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Abstract

In this thesis, we seek to understand the mechanisms of strain-stiffening and shear-thickening often

observed in transient or associative polymer hydrogels; specifically, Poly(vinyl) alcohol (PVA) crosslinked

with Sodium tetraborate (Borax), or PVA-Borax. We use medium amplitude oscillatory shear (MAOS) as a

tool to measure asymptotically nonlinear viscoelastic material functions across a range of compositions of

PVA-Borax with storage moduli ranging from G0 ≈ 100 − 3000 Pa. The material functions can be related

to model parameters to gain physical insight into the structure of the material system. We demonstrate that

with a "good" structure-rheology model [1], a single nonlinear parameter scales the asymptotically nonlinear

material functions, and we argue that finite-extensibility is the sub-dominant cause of nonlinearity (< 5%)

compared to stretch-induced crosslinking. Furthermore, we validate the model by using first-harmonic

MAOS measures to predict third-harmonic MAOS via a single nonlinear model parameter. Finally, we

define a universal nonlinear parameter to compare the strength of nonlinearities across a range of strain-

stiffening materials.
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Chapter 1

Introduction and Background

Nonlinearities are inherent to any system. There exists some limit in which a linear response will deviate

from it’s "normal" response when subject to sufficiently large external stimuli. There has been recent interest

in introducing elastic nonlinearities to improve the performance of dynamical systems, such as vibration en-

ergy harvesters [2]–[6]. For an elastic mechanical system, a nonlinear response is represented as a deviation

from a linear Hookean response (e.g. keeping the first term in a Taylor series expansion) and is modeled as

a nonlinear restoring force,

F (x) = k(x)x

= k1x
(
1 + k3x

2
)
,

(1.1)

where the spring stiffness, k(x) = k1
(
1 + k3x

2
)
, is described by the linear spring constant k1 and is depen-

dent on the displacement, x. The amplitude of the leading order nonlinearity is represented by k3. Here, if

k3 < 0 the system will exhibit a softening response, while k3 > 0 represents a stiffening response. Ramlan

et al. have shown that elastic stiffening improves the performance of an energy harvester by broadening the

frequency response of the output power [3].

Just as nonlinearities can be advantageous for a dynamical system, it has been shown that biological

materials often exhibit a nonlinear stress-strain response to preserve their physiological functionality [7].

For a material system with a three-dimensional structure, the characteristic spring stiffness, k, in Eqn. 1.1 is

represented as an intrinsic elastic modulus, e.g. the shear modulusG. Thus, a nonlinear shear stress response
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Figure 1.1: Stress response to strain for different nonlinearities. The black line is a purely
linear elastic material, while the dashed lines represent a nonlinear response. The red line
describes a stiffening response and the blue line represents a softening response.

for an elastic material is represented as

σ(γ) = G(γ)γ

= G0γ
(
1 + bγ2

)
,

(1.2)

where σ is the shear stress, G0 is the linear elastic modulus, and γ is the shear strain. Here, b is analogous

to the nonlinear parameter k3 defined in Eqn. 1.1. Figure 1.1 shows how a stiffening or softening response

represents a deviation from the linear response that increases with strain or displacement. Biological tis-

sues exhibit complex rheological behavior, including strain-stiffening and -softening [8]–[14]. While some

tissues soften and others stiffen, Storm et al. has shown that biological gels with networks composed of

semiflexible filaments exhibit a stiffening response observable at some critical strain [8]. Observations such

as these have motivated extensive research into nonlinear synthetic materials that can serve as models to

better understand the mechanical properties of biological materials.
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Figure 1.2: The response of a strain-stiffening and shear-thickening material under oscilla-
tory shear. Material is a 2.75 wt% PVA with 1.25 wt% Borax polymer network (material
details in Chapter 2).

Physical hydrogels have been an active area of research due to their complex rheological behavior in-

cluding rich time and temperature dependence [15], [16], and nonlinear signatures including strain-stiffening

and shear-thickening [17]–[21]. Just as strain-stiffening is a nonlinear elastic response, shear-thickening is

a nonlinear viscous response. Oscillatory characterization allows for decoupling of such energy storage and

loss properties (see Fig. 1.2). These observations have sparked research on how these material systems can

be useful for various applications, including as possible candidates to serve as substrates for biological tissue

engineering [18], as phantom tissue models for ultrasound elastography [20], and even as model materials

for food gels and connecting rheological properties to sensory textures [22], [23]. While the nonlinear rhe-

ological properties for biological materials and physical hydrogels are well documented, the mechanism for

strain-stiffening and shear-thickening is not always well understood.

This thesis aims to understand the mechanisms of strain-stiffening and shear-thickening often observed

in transient or associative polymer hydrogels; specifically, Poly(vinyl) alcohol (PVA) transiently crosslinked
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with Sodium tetraborate (Borax), or PVA-Borax. We use oscillatory shear rheology to measure asymptot-

ically nonlinear material functions [24]. These material functions can be related to model parameters to

gain physical insight into the structure of the material system. We argue that asymptotically nonlinear ma-

terial functions are useful signatures for understanding the mechanisms driving nonlinearities arising from

a change in structure.

1.1 Stiffening and Thickening Mechanisms

The structure of a physical hydrogel is described as a network of polymer chains that are physically crosslinked

by crosslinks with a finite lifetime [15], [16]. The nonlinear response of a physical hydrogel is understood as

a change in microstructure due to a deformation or flow imposed on the network [16]. Strain-stiffening and

shear-thickening have largely been explained by two different mechanisms. One mechanism is the theory

of stretch-induced structure formation due to an increase in the number of interchain crosslinks [25]–[27].

The other mechanism is attributed to the finite-extensibility of the polymer, in which the polymer chain is

stretched into the non-Gaussian regime [28]–[30].

Recently, a model for a strain-stiffening transient polymer network was developed that is able to cap-

ture both mechanisms simultaneously [1]. We adopt the nomenclature from this model for the following

discussion. Figure 1.3 is a theoretical schematic of the microstructural response by both mechanisms as a

function of the stretch magnitude of a polymer chain between crosslink points, Q. Here, h(Q) represents

a nonlinear force extension law for the polymer chain, Fs = h(Q)Q, and n(Q) represents the number

density of elastic elements defined as a polymer chain carrying a nonlinear elastic restoring force between

two crosslink points. Either, or both, of these microstructural responses invokes a bulk strain-stiffening

response, as seen in Fig. 1.3. Since both microstructure parameters increase with stretch magnitude, Q, it

is non-trivial to identify the dominating mechanism that drives the nonlinear response. We aim to identify

regimes in which either mechanism can be rationalized as the more dominant one driving the nonlinear re-

sponse. Our approach is to use oscillatory shear rheology across a range of compositions of PVA-Borax to

study how nonlinear behavior changes as we change the concentrations of both PVA and Borax.
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Figure 1.3: Theoretical response from a polymer chain carrying a nonlinear restoring force
h(Q) and from stretch-induced network formation n(Q). Here Q0 represents the maximum
stretch of a polymer chain.

1.2 MAOS

Medium amplitude oscillatory shear (MAOS) is a testing protocol that probes the asymptotically nonlinear

regime of a material system [24], [32]–[35]. The MAOS regime can be represented in a Pipkin space as

shown in Fig. 1.4. The Pipkin space is a regime map for a viscoelastic response based on two input vari-

ables: strain amplitude γ0, and angular frequency ω [36]. At a given frequency, the stress response becomes

observably nonlinear as strain increases. The asymptotically nonlinear regime is the first order deviation

from the linear regime; thus, it provides more information than the material functions extracted from small

amplitude oscillatory shear (SAOS), while avoiding the high dimensionality and experimental artifacts of

large amplitude oscillatory shear (LAOS) [37]–[41]. MAOS rheological signatures can be used for mi-

crostructural inference, model selection, and for fitting nonlinear model parameters for physical insight into
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Figure 1.4: Pipkin space for a viscoelastic response. (With permission from Singh et
al. [31]).

the material system [24], [33]–[35], [42].

The advantage of oscillatory shear measurements is the decomposition of the stress response into an

elastic and viscous response. For a strain-controlled oscillatory shear measurement, the shear strain input is

represented as

γ(t) = γ0sin(ωt). (1.3)

The shear stress response can be represented by a Fourier series involving higher harmonics,

σ(t) =
∑
n

σ′nsin(nωt) + σ′′ncos(nωt). (1.4)

We choose the Chebyshev framework developed by Ewoldt and Bharadwaj [24], [38] to represent the power

expansion of the measurable stress-harmonics,

σ′1(γ0, ω) = G′(ω)γ0 + [e1] (ω)γ30 +O
(
γ50
)

(1.5)

σ′′1(γ0, ω) = G′′(ω)γ0 + ω [v1] (ω)γ30 +O
(
γ50
)

(1.6)

σ′3(γ0, ω) = − [e3] (ω)γ30 +O
(
γ50
)

(1.7)

σ′′3(γ0, ω) = ω [v3] (ω)γ30 +O
(
γ50
)
, (1.8)
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where prime denotes the elastic response, double prime represents the viscous response, and G′(ω) and

G′′(ω) are the linear viscoelastic material functions. The four nonlinear material functions are represented

as [e1] (ω), [v1] (ω), [e3] (ω), and [v3] (ω), where e represents elastic and v represents viscous nonlinearities

and the subscripts represent the harmonic of the input frequency. At a fixed frequency, the first- and third-

harmonic moduli are defined by the measurable stresses in Eqns. 1.5-1.8 and are represented as

G′1(γ0, ω0) =
σ′1
γ0

= G′LV E + [e1]|ω0
γ20 +O

(
γ40
) (1.9)

G′′1(γ0, ω0) = G′′LV E + ω0 [v1]|ω0
γ20 +O

(
γ40
)

(1.10)

G′3(γ0, ω0) = − [e3]|ω0
γ20 +O

(
γ40
)

(1.11)

G′′3(γ0, ω0) = ω0 [v3]|ω0
γ20 +O

(
γ40
)
, (1.12)

where G′LV E and G′′LV E are the linear viscoelastic plateaus at the input frequency ω0. At a given frequency,

a strain-stiffening response is represented by a positive first-harmonic elastic nonlinearity [e1] > 0; while

a shear-thickening response is represented by a positive first-harmonic viscous nonlinearity [v1] > 0 (see

Fig. 1.2).
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Figure 1.5: Strain amplitude sweep at ω = 100 rad/s shown in (a). Elastic perspective of
Lissajous curves at a strain amplitude in the linear and nonlinear regime shown in (b)-(c),
respectively. The black lines represent the normalized stress response, while σ

γ0
= G′1

γ
γ0

is
plotted as the solid red lines for each strain amplitude (dashed line in (c) is line seen in (b)).
Similarly, the viscous perspective of the Lissajous curves are shown in (d) and (e), where
σ
γ̇0

= η′1
γ̇
γ̇0

is plotted as the blue lines. Analysis done with MITlaos software [43].

Figure 1.6: Sign interpretations of the four MAOS material functions. (With permission
from Ewoldt et al. [24]).
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The Chebyshev framework is used to provide sign interpretations of the four MAOS measures related

to the rotation and distortion of Lissajous curves [24], as seen in Fig. 1.5. The signs of the first-harmonic

asymptotic nonlinear functions dictate the rotation of a Lissajous curve from the linear response, while the

signs of the third-harmonic asymptotic nonlinear functions define the concavity. Additionally, the signs of

these material functions are used to determine if the nonlinear response is driven by strains or strain-rates

(Figs. 6-7 in [24]). Furthermore, they can be related to model parameters to gain insight into the physical

mechanisms driving the response [1]. A summary of the sign interpretations of the four MAOS measures are

shown in Fig. 1.6 (from Fig. 7 in [24]). We measure the four MAOS measures across a range of compositions

of PVA-Borax to determine how the nonlinear signatures change as a function of the concentrations of PVA

and Borax, and to infer molecular features.

1.3 Chapter Summary

We aim to distinguish regimes in which one of the two strain-induced stiffening and thickening mechanisms

is the more dominant one responsible for the nonlinear response of a physical hydrogel. In Chapter 2 we

discuss the characteristics of our model material: PVA-Borax. In addition, we outline the two rheometry

methods used for testing the material and extracting material functions. Our main results are discussed in

Chapter 3, in which a novel approach was used for measuring asymptotic nonlinear material functions. We

infer molecular and network features using a nonlinear transient polymer network model. In Chapter 4, we

validate the model by using first-harmonic MAOS measures to predict third-harmonic MAOS via a single

nonlinear model parameter. A universal nonlinear stiffening parameter is defined in Chapter 5, where we

compare the nonlinearity of various materials using this low-dimensional material parameter. Finally, we

discuss our conclusions and future outlook in Chapter 6.
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Chapter 2

Material and Rheometry Methods

Rheological measurements were performed on a separated motor-transducer rotational rheometer (ARES-

G2, TA Instruments) for data discussed in Chapter 3. Complementary data that will be discussed in Chapter

4 were collected using a combined motor-transducer rotational rheometer (DHR-3, TA Instruments). Strain

controlled experiments were performed on a transiently crosslinked PVA-Borax system.

2.1 Model Material: PVA-Borax

A mixture of Poly(vinyl) alcohol (PVA) and Sodium tetraborate (Borax) is a well studied material system

due to its physical and chemical properties [17], [44]–[48]. This transient polymer network is an ideal

system for studying the mechanisms driving nonlinear viscoelasticity, as the system shows linear viscoelastic

behavior and a single dominant relaxation timescale [49] in addition to nonlinear signatures when subjected

to large strains [24], [35], [50]. A reversible hydrogel is formed by a di-diol complexation reaction, in which

thermoreversible crosslinks form between two diol units of PVA with one borate ion, as seen in Fig. 2.1.
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Figure 2.1: PVA-Borax crosslink reaction (di-diol). Here, n represents the number of
monomers in a polymer chain.

Aqueous solutions of PVA (Aldrich Chemical Co., molecular weight = 85, 000 − 124, 000, 99+%

hydrolyzed) were mixed with aqueous solutions of Sodium tetraborate, i.e. Borax (Aldrich Chemical Co.)

to form multiple transient polymer networks with thermoreversible transient crosslinks. The mixture was

prepared as follows. PVA was dissolved in deionized water under continuous stirring with a magnetic stir

rod at a temperature of about 95◦C until a homogeneous clear solution was obtained (approximately four

hours) to form a 4 wt% stock solution. Borax was dissolved under similar conditions to form a 4 wt%

stock solution. Throughout the stirring process the containers were sealed with layers of plastic film and

aluminum foil to prevent evaporation loses. The solutions were allowed to cool to room temperature under

ambient conditions and were mixed together in different ratios to form multiple compositions of a transient

polymer network.

The final mixture was prepared by combining measured weights of each component in a closed test tube

and stirring them until they were mixed thoroughly. We synthesized multiple compositions with varying
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Figure 2.2: Compositions in which rheological data was collected shown in (a). Five of the
compositions tested in (b) are labeled in (a) by decreasing zero-shear viscosity. The data at
CBorax = 0 were used to calculate the overlap concentration, C∗ = 1.06 wt%.

concentrations of both PVA and Borax, as shown in Fig. 2.2. Depending on the combination of concentra-

tions of PVA and Borax, it was noticed that the resulting mixture was always a viscous liquid, but some-

times with a high viscosity and noticeable elasticity (e.g. material could bounce off of a flat surface when

dropped). Higher viscosity samples retaining air bubbles were centrifuged at 3000 rpm for 15 minutes (CL2

Centrifuge, Thermo Scientific) to remove any of those air bubbles before testing.

2.1.1 Measuring Overlap Concentration

To measure the overlap concentration C∗, concentration-dependent viscosity measurements for PVA solu-

tions were performed on a flow-rate controlled internal flow viscometer (m-VROC, Rheosense) [51]. A
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schematic of the device is shown in Fig. 2.3(a) (inset). Shear rate sweeps were performed on solutions of

PVA at different concentrations (as shown in Fig. 2.2, where CBorax = 0). Three repeat measurements

were performed on each solution, and the average was taken as the mean viscosity shown in Fig. 2.3(a). The

shear-sweep data is shown in Fig. A.1.

Figure 2.3: Viscosity measurements for different wt% concentrations of PVA shown in (a).
Equations 2.1 and 2.2 are used to fit an intercept representing the intrinsic viscosity for
the Huggins’ and Kraemer’s equation, respectively, as shown in (b). Here, ηr = η

ηs
and

ηsp = ηr − 1 (see Eqns. 2.1 and 2.2). Inverting the intrinsic viscosity yields the overlap con-
centration, C∗, seen in (a). The inset in (a) is a schematic of how the m-VROC viscometer
measures shear-rate sweep data [51].
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By collecting mean viscosity data for a range of concentrations of PVA, we can estimate an intrinsic

viscosity from the Huggins equation and the Kraemer’s equation, respectively

η = ηs

(
1 + [η]C + kH [η]2C2 +O

(
C3
))

(2.1)

ln (ηr) = [η]C − kK [η]2C2 +O
(
C3
)
, (2.2)

where η is the measured viscosity, ηs is the solvent viscosity, ηr = η
ηs

is the relative viscosity, [η] is the

intrinsic viscosity, kH is known as the Huggins’ constant, kK is the Kraemer’s constant, and C is the

concentration of the polymer solution.

The intrinsic viscosity represents asymptotic changes to viscosity due to an additive at mass concentra-

tion C (mass per volume) [52], [53]. This material parameter represents an inherent property of the system.

The data in Fig. 2.3(b) are plotted so that [η] appears as an intercept at CPV A = 0, i.e. Eqns. 2.1 and 2.2 are

re-arranged as
η
ηs
− 1

CPV A
=

ηsp
CPV A

= [η] + kH [η]2CPV A +O
(
C2
PV A

)
and

ln (ηr)

CPV A
= [η]− kK [η]2CPV A +O

(
C2
PV A

)
.

The value of [η] = 0.943 ± 0.008 1/wt% was found from fitting both equations and averaging the results.

Taking the inverse of the intrinsic viscosity yields an estimate for the overlap concentration of the polymer

system [54]. We measured an overlap concentration of

C∗ =
1

[η]

= 1.06wt%

≈ 1.08× 10−2
g

mL
.

The measured value is remarkably close to the value C∗ = 1.03× 10−2 g
mL estimated by Cheng [55].

The overlap concentration C∗ represents the critical concentration above which the polymer solution

is in a semi-dilute unentangled regime due to the onset of chain interpenetration [56], [57]; however, the

14



polymer system is not yet entangled. The critical entanglement concentration is approximately 4-10 times

the overlap concentration [58]. The compositions tested in MAOS are all above the critical overlap con-

centration, and thus have the potential to form inter-chain crosslinks and percolate a network (see Fig. 2.2).

Furthermore, all compositions tested are below the critical entanglement concentration. This is important to

our study of the mechanisms driving nonlinear elasticity because the material functions are dictated by the

transient crosslinks instead of polymer entanglements.

2.2 Rheometry Methods

Measurements and parameter extractions were made using two different protocols. MAOS data were col-

lected using either the conventional strain-sweep testing protocol for extracting nonlinear parameters, or, for

the main results, using a new frequency-sweep MAOS method [31]. Both testing protocols and methods for

parameter extraction will be discussed in the following sections.

2.2.1 ARES-G2 - Main Results

Measurements for the data shown in Chapter 3 were performed on a strain-controlled separated motor-

transducer rotational rheometer (ARES-G2, TA Instruments) using a plate-plate geometry (diameter 50mm)

at 25◦C maintained by a Peltier system in the lower plate. A parallel plate geometry allows for faster

material loading at the expense of a spatially inhomogeneous strain field [39], [59] which affects MAOS

measurements. Thus, we apply single point corrections to account for the spatial inhomogeneity of the

strain field [60]. For each test, if the sample had a relatively low viscosity it was poured onto the bottom

plate; otherwise, the sample was cut, scooped and placed onto the bottom plate with a spatula. The upper

geometry was slowly lowered onto it with a maximum normal force of 1 N to prevent stress build-up in the

sample. Once the upper geometry was lowered enough to slightly overfill the gap, the sample was trimmed

to ensure a proper fill and mineral oil was applied to the outer edge to prevent evaporation losses. Prior to

starting any tests, the sample was allowed to relax for 15 minutes to ensure a fully relaxed sample.

The testing protocol for data collected on the ARES-G2 follows the MAOS frequency-sweep proce-

dure developed by Singh and Ewoldt [31]. This technique is advantageous compared to the conventional

strain-sweep method for extracting material functions because it is faster and material economical. The

15



protocol is summarized as follows. Strain-sweeps were performed at 0.3 rad/s and 30 rad/s to identify both

the linear and asymptotically nonlinear regimes. Reversibility was checked by performing a forward and

reverse sweep. Next, we measured the linear viscoelasticity across a range of frequencies by performing

a frequency-sweep in the SAOS regime with a strain amplitude chosen from the linear plateaus identified

from the strain-sweeps. Finally, we performed a frequency-sweep in the MAOS regime at non-constant

strain amplitudes, γ0(ω), with the strain and strain-rate amplitudes chosen from the "sweet spot" measured

from the strain-sweeps. In theory, this "sweet spot" should follow a trajectory within the MAOS regime

shown in Fig. 1.4.

2.2.1.1 MAOS Material Functions Extraction

The first-harmonic intrinsic nonlinearities were calculated using both SAOS and MAOS frequency-sweeps,

while the third-harmonic intrinsic nonlinearities were calculated using only the MAOS frequency-sweep

[31],

[e1] (ω) =
G′1,M −G′1,S

γ2M
(2.3)

[v1] (ω) =
G′′1,M −G′′1,S

ωγ2M
(2.4)

[e3] (ω) = −
G′3,M
γ2M

(2.5)

[v3] (ω) =
G′′3,M
ωγ2M

. (2.6)

These equations were derived by neglecting higher order terms, O
(
γ40
)
, and solving for the four MAOS

material functions in Eqns. 1.9-1.12, where the first- and third-harmonic moduli are measured in the MAOS

regime; thus, the moduli and strain amplitude γ have an additional subscript M in Eqns. 2.3-2.6. Further-

more, we assume the linear viscoelastic plateaus (G′LV E and G′′LV E in Eqns. 1.9 and 1.10) are accurately

measured from the SAOS frequency-sweep; thus, they are represented as G′1,S and G′′1,S in Eqns. 2.3 and

2.4. In conclusion, we are able to measure all four MAOS material functions across a range of frequencies

with just two frequency-sweeps.
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2.2.2 DHR-3 - Complementary Data

Measurements for the complementary data shown in Chapter 4 were performed on a stress-controlled com-

bined motor-transducer rotational rheometer (DHR-3, TA Instruments) using a plate-plate geometry (diam-

eter 40mm, sandblasted) at 25◦C maintained by a Peltier system in the lower plate. The loading protocol

was similar to the one previously stated for the ARES-G2; however, instead of using mineral oil to prevent

evaporation losses, we used a solvent trap.

We use the conventional strain-sweep method for MAOS material function extraction. The testing pro-

tocol for data collected on the DHR-3 is described as follows. A forward and reverse strain-sweep was

performed at 10 rad/s to check reversibility, and to identify both the linear and asymptotically nonlinear

regimes. Linear viscoelasticity was measured by performing a SAOS frequency-sweep at a strain chosen

from the linear regime.

2.2.2.1 MAOS Material Functions Extraction

We fit Eqns. 1.9 and 1.10 to the strain-sweep data performed at ω0 = 10 rad/s. The fitting parameters were

the linear plateausG′LV E andG′′LV E , as well as the first-harmonic intrinsic nonlinearities [e1]|ω0
and [v1]|ω0

.

Since we are fitting for the intrinsic nonlinearities, we fit data in the limit of the asymptotic expansion by

choosing an arbitrary threshold and neglecting all data at higher strain amplitudes. We define the threshold

for the asymptotic expansion as a 10% deviation from the observed linear plateau. In other words, we fit data

up to a strain amplitude in which the apparent moduli are G′1 ≈ ±1.10×G′LV E and G′′1 ≈ ±1.10×G′′LV E ,

respectively.

It is important to note that only one value of the frequency-dependent first-harmonic intrinsic nonlin-

earities [e1] (ω) and [v1] (ω) can be measured from a strain-sweep. As a result, we have one first-harmonic

intrinsic measurement at 10 rad/s from the experiments performed on the DHR-3. In Chapter 4, we show that

a single first-harmonic MAOS measurement at 10 rad/s is able to predict "unseen" third-harmonic MAOS

signatures observed at 30 rad/s via a single nonlinear model parameter.
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Chapter 3

Universal Scaling of MAOS for PVA-Borax

Indicates Microstructural Mechanism of

Nonlinearity

In this chapter, we seek to understand the mechanisms of strain-stiffening and shear-thickening often ob-

served in transient or associative polymer hydrogels; specifically, PVA-Borax. We use medium amplitude

oscillatory shear (MAOS) as a tool to measure asymptotically nonlinear viscoelastic material functions

across a range of compositions of PVA-Borax with storage moduli ranging from G0 ≈ 100 − 3000 Pa by

varying the concentrations of both polymer (PVA) and crosslinker (Sodium tetraborate). Linear viscoelastic

frequency-dependent material functions were scaled by two degrees-of-freedom, usingG0, η0, and λ0 = η0
G0

.

Asymptotically nonlinear MAOS measures were scaled by λ0 = η0
G0

and [e3]∞. Using the strain-stiffening

polymer network model of Bharadwaj et al. [1], we demonstrate that a single nonlinear parameter scales

nonlinearities and argue that finite extensibility is the sub-dominant cause of nonlinearity (< 5%) compared

to stretch-induced crosslinking.

Rheological measurements were performed following the protocol discussed in Section 2.2.1. Strain

controlled LAOS tests were performed to identify the linear and the asymptotically nonlinear regimes for

SAOS and MAOS frequency-sweeps, respectively. Constant amplitude frequency-sweeps were performed

at a strain amplitude consistent with the linear regime to identify a high frequency plateau modulus and a

steady shear viscosity. Non-constant amplitude frequency-sweeps were performed at a strain and strain-

rate chosen from the MAOS regime to extract the four MAOS material functions following the procedure
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discussed in Section 2.2.1.1. This protocol was used for all eleven compositions of PVA-Borax (see Fig. 2.2

for composition map).

3.1 Linear Viscoelastic Results

To identify the linear viscoelastic (SAOS) regime, two strain-sweeps were performed at fixed frequencies

of 0.3 rad/s and 30 rad/s. Strain-sweeps were carried out starting from γ0 = 0.1% until deviations were

observed from a linear behavior. A strain amplitude γ0 was chosen from the linear viscoelastic regime

for the SAOS frequency-sweep for each composition tested. The frequency-sweep was carried out from

ω = 0.1 to ω = 100 rad/s.

Figure 3.1: SAOS frequency-sweep on 3.5 wt% PVA with 1.25 wt% Borax shown in (a).
Error bars from average of three measurements. Solid fit line is from a log-normal continuous
spectrum model, shown in (b), which has three fit parameters: A, τ̄ , and σ. Dashed fit line
from a single mode Maxwell model, where the parameters taken from the linear plateau
modulusG0 and the steady shear viscosity η0. The material inertial limit is shown in (a) [41].

Figure 3.1(a) shows the SAOS frequency-sweep for 3.5 wt% PVA with 1.25 wt% Borax. A single

dominant timescale is apparent. This can be described by a log-normal relaxation spectrum with only three

parameters: the maximum of the relaxation spectrumHmax = A, the maximum of the relaxation time τ̄ , and

the spread of the spectrum σ. Alternatively, the dominant timescale can be more approximated by a single

mode Maxwell model, as shown by Bharadwaj et al. [1]. We will show that the two-degree-of-freedom

description is sufficient to collapse data onto master curves of G′ and η′. A log-normal continuous spectrum
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(shown in Fig. 3.1(b)) was fit to the storage and loss moduli (G′ and G′′) [61]. We recast the loss modulus

G′′ data to its viscous perspective η′ = G′′

ω to identify a low-frequency plateau representing the steady shear

viscosity η0 of the material system (Fig. 3.2). Additionally, we identify the high-frequency plateau of the

storage modulus G′ to extract a plateau modulus G0 representing the elastic modulus of the material at high

frequencies. Using the two linear parameters G0 and η0, we can define a single mode Maxwell model to

approximately describe the SAOS moduli (Fig. 3.1(a), dashed lines). The SAOS data for all compositions

are shown in Appendix B.1.

Figure 3.2: SAOS frequency-sweep on multiple compositions of PVA-Borax at a strain cho-
sen from the linear regime. Error bars are the standard deviations from three repeat measure-
ments. Symbol colors represent different wt% of PVA: white (2 wt%), light grey (2.75 wt%),
dark grey (3.5 wt%). Symbol shapes represent different wt% of Borax: square (0.05 wt%),
circle (0.1 wt%), up triangle (0.5 wt%), down triangle (1.25wt %), diamond (1.5wt %). The
low torque limit and material inertial limit are shown in both figures [41].

From the two linear material parameters {G0, η0}, we calculated a characteristic relaxation timescale
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λ0 = η0
G0

for each composition. The relaxation timescale is a measure for the timescale at which a vis-

coelastic fluid will either exhibit a more dominant elastic response, or, a more dominant viscous response.

Thus, at high frequencies PVA-Borax behaves more like an elastic solid with a modulus of G0, while at low

frequencies the material behaves more like a viscous fluid with a steady shear viscosity of η0. Figure 3.2

shows the SAOS frequency-sweep for all compositions, and the linear parameters for all compositions are

shown in Table 3.1.

Table 3.1: Summary of linear viscoelastic parameters for each composition. Errors are the
standard deviations from three repeat measurements.

Composition G0 η0 λ0
(PVA wt% : Borax wt%) (Pa) (Pa.s) (s)

2 : 0.5 87.40 ± 3.64 16.73 ± 1.81 0.193 ± 0.013
2 : 1.25 178.98 ± 2.53 33.18 ± 1.01 0.185 ± 0.005

2.75 : 0.05 135.25 ± 20.42 16.93 ± 4.10 0.124 ± 0.012
2.75 : 0.1 406.95 ± 29.69 111.18 ± 12.96 0.274 ± 0.034
2.75 : 0.5 760.83 ± 20.80 364.16 ± 13.83 0.479 ± 0.005
2.75 : 1.25 1135.30 ± 47.04 469.11 ± 26.12 0.413 ± 0.006
2.75 : 1.5 1208.93 ± 161.41 479.05 ± 98.37 0.394 ± 0.027
3.5 : 0.05 452.76 ± 34.61 72.73 ± 13.71 0.160 ± 0.017
3.5 : 0.1 989.12 ± 22.26 294.35 ± 17.18 0.297 ± 0.011
3.5 : 0.5 2751.60 ± 119.27 1948.37 ± 132.46 0.708 ± 0.023
3.5 : 1.25 3336.06 ± 46.21 1942.36 ± 72.68 0.582 ± 0.014

For a fixed concentration of crosslinker, CBorax, the linear parameters all increase as the concentration

of polymer is increased, as seen in Fig. 3.3. Similarly, the linear parameters increase as the crosslinker

concentration is increased; however, the linear parameters appear to approach a saturation value at higher

concentrations of crosslinker. This suggests that for a fixed concentration of polymer, there is a limit in

which any increase in CBorax has little effect to the network formation.
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Figure 3.3: Linear parameters G0, η0, and λ0 = η0
G0

as a function of crosslinker concen-
tration CBorax. Symbol colors represent different wt% of PVA: white (2 wt%), light grey
(2.75 wt%), dark grey (3.5 wt%).

Figure 3.4 shows the linear viscoelastic frequency-dependent material functions normalized by the lin-

ear parameters G0, η0 and λ0 = η0
G0

(given in Table 3.1). Remarkably, all compositions collapse across all

frequencies to form a universal curve which suggests self-similarity of the material system at these compo-

sitions. The data will collapse at low and high frequencies by the definition of the normalization; however,

this does not mean it should collapse at all frequencies. The collapse at intermediate frequencies suggests a

self-similar distribution of relaxation timescales at all tested concentrations, e.g. as governed by the transient

crosslink kinetics. It is important to note that only two degrees of freedom collapse the data, since λ0 is not

linearly independent from η0 and G0, λ0 = η0
G0

.

22



Figure 3.4: Frequency-dependent material functions G′ and η′ (Fig. 3.2) normalized by the
linear parameters G0 and η0. Frequency is normalized by the relaxation timescale, λ0 = η0

G0
.

Includes all 11 compositions shown in Table 3.1, with CPV A = 2C∗ − 3.5C∗ wt% and
CBorax = 0.05− 1.5 wt%. Collapse of data suggests self-similarity.

3.2 Asymptotically Nonlinear Viscoelastic Results

To identify the asymptotically nonlinear (MAOS) regime, we analyze the strain-sweeps discussed in the

previous section. The MAOS regime is identified by shear stress nonlinearities scaling as the power-law

σ ∼ γ30 , as seen in Eqns. 1.5-1.8 defining the first and third stress-harmonics. The range in which we see

this power-law scaling has been called the "sweet spot" [31], where higher orderO(γ50) terms are negligible,

but theO(γ30) signals are above the minimum torque measurement resolution. MAOS frequency-sweeps are

performed by following a strain-amplitude trajectory γ0(ω) that stays in the sweet spot of each frequency to
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extract the four MAOS material functions defined in Eqns. 2.3-2.6. The trajectory is defined by a constant

strain γ0 at high frequencies, followed by a constant strain-rate γ̇0 = γ0ω at frequencies below some critical

frequency (see Fig. 1.4). For each composition, the critical frequency we choose is the cross-over frequency

from the SAOS frequency-sweep, where G′ = G′′.

Figure 3.5: Strain-sweep on 3.5 wt% PVA with 1.25 wt% Borax at ω = 0.3 rad/s in (a),
and at ω = 30 rad/s in (b). Solid symbols represent sweeping up γ0, while open symbols
represent sweeping down γ0 to verify overlapping results.

Figure 3.6: Third harmonic measurements from the strain-sweeps on 3.5 wt% PVA with
1.25 wt% Borax at ω = 0.3 rad/s in (a), and at ω = 30 rad/s in (b). Red symbols represent σ′3
and blue symbols represent σ′3. Solid symbols represent positive values, while open symbols
represent negative values.
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Figure 3.5 shows the first-harmonic moduli for two strain-sweeps performed on 3.5 wt% PVA with

1.25 wt% Borax. Ramps up and down were performed to check for reversibility. The material exhibits both

strain-stiffening and shear-thickening behavior at both frequencies. Since the material response is nonlinear,

we can identify the MAOS regime from the third stress-harmonics shown in Fig. 3.6. The sweet spot for each

strain-sweep is chosen as the range in which the third stress-harmonics show a power-law scaling ∼ γ30 and

are above the minimum torque measurement resolution. We choose γ0 for the MAOS frequency-sweep from

the sweet spot identified in the high-frequency strain-sweep (Fig. 3.6(b)) such that, when multiplied by the

cross-over frequency identified in the SAOS frequency-sweep (Fig. 3.1(a)), the strain-rate γ̇0 = γ0ω will fall

within the sweet spot at ω = 0.3 rad/s (Fig. 3.6(a)). We performed a MAOS frequency-sweep following this

γ0(ω) trajectory. This procedure was used for all compositions of PVA-Borax. First-harmonic strain-sweep

data for all compositions are shown in Fig. 3.7.

Figure 3.7: Strain-sweep on multiple compositions of PVA-Borax at 0.3 rad/s (a) and 30 rad/s
(b). Symbols same as in Fig. 3.2. The low torque limit is shown [41].
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Figure 3.8: Measurements of the elastic MAOS material functions [e1] and [e3] normalized
by the linear elastic modulus G0 for 3.5 wt% PVA with 1.25 wt% Borax. The left col-
umn shows three measurements, where the error bars are from the error propagation using
Eqns. 2.3 and 2.5. Error propagation is discussed in Appendix B.1.2. The right column shows
the average of the measurements, where the error bars are the standard deviation.

The four MAOS material functions were calculated from the SAOS and MAOS frequency-sweeps using

Eqns. 2.3-2.6 for all 11 compositions. The four MAOS measures for one example composition are shown

in Figs. 3.8 and 3.9 for 3.5 wt% PVA with 1.25 wt% Borax. These rheological signatures can be interpreted

by the signs of the MAOS material functions which relate to rotation and distortion of Lissajous curves (see

Fig. 1.6). At high frequencies, the average elastic response is one of strain-stiffening and the average viscous

response is one of shear-thickening ([e1] > 0 and [v1] > 0). At low frequencies, there is a frequency below

which the average elastic response could be one of strain-softening ([e1] < 0), while the average viscous

response is one of the shear-thickening for all frequencies probed. There is a frequency, or timescale, in

which the third-harmonic nonlinearities [e3] and [v3] change sign, which dictates whether the elastic and
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viscous responses are driven by strains or strain-rates (see Fig. 1.6). This critical timescale may be different

between the elastic and viscous responses, as is the case for 3.5 wt% PVA with 1.25 wt% Borax. Data

similar to Figs. 3.8 and 3.9 for all compositions tested are shown in Appendix B.1.

Figure 3.9: Measurements of the viscous MAOS material functions [v1] and [v3] normal-
ized by the steady shear viscosity η0 for 3.5 wt% PVA with 1.25 wt% Borax. The left col-
umn shows three measurements, where the error bars are from the error propagation using
Eqns. 2.4 and 2.6. Error propagation is discussed in Appendix B.1.2. The right column shows
the average of the measurements, where the error bars are the standard deviation.

At some frequencies, there is uncertainty about the signs of the MAOS nonlinearities, e.g. for [e1]

where the material exhibits strain-stiffening or -softening elastic behavior, or for [v1] a shear-thickening or

-thinning viscous behavior. Additionally, there is uncertainty on whether the response is driven by strain or

strain-rates (signs of [e3] and [v3]). This can be seen by the error bars extending past the lower limit of the

vertical axis in Figs. 3.8 and 3.9, which represents uncertainty in whether the sign of the value is positive or

negative. Another representation of this is shown in Fig. 3.10. We plot the relative error in the measurement
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of the four MAOS material functions (using the average values in Figs. 3.8 and 3.9) across the frequency

spectrum. If the relative error is greater than one, we are uncertain about the sign of the nonlinear parameters

at that particular frequency.

Figure 3.10: The relative error, δxx , for the four MAOS measures, where δx is the uncertainty
in the measurement x and x = {[e1] , [v1] , [e3] , [v3]}. We are uncertain of the sign for
values greater than 1. Circles - first-harmonic nonlinear measures, squares - third-harmonic
nonlinear measures. Red - elastic, blue - viscous.

We observed higher uncertainty with the first-harmonic MAOS measures relative to the third-harmonic

nonlinearities across all compositions tested. We attribute this higher uncertainty to first-harmonic MAOS

requiring a subtraction of the linear regime signal (e.g. see Eqns. 2.3 and 2.4), while third-harmonics are

directly measurable (e.g. see Eqns. 2.5 and 2.6). Moreover, a full strain-sweep would improve the accuracy

compared to the one-point and two-point MAOS frequency-sweep method for material parameter extraction

(Eqns. 2.3-2.6). While the third-harmonic MAOS measures are directly measurable from third-harmonic

stress responses, the calculation of the first-harmonic MAOS measures involve subtracting two numbers of

similar order which introduces more error. For this reason we use the third-harmonic nonlinearities for our
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detailed analysis here.

Figure 3.11: Third-harmonic MAOS measures calculated from SAOS and MAOS frequency-
sweeps performed on multiple compositions of PVA-Borax. Error bars come from three
repeat measurements. Symbols same as in Fig. 3.2.

Figure 3.11 shows the third-harmonic MAOS material functions for all 11 compositions and Fig. 3.12

shows the MAOS material functions normalized by the linear parameters G0, η0, and the linear relaxation

timescale λ0 = η0
G0

, and a single nonlinear parameter χ, which we identify from [e3]∞ = lim
De→∞

[e3], as

will be described. Remarkably, we see the data collapse, suggesting a self-similar material system across

this wide range of compositions. It should be noted that the self-similarity is more evident from the elastic

perspective, [e3]
G0

. Although there is more scatter from the viscous contribution, [v3]
η0

, it is noteworthy that

the frequency-dependence collapses using only the linear timescale, and a single nonlinear measure is used
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to vertically shift both [e3] and [v3]. This is consistent with the structure-rheology model of Bharadwaj et

al. [1].

Figure 3.12: Third-harmonic MAOS material functions normalized by the linear parameters
G0 and η0 and the nonlinear model parameter χ. Frequency is normalized by the relaxation
timescale, λ0 = η0

G0
. Includes all 11 compositions shown in Table 3.1, with CPV A = 2C∗ −

3.5C∗ wt% and CBorax = 0.05− 1.5 wt%. Collapse of data suggests self-similarity.

We also note that the more coarse MAOS measure [33]

Q0(ω) =

√
[e3]

2 + ω2 [v3]
2

√
G′2 +G′′2

(3.1)

also shows universal scaling (see Fig. B.46). Clearly, this Q0 representation of the third-harmonic MAOS
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response is incomplete, not allowing for checking [e3] and [v3] responses separately (and losing sign in-

formation), and thus would generally be easier to show self-similarity. That our results with [e3] and [v3],

across a wide range of De, show a universal scaling is a more robust test of the model of Bharadwaj et

al. [1], and provides more insight to identify microstructural causes of the nonlinearity, as we will show.

3.3 Stiffening Mechanisms and Nonlinear Scaling

The material response of PVA-Borax exhibits a rich frequency-dependence due to its viscoelasticity, as is

evident by the results discussed in the previous sections. At high Deborah number, De = λ0ω >> 1, the

material behaves elastically with a linear shear modulus G0 that asymptotically stiffens ([e1] > 0) due to

large strains (based on [e3] > 0). This behavior is observed across all 11 compositions tested (see Table 3.1).

To interpret the nonlinear results, we analyze the data through the lens of a recently developed model for a

strain-stiffening transient polymer network developed by Bharadwaj et al. [1] and discussed in Chapter 1.

The model describes viscoelastic nonlinearities across a range of frequencies based on a simple hypothesis

of stretch-induced stiffening where stretch of elastic elements is governed by viscoelastic relaxation, and

thus at low De stretch is caused by large strain-rates γ̇, but at high De caused by large strains γ. The

model involves a single nonlinear parameter, χ, which we calibrate to the data from the [e3] plateaus at high

frequency, [e3]∞ (see Fig. 3.11). This is similar to how we identify the two linear parameters η0 and G0

from observed plateaus, rather than curve fitting by minimizing residuals.

In the highDe limit, the material response is approximated by Eqn. 1.2, where the modulus is a function

of strain G (γ) ≈ G0

(
1 + bγ2 +O

(
γ4
))

. The dimensionless coefficient b is a measure of the relative

nonlinearity of the material, and is related to the linear shear modulus G0 and the elastic MAOS measures

by [1]

b =
8

5

lim
De→∞

[e1] (ω)

G0
= 8

lim
De→∞

[e3] (ω)

G0
. (3.2)

Furthermore, b is related to the nonlinear model parameter χ as [1]

b =
1

3
χ, (3.3)
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Figure 3.13: High-frequency plateau [e3]∞ as a function of crosslinker concentration
CBorax. Symbol colors represent different wt% of PVA: white (2 wt%), light grey
(2.75 wt%), dark grey (3.5 wt%).

and it can be seen that [e3]∞ is related to χ as

χ = 24
lim

De→∞
[e3] (ω)

G0
= 24

[e3]∞
G0

. (3.4)

We note that χ is used here in place of H in the paper discussing the model [1]. This single nonlinear

parameter, χ, encodes both the elastic and viscous nonlinearities. The nonlinear response depends on the

sign of χ. A stiffening response is represented as χ > 0, or b > 0.

For each composition in Table 3.1, we calculate a χ value using Eqn. 3.4 by fitting a constant line to the

high frequency plateau of [e3] seen in Fig. 3.11 as [e3]∞. The values for each are shown in Figs. 3.13 and

3.14 as functions of CBorax. It is important to note that the behavior of [e3]∞ mirrors the behavior of the

linear elastic shear modulus G0 shown in Fig. 3.3. That is, G0 and [e3]∞ are correlated. The similarity is

to be expected since G0 sets the baseline of the stress response of the material, and the MAOS signatures

are measures of the asymptotic deviation from the baseline response. This reinforces the idea that relative
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Figure 3.14: Nonlinear model parameter χ (from [e3]∞ plateau) as a function of crosslinker
concentration CBorax. Symbol colors represent different wt% of PVA: white (2 wt%), light
grey (2.75 wt%), dark grey (3.5 wt%).

nonlinearities, such as [e3]∞
G0

, are important for comparing nonlinear strengths across material systems. Both

b and χ are defined as relative nonlinearities (see Eqns. 3.2 and 3.4), as the nonlinear MAOS measure

[e3]∞ is normalized by the shear modulus G0. Furthermore, it is observed that the nonlinear behavior of

the relative nonlinearity does not follow, or, is not set by, the linear trends. While the linear and MAOS

parameters (G0 and [e3]∞) tend to increase and approach a saturation value as a function of crosslinker (see

Figs. 3.3 and 3.13), the relative nonlinearity χ increases to a maximum value and proceeds to decrease as

a function of crosslinker (see Fig. 3.14). Table 3.2 shows a summary of the high-frequency elastic plateau

[e3]∞, as well as the computed relative nonlinearity model parameters b and χ for each compositon tested.

The model of Bharadwaj et al. [1] includes the possibility of multiple mechanisms of strain-stiffening

in a transient hydrogel, as discussed in Chapter 1: the finite-extensibility of the polymer chains, and stretch-

induced network structuring due to an increase in crosslink density. Theoretical curves describing stretch-

dependent finite-extensibility, h (Q), and stretch-induced network structuring, n (Q), are shown in Fig. 1.3.

Both the elastic shear modulus G0 and the nonlinear model parameter χ are related to the stretch-dependent
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Table 3.2: Summary of nonlinear parameters for each composition. The third-harmonic high-
frequency plateau fit is represented as [e3]∞, with the errors from fit. Corresponding model
parameters b and χ calculated from Eqns. 3.2 and 3.3, with errors from error propagation
discussed in Appendix B.1.1.

Composition [e3]∞ b χ
(PVA wt% : Borax wt%) (Pa) (-) (-)

2 : 0.5 4.21 ± 0.29 0.386 ± 0.022 1.157 ± 0.065
2 : 1.25 6.21 ± 0.39 0.278 ± 0.017 0.833 ± 0.050

2.75 : 0.05 4.19 ± 0.66 0.248 ± 0.011 0.744 ± 0.034
2.75 : 0.1 14.77 ± 1.17 0.290 ± 0.009 0.871 ± 0.026
2.75 : 0.5 38.12 ± 1.91 0.401 ± 0.017 1.202 ± 0.050
2.75 : 1.25 47.91 ± 2.93 0.338 ± 0.015 1.013 ± 0.046
2.75 : 1.5 47.99 ± 6.73 0.318 ± 0.014 0.953 ± 0.041
3.5 : 0.05 9.69 ± 0.85 0.171 ± 0.007 0.514 ± 0.022
3.5 : 0.1 24.93 ± 1.05 0.202 ± 0.007 0.605 ± 0.022
3.5 : 0.5 142.26 ± 7.91 0.414 ± 0.014 1.241 ± 0.043
3.5 : 1.25 145.79 ± 6.65 0.350 ± 0.015 1.049 ± 0.046

driving mechanisms by

G0 =
1

3
n (Qeq)h (Qeq)Q

2
eq, (3.5)

χ = h + n, (3.6)

where

h =
∂ lnh(Q)

∂ lnQ

∣∣∣∣
Q=Qeq

, (3.7)

n =
∂ lnn(Q)

∂ lnQ

∣∣∣∣
Q=Qeq

. (3.8)

The shear modulus G0 and nonlinear parameter χ are defined in the limits of zero strain, i.e. by the material

characteristics at equilibrium, or more specifically, by the equilibrium stretch magnitude of a polymer chain

between crosslinks Qeq. All nonlinearities derive only from χ, i.e., from nonlinear elastic elements h

or from stretch-induced network structuring from an increase in crosslink density n. From experimental

measures of G0 and χ, we can estimate molecular and network features including crosslink density n, the

end-to-end distance between crosslinks Qeq, and the ratio of the equilibrium end-to-end distance between

crosslinks to the contour length between crosslinks, Qeq

L . We follow the analysis done by Bharadwaj et

al. [1] to estimate these parameters and compare them to values found in the literature. Throughout the
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following analysis, we use the polymer (PVA) specific quantities and relations determined by ideal chain

polymer physics ideas described by Eqns. (A58)-(A61) in the Appendix of [1], as well as in Appendix B.2.

To infer network features from experimental measurements ofG0 and χwe assume a functional form for

h(Q) describing the nonlinear behavior of the elastic elements. The FENE model is an analytical approx-

imation to the inverse Langevin function which describes the force-extension behavior of a single polymer

coil [59], [62]. The FENE model has been shown to capture the response of linear flexible polymers subject

to small and large deformations [59]; therefore, it is reasonable to assume that this model is suitable for

capturing the linear and asymptotically nonlinear response of a PVA polymer network. The functional form

for an elastic element carrying a FENE spring force-extension law is defined as

h(Q)FENE =
3kBT

bkL

(
1− Q2

L2

)−1
, (3.9)

where kB is the Boltzmann constant, T the temperature, bk is the Kuhn length of a polymer chain segment,Q

is the end-to-end distance between crosslink junctions, and L denotes the contour length between junctions.

Given a functional form for the nonlinear elastic elements of the network h(Q) and experimental mea-

surements of G0 and χ, one can estimate network features using Eqns. 3.5-3.8. We can estimate features

assuming that the nonlinearity is either driven solely by finite-extensibility (n=0), or solely by a strain-

induced increase in crosslink density (h=0). Alternatively, we can allow h and n to be free parameters

and estimate the relative contribution from each mechanism. Using this approach, we infer network features

from the linear elastic shear modulus G0. The procedure for extracting network features and calculating the

relative contribution from each mechanism is summarized as follows. A more detailed derivation is shown

in Appendix B.2.

Using Eqns. 3.5, 3.7 and 3.9, we calculate the FENE representation of the elastic shear modulus G0 and

the contribution from nonlinear elastic elements to the nonlinear response h as

G0,FENE =
n (Qeq) kBT

bK/L

Q2
eq

L2

(
1−

Q2
eq

L2

)−1
, (3.10)

hFENE = 2
Q2
eq

L2

(
1−

Q2
eq

L2

)−1
, (3.11)
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respectively. The linear elastic modulusG0 depends on the ratio Qeq

L because this sets the equilibrium force-

extension sensitivity. Similarly, h depends on the ratio because it depends on the end-to-end distance of

the polymer chain compared to the contour length. We can therefore combine equations to eliminate the

ratio to produce an equation for h as a function of G0 (see Appendix B.2 for details). This calculation

requires polymer specific information such as the characteristic ratio C∞, and takes the functional form

h(G0; kBT,C∞, l, θ), where kB , T and C∞ have previously been defined, l is the length of the C-C bond

of a polymer chain and θ is the bond (valence) angle [1]. Finally, comparing h to χ identifies the relative

contribution from stretch-induced crosslinking n = χ−h.

Table 3.3: Summary of structure features derived by allowing both mechanisms to contribute
to the nonlinear response. The end-to-end distance between crosslinks Qeq are estimated to
range from 10 to 35 nm, the ratio Qeq

L ranges from 0.045 to 0.15, and the FENE finite-
extensibility contribution hFENE,rel = h

χ ranges from 0.35% to 5%.

Composition (PVA wt% : Borax wt%) Qeq (nm) Qeq

L (-) hFENE,rel (%)

2 : 0.5 34 0.046 0.36
2 : 1.25 27 0.058 0.82

2.75 : 0.05 30 0.053 0.76
2.75 : 0.1 21 0.077 1.4
2.75 : 0.5 17 0.094 1.5
2.75 : 1.25 15 0.11 2.3
2.75 : 1.5 15 0.11 2.6
3.5 : 0.05 20 0.079 2.5
3.5 : 0.1 16 0.10 3.5
3.5 : 0.5 11 0.14 3.4

3.5 : 1.25 10 0.15 4.6

Table 3.3 shows a summary for the network features inferred from the experimental measurements

of G0 and χ. It is important to note that the following observations regarding the structure of the PVA-

Borax network are based on the underlying assumption for our analysis: the nonlinear elastic elements

in the polymer network obey a FENE force-extension law, which leads to G0 defining the ratio of the

end-to-end distance between crosslinks Qeq to the contour length between crosslinks L (see Eqn. 3.10).

This assumption guarantees that there is a positive relationship between the modulus and the ratio (i.e.,

the ratio increases as the modulus increases) suggesting that Qeq and L are more comparable in length as

G0 increases. Additionally, it is observed that Qeq decreases with G0 because a higher crosslink density

underlies a higher elastic modulus. This is consistent with our assumed functional form n(Q) ≈ 1/Qeq
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and with other polymer network models, such as the phantom network model [58]. The distance between

crosslinksQeq is estimated to range from 10−35 nm. This range is about 3−7 times the reported correlation

length (e.g. mesh size ξ) of PVA-Borax networks from dynamic light scattering (DLS) experiments, which

were estimated to be on the order of ξ ∼ 3 − 5.5 nm [44], [48], [49], [63]. It is natural that Qeq > ξ if

there are entanglements that are not crosslinked, i.e. a topological constraint that appears in DLS but is not

crosslinked with a borate ion. Thus, the crosslink density andQeq estimates from our analysis are reasonably

consistent with measurements found in the literature.

Figure 3.15: Nonlinear model parameter χ as a function of linear shear modulus G0. Red
line is the predicted FENE contribution for a given G0. Results suggest that strain-induced
network structuring is the more dominant mechanism driving the strain-stiffening response.
Symbol colors represent different wt% of PVA: white (2 wt%), light grey (2.75 wt%), dark
grey (3.5 wt%).

Figure 3.15 compares χ to the h prediction from G0, clearly demonstrating that finite-extensibility is a

sub-dominant (< 5%) contribution to the inherent nonlinearity of PVA-Borax across these 11 compositions.

While h increases monotonically with G0, the experimentally measured nonlinear parameter χ does not,

and in fact, is nearly constant as a function of G0. Thus, it is observed that for this material system, as the
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stiffness of the material G0 increases, the relative contribution from network structuring decreases, as seen

by rearranging Eqn. 3.6 as n = χ − h. The key observation is that stretch-induced network structuring

allows for a softer material to achieve the same nonlinear strength as one with a higher elastic modulus.

We interpret the network structuring value using the definition in Eqn. 3.8 which can be written as

n = dn/n
dQ/Q

∣∣∣
Qeq

. In words, this value represents the comparison between the fractional increase in the

crosslink density to the distance between crosslinks. For example, for the nonlinear response of 2 wt% PVA

with 0.5 wt% Borax, the relative contribution from stretch-induced network structuring is n = χ − h =

1.157 − 0.004 = 1.153. This means that a 1% increase in the distance between crosslinks dQ/Q would

cause a 1.153% increase in the crosslink density. The range in n is from 0.5-1.2 for the PVA-Borax systems

tested. This is qualitatively consistent with observed trends of stretch-induced network structuring [27]. In

summary, the results shown in Fig. 3.15 strongly indicate that the dominant mechanism driving the nonlinear

response is stretch-induced network structuring. This explains the full frequency-dependent third-harmonic

MAOS signatures, which collapse G′(ω), η′(ω), [e3] (ω), and [v3] (ω) using only three degrees of freedom:

G0, η0, and χ.
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Chapter 4

First-Harmonic MAOS Can Predict Unseen

Third-Harmonic MAOS

Figure 4.1: Graphical Abstract. Linear and asymptotically nonlinear parameters were mea-
sured to fit/calibrate model parameters. The model parameters are used to predict third-
harmonic MAOS measurements. We compare the prediction to the experimentally measured
third-harmonic MAOS measures.

Our discussion focuses on how first-harmonic MAOS measures can predict third-harmonic MAOS, demon-

strating the credibility of a structure-rheology model for PVA-Borax. Figure 4.1 shows a graphical summary

of the protocol discussed in this chapter. First-harmonic MAOS measures from a stress-controlled rotational

rheometer (DHR-3, TA Instruments) are used to calibrate model parameters and make predictions of the full

MAOS signatures measured on a strain-controlled rotational rheometer (ARES-G2, TA Instruments; data

from Chapter 3). It is important to explicitly make a distinction between instruments because we have more

confidence in MAOS measurements from a strain-controlled rheometer where torque is measured from a

fixed boundary [64]. The successful prediction provides evidence of the power of first-harmonic MAOS and
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of model validity of this specific structure-rheology model as it is tested across 11 different compositions of

PVA-Borax.

4.1 Linear Viscoelastic Results

Rheological measurements of first-harmonic MAOS measures [e1] and [v1] were performed on a stress-

controlled combined motor-transducer rotational rheometer (DHR-3, TA Instruments) following the pro-

tocol discussed in Section 2.2.2. To identify the linear viscoelastic (SAOS) regime, strain-sweeps were

performed at 10 rad/s starting from γ0 = 0.01% until deviations from a linear behavior were observed. We

performed a forward and reverse sweep to check for reversibility. A strain amplitude γ0 was chosen from

the linear viscoelastic regime for the SAOS frequency-sweep carried out from ω = 0.1 to ω = 100 rad/s.

We followed the protocol discussed in Section 3.1 for extracting the linear parameters G0, η0, and λ0 = η0
G0

.

In summary, we fit high and low frequency plateaus to extract the storage modulus G0 and steady shear

viscosity η0, respectively. We then calculate the relaxation timescale λ0 = η0
G0

. We follow this protocol for

each composition. Table 4.1 shows the set of linear parameters {G0, η0, λ0} for each composition.
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Table 4.1: Summary of the linear parameters {G0, η0, λ0} measured on the stress-controlled
rheometer (DHR-3).

Label Composition (PVA wt% : Borax wt%) G0 (Pa) η0 (Pa.s) λ0 (s)

A1 2 : 0.5 94.64 20.78 0.220

A2 2 : 1.25 194.46 42.44 0.218

B1 2.75 : 0.05 148.17 18.99 0.128

B2 2.75 : 0.1 446.66 133.70 0.299

B3 2.75 : 0.5 1013.61 495.97 0.489

B4 2.75 : 1.25 1222.20 511.90 0.419

B5 2.75 : 1.5 1129.29 435.55 0.386

C1 3.5 : 0.05 342.49 50.54 0.148

C2 3.5 : 0.1 999.40 348.40 0.349

C3 3.5 : 0.5 2551.81 1876.68 0.735

C4 3.5 : 1.25 3391.11 2158.69 0.637
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Figure 4.2: SAOS frequency-sweep on multiple compositions of PVA-Borax shown in (a)-
(d). DHR data is shown in (a) and (b), while ARES data is shown in (c) and (d). The legend
shown near (b) is valid for (a)-(d). The linear parameters G0 and η0 are compared in (e) and
(f), where the squares represent DHR data and circles represent ARES data. The torque limit
is shown as a constant line, while the material inertia and instrument inertial limits are shown
as lines with scaling ∼ ω2 [41].

We compare the linear viscoelastic data from the stress-controlled rheometer (DHR) to those from a

strain-controlled rheomoeter (ARES) to establish a baseline expectation for agreement between different

instruments and different samples. Qualitatively, the data appear to be consistent across the frequency

spectrum, as seen in Figs. 4.2(a)-(d). The linear parameters {G0, η0, λ0} are compared in Figs. 4.2(e)-(f)
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and Fig. 4.3. As expected, the linear parameters qualitatively agree and exhibit the same trends as a function

of crosslinker. The linear parameters are expected to agree between instruments since the measurements are

made in the linear regime.

Figure 4.3: Comparison between the linear relaxation timescales λ0 = η0
G0

measured from
the DHR and ARES from multiple compositions of PVA-Borax. Squares denote DHR data,
while circles represent ARES data.

In Table 4.2, we quantify the agreement between instruments using the relative difference between

measurements of the linear parameters as a metric. The differences are calculated as

δX =
XARES −XDHR

XARES
, (4.1)

where X represents any measured parameter and the subscripts represent which instrument the data were

collected on. We observe that the relative difference between measured values of G0 ranged from approx-

imately 1-30% across all compositions of PVA-Borax. It is worth noting that measurements of G0 for
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Table 4.2: Summary of the relative difference between measurements of the linear pa-
rameters {G0, η0, λ0} from the strain-controlled rheometer (ARES-G2) to those from the
stress-controlled rheometer (DHR-3). The differences are calculated using Eqn. 4.1, where
X = {G0, η0, λ0} represents the set of linear parameters.

Composition (PVA wt% : Borax wt%) δG0 (%) δη0 (%) δλ0 (%)

2 : 0.5 -8.29 -24.23 -14.91
2 : 1.25 -8.65 -27.90 -17.72

2.75 : 0.05 - 9.55 -12.18 -3.38
2.75 : 0.1 -9.76 -20.25 -9.33
2.75 : 0.5 -33.22 -36.19 -2.24
2.75 : 1.25 -7.65 -9.12 -1.40
2.75 : 1.5 6.59 9.08 2.08
3.5 : 0.05 24.35 30.51 7.63
3.5 : 0.1 -1.04 -18.36 -17.20
3.5 : 0.5 -7.26 -3.68 -3.92
3.5 : 1.25 -1.65 -11.14 -9.36

most compositions had a relative difference less than 10% (with just two exceptions). Similarly, the rela-

tive difference between measured values of λ0 were observed to fall between a relatively small window of

approximately 1-15%, in which only three compositions had a relative difference greater than 10%. The

relative difference between measured values of η0 were greater than those of G0 and λ0 for almost all com-

positions (approximately 5-30%, only three compositions less than 10%). On average, measurements of

{G0, η0, λ0} differed by {10.7, 18.4, 8.1}% across all compositions, i.e. on average having larger values on

the DHR instrument (negative values in Table 4.2).

It is important to note that there appears to be a systematic error between the two instruments since

most measurements of {G0, η0, λ0} on the DHR are larger than those measured on the ARES instrument.

The disagreement between instruments could come from using different batches of formulated PVA-Borax

compositions used for testing on each instrument. Another possible source of error is from instrument cali-

bration, since the disagreement tends to be systematic. Nevertheless, measurements of the linear parameters

are reasonably consistent between instruments, as expected. Based on our quantitative observations, it is

reasonable to assume that the instruments agree to within 15%. We use this as a baseline expectation for

agreement between different instruments and different samples.
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4.2 Asymptotically Nonlinear Viscoelastic Results

To identify the asymptotically nonlinear (MAOS) regime, we analyze the strain-sweeps performed at ω =

10 rad/s on the DHR discussed in the previous section. The frequency of ω = 10 rad/s was chosen to probe

the material in the elastic limit, where De > 1 (note λ0,min = 0.128 s, Table 4.1). At ω = 10 rad/s, the

range of Deborah numbers for all compositions of PVA-Borax were between De = λ0ω ≈ 1.5 − 7, in

which it is reasonable to assume that the material behaves more elastically. We could not choose a higher

frequency for some compositions because the measurements would be affected by instrument inertia (see

Fig. 4.2). It should be noted that instrument inertia is an artifact of a combined motor-transducer (DHR).

Figure 4.4 shows the strain-sweeps at 10 rad/s for all compositions tested on the DHR. The MAOS regime

is identified by the stress-harmonic nonlinearity exhibiting a scaling ∼ γ30 (Eqns. 1.5-1.8).

Figure 4.4: First-harmonic MAOS signatures from strain-sweeps at 10 rad/s on multiple
compositions of PVA-Borax performed on DHR. Fit lines from Eqns. 1.9 and 1.10, where
η′ = G′′

ω . Symbols same as in Fig. 4.2. Noise floor shown in grey. Right panel is transformed
stress response data, in which the MAOS regime is identified by a power-law scaling ∼ γ30 .

We use the conventional strain-sweep method for MAOS material parameter extraction outlined in Sec-

tion 2.2.2.1. We fit for the linear viscoelastic plateaus, G′LV E and η′LV E , and the first-harmonic MAOS

45



Table 4.3: Summary of asymptotically nonlinear parameters measured on the stress-
controlled rheometer (DHR-3). First-harmonic measures [e1] and [v1] are used to calculate
an estimate of model parameters χe and χv , respectively. The average χ̄ = χe+χv

2 is used as
a calibration model parameter to predict third-harmonic MAOS measures.

Composition [e1] [v1] χe χv χ̄
(PVA wt% : Borax wt%) (Pa) (Pa.s) (-) (-) (-)

2 : 0.5 18.66 0.66 1.34 1.17 1.25
2 : 1.25 26.53 1.39 0.93 1.20 1.06

2.75 : 0.05 12.85 0.81 1.00 0.93 0.96
2.75 : 0.1 72.14 2.63 0.94 1.15 1.05
2.75 : 0.5 172.11 5.99 0.88 1.67 1.27

2.75 : 1.25 126.81 5.29 0.55 1.07 0.81
2.75 : 1.5 119.54 4.37 0.57 0.90 0.74
3.5 : 0.05 26.76 1.31 0.75 0.62 0.68
3.5 : 0.1 83.70 3.51 0.47 0.76 0.61
3.5 : 0.5 16.73 10.47 0.03 1.67 0.85
3.5 : 1.25 258.65 10.44 0.38 1.10 0.74

measures [e1] and [v1] at 10 rad/s using Eqns. 1.9 and 1.10, seen in Fig. 4.4. It is important to note that there

is subjectivity in the process of fitting for material parameters, especially those pertaining to the MAOS

regime. There is subjectivity when choosing how many data points to fit since we only want to fit asymp-

totic changes to the linear baseline. We chose data points up to a 10% change from the linear baseline for

our analysis. We followed this procedure for each composition of PVA-Borax tested, and the values for

[e1] and [v1] are shown in the second and third columns in Table 4.3. We discuss the last three columns in

Table 4.3 in the following section, in which the linear parameters and first-harmonic MAOS measures from

a stress-controlled rheometer (Tables 4.1 and 4.3, respectively) were used to calibrate model parameters and

then make predictions of third-harmonic MAOS from a strain-controlled rheometer.

4.3 Structure-Rheology Model and Predictions

We use the transient polymer network model of Bharadwaj et al. discussed in Sections 1.1 and 3.3, where the

key ingredient for describing a nonlinear response is a single nonlinear parameter, χ [1]. The first-harmonic

MAOS measures are related to χ by Eqns. 51 and 53 in [1],

[e1]

G0
=

5

6
χ

(
De4

(
De2 + 2

5

)
(1 +De2)2 (1 + 4De2)

)
, (4.2)
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[v1]

η0
=

3

4
χ

(
De2

(
De2 + 1

3

)
(1 +De2)2 (1 + 4De2)

)
. (4.3)

In principle, χ could be fit to the full MAOS description which is defined by the four frequency-dependent

first- and third-harmonic MAOS measures {[e1] (ω), [v1] (ω), [e3] (ω), [v3] (ω)} defined in Eqns. 1.9-1.12.

Here, we use measurements of the first-harmonic MAOS measures at a single frequency (ω = 10 rad/s) to

calibrate χ. Solving for χ in Eqns. 4.2 and 4.3 yields an estimate of the model parameter from either the

elastic or viscous response, which we denote respectively as χe and χv,

χe =
6

5

[e1]

G0

((
1 +De2

)2 (
1 + 4De2

)
De4

(
De2 + 2

5

) )
(4.4)

and

χv =
4

3

[v1]

η0

((
1 +De2

)2 (
1 + 4De2

)
De2

(
De2 + 1

3

) )
, (4.5)

respectively. These calculations require calibration of model parameters G0, η0 and λ0 (De = λ0ω), which

we take from Table 4.1. We use the average of χe and χv

χ̄ =
χe + χv

2
(4.6)

as an estimate of χ for each PVA-Borax composition tested on the DHR. Table 4.3 shows the values for

{χe, χv, χ̄} for each composition and Fig. 4.5 shows χ̄ as a function of crosslinker. Moreover, χ̄ serves as a

calibration parameter used to predict the frequency-dependent third-harmonic MAOS measures.
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Figure 4.5: The parameter χ̄ (Eqn. 4.6), calibrated to first-harmonic MAOS parameters [e1]
and [v1] from the DHR for each PVA-Borax composition tested. Polymer concentration
increases with symbol color from white to gray to black.

The third-harmonic MAOS measures are related to χ by Eqns. 52 and 54 in [1],

[e3]

G0
=

1

6
χ

(
De4

(
De2 − 2

)
(1 +De2)2 (1 + 4De2)

)
, (4.7)

[v3]

η0
= − 5

12
χ

(
De2

(
De2 − 1

5

)
(1 +De2)2 (1 + 4De2)

)
. (4.8)

Thus, we can predict third-harmonic MAOS measures at any frequency by solving for [e3] and [v3] in

Eqns. 4.7 and 4.8 using the linear parameters
{
G0, η0, λ0 = η0

G0

}
(Table 4.1) and the calibrated nonlinear

model parameter χ̄ (Table 4.3), where χ → χ̄ in Eqns. 4.7 and 4.8. Furthermore, we can predict the third-

harmonic stress response at any frequency using Eqns. 1.7 and 1.8. Figure 4.6 is a graphical representation

for the process of predicting third-harmonic MAOS from first-harmonic MAOS for 3.5 wt% PVA with

1.25 wt% Borax. In summary, we fit [e1] and [v1] to strain-sweep data at 10 rad/s from measurements

performed on the DHR-3, calibrate the model parameter χ̄ and predict third-harmonic MAOS measures [e3]
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and [v3] at 30 rad/s, and compare this to measurements on an ARES-G2 rheometer. Third-harmonic data

and predictions for all compositions are shown in Figs. 4.7-4.9.

Figure 4.6: Summary of process for predicting third-harmonic MAOS from first-harmonic
MAOS for 3.5 wt% PVA with 1.25 wt% Borax. Amplitude sweep data at 10 rad/s (left) is
used to obtain first-harmonic MAOS measures [e1] and [v1] to predict third-harmonic MAOS
measures [e3] and [v3] at 30 rad/s, based on the nonlinear transient network model for PVA-
Borax from Bharadwaj et al. [1].

Figure 4.7: Prediction of third harmonic MAOS measures for each composition of CPV A =
2 wt% and CBorax = {0.5, 1.25} wt%. The labels in each graph represent the composition
labeled in Table 4.1.
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Figure 4.8: Prediction of third harmonic MAOS measures for each composition of CPV A =
2.75 wt% and CBorax = {0.05, 0.1, 0.5, 1.25, 1.5} wt%. The labels in each graph represent
the composition labeled in Table 4.1.
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Figure 4.9: Prediction of third harmonic MAOS measures for each composition of CPV A =
3.5 wt% and CBorax = {0.05, 0.1, 0.5, 1.25} wt%. The labels in each graph represent the
composition labeled in Table 4.1.

As seen in Figs. 4.7-4.9, the agreement between prediction and experimental observation is remarkable,

indicating an ability of first-harmonic MAOS to predict otherwise unseen third-harmonic MAOS, even at a

frequency three times larger, when a valid constitutive model is available. Table 4.4 shows a summary of

the observed (ARES) and predicted (DHR) values of [e3] and [v3], as well as their relative differences,

δX =
Xobs −Xpred

Xobs
, (4.9)

for each composition of PVA-Borax tested. We use the relative difference as a metric for model prediction

accuracy. We observe that the relative difference between values of the third-harmonic elastic parameter [e3]
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Table 4.4: Summary of observed and predicted values of [e3] and [v3] and their prediction
accuracy. Metric is relative difference between fit to third-harmonic data and the prediction
value. The differences are calculated using Eqn. 4.9, where X = {[e3] , [v3]}.

Composition [e3]obs [e3]pred [v3]obs [v3]pred δ[e3] δ[v3]
(PVA wt% : Borax wt%) (Pa) (Pa) (Pa.s) (Pa.s) (%) (%)

2 : 0.5 2.74 4.48 0.047 0.059 -63.33 -24.58
2 : 1.25 4.27 7.80 0.083 0.104 -82.65 -24.67

2.75 : 0.05 3.73 4.44 0.120 0.110 -18.91 8.47
2.75 : 0.1 11.21 18.48 0.113 0.175 -64.84 -55.87
2.75 : 0.5 31.47 52.74 0.345 0.302 -67.57 12.56

2.75 : 1.25 37.17 40.32 0.558 0.270 -8.48 51.55
2.75 : 1.5 33.85 33.63 0.529 0.246 0.69 53.61
3.5 : 0.05 8.85 7.85 0.133 0.163 11.39 -22.31
3.5 : 0.1 23.48 24.54 0.264 0.199 -4.50 24.65
3.5 : 0.5 102.75 89.53 1.153 0.339 12.87 70.57
3.5 : 1.25 112.42 103.21 1.707 0.453 8.19 73.49

ranged from approximately 0.5-80% across all compositions of PVA-Borax. Similarly, the relative differ-

ence between measured values of the third-harmonic viscous parameter [v3] were observed to fall between

approximately 10-75%. On average, the median magnitude of the relative difference between observed

and predicted values of {[e3] , [v3]} is 13% and 25%, respectively, across all compositions. Although some

compositions have larger disagreement, our general observations agree to within a similar accuracy of the

linear viscoelastic parameters tested on different instruments with different batches of sample, as discussed

in Section 4.1.
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Figure 4.10: Comparison between the observed third-harmonic MAOS parameters from the
ARES (circles) and the predicted values (squares) from first-harmonic MAOS measurements
from the DHR.

Figure 4.10 shows a comparison between the observed third-harmonic MAOS parameters (ARES) and

the predicted values from first-harmonic MAOS measurements (DHR) using the transient polymer network

model of Bharadwaj et al. [1]. The model is better at predicting [e3] than [v3]; thus, it can be improved

(e.g. with a more complex viscoelastic spectrum rather than a single mode). The disagreement suggests

specifically where the model is failing. Nevertheless, first-harmonic nonlinearities are able to predict "un-

seen" third-harmonic MAOS harmonic data to within a similar accuracy of the linear viscoelastic parameters

for most of the compositions tested. Furthermore, first-harmonic MAOS were able to correctly predict the

signs of all third-harmonic MAOS measures. Thus, the transient polymer network is considered a good

model for predicting the nonlinear behavior of a PVA-Borax polymer network across the wide range of

compositions tested here (with range of G0 = 100− 3000 Pa). In conclusion, the successful predictions are

evidence of model validation, and a testament to the value of first-harmonic MAOS, which has often been

overlooked in the recent experimental MAOS literature.
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Chapter 5

Ashby Style Perspective

Nonlinear elasticity for a purely elastic solid is described as the first order deviation from the linear response,

as discussed in Chapter 1. The stress response for such a system is shown in Fig. 1.1 and defined in Eqn. 1.2.

Here, we define the dimensionless parameter b in Eqn. 1.2 as the universal nonlinear elastic parameter

representing the intrinsic nonlinearity of a material system subject to a shear strain. A stiffening response

corresponds to b > 0 and b < 0 represents a softening response. While the intrinsic nonlinearity is well

defined for a purely elastic solid, it is more complicated to define nonlinear parameters for viscoelastic

materials because of their rich time-dependence. The universal elastic parameter, b, is useful because it can

be related to stiffening parameters defined in theoretical models, and we can define b for any test measuring

stress as a function of strain for any elastic material.

For a purely elastic material, a quasi-static test in which a strain is applied is often the experimental

technique used to measure an elastic modulus. The apparent modulus is defined as

G(γ) = G0 + βγ2 + · · · . (5.1)

Substituting the apparent modulus G(γ) in Eqn. 5.1 for that in Eqn. 1.2 and then comparing the result to the

original equation yields the following relationship,

b =
β

G0
. (5.2)

Thus, for any quasi-static stress-strain test, we can fit the nonlinear parameter β in Eqn. 5.1 and calculate a

value for the intrinsic nonlinearity, b.
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For a viscoelastic material, the elastic modulus is often frequency-dependent. For this reason, the modu-

lus is often measured by an oscillation test at a fixed frequency. For this testing protocol, the elastic modulus

is derived from the first-harmonic elastic stress coefficient in the Chebyshev interpretation [24], [38] and

is defined in Eqn. 1.9. We can relate b to the first-harmonic intrinsic elastic nonlinearity [e1]; however the

relationship is non-trivial due to the stress response in Eqn. 1.2 being decomposed into integer harmonics.

It can be shown that the nonlinearity is distributed between the first and third elastic stress-harmonics [65].

We derive the relation between b and [e1] in Appendix C.1 and yield the following result,

b =
4

3

[e1]

GLV E
. (5.3)

The parameter b can also be related to theoretical models describing an elastic material. To relate b to

model parameters, we define the governing equation for an elastic material as

σe,ij = 2

[(
∂U

∂I1
+ I1

∂U

∂I2

)
Bij −

∂U

∂I2
Bik ·Bkj

]
, (5.4)

where U is the elastic potential, I1 and I2 are the first and second invariants of the finger tensor, B [39].

The finger tensor in simple shear defined as

B =


1 + γ2 γ 0

γ 1 0

0 0 1

 (5.5)

where γ represents the shear strain [39]. Thus, given the elastic potential U for any model describing an

elastic material, we can relate b to the model parameters by comparing an asymptotic expansion of the

elastic stress in Eqn. 5.4 to the stress defined in Eqn. 1.2. Here, we are concerned with nonlinear responses

subjected to a shear deformation, as seen by the definition of the finger tensor in Eqn. 5.5.

The neo-Hookean model can be used for predicting the nonlinear stress-strain behavior of a purely

elastic material [39], [66]. The elastic potential is defined as

U =
G0

2
(I1 − 3) . (5.6)
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The stress is computed using the elastic potential and the finger tensor defined in Eqn. 5.5, giving

σe,xy = G0γ, (5.7)

where σe,xy represents the shear stress components of the stress tensor. Comparing Eqn. 5.7 to Eqn. 1.2

yields the following result,

b = 0. (5.8)

It is apparent that the neo-Hookean model shows a linear dependence in response to a shear deformation

and does not predict nonlinear behavior. However, it can be shown that the neo-Hookean model does predict

nonlinear behavior in response to a uniaxial extension. Since we are concerned with shear nonlinearities,

the neo-Hookean model is an insufficient description of nonlinear elasticity.

The Fung model is a constitutive equation developed to describe the behavior of elastic soft tissues [7].

The elastic potential is defined as

U =
G0

2α
eα(I1−3), (5.9)

and the shear stress is calculated as

σe,xy = G0γe
αγ2 . (5.10)

To relate b to the Fung model nonlinear parameter α, we use a Taylor Expansion about γ = 0 (small shear

deformations); hence,

σe,xy = G0γ
(
1 + αγ2

)
. (5.11)

It is clear that

b = α (5.12)

when comparing Eqn. 5.11 to Eqn. 1.2. Thus, the Fung model does predict a nonlinear response with a shear

deformation input. It can be shown that the model also predicts nonlinear behavior in response to a uniaxial

extension. The Fung model is useful for fitting uniaxial extensional data and then converting the nonlinear

parameter to a shear nonlinearity using Eqn. 5.12. The Taylor Expansion derivation is shown in Appendix

C.2.
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Here, we have shown that the dimensionless parameter b can be related to various testing protocols and

model parameters. In the following section we compare the shear nonlinearities, b, of various materials

using these relations.

5.1 Comparing Materials

We compare elastic nonlinearities, b, across material systems with distinct microstructures using the rela-

tions previously discussed. We digitized stress-strain data from the literature for various materials broadly

categorized into three categories: biological tissues, biopolymers, and hydrogels (see Table 5.1). For data

collected using a quasi-static shear test we fit for β in Eqn. 5.1 and calculated b using Eqn. 5.2. If the data

were collected using an oscillation protocol we fit for [e1] in Eqn. 1.9 and use the relation in Eqn. 5.3 to

calculate b. Finally, if the testing protocol was one for quasi-static extension, we fit for α in Eqn. 5.9 and

convert the extensional nonlinearity to a shear nonlinearity using Eqn. 5.12. Ashby diagrams are used in de-

sign and material selection to compare various low-dimensional material parameters for different materials

[67]. Using this framework, we compare the elastic shear nonlinearity b to the linear elastic modulus G for

various materials in Fig. 5.1.
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Table 5.1: Table of various materials found in the literature that exhibit nonlinear elasticity
when subjected to large strains.

Material G (Pa) b (-) Ref Comments

Achilles Tendon 3.1× 1011

- Levental et al. [68] See reference

Articular Cartilage 9.5× 105

Skeletal Muscle 1.0× 105

Carotid Artery 9.0× 104

Thyroid Cancer 4.5× 104

Cardiac Muscle 1.5× 105

Skeletal Muscle 1.2× 104

Thyroid 9000

Breast Tumor 4000

Kidney 2500

Premalignant Breast 2200

Fibrotic Liver 1600

Lymph w/ Metastasis 330

Lymph Node 120

Mammary Gland 160

Fat 17

Actin 94.71 96.91

Storm et al. [8]

Fibrin 19.15 9.64
Oscillation

Collagen 13.22 179.30 shear

Vimentin 3.66 11.69

Polyacrylamide 180 0.03

Fibrin (1.6T) 4.99 21.87
Bharadwaj [69] Oscillation

Fibrin (6.4T) 540.77 24.19 shear

Polyacrylamide (M/C=100) 900 0.09
Zhang et. al [22] Quasi-Static

Polyacrylamide (M/C=300) 300 0.13 shear
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Table 5.1: Continued from previous page

Material G (Pa) b (-) Ref Comments

Agarose (2.5A) 104534.30 0.85

Barrangou et al. [19]

Agarose (2A) 64719.90 2.14
Quasi-Static

Agarose (1.5A) 31760.90 1.72 shear

Agarose + Glycerol (1.5A/40G) 46713.10 1.95

Agarose + Glycerol (1A/60G) 25152.80 1.34

Agar (1.93 dry wt%) 37466.15 45.56

Pavan et al. [20]

Gelatin (7.3%) 28858 1.78
Quasi-Static

Agar (2.81%) + Gelatin (3%) 115189.50 23.66 shear

Agar (1.71%) + Gelatin (3%) 41963.01 27.21

Agar (0.58%) + Gelatin (3%) 5067.10 21.04

Ballistic Gel 3580500 8.506 Salisbury et al. [21] Quasi-Static
extension

Lung Tissue
4077.923 24.03

Yuan et al. [11] Quasi-Static
2625.35 15.94 extension

Brain Tissue 581.42 -11.42 Bilston et al. [12] Quasi-Static
shear

Cell Monolayer 910.79 -1244.54 Fernandez et al. [13] Oscillation
shear

Liver Tissue 212.86 -0.59 Tan et al. [14] Oscillation
shear

Spinal Chord 157730 2761.48 Cheng et al. [9] Quasi-Static
extension

Arterial Wall 18313.91 1.39 Hayashi et al. [10] Quasi-Static
extension
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Figure 5.1: Ashby diagram showing the elastic nonlinearity b versus the linear elastic shear
modulus G for various materials (See Table 5.1). Red symbols - biological tissues, green -
biological polymer gels, blue - synthetic materials.

The Ashby diagram in Fig. 5.1 provides useful information about the elastic response of a material

system. Biological tissues, biopolymers and hydrogels show a wide range of nonlinear behavior. The linear

elastic modulus can span approximately eight orders of magnitude, while the elastic nonlinearity can vary

by approximately five orders of magnitude. Additionally, there is no clear relationship between the linear

elastic modulus and the shear nonlinearity across material systems. It is interesting to note that the hydrogels

share similar nonlinear characteristics. The agarose gels tested by Barrangout et al. [19] exhibit the same

peak in nonlinearity at intermediate polymer concentrations we observed in the PVA-Borax system (Chapter

3). Additionally, the nonlinearity across different compositions of agarose gels, agar combined with gelatin,

and PVA-Borax all show a weak dependence with the polymer concentrations. In conclusion, the Ashby

diagram can be used for material selection and design. One can choose a material with a certain modulus

and nonlinearity to model materials such as biological tissues. In addition, this Ashby diagram provides

insight for designing materials in which nonlinear elasticity is a favorable material characteristic.
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Chapter 6

Conclusions and Future Outlook

In this thesis, we have discussed how MAOS signatures are useful for understanding the mechanisms driving

nonlinearities arising from a change in structure. We showed that the dominant mechanism driving a strain-

stiffening response from a transient polymer network (PVA-Borax) is attributed to stretch-induced network

structuring by an increase in crosslink density (Chapter 3). It is important to note that not only the linear

information {G0, η0, λ0}, but the asymptotically nonlinear information {[e1] , [v1] , [e3] , [v3]} are essential

ingredients for microstructural inference via model parameters. Our work reinforces the idea that nonlinear

information is useful for inferring molecular and network features.

We observed that the strength of the nonlinearity remains relatively constant across a range of compo-

sitions of PVA-Borax, while the stiffness of the material (characterized by G0) varied across two orders of

magnitude. The key conclusion is that stretch-induced network structuring allows for softer materials to

achieve the same nonlinear response as one with a higher elastic modulus. Our analysis is consistent with

video evidence of stretch-induced network structuring for a PVA-Borax composition in which CPV A < C∗,

where we would expect little overlap of polymer chains and a "weaker" initial network formation (see

Fig. A.3).

A natural extension of this current work is to explore how the nonlinearities change as a function of

the network conformation. One method for studying this is by imposing an orthogonal superposition of

stretch due to flow and oscillatory shear to probe viscoelasticity. In this testing protocol, one measures

the viscoelastic properties from a stretched state. Thus, we could stretch the material, facilitate a higher

crosslink density due to stretch-induced network structuring, and perform the same analysis from a different

network equilibrium. This would be an interesting study aimed to answer the question: how nonlinear can a
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material be?

Another method for studying how the nonlinearities change as function of the network conformation

is by studying the temperature dependence. The temperature dependent properties of the 2.75 wt% PVA

and 1.25 wt% Borax network are shown in Fig. S.3 of the supplementary information in [1]. In summary,

both the steady shear viscosity η0 and relaxation timescale λ0 show a strong temperature dependence as a

decreasing trend with heating. This is expected due to reduced friction and weaker physical crosslinks as the

system is heated. The elastic shear modulus G0 shows a relatively weak temperature dependence. Thus, an

increase in temperature results in a comparably stiff material at high frequencies, but with weaker crosslinks

that relax faster at elevated temperature. We assume that these trends hold across the range of compositions

of PVA-Borax networks discussed in this work. We claim the assumption is warranted because we observed

self-similarity across the material systems, especially with respect to the linear viscoelastic results (see

Fig. 3.4); thus, the linear parameters should follow similar trends. If G0 remains relatively constant, but λ0

decreases with an increase in temperature, we predict that the nonlinearity, χ, will decrease with heating

since χ decreases as λ0 decreases (see Fig. B.45). Interestingly, the multiple changes in slope suggest that

there could be limits to network formation as a function of both λ0 and the concentration of polymer. A

study on temperature-dependent nonlinearities would be useful for material design, as temperature could be

introduced as another design parameter.

Additionally, future research would include performing the same analysis carried out in this work with

different materials. As a first step, we can estimate the strength of finite-extensibility of a PVA polymer chain

by forming a polymer network with permanent crosslinks. In this material system, stretch-induced network

structuring would not be possible since the crosslinks are not transient, but permanent. This can be achieved

by crosslinking PVA by glutaraldehyde. The effects of temperature and crosslinker content on the structural

properties of this material system are examined in [70]. Another candidate for performing this analysis

is on different hydrogels, such as Agarose. Agarose gels are primarily elastic with a slight frequency-

dependence [19], which is different from the rich viscoelastic behavior observed in the PVA-Borax system.

Furthermore, Agarose gels are stiffer and more nonlinear compared to PVA-Borax (see Fig. 5.1); thus,

it would be interesting to compare the asymptotically nonlinear rheological signatures between the two

materials. We envision Ashby-style cross plots similar to Fig. 5.1 which document low-dimensional material
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signatures to be useful for material design and material selection for performance.
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Appendix A

PVA-Borax Additional Characterization

This Appendix provides supplemental information for the PVA-Borax polymer network discussed in Chapter

2.

A.1 Strain-Rate Data for Overlap Concentration Calculation

Figure A.1: Shear-rate sweep for each PVA solution shown in Fig. 2.2(a) whereCBorax = 0.
We took the average across all shear rates as the mean viscosity seen in Fig. 2.3.
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A.2 Linear Viscoelasticity of PVA Solution

Figure A.2: Viscoelastic characterization of 4 wt% PVA polymer solution. Frequency sweep
shows little measurable viscoelasticity. Polymer solution shows strain softening.

A.3 Video Evidence for Stretch-Induced Network Structuring

Figure A.3: Visual observations of stretch-induced network structuring for a 1.5 wt% PVA
and 1.25 wt% Borax network. Here, we assume there is little overlap of polymer chains since
CPV A < C∗PV A. The network builds up structure as a constant shear rate of γ̇ = 30 1/s.
Time elapses from left to right.
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Appendix B

Supplemental Information for Chapter 3

This Appendix provides supplemental information for the main results in Chapter 3.

B.1 Data for All Compositions

SAOS data and MAOS data for all 11 compositions tested.

Figure B.1: SAOS frequency-sweep on 3.5 wt% PVA with 1.25 wt% Borax. Error bars are
from average of three measurements. Log-normal continuous spectrum shown on right.
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Figure B.2: Strain-sweep on 3.5 wt% PVA with 1.25 wt% Borax (top) and third-harmonic
measurements (bottom).

Figure B.3: Measurements of the elastic MAOS material functions [e1] and [e3] normalized
by the linear elastic modulus G0 for 3.5 wt% PVA with 1.25 wt% Borax.
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Figure B.4: Measurements of the viscous MAOS material functions [v1] and [v3] normalized
by the steady shear viscosity η0 for 3.5 wt% PVA with 1.25 wt% Borax.

Figure B.5: SAOS frequency-sweep on 3.5 wt% PVA with 0.5 wt% Borax. Error bars are
from average of three measurements. Log-normal continuous spectrum shown on right.
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Figure B.6: Strain-sweep on 3.5 wt% PVA with 0.5 wt% Borax (top) and third-harmonic
measurements (bottom).

Figure B.7: Measurements of the elastic MAOS material functions [e1] and [e3] normalized
by the linear elastic modulus G0 for 3.5 wt% PVA with 0.5 wt% Borax.
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Figure B.8: Measurements of the viscous MAOS material functions [v1] and [v3] normalized
by the steady shear viscosity η0 for 3.5 wt% PVA with 0.5 wt% Borax.

Figure B.9: SAOS frequency-sweep on 3.5 wt% PVA with 0.1 wt% Borax. Error bars are
from average of three measurements. Log-normal continuous spectrum shown on right.
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Figure B.10: Strain-sweep on 3.5 wt% PVA with 0.1 wt% Borax (top) and third-harmonic
measurements (bottom).

Figure B.11: Measurements of the elastic MAOS material functions [e1] and [e3] normalized
by the linear elastic modulus G0 for 3.5 wt% PVA with 0.1 wt% Borax.
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Figure B.12: Measurements of the viscous MAOS material functions [v1] and [v3] normal-
ized by the steady shear viscosity η0 for 3.5 wt% PVA with 0.1 wt% Borax.

Figure B.13: SAOS frequency-sweep on 3.5 wt% PVA with 0.05 wt% Borax. Error bars are
from average of three measurements. Log-normal continuous spectrum shown on right.
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Figure B.14: Strain-sweep on 3.5 wt% PVA with 0.05 wt% Borax (top) and third-harmonic
measurements (bottom).

Figure B.15: Measurements of the elastic MAOS material functions [e1] and [e3] normalized
by the linear elastic modulus G0 for 3.5 wt% PVA with 0.05 wt% Borax.
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Figure B.16: Measurements of the viscous MAOS material functions [v1] and [v3] normal-
ized by the steady shear viscosity η0 for 3.5 wt% PVA with 0.05 wt% Borax.

Figure B.17: SAOS frequency-sweep on 2.75 wt% PVA with 1.5 wt% Borax. Error bars are
from average of three measurements. Log-normal continuous spectrum shown on right.
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Figure B.18: Strain-sweep on 2.75 wt% PVA with 1.5 wt% Borax (top) and third-harmonic
measurements (bottom).

Figure B.19: Measurements of the elastic MAOS material functions [e1] and [e3] normalized
by the linear elastic modulus G0 for 2.75 wt% PVA with 1.5 wt% Borax.
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Figure B.20: Measurements of the viscous MAOS material functions [v1] and [v3] normal-
ized by the steady shear viscosity η0 for 2.75 wt% PVA with 1.5 wt% Borax.

Figure B.21: SAOS frequency-sweep on 2.75 wt% PVA with 1.25 wt% Borax. Error bars
are from average of three measurements. Log-normal continuous spectrum shown on right.
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Figure B.22: Strain-sweep on 2.75 wt% PVA with 1.25 wt% Borax (top) and third-harmonic
measurements (bottom).

Figure B.23: Measurements of the elastic MAOS material functions [e1] and [e3] normalized
by the linear elastic modulus G0 for 2.75 wt% PVA with 1.25 wt% Borax.
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Figure B.24: Measurements of the viscous MAOS material functions [v1] and [v3] normal-
ized by the steady shear viscosity η0 for 2.75 wt% PVA with 1.25 wt% Borax.

Figure B.25: SAOS frequency-sweep on 2.75 wt% PVA with 0.5 wt% Borax. Error bars are
from average of three measurements. Log-normal continuous spectrum shown on right.
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Figure B.26: Strain-sweep on 2.75 wt% PVA with 0.5 wt% Borax (top) and third-harmonic
measurements (bottom).

Figure B.27: Measurements of the elastic MAOS material functions [e1] and [e3] normalized
by the linear elastic modulus G0 for 2.75 wt% PVA with 0.5 wt% Borax.
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Figure B.28: Measurements of the viscous MAOS material functions [v1] and [v3] normal-
ized by the steady shear viscosity η0 for 2.75 wt% PVA with 0.5 wt% Borax.

Figure B.29: SAOS frequency-sweep on 2.75 wt% PVA with 0.1 wt% Borax. Error bars are
from average of three measurements. Log-normal continuous spectrum shown on right.
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Figure B.30: Strain-sweep on 2.75 wt% PVA with 0.1 wt% Borax (top) and third-harmonic
measurements (bottom).

Figure B.31: Measurements of the elastic MAOS material functions [e1] and [e3] normalized
by the linear elastic modulus G0 for 2.75 wt% PVA with 0.1 wt% Borax.
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Figure B.32: Measurements of the viscous MAOS material functions [v1] and [v3] normal-
ized by the steady shear viscosity η0 for 2.75 wt% PVA with 0.1 wt% Borax.

Figure B.33: SAOS frequency-sweep on 2.75 wt% PVA with 0.05 wt% Borax. Error bars
are from average of three measurements. Log-normal continuous spectrum shown on right.
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Figure B.34: Strain-sweep on 2.75 wt% PVA with 0.05 wt% Borax (top) and third-harmonic
measurements (bottom).

Figure B.35: Measurements of the elastic MAOS material functions [e1] and [e3] normalized
by the linear elastic modulus G0 for 2.75 wt% PVA with 0.05 wt% Borax.
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Figure B.36: Measurements of the viscous MAOS material functions [v1] and [v3] normal-
ized by the steady shear viscosity η0 for 2.75 wt% PVA with 0.05 wt% Borax.

Figure B.37: SAOS frequency-sweep on 2 wt% PVA with 1.25 wt% Borax. Error bars are
from average of three measurements. Log-normal continuous spectrum shown on right.
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Figure B.38: Strain-sweep on 2 wt% PVA with 1.25 wt% Borax (top) and third-harmonic
measurements (bottom).

Figure B.39: Measurements of the elastic MAOS material functions [e1] and [e3] normalized
by the linear elastic modulus G0 for 2 wt% PVA with 1.25 wt% Borax.
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Figure B.40: Measurements of the viscous MAOS material functions [v1] and [v3] normal-
ized by the steady shear viscosity η0 for 2 wt% PVA with 1.25 wt% Borax.

Figure B.41: SAOS frequency-sweep on 2 wt% PVA with 0.5 wt% Borax. Error bars are
from average of three measurements. Log-normal continuous spectrum shown on right.
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Figure B.42: Strain-sweep on 2 wt% PVA with 0.5 wt% Borax (top) and third-harmonic
measurements (bottom).

Figure B.43: Measurements of the elastic MAOS material functions [e1] and [e3] normalized
by the linear elastic modulus G0 for 2 wt% PVA with 0.5 wt% Borax.
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Figure B.44: Measurements of the viscous MAOS material functions [v1] and [v3] normal-
ized by the steady shear viscosity η0 for 2 wt% PVA with 0.5 wt% Borax.

B.1.1 Low-Dimensional Descriptors

Figure B.45: Nonlinear model parameter χ as a function of relaxation timescale λ0.
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Figure B.46: Course MAOS measure Q0 as a function of frequency. The nonlinear model
parameter χ and the relaxation timescale λ0 normalize and collapse the data for 11 composo-
tions of PVA-Borax networks.

B.1.2 Error Propagation

The MAOS frequency-sweep method for extracting MAOS material functions (discussed in Section 2.2.1.1)

involves a one-point calculation for third-harmonic asymptotic nonlinearities and a two-point calculation

for first-harmonic asymptotic nonlinearities (see Eqns. 2.3-2.6) [31]. This section provides the formula for

error propagation used for measuring asymptotic nonlinearities using the MAOS frequency-sweep method.

The error propagation formula is defined as

δ2x =
∑
i

(
∂x

∂yi

)2

δ2yi , (B.1)

where x is a function of variables yi. For the intrinsic nonlinearities defined in Eqns. 2.3-2.6, the error

propagates as

δ2[e1] =

(
1

γ2M

)2

δ2G′
1,M

+

(
− 1

γ2M

)2

δ2G′
1,S

(B.2)
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δ2[v1] =

(
1

ωγ2M

)2

δ2G′′
1,M

+

(
− 1

ωγ2M

)2

δ2G′′
1,S

(B.3)

δ2[e3] =

(
− 1

γ2M

)2

δ2G′
3,M

(B.4)

δ2[v3] =

(
1

ωγ2M

)2

δ2G′′
3,M

, (B.5)

where γM is the strain amplitude from the MAOS frequency-sweep, ω is the frequency, and here, the error in

measuring first- and third-harmonic moduli δG is taken as the standard deviation of three SAOS and MAOS

frequency-sweeps. The errors in the asymptotic nonlinear parameters are used throughout this work in the

propagation of error for other material functions (e.g. the first-harmonic relative nonlinear material function

[e1]
G0

) using Eqn. B.1.

B.2 Model Analysis

The following process for inferring network features for a transiently crosslinked polymer network is out-

lined in the Appendix of [1]. We use polymer physics ideas in which a polymer is treated as an arrangement

of independent ideal coil strands (polymer chains) with end-to-end distance between crosslinks defined as

Qeq = l
√
NxC∞, (B.6)

where Nx is the number of backbone bonds between crosslinks, C∞ is the characteristic ratio, and l is the

length of the C-C bond. The maximum extensional distance of the polymer chain between crosslinks L is

defined as,

L = Nxl cos(θ/2), (B.7)

where θ is the bond (valance) angle. One can define the ratio of Eqns. B.6 and B.7 as

Qeq
L

=
1√
Nx

√
C∞

cos(θ/2)
=

3.56√
Nx

(B.8)
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using C∞ = 8.3 and θ = 71◦ as PVA specific quantities used in [1]. Finally, the Kuhn length bK is defined

in [1] as

bK =
C∞l

cos(θ/2)
≈ 16 Å. (B.9)

Equations B.6-B.9 are polymer specific quantities and are constant.

We used the strain-stiffening transiently crosslinked polymer network model of Bharadwaj et al. [1]

in Section 3.3 to infer network features of multiple compositions of PVA-Borax. The shear modulus was

defined in Eqn. 3.5 as

G0 =
1

3
n (Qeq)h (Qeq)Q

2
eq. (B.10)

We assumed a functional form (FENE model) for the nonlinear force-extension law h(Q) which describes

the finite-extensibility of the polymer,

h(Q)FENE =
3kBT

bkL

(
1− Q2

L2

)−1
. (B.11)

The nonlinear contribution from a FENE nonlinear force-extension law is derived using Eqn. 3.7, here as

h =
∂ lnh(Q)

∂ lnQ

∣∣∣∣
Q=Qeq

, (B.12)

resulting in

hFENE = 2
Q2
eq

L2

(
1−

Q2
eq

L2

)−1
. (B.13)

Additionally, we assumed that the ensemble average crosslink density is approximated by one of a cubic

lattice,

n(Q) ≈ 1

Q3
. (B.14)

We estimate network features using the polymer specific quantities defined in Eqns. B.6-B.9 and the de-

scriptors modeling the polymer network defined in Eqns. B.10-B.14.
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Substituting Eqns. B.11 and B.14 into Eqn. B.10 and using Eqns. B.6-B.9 reveals that the shear modulus

G0 is only dependent on Nx,

G0,FENE =
n (Qeq) kBT

bK/L

Q2
eq

L2

(
1−

Q2
eq

L2

)−1

=
kBT

bK/L

1

Q3
eq

Q2
eq

L2

(
1−

Q2
eq

L2

)−1

=
kBT

bK

1

QeqL

(
1−

Q2
eq

L2

)−1

=
kBT

bK

1

l2
√
C∞ cos(θ/2)

1

N
3/2
x

(
1− 3.562

Nx

)−1
= A

1

N
3/2
x

(
1− 3.562

Nx

)−1
,

(B.15)

where A is a constant defined by the polymer specific quantities in Eqns. B.6-B.9, temperature T = 25◦C,

and the Boltzmann constant kB ,

A =
kBT

bK

1

l2
√
C∞ cos(θ/2)

≈ 4× 107.

(B.16)

Thus for each composition of a PVA polymer network, A is constant (same polymer and same testing envi-

ronment), G0 is composition-dependent and experimentally measured, and the only unknown in Eqn. B.15

is Nx. We rearrange Eqn. B.15 to set up an algebraic equation used to solve for Nx as

N1/2
x

(
Nx − 3.562

)
=

A

G0
. (B.17)

Therefore, for any elastic shear modulus G0, one can use an equation solver to calculate the number of

backbone bonds between crosslinks Nx using Eqn. B.17. In other words, the experimentally measured

shear modulus G0 is a function of Nx. Consequently, G0 is a function of the ratio Qeq

L by a change of

variables using Eqn. B.8. We calculate Qeq and L independently using Eqns. B.6 and B.7, respectively, to

define the ratio Qeq

L for each composition. Finally, the ratio Qeq

L predicts a value for the finite-extensibility

contribution h using Eqn. B.13.
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In summary, we compute h(G0; kBT,C∞, l, θ) by combining Eqns. B.8, B.9, B.16, B.17 with Eqn. B.13.

Comparing h to χ identifies the relative contribution from stretch-induced crosslinking by

χ = h + n. (B.18)

We use this procedure to infer network features of 11 compositions of a PVA-Borax polymer network (results

in Table 3.3).
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Appendix C

Universal Nonlinear Parameter Relation

Derivations

This Appendix provides the derivation of Eqn. 5.3 and the Taylor Series expansion for the Fung Model

discussed in Chapter 5.

C.1 Relation Between MAOS Parameter and Universal Nonlinear Parame-

ter

Here, we provide the derivation of Eqn. 5.3. For this derivation, we compare the strain-dependent elastic

moduli for the constitutive equation defined for the universal nonlinear parameter b and the low-dimensional

MAOS descriptor [e1]. The shear stress response for a purely elastic material (Eqn. 1.2) is defined as

σ(γ) = G(γ)γ

= G0γ
(
1 + bγ2 +O(γ4)

)
,

(C.1)

where the elastic modulus depends on the shear strain,

G(γ) = G0

(
1 + bγ2 +O(γ4)

)
. (C.2)
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The shear stress for an oscillation measurement can be represented by a Fourier series involving higher

harmonics (Eqn. 1.4),

σ(t) =
∑
n

σ′nsin(nωt) + σ′′ncos(nωt). (C.3)

Using the Chebyshev framework discussed in Section 1.2, the first harmonic elastic modulus (Eqn. 1.9) is

defined as

G′1(γ0, ω0) =
σ′1
γ

= G′LV E + [e1]|ω0
γ20 +O

(
γ40
)

= G′LV E

(
1 +

[e1]

G′LV E
γ2
)
.

(C.4)

We plug in the oscillation strain γ(t) = γ0 sin(ωt) to Eqn. C.1,

σ = G0γ0
(
sin(ωt) + bγ20 sin3(ωt)

)
. (C.5)

Expanding the Chebyshev stress in Eqn. C.3 to third order and only using the elastic coefficients σ′n = G′nγ0

(to compare the elasticity of materials) yields

σ = γ0
(
G′1sin(ωt) +G′3sin(3ωt)

)
= γ0

(
G′1sin(ωt) + 3G′3sin(ωt)− 4G′3sin

3(ωt)
) (C.6)

using the trigonometric identity

sin(3ωt) = −4sin3(ωt) + 3sin(ωt). (C.7)

Equating coefficients for sin(ωt) in Eqns. C.5 and C.6 yields

G0 = G′1 + 3G′3, (C.8)
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while equating coefficients for sin3(ωt) yields

G0γ
2
0b = −4G′3. (C.9)

Solving for G′1 in Eqn. C.8 and plugging in G′3 found in Eqn. C.9 yields

G′1 = G0

(
1 +

3

4
γ20b

)
. (C.10)

Finally, we compare Eqn. C.10 to Eqn. C.4 to derive the relation between b and [e1]

b =
4

3

[e1]

G′LV E
, (C.11)

where we assume G′LV E is approximately equal to the linear storage modulus G0. This should be a fair

assumption if the oscillation measurement is taken in the elastic limit where De > 1.

C.2 Taylor Series Expansion for Fung Model

Here, we derive the Taylor Series expansion for the Fung model defined in Eqn. 5.10,

σ(γ) = G0γe
αγ2 . (C.12)

To compute the relation defined in Eqn. 5.12 we must perform a Taylor Series expansion for Eqn. C.12 about

small strains (γ = 0),

σ(γ) ≈ σ(γ)|γ=0 +
dσ

dγ

∣∣∣∣
γ=0

γ

1!
+
d2σ

dγ2

∣∣∣∣
γ=0

γ2

2!
+
d3σ

dγ3

∣∣∣∣
γ=0

γ3

3!
+ · · · . (C.13)

The derivatives (up to third order) and their values at γ = 0 are defined as follows

σ(γ)|γ=0 = 0 (C.14)

dσ

dγ
= G0e

αγ2 + 2G0αγ
2eαγ

2
(C.15)
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dσ

dγ

∣∣∣∣
γ=0

= G0 (C.16)

d2σ

dγ2
= 6G0αγe

αγ2 + 4G0α
2γ3eαγ

2
(C.17)

d2σ

dγ2

∣∣∣∣
γ=0

= 0 (C.18)

d3σ

dγ3
= 6G0αe

αγ2 + 24G0α
2γ2eαγ

2
+ 8G0α

3γ4eαγ
2

(C.19)

d3σ

dγ3

∣∣∣∣
γ=0

= 6G0α. (C.20)

Plugging in Eqns. C.14-C.20 to Eqn. C.13 yields

σ(γ) ≈ G0γ +G0αγ
3

= G0γ
(
1 + αγ2

)
.

(C.21)

Thus, comparing Eqn. C.21 to Eqn. C.1 yields the relation between the Fung nonlinear model parameter α

and the universal nonlinear parameter b:

b = α. (C.22)
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