

∥∥∥∥Ns∑
i=1

αi∇xK(si,x)

∥∥∥∥2
∆2
X

3
||(Kx) ||2

σ2
qw→o

∆2
F

12
||x||2 ∆2

F

12
||φ(x)||2 ∆2

F

12

Ns∑
i=1

‖αi∇siK(si,x)‖2 ∆2
F

12
||x||4

zo wTx wTφ(x)
∑Ns

i=1 αiK(si,x) + b xTKx

derived as follows:

pm =
1

2
P (|No| > |zo|) ≤

σ2
No

2|zo|2
=
σ2
qx→o + σ2

qw→o

2|zo|2

• Step 4: Use the law of total probability over the data to obtain the

averaged upper bound on pm. For the linear classifier we obtain:

pm ≤
∆2
X

24
E

[
‖w ‖2

|wTX|2

]
+

∆2
F

24
E

[
‖X‖2

|wTX|2

]

For each classifier type, we list the values of σ2
qx→o, σ

2
qw→o, and zo in Table

2.4. The values of E1 and E2 in Table 2.2 are equal to 12
∆2
X
E
[
σ2
qx→o
|Zo|2

]
and

12
∆2
F
E
[
σ2
qw→o
|Zo|2

]
for each classifier type, respectively.

For the quadratic form case, we used the fact that, for a datapoint x,

V ar(xTqKx) =
∆2
F

12
‖x‖4. This result is proved as follows:

V ar(xTqKx) = E
[
(xTqKx)2

]
= xTE

[
qKxx

TqTK
]
x

= xTE



qTK,1x

...

qTK,Dx

[qTK,1x . . . qTK,Dx
]x

= xT
∆2
F

12
‖x‖2 ID×Dx =

∆2
F

12
‖x‖4

where qTK,i for i = 1 . . . D are the row vectors of qK and ID×D is the identity

matrix of size D × D. The fourth equality holds because the quantization

terms are independent of each other making the off-diagonal elements of the

matrix in the third equation a product of two zero-mean independent terms.
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2.3.3 Precision of Training for Boundary Cases

We analyze the learning behavior when the precision is less than the one

predicted by Theorem 3.

As 1−γλ ≈ 1, we assume (1−γλ)wi,n ≈ wi,n for i = 1 . . . D. Let K = BW

and M = BX . Let x̃i,n = ynxn be the update term per dimension. The

following cases describe the corresponding two’s complement arithmetic:

Case 1: BW = 1− log2(γ)⇔ γ = 2−(BW−1) then:

γ = 0 .0 . . . 1

wi,n = bw0 .bw1 . . . bwK−1

γx̃i,n = bx0 .bx0 . . . bx0 bx1 . . . bxM−1

where {bwi}K−1
i=0 and {bxi}M−1

i=0 are the binary expansions of wi,n and xi,n,

respectively. Hence, if x̃i,n ≥ 0 → wi,n+1 = wi,n, and if x̃i,n < 0 → wi,n+1 =

wi,n−γ. We hence obtain a sign-SGD behavior only when x̃i,n < 0. Therefore,

in case I, there is no way to guarantee convergence.

Case 2: BW = 2− log2(γ)⇔ γ = 2−(BW−2) then:

γ = 0 .0 . . . 1 0

wi,n = bw0 .bw1 . . . bwK−2
bwK−1

γx̃i,n = bx0 .bx0 . . . bx0 bx1 bx2 . . . bxM−1

Hence, x̃i,n ≥ 0.5 → wi,n+1 = wi,n + 0.5γ, 0 ≤ x̃i,n < 0.5 → wi,n+1 = wi,n,

−0.5 ≤ x̃i,n < 0 → wi,n+1 = wi,n − 0.5γ, and, −1 ≤ x̃i,n < 0.5 → wi,n+1 =

wi,n − γ. We get a more precise but very noisy estimate of the gradient. We

may observe inaccurate convergence.

Case 3: BW = −log2(γ)⇔ γ = 2−BW then:

γ = 0 .0 . . . 0 1

wi,n = bw0 .bw1 . . . bwK−1

γx̃i,n = bx0 .bx0 . . . bx0 bx0 bx1 . . . bxM−1

Hence, if x̃i,n ≥ 0→ wi,n+1 = wi,n , and if x̃i,n < 0→ wi,n+1 = wi,n− 2γ. We

again get a sign-SGD behavior only if x̃i,n < 0 but this time the step size has

doubled. Again, there is no way to guarantee any sort of convergence in this
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case. Things are made even worse because when updates do happen, they

are two times greater than in the first case.

2.4 Summary

In this chapter, we have presented an analytical framework to determine the

precision requirements of hyperplane classifiers. We have considered both

inference and training blocks. For inference, we have presented two bounds

on the input and weight precisions based on the geometry and statistics

of the learning problem, respectively. For training, we have analyzed the

conditions for weight update precision under which convergence in fixed-point

is theoretically guaranteed provided it is also guaranteed in floating-point. In

the next chapter we will validate these theoretical findings through numerical

simulations on real datasets.
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CHAPTER 3

SIMULATION RESULTS

In this chapter, we validate the analysis of Chapter 2 via simulation with the

UCI Breast Cancer Dataset [28] and the ‘two vs. four’ task applied to the

MNIST Dataset for handwritten character recognition [29].

3.1 Complexity in Fixed-Point

We identify two implementation costs associated with the implementation of

signal processing and machine learning systems: the computational cost and

the representational cost.

The computational cost is measured in numbers of 1 bit full adders (#FA)

to come up with one decision. Dot products are the predominant computing

structures in machine learning systems. We assume they are realized in a

multiply and accumulate (MAC) fashion where additions and multiplications

are implemented using ripple carry adders and Baugh-Wooley multipliers,

respectively. Consequently, the number of full adders used to compute the

dot product between two D dimensional vectors with entries quantized to

BX bits and BF bits respectively is

DBXBF + (D − 1)(BX +BF + dlog2(D)e − 1) (3.1)

and the output is (BX +BF + dlog2(D)e) bits.

Equation (3.1) describes the computational cost of the linear classifier and

the NLIM one (but with D replaced by Dφ). The quadratic form classifier

will have a total computational cost equal to:

D2BXBF +D(D − 1)(BX +BF + dlog2(D)e − 1)

+DBX(BX +BF + dlog2(D)e)

+ (D − 1)(2BX +BF + 2dlog2(D)e − 1) (3.2)
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For NLOM, we consider the computational cost dependent on precision.

For instance, the evaluation of the norm difference when using a RBF kernel

has a total computational cost of:

Ns(DBX,F +DB2
X,F + (D − 1)(2BX,F + dlog2(D)e − 1)) (3.3)

where BX,F = max(BX , BF ).

The representational cost is defined as the total number of bits needed

to represent all parameters (inputs and weights). It is a measure of the

complexity of storage and communications. Depending on the application,

either one of the representational costs associated with weights or inputs may

be more important.

3.2 Validation of Bounds

We consider two scenarios for each classifier type:

• Scenario A: BX = BF .

• Scenario B: BX −BF defined by (2.6).

For each of the two scenarios:

1. We sweep the value of BX (and the corresponding value of BF ) and

perform fixed-point simulation (FX Sim) to obtain the associated true

fixed-point classification error rate (pe).

2. For each pair (BX , BF ), we find the corresponding probabilistic upper

bound on the classification error rate (PUBe) based on Proposition 1

and the PUB (Theorem 2).

3. We find the smallest value of BX (and hence BF ) that satisfies the GLB

in Table 2.1.

Figure 3.1 shows our results for linear, NLIM (second order polynomial

map), quadratic form, and NLOM (RBF kernel) classifiers for the Breast

Cancer Dataset. The training and testing sets were obtained by indepen-

dently sampling 500 random samples for each from the dataset. The classi-

fiers were pretrained in floating-point using SGD with γ = 2−10 and λ = 1
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Figure 3.1: Results for classification on the Breast Cancer Dataset: classi-
fication error rate pe in fixed-point simulations (FX Sim), analytical proba-
bilistic upper bound (PUBe), geometric lower bound (GLB) for BX = BF

and BX−BF determined by (2.6) for linear (a,b), NLIM (second order poly-
nomial) (c,d), quadratic form (e,f), and NLOM (RBF) (g) classifiers. For
the NLOM classifier, (2.6) dictates BX = BF .
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Table 3.1: Summary of Fig. 3.1 illustrating minimum precision requirements
for hyperplane classifiers on the Breast Cancer Dataset dictated by FX Sim,
GLB, and PUBe when BX = BF and BF −BX determined by (2.6).

Classifier
type

BX = BF BF −BX dictated by (2.6)
FX Sim GLB PUBe FX Sim GLB PUBe

Linear (4,4) (4,4) (6,6) (2,4) (2,4) (4,6)
NLIM (4,4) (6,6) (8,8) (4,7) (4,7) (6,9)
NLOM (2,2) (6,6) (3,3) (2,2) (6,6) (3,3)

Quadratic
form

(5,5) (6,6) (5,5) (2,5) (4,7) (3,6)

except for the NLOM classifier which was trained using the commercial LIB-

SVM package [30].

For the linear classifier, Fig. 3.1(a) shows the validity of the GLB and the

PUBe for equal input and weight precisions. Indeed, fixed-point simulations

for precisions larger than the GLB (4 bits) offer no significant accuracy gains

while lower precisions seem to quickly degrade the accuracy. The PUBe

also successfully upper bounds the error obtained in fixed-point. Figure

3.1(b) shows the benefits of using (2.6) which dictates in this example that

BF = BX + 2. Indeed, not only are the GLB and PUBe still valid, but it is

also possible to decrease BX to 2 bits, as reflected by the GLB and supported

by the fixed-point simulation, while maintaining good accuracy.

Similar trends are observed for NLIM (Fig. 3.1(c,d)) and quadratic form

(Fig. 3.1(e,f)) classifiers. Indeed, the GLB reaches the precision value after

which the fixed-point accuracy saturates to within 2 bits, and the PUBe

successfully upper bounds the fixed-point probability of error. Interestingly,

the PUBe is much tighter for the quadratic form classifier as compared to

the NLIM classifier.

Figure 3.1(g) shows our results for the NLOM classifier. There are a total

of 98 support vectors. In this case (2.6) results in BX = BF , and this is

why we have only one plot. Observe that the PUBe is much tighter than the

GLB. Indeed, the PUBe tracks the fixed-point simulations to precisions as

low as 3 bits. The GLB predicts 6 bits.

A detailed breakdown of the minimum precision requirements determined

by FX Sim, GLB, and PUBe for all classifier types is presented in Table 3.1.

So far, all results were performed on the Breast Cancer Dataset. To show

the generality of our results, we also conduct a similar experiment on the ‘two
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Figure 3.2: Results for linear classification on the ‘two vs. four’ task for the
MNIST Dataset: classification error rate pe in fixed-point simulations (FX
Sim), analytical probabilistic upper bound (PUBe), geometric lower bound
(GLB) for (a) BX = BF and (b) BX −BF = 6 as dictated by (2.6).

vs. four’ task on the MNIST Dataset where we consider a linear classifier.

Again, the classifier is first pretrained using SGD as discussed in Section 1.2.

The training and test sets were obtained by selecting the ‘two’ and ‘four’

instances from the original MNIST dataset. Overall, we had 11800 training

and 2014 testing samples, respectively. The classifier was trained using SGD

with γ = 2−10 and λ = 1. The results are shown in Fig. 3.2. Once again, we

find the numerical results to be consistent with the analysis of Section 2.1.

Interestingly, in the experiments on the Breast Cancer Dataset, (2.6) seemed

to always yield a BF larger than BX by a few bits (2 or 3) except for the

case of NLOM. For the MNIST experiment, this trend seems to continue and

is even more pronounced as the difference BF − BX = 6 bits. In fact, this

should not be surprising. Indeed, the feature vectors in the MNIST dataset

are grayscale images whereas the weights define the separating hyperplane.

It is hence reasonable to expect the precision requirements of weights to be

higher as slight changes to the separating hyperplane are more detrimental

to the classification accuracy.

3.3 Complexity vs. Accuracy Trade-offs

We compare costs and performance for the following setups:

1. minimum value of BX specified by the GLB with BX = BF ,

2. minimum value of BX specified by the GLB with the difference between
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BX and BF satisfying (2.6),

3. 8 bit quantization for all parameters,

4. an arbitrary precision assignment not satisfying the bounds presented

in Section 2.1.

The first setup takes into account only one half of the theory proposed

in Section 2.1, while the second shows the possibility and benefits of lever-

aging both GLB and PUB for more aggressive, yet principled quantization.

We chose 8 bits in the third setup as it is a typical representative of low-

precision/high-performance arithmetic [22]. The fourth setup is intended to

highlight the drawbacks of aggressive and unprincipled quantization.

For the Breast Cancer Dataset, Table 3.2 shows how our principled quan-

tization strategy makes it possible to operate at low cost while maintaining

accuracy. Indeed, for the linear classifier, an unstructured precision assign-

ment of 2 and 3 bits for inputs and weights, respectively, does reduce the

computational and representational costs, but results in a relatively high

test error. At the expense of only ∼ 1.2× (178/146) computational cost and

∼ 1.2× representational cost, ∼ 1.8× classification error rate reduction is

possible using a (2, 4) quantization as dictated by (2.6) and the GB. This

corresponds to ∼ 5× reduction in computational cost and ∼ 2.6× reduc-

tion in representational cost compared to the traditional 8 bits quantization.

Similar trends are observed for the other classifiers.

Similarly, this comparison for the MNIST experiment is shown in Table

3.3. Interestingly, we observe here that the constraint BX = BF is too

harsh. Indeed, although the value BX = BF = 9 bits determined by the

GLB yields a resulting accuracy ∼ 2× better than the precision assignment

of BX = BF = 8 bits, this should not be considered a satisfactory result. In

fact, when taking into account the trade-off between BX and BF as described

in (2.6), BF = BX + 6 here, we are able to reduce BX down to only 4 bits.

This corresponds to ∼ 1.7× and ∼ 1.3× decrease in the computational and

representational costs with a negligible degradation in accuracy. Note that

this quantization strategy results in a classifier ∼ 2× more accurate than the

one quantized to 8 bits in spite of using ∼ 2× 104 fewer FAs and ∼ 2× 103

fewer bits for data and weight representation. This highlights the importance

of the analysis of the trade-off between input and weight precisions that was

28



Table 3.2: Results for the Breast Cancer Dataset. Comparison of compu-
tational cost, representational cost, and test error for linear, NLIM (second
order polynomial), quadratic form, and NLOM (RBF) classifiers. The pre-
cision assignments considered are the standard low precision quantization
(8,8), the minimum (BX , BF ) satisfying the GLB when BX = BF , the mini-
mum (BX , BF ) satisfying the GLB when BF − BX is dictated by (2.6), and
one arbitrarily chosen assignment violating the bounds in Section 2.1. In the
case of the NLOM classifier, the second and third precision assignments are
identical. In each case, the use of the GLB and (2.6) makes it possible to
reduce complexity but maintain accuracy.

Linear Classifier

(BX , BF )
Computational

cost (#FA)
Representational

cost (bits)
Test error

(8, 8) 894 168 6.6%
(4, 4) 286 84 5.9%
(2, 4) 178 64 7.5%
(2, 3) 146 53 13.5%

NLIM (second order polynomial) Classifier

(BX , BF )
Computational

cost (#FA)
Representational

cost (bits)
Test error

(8, 8) 5.9× 103 1048 4.4%
(6, 6) 3.7× 103 786 4.4%
(4, 7) 3.1× 103 722 4.0%
(3, 3) 1.4× 103 393 11.8%

Quadratic form Classifier

(BX , BF )
Computational

cost (#FA)
Representational

cost (bits)
Test error

(8, 8) 11.9× 103 1048 3.2%
(7, 7) 9.5× 103 917 3.2%
(4, 7) 5.6× 103 887 3.0%
(4, 4) 3.8× 103 524 9.8%

NLOM (RBF) Classifier

(BX , BF )
Computational

cost (#FA)
Representational

cost (bits)
Test error

(8, 8) 10× 104 7920 1.8%
(6, 6) 6.6× 104 5940 1.8%
(1, 1) 1.1× 104 990 3.0%
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Table 3.3: Results for linear classification on the ‘two vs. four’ task for
the MNIST Dataset. Comparison of computational cost, representational
cost, and test error. The precision assignments considered are the minimum
(BX , BF ) satisfying the GLB when BX = BF , the standard low precision
quantization (8,8), the minimum (BX , BF ) satisfying the GLB when BF −
BX = 6 as dictated by (2.6), one arbitrarily chosen assignment of (3,6)
violating the bounds in Section 2.1. The use of the GLB and (2.6) makes it
possible to reduce complexity but maintain accuracy.

(BX , BF )
Computational

cost (#FA)
Representational

cost (bits)
Test error

(9, 9) 85× 103 14× 103 2.3%
(8, 8) 70× 103 13× 103 4.4%
(4, 10) 49× 103 11× 103 2.2%
(3, 6) 28× 103 7× 103 8.5%

described in Section 2.1.

3.4 Training Behavior

Here we illustrate the impact of precision on training as evidence to support

the discussion in Section 2.2. We start with the Breast Cancer Dataset.

The feedforward precisions are set as follows: we choose BX = 6 in order to

separate the Theorem 3 scenario from the three boundary cases in Appendix

2.3.3, and we choose BF as specified by the GLB. That way, the feedforward

precisions are minimal in a geometric sense and the full convergence of the

algorithm is determined by the weight update precision (Theorem 3).

We shall consider a linear and a quadratic form classifier. We consider

two scenarios: training with a small step size (γ = 2−10) and training with

a large step size (γ = 2−5). The dataset is once again split into 500 training

and 500 testing samples. Each time we show the convergence behavior of

the training loss function, which is the objective being minimized, and the

test error rate, which is the target metric to be minimized. Each experiment

is conducted over 30 independent runs and the curves shown hereafter are

ensemble averages over these runs. For each run, the initial weights are set

to zeros and λ is set to 1.

Figure 3.3 shows convergence curves for a linear classifier trained on the

Breast Cancer Dataset. We show convergence curves for weight update pre-
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Figure 3.3: Results for linear classifier training on the Breast Cancer Dataset:
(a) ensemble training loss function (1.6) and (b) ensemble test error rate for
a small learning rate; (c) ensemble training loss function and (d) ensemble
test error rate for a large learning rate. FL Sim denotes the floating-point
simulation. In each case, a weight update precision of BX − log2(γ) (Theo-
rem 3) is enough to mimic floating-point behavior in fixed-point. Accuracy
degradation is observed for lower precisions.

cisions of: (a) BX − log2(γ) (Theorem 3), 1− log2(γ) (Boundary Case 1), (b)

2− log2(γ) (Boundary Case 2), and − log2(γ) (Boundary Case 3). As shown,

in both scenarios, a weight update precision of BX − log2(γ) is enough to

mimic floating-point behavior in fixed-point. For weight update precisions of

1 − log2(γ) and − log2(γ), the occasional sign-SGD updates are not enough

for convergence as discussed in Sections 2.2 and 2.3.3. For a weight update

precision of 2 − log2(γ), we do observe a decrease in the training loss func-

tion and the test error rate, but the accuracies obtained are not as good as

those of the floating-point trials. This demonstrates the sufficiency property

of Theorem 3.

As far as the training loss function is concerned, similar trends are observed

for the quadratic form (Fig. 3.4) classifier. Interestingly, the test error rate

31



(γ = 2−10)

Tr
ai

n
in

g 
Lo

ss
 F

u
n

ct
io

n

Iteration Index

(a)

(γ = 2−10)

Te
st

 E
rr

o
r 

R
at

e

Iteration Index

(b)

(γ = 2−5)

Tr
ai

n
in

g 
Lo

ss
 F

u
n

ct
io

n

Iteration Index

(c)

(γ = 2−5)

Te
st

 E
rr

o
r 

R
at

e

Iteration Index

(d)

Figure 3.4: Results for quadratic form classifier training on the Breast Cancer
Dataset: (a) ensemble training loss function ((1.6), matrix (Frobenius) norm
replaces vector norm) and (b) ensemble test error rate for a small learning
rate (γ = 2−10); (c) ensemble training loss function and (d) ensemble test
error rate for a large learning rate (γ = 2−5). FL Sim denotes the floating-
point simulation. The weight update precision of 2BX − log2(γ) (Corollary
3.1) only marginally improves the accuracy over that of BX − log2(γ).

does go down in spite of imprecise updates. Nonetheless, we see that higher

precision leads to greater overall accuracy. Note that we not only considered

weight update precision of BX − log2(γ), but also 2BX − log2(γ) as dictated

by Corollary 3.1. Results show that this increased precision only marginally

improves the convergence behavior.

Figure 3.5 illustrates these results for the ‘two vs. four’ classification task

on the MNIST Dataset for linear classification with a learning rate of 2−10.

The feedforward precisions are again chosen to be minimal in the geomet-

ric sense. Those precisions were determined in the previous subsection to

be 4 and 10 for the inputs and weights, respectively. The results here are

very consistent with those observed for the experiments on the Breast Can-

cer Dataset. Indeed, it is clearly seen that a weight update precision of
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Figure 3.5: Results for linear classifier training on the ‘two vs. four’ task
for the MNIST Dataset: (a) ensemble training loss function (1.6) and (b)
ensemble test error rate for a learning rate γ = 2−10. FL Sim denotes the
floating-point simulation. A weight update precision of BX − log2(γ) (The-
orem 3) is enough to mimic floating-point behavior in fixed-point. Accuracy
degradation is observed for lower precisions.

BW = BX − log2(γ) as dictated by Theorem 3 is of paramount importance

for successful convergence. The results here are very consistent with those

observed for the experiments on the Breast Cancer Dataset. Indeed, it is

clearly seen that a weight update precision of BW = BX − log2(γ) as dic-

tated by Theorem 3 is of paramount importance for successful convergence.

3.5 Summary

In this chapter we have validated the theoretical results presented in Chap-

ter 2. We have presented fixed-point simulations on the Breast Cancer and

MNIST datasets. The numerical results show close agreement with the pre-

dicted precision requirements. Furthermore, the benefits of the analysis in

terms of complexity reduction have been illustrated. New complexity metrics

have been proposed in the computational and representational costs. These

two meaningful costs, as well as the presented precision analysis, provide a

natural way for designers to estimate complexity measures in fixed-point and

to better explore the trade-offs of accuracy vs. precision and complexity.
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CHAPTER 4

CONCLUSION

We have presented a theoretical analysis of the behavior of general fixed-point

margin hyperplane classifiers. The results presented consist of bounds based

on the geometry and statistics of the classification task and on the conver-

gence conditions of the training task. By characterizing the trade-off between

input and weight precisions, an efficient precision reduction scheme was pre-

sented. This framework eliminates the need for expensive trial-and-error.

Furthermore, it presents guidelines for minimizing resource utilization. This

utilization was captured by the computational and representational costs.

Simulation results shown support the developed theory and highlight its ben-

efits.

Several insights can be taken from our work. These include a trade-off

between input and weight precision which is useful for minimizing the over-

all precision. Furthermore, it was observed from the GLB that precision

increases logarithmically with the dimensionality of the problem. From the

PUB, it was seen that the mismatch probability between fixed-point and

floating-point classifier decays, at worst, exponentially with precision. It is

in fact possible to derive a tighter bound on this mismatch probability us-

ing the Chernoff bound which marginally improves this dependence making it

double exponential in precision. Finally, it was shown that the early stopping

criterion applies to fixed-point training and provides a sufficient condition on

the weight update precision for full convergence.

Future work includes a deeper dive into the topic of complexity vs. accu-

racy in machine learning. This includes a similar analysis for more compli-

cated algorithms such as deep neural networks. The presented work takes a

conservative approach in the model of quantization. It is possible to shape

quantization noise statistics using dithering during training. Such an ap-

proach might lead to greater reductions in precision. Another line of work

is to study the effects of floating-point quantization. While fixed-point im-
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plementations are usually more efficient than floating-point ones, the latter

benefit from a much wider dynamic range which could be beneficial to the ro-

bustness in classification. An orthogonal direction is to consider the structure

of the algorithms themselves. It is well established that data-driven models

inhibit large redundancies which can be exploited to trade off complexity

with robustness. The above constitute the first steps in the important task

of developing a unified and principled framework to understand complexity

vs. accuracy in the design and implementation of machine learning systems.
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