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ABSTRACT 

 

 
Photonic crystals, composed of arrays of microplasmas, affect the propagation of electromagnetic 

waves and can act as reconfigurable filters in the GHz-THz spectral regions. Plasma photonic crystals 

are reconfigurable at electronic speeds. In addition, they rapidly alter the transmission characteristics, 

relative to photonic crystals fabricated in a solid. This thesis describes the characteristics and 

performance of photonic crystals based on arrays of microplasma jets. 
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CHAPTER 1 

INTRODUCTION 

Photonic crystals are structures with periodic arrangement of dielectric materials, which 

provide the ability to reflect a specific range of wavelengths. The structure can control the flow of 

light and electromagnetic waves. Multiple reflections from each surface that is separated by a 

certain distance prevent an electromagnetic wave from propagating through the crystal [1]. Several 

types of photonic crystals have drawn much attention from researchers in recent years. However, 

there have been limitations to expanding the studies. For example, it is difficult to control the band 

gap of metal semiconductor photonic crystals due to their lattice limitations. For the normal 

photonic crystals composed of solid materials, the frequency range of the electromagnetic waves 

for control is fixed once the periodic structure is fabricated. The parameters determining the 

position and the width of the photonic band gaps, such as the dielectric constant, the lattice constant, 

and the symmetry of the structure, are difficult to change. 

Alternately, plasma is a good candidate to replace the conventional solid dielectric materials 

in photonic crystals. One of the most attractive properties of plasma photonic crystals is the tunable 

photonic band gap that can be controlled by plasma parameters [1]. Plasma parameters can be 

varied freely by adjusting external parameters, leading to a large and tunable range of the 

electromagnetic wave frequency. Due to these special properties of plasma photonic crystals, 

technological applications are promising and include plasma antennas, narrow band filters, and 

plasma lenses.  

In this thesis, microplasma devices with a lattice constant of 1 mm will be utilized to 

reconfigure the photonic crystal in the GHz-THz region. The two greatest advantages of 
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microplasma-based photonic crystals are the ability to control the refractive index and alter their 

characteristics at electronic speeds. The properties of 2-D plasma photonic crystals and their 

fundamental characteristics will be discussed in the next chapters. 
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CHAPTER 2 

LOW TEMPERATURE PLASMA FUNDAMENTALS 

2.1. Microplasma and Paschen’s Curve 

Plasma is generally referred to as the fourth fundamental state of matter. It is collection of ions, 

free electrons, and neutral molecules. In most plasmas, ions and electrons are present in equal 

numbers, making them electrically quasi-neutral (electron density ne ≅ ion density ni) with less 

than 1% fractional ionization. Microplasma is described as a type of plasma that is generated in a 

microscale discharge gap. As shown in Figure 1, Paschen’s curve indicates the minimum 

breakdown voltage of a discharge for a noble gas as a function of pressure (p) and the distance 

between two electrodes (d), which is a reliable guide to predict the parameters of discharges [2]. 

Compared with conventional plasmas, microplasma can be operated at higher pressure. As shown 

in Figure 1, low pressure is essential to generate conventional plasma, such as for a fluorescent 

lamp, due to large-scale d (d > 10 mm) in order to minimize the breakdown voltage; however, 

microplasma can be generated in both low pressure and atmospheric pressure (780 Torr) because 

of microscale d [3]. 

Significant characteristics of microplasma include its non-equilibrium state, in that the electron, 

ion, and gas temperatures are not the same [2, 4]. The gas temperature is much lower than the 

electron temperature because the average energy exchange in collision of ions and electrons 

increases when plasma is confined in a small gap. Thus, microplasma in microscale discharge gap 

at constant pressure leads to an increase of electron temperature. Typical values for the electron 

temperature is 1 – 5 eV and ion temperature is typically 0.1 eV, while gas temperature for noble 

gas (<500 K) is generally as low as room temperature [3, 5, 6]. 
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Figure 1. Paschen’s curve breakdown voltage as a function of pressure and gap between electrodes 

[2]. 

 

2.2. Debye Length 

In plasma physics, the concepts of Debye length and sheath region are essential to plasma 

studies. The Debye length, λ𝐷 , is the minimum distance over which electric charges can be 

screened, retaining the quasi-neutrality of the bulk plasma. The Debye length equation can be 

derived using Poisson’s equation, which describes the potential field caused by charge density 

distribution, and is given by 

∇2Φ = −
ρ

ε0
      (2.1) 

where 𝜌 is the charge density (C/cm3), 𝜀0 is the vacuum permittivity (F/m), and Φ is the electric 

potential (V). In order to determine λ𝐷, simply assume that the immobile ions are regarded as ni = 

no and ne = no∙exp(Φ/kTe) from the Boltzmann relation for electrons.  Thus,  λ𝐷 is known to be 

λ𝐷 = √
𝜀𝑂·k𝑇𝑒

𝑒·𝑛𝑒
 ≅ 743 · √

𝑇𝑒(𝑉)

𝑛𝑒(𝑐𝑚−3)
 [cm]   (2.2) 
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where ne is the electron density (cm-3), kTe is the electron temperature (eV), and e is the charge of 

an electron [4, 7]. The sheath region is naturally derived from the Debye length. Since electrons 

are repelled back into the bulk plasma by the negatively charged wall, a net positive space charge 

will be formed in the sheath region. The sheath region, lying between the negatively charged 

cathode and the bulk plasma, has a length of three to ten times λ𝐷 in order to maintain charge 

continuity between electrodes [4]. This sheath region is essential to maintain a plasma. 
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CHAPTER 3 

1-D PHOTONIC CRYSTALS 

3.1. Distributed Bragg Reflector 

At wavelengths within the photonic band gap as shown in Figure 2(a), the incident wave 

partially reflects off each layer of dielectric material. The reflected waves are in phase, reinforcing 

one another. "Total wave" amplitude continuously decreases when it passes through each dielectric 

layer due to constructive interference from reflected wave. Thus, the total wave cannot propagate 

through the spatially periodic structures. In contrast, at a wavelength not in the photonic band gap, 

the reflected waves are out of phase and attenuated due to destructive interference. Thus, as 

presented in Figure 2(b), the "total wave" can propagate through the periodical structure with only 

slight attenuation.  

 

Figure 2. (a) Wavelength in the photonic bandgap: the constructive interference of reflected waves 

[8]. (b) Wavelength not in the photonic bandgap: reflected waves are attenuated by the destructive 

interference [8]. (c) Schematic representation of Distributed Bragg reflector. 
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As shown in Figure 2(c), a Bragg mirror, known as a distributed Bragg reflector, is a structure 

consisting of two different spatially periodic dielectric materials, and requires 𝑑 = 𝜆/2, where d 

is the lattice constant, and λ is the wavelength of the incident wave. Dielectric mirrors function 

based on the constructive interference of wave reflected from different layers. The structure has 

both high and low refractive indices, n1 and n2, respectively, and the reflection coefficient equation 

is 𝑟12 = −𝑟21 =
𝑛1−𝑛2

𝑛1+𝑛2
. Specifically, the reflection from high to low refractive index at boundary, 

𝑟12 , as shown in Figure 2(c,, has a phase shift of zero due to internal reflection, in that 𝑟12  is 

positive when n1 is greater than n2. However, the reflection from low to high refractive index 

boundary, 𝑟21, has a phase shift of π since there is an external reflection. Thus, the total phase shift 

for each reflected wave is an integer multiple of 2π, which result in constructive interference of 

reflected wave. 
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CHAPTER 4 

REFRACTIVE INDEX FOR PLASMA PHOTONIC CRYSTALS 

4.1. Refractive Index of Microplasma 

It is well known that electric permittivity (ε) and magnetic permeability (μ) are fundamental 

characteristics determining the propagation of electromagnetic waves in matter. Calculating 

plasma refractive index as a function of the frequency of electromagnetic waves is important 

because an index contrast between two different spatially periodic dielectric materials is the main 

concept of plasma photonic crystals. The refractive index equation is the square root of the product 

of relative permittivity and relative permeability. The relative permeability can be assumed to be 

1, since plasma is a non-magnetized material. The refractive index of plasma is 𝑛 = √ε𝑟μ𝑟 = √ε𝑟 

and can be written in complex form as shown in equation (4.1) [9, 10]. 

𝑛𝑝(ω) = √𝜀𝑟(ω) = 𝑛𝑝
′ + 𝑖 ∙ 𝑛𝑝

′′                (4.1) 

The complex form of the relative permittivity, 𝜀𝑟(𝜔), can be derived using the Drude model 

[11]. Based on the Drude model expression, the dielectric constant of a plasma is dependent on the 

incident electromagnetic wave frequency, the plasma frequency and the collisional frequency, as 

shown in equation (4.2). 

ε𝑟(ω) = 1 −
ω𝑃

2

ω2 ∙ (1 + 𝑖 ∙
υ𝑚

ω )
 

       = (1 −
ω𝑃

2

υ𝑚
2+ω2

)+ i ·
ω𝑃

2∙υ𝑚

(υ𝑚
2+ω2)∙ω

            (4.2) 

The parameter 𝑛𝑝
′  and 𝑛𝑝

′′  are the refractive index and the plasma’s absorption for an 

electromagnetic wave, respectively. 
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4.2. Plasma Frequency and Collisional Frequency 

The collisional frequency for momentum transfer, ʋ𝑚, represents the rate at which an electron 

collides with atoms. It is known to be approximately by 

                    ʋ𝑚 ≈ 109  ·  𝑝 (Torr) [Hz]                            (4.3) 

where ʋ𝑚 is clearly dependent on the neutral gas pressure and the cross section of elastic collision 

[2].  

The plasma frequency, ωp, is the frequency of electron oscillation around the ions, which can 

be derived from the Drude model [11] as  

𝜔𝑝  =  √
𝑛𝑒∙𝑒2

𝜀𝑜∙𝑚𝑒
 =  5.634 × 104 · √𝑛𝑒 (cm−3) [Hz]   (4.4) 

where me is the mass of an electron and 𝜀𝑜 is the free space permittivity [4]. The plasma frequency 

can be described as the rapid oscillation of the electron density around the ions if a charge 

imbalance exists. When the displacement of the electrons to the right leaves an excess of ions on 

the left side of plasma and negative charge on the right side of plasma, the electric field points 

toward the right. The electric field pulls the electrons back toward their original locations and 

electrons move farther from their original positions due to gained kinetic energy from electron 

acceleration.  
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Figure 3. Refractive index depends on electron density and wavelength at 200 Torr gas pressure. 

The refractive index of the plasma as a function of frequency at a pressure of 200 Torr is shown 

in Figure 3. The real part of refractive index 𝑛𝑝
′ in the upper half of Figure 3 is the usual refractive 

index, while the imaginary part of the refractive index 𝑛𝑝
′′ in the lower portion is the plasma’s 

absorption of electromagnetic wave. The plasma’s absorption coefficient for an electromagnetic 

wave at frequency ω is given by 𝛼(ω)  =  4π · 𝑛𝑝
′′/λ  where is calculated from the imaginary part 

of refractive index [11]. Photonic crystals can be optimized when the positive portion of refractive 

index is sufficiently different from that of air (n = 1) and an absorption coefficient from the 

negative portion is close to zero. 
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CHAPTER 5 

PREVIOUS STUDY OF 2-D PLASMA PHOTONIC CRYSTALS 

Figure 4(a) illustrates arrays of microplasma devices with lattice constant of 2.5 mm from 

Osamu Sakai of Kyoto University, Kyoto, Japan, who is one of the leading pioneers of plasma 

photonic crystals [9]. The photonic band gap exists around 60 GHz and can be calculated from the 

Bragg’s law. A plot of the Bragg’s law, ʋB = c/(2·a) as a function of lattice constant, a, is shown 

in Figure 5, where c is the speed of light [1]. Figure 5 illustrates the working frequency of photonic 

crystal device.  

 

Figure 4. (a) Device with array of microplasma discharging with lattice constant of 2.5 mm. (b) 

Frequency dependence of transmittance signals as a function of applied voltage. (c) Frequency 

dependence of transmittance signals as a function of pressure [12]. 

Sakaguchi et al. tested the dependence of transmittance on applied voltage and pressure [12]. 

Low transmittance around the 60 GHz range in Figure 4(b) and (c) shows that the device with 

lattice constant 2.5 mm operates properly as photonic crystals. Low transmittance was measured 
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with increased voltage due to a higher electron density, which in turn decreased the real part of the 

relative permittivity in equation (4.2), as shown in Figure 4(b). This is because plasma frequency 

increases as electron density increases. 

 

Figure 5. Bandgap frequency as a function of lattice constant (adapted from Ref. 12). 

In addition, the transmittance drops became smaller as the pressure was increased as shown in 

Figure 4(c), since lower pressure corresponds to lower collision frequency according to equation 

(4.3). Thus, applying higher voltage and lower pressure decreases the real part of refractive index, 

providing higher index contrast between plasma and air with low transmittance [9, 12]. 

Figure 6(a) shows another device with lattice constant of 1.5 mm [12]. The Bragg’s frequency 

of this device is at 100 GHz as shown in Figure 5. The transmittance in Figure 6(b) is around 85%, 

meaning this device does not operate properly as photonic crystals. As discussed, the main concept 

of plasma photonic crystals is spatially periodic variation of the refractive index between plasma 

and air. However, the boundaries between plasma columns and air is not well defined, impeding 

the periodicity of photonic crystals as shown in Figure 6(a). In addition, the real part of relative  
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Figure 6. (a) Device with array of microplasma discharging with lattice constant of 1.5 mm. (b) 

Frequency dependence of transmittance signals [12]. 

 

permittivity with 100 GHz is closed to 1 with electron density of 1 x 1013 cm-3, which results in 

lower index contrast. Therefore, the device with higher electron density and well-defined 

boundaries is required to cover a working frequency of 100 GHz and beyond [9]. 
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CHAPTER 6 

2-D PLASMA PHOTONIC CRYSTALS 

6.1. Device Fabrication 

The device illustrated in Figures 7 and 8 is developed here at University of Illinois. It has 

higher electron densities and more defined boundaries compared to that of Figure 6(a). In this 

study, arrays of microplasma jets will be utilized to produce arrays of plasma columns for photonic 

crystals. As shown in Figure 7, the device suitable for use as 2-D plasma photonic crystals has 

been fabricated by room temperature vulcanization (RTV) of silicon and copper wires. Helium gas 

will flow through the array of microchannels embedded in the RTV silicon and 2.5 kVpk-pk with 

20 kHz sinusoidal driving waveform will be used to operate this device. The length of the plasma 

jet from Figure 8(b) is approximately 1 mm, which is not sufficient for photonic crystals; however, 

as illustrated in Figure 8(c), it can be extended up to 5 mm by placing extra metal rods near the 

edge of plasma jets. We expect this device to cover around 150 GHz Bragg’s frequency, as 

illustrated in Figure 5.  

A set of three electrodes will determine the position of plasma jets, allowing the 

activation/deactivation of each plasma array. Since array subsets of plasma jets can be turned on 

and off at will, the arrays will work as reconfigurable plasma photonic crystals at electronic speeds 

which, in turn, will allow for the transmittance characteristic to be altered rapidly. 
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Figure 7. (a) Cross-sectional diagram, (b) top view for 2-D plasma photonic crystals device. 

 

Figure 8. (a) Perspective view of array of microplasma jets (3 x 3) [13]. (b) Perspective view of 

array of microplasma jets (10 x 10). (c) Side view of 2-D plasma photonic crystals device with 

extended array of microplasma jets by placing external metal rods array. 
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6.2. Experimental Arrangement 

The experiment setup for 2-D plasma photonic crystals is illustrated in Figure 9. Signal 

generator (E8257D-520, Keysight Technologies) is utilized to generate microwave in a range of 9 

to 15 GHz. In order to verify the working frequency of arrays of microplasma (~150 GHz), 

microwave from signal generator should be multiplied by 12 times through a signal generator 

extension module (WR6.5 AMC, Virginia Diodes Inc.). Amplified microwave passing through 

arrays of microplasma needs to be decreased by tunable synthesizer and frequency mixer (WR6.5 

MixAMC, Virginia Diodes Inc.) by a factor of 12 in order to satisfy the detectable range of 

spectrum analyzer (PXA Signal Analyzer N9030A, Keysight Technologies).    

 

Figure 9. Experimental arrangement for 2-D plasma photonic crystals. 

6.3. Data Collection 

Figure 10 illustrated the experimental result of 2-D plasma photonic crystals that is the 

measurement of the normalized transmission of 5 × 10 arrays, in 0.1 GHz increments over the 150 

– 160 GHz. As expected, 2-D plasma photonic crystal device can cover around 150 GHz Bragg’s 

frequency, as illustrated in Figure 5. The time-averaged attenuation at 157 GHz is 5 % and it can  
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Figure 10. Experimental result of 2-D plasma photonic crystals [14]. 

be increased by adjusting electron density, gas pressure and quantity of arrays of microplasma jets. 

In addition, the applied source to generate arrays of microplasma is alternative voltage (AC) for 

which the duty cycle is less than 20 %. Compared with other plasma sources such as DC and pulse 

sources, this result indicates a fairly good attenuation at 157 GHz since plasma is activated in a 

few microseconds in a cycle [14].  
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CHAPTER 7 

CONCLUSIONS AND FUTURE STUDY 

Photonic crystals composed of microplasma arrays will be further studied. The working 

frequency derived from the Bragg’s frequency and the contrast of refractive index between two 

different spatially periodic material, plasma and air, determine the transmittance of 

electromagnetic waves. In addition, by varying the lattice constant of the device, the range working 

frequency (Bragg’s law) is able to be controlled. In comparison to Sakai’s research, a much wider 

range of the electromagnetic spectrum will be accessible to our plasma photonic crystal device due 

to its well-defined boundaries and higher electron density. This photonic crystal device will be 

tested at lower pressure (~200 Torr) with helium gas to confirm that it can serve as photonic 

crystals. Furthermore, photonic crystals comprising arrays of microplasma will be fabricated to 

cover the THz spectral region.  
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