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ABSTRACT 

Planning Support System (PSS) with a core of dynamic spatio-temporal model has been 
developed as analytical and information tools to aid and inform urban planning processes. 
However, scholarly communities identify that PSS has yet been popularized in planning 
practices, and not fully capable of meeting the challenge of understanding complex urban 
environments. I am dedicated to investigate and break through the bottlenecks of PSS 
with my experiences with University of Illinois Landuse Evolution and Impact 
Assessment Model (LEAM) PSS, which exemplify a PSS that that aid the process of 
collaboratively building spatio-temporal scenario models and transferring the knowledge 
to planning practitioners. 

I explore the future applications of PSS including Smart Cities, sentience, resilience, and 
environmental planning processes and their role in improving PSS usefulness in the 
practice of planning. PSS improvements will be presented in terms of multi-directional 
spatio-temporal processes and scenario planning. Moreover, I will address the process of 
transferring knowledge to users on model validity and ‘goodness-of-fit’ in real world 
planning applications. 

Beyond the traditional theoretical framework of PSS, the emerging Complex Urban 
System Sciences (CUS) challenge the core assumptions of spatial models of PSS, and 
pose opportunities for updating current PSS approaches into scalable spatio-temporal 
model that adheres to CUS principles. I will analyze this potential infusion by examining 
next generation PSSs within a framework of current CUS theories and advancement in 
statistical and computational methods. Case studies involved in my dissertation include 
LEAM PSS’ applications in McHenry County (IL), Peoria (IL), Chicago (IL), and St. 
Louis (MO).  

The final part of this dissertation highlights my contributions to the existing CUS 
theories. I will demonstrates how evidence from empirical applications can contribute to 
CUS theory itself. I will show how CUS can challenge the core assumptions of “distance 
to CBD” models that economists use to characterize urban structure and land-use.  
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CHAPTER 1: INTRODUCTION 

1.1 OVERVIEW 

Planning practitioners are constantly challenged with anticipating the potential 
consequences of proposed policy and investment choices. This is a difficult task. In fact, 
examples abound of urban planning problems that have resulted from the unintended 
consequences of seemingly reasonable urban development policies (Bristol, 1991; Deal 
& Pallathucheril, 2009; Deal & Schunk, 2004). Some of these problems can partly be 
addressed with the use of what Batty described as “geo-information-technology based 
instruments” (Batty, 1995, p574), more commonly referred to as Planning Support 
Systems or PSSs (Brail & Klostermann, 2001; Geertman & Stillwell, 2004). A PSS 
brings together base data, analysis engines (models), and information delivery systems 
(visualization interfaces) to provide planners and communities with critical knowledge of 
various dynamic systems and provide visual data interfaces in order to facilitate 
communicative planning approaches (Brail, 2008; Brail & Klostermann, 2001; Deal & 
Pallathucheril, 2008; S. Geertman & Stillwell, 2003; Geertman et al., 2013).  

In typical Planning Support System (PSS) toolboxes, land-use change models and 
visualization devices are often used to inform planning and decision making by 
simulating possible future land-use outcomes, such as how land-uses might evolve in a 
specific place over a specific period of time—and in some cases what impacts these 
changes might elicit (Sun et al., 2009). The ability to forecast into the future has proven 
useful in scenario planning and some other planning exercises (Chakraborty et al., 2011; 
Couclelis, 2005); As the scholarship that surrounds PSS technologies becomes more 
mature (and computing power continues to advance), the ways in which these tools might 
be made more useful (i.e., more accessible) and endemic to the planning process has 
become a more central concern (Saarloos et al., 2008; te Brömmelstroet, 2013; Vonk et 
al., 2005). 

PSS scholars have argued for some time that PSSs need to be “softer”, more flexible, 
transparent, and capable of addressing a wide range of planning process and practice 
issues (Batty, 2007; Deal & Pallathucheril, 2009; Klostermann, 1997; te Brömmelstroet, 
2010; 2012; Vonk & Geertman, 2008). Because PSS is an immature technology, there has 
been a necessary but singular focus on geo-information tools and technology 
development in the past. This resulted in PSSs that were perceived to be too complex, 
inflexible, and incapable of assisting in practical planning tasks (Vonk & Geertman, 2008; 
Vonk et al., 2005). Other identified bottlenecks to PSS practicality and usefulness include: 
a) model-to-user communication deficiencies (Deal & Pallathucheril, 2009; Deal & Pan, 



2 

 

2016; Geertman & Stillwell, 2004; Pelzer et al., 2014; Saarloos et al., 2008; te 
Brömmelstroet, 2010, 2012, 2013; Vonk & Geertman, 2008; Vonk et al., 2005; Vonk et al., 
2006); b) model validity and trustworthiness (Geertman & Stillwell, 2004; Klosterman & 
Pettit, 2005; Pelizaro et al., 2009; Shiffer et al., 2001; Shiffer, 1995; te Brömmelstroet, 
2013); c) collaborative planning (Deal & Pan, 2016; Klosterman & Pettit, 2005; 
Klostermann, 1997; Pettit, 2005; te Brömmelstroet, 2010), d) encouraging mutual 
learning (Pelzer et al., 2014; te Brömmelstroet, 2012; Vonk & Geertman, 2008), and e) 
actively enabling user feedback (Deal & Pallathucheril, 2009; Deal & Pan, 2016; Pelzer 
et al., 2014; te Brömmelstroet, 2012). Chapter 2 will be focused on refining those 
bottlenecks based on my research experiences on PSS. Chapter 3 and Chapter 4 will 
address some of the challenges identified. 

Technological challenges also persist. Some concern on how PSSs can help us respond to 
new planning paradigms such as sustainable planning (Deal & Pan, 2016), smart cities 
(Deal et al., 2015), resilience and technological sentience (Deal et al., 2017b). Other 
challenges include the incorporation of geographical agent systems, spatial-temporal 
database, semi-parametric spatial-temporal models, high-performance statistical learning, 
and parallelism among others (Deal et al., 2018), the intelligent use of human mobility 
and social network data (Deal et al., 2018), and the inclusion of new theoretical structures 
(e.g. Complex Urban Systems). 

Randomness, non-linearity, and inconsistency across scales have been found to 
characterize both inter- and intra- urban-system interactions (Batty, 2012; Bettencourt, 
2013; Bettencourt et al., 2007; Bonner, 2011). These and other discoveries have helped 
define a new science of cities–Complex Urban Systems (CUS) (Batty, 2013). This new 
approach to analyzing urban structure allows researchers to look at both the macro and 
micro-dynamics within urban systems. It also encourages PSSs to evolve to contribute 
empirical evidence to the science of CUS, and to the methodologies that can demystify 
CUS for practical planning applications. 

My research concerns the future directions of PSSs (with a core of spatio-temporal 
models), with a particular interest in the practicality and usefulness in PSS applications 
including new methodologies and theoretical structures. In the process, I will focus on 
how emerging CUS science can be seen as both a challenge and an opportunity for 
spatio-temporal PSS models. My research will also demonstrate how the development 
and deployment of practical PSSs might contribute to CUS theories and methods.        
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1.2 DISSERTATION STRUCTURE AND RESEARCH METHODS 

I begin this dissertation by defining PSSs and their core models that shape the scope of 
this research. Next, I explore the existing PSS literature based on my experience with 
University of Illinois Landuse Evolution and Impact Assessment Model (LEAM) 
modeling platform. I focus on Smart Cities, sentience, resilience, and environmental 
planning processes and their role in improving PSS usefulness in planning. I then address 
PSS improvements in terms of multi-directional spatio-temporal processes and scenario 
planning. I also address questions of model validity and ‘goodness-of-fit’ in real world 
planning applications. I lay out possible PSS evolutions in terms of the emerging CUS 
sciences and demonstrate how my empirical work on PSS implementation can be used to 
help solve methodological and theoretical questions posed by CUS theories. I conclude 
with a short discussion of my findings and contributions to the field of planning. 

This dissertation answers the following research questions:  

Question 1: How can be PSSs made more useful to planning? 

Question 2: How to improve scenario planning practices with multi-directional temporal 
PSS?  

Question 3: How to transfer goodness-of-fit into credibility of PSS model to users? 
(Paper 3, model and empirical results) 

Question4: What evolutions of PSS models are needed to better fit CUS theories and 
methodologies? 

Questions 5: What methodological and theoretical questions of CUS can be answered by 
empirical research of CUS models? 

• Hypothesis 5.1: A network-based urban system describes activities in cities better 
than a “distance to CBD” model of city structure and land-use economics.  

1.3 DEFINITIONS AND KEY TERMS 

In this section, I define the key terms of my research: 1) Planning Support Systems (PSSs) 
and 2) its scalable spatio-temporal model that originates from land-use change models.  

PSS has a range of definitions. Harris (1989) defines PSS broadly – as computer-based 
methods and models to support spatial planning. Harris and Batty (1993) define PSS by 
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its function: it records, stores, and presents geographic information. Klostermann (1997) 
defines PSS as tools that facilitate collective design, with a heart of GIS. Klosterman 
(1999) created an early prototype of PSS—WhatIf? PSS, that uses GIS data to support 
community-based collaborative planning processes and decision making, with a range of 
spatial tools that include land suitability analysis, projecting future land-use demands, 
and allocating the projected demands. Waddell (2002) describes a PSS (UrbanSim) which 
is an integration of a spatial aggregation model, an input-output model, and a GIS-based 
model. Sun et al. (2009) describe a PSS (LEAM) that uses a dynamic spatial modeling 
engine.  

In this research, my case studies and applications use LEAM PSS. Thus, the definition of 
‘PSS’ in my research is tools that aid the process of collaboratively building 
spatio-temporal scenario models and transferring the knowledge to users (including 
planners, local stakeholders, and policy makers). Specifically, the PSS model in my 
research stems from the origin of future land-use change models (White & Engelen, 
1994). Inspired by Vonk et al.'s 6 classifications of PSS functions (Vonk et al., 2007), the 
PSS in my research includes: (1) information visualization (portal.leam.illinois.edu 
website), (2) information communication (applying PSSs in planning practices), and (3) 
system modeling (spatio-temporal model). The general scope of PSS and my dissertation 
structure is shown below (figure 1). 
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Figure 1 shows the scope of PSS, and how each part relates to my research. The orange 
circle represents the core of the PSS model that I use in my dissertation - scalable spatial 

temporal models. The green circle represents the PSS model's connection to urban 
planning and developmental practices such as knowledge transfer processes, applications 
in Smart Cities, sentience and resilience planning, and environmental planning processes 
(my second and fourth chapters). The red circle shows represents the technique to apply 

spatial model simulations to planning techniques (i.e., scenario planning) with 
multi-directional temporal analysis (my third chapter). The blue circle represents how the 

reach of traditional PSS is extended through emerging CUS theories and methods.   

The modeling core of PSS in my research stems from land-use or land-cover change 
models, whose original definition is linking observations at a range of spatial and 
temporal scales to empirical models for understanding land-use/cover change (Turner et 
al., 1995). In my research, expansions of this prototype model include modeling a range 
of events (not just land-use change in urban environments) and enabling 
multi-dimensional temporal analysis (not just forecasting).  
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1.4 SUMMARY OF CHAPTERS  

Chapter Two focuses on practical applications of PSSs, especially my personal 
experience with the LEAM PSS. Research on the barriers of PSS in real-world planning 
applications is well documented. I claim that the wide adoption of PSS also relies on their 
ability to fit into current and future urban planning and development practices, including 
“Smart City” projects, sentient systems, urban resilience, and sustainable planning. 
LEAM and other PSS case studies will be presented and analyzed to consider the 
direction of needed PSS improvements.   

In Chapter Three I develop a multi-directional temporal PSS process that improves the 
salience of PSSs in scenario planning exercises. I apply ideas of forecasting, backcasting, 
and recasting in a comprehensive planning process that took place in McHenry County, 
IL in 2006. I consider the model used and the subsequent plan 10 years after the plan is 
enacted. 

Chapter Four proposes a knowledge transfer process for PSS technologies. It attempts 
to show how modelers can help users of PSS understand the models and their usefulness 
in practice through a ‘goodness-of-fit’ analytical process that is easy to perform and 
understand. I use a post-mortem model review process to argue my point. 

In Chapter Five I introduce emerging CUS science and the challenges and opportunities 
that it presents to the PSS scholarly community. A number of theoretical and 
methodological changes will be listed to update current PSS approaches into scalable 
spatio-temporal models that adhere to CUS principles. 

Chapter Six demonstrates how using CUS based PSS techniques in empirical 
applications can contribute to CUS theory itself. I use the Chicago metropolitan area as a 
case study. I show how CUS can challenge the core assumptions of “distance to CBD” 
models that economists use to characterize urban structure and land-use. A stochastic 
greedy algorithm (SGD) is created to measure network connectivity from places to places 
in Chicago.  

In Chapter Seven, I summarize key findings and contributions. I then discuss the future 
direction of PSS and CUS research, with a particular emphasis on their limitations. This 
leads to a discussion of my future research. 

1.5 PUBLICATIONS FROM THIS DISSERTATION  

Chapters Two through Six are based on my published or submitted papers co-authored 
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with Prof. Brian Deal, listed as below: 

Chapter Two: 

• Deal, B., and Pan, H. (corresponding) (2016). Discerning and Addressing 
Environmental Failures in Policy Scenarios Using Planning Support System (PSS) 
Technologies. Sustainability, 9(1): 13.  

• Deal, B., Pan, H., Pallathucheril, V., Fulton, G. (2017).Urban Resilience and 
Planning Support Systems: The Need for Sentience. Journal of Urban Technology, 
24(1): 29-45 

• Deal, B., Pallathucheril, V., Kim, Y., and Pan, H. (2015). Sentient PSS for Smart 
Cities in Planning Support Systems and Smart Cities eds Geertman, S., Ferreira, Jr. 
J., Goodspeed, et al.: 281-296 

Chapter Three: 

• Deal, B., Pan, H., Timm, S. and Pallathucheril, V. (2017). The Role of 
Multidirectional Temporal Analysis in Scenario Planning Exercises and Planning 
Support Systems. Computers, Environment and Urban Systems, 64: 91-102. 

Chapter Four: 

• Pan, H. and Deal, B. (Working Paper).Knowledge Flow of Planning Support 
Systems (PSSs) into Planning Practices: A Post-Mortem Case Study of LEAM 
PSS in McHenry County, IL. 

Chapter Five:  

• Deal, B., Pan, H., and Zhuang, Y. (2018) Land-Use Change Models in Complex 
Urban Systems in Comprehensive Geographic Information Systems eds Bareth, G., 
and Song, Y. 

Chapter Six:  

• Pan, H., Deal, B, and Chen, Y. (Working Paper). A Reassessment of urban 
land-use structure and land-use patterns: distance to CBD or network-based? 
—Evidence from Chicago  
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CHAPTER 2: PSS APPLICATIONS IN URBAN PLANNING 

2.1 OVERVIEW  

In this chapter, I focus on applications of PSS in planning practices and their role in 
future models of urban development. This chapter is based on my experience in 
developing and using the University of Illinois’ LEAM PSS for different places.  

In Section 2.2, I discuss how future trends of urban development, including smart and 
resilient cities, need updated PSSs to facilitate information monitoring and collaborative 
decision-making in developmental processes. Section 2.3 focuses on the planning process. 
How can PSS potentially enhance environmental planning processes? In Section 2.4, I 
list key features of PSSs that need to be developed to answer the needs of an updated 
PSS. 

2.2 PSS IN FUTURE TRENDS OF URBAN PLANNING 

2.2.1 Smart Cities  

Although not new, the term Smart City has evolved over the last decade into a popular 
and perhaps overused phrase in the urban lexicon (Caragliu et al., 2011). Poole (2014) 
observes that the term generally implies a manifestation of “the internet of things” at an 
urban scale, predicated on “ubiquitous wireless broadband and the embedding of 
computerized sensors into the urban fabric.” He also notes that “big technology, 
engineering and consulting companies” (most notably IBM and Cisco) have been the 
most energetic in promoting the term in the hope of profiting from big municipal 
contracts. Many consider the basic vision of a smart city as a wired (Kitchin, 2014), 
sensor-filled (Hancke et al., 2013), tech-heavy (Lee et al., 2008), “technolopolis” (Gibson 
et al., 1992), that uses sophisticated computing techniques to transform the city into an 
intelligent machine (Hall et al. 2000; Humphries 2013) as fatally flawed. In this world 
view the user does not have a place in the system. This limits its relevance to urban 
planning and urban management, which privilege consultation and participatory 
processes. Smart city proponents have not demonstrated if and how citizen voices can be 
heard in smart ways (Poole, 2014). Greenfield (2013) agrees: “The notion of the smart 
city in its full contemporary form appears to have originated (without) any party, group or 
individual recognized for their contributions to the theory or practice of urban planning.”  

In contrast, other new technologies appear to be paying more rather than less attention to 
end-users. Smart phones and other hand-held devices with apps directed at the user 
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experience are changing the computing landscape. A majority of all internet traffic is now 
taking place on mobile devices (Lella & Lipsman, 2014). Hopper (2000) describes this as 
a movement toward computational environments that are “more responsive and useful 
with more direct connections to users” within their own physical world. He suggests 
these systems display a degree of ‘sentience,’ a greater awareness of space, time, context, 
and user experience. Although sentience is not yet a part of the smart city discourse, an 
ability to gather information from a particular context in terms of space and time through 
sensor technologies is a key part of the smart city movement.   

The computational basis for smart city approaches has been focused on urban data 
acquisition techniques, data structures and communication protocols, real-time analysis, 
and some short-term projection capabilities. This focus ignores the connection to longer 
time-frame analysis critical to urban planning. Planning support systems can and must 
help bridge this gap. In this chapter I examine the connection between smart cities, 
sentience, and the relationship to PSS. I do this by briefly examining the notion of 
sentience from a computing perspective. I then introduce PSS technologies and describe 
ways in which a sentient PSS might evolve. To describe the features might be included in 
such a system, I explore how the current LEAM PSS (Deal and Pallathucheril 2009a; 
Deal et al., 2017) would need to evolve in order to manifest sentience. We conclude with 
a discussion on potential drawbacks and paths forward. 

Sentient computing systems are described as computational environments that respond to 
evolving or changing environmental conditions. They are considered one pathway toward 
ubiquitous or pervasive computing, an advanced concept where computing and 
computational services are available everywhere, anywhere, all of the time (Saha & 
Mukherjee, 2003). Hopper (2000) uses the term “sentient computing” to suggest 
computational environments that are made more responsive and useful by more direct 
connections to users and to the physical world.   

Context Awareness and Adaptability 

Schilit of Google Research (the creator of one of the first system infrastructures for 
location-aware mobile computers while at Xerox PARC) suggests that “context-aware 
computing applications” do not occur at a single location in a single context, as in 
desktop computing, but rather span a multitude of situations and locations. He notes that 
this form of computing is much broader than mobile computing because it concerns 
mobile people not just mobile computers (Shilit et al., 1994). Harter et al. (1999) add that 
“a persistent distributed object system” is one of the most important features of a 
context-aware system and describe an early prototype of an application as ‘sentient’ 



10 

 

because it knows the location of users and equipment, the capabilities of the equipment, 
and the networking infrastructure needed to perform certain tasks. More recently, 
Henricksen et al. (2006) argue that context-aware computing systems require 
infrastructure to gather, manage, and disseminate contextual information to applications.  

Hewlett-Packard’s nomadic computing is one early approach to developing a 
context-aware computing framework (Kindberg & Barton, 2001). In the HP model, every 
entity has a web representation that includes both static attributes (such as names and 
locations) and dynamic attributes (in terms of its space and time context). The nomadic 
framework updates the information associated with the entity and its surroundings as the 
entity moves through space and time. It is generally intended to support users of wireless, 
handheld devices interacting with their environment. For example, a user’s handheld 
device automatically displays information about the room into which the user has just 
entered or the projector in the room projects a presentation file that is on a device carried 
by the user. In HP’s Cooltown Project, the nomadic framework has been applied to a 
virtual city (Kindberg & Barton, 2001) in which entities in the model include people, 
places and things connected to an urban setting. The computing system “knows” 
real-time human perceptions of their physical environmental for the whole population 
(Abdelzaher et al., 2004). All the information is retrievable from a URL associated with 
the entity. 

More common examples include: a tablet computer switching its screen orientation, maps 
orienting themselves with the user’s position or adapting the zoom level in response to 
the user’s speed of travel, and a smart phone adjusting the screen’s backlight in response 
to changing ambient light levels. Although simple, these examples represent strides in 
context-aware applications. In contrast to traditional approaches, these applications are 
not designed for a single or a limited set of user contextual experiences; they are designed 
for a broad range of potential computer-user interactions. It is not just a matter of making 
sense of data but using the data to predict what a user is likely to want or need and being 
prepared to satisfy that need.  

Interaction with Users 

A sentient computing system’s ability to sense objects and adapt to change is not limited 
to its relation to the physical environment. The system is also expected to adjust itself to 
user behaviors, facilitating smooth user experiences and presenting easily interpreted 
information through advanced visualization techniques. 

Addlesee et al. (2001) point out the importance of user perception in a sentient system: “a 
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sentient computing system doesn’t need to be intelligent or capable of forming new 
concepts about the world—it only needs to act as though its perceptions duplicate the 
users’ [perceptions].” He also notes that one solution involves creating devices and 
applications that appear to cooperate with users, reacting as though they are aware of the 
context and manner in which they are being used, and reconfiguring themselves 
appropriately. Harter et al. (1999) suggest that the ultimate justification and test of 
sentient computing will be its capacity to deliver benefits to users; enabling them to 
interface directly with devices and express complex issues in a simple way.  

The University of Washington’s Portolano project is an early example (Esler et al., 1999). 
It emphasized invisible, intent-based computing, which infers user intentions via their 
actions in the environment and their interactions with everyday objects. A user turns on a 
device (an e-reader) on one network and seamlessly picks up where she left off using 
another device (a different e-reader) on another network. Project devices are so highly 
optimized to particular tasks that they blend into the world and require little technical 
knowledge (Saha & Mukherjee, 2003). The project was part of a DOD DARPA 
sponsored effort to make computing an integral part of manufacturing. 

Another early adopter in sentient user interactions was the AT&T Laboratories 
Cambridge (AT&T Laboratories Cambridge, 2001). Their stated goal was to “create 
devices and applications that appear to cooperate with users, reacting as though they are 
aware of the context and manner in which they are being used, and reconfiguring them- 
selves appropriately.” 

The AT&T system used sensors to update a model of the real world in terms of object 
positions, descriptions, and state in a way familiar to the user so that “the model describes 
the world much as users themselves would.” They used the model to write programs that 
reacted to changes in the environment according to the user’s preferences. They referred 
to this as sentient computing, “because the applications appear to share the user’s 
perception of the environment.” 

A sentient computer system that interacts with users in a way that understands the social 
characteristics of users is a step closer to understanding the users’ physical environment 
and real-time emotions. In his description of “social computing,” Dourish (2001) calls for 
an interface design that “recognizes that the systems we use are embedded in systems of 
social meaning, fluid and negotiated between us and the other people around us.” 

Ubiquitous or ambient computing are more recent and related terms. They represent a 
vision for computing that is “everywhere all the time.” One example is the Google House 
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project which attempts to integrate ubiquitous sensing/computing networks with 
handheld user-interfaces (Cabitza et al., 2014). Google apps and technologies in general 
are moving in this direction. Google Now can exchange data with the Google platform in 
order to personalize the user experience. The recent purchase of the Nest thermostat 
system by Google begins to tie these entertainment-oriented systems to building controls 
and human comfort.  

Proponents of smart cities have focused on real-time data acquisition from ever 
expanding sensor networks and the information and communication (ICT) infrastructure 
that facilitates use of these data (Giffinger & Gudrun, 2010; Kloeckl et al., 2012; Hancke 
et al., 2013). The question is: how do we make use of the data available in ways that 
support planning and decision-making? Kitchin (2014) notes that “the production of 
sophisticated data analytics for understanding, monitoring, regulating and planning the 
city,” is critical for realizing smart city goals. Currently however, the value of these data 
in thinking about future, planning, or using plans to make decisions has been largely 
overlooked. 

Connections to socio-physical systems 

Sentient computing system terminology has been adopted into the socio-physical systems 
lexicon, although at this point in very informal and limited ways. A description of 
‘sentient buildings’ is an early example. Wu et al. (2004) describe sentient building 
systems as context-aware, autonomous, decentralized, proactive, adaptable, and 
dependable, with real-time guarantees. Mahdavi et al. (2001) describe self-aware 
buildings (closely related to sentient buildings, as buildings with modular, distributed, 
flexible, and scalable information collection infrastructure; advanced building 
information systems; and intuitive, flexible, and organized interface between building 
operation systems and users (Mahdavi et al., 2001; 2004). 

In most descriptions of sentient building systems, sensors (temperature, humidity, CO2, 
occupancy, and daylight) are deployed in different areas of the buildings. These sensors 
act as a continuous monitoring and data collection infrastructure. They typically use 
building automation and computing systems to identify patterns from past data and 
simulate future control curves for controlling fans and valves. Like sentient computing 
systems these systems are context-aware and sensitive to users’ needs: they attend to 
building user comfort, they turn on lights when users enter a new space, and they regulate 
fresh air when many people collect in one area. These systems can also be proactive: data 
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from real-time building conditions and user input automatically update future control 
curves. For example, if users consistently override temperature settings, the system 
adjusts future settings to reflect the desired change. In many cases, real-time building 
performance data are sent to a dashboard-type system to present current building system 
states and to expose control failures for building managers. New dashboard aggregations 
are also being used to provide some level of building performance feedback to users who 
lack mechanical system training. 

2.2.2 Sentient Resilient Cities 

Holling (1973) defined resilience in ecological systems as a capacity to tolerate 
disturbance without collapsing into a qualitatively different state. Resilient socio–
physical systems might also include a capacity for innovation in a major 
disturbance-fueled response (Folke, 2006). Other descriptions of socio-physical systems 
resilience include concepts of non-linear dynamics, thresholds, uncertainty, redundancy, 
diversity, and interdependence, among others (Holling et al., 2001; Berkes et al., 2008). 
The difficulties inherent in determining some common parameters for urban systems 
resilience has made its achievement a complex undertaking (Godschalk, 2003; Wilson &  
Piper, 2010; Davoudi & Porter, 2012). In fact, some research has suggested that the 
intricacies of urban systems and our limited cognitive ability to understand them, have 
been the main challenges to achieving urban resilience (Comfort et al., 2001; Fraser et al., 
2003; Batty, 2013).  

According to Norberg and Cumming (2008), achieving resilient places requires a type of 
planning that a) continuously monitor the (current and potential future) state of various 
interdependent systems, b) is prepared to adapt to potential state changes, and c) govern 
these systems in inclusive ways. I argue that this approach to planning calls for PSSs that: 
embrace complexity, identify change, understand scale, identify options, and help support 
critical decisions. In the field of computational sciences these are characteristics of 
sentient systems, systems that are aware of the world around them and adapt accordingly. 
Can information systems that facilitate plan-making and city administration be made 
sentient?  

In this section I explore the potential for a new generation of sentient PSSs. I consider the 
ability to collect continuous and diverse data, the ability to iteratively learn from the data, 
and the ability to transform the data into useful and relevant contextualized information 
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to be critical components in planning for and building more resilient communities. I use 
the term sentience to represent an ability to collect, process, learn, contextualize, and 
present locally significant information. However, merely collecting or presenting 
voluminous amounts of data is not sufficient. Smart information systems are desperately 
needed to manipulate these big data into information useful to a variety of individuals in 
a planning process. I PSS to represent the smart information systems needed to translate 
sentience into a planning framework. I use PSSs as information technologies that help us 
understand, manage, and plan complex urban systems (Brail & Klostermann, 2001; 
Geertman & Stillwell, 2003; Brail, 2008; Geertman et al., 2013). These 
conceptualizations (sentience and planning support) are used to consider how intelligent 
or sentient planning support systems promote more strategic, context-aware, resilient, and 
ultimately sustainable communities; what primary design considerations would make 
such a PSS possible and useful.  

I make my case for more sentient PSSs by first briefly examining the concept of urban 
resilience and its link to urban planning. This helps lead to the notion of sentience. I then 
frame sentience from a computing perspective and present examples of emerging sentient 
computing and sensory monitoring applications from socio-ecological and socio-physical 
perspectives. I then sketch out ways a PSS might acquire sentience. I conclude by 
considering how this technological advancement might come about by looking at related 
activities in information delivery and the potential challenges to the development of 
sentient planning support systems. 

Urban Resilience and Planning 

Norberg and Cumming (2008) describe “embracing complexity” as one of the important 
challenges to planning for resilience in a socio-physical (urban) systems context. Liu et 
al. (2007) cite failures in urban growth management to illustrate that complexities in 
coupled human and natural systems can trigger counterproductive policy outcomes (e.g., 
some urban growth policies eventually spur more urban sprawl). Alberti and Marzluff 
(2004) use complex system properties to illustrate the challenges for urban resilience 
planning: “many small changes in system patterns at one level can create system 
instability and unpredictable events at another.” Ernstson (2008) claims that the cultural–
political–economic complexities in cities like Phoenix have resulted in emergent, highly 
dispersed urban patterns that undermine the resilience of the city.  
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Recent scholarship has proposed various approaches to planning for resilient cities. For 
example, Fiksel (2006) proposes analyzing multiple models simultaneously to “reflect 
different system interpretations,” which can be linked to the idea of redundancy and 
iteration. Folke et al. (2002) argues that in order to counteract the challenge of 
complexity, “understanding the complex connections between people and nature” is 
needed for “technological innovations and economic policies aimed at building 
resilience.” Urban disaster researchers have suggested that urban resilience requires a 
combination of opposing strictures, including redundancy and efficiency (and in some 
cases simplicity), diversity and interdependence, strength and flexibility, autonomy and 
collaboration, and planning and adaptability (Godschalk , 2003; Zimmerman, 2001; Bell, 
2002). In this construction, redundancy suggests that future uncertainties can be 
countered by considering more than one future scenario and corresponding back-up plans, 
and efficiency refers to the simplification of complex systems interpretations and the 
avoidance of complex solutions. This commonly requires developing a comprehensive 
and objective approach for identifying the possible risks and related consequences facing 
our communities. 

According to some, a precautionary approach aimed at reducing vulnerability and 
enhancing resilience is needed in everyday planning activities (Rozenfield & Kak, 1982; 
Bulkeley & Betsill, 2005; 2013). There are also many ‘no-regrets actions’ (actions that 
ignore the costs of preventative action), investments, and regulatory changes that 
communities can make to reduce their vulnerability and enhance their resilience. These 
actions, however, require decision making under considerable uncertainty (De Roo & 
Porter, 2007). Effective adaptation in light of these uncertainties necessitates coordination 
among diverse stakeholders—including federal, state and local officials—along with 
private property owners and resource users. Additionally, in many cases adaptation will 
entail difficult tradeoffs among competing interests (De Roo & Porter, 2007).  

To achieve resilience in an increasingly uncertain urban context, we need planning 
approaches that can forecast into the future and assess the potential impacts that might 
materialize and how they could influence communal quality of life. The construction of 
systems models that produce multiple futures and help simplify interpretations of 
potential outcomes is a necessary component of a planning tool box that can support such 
an approach. According to Folke et al. (2005), continuously monitoring the state of the 
system, an ability to adapt to different situations, and a highly diverse approach to 
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governance are also critical components of this toolbox. As I will describe later, these are 
also critical attributes of sentient systems. 

Monitoring 

Efforts are being made to monitor and analyze an innumerable array of urban system 
component parts. This is made possible with the emergence of computational capacity 
increases and low-cost sensing and monitoring systems. These efforts are being touted as 
a way to manage and ultimately optimize city operations. Urban management systems of 
this kind are often connected to the term smart city. The smart city concept has been 
described by global technology firms as “the application of complex information systems 
to integrate the operation of urban infrastructure and services such as buildings, 
transportation, electrical and water distribution, and public safety,” and is most popularly 
connected to a large IBM ad campaign to promote their ICT capabilities (Harrison & 
Donnelly, 2011; Paroutis et al., 2014). Smart city projects typically make use of sensor 
networks to monitor, real world, real time systems; provide real-time adjustments and 
alerts to possible hazards; make use of distributed installations; and use various formats 
and interfaces for disseminating information.  

Environmental monitoring also represents a class of smart applications. Instrumenting 
natural spaces with networked micro-sensors enables long-term data collection at scales 
and resolutions that are difficult to obtain otherwise. Generally, according to Paroutis et al. 
(2014), most smart studies and projects can be divided into 2 categories: those that focus 
on the features of the technology adopted to solve particular problems, and those that 
consider complex systems that are prone to particular behaviors such as adaptation and 
self-organization (Portugali, 2000). In each case a large component of the work is the 
monitoring and sensing of current conditions. Adaptability, in contrast to monitoring, 
assumes a more dynamic state.  

A weakness in the smart monitoring approach is the problem of big data. Enormous 
volumes of data are generated, only some of which are relevant. Sensing urban 
infrastructure, for example, produces enormous amounts of data, most of which describe 
static and stable conditions. 

Adaptability 

One criticism of the traditional roles of planners is that they lack a good understanding of 
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the upstream or downstream implications of their work. For example, planners have 
historically failed to recognize the long-term ramifications of planning and building 
decisions on climate, energy and water supplies, or community wellbeing (Deal & 
Pallathucheril, 2009a). 

Urban planners typically use the term context to describe the current, static, conditions, in 
terms of physical space, social and human variables, and historicism. Good planning 
however, needs to contextualize—to understand and adapt planning principles to the 
characteristics and demands of specific places at specific points in time, past present, and 
future. Greater awareness of broader contexts and potential implications enables planning 
decisions that are more readily adaptable to change and therefore more resilient (Deal & 
Chakraborty, 2010). For example, planners and communities who make and use plans 
may not have easy access to the diverse body of information on climate change. The 
information they do have is generally presented and communicated in ways that are 
difficult to understand and translate into common planning actions. This gap in 
understanding of the broader implications and potential effects of climate change limits a 
community ability to plan for and therefore adapt to climate-related stimulus.  

Governance 

Folke et al. (2005) emphasizes the importance of “the social dimension of ecosystem 
management,” including organizational and institutional structures for dealing with 
uncertainty and change. They advocate for a form of dynamic governance involving all 
citizens as a necessary path toward community resilience. Similar to some participatory 
planning processes, the concept involves empowering and equipping all community 
members (equally) with the tools needed to participate in the decision-making process. 
This in itself is a complex undertaking: it requires ubiquitous access and two-way 
communication and a deep understanding of individual capabilities. This necessitates 
communication lines that include traditional and non-traditional approaches. The 
traditional information push from the system to the users (i.e., information is pushed out 
from ‘expert’ sources to decision makers and community members) usually take shape in 
traditional approaches of report writing or web portal development. Equipping all 
equally, however, requires that we somehow assess what users know. The traditional 
push cannot assess this. It requires another line of communication to pull information 
from the user back to the system to assess understanding and capability. 
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This type of participatory planning and governance also requires mechanisms whereby 
individuals can easily interpret information and learn through experiencing and 
interacting with the data. Berke (2002) stresses that “accumulating experience through 
collective learning” is key for improving the resilience of socio-physical systems. A 
user-friendly interface and an individual’s ability to understand the data generated by 
experts and/or their computational systems and mechanisms for feedback are therefore 
critical to a good decision making processes and PSSs. 

2.2.3 PSS in Environmental Planning Processes 

It has been suggested that among other attributes, good urban planning might function as 
a publicly driven counter weight to potential market failures (Klostermann, 1985). 
Similarly, as a specific planning disciplinary area, environmental planning might be 
viewed as a tool to counteract market forces that tend to result in environmentally 
unsustainable developmental patterns. For example, in a self-optimizing free market, no 
one will pay to avoid environmental externalities, especially those that are difficult to pin 
down or happen at stochastic spatial or temporal scales—unless there are planning or 
regulatory frameworks in place. These types of frameworks usually depend on 
environmental assessment processes and/or tools to uncover the environmental impacts of 
development or investment decisions and use planning related measures to offset them 
(Marsh, 2005; Randolph, 2004). In a typical planning process, however, these 
assessments are usually poorly derived, poorly understood, and poorly applied. This can 
result from a number of potential issues. For example, there might be a lack of adequate 
information to correctly assess environmental consequences, or stakeholders might 
discount the spatial and temporal implications of the impacts. There may also be a failure 
to understand the dynamic and complex interactions between socio-ecological systems 
including secondary and tertiary response mechanisms. Finally, it might be that the 
gravity of the status quo, i.e. blindly following a traditional discourse, is the easiest and 
most compelling route for an un-informed group of stakeholders. 

In this chapter, I argue that if interpretations of environmental impacts are not 
comprehensively derived and sufficiently exposed to stakeholders, the true costs of 
development and investment decisions remain masked and will result in massive 
inefficiencies and ultimately environmental failure. We make this point by looking at 
environmental market failures within a planning context and the potential for planning 
support systems to counteract these failures. We do this by first connecting the literature 
on environmental market failures to planning practices (Section 2) in order to understand 
how these failures are typically manifested in planning related processes. In Section 3, we 
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suggest three steps that might be incorporated into the planning process to counteract 
these failures. These steps include: 1) understanding the environmental issue; 2) 
providing more useful information to stakeholders; and 3) using planning processes to 
tackle spillover effects. In Section 4, we propose that the use of PSSs can help support 
these steps. To illustrate the ideas in real-world planning practices, we introduce the 
implementation of the University of Illinois’ LEAM PSS in 3 application and deployment 
cases: Peoria, IL, St. Louis, MO, and McHenry County, IL. In each case, we demonstrate 
how the LEAM PSS was used to inform specific planning decisions in response to 
potential environmental systems degradation. In Section 5, we conclude the paper with a 
general discussion and conclusions on our ideas and lessons learned, including a brief 
discussion on the future of PSS technology in environmental assessment. 

2.2.3.1 The Realization of Environmental Market Failures in Planning 

In the literature on environmental market failures, environmental impacts are often 
considered undervalued; They are typically described as an externality, or side effect 
instead of a primary or secondary cost (Jaffe et al., 2005). The consistent undervaluation 
of environmental costs often results in suboptimal decisions for individuals, organizations, 
or markets as a whole (Andrew, 2008; Jaffe et al., 2005).The root causes of these 
environmental market failures are difficult to pin down, although they are typically 
attributed to information imperfection, global externalities that do not affect local benefits, 
and/or complicated coordination of technology and ecological innovation. Andrew (2008) 
points that when market participants have sparse or uneven information, sub-optimal 
decisions are likely to ensue. This suggests that if information on environmental impacts 
are not known, market participants in routine development decisions are likely to 
generate environmental market failures (P.R. Berke, 2002a; Jaffe et al., 2005).   

Brueckner (2000) considers planning as a potential remedy to the problem. We agree. 
However, that if the environmental impacts of development are not sufficiently estimated, 
trusted, and/or objectively derived, planning will be unable to overcome the negative 
environmental impacts of market driven forces. We also recognize that environmentally 
driven planning approaches can lead to undesirable and unintended environmental 
failures if done in a poor or incomplete way (P.R. Berke, 2002a; He et al., 2011; Naess, 
2001). We discuss four potential ways in which urban planning typically fails to realize 
the true environmental implications of development or investment decisions: 1) a lack of 
adequate information; 2) stakeholder spatial or temporal discounting; 3) a failure to 
understand the dynamic interactions between socio-ecological systems; or 4) the gravity 
of the status quo. 
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A lack of adequate information to correctly assess environmental consequences 

In the literature on market failures, imperfect information or information inefficiency are 
potential causes of failure. These are usually a product of asymmetric or incomplete 
information access (Andrew, 2008). This means that certain types of information may be 
inaccessible to one party but not another, producing an asymmetrical transaction. An 
often used example is the used car market, where a seller of a used vehicle has much 
better information on the car's condition than a potential buyer. In this case the failure is 
due to the asymmetry of the information available to each side of the transaction causing 
a potential over-valuation of the vehicle’s worth by the buyer. In planning and 
development projects, imperfect information is usually the result of information 
availability rather than asymmetry. This occurs when a complex development issue is 
difficult to assess or understand so that decisions are made based on incomplete 
information. This is especially true in the case of environmental impacts, where the issues 
may not be well defined, or even understood by the stakeholders or planners involved in 
the process. This gives rise to suboptimal decision making and ultimately the host of 
environmental failures we currently see in our urban systems. 

He et al. (2011) point out that a persistent failure to deliver environmentally sustainable 
development solutions is closely linked to the separation of environmental assessment 
from the typical urban planning process. We suggest that insufficient adoption of 
environmental assessment is only part of the picture. A more essential problem is that 
most environmental assessment does not take full account of the environmental impacts 
of development. So that even when it is considered a part of a planning and development 
decision process, the delivery of incomplete impacts information can lead to highly 
probable failure. For example, in a typical environmental assessment, a commercial 
development that engulfs a patch of agricultural land might associate the implications of 
the transaction only in terms of the primary impacts produced by the development (site 
related impacts) or the loss of agricultural lands which can be more regional in scope. If, 
however, the development is proximal to ecologically sensitive areas, the development 
could have enormous ecosystem service impacts. This typifies hidden environmental 
costs that are often neglected by traditional environmental assessments. 

A failure to understand the dynamic interactions between socio-ecological systems 
including secondary and tertiary response mechanisms 

Holmberg and Karl-Henrik (2000) propose that the non-linearity of markets often 
confound plans intended for sustainable development. For example, in the Laguna West 
master planned community in Sacramento County, CA, new urbanist and sustainable 
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design principles were used as a basis for the development. Despite rigorous planning and 
analysis when the community began opening, the market for units in the community rose 
at a startling rate and subsequent phases subverted the planned for economic 
diversification and sustainability-oriented goals (Katz, Scully, & Bressi, 1994). Such 
market driven complexities can easily lead to a host of unexpected failures and 
shortcomings. 

The general complexity of urban systems further undermines our ability to evaluate the 
real environmental costs of planning decisions. Urban planning problems are often 
referred to as “wicked problems” that are “inherently different from the problems that 
scientists and engineers deal with.”(Rittel & Webber, 1973). Science and 
engineering-based approaches, however, often deal with only primary impacts and fall 
way short of robust outcomes when applied to such wicked complexity. The non-linearity 
of future urban development patterns, and dependencies among developmental decisions 
often overwhelm analytical capacities of typical environmental assessments especially 
those that use static assumptions the most (Barredo et al., 2003). This difficulty in 
assessing secondary and tertiary (latent) impacts leads to incomplete information and 
confusion which ultimately leads to environmental failure. 

Stakeholder discounting of spatial and temporal environmental impacts 

Secondary and tertiary environmental costs typically spill over long spatial distances and 
trickle into distant futures. These long distances and time lines can lead to the problem of 
discounting. Discounting occurs when a value is subjectively lowered because it is 
removed or distant in terms of time, space, or socio-cultural relationships. Discounting is 
an important concept when discussing environmental sustainability (and climate change). 
Essentially, the argument is that we should not discount the value of environmental 
resources (i.e., a healthy climate) for future generations because it will be just as valuable 
to them in 50 years as it is to us today. However, Fall (2006) argues that we cannot 
predict how future generations will value environmental resources, and that 
environmental crisis could alter the discount rates and slow the rate of environmental 
damage. Weitzman (1998) presents a deductive argument for valuing environmental 
resources with a low discount rate for long-term planning projects, showing that they are 
theoretically likely to produce the best return on investment. Hoel and Sterner (2007) take 
this argument a step further and argue that the rising scarcity of environmental goods will 
also increase the relative cost and have direct effects on the discount rates. The idea of 
devaluing costs that are removed from a particular context in terms of space or time is a 
central problem in planning because it strikes at planning’s very purpose: to adequately 
account for the costs associated with policy and investment strategies (i.e. plans) made 
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within that context.   

Berke and Conroy (2000) argue that although plans are always linked to global concerns, 
“local plans should acknowledge that communities function within the context of global 
(and regional) environmental, economic, and social systems.” Empirical data suggest that 
those links do not always lead to actions; stakeholders tend to overlook and discount the 
spatial and temporal environmental costs of their plans. They further point out that the 
high discount rates that undervalue environmental costs with spatial and temporal 
distance help create plans with severe environmental impact spillovers. We argue that 
stakeholder discounting plays a large role in this phenomenon.  

The gravity of the status quo, i.e., blindly following a traditional, growth-oriented 
discourse 

Some developers, businesses, and even some communities profit by maintaining the 
historical, developmental pattern status quo. Some argue that these patterns have typically 
been put in place at a time of ‘unawareness’ of their environmental implications (Andrew, 
2008; Naess, 2001). Patterns of sprawl development, for example, were started before 
their social, health and environmental ramifications were well known. In other words, 
some historic patterns may no longer be favorable when their associated environmental 
costs are assigned. Another useful example is energy production. Much of our 
fossil-based energy infrastructure was developed before the actual costs of carbon 
emissions were known (Andrew, 2008). Now that we have a better sense of their true 
costs, some of the infrastructure used in the energy industry is no longer viable. Similarly, 
urban development patterns continue to follow the sprawling, growth-oriented path 
initiated during the 1950’s, make it increasingly difficult to make our cities within 
ecologically sustainable and equitable (Naess, 2001).  

In the sustainable design literature, Strategic Sustainable Development (SSD) is a 
proposed method that might tackle the complexity and uncertainties associated with 
sustainable developmental policies and thereby challenge the status quo (Brueckner, 
2000). SSD incorporates a set of techniques including life cycle analysis, indicator 
development, natural capital accounting, forecasting, emissions analysis, and backcasting 
to provide more accurate environmental assessment to current developmental trends and 
policy scenarios. 

In summary, an urban planning context, environmental market failures might be 
attributed to a lack of knowledge of environmental impacts, a lack of understanding of 
secondary or tertiary impacts and decision interactions, poor communication between 
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spatially spread stakeholders, and a poor understanding of alternatives from current 
developmental paths. In the following section, we consider approaches to addressing 
these shortcomings through spatially explicit PSS. PSSs can help engage environmental 
decision making in planning by providing more critical and useful information on the 
environmental implications of development decisions thereby helping stakeholders avoid 
planning related environmental failures.    

2.2.3.2 Improving Planning Decisions with PSSs 

The use of PSSs is a relatively new addition to a long-running and persistent discourse on 
the role of technology in urban planning and policy-making (Deal & Pallathucheril, 
2009a; Harris, 1965; Voorhees, 1959). One of the first comprehensive looks at planning 
PSS was assembled by Brail and Klostermann (2001). Brail (2008) later writes more 
specifically on large-scale urban modeling systems. Geertman and Stillwell (2004) 
followed, documenting best practices in PSS technology, with an update on the state of 
art in 2009 (Geertman & Stillwell, 2009). More recently, the emphasis has shifted to the 
management of information needs (Power & Sharda, 2009), use-based systems (Power & 
Sharda, 2009; te Brömmelstroet, 2010), and web-based strategies of information retrieval 
and delivery (Budthimedhee, Li, & George, 2002; B. Deal & Pallathucheril, 2009a). 
More recent conceptualizations also include Michael Batty’s Smart City (Batty, 2013), 
described as “a fusion of ideas about how information and communications technologies 
might improve the functioning of cities” the idea revolves around the need to coordinate 
and integrate technologies that have synergies in operation but have been developed as 
separate, much like a modern PSS. 

One specific element typical of some spatially explicit PSSs is a land-use change (LUC) 
modeling core. These models are usually built to help planners and decision makers 
better understand spatial data, the dynamics and complexity of urban development 
patterns. In some cases, they can assess the impacts that changing urban patterns have on 
environmental, economic, and social systems. Although it has been more than 30 years 
since Cellular Automata (CA) technologies were tested in the development of these 
spatially explicit modeling cores (White & Engelen, 1994a), and more than 20 years 
since urban planners begin to adopt and adapt LUC models in first generation PSSs (S. 
Geertman & Stillwell, 2004a), these models have only recently been adaptable enough to 
be operationally used in support of planning. 

Revealing environmental costs through PSSs 

Pioneers have now pushed PSS LUC model prototypes out of research labs and have 
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begun to package the LUC models into operational applications with visual and online 
user interfaces. The Landuse Evolution and impact Assessment Model (LEAM, 2015), 
WhatIf (What if? Inc, 2015), and UrbanSim (UrbanSim, 2015) are among three of the 
best operational examples in the US. These PSSs aim to enable non-experts to input data, 
operate, localize, and test their PSS LUC models with future potential scenarios, in some 
instances through web based portals with simple mouse clicks. Some of these models are 
close to realizing this ideal (LEAM included). In order to fully realize the enormous 
benefits of PSSs within a structured planning process, a connection to knowledgeable 
modelers and planners is needed. These experts can: a) facilitate the process and the 
technology needed to guide communities in applying the tools efficiently and effectively, 
b) ensure the quality of PSSs inputs and outputs, c) explain the implications of modeled 
outcomes (to non-technical audiences), and d) suggest implementation strategies in 
backcasting (Holmberg & Karl-Henrik, 2000) and scenario analysis exercises. More 
generally, these tools are fundamentally important for countering environmental market 
failures. 

As previously noted, many hidden environmental costs are the result of a weakness in 
uncovering secondary (or tertiary) environmental impacts. This is compounded by an 
inability to understand the dynamics and interactions in and between impacts. LUC and 
PSS technologies are an effective means for addressing these issues. Spatially explicit 
PSSs bring together LUC models in an information delivery system (visualization 
interfaces) to provide planners and communities with critical knowledge of various 
dynamic systems and interactions that can facilitate more effective communicative 
planning approaches (Brail & Klostermann, 2001a). Infusing critical (environmental) 
knowledge to stakeholders and making (larger scaled) information available can engage a 
larger stakeholder group, capable and interested in understanding common environmental 
spillovers. The ready availability and democratization of information can also encourage 
communities and individuals to address the environmental externalities of their actions. 
Environmental impact information infused into public discussion through PSS 
technologies can also enable a more effective weighing of the trade-offs that might 
emerge between economic benefits and environmental costs.  

Some planning and analysis techniques are greatly improved by PSS technologies (Deal 
& Pallathucheril, 2003; 2008; 2009a). The ability to easily perform backcasting analysis 
for example, can help plan-making processes achieve outside-the-norm envisioned, 
preferred futures rather than depending on a projection from the status quo perspective. 
These kinds of techniques are important for breaking historic, unsustainable, 
path-dependent developmental patterns.           
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Given the potential of PSSs to aid urban planning in uncovering hidden environmental 
costs, the question becomes how these PSS tools become ubiquitous to real-life planning 
practices. The University of Illinois and the Landuse Evolution and impact Assessment 
Modeling Laboratory have had some success in operationalizing and implementing their 
Planning Support System in a wide variety of regions worldwide, most notably and 
successfully in the Midwestern US. In the following sections, we describe several 
examples of the LEAM operationalization process. These examples help to reveal 
substantive ways in which the LEAM PSS has impacted the planning and policy making 
and in the process helped to alleviate environmental market failures. First, LEAM PSS 
has impacted planning and policy making through use-based PSS development and 
implementation. Next, it has helped to counteract potential market distortions through 
useful information development and dissemination. Finally, it has impacted planning 
policy making with its ability to integrate seamlessly and positively affect the process of 
environmental assessment in plan making. We also propose a future vision in which PSS 
technologies evolve from user-driven to user-awareness. We suggest this will enable 
them to be even more effective in practical environmental planning implementation. 

The LEAM PSS 

The need in planning and policy making to answer both ‘what-if’ and ‘so-what’ questions 
is fundamental to the LEAM PSS framework. The PSS consists of two major 
organizational parts: 1) a LUC model, defined by a dynamic set of sub-model drivers that 
describe the local causality of change and enable an ability to test and play out potential 
‘what-if’ scenarios; and 2) impact assessment models that facilitate interpretation and 
analysis of the modeled future land use changes depending on local interest and 
applicability. These models help to assess ‘so-what’ questions and explicate the potential 
implications of a modeled scenario.  

The LEAM LUC model utilizes a hybrid Cellular Automata (CA) approach. Like CA, 
LEAM utilizes a structured lattice surface (cells) with state-change conditions that evolve 
over time. The lattice is shaped by biophysical factors (such as hydrology, soil, geology 
and land form), and socioeconomic factors (employment, household structure, 
administrative boundaries, and planning areas). These factors, when combined, provide a 
contoured lattice with high and low spots that represent each cell’s probability of 
potential land use change. Probabilities are predicated on local interactions (e.g. the 
accessibility of the cell to a given attractor), global interactions (e.g. the state of the 
regional economy), and other mechanisms of causation (e.g. social forces). Specific rules 
can be applied and tested. Controlling the constraints in the rule set can be used to 
produce diverse sets of planning scenarios. Unlike other large-scale efforts, LEAM works 
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at a finely scaled resolution (30 x 30 meters) that includes cell-based micro models. This 
enables loosely and tightly coupled linking with other models that might operate at a 
different spatial scale, including regional macro socioeconomic models and transportation 
infrastructure and demand. The effect is a wider range of potential ‘what-if’ scenario sets 
that can be tested and assessed (Deal & Pallathucheril, 2003, 2009a).  

LEAM has been both tightly and loosely coupled with other models that operate at 
various spatial and temporal scales including: economic forecasting models (Deal & Kim, 
2013), bi-directional travel demand models (Deal & Kim, 2013), ecosystem service 
models (Deal & Kim, 2013), water quality models (Choi & Deal, 2008; Wang, Choi, & 
Deal, 2005); water quantity models (Sun, Deal, & Pallathucheril, 2009) and social cost 
models (Deal & Schunk, 2004). Coupling these models with LEAM dynamics and 
making the information useful through a ‘use based’ implementation process has helped 
decision makers make sense of the complex interactions between urban change and 
environmental systems. 

2.2.3.3. The LEAM Use-Based PSS Implementation 

In the LEAM implementation process, the LUC model evolves as an iterative process of 
data collection, model building, dialogue, visualization, and general presentation and 
access. Local planners, policy makers and stakeholders (convened by local planning 
entities and identified as broadly as possible) provide feedback and input about the local 
salience and value of any given simulation. This feedback is gathered regularly and 
begins at project inception. It is used to more effectively capture the local condition, to 
provide a better local version of the tool, and to inform local stakeholders about the tool 
and its uses. This form of use-driven modeling and system development, which takes 
place in very public forums, most distinguishes the LEAM approach (Deal, 2008). The 
feedback and local dialogue elements are critical in the creation of useful PSS tools 
especially in terms of overcoming market distortions. Constant internal and external 
review and interaction are critical to informing both the modeler and the local 
stakeholders of modeled changes, improvements and scenario outcomes. Presenting this 
use driven approach in publically accessible PSS visualization portals helps provide 
another layer of feedback and interaction. Consensus building is performed and achieved 
using typical planning procedures (Deal and Pallathucheril, 2009a) for a more detailed 
discussion on use-based modeling and consensus building). 

In applying this use-based model process we have found that LEAM can influence 
decision-making through various pathways (Deal & Pallathucheril, 2009a). In the 
following, we describe some specific pathways and their effect on the plan-making 
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process in past LEAM applications. The three cases presented below—Peoria, IL, St. 
Louis, MO, and McHenry County, IL—represent three ways in which the LEAM PSS has 
made significant impacts on the practice of planning. These include counteracting 
distortions, facilitating dialogue, and integrated plan making for challenging the status 
quo. 

Counteracting distortions in Peoria, IL 

Planning decisions take place over extremely long periods of time – sometimes involving 
different generations, over large distances. This raises questions of inter-generational and 
geographic equity. As noted previously, this is compounded by the fact that planning 
decisions have complicated spatial interactions and environmental impacts that are often 
secondary, or even tertiary. Environmental costs may accrue in one form, to one 
generation, or in one part of the geography (community, state, nation, world), while the 
benefits accrue in a different form, to a different generation, or in another part. Delivering 
objective, unbiased and apolitical information can help counteract these types of 
phenomena that can emerge in typical public planning processes (Forester, 1993).  

Many of these issues are the result of an under-estimation of environmental impacts that 
are sometimes the result of information distortions. Information distortions are usually 
the product of local knowledge that is deeply situated in the web of accepted norms, 
meanings, and beliefs. If incorrect (distortions of actual causal relationships), their locally 
embedded nature makes them difficult to overcome with traditional planning 
communication processes (Stein & Harper, 2012). If left uncorrected, they can lead to 
problematic conclusions in public discussions. One example can be seen in local and 
personal discounting discussed above. 

In our work, we argue that providing an ability to objectively test and evaluate current 
and future conditions can be a powerful tool for counteracting potential local distortions 
and poorly considered discounting that leads to costly future consequences. In an early 
LEAM application in Peoria, IL, we helped provide those objective arguments for local 
and regional planners in a simple example.   

In the early 2000s, the three counties surrounding Peoria, Illinois (Woodford, Tazwell, 
and Peoria) were witnessing significant conversion of very fertile and productive 
agricultural land to residential and commercial land-uses. There was a distinct sense of 
unease about this trend, although there was no specific analytical proof for its existence. 
Woodford County in particular, was concerned about its agricultural heritage. The county 
outlined several strategies for preserving agricultural land. One particular strategy 
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required a change in the county zoning ordinance that would require 40-acre minimum 
lot size on current agricultural lands. At roughly the same time in a regional planning 
exercise, a number of simulations of future land-use change for the tri-county region were 
being run, reviewed, and critiqued in public workshops (Deal & Pallathucheril, 2003). 
These simulations established the extent and spatial distribution of future growth in a 
business-as-usual scenario described through maps and depictions of the impacts of this 
growth. Other scenarios explored included higher and lower growth rates and various 
public investments and policy ideas, including the proposed ordinance change in 
Woodford County. Figure 2 shows expected land-use outcomes in a ‘business-as-usual’ 
scenario. After our simulation, we used the land cover data provided by the county’s 
planning board to assess loss of agricultural and ecological lands associated with future 
growth on 30-by-30-meter resolution. 

 

Figure 2. Land use outcomes in the Tri-County Region of Peoria in a ‘business-as-usual’ 
scenario. Yellows patches are new residential developments; dark red patches are 

commercial. The arrow refers to the desirable bluff areas along the river. 

To discuss the simulation results, local planners held two big meetings and several 
smaller focused group meetings. Stakeholders involved in those public discussions 
included staff from Illinois Department of Natural Resources, citizens, NGO, local 
planners, and government entities. Public discussions on the 40-acre zoning requirement 
scenario revealed that the ordinance change would reduce consumption of agricultural 
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land as intended but would also bring with it unexpected regional consequences. 
Compared to the business-as-usual scenario, the amount of agricultural land lost to 
development over thirty years with the proposed ordinance change dropped from 10,000 
to 7,000 acres, as expected. Unexpectedly, when the proposed ordinance was included in 
a simulation, new development that would have been located in the agricultural area 
moved to environmentally sensitive bluffs along the Illinois River, resulting in the loss of 
12,500 acres of forestland (Figure 2). This revelation changed perceptions of the 
proposed ordinance, and the ordinance was put on hold until a ravine overlay district 
focused on protecting the river bluffs was put in place. 

Initially, any negative consequences of the proposed ordinance appear to have been 
discounted. Once people saw the simulations and understood the consequences of the 
proposed ordinance, this discount rate was substantially decreased to the point that 
protecting the bluffs became a higher priority. 

It appears from the above case that explicating and elaborating on the future 
consequences of various public policy and investment choices may alter the extent to 
which these consequences are discounted by stakeholders in public deliberations. When 
future consequences are vaguely known and ill-defined, they are easily discounted. When 
potential consequences are represented in tangible and objective ways, however, they 
make the familiar unfamiliar, they challenge habitual ways of thinking, and they question 
what appears evident and taken for granted (Fischler, 2000). In short, they can counteract 
normative distortions. 

Facilitating dialogue with the St. Louis Blueprint Model 

PSSs can assist planners in convening local stakeholders to discuss and validate 
environmental assessment results and in the process arouse a regional consciousness of 
the potential spatial and temporal spillover of environmental impacts. Geertman (2002) 
points out that PSS tools can enhance participatory planning processes, because “a 
greater degree of access to relevant information will lead to the consideration of a greater 
number of alternative scenarios—which in turn will result in a better informed public 
debate.” One project that exemplifies this idea is the application of LEAM to the 
two-state, eight-county region around St. Louis, Missouri (MO) (Deal & Pallathucheril, 
2007; 2008). In this project, we coupled various other models with LEAM to analyze the 
potential impacts of the land-use change results. Two in particular were a 4 step 
transportation model that utilized over 2,200 Transportation Analysis Zones (TAZ) to 
calculate travel time changes for each scenario, and a regional economic input-output 
model (conducted on a household level) that provided demand for space and assessed 
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economic implications.  

In 2003, the East-West Gateway Coordinating Council (the Metropolitan Planning 
Organization and Council of Governments for the St. Louis region), began to use LEAM 
(in a version later called the Blueprint Model) as a platform for encouraging a regional 
dialogue on issues of economic development, social equity and environmental 
sustainability. Instead of initializing the process with a lengthy model-building exercise, 
the initial focus was set on quickly producing a set of simulations. This quick-start 
process served two purposes: to quickly begin the process of engagement and build 
interest; and to collect information from the local stakeholders on the state of the local 
condition for adapting the LEAM model to fit local conditions. These early simulations 
were subjected to public scrutiny in workshops, meetings and other public forums. 
Participants in these forums provided valuable insights into the dynamics of urban LUC 
in the region and a direction for future modeling efforts. Conducted on an annual basis, 
they also provided an excellent platform for dialogue among participants.  

One early critique of the preliminary LEAM simulations presented was aimed at the way 
in which new development was being distributed across the two sides of the Mississippi 
River—the Illinois on the east, the Missouri on the west. Preliminary simulations showed 
considerable new developments in Illinois relative to Missouri; at the same time, the 
central business district (CBD) is in Missouri and has historically seen the bulk of new 
development. These simulations utilized posted travel speeds and did not take into 
account the difficulty of crossing the Mississippi River from Illinois into the CBD. When 
congested speeds were used to measure travel time (taking into account how traffic 
congestion makes portions of the region more or less attractive), simulated development 
shifted from Illinois to Missouri. A major factor was the effects of congestion on bridges 
and the approaches to them (bridges represent severe choke-points with very little 
opportunity for alternative routing). In the regional dialogue, this outcome highlighted the 
critical role played by bridges in the distribution of new development across the region.  

The construction of a new Mississippi River bridge had been the subject of planning 
studies, preliminary design and environmental impact analysis for over 20 years in the 
region. A concerted civic and political effort to secure earmarked federal funding was 
only partially successful. The resulting funding shortfall called into question the original 
bridge proposal and how it would be implemented. Alternatives considered included 
covering the shortfall with a toll and constructing less expensive alternatives such as 
enhancing the capacity of an existing bridge; there was no regional consensus on the way 
forward. Facing a stalemate on the issue, the regional planning organization, the East 
West Gateway Council of Governments (EWGateway) took the lead and sought to inject 
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an analytical basis into the regional debate. In order to do this, however, it became crucial 
to go beyond traditional cost-benefit analyses and to jointly simulate and analyze future 
transportation and land-use consequences of the different choices. 

Numerous simulations were created by coupling LEAM with the regional econometric 
input-output model (LEAMecon) and the regional travel demand model (TransEval). The 
land-use, economic and transportation outcomes in the simulations, and those of a 
baseline ‘No-Build’ simulation, were the basis for comparisons.  Aggregate differences 
appear to be slight: building the bridge appears to slightly increase development in 
Illinois (Madison and St. Clair counties), while slightly decreasing development in 
Missouri (St. Louis and Jefferson counties). Interestingly, imposing a toll increased land 
development in far northwestern Missouri (St. Charles County). Figure 3 displays 
differences in LUC between the Full Build and No Build simulations at a finer resolution; 
red cells see more growth in the Full Build simulation, green cells see more growth in the 
No Build simulation. The map presents a more complex set of differences and suggests 
that aggregating to the county level masks greater change: while building the bridge 
facilitates greater land development in the Illinois side of the region and takes away from 
development on the Missouri side of the river, there are significant differences in 
development at the local level. 

 

Figure 3. Differences between the Full Build (red) and No Build (green) simulations in 
the St. Louis Blueprint Model. Yellows are common to both scenarios. 
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EWGateway convened three big public meetings and dozens of smaller meetings to 
discuss the simulation results. As might be expected, discussions around these 
simulations were quite intense. Outcomes appeared counter-intuitive; imposing a toll on 
the bridge increased total travel times in the region. Working through the complex 
interactions suggested a striking explanation: the toll was diverting traffic to the other 
bridges across the river that do not impose a toll, increasing congestion on these bridges, 
and increasing travel times. This explanation brought into question the wisdom of using a 
toll to cover the budget shortfall. There were other insights generated: patterns of land use 
are likely to change if additional river crossings are built. Therefore, cooperative land-use 
policies and controls must be put in place in these areas to manage these impacts. 
Ultimately, however, only slight differences were uncovered, even though the magnitude 
of the investment required for each of the scenarios tested was very different. This 
suggests that perhaps the lowest cost alternative is preferable. It also suggests that 
demand-side tactics, such as investing in a better regional jobs-housing balance, might be 
more cost effective. 

In this case, the LEAM PSS assisted planners in convening local stakeholders to discuss 
and validate each bridge scenario and their potential implications. The user-based process 
clearly facilitated a regional dialogue and aroused a regional consciousness of the 
potential spatial and temporal spillover effects. The process also helped challenge 
conventional thinking about the fundamental needs and benefits of the proposed 
investment. 

Planning for a Deviation from Current Developmental Path in McHenry County, IL 

By including environmental assessment in planning processes and decision making, 
LEAM informed public dialogue. Participants had a better appreciation for the future 
environmental consequences of their public policy and public investment choices (Deal et 
al., 2017a). These planning processes however, are essentially forward looking exercises. 
Many similar processes that don't use PSS technologies rely heavily on projecting 
existing conditions into the future. They generally fail to capture changing paradigms or 
emergent behaviors. This often results in the continuation of existing developmental 
paths. 

The use of PSS tools enable a broad range of multi-directional analysis that might be 
useful in analyzing or planning for structural change – including those needed to address 
a host of environmental market failures. The idea of backcasting using PSS technologies, 
for example, has been shown to be effective in sustainable development planning (Deal et 
al., 2017a). Deal et al., (2017a) propose that backcasting from a desirable future state 
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using PSS tools enables planners to step outside current developmental trends to test 
ideas and reexamine assumptions. While a forecast projects an image of the future based 
on a current situation, a backcast starts at a point in time in the future and draws a 
developmental path back to the current condition. This is useful for plotting a path that 
responds to “how do we get there” kinds of questions from future states that might not 
emerge from existing trends.   

A LEAM application in McHenry County, IL demonstrates a PSS led backcasting 
exercise that helped the county understand how a desired deviation from their current 
developmental path might be achieved.   

McHenry County, IL defines the northwest edge of the seven counties that make up the 
Chicago metropolitan region. It is approximately 60 miles northwest of downtown 
Chicago. It has a population of 318,000. Its location and unique natural features create a 
quality-of-life that is attractive to many. Since 1990, the county’s population has grown 
40 percent, averaging 2.3 percent growth annually. The previous land-use plan for the 
county is the McHenry County Land Use Plan 2010, which was compiled in 1993 and 
updated in 2000. However, McHenry County Regional Planning Commission (RPC) 
deemed this plan increasingly irrelevant and began to compile the McHenry County 2030 
Comprehensive Plan in 2007 (Deal & Pallathucheril, 2009a; McHenry County Regional 
Planning Commission, 2010a).  

In 2007, with the help of the State of Illinois Department of Natural Recourses, the 
LEAM Laboratory began to build a PSS for the County. The original work was designed 
to assess the potential future implications that urban land use changes would have on the 
natural resources in the County. It was soon put to use to inform the discourse and test 
some of potential distortions emerging from their 2030 process (McHenry County 
Regional Planning Commission, 2010a). The PSS development process first established a 
‘reference’ or ‘business-as-usual’ scenario as a baseline for assessing the impacts of 
various land use policies being discussed. The reference scenario simulated LUC if 
current growth pattern trends continue to 2030. Other model scenarios were then 
compared to the reference scenario to understand the impact that the tested policies might 
have on various important county assets. LEAM was coupled with other impact models 
(as described above) to assess land-use, water demand, water quality, wetlands, natural 
areas, agricultural uses, and groundwater protection (the list was determined by county 
stakeholders). Of particular interest to the County was the loss of important agricultural 
and ecological lands associated with future growth. These were evaluated linking LEAM 
to the Land Evaluation and Site Assessment (LESA) modeling framework from the 
Illinois Department of Agriculture (Coughlin et al., 1994). 
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The McHenry County Planning board convened more than 10 public meetings made up 
of a range of public interests, stakeholder groups, government employees and officials, 
and planners. The process revealed an early, major concern with the projected population 
forecast for 2030 that was derived using LEAMecon. This was the bellwether issue that 
underlay a larger conflict on the future of the County between pro and anti-growth 
advocates. One group of residents hope to continue the past development trends and 
environmental groups urged protection of environmentally sensitive and agricultural 
lands. After lengthy discussions LEAM simulated a range of potential scenarios identified 
by the County Planning Board (18 prime scenarios) of future land-use patterns. The RPC 
identified various preferred outcome scenarios (Deal & Pallathucheril, 2009a; Coughlin 
et al., 1994). One such scenario, the Compact Contiguous Growth (CCG) composite 
scenario is shown in Figure 4. The difference between the reference scenario and the 
CCG composite scenario is on the left. Areas in blue receive more development in the 
CCG composite scenario; areas in red receive more development in the Reference 
scenario. A notable difference is seen in the southwest portion of the County. This is due 
to a limit that the CCG composite scenario places on the amount of vacant land available 
in that part of the county. The right shows an urban growth boundary that was also 
considered as part of the scenario analysis.  

 

Figure 4. McHenry County CCG scenario growth projection to 2030 compared with a 
reference scenario (left). Comparison using 1mile x 1mile section scaling.  Reds are 

unique to the reference scenario; blues are changes as a result of the CCG scenario. The 
right image shows as urban growth boundary that was also a part of the CCG scenario 

analysis. 
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The spatially and temporally explicit information generated by the LEAM PSS helped the 
McHenry County Regional Plan Commission (RPC) objectively assess the impacts of 
their proposed policies. For example, one scenario identified spatial locations where 
farmland and ecologically sensitive areas were identified as at risk (McHenry County 
Farm Bureau, 2008). With LEAM information, the RPC could specify where to set up 
ecological/agriculture preservation districts to prevent a disruption of the critical areas.  

The process represents a typical PSS backcasting exercise. First, a desirable outcome was 
established—in this case, minimizing agricultural and ecological land losses. Backcasting 
how to achieve this desirable outcome required an analysis of the complex interactions 
between a host of variables, so that many multiple model iterations were examined to 
understand exactly what this preservation meant to county stakeholders. Once these were 
unraveled, a coherent set of policy levers were developed for how these outcomes for the 
future might be achieved. In this case agriculture productivity was closely tied to the 
introduction of a new (and also desired) transportation investment (a new interchange 
conflicted with highly productive agricultural lands). The LEAM PSS provided useful 
spatially explicit information on where, when, and how to plan for an alternative, 
desirable future that was just outside current development patterns. 

The LEAM PSS enabled a ‘continuous planning’ process to take shape in the county. The 
spatial and aspatial data created for the PSS allows the community to continuously 
interact with the data and models associated with the plan (an visualized interactive tool 
is shown in figure 5). It is now a living comprehensive plan where critical questions can 
be examined, progress on critical issues can be updated and communicated, and success 
or failure can be determined and re-assessed. We suggest this type of tool and process are 
critical for challenging existing (and unsustainable) growth and development practices 
and challenging the status quo. 
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Figure 5. The LEAM PSS ‘GeoPortal’ for McHenry County. The center is the map 
viewer window with overlay results viewed on an interactive google map. On the right is 

a legend for the displayed maps. The viewer displays a forecasted agricultural 
preservation scenario and its associated groundwater stress. Yellow and bright right cells 
demonstrate the future growth scenario; darker red cells (big cells) represent groundwater 

stress associated with the growth. 
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2.2.4 Take-away from PSS applications 

After explaining the role of PSS in smart, sentient and resilient cities, as well as its role in 
environmental planning processes. I summarize a number of features that future PSSs 
need succeed. This list of features provides some examples outside the PSS realm that 
have been working towards “sentience.” 

Dynamic Data 

Underlying data sets in most (if not all) contemporary PSSs are relatively static. Sources 
that can be easily accessed are usually federal repositories with uneven update schedules 
(e.g., some US Bureau of Labor Statistics are updated monthly, some annually). Some are 
updated frequently, while others are not (e.g., the US Census is decennial; USGS NLCD 
data is updated on irregular, 4-8 year intervals). Since data sets tend to be manually 
accessed, the task can be quite tedious with considerable time passing before data updates 
are realized. Local government data, which typically are more organizationally proximate 
to the PSS, are often harder to come by because the data base systems may not be 
sophisticated or are generally less accessible. For example, many jurisdictions have 
information systems for tracking building permits, which can be a good indicator of type, 
intensity and location of urban change. But to date, these data sets typically have not been 
digitally or readily available, a significant missed opportunity.   

A sentient PSS must have the ability to incorporate and automate data-update processes. 
For our federal data example, these types of repositories typically offer RSS (Real Simple 
Syndication) feeds that can serve as triggers for data updates. But raw data from these 
sources usually must be processed before they can be utilized by models contained in a 
PSS. Sophisticated and automated procedures must be in place in order to preprocess and 
manipulate the data as it comes into the system. Local data sources represent an even 
greater challenge. Not only would there need to be greater technical sophistication, but 
there would have to be changes in the way local organizations are willing to share data.   

Some data sources require extraordinary processing procedures. For example, data on 
future climate conditions produced by a number of global climate models are available 
from the Earth System Grid Federation. This includes the repository maintained by the 
Program for Climate Model Diagnosis and Intercomparison and its Coupled Model 
Intercomparison Project (CMIP5 - available at http://pcmdi-cmip.llnl.gov/). Although 
understanding climate trends can have important local planning implications, these data 
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sets are resolved at very coarse spatial scales (typically 156 to 313 km). In order to be 
useful in typical PSS operations, they must be drastically downscaled and preprocessed.  

Downscaling using statistical methods (where the resulting spatial patterns are important) 
or by causal modeling (where system dynamics determine how and when the finer 
resolution is computed) are currently being utilized for these types of operations, 
although automation has been limited. CGIAR’s Research Program on Climate Change, 
Agriculture and Food Security (originally Consultative Group or International 
Agricultural Research) makes data available for any specified geography, spatially 
downscaled and disaggregated to resolutions ranging from approximately 900m to 18km. 
Generally, however, CMIP type data updates happen at carefully planned and executed 
intervals (whereas individual modeling groups produce output at a more frequent and less 
consistent interval). Here, too, RSS feeds could help trigger automatic data updates rather 
than waiting for manual processing. 

Sensors, RFID and other related technologies present a great opportunity but perhaps an 
even greater challenge. Vast quantities of data are generated at very fine temporal 
resolutions. Masucci et al. (2013) recently studied 11 million records taken over a 
one-week period from Transport for London’s (the London tube subway system) 
electronic ticketing system. This data helped to reveal London as a polycentric system of 
up to 10 different centers that interlink in complex patterns. Batty (2013) argues that 
these kinds of data sets can help in planning resilient cities, although he fails to show how 
this data would be used in the longer time horizons and sometimes larger spatial scales 
required by most planning processes.  

Context. Data contextualization is challenging in large urban systems with multiple 
layers of interactions. Traditional planning methods struggle to make sense of the varying 
data contexts across space and time and intuitive understandings can result in 
over-simplification. Sentient systems may be better suited for contextualizing planning 
data. They might tackle a complex problem first by analyzing large and diverse quantities 
of data. Next, they might contextualize the habits of users to make sense of data and 
places. This process combines systematic (i.e., data collection, user pattern recognition, 
and quantitative comparison across places) with intuitive interpretations (first-hand 
experience) by contextual inhabitants.  
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Sentient Visualization Interfaces 

Innovative visualization tools, including 3D representations and temporal displays, have 
been a focus in recent PSS research. Although the state of the art is changing quickly, a 
user is still typically presented with a very limited range of data accessibility options in 
any given PSS. This range is usually one-dimensional – it is uniformly presented 
regardless of user expertise or knowledge base. Individuals, however, differ in the way 
they perceive and ingest information. In a study on the speed at which different types of 
information are recognized, Conati and McLaren (2008) found that perceptual speed 
varied greatly by individual. This is not surprising, although their work implies that the 
effectiveness of any given pushed visualization interface depends on the person using the 
interface. To avoid oversimplification and a loss of critical information, the next 
generation PSSs must understand both the user and the context from which the user is 
seeking information. This means they must be aware of who is seeking information and 
how they need it delivered. To achieve this, many aspects of current PSS visualization 
approaches must be addressed, including media accessibility, data dynamics, and data 
manipulation. 

Media accessibility. One necessary improvement to accomplish sentience is the 
accessibility and speed at which various media are delivered and accessed. Accessible 
media are essential in engaging dialogue and in understanding the potential implications 
of the analysis (Deal & Schunk, 2004). Effective visualizations catalyze discussion about 
divergent scenarios and provide a platform from which a set of stories about the future 
can be generated. There would also need to be a greater variety of media used to deliver 
content. While most systems use visual representations, there needs to be more effective 
ways of integrating visual and verbal representations, particularly for those who are not 
spatially adept and rely more on verbal representations.  

Dynamic Scales. The importance of effective visualization devices for dealing with 
dynamic spatial data sets has long been recognized, especially in the field of natural 
resource research (Estrom, 1984; Rozenfield & Kak, 1982). Natural resource scientists 
have been using visualization tools to better understand their science (Onstad, 1988; Cox, 
1990) while social scientists have sought to better understand human behaviors vis-à-vis 
those resources (Malm et al., 1981). While the case for supporting visualization 
approaches at multiple scales (detailed as well as regional) was made over two decades 
ago (Orland, 1992), there has not been much progress since. 
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Data Manipulation. Visualization interfaces should be created with an understanding of 
the actual use and processing of information by lay people, especially with respect to 
decision making (Bostrom 2002; 2008). These interfaces should also be informed by an 
understanding of how communities of people (as opposed to the individuals in 
communities) think about issues and risks, and how communities acquire knowledge 
from a variety of sources. Budthimedhee (2002) provides some key insights into the 
characteristics of visualization devices that can effectively and efficiently support 
inferences from dynamic spatial data sets. First, because the speed at which inferences 
can be made is critically important with large data sets, she draws on the idea that we 
must pay attention to the ease and accuracy with which the pre-attentive visual system 
can assess relative magnitudes. Second, because of the amount of data needed to make 
inferences, she draws on the idea that graphic attributes of a visualization device may be 
the most important feature. Third, she reiterates Wickens' (1992) argument that if bits of 
information must be proximate mentally in order to support inferences, they must be 
proximate when visualized.  

A sentient PSS, therefore, requires visualization interfaces that are parametric. That is, 
the system adjusts spatial and material configurations based on new information or 
individual user differences. There is very little in the literature on system intelligence of 
this type, but technologies are available for implementing this kind of flexibility. Users 
can indicate preferences for alternative visualization devices (“Show me these data in a 
table,” or “Show me these data in a different format”). The ability to have user 
preferences persist over separate sessions is available in many Internet-based information 
systems and the PSS can learn from and be responsive to individual differences.  

System Development 

As the link between the system and the user, interfaces must convey valuable information 
both from the system to the user and from the user to the system. This direct learning 
opportunity is not available in current PSS technology. Many of today’s PSSs allow users 
to leave comments on the information being presented, and such information can help 
drive system evolution. But can the system learn in less direct ways? Both direct and 
indirect system interaction and learning will be critical for spatial and temporal 
specificity and usefulness in a sentient PSS. For instance, an action like searching for the 
impact of a particular public policy or investment choice in a specific place, might cause 
the PSS to store that knowledge and remember that there is an interest. If this same 
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search happens repeatedly, the system might generate one or more new scenarios in 
response. PSS development activity can benefit from this kind of crowd-sourcing. 
Furthermore, at present, we rely on outside system knowledge to identify data sets to help 
answer user questions. It would add to the sentience of PSSs if there were ways for the 
system to learn about and discover new and relevant data repositories that might generate 
new information and add to an understanding of a problem.  In the place-based impact 
example, the system might uncover data relevant to the stored interest and present it to 
the user as the new data becomes available. 

Additional development is also required in spatial and temporal reasoning within the 
individual tools that make up a PSS. There must be ways of generating and implementing 
rule-based procedures and dealing with potential conflicts arising from these rules. This 
form of sentience could support planners as they attempt to resolve conflicts among 
different interests.   

Plan Making and Sentience 

Although PSS visualization interfaces are typically designed to deliver planning related 
information and knowledge to users, how well do these same interfaces help in the 
physical act of making plans? Schaeffer and Hopkins (1987) describe plan-making in 
terms of behaviors (things that people do), tasks (combinations of behaviors that 
accomplish particular functions), and processes (patterns of tasks that yield plans). 
Clearly tasks can be supplemented with planning tools (such as GIS systems for making 
maps). Combinations of tasks might by association also be supplemented by planning 
tools and PSSs that house these tools. The critical question is how PSSs help to support 
planning behaviors. 

A sentient PSS that is useful for plan making might be most effectively delivered through 
use-based development rather than solely based on a priori notions of what might work 
(Deal & Pallathucheril, 2009b). This requires formative rather than summative 
assessments in system development. It requires working through specific sets of data 
sources and information with groups of real-world users, building a thorough 
understanding of the cognitive demands placed on users in a common environment. It 
also necessitates a computational environment capable of learning from these 
interactions. 

Emphasizing the process of constructing useful PSS models  

One important lesson learned is that in order to foster local thought experiments and 
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discussion, it may not be necessary to wait until model results are highly calibrated and 
fine tuned. In fact, we argue that planning and decision impact can be more important 
than model accuracy. Preliminary results that can be presented early in the planning 
process and are easily modified can serve to ignite regional dialogue. For example, the 
presentation of both favorable and unfavorable scenarios in terms of environmental 
impacts would be useful in helping a community understand and articulate their 
preferences. This articulation can help stakeholders and planners communicate with each 
other as well as steer policy toward achieving important sustainability goals that are 
sometime difficult to express. This does not absolve planners from providing accurate 
depictions – especially when challenging accepted norms. At some point in the process 
reliable and trust worthy information is required. But it does suggest that even ‘quick and 
dirty’ results can be very useful when planners, stakeholder representatives, and decision 
makers work cooperatively to interpret them through the lens of expertise and local 
perspective. 

User-driven, use-driven, and user-aware PSS models 

User-driven models (such as WhatIf? and UrbanSIM) are packaged into software that can 
be run with some basic skills sets by planners or policy makers. Use-driven models such 
as LEAM are created for specific projects at specific instances and sometimes built to 
answer specific questions. Use-based models involve modelers, contextual experts, and 
planners to help build, operate, and explain the models in the planning process. 
Stakeholders and citizens are also critical to their development and deployment. They 
provide important but difficult to obtain local, historical knowledge, insights about local 
dynamics, and intimate knowledge of local social constructs. They also provide the 
specific goals and visions for the future that are so essential to the planning and modeling 
process. 

Use-driven and user-driven PSS models are not mutually exclusive. Component pieces of 
both are useful. For example user-based interfaces that can allow non-experts to directly 
modify model factors according to their understanding of their locality, and to generate 
their own results. Modelers should be on hand to interpret those results and facilitate 
public discussions based on different model results.  

User-aware PSSs are a next-generation process that combines use/user-driven PSS 
models. User-aware PSS models can adjust their user-interface to different users 
(modeling experts or layman users) and communicate diverse user-inputs with each other 
in the system. This can make future PSS operationalization more democratic and 
interactive. 
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Post-plan involvement for operationalizing a PSS 

Currently, PSS generated information are mainly utilized during the pre-implementation 
phase of the planning process. Although monitoring can be an important component of 
plan implementation (that sometimes can determine the success or failure of a plan), due 
to time constraints it is not often feasible for planners to collect new data, look back and 
analyze previous plans. A next generation PSS might automate this process so that “actual” 
emerging developments and real-time environmental impacts can be included in scenario 
and plan development. And as the time and effort for post-plan monitoring are conserved, 
planners and modelers can afford additional time with the communities to ensure that 
implementation can more closely follow the plan intent. This can also be useful in 
helping stakeholders understand the dynamic interactions between socio-ecological  

Examples towards sentience  

The evolution of Building Information Modeling (BIM) technology could provide some 
parallels for the development of a sentient PSSs. Current BIM research has produced 
models that use a concurrent engineering approach to building design based on dynamic, 
integrated frameworks. BIM systems are linked to an iterative workflow package, 
involving a series of design refinements and simulations of environmental and energy 
impacts, habitability, and social performance measures (Fortner, 2008). Some work is 
also being done to integrate two- and three-dimensional visualization environments into 
the BIM suite of tools. 

Other attempts at producing semi-sentient information systems go as far back as 1983.  
In their work on rapid prototyping of linear representations (in AutoCad), Cao and 
Miyamoto (2003) used models that provided support for verifying consistency across 
different levels of abstraction. Integrated assessment modeling and reduced-form 
modeling were topics receiving considerable attention in quantitative policy analysis 
circles in the 1990s, and like other undertakings before them, these approaches resulted 
from an attempt to bring different levels of abstraction, spatial, or temporal scales 
together. 

Although currently used at a site planning scale, the concept of geodesign offers a 
methodological reference for future sentient planning support systems. Geodesign aims to 
enhance traditional environmental planning with technology integrations that include 
advanced computation, future simulation, remote collaboration, impact analyses, and 
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effective visualization (Flaxman, 2010; Goodchild, 2010; Ervin, 2011). Many of the 
proposed components of geodesign systems, such as context-based, simulations, 
dashboards, and time/dynamic manager (Ervin, 2011), aare similar to the components 
described in our conceptualization of a sentient PSS. The current geodesign literature, 
however, is still focused on traditional information push processes and does not include 
dynamic data acquisition, storage and retrieval approaches which are integral to a sentient 
PSS. Geodesign processes are currently also initiated by planners and designers in a 
top-down exercise, while a sentient PSS might start an analytical process on its own or 
from any user of the system. 

We can also demonstrate LEAM’s cloud based PSS structure as a step towards sentient 
PSS (figure 6). A complicated and LUC model and a large-scale data service sits on the 
cloud. They can handle demanding computational and storage tasks on high-performance 
computers. Users for each modeling site have access to one specifically crafted interface 
for the site. The interfaces understand users’ preferences, site-specific data, as well as 
calibrated parameters for each model. Users can enter inputs into their interface, and then 
request LUC model run from the cloud.      

 

Figure 6. The cloud-based structure of LEAM PSS. Multiple users can assess the model 
and enter their spatial data through specific interfaces (the 4 boxes on the left). The input 
data from different cites is stored into one database (data service). A common LUC model 
(on cloud) can receive the data and start running computation job when request is made 
from an interface. The results will be pinned back to the interfaces for visualization. The 

LUC model can be coupled with other impact assessment models.   
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2.2.5 Conclusions and discussions 

In this chapter, I argue that future planning applications require PSS that go beyond the 
ones we have today. I call for PSSs that possess a greater degree of sentience—a greater 
awareness of application contexts and user needs. We need information and planning 
systems that are much more than sensor networks and data acquisition exercises. To make 
use of big data, we need smart PSS that can supply timely and useful information in 
support of complex plan-making tasks. Smart PSS cannot be expected to replace planners 
in practices. Successful implementation and application of PSSs requires a process that 
involves modelers as well as local planners, decision makers, and stakeholders.  

To address both the system and process of PSS for future planning applications, I 
demonstrate my development on LEAM PSS in the next 2 chapters. Chapter Three will 
focus on PSS systems that better serve scenario-planning exercises—a multidirectional 
temporal PSS model. Chapter Four describes a participatory process that modelers can 
use to transfer knowledge from technical analyses of PSS and to establish credibility of 
PSS results.     
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CHAPTER 3: THE ROLE OF MULTIDIRECTIONAL TEMPORAL 
ANALYSIS IN SCENARIO PLANNING EXERCISES AND 

PLANNING SUPPORT SYSTEMS 

Planning practitioners are constantly challenged with anticipating the potential 
consequences of proposed policy and investment choices. This is a difficult task.  In fact, 
examples abound of urban planning problems that have resulted from the unintended 
consequences of seemingly reasonable urban development policies (Bristol, 1991;Deal & 
Schunk, 2004; Deal & Pallathucheril, 2009a). Some of these problems can partly be 
addressed with the use of what Michael Batty described as “geo-information-technology 
based instruments” (Batty, 1995, p.574).  More commonly known as Planning Support 
Systems (PSSs) (see Brail & Klostermann, 2001; Geertman & Stillwell, 2004). Planning 
Support Systems have generally been found to be useful in support of scenario planning 
processes (Pallathucheril & Deal, 2007; Geertman & Stillwell, 2013). To this point in 
time however, PSSs have primarily utilized future-looking land-use change models to 
project and compare scenario outcomes. They have not yet widely embraced other 
temporal directional analysis methods that can enhance and inform additional aspects of 
scenario planning and help minimize unintended outcomes.   

Forecasting PSS urban modeling and simulation techniques have typically focused on 
expanding external model drivers to a wide(r) range of factors or including a broader 
range of spatial scales in order to compare scenario outcomes (Monticino et al., 2006). 
Hubacek and Sun (2001) conduct forward-looking simulations on Chinese land-use 
scenarios based on changes in economic activity and societal interactions. Packaged PSSs 
(WhatIf? and others) typically embrace a real-world simulation mechanism that creates 
scenarios through a process of user specification of external drivers, usually represented 
by a suitability of development designation (Klosterman, 1999; Waddell, 2002; Petit, 
2005). Verburg and Overmars (2009) simulate scenarios of a future European land-use 
under a wide range of local and global conditions. Their work assumes that casting a 
wider (scenario) net will lead to an improved understanding of the future condition. 
Couclelis (2005) concurs, arguing that PSSs should interface a broad range of qualitative 
and quantitative scenario models to help future oriented activities in planning. In general, 
our review of the literature suggests that when scholars analyze the time sequence 
constructions of multi-scenario simulation analysis, they commonly run forward-looking 
models. We contend, however, that PSSs that focus only on future forecasts lose several 
important opportunities: to learn from the past, to create scenarios that envision major 
shifts from current established structures, and an ability to understand how to attain future 
goals or outcomes effectively.  
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We argue that in order to help planners and decision makers avoid the unintended 
consequence of policy decisions, a PSS should do more than forecast into the future. We 
suggest that a good PSS should also have the ability to: a) recast from a point in time in 
the past to the current condition; b) pastcast from the current condition to a point in time 
in the past; and c) backcast from a point in time in the future back to the current condition 
(see Figure 1). PSS-based scenario planning processes and outcomes will be improved by 
including the ability to do these multi-directional temporal analyses. 

In this paper, we explore the benefits of multi-directional analysis by analyzing various 
scenario simulations using the Land-use Evolution and impact Assessment Model 
(LEAM) as part of a larger PSS that was developed for McHenry County, IL. LEAM 
simulations were used in a county-wide comprehensive planning process to help 
determine the spatial and population distributions of future development given various 
policy investments. The process culminated in the publication of a 2030 comprehensive 
plan in 2010 (McHenry County RPC, 2010). We use the McHenry example to examine 
the following questions: 

1) What are the potential benefits of multi-directional timeline and scenario analysis 
compared with traditional forecasting techniques?  

2) Can a method for performing multi-directional timelines and scenario analysis be 
usefully constructed and applied? For example, how do we interpret the 
comparison between simulated results to actual land-use development patterns? 

3) What are some of the potential confounding issues in conducting such analysis 
and how might they be resolved? 

We address these questions first, through a more detailed discussion on multi-directional 
analysis, its potential benefits, and its connection to the existing literature. We then 
outline a method for doing this type of analysis within an existing PSS and test its 
usefulness by applying the methods to a previous planning process and PSS application. 
We discuss how backcasting methods were applied in the scenario development process 
in the comprehensive planning process in McHenry County Illinois. We also present a 
recasting exercise from past county spatial population and development distributions to 
what were current conditions (in this case 2010). We compare spatial population 
distributions simulated in different scenario conditions to actual distributions as reported 
in block group level census data in 2010. This helps us measure the potential impacts of 
each scenario on planning decisions made in the county over the recast period. Finally, 
we conclude our analysis by exploring its strengths and weaknesses and by suggesting 
improvements and potential future work. 
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3.1 THEORY: MULTI DIRECTIONAL ANALYSIS FOR SCENARIO PLANNING   

The spatial data sets typically used in spatio-temporal planning simulation modeling 
environments are now available for multiple points in time. This has not always been the 
case. Until recently, modelers were restricted to just 1 or 2 spatial data points in time 
from which to construct a coherent model. With dependable, multiple time point data sets, 
more reliable and in-depth analysis linking the past to the present can now be examined. 
These examinations can help planners more readily understand scenario plans and 
scenario planning processes, where they fail(ed) to catch an important causal relationship, 
or when the plan might fail to achieve its desired effect. In addition, we argue that an 
ability to make these types of examinations along multiple directions in timeline will also 
lead to more robust and reliable future forecasts.  

We define multi-directional analysis (from an urban planning perspective) as an ability to 
analyze urban development problems along a temporal timeline in any direction—past or 
future. This ability enables the analysis of scenario constructions to be made from many 
different temporal positions (Figure 7). The terminologies used in this paper to describe 
this analytical process include: i) Forecasting. Currently the most common approach in 
scenario planning. A typical forecast starts from a (near) current condition and projects to 
a future state—this usually refers to the land-use changes that might occur over some 
specified time period. ii) Backcasting. The reverse version of forecasting – the model 
starts from a future state and draws a developmental path back to the current condition. 
This is useful for plotting a path that responds to “how do we get there” questions. iii) 
Recasting.  Basically, recasting is a reconstruction of the present. It uses forecasting 
techniques that start from a condition set in the past and project to the current state, 
usually for comparison purposes (from a projected current state to the actual state). This 
type of analysis is useful for calibration purposes and understanding a previously 
unforeseen condition that emerges in the present state. iv) Pastcasting. This analysis 
starts from a current time point (again, not necessarily the current state; it may often be a 
virtual, more preferred ‘current’ state) and draws a developmental path back to a previous 
point in time. This approach is useful for understanding the processes that took place (or 
should have taken place) in order to arrive at the current or virtual state. 
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Figure 7. Multi-Directional Analysis using forecasting, backcasting, recasting, and 
pastcasting to and from the present or current condition. This multidirectional analysis is 

useful for constructing and understanding robust planning scenarios. 

As noted, typical PSSs have primarily utilized future-looking forecasting processes to 
compare scenario outcomes and the approach is well articulated elsewhere in the 
literature (Deal, 2011; Batty & Xie, 1994; Geertman & Stillwell, 2009). The following is 
a more detailed description of other proposed temporal directional analysis me thods. 

3.1.1 Backcasting from the Future 

Although scenario planning process usually utilize forecasts, the analysis, modeling 
methods, and thought processes do not necessarily have to follow that timeline (going 
forward in time) in order to construct or explain a scenario in useful ways. Backcasting, 
the process of starting an analysis from a future state and considering the path required to 
achieve this state, has been found to be an extremely useful process, especially in the 
sustainable development realm (Vergragt and Quist, 2011).   

Holmberg and Karl-Henrik (2000) define backcasting in planning as a process that starts 
with a desired (sometimes sustainable) outcome and then explores the strategies needed 
to achieve it. In other words, “what shall we do today (in order) to get to the desired 
scenario (outcomes)?” The backcasting process always starts with a preferred future 
scenario, and then opens up a discussion about how this future can be achieved (Vergragt 
and Quist, 2011; Kok et al., 2011; Robinson et al., 2011; Dreborg, 1996; Shiftan et al., 
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2003; Robèrt et al., 2002). Backcasting is methodology that is often applied when 
planning for complex systems (Dreborg, 1996; Robèrt et al., 2002).  

Backcasting from a desirable future state using PSS tools enables planners to step outside 
of the haze of current realities and trends to test ideas and to reexamine assumptions. 
Figure 8 is a schematic illustration of this process. Where a forecast projects an image of 
the future (blue dashed line to dashed black circle) based on a current situation (red dot 
on the ‘present’ line), a backcast starts at a point in time in the future (not always a 
preferred state, but a state in the future – shown as dashed black circles) and projects 
back to the present (brown dashed lines to red dot). The brown lines represent the path or 
the things that need to be done to achieve the future outcome(s). 

 

Figure 8. Forecasting and Backcasting. 

The process can also be used to avoid undesirable scenarios.  In business planning, this 
type of analysis is referred to as pre-mortem analysis (Klein, 2007). First, a team is 
initially briefed on the idea of a project.  Everyone in the team imagines a future 
scenario in which the project has failed. The group discusses the failures and develops 
strategies to avoid these future traps. Pre-mortem analysis is described as beneficial in 
helping the project team to identify potential problems in their projects, to avoid 
dismissive attitudes of people who are overinvesting, and to give value to those who 
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describe potential weaknesses (Eckert, 2015). 

In an urban planning context, backcasting has additional benefits. First, backcasting 
processes can help community or regional development stakeholders consider potential 
goals through a different lens, highlight potential problems in reaching the goals, and 
help create strategies to overcome the identified problems. Traditional forecasting 
approaches may overlook some crucial developmental factors that are not considered in 
the forecasted scenario model. Second, backcasting can help communities and planners 
depart from present unsustainable extrapolations to define new potential future conditions 
(Holmberg & Karl-Henrik, 2000). Third, backcasting can help planners overcome 
psychological decision traps in planning and decision-making which include 
over-estimating future growth, resisting discussions of big investment failures, and 
under-estimating future risks (Pallathucheril & Deal, 2012). Finally, backcasting can 
promote systems thinking and inform potential risky outcomes (environmental 
degradation).   

3.1.2 Pastcasting and Recasting to the Past 

Along with traditional forecasting and the now more prevalent concept of backcasting, 
we argue that pastcasting and recasting to past points in time (using similar modeling 
techniques) can be useful for helping to construct and understand planning scenarios and 
scenario outcomes. Recasting is relatively similar to standard forecasting-based practices 
in spatio-temporal land-use change models, but instead of projecting into the future, the 
simulation recasts from the past to the present. This process of recasting from the past to 
the present is useful for ground truthing and calibrating the modeled outcomes. It is also 
useful for understanding emergent properties in a system and how these properties might 
implicate future conditions. In contrast, pastcasting is closer to scenario planning 
practices. We move from what planners had envisioned for a current situation to past time 
points to find out where the developmental pattern deviated from the planned path.  

Figure 9 is a schematic illustration of recasting and pastcasting analysis. The dashed blue 
line indicates the pathway simulated by a land-use change model from a past situation 
(left red dot) to a recasted current situation (dashed black circle). In all likelihood the 
recasted situation will not fit the current situation or the actual developmental path (black 
dot and brown dashed lines). From the deviation of the two pathways, we can compare 
the actual and hypothesized effects of drivers of change that were included in the 
simulation. Were all relevant drivers included? Were any omitted? Also, if the actual path 
of development ends up more or less desirable than the simulated path, what lessons can 
we learn from the decisions previously made? This process can foster a valuable 
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conversation between planners and local communities, and spur a mutual learning 
process about the locality.  

 

Figure 9. Pastcasting and Recasting. 

The idea of using the past to learn from and improve current and future planning 
processes is not new.  Prominent examples of the approach appear in both strategic 
sustainable development literature and strategic business planning literature. In the 
sustainability literature, Holmberg and Karl-Henrik (2000) propose a pastcasting 
equivalent to review past sustainability plans and their outcomes. They use the 
pastcasting exercise to unravel the evolution of the plans and to explain alternative paths 
that may have produced more effective results. They point out that non-linear changes in 
the market often confound sustainable development plans by increasing complexities and 
the potential for emergent behaviors. They note that this complexity leads to many 
unexpected failures and shortcomings (Holmberg and Karl-Henrik, 2000). They point out 
the benefits of utilizing pastcasting analysis in a planning process in a robust PSS. They 
show how the pastcasting analysis might help planners and the public more broadly come 
to understand what they failed to see in previous planning exercises, including the 
specific conditions that may not have been included in the initial planning analysis (or in 
our case the PSS model). This kind of insight can also enable constructive conversations 
among stakeholders to facilitate mutual learning and understanding.  

In business planning, recasting is typically termed a post-mortem analysis, which takes 
place at the end of a project (summative post-mortem) or while it is still being carried out 
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(formative post-mortem).  It requires the project team to engage in a three- or four-day 
exercise to analyze every problem that occurred during the project (Davies, 1995). 
Research teams have a natural disincentive to conduct post-mortem analysis because it is 
a frank analysis of past failures. Thus, it is important to make the process positive and 
blame-free with no penalizing decisions on future projects (Collier et al., 1996).  In a 
PSS framework, a recasting analysis can promote continuous knowledge management 
and improvement activities, foster sharing and understanding of perspectives among 
project team members, integrate individual and team learning, illuminate hidden conflicts, 
and help document best practices and problems (Birk et al., 2002).  

3.2 TESTING A MULTI-DIRECTIONAL APPROACH 

Current PSS technologies typically do not address the multi-directional temporal analysis 
methods described above. We argue, however, that PSS-based scenario planning 
processes and outcomes would be greatly improved by including them. In this section we 
test this assertion by examining the McHenry County, IL comprehensive plan and 
planning process from 2010. The process utilized the LEAM PSS to inform the 
production of the county’s 2030 comprehensive plan.  The following describes the PSS 
application and the construction of scenarios developed. We show how backcasting was 
applied in the process of developing the scenarios and demonstrate how recasting might 
have been usefully employed to challenge the assumptions and outcomes of the simulated 
scenarios.  

3.2.1 The LEAM PSS 

The University of Illinois’ Land-use Evolution and impact Assessment Model (LEAM) 
model is a spatially explicit PSS that aims to help communities assess environmental 
impacts of different land-use scenarios and make better decisions for sustainable 
development. The LEAM model and PSS have been explained in detail elsewhere (Deal, 
2008; Sun et al., 2009; Deal & Pallathucheril, 2007; 2009a; Pallathucheril & Deal, 2012). 
The LEAM PSS consists of two major parts: (1) a land-use change model defined by 
multiple drivers that describe the local causal mechanisms and allow easy addition and 
removal of variables for playing out alternative scenarios, and (2) impact assessment 
models that support rapid analysis and interpretation of land-use changes depending on 
local interest and applicability (B. Deal, 2011). LEAM has been integrated with regional 
economic models (Deal, 2011; Deal and Kim, 2013), transportation models (Deal and 
Kim, 2013), and hydrology models (Wang et al., 2005; Choi & Deal, 2008). LEAM’s 
user interface facilitates stakeholder participation and learning. The PSS is delivered 
through a content management system with interactive spatial information portals to 
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enable easy access and modification by users.  

In this application, LEAM scenario simulations used 30 x 30 meter data from the USGS 
National Land Cover Database (NLCD) from 2005-06 (Fry et al., 2011), updated in 2010 
using a cell by cell visual comparison process that utilized current satellite imagery from 
2010. Simulations were run to the year 2030 to project change in land use (commercial 
and residential land use) over the 20-year period.  

3.2.2 The LEAM PSS in McHenry County, IL 

McHenry County is one of seven counties that typically make up the Chicago 
metropolitan region. It is approximately 35 miles northwest of downtown Chicago and 
has a population of 318,000. Its location and unique natural features create a 
quality-of-life that is attractive to many. Since 1990, the county’s population has grown 
40 percent, averaging 2.3 percent growth annually. The previous land-use plan for the 
county is the McHenry County Land Use Plan 2010, which was compiled in 1993 and 
updated in 2000. The County’s Regional Planning Commission (RPC) however, found 
this plan to be increasingly irrelevant and began to compile the McHenry County 2030 
Comprehensive Plan in 2007 (McHenry County Regional Planning Commission, 2009; 
Deal and Pallathucheril, 2009a).  

The LEAM PSS was adopted by the RPC for use in collecting information, modeling and 
building scenarios, displaying data, and advising policy decisions as part of their 
comprehensive planning process. A McHenry County LEAM model was constructed 
using basic local land use information to establish the base condition (land use, public 
space, no growth areas, zoning maps, etc.). Travel time calculations were used to 
establish the relative accessibility of a number of variables to and from any given place in 
the county including: population centers, employment centers, cultural centers, slope, 
highway access points, natural attractors (such as water bodies and green space). Input 
variables are calibrated to the local condition by plotting the spatial distribution of each 
variable to current land-use patterns and deriving (by specific geography) frequency 
probabilities in map form. The basic model form also included dynamic CA drivers 
inherent in the model structure (adjacency, diffusion, and spontaneous characteristics) 
that affect development probabilities by geography at each time step. We also include the 
whole Chicago metropolitan region in the land-use model to consider the impacts of 
neighboring spatial regions on McHenry County, and then clip out McHenry County for 
further analyses.   

In calibrating our model, we include both technical and non-technical approaches.  
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Technical calibration uses a Kappa statistic to compare an existing condition (2006 
NLCD map) to recasted development patterns using 2001 data simulated to 2006.  
Non-technical calibration used a participatory, visual approach to review simulation 
outcomes. In collaboration with the RPC and other local stakeholders we showed the base 
case or Reference Scenario simulation while asking the question, “Why is this wrong?” 
in order to help reveal local variable weights and potential new variables to include in the 
model. This process helped stakeholders synthesize to simulation outputs and afforded a 
modicum of local trust in the model outcomes, while helping to improve the accuracy of 
localized version of the model. A more detailed description of the LEAM modeling 
approach in McHenry County can be found in Sun et al., (2009), Deal and Pallathucheril, 
(2009a), and McHenry County Regional Planning Commission (2010). 

The localized model utilized growth policies (such as restriction areas, fast and slow 
growth areas), Land Evaluation and Site Assessment (LESA) scores, and other policy 
drivers as defined by stakeholder generated scenarios (see Section 3.3 for an example).  
These policies were used as inputs to the Reference Scenario to create new scenarios of 
simulated future land-use change for a given policy or package of policies. As part of this 
effort, LEAM synthesized a number of important county characteristics using data 
gathered from a variety of local, state, and federal sources including: the McHenry 
County Conservation District, Illinois Department of Natural Resources, Illinois 
Department of Transportation, Illinois Workforce Development, the US Census, Bureau 
of Labor Statistics, County Business Patterns, Illinois Department of Agriculture, and the 
US Geological Survey (Deal and Pallathucheril, 2009a). The LEAM model and modeling 
process helped the RPC to develop and test a range of scenarios, assess their 
environmental impacts, and show the projected impacts in dialogue with stakeholders. 

A review of meeting minutes published by McHenry County RPC (available on the RPC 
website) showed much initial conflict about the plan both inside and outside the board.  
Much of it concerned the population forecast for 2030 (McHenry County Board and 
Committee, 2007). Disagreements arose between local pro-growth commissioners and 
residents hoping to continue the trend of sprawling development and anti-growth 
residents, commissioners, and environmental groups urging protection of agricultural and 
environmentally sensitive lands. Ultimately, based on the LEAM simulated scenarios, the 
RPC adopted a developmental path that merged several scenarios (agricultural 
preservation, compact growth, and development zones) into a plan that tries to preserve 
the existing land-use and population growth momentum in the county, while 
materializing the growth in a pattern with the least environmental impacts.  

Almost 20 unique scenarios of future land-use patterns for McHenry County were 
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developed as part of a public process with the board and local residents. Scenarios 
included business as usual, high growth rates, low growth rates, more compact and 
contiguous developmental patterns, growth controls, agriculture preservation, aquifer 
recharge zone preservation, green infrastructure focused development, development 
zones, high density, and scenarios that minimized environmental impacts.   

In order to constructively compare the implications of interpreting errors, only two 
scenarios were selected for review in this study: 1) a Reference Scenario (or business as 
usual), assumed that current development patterns and trends would continue with no 
modification from 2005 to 2010; and 2) Agricultural Preservation Scenerio 
(agPreserve), agricultural preservation districts are designated as low to no-growth areas 
to preserve sensitive agricultural and natural lands. Agricultural preservation was an 
important policy for the county and greatly influenced the decisions outlined in the 2030 
Comprehensive Plan. Because of this influence on the final plan, for the purposes of this 
analysis we refer to this as the ‘preferred scenario’ (even though there were other 
scenarios that might also be considered ‘preferred’). Figure 10 shows the starting and 
ending (simulated) land-use states for the reference scenario. Figure 11 denotes 
differences between the Reference and agPreserve scenarios in terms of stress on high 
quality farmland soils. 

 

Figure 10. LEAM McHenry County Reference Scenario Simulation. Yellow are new 
residential cells and red are new commercial cells. Beige are existing development areas. 
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Figure 11. LEAM McHenry County AgPreserve Scenario Simulation difference map.  
Reds are prime farm areas pressured by development in the reference scenario, but 
protected in the agPreservation scenario. Blues are prime farm lands affected by an 

alternate scenario. 

Our analysis of the scenarios was undertaken with the following questions in mind: 1) 
How well did the simulation perform with respect to the way the situation actually 
evolved? 2) Can the difference tell us anything useful about the way we conducted these 
scenario simulations? and 3) What inferences can we make about plan implementation?  

3.2.3 Backcasting: Constructing Preferred Scenarios  

Backcasting techniques were applied to the construction of preferred scenarios. A future 
preferred land-use pattern was determined by analyzing preferred outcomes relative to 
the scenario in question. For example, in the agPreserve scenario LESA scores were used 
to assess agricultural productivity (Illinois Department of Agriculture, 2001). Preferred 
productivity and LESA outcomes (minimizing impacts on each) dictated the spatial 
allocation of population and employment at each time step in a linear optimization 
process presented by equation (1). 

𝑚𝑚𝑚𝑚𝑚𝑚�𝑙𝑙𝑖𝑖𝑅𝑅𝑖𝑖

𝑛𝑛

𝑖𝑖=1

+ 𝑙𝑙𝑖𝑖𝐶𝐶𝑖𝑖;        𝑠𝑠. 𝑡𝑡.�𝑒𝑒𝑖𝑖𝐶𝐶𝑖𝑖

𝑛𝑛

𝑖𝑖=1

= 𝑑𝑑𝑒𝑒;    and       �𝑝𝑝𝑖𝑖𝑅𝑅𝑖𝑖

 𝑛𝑛

𝑖𝑖=1
= 𝑑𝑑𝑟𝑟                           (1) 

where n is the number of total census blocks; li is the estimated average LESA score for 
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land productivity for census block group i; variable Ri is the total residential cell 
developed in census block group i; variable Ci is the total commercial cell developed in 
census block group i; ei is the estimated average employment density for each (30m x 
30m) commercial cell for block group i; pi is the estimated average population density on 
each (30m x 30m) residential cell for block group i; de is the total estimated employment 
growth to the target year (2040 in this case); and dr is the total estimated employment 
growth to the target year (2040 in this case). 

After reviewing several simulation exercises, an agricultural preservation policy was 
formulated. Critical areas for preservation districts are formed to have very low to no 
probability of residential and commercial developments. The resulting growth pattern 
represented the agPreserve scenario.  

The agPreserve scenario construction represents a typical backcasting process. First, a 
desirable outcome is established—in this case, minimized agricultural productivity loss 
from urban development. This outcome is determined from one perspective without 
reference to other variables. Backcasting how to achieve this desirable outcome, however, 
requires an analysis of the complex interactions between a host of variables; many 
multiple iterations need to be examined. Once these are examined, a coherent set of 
policy levers can be developed. In the case of McHenry County, agricultural productivity 
impacts were closely tied to the introduction of a new (and also desired) transportation 
investment (a new interchange conflicted with highly productive agricultural lands) and 
any ensuing policy needed to address it.   

3.2.4 Recasting: Comparing Expected vs. Observed Land-Use Patterns  

In recasting simulations, we used the original (cleaned) 2005 USGS spatial data and reran 
simulation scenarios from 2005 to 2010. We then compared simulated patterns to the 
actual patterns existing in 2010. Other economic, demographic, natural resource, and 
preservation zoning data for 2005 were obtained from ACS 2005 (U.S. Census Bureau, 
2012) or were provided by the McHenry County RPC (McHenry County Regional 
Planning Commission, 2009). Block group level population for 2005 came from ACS, 
and population for 2010 came from US Census 2010 (U.S. Census Bureau, 2012). 

In order to compare simulation results to the 2010 census data we needed to transform 
spatial simulation outcomes into the relevant census spatial scale—in this case block 
groups. To translate simulated land-use distributions to population distribution by block 
group, we have 2 challenges: 1) First, locational variables (longitude and latitude) do not 
have linear or quadratic relations to the population distribution in the county. However, 
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adjacency of census tracts is likely to indicate a level of development; 2) commercial 
land-use and residential land-use are obviously correlated and cannot be both used as 
independent variables in ordinary linear regression. However, it is unreasonable to 
eliminate any of them in the predictive model as key information from LEAM simulation.   

To address the challenges, we applied a ridge regression method to establish the 
land-use/population relationship. The ridge regression method is considered a better 
prediction method than ordinary linear regression in our research for two reasons. To 
address the first challenge, we divided the county into 5 longitudinal zones and 5 
latitudinal zones and used binary variables to indicate if the block groups belong to those 
zones. Unfortunately, this approach adds 10 degrees of freedom to the model, resulting in 
possible over fitting. Ridge regression has a variable shrinkage function, so it generally 
reduces the risks of over fitting. To address the second challenge, Ridge regression is 
very useful in handling correlated input variables by limiting their coefficients to 
generally small values (to properly account for data outliers).  

Ridge regression is a modified version of a least square (LS) regression method. It 
minimizes the normal criterion for LS, but also adds a penalty term, or shrinkage 
parameter (γ) that can be multiplied by the sum of norms of coefficients. With a larger λ, 
the coefficients will shrink – tending to 0. Ridge regression is not unbiased with  γ > 0, 
although it usually has a smaller variance than LS. By tuning the shrinkage parameter (γ) 
we can calculate the smallest mean square error (MSE) of the model. Given a response 
vector y and a predictor matrix X, a ridge regression attempts to minimize γ for vector β. 
The optimization function to estimate coefficient β� is presented in equation (2). 

β� = 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝛽𝛽(𝑦𝑦 − 𝑋𝑋𝑋𝑋)𝑇𝑇(𝑦𝑦 − 𝑋𝑋𝑋𝑋) + γ 𝑋𝑋𝑇𝑇𝑋𝑋                                                       
(2) 

where β is the coefficients vector and γ is the shrinkage parameter, and X is a matrix of 
vectors {𝑥𝑥𝑎𝑎𝑟𝑟𝑒𝑒𝑎𝑎, 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑟𝑟𝑐𝑐𝑖𝑖𝑎𝑎𝑐𝑐, 𝑥𝑥𝑟𝑟𝑒𝑒𝑟𝑟𝑖𝑖𝑟𝑟𝑒𝑒𝑛𝑛𝑟𝑟𝑖𝑖𝑎𝑎𝑐𝑐 , 𝑥𝑥𝑐𝑐𝑐𝑐𝑛𝑛𝑙𝑙𝑖𝑖𝑟𝑟𝑙𝑙𝑟𝑟𝑒𝑒, , 𝑥𝑥𝑐𝑐𝑎𝑎𝑟𝑟𝑖𝑖𝑟𝑟𝑙𝑙𝑟𝑟𝑒𝑒 }. The details of variables 
can be found in Table 1.  (Vogel, 2002).  

For variable selection in this study, we define longitude and latitude as distance variables, 
count of commercial land-use cells (in the LU raster map) and count of residential 
land-use cells (in the LU raster map) as land-use variables, and population as outputs for 
each census block group.  Ridge regression is used to predict the future population in 
each block group based on applying the coefficients of the initial dataset to predict future 
population from our simulated future land-use patterns (Table 1).  
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Variable Mean Std. Dev. Min  Max  
Input Variables from Training Group (2006 NLCD) 
Block Group Area 
(square meters) 

6,756 11,938 196 57,052 

Commercial Land Use 
(number of raster cells) 

220,515 260,416 900 1,945,350 

Residential Land Use 
(number of raster cells) 

934,954 536,304 92,250 2,742,750 

Longitude (categorical) 5 zones1 
Latitude (categorical) 5 zones2  
Output Values from Training Group (2005 ACS) 
Population Counts 1,722 836 472 6,325 
Input Variables from Test Group (LEAM raster land-use 2010 output) 
Block Group Area 
(square meters) 

6,221 11,183 207 57,055 

Commercial Land Use 
(number of raster cells) 

204,116 241,360 900 1,786,950 

Residential Land Use 
(number of raster cells) 

872,539 453,892 328,500 1,808,550 

Longitude (numerical) 5 zones (see notes below)*  
Latitude (numerical) 5 zones (see notes below)**  
Output Values from Test Group 
Population Counts 1,664 1,893 792 3,650 

Table 1. Regression model variables for each census block group. 

The comparisons between the average numbers of the 2005 input and the 2010 simulation 
do not necessarily indicate actual growth of population and land-use categories because 

                                                 

1 The county is divided into 5 equally sized zones according to longitude values, and “if the block group is 
in that zone” is represented by binary variables. 

2 The county is divided into 5 equally sized zones according to latitude values, and “if the block group is in 
that zone” is represented by binary variables. 

 



61 

 

the census block groups have been changed over time. The strength of our learning 
method is that it does not rely on the exact same geographical unit to project past data to 
simulated data. Rather, it learns useful information from past data, tries to find the pattern, 
and decides how the simulation data gap should be filled. In this sense, the process 
handles the potential changing of data in census blocks extremely well. In addition, we 
tested a range of additional variables that were considered potentially relevant including 
density (residential and commercial cells) and travel distance to the regional center 
(downtown Chicago). The inclusion of cell density increased our reference scenario 
accuracy by just 2.37%.  The inclusion of the distance to Chicago center increased the 
reference scenario accuracy by only 1.65%.  Although potentially important when 
nested with other variables, the additional accuracy was considered insignificant when 
compared to our original error (27% - see Section 4.1.1). 

3.3 RESULTS: IMPACTS ON PLANNING DECISION MAKING 

The process described above facilitates the use of a comparative metric (total population 
for each block group in 2010) for analysis across scenarios. This process enables a 
comparison of the actual population in 2010 to the simulated and recasted scenarios and a 
response to the question – How well did simulations perform when compared with actual 
data? We further analyze this question by presenting the percentage of errors and the 
spatial distribution of the errors for each of the 2 scenarios studied. We then explore the 
plan implementation implications of the model results.  

3.3.1 The Reference Scenario Assessment 

Using our comparative variable, the reference scenario projects a population distribution 
in McHenry County that is fairly consistent with actual census counts in 2010 (Figure 
12). Also Moran’s I analysis indicates existence of global and local 
spatial-autocorrelations (on simulation errors), the existing urban center in the southeast 
of the region does not show significant over or underestimation of population from the 
model simulation. In Figure 12, red indicates block groups with a higher actual 
population (as reported in the census); blue represents block groups with a higher 
simulated population (using the LEAM PSS). Out of 164 census block groups, the 
calculated error in the reference scenario was less than 10% in 41 of the block groups and 
less than 20% error in another 29. The average error is about 27%. There appear to be 
several block groups in the northwest, southwest, and southeast of the county that were 
calculated to be more than 40 percent underestimated. These are block groups that are 
included in or very close to three major township development clusters in the 
county—Harvard (northwest), Marengo (southwest), and a large group of townships in 
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the southeast. An examination of the data shows that actual development patterns are 
more closely tied to the existing urban infrastructure than the reference (business-as-usual) 
simulation.   

Using this analysis technique, we can adjust the attractiveness of existing infrastructure to 
align the reference scenario more closely with actual patterns. This is especially 
important for a reference scenario, since in typical planning processes, scenario 
alternatives will be compared to the ‘business as usual’ (or do nothing) reference case.  
In addition, if the reference scenario exhibits high internal validity (i.e., it calibrates 
closely in a recasted analysis), we can surmise that each scenario will represent a likely 
outcome given the variables that have been modified to reflect the alternative future 
tested. Backcasted goals also can be used as an alternative calibration methodology. If for 
example, we want to use less water in the future, we can calibrate the scenario outcomes 
based on how much water each scenario might use. 

 

Figure 12. A comparison of the 2010 actual population and the reference scenario 
simulated population distributions by census block group. 
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3.3.2 agPreserve Scenario Assessment 

The agricultural preservation scenario represents a future with more farmland preserved 
for agricultural use in the future. Preservation strategies are based on soil conditions, crop 
productivity assessments, and LESA scores. This scenario shifts areas of urban growth 
toward existing urbanized parts of the county and away from productive agricultural 
lands. 

A comparison of the actual population to the agPreserve scenario simulation is shown in 
Figure 5. Predictably, the results are not as favorable, since we adjusted the scenario to 
represent an alternative to the business as usual trends. Out of the 164 census block 
groups in the county, the prediction has less than 10% error on 36 of the block groups, 
and less than 20% error on another 27 block groups. Although the visual analysis is 
markedly different, the average error is only slightly higher than the reference scenario 
(just over 28%), since the majority of potential growth remains in already highly 
urbanized areas. 

As noted, compared to the reference scenario, the agPreserve scenario has a much more 
obvious error pattern. Similar to a growth boundary policy, the scenario removes random 
rural developments (due to policies that preserve productive agricultural areas) in favor of 
a more compact pattern of development in already developed areas. The actual population 
distribution is lower in the existing developed clusters, and it is higher in the fringe area 
of development. An “underestimation corridor” (red colored block groups in Figure 13) 
is evident from the northeast corner of the county to the mid-southern edge of the county. 
In comparison, actual growth is more compact than the reference scenario simulation, but 
less compact than the agPreserve scenario.  
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Figure 13. 2010 Actual Population and agPreserve Scenario Simulation Comparison by 
census block group. 

If we overlay the Agriculture Preservation District (green zones in Figure 14, which is 
very close to the established Agriculture Preservation District laid out in the McHenry 
County 2030 Comprehensive Plan) with the agPreserve scenario outcome, we see that the 
majority of the fringe growth in the county is moved to the north (black colored block 
groups). While we expected growth moving out of the preservation zones, we did not 
expect the rampant fringe growth in other rural, less agriculturally significant areas. This 
is both expected—growth moving out of the preservation zones, and unexpected—fringe 
growth still rampant in the county in other rural, but less agriculturally significant areas.  
The intended consequence of the agPreserve scenario was to improve the compactness of 
new developments. The unintended consequence might be that instead of compactness, 
fringe development remains the norm, but moves to other areas that may in fact be 
equally sensitive from a different perspective (i.e., ecosystem services or green 
infrastructure services).   

The actual growth in McHenry County fails to tightly follow the compact pattern 
envisioned by the preferred agPreserve scenario, but it does avoid occurring inside the 
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preservation district. The balance of those two forces direct most of the unexpected 
growth onto the central to northeast corridor of the county, making the shape of the 
‘underestimation corridor’ easier to understand. 

 

Figure 14. An overlay of agriculture preservation districts (green areas) on the 
agPreserve scenario outcome (shaded block groups). 

3.4 DISCUSSION 

3.4.1 Implications of Scenario Comparisons 

Like all plan making processes that include some estimation of the future, a population 
projection is a necessary component when considering potential development scenarios.  
Using a PSS with multi-directional analytical capabilities, however, can remove some 
uncertainties surrounding the time at which these projections might be realized. It can 
shift the conversion from “what is our plan for 2030?” to “what is our plan for population 
X?” The difference is subtle. In the latter, the plan is foreseeing the potential for change 
and responding to it, not necessarily predicting the change. In McHenry County, it would 
change the discussion to be more about managing resources in the light of increasing 
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population regardless of when it occurred. In this way, whether or not the population 
projections are met at the allotted point in time is irrelevant. The county plan 
acknowledge this concern in a ‘challenges’ section in which they discuss “how to manage 
and accommodate the anticipated population growth and needed economic development 
while maintaining the same quality-of-life” (McHenry County RPC, 2010). 

As opposed to population growth, the actual county land-use growth patterns exceeded 
the land-use growth in residential and commercial developments that were simulated for 
2010.  In fact, in McHenry County the overall population decreased by 2% (to 308,000) 
in 2010 even though land-use area actually increased by more than 30% in some block 
groups.  This implies that there is a general inter-regional movement in the county from 
more densely populated areas to less densely populated areas.  A multidirectional 
analysis can help understand and capture this phenomenon. 

Comparing forecasted and recasted simulation results to actual population distributions 
helps expose differences. These differences enable diverse interested parties (modelers, 
planners, community groups) to collaboratively re-examine the assumptions that are 
made in model parameters.  Critical questions that emerge in the process of examining 
these differences is – how do we attribute the found errors?—to which variable(s)? 
Furthermore, when analyzing specific scenario interventions, the inconsistencies might 
be in the difference between the simulated policy and the actual policy implemented.  

3.4.2 Usefulness and Goodness of Fit in Multi-Directional Analysis 

Below are some tentative evaluation criteria for multi-directional analysis in a ‘useful’ 
scenario PSS derived from our McHenry County experiences (Table 2).  In our 
comparative framework, we suggested 2 critical differences in the interpretation of model 
results: a) is it accurate?; and b) is it useful?  This generally follows the popular 
aphorism, “all models are wrong, some models are useful” (commonly attributed to Box, 
1976).  First, do the models succeed or fail in conveying some of the factors affecting 
future development patterns and subsequent population distributions? Alternatively, even 
if not particularly accurate, do the model results influence the decision-making, planning, 
and/or implementation process in the region?  We argue here and elsewhere (Deal & 
Pallathucheril, 2009a) that ‘b’ is generally preferred in the planning and decision making 
process, although ‘a’ is typically seen as the standard used to assess model validity.  
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Scenario creation techniques 

    Backcasting Forecasting Recasting Pastcasting 

Evaluation Criteria 
Is there a 
structural change? 

Is goodness-of-fit 
important? 

Modeling error 
interpretation 

Plan 
implementation 
error 
interpretation 

Ty
pe

s o
f S

ce
na

rio
s 

Reference 
scenario No. 

No. We aim for a 
better 
developmental 
pattern 

Missing 
developmental 
drivers; basic 
assumptions do 
not hold for the 
future 

If trend is more 
sustainable than 
this scenario, 
policies are 
effective; 
otherwise policies 
are not better than 
before. 

Preferred 
scenario 

Yes. Change to a 
more sustainable 
pattern. 

Yes.  
Insufficient 
projection on 
policy effects 

Insufficient policy 
consideration 

Scenario 
to avoid 

Yes.  Downward 
change to 
unsustainable 
pattern 

No. We want to 
stay away from 
this scenario 
happening 

This is scenario to be avoided, so it’s 
good to have “errors” for this scenario 
comparing with the ground truth 

Table 2. Proposed multi-directional evaluation criteria for a useful scenario planning 
PSS. 

We contend that in order to be useful, a PSS should inform and improve the planning and 
decision-making process. Whether or not the model is accurate may be less relevant.  
For example, in the McHenry County process, it became clear that the protection of 
agricultural resources was a priority for the County. In another scenario (an investment in 
a new interstate interchange), growth pressures moved from other parts of the county 
down to the area of the interchange. The area of the interchange, however, is an area of 
highly productive agricultural soils. The impetus for the interchange lacks a logical 
construct (it does not improve travel time for commuters or other travelers) and is more 
emotional than rational, so that a simple solution – reject the interchange investment in 
favor of investments that would have less of an impact on agricultural lands – was not 
feasible. Another strategy is to plan for the interchange, but also implement agriculture 
protection policies as a hedge against the potential negative consequences on 



68 

 

agriculture—which in the end was the preferred path. Whether or not the model 
accurately depicted the change in growth pressures is not important. The fact that the 
county wants both an interchange and to protect agricultural resources was made clear by 
the modeling process and was an important component in policy formation that will help 
in achieving both desired goals and outcomes. 

3.5 CONCLUSIONS 

In this paper we argue that multi-directional analyses for scenario planning can bring the 
planning community additional benefits to the typical PSS forecasting analysis. We 
contend that in order to help planners and decision makers avoid unintended 
consequences, a PSS must do more than forecast into the future. We suggest that a good 
PSS should also have the ability to: recast from a point in time in the past to the current 
condition, pastcast from the current condition to a point in time in the past, and backcast 
from a point in time in the future back to the current condition. We show through a 
real-world scenario planning exercise in developing a county-wide comprehensive plan in 
McHenry County, Illinois that PSS-based scenario planning processes and outcomes can 
be improved by including the ability to do these multi-directional temporal analyses.   

We conclude that PSSs that are more flexible in navigation through timelines will better 
serve sustainable planning goals. First, pastcasting and recasting can help planners and 
communities learn from past experiences and help avoid repeat mistakes. They can also 
help re-evaluate past goals in terms of performance outcomes in order to prioritize new 
potential strategies. Second, recasting and pastcasting reveal potential drivers that PSS 
models might fail to recognize for specific regions, enabling the construction of more 
nuanced localized models that will increase local model validity. For example, using this 
recasted analysis we can adjust the attractiveness of existing infrastructure to tune the 
reference scenario to more closely align with actual patterns.  

Finally, recasting and backcasting allow for a departure from present unsustainable 
extrapolations to help attain new goals and assist in the definition of new potential 
conditions. If, for example, we want to use less water in the future, we can use 
backcasting techniques to calibrate the scenario outcomes based on how much water they 
use. PSS with multi-directional analytical capabilities can also remove some of the 
uncertainties surrounding the time at which projections might be realized. It can shift the 
conversion from “what is our plan for 20XX?” to “what is our plan for population X?” In 
the latter, the plan is foreseeing the potential for change and responding to it, not 
necessarily predicting the change.   
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In our comparative framework, we suggest 2 critical differences in the interpretation of 
model results—i.e., is it accurate? vs. is it useful?  First, do the models succeed or fail in 
conveying some of the factors affecting future development patterns and subsequent 
population distributions? Alternatively, even if not particularly accurate, do the model 
results influence the decision-making, planning, and/or implementation process in the 
region? We argue here and elsewhere that usefulness is generally preferred in the 
planning and decision making process, although accuracy is typically seen as the standard 
used to assess model validity. There is gap in the existing planning literature on PSS LUC 
model validation. In our estimation a good validation process should exhibit: 
objectiveness, reasonableness, understandability, and practicality. This fundamental part 
of PSS LUC development however, requires much further work. 

In this paper we contend that in order to help planners and decision makers avoid the 
unintended consequence of policy decisions, a PSS should do more than forecast into the 
future. We suggest that a good PSS should also have the ability to travel in multiple 
temporal directions in order to more thoroughly inform the planning and decision making 
process. We argue that PSS-based scenario planning processes and outcomes will be 
greatly improved by including the ability to do multi-directional temporal analyses and 
usefully present the results. 
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CHAPTER 4: KNOWLEDGE FLOW OF PLANNING SUPPORT 
SYSTEMS (PSSS) INTO PLANNING PRACTICES: A 

POST-MORTEM CASE STUDY OF LEAM PSS IN MCHENRY 
COUNTY, IL 

It has been almost 25 years since scholars began investigating the use of land-use change 
models to simulate the evolution of urban land-use patterns (Deal et al., 2017; White and 
Engelen, 1994).  The use of these types of models for understanding urban phenomena 
has been increasing both in the laboratory and the profession of planning ever since 
(Geertman and Stillwell, 2003). The models have become a major component part of 
Planning Support System (PSS) tools. In typical PSS toolboxes, land-use change models 
and other data, models, and visualization devices are used to inform planning and 
decision making by simulating possible future land-use outcomes, such as how land -uses 
might evolve in a specific place over a specific period of time. This has proven especially 
useful in scenario planning and other practical planning exercises (Chakraborty et al., 
2011; Helen Couclelis, 2005). As the scholarship that surrounds PSS technologies 
becomes more mature, the ways in which these tools might be made more useful (i.e., 
more accessible) and endemic to the planning process have become more central 
concerns (Saarloos et al., 2008; te Brömmelstroet, 2013; Vonk et al., 2005). 

PSS scholars argue that it is now time for PSS model development to move beyond the 
technical issues of the models and into “softer” issues that involve social and practical 
issues  (Michael Batty, 2007; B. Deal & Pallathucheril, 2009b; R. E. Klostermann, 1997; 
Marco te Brömmelstroet, 2012; MT te Brömmelstroet, 2010; Vonk & Geertman, 2008). 
Overly focusing on geo-information tools result in that PSS is perceived to be too 
complex, inflexible, and incompatible to planning tasks (Vonk et al., 2005; Vonk and 
Geertman, 2008). The critical bottleneck now is transparency, understandability, 
flexibility of PSS and its connection to the planning practices (Marco te Brömmelstroet, 
2012; MT te Brömmelstroet, 2010; Vonk & Geertman, 2008). Specific problems of 
popularizing PSS in practices include model to user communication (B. Deal & 
Pallathucheril, 2009b; Brian Deal & Pan, 2016; S. Geertman & Stillwell, 2004a; Pelzer et 
al., 2014; Saarloos et al., 2008; Marco te Brömmelstroet, 2012, 2013; MT te 
Brömmelstroet, 2010; Vonk & Geertman, 2008; Vonk et al., 2005b; Vonk, Geertman, & 
Schot, 2006b), assuring users of modeling validity (S. Geertman & Stillwell, 2004a; 
Richard E Klosterman & Pettit, 2005b; Pelizaro, Arentze, & Timmermans, 2009b; M. 
Shiffer, Brail, & Klosterman, 2001b; M. J. Shiffer, 1995; Marco te Brömmelstroet, 2013), 
facilitating collaborative planning (Brian Deal & Pan, 2016; Richard E Klosterman & 
Pettit, 2005b; R. E. Klostermann, 1997; Pettit, 2005; MT te Brömmelstroet, 2010), 
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encouraging mutual learning (Pelzer et al., 2014; Marco te Brömmelstroet, 2012; Vonk & 
Geertman, 2008), and actively enabling community feedback (B. Deal & Pallathucheril, 
2009b; Brian Deal & Pan, 2016; Pelzer et al., 2014; Marco te Brömmelstroet, 2012). 

In this paper, we argue that knowledge transfer from technical analysis to useful and 
understandable planning practice guidance is the key issue that PSS scholars need to 
address to improve the social and practical aspects of PSS applications. Technical result 
such as goodness-of-fit of a simulation model, a simulated future land-use map, 
parcel-to-parcel based scenario comparison, or sectoral gain/loss in an economic impact 
analysis, may not make sense to policy-makers directly. Goodness-of-fit of simulation 
model depends on the measuring spatial units and “null resolution” (Costanza & Maxwell, 
1994; Koomen, Rietveld, & de Nijs, 2008; Pontius et al., 2008; Pontius, Huffaker, & 
Denman, 2004), thus it is difficult for non-spatial modeling expert to make sense of the 
context associated with a “percentage of accuracy”. Another example is about future 
land-use change maps. A city may only have 5 percent of urban land-use expansion over 
10 years. When modelers show a simulated future land-use map with a current land-use 
map to policy-makers, they might barely see the differences, let alone making any policy 
implications from it. In sum, most “plain products” from technical analyses of PSS do not 
fit the practical needs of users, thus their values are limited without a carefully managed 
knowledge transfer process.  

Knowledge transfer of technical terms based on modelers’ immersion into and 
understanding of planning practices can make PSS results influential to policy decisions. 
Vonk et al. (2006) claim that PSS results are hardly suitable for direct usage by decision 
makers, because decision making is more a game of politics and power than technical 
analysis. However, this can be different if knowledge transfer has been applied the 
technical analysis. Instead of showing stakeholders a simulated “business-as-usual” 
land-use map that has 5 percent difference to the current land-use situation, if modelers 
interpret the results as “most development would gravitate towards western parts of the 
county if the developmental trend is not intervened”, this message will be a point that 
may be frequently cited by certain stakeholders in the decision making process. 

We further argue that to identify needs and goals of transferring technical knowledge into 
practical usage, or even figure out necessary technical analyses, requires PSS scholars to 
be immersed into planning practices that involve PSS themselves. For example, 
thousands of patterns may be abstracted from one simulated future land-use map using 
plain language. However, there might only be one or very few patterns that pinpoint the 
core of planning debate, such as locations under political struggle or local intuitions that 
confront the technical results. This requires modelers to be involved into plan-making 
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processes to understand outstanding needs and debates of the plan making process. 

In this paper, we aim to use a real-world PSS aided plan making process to substantiate 
our argument. In Section 4.1, we first introduce a use-driven PSS involvement in the 
plan-making process in McHenry County, IL to show how knowledge transfer occurred 
mutually between modelers and local stakeholders. Then, we conduct a post-mortem 
study as around 10 years has passes after the initial model is built. During our experience 
with other LEAM users and the McHenry County planners after the initial plan, we found 
out that 2 questions need to be answered: the interpretation of reference scenario model 
and the “continuous plan” evaluation of the initial McHenry County Plan. To answer 
those questions, we develop and adapt 2 spatial analytical methods in Section 4.2 on the 
goodness-of-fit of model simulations, and try to convey the results to users in an 
understandable and practically useful way. Section 4.3 includes our conclusions and 
future works.  

4.1 A POST-MORTEM CASE STUDY OF LEAM PSS IN MCHENRY COUNTY, 
IL 

4.1.1 Project Background   

In 2009, LEAM and its PSS was applied to McHenry County, IL as a part of their 
comprehensive planning process. McHenry County is one of seven counties in the 
Chicago metropolitan region, approximately 35 miles northwest of the city. It has a 
population of 318,000. Since 1990, the county’s population has grown 40 percent, 
averaging 2.3 percent growth annually. The previous land-use plan for the county was 
compiled in 1993 and updated in 2000. By 2007 the McHenry County Regional Planning 
Commission (RPC) deemed the plan irrelevant and began the McHenry County 2030 
Comprehensive Planning (McHenry County Regional Planning Commission, 2010b). 

The LEAM model and PSS have been explained elsewhere in detail (Deal and 
Pallathucheril, 2009). The system consists of two major parts: (1) a land-use change 
model defined by multiple drivers that describe the local causal mechanisms of potential 
change for playing out alternative scenarios; and (2) impact assessment models that 
support rapid analysis and interpretation of land-use changes (Deal et al., 2011). The 
LEAM PSS is delivered through a content management system with interactive spatial 
information portals to enable easy access and modification by users with a simple user 
interface that facilitates stakeholder participation and learning.  

In this application, LEAM scenario simulations used 30x30 meter data from the USGS 
National Land Cover Database (NLCD) (Fry et al., 2011) from 2006. Simulations were 
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run from the year 2010 to the year 2030 to project changes in land-use (commercial and 
residential) over the 20-year period. The role of the LEAM PSS was to help the RPC to 
create various scenarios, assess their environmental impacts, and reveal the projected 
impacts to stakeholders. Data for the simulation effort was gathered from a variety of 
local, state, and federal sources including: the McHenry County Conservation District, 
Illinois Department of Natural Resources, Illinois Department of Transportation, Illinois 
Workforce Development, the US Census, Bureau of Labor Statistics, County Business 
Patterns, Illinois Department of Agriculture, and the US Geological Survey (Deal & 
Pallathucheril, 2009). 18 unique scenarios of future land-use patterns for McHenry 
County were developed as part of a public process with the board and local residents.   

4.1.2 A Use-Driven Approach   

The particular interesting points of this project is that local planners planned to adopt and 
adapt one of LEAM’s simulated scenarios into the final land-use plan of the County 
(McHenry County Regional Planning Commission, 2010b), so this is a rare project that 
PSS results heavily influenced the final results of a plan. The PSS development process 
first established a “reference” scenario as a baseline for assessing the impacts of various 
land use policies being discussed. The reference scenario simulated land-use change if 
current growth pattern trends continue to 2030. Other model scenarios were then 
compared to the reference scenario in order to understand the impact that the tested 
policies might have on various important county assets (Brian Deal & Pan, 2016).  

In the scenario development phase, modelers conducted the standard use-driven approach 
of LEAM model (B. Deal & Pallathucheril, 2009b). The preliminary scenario simulation 
outputs were shown to local stakeholder groups, government employees and officials, and 
planners. The modelers put up questions, such as: “Do you think this developmental 
pattern looks reasonable if XX policy were to be enacted?” The local groups were invited 
to visually check the model outputs and offer their opinion (the visual validation process 
was used at that time but later improved, which will be described in Section 4.2). Various 
responses and criticisms are collected, including “development not in the right direction”, 
“commercial development not clustered right”, and “this existing lot is actually vacant, so 
it should be redevelopable rather than having no change for 30 years.”  The LEAM team 
took these responses and forged a knowledge transfer from “intuitive opinions” to 
“operational requirement” to programmers of the model, including changing weights of 
some variables (such as accessibility roads), increasing probability of growth for cells 
with neighboring development in the dynamic growth process, and manual clean-up some 
existing commercial areas into “developable lands.” Then the modelers bring updated 
results to local stakeholders again and let them visually check—“is there any 
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improvement?” This process of mutual knowledge transfer was interactively conducted 
until the model scenario results were deemed reasonable by local stakeholders.    

 Apart from honing the technical sides of the model, the modelers also paid intensive 
attention to the heat of political debates revolving the plan. LEAM team participated in 
than 10 public meetings convened by the McHenry County Planning board with a range 
of public interests, stakeholder groups, government employees and officials, and planners. 
The process revealed an early and major concern with the projected development outlook 
for 2030. This was the bellwether issue that underlay a larger conflict on the future of the 
County between pro and anti-growth advocates; one group of residents hoping to 
continue the past development trends and environmental groups urging protection of 
environmentally sensitive and agricultural lands. With understanding the critical issue, 
LEAM team proposes the local planners to compose the final land-use map based on 
Agricultural Preservation Scenario (agPreserve) from the 18 simulated scenarios.  

To make stakeholders with different views (pro-development and pro-preservation), 
LEAM team and the local planners conduct a “backcasting” method to create final 
land-use map. LEAM results are linked to Land Evaluation and Site Assessment (LESA) 
modeling framework from the Illinois Department of Agriculture (Coughlin et al., 1994) 
to form a linear optimization problem that maximizes preserved agricultural land value 
while meeting the constraint of development goal. This procedure is well documented in 
Deal et al. (2017). The knowledge transfer was focused on the linear optimization 
problem. The LEAM team translated math formulae of the linear optimization into 2 
simple discourse—“maximizing preserved agricultural land value” (objective of the 
optimization) and “maintaining developmental goal” (constraints of the optimization) to 
address stakeholders of different views. This approach was proven successful as LEAM 
agPreserve scenario was eventually adapted to the enacted 2040 land-use map of 
McHenry County (McHenry County Regional Planning Commission, 2010b).  

4.1.3 Post-Mortem Questions   

We are now 8 years after LEAM’s initial application to McHenry County (2009) and 11 
years after the start year of the simulation model (2006). LEAM’s experiences with 
further users when referring back to the McHenry model, as well as post-plan 
communication with planning staff in McHenry County, IL, raise 2 issues that need 
clarification.  

Interpretation of reference scenario. The reference scenario model of McHenry County 
sparks particular curiosity from other prospective LEAM users. The questions are: “what 
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does it mean?” and “how well does it fit the actual developmental pattern?” Those 2 
questions are actually connected. LEAM’s definition of reference scenario is that 
“simulated land-use change if current growth pattern trends continue to 2030.” LEAM’s 
users want to further now how much validity that should be given to this “continuation of 
growth pattern trends.” Is it still the scenario that best forecasts the future land-use 
change? Or is it no longer relevant since growth patterns will often be alternated by 
planning efforts? We should be able to give an answer, since ground-truth data are 
available now to validate the initial reference scenario for McHenry County. 

Monitoring of plan implementation. LEAM PSS intended to enable a “continuous 
planning” process for McHenry County (Brian Deal & Pan, 2016). A visualized online 
tool is created to allow the community to continuously interact with the data and models 
associated with the plan. Apart from this tool, McHenry County planners are also 
interested in how well the land-use development of the county has conformed to the 
chosen agPreserve scenario. Especially, whether agPreserve or reference scenario better 
captures the actual developmental pattern, and what inference can be drawn from the 
conclusion. 

We find out new interests from planning practitioners through LEAM team’s continued 
engagement with PSS users. Interpretation of reference scenario and monitoring of plan 
implementation require updated technical analyses that measure and compare 
goodness-of-fit of PSS models. More importantly, we need to convey the results of 
goodness-of-fit under a complicated planning context to users—which requires 
knowledge transfer. In Section 3, we will demonstrate how we apply a new technical 
methods to measure and compare goodness-of-fit of past LEAM model, and then discuss 
how the results can be transferred to user and understandable and useful knowledge.   

4.2 MEASURING, COMPARING, UNDERSTANDING, AND COMMUNICATING 
GOODNESS-OF-FIT 

In Section 4.1.3, we identify that “interpretation of reference scenario” and “monitoring 
plan implementation” are the two questions we need to explain to LEAM users, and 
methods of measuring and comparing goodness-fit are needed to extract relevant 
information from the model results. In this section, we use 2011 NLCD land-cover map 
as the “ground-truth” (actuality) to measure and compare goodness-of-fit of the first 
5-year simulations of reference and agPreserve scenarios. We could present simulated and 
actual land-use maps to planners and let them perform visual comparison, which is the 
process adopted by some previous land-use modelers (Al-Ahmadi, See, Heppenstall, & 
Hogg, 2009a; X. Li & Yeh, 2004; Santé, García, Miranda, & Crecente, 2010).  However, 
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it is not suitable for our goal for two reasons. First, the interpretation of reference 
scenario is meant to be explained to future users that are not from McHenry County. 
Their lack of understanding of the context of the county is likely to impair the 
information they can see from the maps. Second, our simulated scenarios and actual 
development are urban growth occurred within 5 years, thus the vast majority of lands are 
classified as “persistence” (or unchanged). It is difficult for users to visually distinguish 
trivial differences for two maps with only 5% of cells changed. 

There exists several literature from geographers and land-use modelers on how to 
“ground-truth” land-use simulations (Al-kheder, Wang, & Shan, 2008; Ballestores Jr & 
Qiu, 2012; Ligmann-Zielinska & Sun, 2010; Pontius Jr, Peethambaram, & Castella, 2011; 
F. Wu, 2002). We need to adapt and adopt those methods to fit in our particular cases. 
Further, practical users are not likely to directly make sense of the goodness-of-fit results 
generated from those methods, such as Kappa index (Ballestores Jr and Qiu) or a 3 
dimensional table and figure of merits (Pontius Jr et al., 2011). Plus, goodness-of-fit of 
PSS models have little value unless we understand them in practical context. In the 
following part of this section, we are going to demonstrate how we use technical methods 
and transfer them into understandable knowledge to answer the question of 
“interpretation of reference scenario” and “monitoring plan implementation.” Then we 
will discuss how to make use of the “goodness-of-fit” as useful knowledge in planning 
practices.         

4.2.1 Interpretation of Reference Scenario—Continuous Resolution 

Reference scenario simulates land-use change of McHenry County if current policy and 
developmental pattern persists. Measuring its goodness-of-fit against 2011 NLCD actual 
map require some special considerations. First, 5-year urban growth of Chicago suburb 
will not be drastic at all. If we measure agreement of all land-use cells for simulated and 
actual maps, 90% and above goodness-of-fit is easily attainable, which is not a correct 
message for users to understand the validity of PSS results. For this reason, we decide to 
only measure the simulated vs. actual land-use change. However, on a 30x30 meter 
cell-by-cell level measurement, agreement level is very low (only 384 of 10,868 new 
developed cells overlap, 3.5% goodness-of-fit). The comparison is shown in Figure 15. 
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Figure 15. A comparison of the LEAM reference simulation (red) and actual 
development (blue) in McHenry County, IL from 2006 to 2011; yellow cells represent 

instances of both actuality and simulation. 

A 3.5% goodness-of-fit is neither a reasonable depiction of the validity of the reference 
scenario. Urban development is a process inherent with uncertainty and randomness, 
prediction to a 30x30 meter accuracy cannot be reasonably expected.  

Wu (2002) points out this problem and proposes a zonal aggregation method to aggregate 
cells spatially into smaller and more discrete subdivisions. The process applies numeric 
validation calculations on each zone to determine how many simulation cells are 
transformed vs. the actual zonal change. The approach is an improvement on aggregate 
numeric comparisons as the smaller zones improve spatial location concerns. However, 
the selection of the type, size, and spatial construct of the zone may imply an arbitrariness 
that can compromise its validity. Pontius Jr et al. (2011) applies a multi-resolution 
process to mitigate the arbitrariness of selection of zones in zonal aggregation. However, 
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this process is a generic method comparing land-use simulations and considers matching 
all types of future land-use possibilities (change and persistence). Its results are 
embedded in a 3-dimensional table and figure of merits. For our case, this method fails to 
focus on the point we concern (change vs. change) and the results are not understandable 
and useful knowledge to stakeholders.   

For a validation process that fits our case, we take the concept of Wu (2002), Pontius Jr et 
al. (2011), and the “null-resolution” concept from Costanza and Maxwell (1994), 
Koomen et al. (2008), and Pontius et al. (2004, 2008). we apply a continuous resolution 
process to compare the reference to the actual land-use map in 2011. The detailed 
methodology description and math derivation are available in Section 4.4 Part 1. Here, 
we use plain language to describe the method, and make sense of the results.  

First, similar to Wu (2002), we divide the whole maps into several grid-like subdivisions 
of a certain dimension. We sum up cells that experience change in land-use category in 
each grid of both simulated and actual maps. Then, we take the squared difference of 
simulated and actual sum of cells in each subdivision, and sum the squared differences. 
This is the “residual squared error”. Then we imagine a “null-map”, which has the same 
total cell changed as actual map, but evenly distributed in each cell. We take the sum of 
squared difference between “null-map” and actual map again, and this is the “total 
squared errors”. We use the ratio of “residual squared error” to “total squared errors” to 
subtract 1, and that is our “zonal R2” goodness-of-fit. 

Understanding R2 requires basic statistical knowledge, and we should not expect that 
from all users of PSS models. Moreover, this R2 measures “the scale of squared errors in 
each subdivision”, rather than the fit-of-line that is defined in regression models. One 
distinct difference is that this R2 has value range from minus infinity to 1 (the case for a 
regression model without intercept) while the R2 in simple linear regression ranges from 
0 to 1. These knowledge are certainly overwhelming to convey, and require us to 
construct a more understandable deliverable. We varies the subdivision size to get 
different R2, and it is intuitive that a larger zone size is likely to result in a larger R2 (but 
not exact monotonic). We want to find a zone size beyond which R2 values are 
consistently larger than 1, and we name it as the “accuracy resolution” of the 
scenario—the point that the scenario modeled land-use better than an educated guess with 
bare information of the future (total number of changes). The outcome of “accuracy 
resolution” is a size of spatial units, such as “500x500 meters”, which is more 
understandable as it can be interpreted to be “the model provides valid information over 
500x500 meter scale.” 



79 

 

We apply this continuous resolution process to LEAM’s reference scenario of McHenry 
county and the analysis shows a reasonably scaled 8500x8500m as the point at which our 
R2 measure becomes consistently positive, which is the reference scenario’s “accuracy 
resolution” (Figure 16). 

 

Figure 16. A chart of R2 accuracy for differing zone sizes 

So how do we transfer this knowledge to future LEAM users who want to know the 
interpretation of the reference scenario model? First, 8500x8500m grids divide McHenry 
County into 16 equal-sized grids. We interpret this as “the reference scenario can capture 
the general directions of development (such as towards north, south, or south east)” and 
“the reference scenario can tell which township is likely to have more growth, and it will 
usually happen in reality”. Those are the two pieces of knowledge that can help users 
understand the problem, and they are abstracted from our technical analyses above. Also, 
we need to make clear to users the essence of reference scenario—it is not a scenario that 
we think will exactly match the future. It is meant to help planners and stakeholders 
identify problems (such as agricultural and ecological land loss) if no plan intervention is 
taken to the current developmental pattern, and the planned outcome needs to avoids 
unwanted development in the reference scenario.   

4.2.2 Monitoring Plan Implementation—Boundary Softening  

In the McHenry County planning process, the reference scenario assumes 
business-as-usual development patterns while the agPreserve scenario is a policy-based 
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scenario. It was intended to represent a more environmental and agriculturally favorable 
outcome and should produce more compact development patterns by discouraging 
development in agricultural or ecologically sensitive areas. In the county comprehensive 
planning process, planners argued for the agPreserve scenario and ultimately it was 
included in the plan. After several years of the enactment and start of implement of the 
plan, McHenry planners and stakeholders pose the question: “is the county developing as 
planned (more similar to agPreseve scenario, or sticking to the existing pattern (reference 
scenario)?”  

To answer this question, we seek to compare both agPreserve and reference scenarios’ 
simulations by the year 2011 to NLCD 2011 ground-truth (actual map), and interpret the 
conclusions to local planners. A feasible methods is to apply our continuous resolution 
validation to both scenarios, and find out which has a finer “accuracy resolution”. 
However, our initial attempt turns out that both scenarios have very similar “accuracy 
resolution” and we cannot conclude significant difference from the comparison.  

We analyze the situation and figure out that the boundary problem is what leads to the 
perplexing results. For example, in figure 17(a) simulated cell and an actual cell fall 
within the same boundary. In figure 17(b), they fall into different boundaries, reducing 
the simulation’s overall goodness-of-fit measurement without changing locational or 
statistical properties. To avoid this inconsistency, we propose modifying hard boundaries 
into soft boundaries. Our approach is to diffuse individual cells (figure 17(c) and (d)). 
The amount of diffusion based on a decay function so that the farther from the actual 
change site, the lower the spread (see Section 4.4 Part 2 for technical details). Each 
simulated cell can be measured in terms of its proximity to an actual cell based on its 
diffusion score, regardless of boundary location. 
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Figure 17. Zonal Boundary and Cell Diffusion. In (a), both simulation (red) and 
actuality (blue) cells fall within the same zone. In (b), the exact same cells fall into 2 

separate zones and would score lower on a goodness-of-fit measurement. The white area 
represents cells that remain unchanged. In (c) a color gradient represents a diffusion of 
values and a less severe change in goodness of fit given (d) a different zonal boundary. 

Using a softened boundary improvement, we calculate R2 values for both reference and 
agPreserve simulations when compared to actually developed cells over a range of zone 
sizes (100x100m to 300x300m). Results (figure 18) show a consistent and constant 
positive zonal R2 for each scenario. Our R2 results fluctuate within 0.06-0.12, and show 
no discernable increasing or decreasing trends. This suggests that both simulations 
consistently produce a better understanding of spatial development at a structural level 
than random cell placements. It’s worth noting that the reference scenario consistently 
out performs the agPreserve scenario within the varying spatial units tested.   
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Figure 18. Illustrates boundary softening based R2 accuracy measures for reference 
(black) vs. agPreserve (red). 

The result shown in figure 18 indicates that reference scenario over-performs agPreserve 
on all 5 cell size we tested (from 100 to 300 meters with 50-meter interval). If the 2 
scenario has similar goodness-of-fit, the percent of one scenario better than the other on a 
given cell size should be 50%. If the null hypothesis holds (agPreserve is similar to 
reference scenario in terms of goodness of fit), reference scenario has a 3.13% chance to 
over-perform agPreserve scenario on 5-cell-size comparisons. Thus we can reject the null 
hypothesis on a 5% significance level and conclude that reference scenario over-performs 
agPreserve scenario. This is very important information for local planners, since the 
scenario they included in their official plan fails to be closer to the county’s development 
than the scenario that assumes continuation of older path, after few years of plan 
implementation. The inferior performance of agPreserve scenario may be attributed to 
policy effectiveness or implementation, data, or model mechanism issues. Our 
goodness-of-fit process itself does not causal possibilities, but it is a signal for planners 
and modelers to further investigate their assumptions in policy decisions, plan 
implementation, and modeling.  

In this section, we develop methods of measuring and comparing goodness-of-fit of PSS 
model scenarios. We transfer the results into understandable and useful knowledge to 
answer users’ most concerned questions in post-planning era of McHenry county 2040 
comprehensive plan. As we point out, goodness-of-fit results themselves cannot 
determine validity of PSS models, and they cannot address causal mechanisms of model 
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fits or misfits. Understanding validity and casual mechanisms of scenarios requires a 
more complicated collaborative learning process involving planners, modelers, and 
stakeholders. And this process can certainly make use of information regarding 
goodness-of-fit. In the section session, we will discuss how goodness-of-fit can be used 
collaborative learning processes to serve critical planning purposes.  

4.2.3 Beyond Goodness-of-fit  

Credibility of PSS models. Cellular Automata based PSS model is an example of 
applying system models to study complex social problems. However, misuse of system 
approaches in public policy arena draws skeptical views to the model (Andrews, 2000). A 
quantitative measure of goodness-of-fit, even carefully explained, cannot alone convince 
users’ credibility of the system.  

According to Andrews (2000), modeling experts need to spend extra efforts outside 
technical realm to restore system legitimacy for non-technical users. Some of the 
approaches include tailoring analysis to context, interact with stakeholders via 
participatory workshops, and seek both status-based and consent-based sources for 
building models. 

From PSS perspective, what we can learn from Andrews’ suggested approaches is to 
involvement local stakeholders and planners to build PSS models to achieve system 
credibility, as we demonstrated in the use-driven case in McHenry County, IL (Section 
4.1.2). However, using a continuous resolution method in addition to visual validation 
provides additional values. First, we can interpret credibility of our PSS model to users 
outside McHenry County with common accepted standards. Second, while building the 
model with local stakeholders, quantitative approach can help modelers to refine model 
outcomes before showing to stakeholders for collaborative tuning, thus reducing burdens 
for stakeholders to receive overwhelming information of various qualities.  

Multi-directional analysis. Additionally, Deal et al. (2017) argue that PSS-based 
scenario planning processes and outcomes will be improved by including the ability to do 
multi-directional temporal analyses, which include “forecasting”, “backcasting”, 
“recasting”, and “pastcasting”. Apart from traditional forecasting model that predicts 
future scenarios from current situation, the other 3 types of “-casting” can combine 
collaborative model building and validation processes to improve validity of PSS models, 
monitoring plan implementations, and even finding out casual mechanisms of some 
developed patterns.  
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By recasting, modelers can compare past predictions to current “ground-truth” conditions. 
This process was demonstrated in Section 4.1.2 and 4.1.3 with continuous resolution and 
boundary softening approaches for scenario validation and implementation monitoring. 
This approach can also be applied to collaborative tuning of the weight of model 
variables in model development. Modelers can add, remove, tune-up or down the weights 
of certain model variables (such as accessibility to road or population centers), and check 
what are the goodness-of-fit scores of those models to recast from past to current land-use 
map. Then these models and their goodness-of-fit scores can be shown to the local 
planners and stakeholders to collaboratively understand the casual mechanisms of how 
variables influence model goodness-of-fit scores. Do those scores make sense? Which 
developmental drivers are perceived to be much more important for the local context? 
Are they correctly reflected in our modeling approach? Pastcasting starts from current 
situation and use a “time-reverse” model to simulate the past land-use, which can be 
similarly applied to this variable tuning process.    

Backcasting means to model from future land-use to current situation with a 
“time-reverse” model. Backcasting approach was applied in developing McHenry County 
2040 plan (Section 4.1.2). It was used to find an optimal developmental path from the 
start of planning year to 2040 to achieve valuable agricultural land conservation. We can 
further use backcasting to monitor plan implementation by finding out how “far” current 
situation is to the desired scenario (such as 2040 agPreserve scenario in McHenry case) 
by checking goodness-of-fit result of backcasting from future. When local planners and 
stakeholders see this results, a collaborative deliberation can be held to agree on what 
actions could be done differently in the future than in the initial plan or implementation 
phase.  

4.3 CONCLUSIONS 

In this paper, we argue that the knowledge transfer from technical analyses of PSS 
models to users are the key of addressing “softer” issues of popularizing PSS among plan 
practitioners. Existing PSS Literature focus on describing either systems and application 
of PSSs (S. Geertman & Stillwell, 2004a; Richard E Klosterman, 1999; Richard E 
Klosterman & Pettit, 2005b; Pettit, 2005; Waddell, 2002b), or in general how PSS should 
be improved for popularization (Pelzer et al., 2014; Marco te Brömmelstroet, 2012; MT 
te Brömmelstroet, 2010; Vonk & Geertman, 2008; Vonk et al., 2005b, 2006b). We claim 
that the need of technical analysis and knowledge transfer has to be determined by 
modelers’ involvement into the plan making and collaborative model building phase.  

To fill the gap, we study a real-world case—the application of LEAM PSS in McHenry 
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County 2040 Comprehensive plan. In the post-mortem study of the plan, we figure out 
that 2 pieces of critical information are needed to help future users to interpret our 
reference scenario and McHenry planners to monitor their plan implementation. Based on 
those needs, we adopt and adapt model validation methods to create our continuous 
resolution and boundary softening approach. The goodness-of-fit results are transferred 
into understandable and useful knowledge, such as “the reference scenario can capture 
the general directions of development (such as towards north, south, or south east)”, “the 
reference scenario can tell which township is likely to have more growth, and it will 
usually happen in reality”, and “reference scenario consistently over-performs agPreserve 
scenario in fitting the first several years of county development”.  

We further acknowledge that values of goodness-of-fit are not adequate by themselves to 
grant credibility to PSS models for users, serve model calibration, monitor of plan 
implementation, and find casual mechanisms. It involves deliberate processes of 
modelers, as well as local planners and stakeholders. Methods of obtaining 
goodness-of-fit scores can certainly be used in the process iteratively to achieve the goals. 
We frame the collaborative process of using goodness-of-fit scores in multi-directional 
temporal analyses including forecasting, backcasting, recasting, and pastcasting. The 
real-world application of those processes is an extremely interesting filed for future study. 

One question remaining is: can we conclude that better information leads to better 
planning? Our case shows a relatively well-informed planning process with the 
involvement of PSS model pre- and post-planning. However, our post-mortem does not 
suggest that the original intention of the plan is adequately implemented. My opinion is 
that better information does not necessarily lead to better planning. There are two reasons. 
First, PSS technology helps to objectively assess future impacts and possibilities of 
planned scenarios, but it does not change the objective that the community wants to 
achieve. With different objectives and local ways of thinking about development, the 
same assessment result can be interpreted into many different ways, and lead to various 
planned decisions. Second, PSS can help evaluate plan implementation as I show in this 
chapter, but PSS does not help implementing a plan itself.  

Though not necessarily resulting in a better plan, PSS provides information that enables 
discussions among various stakeholders based on an objective information and 
assessment. It can also rectify distortions on future consequences, and can also be viewed 
as an early warning sign of implementation problems (Deal and Pan, 2016). Thus, better 
information from PSS enhances the planning process to be more participatory and 
informed, and better process correlates with better planning outcomes           
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Other expansions to our research can be further need of technical methods that figured 
out in the PSS application processes, and modelers’ transfer of the analytical results to 
stakeholders. We hope to see a “dictionary” of practitioners’ requirements and questions 
from PSS models in practical applications, modelers’ analytical responses to the 
requirements and questions, and what information abstracted from the analytical results 
are proven understandable and useful to the planning processes.  

4.4 TECHNICAL DETAILS 

4.4.1 Part 1 

To illustrate a single-resolution zonal process, we generate two sets of data in a blank 
data window (with resolution of 0.1x0.1 units on a 5x5 grid or 50x50 total units) to 
represent “actual growth” and “simulated growth” over a fixed period of time (figure 19 
(a)). Red cells represent simulated cell change and blue cells represent actual cell 
transformations. Yellow circles represent the cells that exactly overlay in simulation and 
actuality (common).  Each set of cell sets (simulation and actuality) represent 50 
developed cells for 100 total cells allocated within the window. The two sets of cells are 
allocated around the same 5 centers (represented by + in the figure 19(a)), using the same 
rules for allocation, i.e., they each exhibit a similar variance from the (statistical) “+” 
centers. The physical representation is seen in figure 19 (a), with the following 
mathematical process of creating it: 

The two-dimensional data (𝑋𝑋𝑘𝑘𝑖𝑖 ,𝑌𝑌𝑘𝑘𝑖𝑖) in each class k (simulated or actual cells) is 
generated from the same bivariate Gaussian distributions with uncorrelated components, 
same variances, and same means, each pair of 𝑋𝑋𝑘𝑘𝑖𝑖 and 𝑌𝑌𝑘𝑘𝑖𝑖 is uncorrelated. The data 
generation process can be described below: 

(𝑋𝑋𝑘𝑘𝑖𝑖 ,𝑌𝑌𝑘𝑘𝑖𝑖)~𝑁𝑁(𝒎𝒎𝑐𝑐 ,𝛴𝛴𝑐𝑐)                
(3)                                                                                              

where, 𝒎𝒎𝑐𝑐 is two-dimensional and each dimension randomly selected from 
{0, 0.1, … , 3.9, 4.0}, 𝛴𝛴𝑐𝑐 is a two dimensional covariance matrix and diag(𝛴𝛴𝑘𝑘𝑐𝑐) is 
randomly chosen from {0.4, 0.5, … ,0.8}; 0 for other elements of diag(𝛴𝛴𝑘𝑘𝑖𝑖); l denotes the 
3 shared centers and variances of (𝑋𝑋𝑘𝑘𝑖𝑖 ,𝑌𝑌𝑘𝑘𝑖𝑖); 𝑙𝑙 = 1, 2, 3 and  
p(l = 1) =  p(l = 2) =  p(l = 3) = 1/3; 𝑘𝑘 = 0,1;𝑝𝑝(𝑌𝑌 = 1) = 𝑝𝑝(𝑌𝑌 = 2) = 1/2.  
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A visual examination of our illustration suggests that the simulation (in red) generally 
follows the patterns exhibited by the actual developed cells (in blue). From this we might 
infer that the simulation captures the general causal mechanisms for cell change in the 
window. And although the simulation is quite good at replicating actual patterns (center 
and variance of the clusters), only 7 of the 50 simulated cells would be counted as correct 
in a cell-by-cell overlay (this translates into a 14% goodness-of-fit score). A more 
reasonable approach would tolerate minor errors of the simulation and focus more on the 
accuracy of general patterns.  

One way to accomplish this is to produce smaller scaled “resolution sub-zones” (Wu, 
2002). In our example data window, we might divide our window into sub-zones and 
aggregate developed cells (both simulated and actual) by these zones (figure 19(b)). 
Simulation goodness-of-fit is evaluated by comparing the numbers of developed cells 
predicted to the actual development for each sub-zone. This has the advantage of ignoring 
spatial offsets of simulated cells that are less than the coverage of the sub-zone. In this 
way, one can better evaluate the quality of the general pattern of spatial simulations 
without the problem of cell-to-cell inaccuracy. As noted above, however, the arbitrariness 
of the sub-zones can be problematic. 
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Figure 19. (a) is illustration of simulated (sim) vs. actual (act) developed cells generation 
window. Red cells represent 50 simulated cells and blue represent 50 actual cells. Yellow 

circles represent cells that exactly overlay. (b) is illustration of zonal aggregation 
approach. The window has been subdivided into 56 sub zones. The 2 numbers in each 
zone represent the number of red (sim) and blue (act) cells in each zone. White areas 

represent cells that remain unchanged in both sim and act scenarios. 

Here I will illustrate how to perform a sub-zone based R2 goodness-of-fit validation. First 
we merge data cells 𝑋𝑋|𝑌𝑌 = 1 and 𝑋𝑋|𝑌𝑌 = 2 into “number of cells in each sub-zone 
(assuming that each travel zone is of size 1 unit by 1 unit)”, which is: 

𝑁𝑁𝑖𝑖𝑖𝑖𝑘𝑘 = 𝑚𝑚𝑥𝑥∈𝐷𝐷𝑖𝑖𝑖𝑖(𝑋𝑋|𝑌𝑌 = 𝑘𝑘)   

(4) 
where 𝐷𝐷𝑖𝑖𝑖𝑖 is a rectangular region defined by (i,−j), (i + d, j + d), (i + d, j), (i, j + d), 
and 𝑚𝑚, 𝑗𝑗 ∈ {1,2, … 9,10} represents the 𝑥𝑥 and 𝑦𝑦 coordinate of the centroid of each sub 
zone; 2d is the size of each sub-zone; of 𝑘𝑘 is a class (actual or simulated growth) label 

with 𝑘𝑘 = 0 𝑜𝑜𝑎𝑎 1, 𝑚𝑚𝑥𝑥∈𝐷𝐷𝑖𝑖𝑖𝑖(𝑋𝑋|𝑌𝑌 = 𝑘𝑘)  is the number of cells that locate in a zone. 

Then we can apply the R2 function:  

𝜇𝜇 =  
1
𝑚𝑚
��𝑁𝑁𝑖𝑖𝑖𝑖1

𝑖𝑖𝑖𝑖
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(5) 

𝑆𝑆𝑆𝑆𝑟𝑟𝑐𝑐𝑟𝑟 =  ��(𝑁𝑁𝑖𝑖𝑖𝑖1 − 𝜇𝜇)2
𝑖𝑖𝑖𝑖

 

(6) 

𝑆𝑆𝑆𝑆𝑟𝑟𝑒𝑒𝑟𝑟 =  ��(𝑁𝑁𝑖𝑖𝑖𝑖1 − 𝑁𝑁𝑖𝑖𝑖𝑖2)2
𝑖𝑖𝑖𝑖

 

(7) 

𝑅𝑅2 = 1 −
𝑆𝑆𝑆𝑆𝑟𝑟𝑒𝑒𝑟𝑟
𝑆𝑆𝑆𝑆𝑟𝑟𝑐𝑐𝑟𝑟

 

(8) 

where n is the total number of sub-zones. In our continuous resolution process, we vary 
𝑑𝑑 and plot a line graph of 𝑅𝑅2 to 𝑑𝑑 (Figure 20). In Figure 20, the measure becomes 
positive when zone size is equal to or larger than 0.5x0.5 units, approaching 1 as the zone 
size approaches 2.25. This suggests that for the simulated to actual relationship in our 
example window, the resolution of 0.5x0.5-units and higher surpasses a guess of 
homogenousness. We refer to this as our test simulations “spatial accuracy 
resolution”—the resolution at which point its goodness-of-fit measure (in this case R2) is 
above 0 and at perhaps its optimal place for both spatial accuracy and tuning. 

 

Figure 20. The Zonal R2 measure for increasing zone sizes in our sim vs act example 
window. Its spatial accuracy resolution is at R2 = 0. 
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4.4.2 Part 2 

We can introduce a “soft-boundary” model by applying cell diffusion method. Here I use 
linear kernel of kernel density method (Meyer, 2014). The new values of cells (𝑋𝑋|𝑌𝑌) 
become a “smoothed” value between 0 (undeveloped) and 1 (developed), rather than a 
binary value of 0 or 1. We can calculate the new values of 𝑋𝑋 by: 

𝑓𝑓ℎ(𝑥𝑥)� =  1
𝑛𝑛
∑ 𝐾𝐾(‖𝑥𝑥−𝑥𝑥′‖

ℎ(𝑥𝑥)
)𝑥𝑥′∈𝑁𝑁(𝑥𝑥)   

(9) 

where  𝐾𝐾(∎|𝑥𝑥′) = ∎ ∙ 𝑦𝑦|𝑥𝑥′, 𝑚𝑚 is the number of cells in the neighborhood of 𝑥𝑥 (such 
as a sub-zone centered on 𝑥𝑥). ℎ is the bandwidth  (defined for each 𝑥𝑥) of the 
neighborhood (ℎ𝑖𝑖𝑖𝑖(𝑥𝑥) = ∑ ‖𝑥𝑥 − 𝑥𝑥′‖𝑥𝑥′∈𝐷𝐷𝑖𝑖𝑖𝑖  ).  

Then we can use updated 𝑓𝑓ℎ(𝑥𝑥)�   values to calculate new R2 (similar to the Part 2 
approach). 

In our example data set (see figure 21 (a) and (b) simulated cells (red) are on the left and 
actual cells (blue) are on the right), both simulated and actual patterns exhibit identifiable 
clusters in the top of the window and in the lower right, with a less obvious grouping in 
the lower left. Using our diffusion method, we calculated a zonal R2 value of 0.97 when 
comparing the 2 data sets. This is significantly higher than our previous validation 
measurements.  

 

Figure 21(a) and (b) are illustration of softened boundaries in our data window example. 
After diffusion, simulation (a) and actuality (d) results appear structurally similar. 
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CHAPTER 5: MODELING LAND-USE CHANGE IN COMPLEX 
URBAN ENVIRONMENTS 

The literature on urban dynamics has recently begun to focus on issues that relate to 
urban systems complexity. Multiple theories and research approaches (on non-linearity, 
network connection, and temporal dynamics for example) have been recently introduced. 
In addition, traditional, well-established modeling assumptions within the urban 
dynamics realm, such as approximating geographical influences through linear functions 
of Euclidean distance, are being challenged. For example, in an attempt to improve 
traditional gravity models to study human mobility patterns, Simini et al. (2012) use a 
stochastic process that captures discreet local mobility decisions to replace the Euclidean 
distance measure traditionally utilized.  

Theories of complex urban systems are now emerging in response to traditional linear 
statistical methods. Brockmann et al. (2006) for example, use a power law function to 
model the distribution of travel distances in an urban setting. Batty (2006) on the other 
hand, suggests that using only one model to describe multiple scales (as in cities) is 
problematic. He argues that although power laws are applied for scale distribution of 
events, “such as cities, firms and internet hubs”, on microscopic scale, we need to be 
wary of “volatile and often turbulent micro-dynamics”. So that instead of functions of 
distances and sizes, more complex network interactions should be used to model 
transportation and social links between people and places in the city. He also points out 
that microscopic networks in urban systems have complex implications and require the 
use of “network science, allometric growth, and fractal geometry” in order to adequately 
depict system interactions (Batty 2008). 

Some urban theorists posit that increases in complexity within urban systems interactions 
will result in greater difficulties in modeling their future evolutions (Song et al., 2010; 
Gonzalez et al., 2008). Other research however, has shown that complexity theories can 
help us overcome these difficulties. Song et al. (2010) for example, uses entropy to 
measures the predictability of human movements in the configuration of urban systems. 
They conclude that there is “remarkable lack of variability” in these movements and that 
a large majority are entirely predictable. Gonzalez et al. (2008) analyze human pathways 
using big mobile datasets. They also find a high degree of temporal and spatial regularity 
despite an apparent randomness in the data. Song et al. (2010) also showed that although 
patterns of pedestrian movement usually assimilate to a random walk model, they 
inherently obey scaling laws. These and other urban systems research are being cited in 
an attempt to establish a common framing for a new science of complex urban systems 
(CUS) (Batty, 2005; 2006; 2008; 2013; Bettencourt et al., 2007; Bettencourt, 2013; 
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Puliafito, 2007) 

In this chapter, we argue that Planning Support Systems (PSS), with LUC models at their 
core, are the most effective means for infusing these new theories of CUS into urban 
planning practice. In the following, we analyze this potential infusion by examining next 
generation PSSs within a framework of current CUS theories. In the process we address 
the following: a) What are some of the new ideas in CUS that might inform LUC models 
and PSSs?, b) What are the limitations and challenges in current LUC modeling for 
embracing CUS?, and c) How might the future LUC modeling community address these 
challenges?  

We do this by first introducing (Section 5.1) the opportunities that new theories in 
complex urban systems science pose for urban LUC modeling. In the process, we identify 
some of the specific CUS computational, statistic, and spatial econometric advancements 
relevant to current LUC model enhancement. Section 5.2 we outline CUS temporal 
component advancements that may be useful in current LUC model and PSS 
development. In Section 5.3, we propose necessary modifications to current LUC models 
needed to fit within the CUS theoretical frame. And in Section 5.4, we present our work 
at the University of Illinois’ LEAM lab on an exploratory PSS for Chicago, IL as a case 
study example of the proposed modifications. In this example we test parallel network 
computational algorithms, findings of non-linearity in urban LUC behaviors, as well as 
interactive user-interface enhancements. Section 5.5 concludes the chapter. 

5.1 COMPLEX URBAN SYSTEMS AND LAND USE CHANGE MODELING  

The literature on CUS is replete with theoretical constructs. As with many wickedly 
complex issues, there are many approaches and viewpoints. In this work, we focus on 
only a few: a) network connection complexity (Batty 2008) – the important connection 
between people and places; b) non-linearity (Simini et al., 2012; Brockmann et al., 2006; 
Batty, 2006) – the complex ways cities evolve; c) spatio-temporal interactions (Simini et 
al., 2012) the complex relationship between space and time in urban areas; d) 
multi-oriented driving factors (Walloth et al., 2014)—the variegated fields from which 
causal relationships must be drawn in urban analysis; e) systems feedbacks (Forrester, 
1969)—the complicated feedback systems that affect variable interaction in urban 
systems; and f) tightly coupled systems models (Clarke and Gaydos, 1998; Deal et al., 
2013)—approaches to understanding the above complexities by linking varous systems 
models. We consider these the most relevant when discussing CUS relative to LUC 
models and PSSs.  
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As previously noted, we consider LUC and PSS technologies the most effective means 
for infusing theories of CUS into urban planning practice. Spatially explicit PSSs bring 
together base data, analysis engines (models), and information delivery systems 
(visualization interfaces) to provide planners and communities with critical knowledge of 
various dynamic urban systems in order to facilitate communicative planning approaches 
(Brail and Klostermann, 2001; Geertman and Stillwell, 2003; Brail, 2008; Deal and 
Pallathucheril, 2008; Geertman et al., 2013). Currently, most spatially explicit PSSs use 
Cellular Automata (CA) (or modified CA) engines in their LUC models to forecast future 
land-use scenarios (White and Engelen, 1994). CA models are typically used to model 
complex systems by breaking the system into smaller units in a mathematical model that 
have simple rules governing their actions. These models become complex when systems 
interactions and big data sets are introduced. A spatio-temporal CA model uses a 
grid-based lattice along with temporally specific algorithms to dictate the potential 
changes in urban system behaviors over space and time.  

CA combines elements of many fields of research (Langton, 1986; Epstein and Axtell, 
1996; Weisstein, 2016). A CA model is considered both spatially discrete and dynamic. 
Space is represented as a regular spatial grid or lattice, and posses any one of a finite 
number of states. The states of the cells in the lattice are updated at each time step 
according to a local rule or programmed model. The state of a cell at any given time is 
dependent not only on its local rules for change but also on the states of it’s nearby 
neighbors at the previous time step. All cells on the lattice can be considered 
interdependent relational entities. They are updated synchronously so that the visual state 
of the entire lattice advances in discrete time steps.   

More specifically, on a 2-dimensional (n x n) lattice plane S, a CA model defines a state 
for each cell on S from the state space Ω (for simplicity, define Ω to be {1,0}). For any 
cell (i, j) on lattice S, define its state on time-step t (𝑡𝑡 ∈ 𝒁𝒁 and 𝑡𝑡 ≥ 0) to be kijt (with the 
initial state to be kij0). A “neighborhood” of cells can be defined as (i, j). In CA 
applications, a ‘neighborhood’ can be defined in many different ways, Typically, it refers 
to the 4 adjacent cells to (i,j) (excluding the corner cells), 8 adjacent cells to (i,j) 
(including the corner cells), or all cells within a distance threshold. For simplicity, the 4 
adjacent cells to (i,j) are conserved the neighborhood of (i,j), with a current ‘state’ set at 
time t as Nijt = {ki-1j0, ki+1j0, kij+10, kij-10}. Given the information of all the cell states at 
time t, cell (i,j)’s transition probability at the next time step pijt+1 can be shown as 
equation 10:  

𝑝𝑝𝑖𝑖𝑖𝑖𝑟𝑟+1
= 𝑓𝑓�𝑘𝑘𝑖𝑖𝑖𝑖𝑟𝑟,𝑵𝑵𝑖𝑖𝑖𝑖𝑟𝑟�                                                   (10) 
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where f() is the transition function that calculates transition probability for cell (i,j) based 
on its own state and neighborhood states.  

In planning applications, the ‘state’ of a cell can represent land-use classes (residential, 
commercial, forests, and other types), buildings, landscape types or other related 
classifications. The time-step for interaction with these types of classifications can vary 
from one month to several years. A typical LUC model using CA approaches can help 
show the potential future evolutions of the classification being studied. These evolutions 
can be used to evaluate land-use scenarios that can inform policy makers about the 
possible future implications of their investment or policy decisions.  

One challenge for CA techniques in urban LUC models is that some parameters and 
variables need to be calibrated and tuned to local conditions in order to closely 
approximate reality and yield reasonable outputs. Other CA modeling challenges that 
emerge include: 

a. A neighborhood (Nijt) is typically defined simply by adjacency or a geo-distance 
thresholds and not by network connections between cells (such as travel time on 
road networks, etc.); 

b. The function f(.) that determines probabilities of state change are usually more 
complicated than the linear functions often used. These functions should consider 
scaling laws (power functions), or even laws without analytical functional types 
(non-parametric relations);  

c. Typically, LUC probabilities in CA applications do not include geo-physical 
characteristics (slope, elevation, vegetative quality) and usually depend only on a 
cell’s relative relationships within a smooth and flat surfaced grid; 

d. LUC dynamics occur at many different spatio-temporal scales (unit of t and i,j); 
CA models have difficulty with spatio-temporal granularities; 

e. LUC processes dynamically interact with other socio-physical processes 
(economic development, demographic distributions, human mobility, or 
environmental change), LUC models should be able to integrate and tightly 
couple with other socio-physical models.  

Some additional complex urban systems challenges: 

Computational challenges. o enable a finer spatio-temporal resolution, more driving 
variables, complicated network interactive patterns, and integration of various 
models, LUC models for CUS will be computationally demanding; 
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Flexible mathematical forms. CA models typically use differential equations to 
represent temporal processes in each cell. LUC models in CUS environments 
require more flexible forms of mathematical representations. 

In the flowing we analyze current thinking in the computational, statistics, and spatial 
econometric sciences that can potentially help address these challenges.  

5.1.1 Geographic Automata Systems (GAS) for Complex Interactions 

Torrens, Benenson, and Kharbash have defined the main restrictions in CA models as: the 
static nature of the lattice or an inability of automata cells to move (Torrens and 
Benenson, 2005), and a limitation to orderly partitioning of spatial units (Benenson & 
Kharbash, 2005). In response, they propose the use of Geographic Automata Systems 
(GAS). GAS unites CA and multiple agent systems, allowing spatial units to move freely 
across space and set up unique relationships with other units or in the case of LUC 
models - land parcels. Torrens and Benenson (2005) formulated Schelling’s popular 
segregation model (occupancy and relocation model) as a GAS. Torrens then (2007) 
applied GAS to an urban household occupancy and resident mobility model. 

We suggest the use of GAS in lieu of CA for use in LUC models The GAS flexibility 
allows more complicated modeling structures to accommodate CUS interactions. The 
established mathematical framework by Torrens and Benenson (2005) facilitates model 
specifications for more complicated models. Equation 11 is a simple mathematical 
description of a GAS framework: 

𝑻𝑻𝑺𝑺 = (𝑆𝑆𝑟𝑟 , 𝐿𝐿𝑟𝑟 ,𝑁𝑁𝑟𝑟 , 𝐼𝐼𝑟𝑟) → 𝑆𝑆𝑟𝑟+1 

𝑴𝑴𝑳𝑳 = (𝑆𝑆𝑟𝑟 , 𝐿𝐿𝑟𝑟 ,𝑁𝑁𝑟𝑟 , 𝐼𝐼𝑟𝑟) → 𝐿𝐿𝑟𝑟+1                                (11) 

𝑹𝑹𝑵𝑵 = (𝑆𝑆𝑟𝑟 , 𝐿𝐿𝑟𝑟 ,𝑁𝑁𝑟𝑟 , 𝐼𝐼𝑟𝑟) →𝑁𝑁𝑟𝑟+1 

where TS is the transition rule for automata at state S; ML is the movement rule for 
automate at location L; RN is the neighborhood rule for a cell with neighborhood N; St is 
the cell state at time t; Lt is the agent location at time t; Nt is the agent neighborhood at 
time t; Lt is the external input at time t. 

In the three functions in equation 11, TS is the rule that dictates the state transition of 
each agent based on given conditions (current state, location, neighborhood, and external 
inputs). For example, a TS rule might be, “if an agent has 3 or more neighborhood cell 
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with state 1, it will be state 1 in the next time step”. ML is the rule that dictates the 
location movement of each agent based on given conditions. An ML rule might be, “if an 
agent is in state 0 has 3 or more neighborhood cell with state 1, it will move right by 1 
cell in the next time step”. An RN is the rule that dictates the neighborhood assignment of 
each agent based on given conditions. A RN rule might be, “if an agent’s Y coordinate is 
larger than 5,00, it will count every other agent within 100-meter distance as neighbors”. 

In traditional CA models there is only 1 state transition rule for TS, so that cells do not 
move and a neighborhood is invariant. The added flexibility of transition rules for Ts and 
the ability to move cells helps enable GAS model complex interactions in a CUS 
framework. We will revert to the notations in equation 11 in later parts of the chapter.   

5.1.2 Semi-parametric Spatial Models for Non-linear Pattern Calibration 

In Section 5.1.1 we showed that GAS configurations can evolve given certain rules (TS, 

ML, and RN). To find a set of rules that properly represent the temporal developmental 
patterns of a specific spatial region, we need to calibrate the historical developmental 
patterns of that region. Traditional linear regression modeling approaches might be used. 
These assume linearity of repressor impacts on the probability of state of location change. 
As an example we address the following question: How likely is a piece of current 
agricultural land to change into residential land-use classes? In this example we assume 
that n cells in its one-mile neighborhood are residential land-use. For simplicity, we only 
consider state change (TS) in the example, and we use a logistic regression framework. 
We might such an equation as equation 12: 

𝐿𝐿(𝑝𝑝) = 𝑋𝑋0 + 𝑋𝑋1n                                      (12) 

where p is the probability for a cell to change from agricultural land-use class to 
residential land-use class L(.) is the link function that transform the probability by 
𝐿𝐿(𝑝𝑝) = ln (𝑝𝑝/(1 − 𝑝𝑝)), 𝑋𝑋0 and 𝑋𝑋1 are scalars that we need to estimate.   

Using a linear estimator has two major weakness: 1) it cannot account for non-linear 
effects; and 2) it does not reflect spatial dependencies with different distance thresholds.  

An example of the first weakness might be residential land-use density as it relates to 
highway accessibility. Residents generally do not want to settle too close to a highway 
(due to noise and safety concerns), however they want a reasonably easy access to the 
service the highway provides (quicker travel times to other places). For this reason, 
instead of a linear representation, this relationship may be best represented by a bell 
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curve. A highway has low attractiveness close to the highway, higher attractiveness some 
critical distance away (from the negatives) then dropping again as the distance makes it 
more difficult to access the positive services it provides.  

In terms of the second weakness, a good example is the case of inter-county road 
infrastructure investment spillovers. If county X decides to invest on road infrastructure, 
it is likely that neighboring county Y is likely to experience improvements in accessibility 
and travel times – without cost. This effect may also be present to a much lesser extent, in 
second-order neighboring counties as well. Spatial spillovers however, are difficult to 
consider in a linear model. Some researchers have proposed using semi-parametric or 
non-parametric spatial models for spatial data inference to address these limitations 
(Belitz et al., 2010; Su, 2012). For example, Belitz et al. (2010) the use of non-parametric 
or semi-parametric regression techniques since nonlinear covariate effects can be 
estimated and complex interactions between variables can be included. According to 
(Robinson 2010; 2011) semi-parametric spatial models also fit well with lattice shaped 
spatial constraints, although lattice shaped spatial data is not very common in the 
geo-spatial sciences, this configuration fits GAS and LUC models.  

Semi-parametric LUC models. In order to use semi-parametric spatial approaches in 
LUC models, we adapt model specifications from Su (2012). Consider a spatial 
configuration at time t and all cells at state 0 (n cells in total), with p different 
neighborhood features for all cells of state 0 as matrix Nt,np and q different external input 
matrix It,nq. To calculate the transition probability vector Pt,n for cells of state 0, we can 
write the equation as equation 13: 

𝐿𝐿�𝑃𝑃𝑟𝑟,𝑛𝑛� = 𝑚𝑚�𝑁𝑁𝑟𝑟,𝑛𝑛𝑛𝑛� + v�𝐼𝐼𝑟𝑟,𝑛𝑛𝑛𝑛�
+ U𝑛𝑛                                       (13) 

where L(.) is the link function introduced in equation 11; Un is the error vector, m(.) and 
v(.) are unknown functions. We can use another way to formulate the model by 
substituting m(.) and Nt,np by spatial weight matrix Wnn and cell state vector at time t 
Yt,n, which more closely assimilates model specifications of spatial econometrics model 
in equation 14: 

𝐿𝐿�𝑃𝑃𝑟𝑟,𝑛𝑛� = 𝑋𝑋𝑎𝑎(𝑊𝑊𝑛𝑛𝑛𝑛𝑌𝑌𝑟𝑟,𝑛𝑛) + v�𝐼𝐼𝑟𝑟,𝑛𝑛𝑛𝑛�
+ U𝑛𝑛                                     (14) 

where 𝑋𝑋 is a scalar coefficient for spatial auto-correlation; r(.) is a known function to 
convert categorical vector Yt,n into a value (or a vector of values) representing impacts of 
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neighbors. One example of r(Wnn Yt,n) can be converting every cell in state 0 to value 1, 
and cell in other state to value 0 in equation 15: 

   𝑎𝑎�𝑊𝑊𝑛𝑛𝑛𝑛𝑌𝑌𝑟𝑟,𝑛𝑛� =
(∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝑛𝑛

𝑖𝑖=1 𝑎𝑎�𝑦𝑦𝑟𝑟,𝑖𝑖�)𝑖𝑖                                        (15) 

where: 

𝑎𝑎(𝑥𝑥) =

�
1 𝑚𝑚𝑓𝑓 𝑥𝑥 = 0

0 𝑚𝑚𝑓𝑓 𝑥𝑥 ≠ 0
                                                   (16)  

It can be seen from the above that non-linear formed functions such as m(.) and v(.) in 
equations 13 and 14 allow spatial inputs or spatial neighbors. This allows more 
flexibility in calibration and uncovering non-linear impacts. The coefficient estimation 
process of semi-parametric spatial models can reference existing literature (Robinson 
2010; 2011; Su 2012). There is also a statistical package in R available (see McMillen, 
2015) that supports semi-parametric spatial analysis.   

5.1.3 Statistical Inference Model Optimization 

The calibration of spatial models to real world conditions with a large number of cells 
and a large number of variables is very costly. It is particular difficult when the models 
run at very fine spatial resolutions, such as a 30-by-30-meter cell (the cell size used in 
LEAM described in later sections). Computational time (O) for a linear regression is 
approximately proportional to the square number of variables (c), multiplied by the 
number of observations (n), so that the computational time for a linear regression can be 
expressed as O(c2n). The problem is that when variables are added to the model, the 
computational cost increases dramatically—by a power of two. When this is then 
multiplied by the number of observations (or cells, which in a LUC case is usually very 
large), it will result in a huge computational increase. Unfortunately, adding and testing 
various variables that potentially influence urban growth is a necessary practice in LUC 
modeling process and therefore computationally expensive. 

One solution is brute force processing – throwing more computational power at the 
problem. This is not always possible or feasible. Another is using high-performance 
algorithms. Bach (2013) describes using Stochastic Descent Gradient (SDG) processes to 
optimize the computational time associated with large scale linear regression, which has a 
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computational time cost of O(cn). An available statistical package Vowpal Wabbit 
(Langford, 2016), uses the SDG methods to enable different machine learning algorithms 
such as logistic regression, decision trees and support vector machines. Alternatively, 
Chen and He (2015) offer a high-performance classification method termed “Extreme 
Gradient Boosting (XGB)” that has proven to be very powerful. The classification 
capability of XGB fits well with model requirements in LUC models.         

One shortcoming of using these available high-performance statistical packages for LU 
model calibration is that the packages generally do not explicitly support spatially aware 
datasets. To overcome this challenge, we either have to develop a high-performance 
statistical package that is compatible with spatially dependent data, or modify the model 
structure to approximate spatial data so that it can be run by current packages. For 
example, in equation 5, we can force r(WnnYt,n) to generate a nxp matrix Xt,np (n>p). 
Then we can form a new formula equation 17:   

𝐿𝐿�𝑃𝑃𝑟𝑟,𝑛𝑛� = 𝑓𝑓(𝑋𝑋𝑟𝑟,𝑛𝑛𝑛𝑛, 𝐼𝐼𝑟𝑟,𝑛𝑛𝑛𝑛) + U𝑛𝑛                                     (17) 

where f(.) is either a linear and non-linear form of formula that is supported by the 
current available statistical packages. Actually, the linear form of equation 8 can be 
approximately viewed as the spatial lag of X (SLX) model (Vega and Elhorst, 2015). A 
drawback to this method is that only local spatial spillover effects are considered and we 
assume no spatially related heteroscedasticity in the residuals, which does not model the 
actual spatial relations very well. Thus, development of a high-performance spatial 
statistical model is needed if LUC model calibration processes are to embrace both 
advances in computational statistics and the spatial sciences. 

5.1.4 Parallelism in GAS 

Computational costs in terms of time and processors are perceivable challenges to models 
with high spatial resolutions. A promising solution is the use of high- performance 
computing resources and parallel processing (X. Li, Zhang, Yeh, & Liu, 2010). A host of 
frameworks for parallel computation in CA systems have been proposed (Shook et al., 
2013; Tang and Wang, 2009). Tang and Wang (2009) suggest parallelizing spatial 
computational processes by domain decomposition. The method subdivides the CA 
spatial lattice into sub-regions and simulates state change actions within each sub-region 
simultaneously. For example, if computational time for a GAS is approximately 
proportional to squared total cells (O(n2)). For a m by m spatial lattice, the computational 
time can be calculated as O(m4). If we apply the domain decomposition method to 
subdivide the region into 4 equally sized sub-regions (m/2-by-m/2), we can 
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simultaneously simulate the 4 regions O(m4/16) assuming there are no dependencies 
among those 4 regions.  

Dependencies require that when an agent or agent neighborhood cross the border of a 
sub-region, the system needs to initiate communication between the two processes. This 
will slow computational time. If the requirement for communication between paralleled 
processes is high, the computational efficiency of the parallel model may be even worse 
than the original sequential model. In a GAS configuration, it is difficult to know when 
and where difficult communication between cores might occur before the simulation 
process starts. 

In urban LUC models, we suggest that process parallelization has advantages over 
domain decomposition. We consider process parallelization be intrinsically closer to the 
processes occurring in complex urban systems. Previously GAS parallelization focused 
on sequentially modeling the events and their correlations at each time step. This is 
intuitive in the construction and coding of the models. However, we show that those 
events can be also viewed as different processes occurring in parallel and interacting with 
each other at specific points in the process. In this way, next generation of GAS may not 
be constructed in time steps – but in concurrent processes that happen in parallel with 
interactions that are scheduled to occur based on temporal sequencing.3  

To illustrate how process parallelization works, we construct a hypothetical integrated 
LUC model with 4 processes: a) land demand generation, b) land-use change, c) road 
building, and d) environmental protection district establishment. A prototype of our 
model is illustrated in Figure 21. In this construct, the four above processes interact with 
each other at various stages. Each process is represented as a sequence of states/actions, 
which either cycles from end to beginning or spawn its child processes within its lifespan. 
Each process happens naturally in parallel and could be easily computed in a parallel 
environment. 

                                                 

3 It will be a fascinating future research opportunity to see how parallel GAS performs in efficiency 
compared to previous models, and what are the relationships and differences between different 
representations of the same phenomena. 
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Figure 22. Parallel processing in an urban LUC model 

Below is more detail on the 4 processes described in Figure 22:  

Process 1. Global LUC demand generation. This process generates a general demand 
for change. It generates demand by macro-socioeconomic area. At each time step, a 
generated LUC demand initiates a seeking and developing activity with a group of 
developer agents. The global LUC demand and allocation correlates with the general 
transportation accessibility of the region, so the demand generation process begins only 
after road building agents set transportation variables (starting at time0). 

Process 2. Town-level LUC developer agents. In the town level LUC process, 
speculative development opportunities are identified through a process of evaluation.  In 
this process neighborhood developers seek out lands (cells) that have a development 
attractiveness that exceeds a certain threshold. After the cells are identified, the most 
attractive cells are converted into the desired land use (residential, multi family, 
commercial, industrial). The total number of transformed cells depends on the total 
demand for the specific use. This process also initiates EPD agents (see process 4) to 
“find critical ecological areas” and road builders to “search for road demand”. These 
corresponding processes must wait for the results of the LUC. The LUC process, once in 
place, spawns new developer agents looking for newly developable cells. Old developer 
agents that have not been active for a certain period of time die away.  
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Process 3. Road builder agents. In this process, road builder agents seek spatial regions 
with the highest demand for new roads and then work to satisfy that demand. The road 
demand seeking node in the process depends on developer agents’ land development 
process (where new developments take place). Road building depends on the EPD 
(Environmental Preservation District) setup because it needs to know what areas are 
preserved and cannot be invaded by road building. Road builder agents spawn new road 
builder agents onto cells with new roads built, and old road builder agents that have not 
been active for a certain period of time die away.  

Process 4. EPD (Environmental Preservation District) agents. In this process, the 
EPD agents seek undeveloped cells (and some already developed cells – in special cases) 
that have the most ecological value and the most development stress associated with new 
LUC developments. Newly established EPDs exclude any other use on any area. The 
“find critical ecology area node” in the process depends on the developer agents’ demand 
for development. EDP agents spawn new EDP agents onto cells with new EPDs 
established, and old EPD agents that have not been active for a certain period of time die 
away.  

Spatial dependencies. Some of the processes noted above are spatially dependent; agents 
from different processes only interact if they are within a spatial neighborhood that they 
send/receive information from.  

The transition that takes in information from land development, road builder and EPD 
processes and expels information into “seek land to develop”, “EPD agents spawn”, and 
“road builder agents spawn” at the beginning of each time step characterizes an 
interaction between these 3 processes that has spatial dependencies. Developer agents can 
only “see” and “go to” places within their defined neighborhoods to look for land to 
develop based on road builder agents and EPD agents’ actions that alter land suitability 
and attractiveness. Thus, if road builder and EPD developers’ actions occur outside of 
developer agents’ neighborhoods in a given time step, their interaction would not happen 
in that time frame. Similarly, road builder agents and EPD developers’ finding places to 
build roads and set up EPD also depend on the spatial locations of development of 
land-use by developer agents. The interaction happens only if land-use development is 
within neighborhood of EPD or road builder agents. Finally, road builder agents’ road 
building action also spatially depends on EPD agents’ establishing the EPD districts. If 
the proposed new road constructions overlap with the previous established EPDs, the 
road constructions would not occur. 

If we define the computational time for the four processes to be a, b, c, and d; the total 



103 

 

time to be n; and process communication time at each step to be e; we can calculate that a 
sequential LUC model would have a computational time of n(a + b + c + d). 
Conversely, the same model in parallel would have a computational time of 
n(max{a, b, c, d} + e). Since the process parallel model has defined all the 
communication nodes and information between different processes, its computational 
time will be much shorter and more controllable. 

5.2 SPATIO-TEMPORAL ANALYSIS 

In previous sections we look at refining LUC models to improve spatial resolutions and 
complex interaction interpretation. There is also potential to enhance LUC models on a 
temporal axis. In the following we introduce improved spatial and temporal analysis by 
integrated spatial-temporal statistical models.   

Progresses have been made on integrating spatial-temporal components in order to 
formulate models on higher spatial dimensions that include the influence of both spatial 
and temporal ‘lags’. Research on this issue has involved both data structure to represent 
and store spatial-temporal data (Erwig et al., 1999) and estimations of integrated 
spatial-temporal models (B. Li, Genton, & Sherman, 2007). Here, we briefly introduce 
the data format and estimation process of integrated spatial-temporal models. 

Erwig et al. (1999) constructs a method using relational database to contain 
spatial-temporal data. We can use this method to construct a data input of an agent 
moving along a spatial line mroute from year a to year b and changes from state 0 to 1, 
we can represent it as: 

agent (id: agentid; from: a; to: b; route: mroute, statestart:0, stateend:1) 

With this data format, we can use nonparametric spatial-temporal modeling processes as 
suggested in Li et al. (2007). In Li et al. (2007), if you want a spatial-temporal covariance 
estimation for 2 agents at different spatial and temporal point (with same initial state 0), 
you sample other agents with the same initial state and similar spatial-temporal distances 
in equation 18: 

�̂�𝐶(ℎ,𝑢𝑢) =
1

|𝑺𝑺(ℎ)|𝑻𝑻𝒏𝒏|
� �𝑧𝑧(𝑠𝑠, 𝑡𝑡)��������𝑧𝑧(𝑠𝑠 + ℎ, 𝑡𝑡 + 𝑢𝑢)�����������������                        (18)

𝑛𝑛−𝑙𝑙

𝑟𝑟=1𝑟𝑟∈𝑆𝑆(ℎ)

 

where h is the spatial distance bandwidth considered in the model; u is the temporal time 
step difference considered in the model; 𝑺𝑺(ℎ) = {𝑠𝑠: 𝑠𝑠 ∈ 𝑆𝑆, 𝑆𝑆 + ℎ ∈ 𝑆𝑆}; S is the overall 
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spatial area considered; |S(h)| is the number of elements in S(h); |Tn| and n is the total 
time step considered; 𝑧𝑧(𝑠𝑠, 𝑡𝑡) is the average observed value of agents at location s and 
time t. Note that the model assumption is that 𝑧𝑧(𝑠𝑠, 𝑡𝑡) has to be zero-mean and stationary. 
While spatial observations generally can be normalized to zero-mean, transform data into 
stationary spatial-temporal series may be a challenge (we will not expand on this issue 
further in this chapter).  

o connect this with the spatial-temporal data structure by Erwig et al. (1999), we show 
how to generate a query to fetch all agents pairs within bandwidth distance h (with 
location notation to be x and y) and time difference u (with time notation t) from a dataset 
AGENTSMAP: 

SELECT id 

FROM AGENTSMAP as Current_Row 

LEFT JOIN AGENTSMAP as Next_Row 

WHERE Current_Row.id <> Next_Row.id 

AND Current_Row.startstate = 0 

AND minvalue(mdistance(Current_Row.route, Next_Row.route)) <= H  

AND Next_Row.to <= Current_Row.from + u 

AND Next_Row.to > Current_Row.from 

where mdistance is a function defined in Erwig et al. (1999) to calculate minimum 
distance between two lines.  

Next, we show how to use the covariance estimated in equation 18 to infer land-use state 
change probability for an agent with initial state 0. First we have the probability 
estimation model in equation 19: 

𝐿𝐿�𝑝𝑝𝑟𝑟,𝑘𝑘� = � 𝜌𝜌𝑖𝑖𝑖𝑖

𝑖𝑖=𝐻𝐻,𝑖𝑖=𝑈𝑈

𝑖𝑖,𝑖𝑖=0

𝑧𝑧(𝑚𝑚, 𝑗𝑗) + 𝒙𝒙𝒕𝒕,𝒌𝒌β + u                                  (19) 

here L(.) is the link function introduced in equation 12; p is the change probability for 
agent k at time t; u is the model error vector; H and U are maximum spatial and temporal 
threshold considered to be neighborhoods; 𝑧𝑧(𝑚𝑚, 𝑗𝑗) is the observation value with spatial 
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distance i and temporal distance j to the agent k; 𝜌𝜌𝑖𝑖𝑖𝑖 is the coefficient to be estimated for 
𝑧𝑧(𝑚𝑚, 𝑗𝑗) (note that 𝜌𝜌𝑖𝑖𝑖𝑖 has to satisfy causal and identifiable similar to the conditions for 
time-series model (Box, Jenkins, Reinsel, & Ljung, 2015); xt,k is the external input 
variable (without spatial dependencies) vector for agent k at time t; β is the coefficient 
vector. 

To estimate the model coefficients, first we can view the model (equation 20) of a linear 
model for non-spatial inputs xt,k: 

𝐿𝐿�𝑝𝑝𝑟𝑟,𝑘𝑘� = 𝒙𝒙𝒕𝒕,𝒌𝒌β + w                                                  (20) 

where w is the error of the model.  

After this process, we can ensure that w has expectation of 0. Then we further estimate 
for 𝜌𝜌𝑖𝑖𝑖𝑖 in equation 21: 

𝑤𝑤 = � 𝜌𝜌𝑖𝑖𝑖𝑖

𝑖𝑖=𝐻𝐻,𝑖𝑖=𝑈𝑈

𝑖𝑖,𝑖𝑖=0

𝑧𝑧(𝑚𝑚, 𝑗𝑗) + u                                              (21) 

To estimate 𝜌𝜌𝑖𝑖𝑖𝑖 here, we can use the method of moment approach to set up equation 
systems with sampled covariance �̂�𝐶(ℎ,𝑢𝑢) in equation 17 and the theoretical 
autocorrelation calculated from equation 21 (here 𝑧𝑧(0,0) can be used to substitute w). 
To avoid clumsy notations, details of this estimation process is omitted in this chapter. 

As shown above, integrated spatio-temporal models can simulate 3-dimensional (two 
space dimensions and one time dimension) or even 4-dimensional spaces. They can also 
provide a data structure that is flexible and possesses potential for large volume data 
analysis. Thus it is a promising pathway for the evolution of CUS LUC models.  

5.3 MODEL INTEGRATIONS 

CUSs are essentially a complex web of interconnecting parts, such as land-use, 
transportation, water, and economic systems, to name just a few. Future evolutions of 
Land-use have implications for many of these parts. For example, increasing impervious 
surface area associated with land urbanization casts a burden on water, sewer and storm 
water systems – raising the risks of flooding, the potential for polluting freshwater 
supplies, and a change in ground water recharge systems. Similarly, changes in other 
systems also induce alterations in the patterns of land-use. Economic development for 



106 

 

example, often calls for changes in the spatial demand for commercial land-uses in a 
region. Therefore, modeling LUC itself is not sufficient in considering its rippling effects 
and feedbacks. It is necessary to couple LUC models with dynamic models of other 
(interacting) systems.      

The coupling of LUC models has been discussed elsewhere in the literature (Iacono et al., 
2008; Couclelis, 2005; Matthews et al., 2007; Deal, 2008; Deal and Kim, 2013). The 
important issue of model integration however, and its multiplier effect on uncertainty (of 
coupling multiple systems) is largely overlooked. In this section, we will introduce an 
integrated LUC, hydrological, and economic framework as an example of a fully 
integrated CUS model. We then outline how to deal with the uncertainty issues within the 
modeling frame.  

5.3.1 Integrated Model 

In this example, we propose an integration of a land-use change model, a 
hydrometeorological/hydraulic model, a virtual water trade flows model, a catchment 
water quality model, and an economic and policy analysis model. Integrating models of 
varying spatial and temporal specification requires careful consideration—both from a 
top down and from a bottom up perspective. Top down analysis using a cascading models 
approach from large scale natural systems dynamics to small scale discrete choices of 
human activities and the related infrastructure needed to support them is important for 
understanding the implications of a changing climate on human activities. Bottom up 
feedback is equally important for understanding how human systems and human decision 
making affect these larger scaled systems and ultimately how they implicate climate 
changes. Our example proposes the hierarchical incorporation of models to integrate the 
diverse spatial and temporal scaled models noted. Larger scaled models will provide the 
constraints from which smaller scaled model results will operate and smaller scaled 
models will provide the dynamic changes that will feed back up into the larger models. 
This simple but important concept helps to frame the aggregation of our smaller scaled 
human interaction and decision models back up to the larger scaled models. Figure 23 
shows the framework for model coupling. In the later part of this section, we will 
introduce how each part of the model functions in this integration. 
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Figure 23. A model integration framework. 

5.3.2 Models 

In the following we introduce the functionality and dynamics of each model involved in 
our model integration example. Then we introduce our approach of model integration. 
The models utilized in this analysis are existing models that have already been usefully 
applied.  

Land-use Modeling. Demographic output and the future demand for space are derived 
from the econometric model described below. This output is fed into a dynamic spatial 
LUC model. LUC model simulates future LUC and its consequences using a modified 
cellular automata approach where cells evolve over a surface defined by biophysical 
factors such as hydrology, soil, geology and landforms; and socio-economic factors such 
as administrative boundaries, census districts, and planning areas. Fundamentally the 
LUC model is defined by two major parts: 1) A dynamic land use change model (at a 
30x30 meter resolution) which is driven by a set of sub-models that describe the local 
causality of land use changes and allows the creation of what-if scenarios. 2) Impact 
assessment models that use these land use change scenarios in order to analyze the 
impacts generated by these changes. One example of such model is the University of 
Illinois Landuse Evolution and Impact Assessment Model (LEAM) The approach enables 
loose and tightly coupled links with other models that might operate at a different spatial 
scale (Deal and Schunk, 2004; Pallathucheril and Deal, 2007). LEAM has been loosely 
coupled with economic forecasting models (CREIM), bi-directional travel demand 
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models in both in Chicago (Deal and Kim, 2013); water quality models (Choi and Deal, 
2008); water quantity models (Sun et al., 2009); and social cost models (Deal and 
Pallathucheril, 2008). LEAM has previously been applied in Chicago, Stockholm, and 
Washington DC. 

Hydrometeorological/Hydraulic Modeling. There are two potential procedures for 
hydrologic/hydraulic modeling. One is for river channels at the watershed scale using the 
Variable Infiltration Capacity model (VIC), to calculate river discharge for continuous 
flow processes and HEC-RAS, analyzing one-dimensional river/channel hydraulics (e.g., 
flow stage and velocity), each coupled with an event-based model, HEC-HMS (USACE, 
1998) that simulates rainfall-runoff processes (Liang et al., 1994; 1996) Cherkauer and 
Lettenmaier, 2003). Urban water movement (at the sewershed level with sewer overflow 
and urban floods), will be modeled using SWMM, a 1-D, unsteady hydrology 
(rainfall-runoff) and hydraulic model of open-channel and closed-conduit systems 
typically used for single event or continuous simulation across a variety of scales, 
pervious and impervious surfaces, and engineered drainage infrastructures (EPA, 2013; 
Cantone and Schmidt, 2011).  

For hydrometeorological model, we employ the General Circulation Model (GCM) for 
climate modeling, which simulates the response of global circulation to large scale forces 
(synoptic scale systems) and the RCM to account for sub-GCM grid scale forcings (e.g. 
local circulations, complex topographical features and land cover inhomogeneity), which 
gives long-term climate prediction. Statistical downscaling or dynamic downscaling 
approach will be used to produce data more suitable for hydrological models (Bárdossy 
and Pegram, 2011). 

Virtual Water Trade Flows. The concept of virtual water trade flows builds on the idea 
of (Allan, 1993; 1994; 1998) and the interregional input-output framework developed by 
(Leontief, 1953; 1956; 1970). In essence, it determines how much virtual water is 
embodied in the production of goods and services made in a region and traces whether 
that water (i.e. associated commodities and services) is consumed locally or externally 
(through export to the rest of its country or the world). The same idea applies to the 
imports a region makes so that one can determine whether it is a net importer or exporter 
of virtual water. If found to be a net-exporter, significant changes in water policy would 
likely be required from the region to ensure that best economic and ecological use is 
made of this scarce resource.  

Catchment Water Quality Modeling. Water quality is a critical issue in water policy. 
Both point source and non-point source pollution should be accounted for. The 
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Hydrological Predictions for the Environment (HYPE) model is a spatially 
semi-distributed model which can be used to explicitly account for the spatially 
distributed pollution sources including total suspended solids (SS), nitrate, and phosphate. 
(Donnelly et al., 2016; Lindström et al., 2010). However, it does not consider the 
social-economic factors. To address this, we will apply the Catchment Land Use for 
Environmental Sustainability model (CLUES) developed by NIWA, which is a GIS based 
modeling system capable of assessing the effects of land use change on water quality and 
socio-economic indicators (Semadeni-Davies and May, 2014). The model has been 
coupled with OVERSEER, the Soil Plant Atmosphere System Model (SPASMO) and the 
Spatial Regional Regression on Watershed Attributes model (SPARROW). Land-use 
scenarios and socio-economic model inputs will be generated by the LEAM model and 
the economic and policy analysis model, described in sub-section Model Integration. 

Economic and Policy Analysis Models. We integrate an input-output modeling 
framework with a demographic component that helps make up a regional econometric 
model used for impact analysis and forecasting. Examples of details of the system can be 
found in Israilevich et al. (1997) and its application to Chicago (the Chicago Regional 
Econometric Input-Output Model—CREIM) in Kim et al. (2015). The model provides 
information on production, income, and employment for several sectors, population 
cohorts, migration, and ultimately water demand data for use in subsequent models.  
This annual model, with a current forecasting horizon is complemented by shorter-term 
indices that mimic leading indicators and business cycles, thus providing the opportunity 
to integrate analysis over the shorter and longer-terms. The economic model is be 
synthesized to include water demand, flood damage assessments, and the costs of water 
degradation. It also feeds a market-based, dynamic optimization model that derives 
optimal adaptive flood management and pollution policy.  

Synthesized models are estimate the damages associated with simulated flood events 
where the value of damages depends on how frequent and severe flooding is, and how 
much economic activity is present in the affected areas. The cost of water pollution is 
estimated by the treatment/replacement cost of polluted water with clean water. We will 
use standard benefit transfer methods (Brouwer & Bateman, 2005), applying the results 
of previous analyses to estimate the values of changes in flood and pollution control 
regulation.  

5.3.3 Uncertainty analysis 

Our integrated approach is subject to the limits of data, models and long-term forecasts; 
therefore, handling uncertainty is critically important (Kabat, Van Vierssen, Veraart, 
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Vellinga, & Aerts, 2005). Uncertainty can be modeled using a global sensitivity analysis 
(GSA) in order to 1) locate the parameters that have significant effects on the system 
studied, 2) evaluate their effects on the performance of the entire system, as well as of 
individual components, and 3) derive the propagation path of various uncertainty sources 
by mapping the impact from one component to others. Traditional sensitivity analysis 
tests the impact of uncertainty with one parameter (“one at a time”), which ignores the 
possible interactions between input parameters and the correlation between the 
uncertainties, and thereby does not capture the final impact of all uncertainties acting on 
the system (Vrugt, Diks, Gupta, Bouten, & Verstraten, 2005). Global Sensitivity Analysis 
(GSA) can be used to determine the contribution to the uncertainty in the output of a 
system from different sources of uncertainty in the input variables (Saltelli et al., 2008). 
Quantitative methods for GSA are based on variance decomposition or (Sobol & 
Petrovskaya, 1993) decomposition .  

To address deep uncertainty, we employ a robust decision making framework. Robust 
decision making employs three key concepts: multiple views of the future, a robustness 
criterion, and an iterative process based on a vulnerability-and-response-option rather 
than a predict-then-act decision framework. Utilizing multiple future states of the world 
rejects the view that a single probability distribution represents the best description of a 
deeply uncertain future (B. Deal & Pallathucheril, 2007b). In this work, a range of 
potential futures are assessed using a vulnerability-and-response-option analysis 
framework. This framework characterizes uncertainty and helps identify and evaluate 
robust strategies by using combinations of relevant futures. The approach has cognitive 
benefits for decision making, by uncovering the key assumptions and uncertainties that 
underlie each alternative future. This differs from traditional predict-then-act approaches 
that characterize the future and then rank orders the desirability of alternative options 
using static criteria. The vulnerability-and-response-option considers all potential futures 
as viable, it's the uncertainty in each that separates them. 

5.4 CONCLUSIONS 

In this paper, we argue that CUS theories play an important role in the advancement of 
urban urban LUC models and the planning support systems that house them. CUS 
theories have helped identify some of the weaknesses in current urban modeling 
approaches. The ideas have also providing a pathway for improving our general 
understanding of urban systems, and the fact that they may indeed be predictable to some 
extent, even in their apparent randomness. We point out that LUC models and CUS are 
evolving a symbiotic relationship where CUS is helping to improve the models and the 
models are improving our understanding of CUS by providing real world applications 
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that can be verified and ground truthed. 

We propose a future LUC modeling paradigm that contains key breakthroughs in the 
computational, statistical, and spatial econometric fields. We suggest that for a basic 
construction of LUC models, GAS provides a more flexible and comprehensive structure 
than traditional CA model approaches. To address the computational challenge for fine 
spatial resolution models in large urban areas, high-performance statistical models and 
parallel computing techniques offer the most promising solutions. To integrate spatial and 
temporal dependencies into LUC models, semi-parametric spatial econometrics models 
and recent advancement in spatial-temporal models provide model calibration methods 
for LUC models. 

We also suggest that LUC models would be more capable and useful in the support of 
planning if they were integrated and coupled with other dynamic urban system models – 
as suggested by the CUS literature.  
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CHAPTER 6: A REASSESSMENT OF URBAN LAND-USE 
STRUCTURE AND LAND-USE PATTERNS: CBD OR 

NETWORK-BASED? — EVIDENCE FROM CHICAGO 

The “distance to central business district(CBD)” based city model has been a core 
assumption of spatial equilibrium models of urban economic structure since its initial 
theorization by Alonso (1974), Mills (1967), and Muth (1969).  Later modifications by 
Fujita and Ogawa (1982), Ogawa and Fujita (1989),  Lucas (2001), Lucas and Rossi–
Hansberg (2002), and McMillen and Smith (2003)  have improved, verified and/or 
expanded on the original concepts, maintaining its “distance to CBD” based city core. 
The goal of the model is to explain the spatial distribution of a population in a city. Its 
main mechanism is the relation between commuting costs, housing price, and housing 
consumption. The model has two core assumptions: that people want to live in areas with 
the best amenities and the most efficient access to jobs (Y. Chen & Rosenthal, 2008); and 
that businesses think that spatial agglomeration will help attract labor (Behrens, Mion, 
Murata, & Südekum, 2017).  

The "distance to CBD" model has enabled a practical understanding of the urban 
condition. Understanding the mechanisms of congestion (Brinkman, 2016; McDonald, 
2009; Tsekeris & Geroliminis, 2013), and forecasting future land-use change (Deal et al., 
2012) are two examples that have directly informed planners and policy makers on the 
spatial implications of their decisions. However, proximity to CBD has both (and 
different) agglomeration and dispersion effects on location preferences of firms and 
workers (Behrens et al., 2017). Chen and Rosenthal (2008) demonstrate that higher 
consumer amenity quality typically attract retirees, while better business environments 
typically repel retirees relative to workers. Brinkman (2016) concluded that jobs are 
much more clustered than residents, which suggests that different spatial forces work on 
firms compared to workers.  

An alternative to the "distance to CBD" based city assumptions draws from literature on 
Complex Urban System (CUS). CUS theories surmise that population and businesses are 
clustered along urban systems networks (depending on functional characteristics)  
(Walloth et al., 2014), are non-linear (Simini et al., 2012), and display scaling properties 
(Batty, 2008). Batty argues that instead of distances functions, more complex network 
interactions should be used to model transportation and social links between people and 
places in the city. He points out that microscopic networks in urban systems have 
complex implications and require the use of “network science, allometric growth, and 
fractal geometry” in order to adequately depict system interactions (Batty, 2008). The 
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hypothesis is that people and businesses agglomerate in relation to transportation network 
accessibility, rather than Euclidean distances to an urban CBD. This agglomeration 
pattern is complicated by distance decay functions along networks and temporal factors, 
such as relocation and the immigration of people and businesses. Another complicating 
factor against the "distance to CBD" assumption is that non-work trips now dominate 
urban networks. According to Huang and Levinson (2015), approximately 90% of all 
trips are now non-work related.  

Other studies have updated the "distance to CBD" model of urban structure using square, 
gridded, road networks (see Dong and Ross, 2015; Tsekeris and Geroliminis, 2013). 
Barabási (2009) however, argues that human networks are scale-free; that very few nodes 
in the network are connected to many other nodes. This scale free pattern has been shown 
to apply to urban road networks (M. Batty, 2008, 2013). Batty (2008) uses population and 
employment distributions in London, UK to show that the size and density of their 
frequencies decay according to scaling laws. He also notes that there is a direct relation 
between connectivity and city size in England and Wales. In a 2013 study, Batty uses 
economy of scale to explain a scaling/superlinear relation between where humans settle 
and how they are connected (Batty, 2013). His work suggests that people tend aggregate 
in the key (well-connected) nodes of scale-free networks.  

In this paper we use CUS theories to construct a model for testing the relation between 
urban transportation networks and urban structure. We construct a Stochastic Greedy 
Algorithm (SGA) to evaluate how available lands are connected to existing urban 
amenities using network accessibility and shortest path measures. We quantify the 
connectivity of all unique cells in a finely scaled (30x30 meters) lattice of the Chicago 
Metropolitan Statistical Area (hereafter, Chicago) to existing attractive amenities 
(population and employment centers, points of interests (POIs), points of network 
accessibility—on ramps, major intersections). We measure the attraction of each relative 
to the frequency of existing commercial and resident land-uses. We adopt gravity-like 
functions that consider attractiveness for both firms and residences (i.e. how well an 
available land is connected to labor forces and to employers and established businesses). 
We do this in order to examine several hypotheses that offer theoretical departures from 
current urban structure models. It is important to note that we do not aim or expect to 
have results that totally reject existing “distance to CBD” models. The traditional urban 
structure model has many merits in its theoretical constructions and applications to 
empirical cases. Some of the findings of our research actually do not reject “distance to 
CBD” model assumptions. But we also show that some of the phenomena will be much 
better explained if we adopt an alternative model (network based urban structure).  
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Our first hypothesis is that large urban systems organize around scale-free urban 
networks. We test this using our SGA method to simulate shortest path finding behaviors 
to expose underlying urban structures. Our second hypothesis is that proximity to urban 
attractors has both agglomeration and dispersion effects on location preferences for 
commercial and residential land-uses. We measure the relation between attraction levels 
(calculated from connectivity) for land-use cells and their probability to be commercial 
and residential cells. If simultaneous agglomeration/dispersion effects occur, the resulting 
relations should differ from the super-linear or scaling increasing curves as posed by 
Batty (2013, 2008). Our third hypothesis, unexamined in previous literature, is that new 
urban growth patterns are different than existing agglomeration patterns. We test this, by 
analyzing SGA patterns in Chicago from 2001 to 2011 and compare the results to newly 
developed land-uses—post 2011. 

This analysis contributes to both the empirical urban economics and the CUS literature. 
First, our scale free network hypothesis challenges the core assumptions of models of 
urban economic structure by Alonso (1974), Dong and Ross (2015), Fujita and Ogawa 
(1982), Lucas (2001), Lucas and Rossi–Hansberg (2002), Mills (1967), Ogawa and Fujita 
(1989), Tsekeris and Geroliminis (2013). Next, our hypothesis on the simultaneous 
agglomeration/dispersion effects of proximity to urban centers adds to Batty (2013, 2008), 
Behrens et al. (2017), Chen and Rosenthal (2008), and Brinkman (2016). Our new 
perspective on urban structure and land-use also provides an alternative method to the 
study of urban economics policies with spatially explicit implications, such as congestion 
(Brinkman, 2016; McDonald, 2009; Tsekeris & Geroliminis, 2013) and geographical 
knowledge spillover (Agrawal et al., 2015). Finally, our analysis approach offers a new, 
policy driven, calibration methodology for improving land-use change models 
(Al-Ahmadi, See, Heppenstall, & Hogg, 2009b; Xia Li, Liu, Liu, Chen, & Ai, 2013; X. 
Liu, Li, Liu, & Ai, 2008) . 

The rest of this paper is organized as follows. In Section 6.1, we introduce the data, 
hypotheses, and analytical methods used in our analysis. We present our results and their 
implications in Section 6.2. And we conclude our findings in Section 6.3.   

6.1 HYPOTHESES, DATA, AND METHODS 

In this research, we aim to 1) measure connectivity and attractions of available urban land 
cells through transportation networks; 2) quantify agglomeration/dispersion effects of 
proximity measured by network connectivity; and 3) compare urban land-use growth 
patterns to existing agglomeration patterns. We use cleaned and reclassified 2011 
land-cover data (30x30-meter resolution, around 181 million land-use cells in total) from 
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NLCD (Fry & et al., 2011c)to identify major land-use types in Chicago. We also detect 
differences between 2001 and 2011 land-cover data from NLCD to identify land-use 
changes in this time period. The land-use and land-use change maps are shown in figure 
24(a) and (b) respectively.  

  

Figure 24(a) Land-use Map of Chicago in 2011. Figure 24(b) Land-use Change Map of 
Chicago from 2001 to 2011 

The Chicago regional attractors we use in our analysis include: population centers, 
highways, major roads, and points of road network access—on ramps, major intersections  
(from Smith with U.S. Census Bureau, 2012); employment centers from D&B Hoover 
Industry Directory (Dun & Bradstreet, Inc., 2017); and other Points of Interests (POIs).  
POIs represent Chen and Rosenthal's (2008) “quality of life amenities”. They are 
gathered using a Yelp API (Yelp, 2017) to obtain geotagged reviews for more than 10,000 
restaurants, bars, stores, public and private services, hotels, and real estate purchases as of 
March 2016. Yelp reviews serve as a proxy for usage frequencies, although as a food 
based recommendation service, the Yelp API may exaggerate restaurant and bar usage 
relative to other amenities. The data collected is based on the physical numbers of 
reviews, and does not make any distinction on POI quality. For example a poor or 
un-preferred restaurant may still elicit a high number of reviews. 
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6.1.1 Stochastic Greedy Algorithm: measuring networked-based urban structure  

Our first hypothesis is that, in large and complex urban systems, urban structure unfolds 
around network-based systems. We examine this by measuring the network connectivity 
between every cell in a 30x03meter land use land cover lattice of the Chicago region and 
our urban attractors. If our hypothesis holds, we expect to see urban attractors distributed 
with a scaling network form exhibiting a gravity-like decay.  

Our proposed network-based urban structure hypothesis differs from the “distance to 
CBD) based model in two important ways. First, it suggests that city and employment 
centers cannot be abstracted into one “centroid”.  Empirical evidence shows that they 
are distributed around the city in what Batty describes as ‘scale free’ patterns (M. Batty, 
2008b). We attempt to capture this by looking at a distributed set of attractors using data 
proxies for employment and production centers (actual employment locations and POIs). 
Second, we eschew the abstract notion of ‘center’. We believe that connections to a 
center need to be established through actual city networks and not the Euclidian distances 
and geometric circles used in developing the “distance to CBD” theories (see Alonso, 
1974; Fujita and Ogawa, 1982; Lucas, 2001; Lucas and Rossi–Hansberg, 2002; Mills, 
1967; Ogawa and Fujita, 1989). We also surmise that homogenized gridded networks (see 
Dong and Ross, 2015; Tsekeris and Geroliminis, 2013) still fail to capture empirical 
realities. To test our scale-free hypothesis, the networks used need to be derived from 
actual urban networks rather than over-simplified models.   

As noted, the method we use to identify network connectivity is by simulating human 
movement to/from urban attractors using a Stochastic Greedy Algorithm (SGA) to 
establish shortest path routes through existing travel networks. An SGA incorporates 
learning into generating localized optimal solutions. It learns the characteristics of 
optimal solutions and then applies them to individualized solution sets (Viswanathan, Sen, 
& Chakraborty, 2011). We use SGA for its computational efficiency and its resemblance 
to actual human behavior. We apply the function to finding shortest travel time from all 
cells in the Chicago region to the top 100 population centers per US census data, the top 
100 employment center per D&B Hoover data directory, our collection of POIs (Yelp 
Data), and points of network accessibility—intersections, ramps, and highways (U.S. 
Census Tiger/Line Data).   

The traditional method for calculating shortest travel costs (in terms of time) derives 
global optimums using the computationally voracious Dijkstra algorithm. Dijkstra 
consumes computational time at a rate of O(n2) for n number of nodes (Goodman et al., 
2016). In our case, one cell in our Chicago regional 30m lattice of 181 million cells 
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equals one node. A Dijkstra algorithm calculation of this magnitude would take an 
inordinate amount of time and/or computational resources to complete. An alternative to 
Dijkstra is the Greedy Algorithm. At its core a Greedy Algorithm optimizes a system 
using a simple rule, “what looks best?” at any step. So a greedy routing algorithm would 
start by going to the closest one, then to the next closest, and so on (Cormen et al., 1990).  
So for the same problem with n nodes, the Greedy Algorithm has a much smaller 
computational complexity O(n). A Greedy Algorithm finds localized optimums, 
sacrificing globally optimum solutions in the process.  For example, a greedy algorithm 
might help me find my shortest commute path, but it cannot find the shortest or most 
efficient paths (on average) for all commuters (global optimum). This process captures 
individual behaviors well (localized optimal decision making), although fundamentally it 
may sacrifice some performance for computational efficiency. 

To achieve a balance between performance and efficiency, we propose a parallel 
Stochastic Greedy Algorithm (SGA) to find the shortest travel times. The basic idea is to 
run hundreds of Greedy algorithms together with each assigned a randomized decision 
rule. This gives the algorithm a chance to “jump” out of a local optimization to reach a 
globally optimal solution (Viswanathan et al., 2011). An SGA resembles probabilistic 
path finding processes in the sense that much like human way finding, the algorithm 
considers both moving along a direct path to the destination and moving along the fastest 
route based on probabilistically outcomes.  

In our SGA, we disseminate 1,000 agents from each of population and employment 
identified attractors the Chicago regional study area using high-performance paralleled 
computing resources. Each agent has been directed to move as far as it can travel in 1 
direction for 1 hour in 1 cell increments. Direction is probabilistic and a continuous 
variable (see appendix). Time and speed are based on network speeds and land cover 
impediments. For example it’s harder to cross a forested land cover than an agricultural 
land use and it is impossible to cross water excepting at network (bridges). After 
simulating the movement patterns of all 200,000 agents disseminated, we designate each 
cell in the regional lattice an optimum travel time (shortest travel time) to each attractor 
(Figure 25). Because of the stochastic nature of our SGA, some peripheral cells are 
unvisited by an agent. These are recorded as having an infinite travel time. To address the 
possibility that some cells are missed by agents, we interpolate their travel times to cells 
within 5 steps (using straight-line distance) divided by travel barrier values. If a cell is 
visited multiple times, we consider the shortest time recorded for any visit as the optimal. 
A summary process and detailed pseudo code of SGA is provided in the attached Section 
6.4. 



118 

 

 

Figure 25(a) is the travel cost map for Chicago employment centers using SGA 
algorithm. Figure 25(b) is the travel cost map for Chicago population centers using SGA 

algorithm. Warmer color indicates shorter travel time. 

The computational complexity for our SGA algorithm can be defined as O(TN), where N 
is the number of iterations specified, and T is a time-based distance cutoff. In our SGA 
model, we specify T at 1,000 steps (30,000 meters). We consider the information 
generated at >30,000 meters from an attractor to be inconsequential. Note that N and T in 
our SGA are significantly smaller than the total cell number n used in Dijkstra. This 
results in a much smaller computational cost. Further, our N iterations of randomized 
agent dispatches have no dependencies and therefore can be processed in parallel. In this 
case, the computational time will be O(TN/C), where C is the number of threads available 
for parallelization. One further improvement is that congested speeds can be considered 
when calculating agent travel times on the road network.   

6.1.2 Examining relations between connectivity, attraction and land-use frequency  

Our second hypothesis is that proximity to urban attractors has both agglomeration and 
dispersion effects on location preferences for commercial and residential land-uses. To 
quantify agglomeration/dispersion effects that result from network connectivity, we 
examine the relation between existing commercial and residential land-use frequency to 
our set of urban attractors (population centers, major employers, POIs and points of 
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network accessibility – intersections, ramps, and highways). We are also interested in the 
temporal aspects of urban structure and land-use—what are the evolutionary mechanisms? 
We suspect that newly emerging urban development has different mechanisms from 
existing, historically driven developments, a phenomenon that, to date, has not been 
addressed in static equilibrium models (see Chen and Rosenthal, 2008; Fujita and Ogawa, 
1982; Ogawa and Fujita, 1989). 

To test this hypothesis, we use our SGA attractor connectivity scores as a basis for 
establishing the relative attractive gravity of each location using gravity-like functions. 
Attractive gravity levels are broken into 50 quantiles. The frequency of existing 
residential and commercial land uses cells that fall within each quantile is calculated by 
overlaying existing land-use / land cover maps with attractive gravity results. Finally, 
functional relations between land-use categories and urban attractors are determined 
using statistical methods and mathematical mapping processes in a ‘best mapping 
relations’ exercise. 

6.1.2.1 Methodology for H2 

In the first step, we calculate an attraction value for each attractor based on their 
importance (e.g. use, size, population, or number of visitors) and distances to each 
land-use cell. For attractor type 𝑚𝑚’s attraction to land-use cell 𝑘𝑘, we calculate its 
attraction 𝑎𝑎i𝑘𝑘 by: 

   𝑎𝑎𝑖𝑖𝑘𝑘 =  ∑ 𝑛𝑛𝑖𝑖
𝑟𝑟𝑖𝑖𝑗𝑗𝑖𝑖∈𝑆𝑆𝑖𝑖           (22) 

where 𝑆𝑆i is the set of all attractors that belong to attractor type 𝑚𝑚;  𝑝𝑝j is the level of 
attraction for 𝑗𝑗th attractor in 𝑆𝑆i; 𝑑𝑑jk is the distance between 𝑗𝑗th attractor in 𝑆𝑆i and 
land-use cell 𝑘𝑘. The inverse distance model is similar to gravity model, and there is an 
extensive discussion on the proper power coefficient selection for gravity models 
(Anderson & Van Wincoop, 2003; Bergstrand, 1985; Mátyás, 1997; Pan, Li, & Dang, 
2013). We use 1 for the power coefficient since equation 22 is an additive model of 
attractions to various places normalized by travel time, so that traditional gravity model 
coefficients may not be suitable. The gravity model literature also focuses on the use of 
gravity models to directly model spatial problems, while we use the inverse distance here 
only to process data for examining other theoretical models. Thus, we tend to preserve 
the originality of data without using a power coefficient. Whether this turns out to be a 
limitation will be the focus of future work.  
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To demonstrate what 𝑆𝑆i (set of attractors for type 𝑚𝑚) mean and how we choose 𝑝𝑝j and 
𝑑𝑑jk for each attractor type, we clarify each attractor type we examine below: 

Employment Attraction (𝑺𝑺𝟏𝟏). 𝑝𝑝j is the total employment at place 𝑗𝑗 according to the 
Hoover data directory, and 𝑑𝑑jk is the shortest network travel time from place 𝑗𝑗 to cell 𝑘𝑘 
obtained from SGA. 

Population Attraction (𝑺𝑺𝟐𝟐). 𝑝𝑝j is the total population at place 𝑗𝑗 according to 2010 US 
Census, and 𝑑𝑑jk is the shortest network travel time from place 𝑗𝑗 to cell 𝑘𝑘 obtained 
from SGA. 

Review Attraction (𝑺𝑺𝟑𝟑). 𝑝𝑝j is the total reviews received from www.yelp.com at business 
location 𝑗𝑗, and 𝑑𝑑jk is the Euclidean distance from place 𝑗𝑗 to cell 𝑘𝑘. We did not use 
travel time for reviews because there are more than 10,000 review locations in Chicago 
MSA, thus a shortest network travel time algorithm costs too much time. Also, we think 
that dense distributions of review locations make network travel time calculation not as 
important as other centers. 

Accessibility Attraction (𝑺𝑺𝟒𝟒). 𝑝𝑝j is the posted speed at major road 𝑗𝑗 (highway, 
interstate, or major roads), and 𝑑𝑑jk is the Euclidean distance from highway 𝑗𝑗 to cell 𝑘𝑘. 
We use posted speed and distance decay to represent how close one cells is to major road 
transport networks. This attraction value map can also be viewed as “density of roads” 
map of Chicago.   

After calculating the attraction values, we break up the values into 50 quantiles (each 
quantile consist of an equal number of cells) based on their sorted value of attractions. 
Formally, we give each land-use cell 𝑘𝑘𝑐𝑐𝑖𝑖 an index 𝑚𝑚𝑖𝑖 for each attractor type 𝑚𝑚: 

𝑚𝑚𝑖𝑖 =  ∑ (𝑗𝑗 + 1)𝕝𝕝ai𝑗𝑗𝑚𝑚𝑖𝑖∈(𝒗𝒗𝑖𝑖,� 𝑛𝑛50�𝑖𝑖
,𝒗𝒗𝑖𝑖,� 𝑛𝑛50�(𝑖𝑖+1)]

49
𝑖𝑖=0     (23) 

where  𝑽𝑽𝑖𝑖 is the sorted (increasing) vector of attraction value 𝑚𝑚; 𝒗𝒗𝑖𝑖,𝑘𝑘 is the 𝑘𝑘th 
element in vector 𝑽𝑽𝑖𝑖;  𝑚𝑚 is the total number of elements in 𝑽𝑽𝑖𝑖; [∎

∎
] is a mathematical 

operator for integer division. 

We sort attraction values into quantiles because we want to calculate the frequency of 
land-use cells (commercial or residential) by equal parts as well in order to map their 
functional relation. To demonstrate this calculation mathematically, we first define some 
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sets of land-use class of concern (note that we have preprocessed NLCD data to 
excluding existing roads and misclassifications before this analysis): 

𝑬𝑬 : set of land-use classes cells belonging to all classes in NLCD 2006 (Fry & et al., 
2011c) legend excluding water related classes (excluding classes that are starting with 
1-).  

𝑹𝑹: set of  land-use cells belonging to low intensity developed lands in NLCD 2006 
legend (class 22). 

𝑪𝑪: set of  land-use classes including medium to high intensity developed lands in 
NLCD 2006 legend (class 23 and 24). 

Equation 24 and equation 25 represent how we calculate our target frequency in each 
quantile for each attractor: 

 𝑓𝑓𝑖𝑖,𝑟𝑟,𝑟𝑟 =  
∑ 𝕝𝕝𝑗𝑗𝑚𝑚𝑖𝑖∈𝑹𝑹𝑚𝑚𝑖𝑖= 𝑠𝑠

∑ 𝕝𝕝𝑗𝑗𝑚𝑚𝑖𝑖∈𝑬𝑬𝑚𝑚𝑖𝑖= 𝑠𝑠
    (24) 

𝑓𝑓𝑖𝑖,𝑟𝑟,𝑐𝑐 =  
∑ 𝕝𝕝𝑗𝑗𝑚𝑚𝑖𝑖∈𝑪𝑪𝑚𝑚𝑖𝑖= 𝑠𝑠

∑ 𝕝𝕝𝑗𝑗𝑚𝑚𝑖𝑖∈𝑬𝑬𝑚𝑚𝑖𝑖= 𝑠𝑠
    (25) 

where 𝑓𝑓𝑖𝑖,𝑟𝑟,𝑟𝑟 is existing residential cell frequency for attractor type 𝑚𝑚, 𝑠𝑠P

th quantile  (𝑠𝑠 ∈
[1,2, … ,50]); 𝑓𝑓𝑖𝑖,𝑟𝑟,𝑐𝑐 is existing commercial cell frequency for attractor type 𝑚𝑚, 𝑠𝑠P

th; 𝑓𝑓𝑖𝑖,𝑟𝑟,𝑐𝑐 
is changing into residential cell frequency for attractor type 𝑚𝑚, 𝑠𝑠th quantile; 𝑓𝑓𝑖𝑖,𝑟𝑟,ℎ is 
changing into commercial cell frequency for attractor type 𝑚𝑚, 𝑠𝑠P

th quantile.  

Finally we can examine the mapping relations between land-use/land-use change 
frequency and attraction values. We define vectors 𝐹𝐹𝑖𝑖,𝑟𝑟 = (𝑓𝑓𝑖𝑖,𝑟𝑟,𝑟𝑟), 𝐹𝐹𝑖𝑖,𝑐𝑐 = (𝑓𝑓𝑖𝑖,𝑟𝑟,𝑐𝑐), 𝐹𝐹𝑖𝑖,𝑐𝑐 =
(𝑓𝑓𝑖𝑖,𝑟𝑟,𝑐𝑐), 𝐹𝐹𝑖𝑖,ℎ = (𝑓𝑓𝑖𝑖,𝑟𝑟,ℎ); similarly, we can define attraction values of sets of attraction 
values divided into 50 quantiles, with 𝐴𝐴𝑖𝑖 = (a′i𝑘𝑘𝑚𝑚𝑖𝑖

). To make 𝑎𝑎𝑖𝑖,𝑟𝑟(∎) comparable for 

different 𝑚𝑚, we normalized all ai𝑘𝑘𝑚𝑚𝑖𝑖
into a′i𝑘𝑘𝑚𝑚𝑖𝑖

∈ [0,1] we define 8 possible mapping 

relations: 

𝐴𝐴𝑖𝑖 =  𝑎𝑎𝑖𝑖,𝑟𝑟(𝐹𝐹𝑖𝑖,𝑟𝑟) + 𝑤𝑤𝑖𝑖,𝑟𝑟    (26) 

where 𝑡𝑡 ∈ (𝑎𝑎, 𝑐𝑐); thus we have mapping relations 𝑎𝑎𝑖𝑖,𝑟𝑟(∎) for 2 different land-use types 
and 4 different attractor types (employment, population, reviews and accessibility for 𝑚𝑚 ∈
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(1,2,3,4); 𝑤𝑤𝑖𝑖,𝑟𝑟 is a zero-mean white noise. 

Our hypothesis of possible types of 𝑎𝑎𝑖𝑖,𝑟𝑟(∎) include power functions and polynomial 
functions. The power form of  𝑎𝑎𝑖𝑖,𝑟𝑟(𝐹𝐹𝑖𝑖,𝑟𝑟) = 𝑘𝑘𝐹𝐹𝑖𝑖,𝑟𝑟𝜉𝜉 indicates that a land-use type 
agglomerates to a certain attractor. The idea of modeling agglomeration by power law 
was proposed by Bettencourt et al., 2007 and Batty (2008). In Bettencourt et al., 2007 and 
Batty (2008), empirical data showed that key urban indicators (such as new patents or 
GDP) in major US, European, and Chinese cities follow a power function relative to the 
size (population) of the city. More specifically, 𝜉𝜉 > 1, k >  0 for wealth and creativity; 
𝜉𝜉 < 1, k >  0 for the infrastructure needed to sustain the population. Bettencourt et al. 
(2007) proposed that it is economies of scale that allow this efficient growth of wealth 
and innovation with increasing population. Polynomial functions suggest the coexistence 
of agglomeration and dispersion effects. The mechanisms for this can be determined by 
examining the patterns of first and second order derivatives. It is noteworthy that Batty 
(2013) empirical finding of superlinear relations between city size and connectivity 
provides a specific case both for power and polynomial functions. 

In this study, we fit all possible functional candidates (power and polynomial) for 8 
𝑎𝑎𝑖𝑖,𝑟𝑟(∎) in a relation mapping exercise. Because each function has differing degrees of 
freedom, and since the data are not of similar scales, normal measurements of fit (such as 
R-squared and AIC) are not applicable. We therefore choose an average sum-of-square 
error measure in a ‘leave-one-out’ procedure (equation27) to determine goodness-of-fit 
(Kohavi & others, 1995). In this process, we conduct a data, curve fitting process n times 
(n is the number of total data points, 50 for each candidate in this case) to determine a 
functional curve (for each candidate). We intentionally leave out one randomly selected 
data point in each attempt. We then try to predict the left-out data point using the resultant 
functional curve and record the error of its prediction. Finally, we average out the sum of 
squared errors for all n points for each curve candidate to determine a best-fit function. 
Because the model tries to predict “out-of-sample” points with its original scale preserved, 
it can avoid the degrees of freedom and mapping scale trap(see Kohavi and others, 1995) 
for a good discussion of the mapping scale trap). In this case, for attraction with function 
𝑡𝑡 we define its leave-one-out error 𝑒𝑒𝑖𝑖,𝑟𝑟 as: 

𝑒𝑒𝑖𝑖,𝑟𝑟 =  1
50
∑ (𝑎𝑎𝚤𝚤,𝑟𝑟,𝑟𝑟(𝑓𝑓𝚤𝚤,𝑟𝑟,𝑟𝑟)� −𝑎𝑎′𝑖𝑖,𝑟𝑟)250
𝑟𝑟=1   (27) 

where 𝑠𝑠 represents the index of 50 quantiles (𝑠𝑠 ∈ [1,2, … ,50]), 𝑎𝑎𝚤𝚤,𝑟𝑟,𝑟𝑟(∎)�  is the least 
mean-squared error mapping of 𝐹𝐹𝑖𝑖,𝑟𝑟 to 𝐴𝐴𝑖𝑖 without the information of data point 𝑓𝑓𝑖𝑖,𝑟𝑟,𝑟𝑟 
and 𝑎𝑎′𝑖𝑖,𝑟𝑟; 𝑎𝑎𝚤𝚤,𝑟𝑟,𝑟𝑟(𝑓𝑓𝚤𝚤,𝑟𝑟,𝑟𝑟)�  is the least mean-squared error prediction of 𝑎𝑎′𝑖𝑖,𝑟𝑟 without the 
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information of 𝑎𝑎′𝑖𝑖,𝑟𝑟 itself.  

Our leave-one-out validation results are recorded in an attached Appendix. There are 
some instances where different functions of 𝑎𝑎𝑖𝑖,𝑟𝑟(∎) have similar leave-one-out errors 
(𝑒𝑒𝑖𝑖,𝑟𝑟). In those cases, we choose the fitting curve to the function by its relevance to CUS 
theories and other existing literature. We highlight those instances and provide more 
detailed explanations in the Appendix. 

6.1.3 Examining the temporal aspect: land-use change 

Our third hypothesis is that new urban growth patterns are different from existing 
agglomeration patterns. We test this, by analyzing SGA patterns in Chicago from 2001 to 
2011 and compare the results to newly developed land-uses – post 2011. To do this we 
must first define 3 new sets of land-use categories. 

𝑵𝑵: a set that consists of all land-use classes that are not developed lands (urban or rural 
structures) and not water in NLCD 2001 (excluding class 22, 23, 24, and classes 
starting with 1- in NLCD 2001). 

𝑳𝑳: a set that consists of all land-use classes that are not developed lands (urban or rural 
structures) and not water in NLCD 2001 (N), and cells that changed into low intensity 
developed lands in 2006 (changed into class 22 in NLCD 2006). 

𝑯𝑯: a set that consists of all land-use classes that are not developed lands (urban or rural 
structures) and not water in NLCD 2001 (N), and cells that changed into low intensity 
developed lands in 2006 (L), and changed into class 23 or 24 in NLCD 2006. 

Similar to equation 24 and equation 25, we then calculate frequencies of land-use 
changes to residential and commercial land-use over the 10 years (equations 28 and 29). 

𝑓𝑓𝑖𝑖,𝑟𝑟,𝑐𝑐 =  
∑ 𝕝𝕝𝑗𝑗𝑚𝑚𝑖𝑖∈𝑳𝑳𝑚𝑚𝑖𝑖= 𝑠𝑠

∑ 𝕝𝕝𝑗𝑗𝑚𝑚𝑖𝑖∈𝑵𝑵𝑚𝑚𝑖𝑖= 𝑠𝑠
    (28) 

𝑓𝑓𝑖𝑖,𝑟𝑟,ℎ =  
∑ 𝕝𝕝𝑗𝑗𝑚𝑚𝑖𝑖∈𝑯𝑯𝑚𝑚𝑖𝑖= 𝑠𝑠

∑ 𝕝𝕝𝑗𝑗𝑚𝑚𝑖𝑖∈𝑵𝑵𝑚𝑚𝑖𝑖= 𝑠𝑠
    (29) 

Finally, we use the same procedure shown in equations 26 to find the mapping relations 
between land-use change frequency and attraction values. If our hypothesis holds, newer 
urban growth will demonstrate a significantly different pattern than existing 
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agglomeration patterns. In other words, it should be evident in that the relations we find 
for newer land-use changes are inherently different from the relations we find for older, 
existing land-uses. 

6.2 RESULTS 

6.2.1 Network-based urban systems  

Figure 26 describes the results of attraction value calculations for employment, 
population centers, POIs, and accessibility variables in the Chicago metro region. Recall 
that hypothesis 1 suggests that large and complex urban systems unfold with network 
accessibility rather than around a single CBD (the “distance to CBD” assumption). 
Population and accessibility attractors (Figures 26(b) and 26(d) respectively), display 
significant breaks from the “distance to CBD” assumption. The downtown of Chicago 
has higher overall attraction, but other high attraction values follow road networks, 
especially highways and do not radially decay from the urban center as surmised in 
spatial equilibrium models. Employment and POI attraction maps (Figures 26(a) and 
26(c) respectively) follow the “distance to CBD” more or less. Highest attraction values 
cluster around downtown Chicago, in the POI (3(d)) we can see an obvious northerly 
shift in the reviews distribution compared to the employment distribution. We imagine 
that this shift of center is caused by a retail and tourist magnet north of the city center (the 
Michigan Avenue ‘magnificent mile’), where firms and commercial related factors 
(employment and POIs) are more spatially concentrated. But is the urban center really 
providing enough production externality improvements to affect the locational choices 
and agglomeration characteristics of firms? We consider this question in the later 
land-use frequency analysis. 
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Figure 26 are attractiveness maps for different “attractors” in Chicago to every 
30x30 meter land-use cell. Warmer colors indicate higher attractiveness. (a). Employment 

attraction (b) Population attraction (c) Review attraction (d) Accessibility attraction.  
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6.2.2 Agglomeration and dispersion to attraction and connectivity 

In figure 27(a) and 27(b) we illustrate the relation between land-use frequency and urban 
attraction values. For commercial land-uses, frequencies are fitted by the power law of 
employment, population, and review attractions. Considering the above in light of our 
findings from Section 6.2.1, we conclude that commercial land-use structures in Chicago 
do in fact, aggregate close to downtown Chicago and display agglomeration effects. 
Residential uses however, can only be fit with a power coefficient curve of <1. We find 
that population land uses are agglomerated by points of interest to some extent, but not to 
other attractors. Residential land-uses also demonstrate a decrease in their probability of 
development as they move closer to employment centers (Aemp > 0.6). Possible 
explanations to this include that expensive property prices and high level of congestions 
to the most proximity of employment clusters overweigh a short increase in commuting 
time (compare, for example, 10 minutes to 20 minutes driving). 

The accessibility attractors are best fitted using a polynomial curve and that is found to be 
generally increasing with an increase of both commercial and residential land-use 
frequencies. The first derivative of the curve is negative when 𝐴𝐴𝑎𝑎𝑐𝑐𝑐𝑐𝑒𝑒𝑟𝑟𝑟𝑟 < 0.06 for 
commercial land-use and positive overall for residential land-uses. This logically, means 
that when commercial lands are far from major roads and highways, accessibility is no 
longer a concern—they are too far from any attractor and its locational attributes are no 
longer based on accessibility measures. When accessible places are close to major roads 
and highways however, they are highly sought after by both residential and commercial 
developments. 
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Figure 27(a) and 27(b) illustrate best mapping relations between probabilities of 
commercial and residential land-uses’ occurrence in available lands vs. connectivity to 

various attractors in Chicago. The horizontal axis is the attractive level. The vertical axis 
is probabilities of an available land to be certain land-use within an attractive level range. 

Probabilities of land-use occurrence of commercial/residential land-use in regard to 
attractive levels are drawn as points on the graph. A curve (fitted and chosen by 

“leave-one-out” method”) is drawn for each attractor type in regarding to each land-use 
category. 

Our take-away from this result is that the “distance to CBD” and network-based models 
are both valid for commercial land-uses to some extent. On the other hand, Residential 
land-uses are located in proximity to higher “quality of life” and accessibility places, 
which are overlooked factors by “distance to CBD” assumptions. Population centers, 
employment centers, and POIs have obvious positive production externalities for 
commercial land-uses, however only POIs attract residential land-uses (better quality of 
life amenities); proximity to employment even shows dispersion for residential land-uses 
(higher land-rent outweighs shorter commuting time). Compared to the traditional 
“distance to CBD” based urban economic models, the result shows that the distances to 
major road networks (rather than connectivity to employment and population centers) 
shape the spatial distributions of urban residential and commercial land-uses. Moreover, 
we suggest that residential land-use allocations are influenced by a plethora of factors 
rather than just commuting distance and land rents.    
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6.2.3 Temporal aspect of city structure and land-use 

We propose that urban structure and land-use patterns that emerge on the landscape take 
different form over the course of time. To test this we use SGA and attractiveness 
mapping approach to compare the static (2011) vs. temporal changing (20061-2011) 
urban land-use structure in relation to 4 types of attractors. We hypothesized that static 
and temporal changing urban land-use structure will show significant differences. In this 
section, we will show that our findings substantiate this hypothesis.   

In figure 28, we compare the attraction/frequency relation curves for both existing 
land-uses (2011) and new land-use changes (from 2001 to 2011) in the region. The results 
intuitively describe how existing and changing land-use patterns differ. In figure 27(a), 
population and accessibility attractors increase with existing commercial land-use and 
commercial land-use change. This suggests that jobs and businesses display similar 
locational preferences relative to population and accessibility measures—i.e. both seek to 
locate in places that are more accessible to larger pool of potential users. Newer 
businesses however, may be less inclined to locate in close proximity to existing 
competitors, preferring new less competitive markets. This can be seen in figure 28(a) in 
the curve of changing commercial land-use frequency in regarding to employment. In 
Figure 28(b) (residential land-use structure—exiting vs. change), only review and 
accessibility attractions increase with existing residential land-use and residential 
land-use change. This implies a tendency to search for infrastructure—both 
life-facilitating (POIs) and transportation infrastructure. 
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Figure 28(a). Frequency of commercial land-use/land-use change vs. attraction 
values (b) Frequency of residential land-use/land-use change vs. attraction values. The 

horizontal axis is normalized attraction values, the vertical axis is the frequency of 
designated land-use (change) types. The curves and points are shown in detail in figure 
27 and 29. The comparisons between curves in the upper row (existing) vs. lower row 

(change) for both residential and commercial land-uses demonstrate the differences 
between static and changing land-use structures. 

To analyze the temporal mechanism of land-use structure change, we demonstrate 
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another mapping relation map (figure 29, land-use vs. attractors) similar to figure 27. 
Figure 29(a) and 29(b) illustrate in detail the relations between land-use change 
frequency and urban attraction values. With sharp contrast to existing commercial 
land-uses, proximity to employment and POIs become negatively associated with newly 
developed commercial lands. Competition, higher wage premium, and congestion 
overshadow production externality for new firm location choices. Only population 
attraction has linear and positive correlation with new commercial development; this is 
probably due to labor and consumer supply. Accessibility has similar effects in 
comparison to existing commercial land-uses (the first order derivative is negative when  
𝐴𝐴𝑎𝑎𝑐𝑐𝑐𝑐𝑒𝑒𝑟𝑟𝑟𝑟 < 0.38 𝑎𝑎𝑚𝑚𝑑𝑑 𝐴𝐴𝑎𝑎𝑐𝑐𝑐𝑐𝑒𝑒𝑟𝑟𝑟𝑟 > 0.73 ), meaning that new firms do not want to be too 
close or too far from existing centers. 

Newly developed residential lands are highly attracted to major roads and highways 
(fitted with power functions to accessibility attraction), but generally are repelled by 
employment and population centers. This further shows that new residents avoid existing 
urban centers due to higher land rent and congestion. Quality of life amenities—POIs, are 
still attractive to new development over a certain connectivity cutoff (𝐴𝐴𝑟𝑟𝑒𝑒𝑟𝑟𝑖𝑖𝑒𝑒𝑟𝑟𝑟𝑟 > 0.42).    
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Figure 29(a) and figure 29(b) illustrate best mapping relations between 
probabilities of land-use change and connectivity vs. various attractors in Chicago from 
2001 to 2011. The horizontal axis is the attractive level. The vertical axis is probabilities 

of an available land to be certain land-use within an attractive level range. Probabilities of 
land-use occurrence of commercial/residential land-use in regard to attractive levels are 
drawn as points on the graph. A curve (fitted and chosen by “leave-one-out” method”) is 

drawn for each attractor type in regarding to each land-use category. 

The above analysis suggests that newer urban development patterns break significantly 
from previous patterns. That urban structure moves, over time toward more complex, 
chaotic patterns. More importantly, when we separate new development from current 
urban structures, the “distance to CBD” model does not explain the new development any 
longer (dispersion effects of proximity are very strong). New commercial establishments 
do not locate around existing clusters of employment centers—CBD. New residents or 
movers also find places far away from existing CBD, but are still attracted to life 
amenities—POIs. Congestion and higher costs, and land rents are possible causes of these 
phenomena. On the other hand, the network connectivity/accessibility-centric model 
better described the urban structure reformation.    

6.3 CONCLUSIONS AND DISCUSSIONS 

In this paper, we reexamine the monocentric city, a core assumption of urban economic 
structure models. We propose an alternative, scale-free network model of urban structure 
based on theories of CUS. We suggest that people and businesses agglomerate in relation 
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to network accessibility factors, rather than Euclidean distances to an urban CBD. We 
construct a model for testing this relation using an SGA to evaluate how available lands 
are connected to existing urban amenities. We use network accessibility and shortest path 
measures to quantify the connectivity of all unique cells the Chicago metro area to 
population and employment centers, points of interest, and points of network accessibility. 
We measure the attraction of each relative to the frequency of existing commercial and 
resident land-uses. We do this in order to examine several hypotheses that offer 
theoretical departures from current urban structure models.  

Our first hypothesis is that large urban systems organize around scale-free urban 
networks rather than circular rings centered on one CBD. This hypothesis has two major 
differences from current urban structure models: 1) city and employment centers are 
distributed all over the cities rather than in one CBD and 2) connections of city center 
need to be established through actual city networks rather than using Euclidean distances. 
Previous urban structure models have only one center and uses over-simplified measures 
for urban spatial connectivity. Using SGA we found out that population distribution in 
Chicago has multiple centers that are connected by transportation road networks. On the 
other hand, employment and POI distributions demonstrate more concentration on one 
CBD, and the distributions diffuse through transportation networks. Checking how 
existing residential/commercial land-uses are attracted by those attractors, we found that 
existing commercial land-uses show agglomeration around employment centers, which 
does not reject “distance to CBD” assumption, while commercial land-uses also tend to 
grow along major transportation networks, as network-based city assumed. Residential 
land-use distribution, on the other hand, cannot be described by “distance to CBD” 
assumption and is better described by network-based city assumption.  

Our second hypothesis is that proximity to urban attractors has both agglomeration and 
dispersion effects on location preferences for commercial and residential land-uses. This 
assumption has been checked by previous literature, but not put under the lens of a 
network-based urban system. To answer this question, we use a gravity-like measure the 
relations between commercial and residential land-use frequency and urban attraction 
levels. Our initial results demonstrate that commercial land-use structure can be described 
by the “distance to CBD” based model, but it also shows attachment to major 
transportation networks. On the other hand, “distance to CBD” model cannot explain 
residential land-use structure as well as network based model. Especially, quality-of-life 
measure—proximity to POIs—is not included in the “distance to CBD” model which 
only focus on work related trips. Our findings suggest that proximity to POIs is the single 
most attraction for residence location choices, confirming Chen and Rosenthal (2008) 
findings and supporting network based city assumptions.. 
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Our third hypothesis is that newer urban growth has different patterns from existing 
agglomeration patterns. This hypothesis implies an intuitive but unexamined dynamic of 
urban structure formation: driving forces and choices of agglomeration changes with time. 
Our results suggest that new urban development significantly breaks away from existing 
patterns. “Distance to CBD” model assumptions cannot be applied to new development 
because of dispersion effects of established employment (Behrens et al., 2017; Brinkman, 
2016; Y. Chen & Rosenthal, 2008) which could outweigh agglomeration effects of 
production externality and proximity to employment. Network accessibility is the most 
powerful drivers for both new residential and commercial development. This result 
suggests that when urban systems grow larger and more complex, scale-free network 
based urban structure explains new developmental patterns better than “distance to CBD” 
based structure. 

Our research presents empirical evidence of how CUS theories can be applied to reform 
traditional assumptions of “distance to CBD” urban structure. We do not intend to discard 
the “distance to CBD” urban structure model, as it is still useful in many aspects, 
especially on the existing commercial land-use structure. However, when we take into 
account a plethora of factors (such as non-work related trips) that affect residential 
land-use choices and temporal dynamics of land-use growth, network based urban model 
has better explanatory power. An important challenge and future work is to theorize the 
market and spatial equilibrium of CUS based urban model. This will be a complicated 
task, because CUS theorize cities have scale free networks which no longer has a definite 
form compared to a ring-shaped “distance to CBD” city. Another future extension to the 
empirical work is to include the interactions between different factors in determining 
land-use distributions. Finding interaction effects can provide additional explanations to 
the complexities in the function forms we find for individual factors’ impact on land-use 
distributions. We find inclusion of network based urban structure in urban economic 
models very existing, because this is a great opportunity to  unify the findings on fractal 
properties of city morphology (CUS sciences) with economic and market driving 
mechanisms that create these morphological properties.   

6.4 TECHNICAL DETAILS 

Figure 30 is a summary of SGA process for finding shortest path from one population 
center k to other cells. Figure 31 is a detailed pseudo code for SGA process.  

 



134 

 

 

Figure 30. Brief Pseudo-code of SGA 

Algorithm SGA{ 
Initiate every cell on the map with infinity travel time; 
 
Repeat the following N times{ 

Initiate a direction; 
 
Repeat the following T steps{ 

Agent from current cell moves to an adjacent cell, with higher 
probability to the cell with lesser travel barrier and in accordance with 
the original direction #agent from population center k in the first step 

} 
} 
Update the least travel time from population center k for every cell on the map 

} 
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Figure 31. Detailed Pseudo-code of SGA 

  

Algorithm SGA{ 
Initiate every cell on the map with infinity travel time; 
 
Repeat the following 1,000 times{ 

Randomly draw a direction d from direction set M = {N, NE, E, SE, S, SW, 
W, NW} with equal chance; # N—North, E—East, S—South, W---West, 
NE—Northeast, etc; 
 
Repeat the following 1,000 steps{ 

Define P as a probability vector with {pN, pNE, pE, pSE, pS, pSW, pW, 
pNW}, where every element of P is a continuous number in [0, 1]; 
 
Create set of neighboring direction vector of d as E={e1, e2, e3}; # for 
example, if d is NE, then E={N, E, NE} 
 
Randomly draw 2 directions from E as vector D={d1, d2} with equal 
probability; #in this case, assume NE is the direction d and D={NE, 
N} 
 
Assign the probability P for cell to move in direction of each of the 
elements of D as 0.35; for the 2 directions adjacent to E but not in E as 
0.1; for the remaining 4 directions as 0.025; In our example, P={pN, 
pNE, pE, pSE, pS, pSW, pW, pNW}={0.35 ,0.35 , 0.025, 0.09, 0.025, 0.025, 
0.025, 0.09}; 
 
Assign a L probability vector to each direction based on the travel 
barrier of the land-use type on each cell;  
 
Calculate the final direction moving probability Q={qi:iϵN, 𝑞𝑞𝑖𝑖 =
𝑝𝑝𝑖𝑖𝑙𝑙𝑖𝑖/∑ 𝑝𝑝𝑖𝑖𝑙𝑙𝑖𝑖𝑖𝑖∈𝑁𝑁 };        
 
Agent from current cell moves to an adjacent cell with probability 
vector Q to {N, NE, E, SE, S, SW, W, NW}; 

} 
} 
Update the least travel time from population center k for every cell on the map 

} 
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CHAPTER 7:  CONCLUSIONS, DISCUSSIONS, AND 
FUTURE WORKS 

This chapter synthesizes and discusses the theoretical implications and contributions of 
this dissertation to the field of planning. I discuss the limitations of my research and the 
broader limitations of current PSS and CUS approaches. Urban system research and tool 
development must look beyond urban planning. The reach of this and related work can 
and should be much broader. For example, it might include city governance, urban 
economists, transportation engineers, real estate developers, and environmental scientists. 
Practical applications of CUS sciences need to address its scale and predictive limitations. 
I conclude the dissertation with a discussion of future research I intend to pursue.  

7.1 CONTRIBUTIONS AND THEORETICAL IMPLICATIONS 

In my dissertation, I studied multiple aspects of a model driven PSS, and proposed 
improvement to PSS in almost every aspect—from practicality to methodology and 
theory. In each of the improvement areas I use both theory and practical application to 
make my arguments.  

Previous PSS research has focused on pinpointing the weakness of current PSS 
approaches or on technical improvements. In my view technical improvements and 
practical weaknesses are not connected. My research attempts to bridge this gap. In the 
above, I have proposed ways to improve PSSs’ processes and methods from multiple 
perspectives, such as environmental planning, sentience, resilience, and smart city-based 
perspectives. In summary I propose two basic improvements to help make PSSs more 
useful in the practice of planning. The first is multi-directional temporal analyses for 
scenario planning. The second is knowledge transfer of PSS in planning processes to 
promote system credibility.   

The CUS science literature inspires both opportunities and challenges for the future of 
PSSs. My research uses PSSs to operationalize CUS theories into tools that guide city 
development practices. Drawing from the latest statistical and computational methods, I 
proposed a better fit for PSSs into the CUS theoretical framework. I then validated those 
methods using the case of Chicago and the LEAM PSS model calibration. This provides 
quantitative evidence that network based CUS models better describe land-use structure 
in Chicago than traditional “distance to CBD” based economic approaches, especially in 
terms of residential land-use, and the temporal evolution of land-use structure. 

Other specific points made in this dissertation in relation to my original research 
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questions include: 

• Some of the future application fields of PSS includes but are not limited to Smart 
City projects, sentient and resilient cities, and environmental planning processes. 
To better aid those processes and goals, PSSs need to 1) be able to process 
dynamic data; 2) possess sentient visualization systems; 3) and emphasize the 
processes of creating PSS models;      

• Multi-directional temporal scenario planning processes can improve usefulness of 
PSS model simulation results. 

• A collaborative process of PSS model validation can better transfer practical 
knowledge embedded in the goodness-of-fit of PSS model simulations using a 
“multi-resolution fitting process” in a knowledge transfer process. 

• Evolutions of PSS models include geographic automata systems, 
semi(non)-parametric spatio-temporal models, paralleled statistical models and 
integration of several urban system models.  

• CUS network-based urban system theories are useful in describing activities in 
urban setting more effectively than “distance to CBD” models of urban structure.  

• A large-scale and fine-grained spatio-temporal model will better enable spatial 
reasoning for complex urban development dynamics (see below). 

7.2 LIMITATIONS  

My work has a number of limitations and they indicate challenges as well as 
opportunities for future research.  

First, it might be a wrongheaded goal to “improve PSS model usefulness in the practice 
of planning.” The failure of a wide adoption of PSSs after more than 30 years of 
existence may not be a result of PSS problems—it may actually be a problem within the 
field of planning. Planning education has increasingly focused on dismissing systemic 
and rational planning approaches. Instead, mainstream planning has moved to grassroots 
and social movements. Thus, restoring system legitimacy will not be useful if targeted 
users have no interest in accepting knowledge from systemic approaches. On the other 
hand, the city development realm as a whole is increasingly open to analytic and 
data-driven methods, with popular concepts including “smart cities,” “big data,” and 
“urban analytics.” At the same time, city governance, urban economists, transportation 
engineers, real estate developers, and environmental scientists are paying more attention 
to the impacts of urban development. Therefore, a future direction of spatio-temporal 
urban system models might be to focus on its integration with other disciplinary fields, 
and making groundbreaking findings by introducing dynamic spatial evolutions into 
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models that traditionally do not include such elements.  

Second, CUS sciences have not shown adequate practical value yet. Besides its 
theoretical complexity, I identify two problems with its operationalization: 1) CUS 
theories mainly describe large scale urban phenomena which do not fit into practical 
scales; and 2) CUS theories are primarily descriptive and their predictive capability has 
yet to be proven. In my research, I use bottom-up forecasting PSS models combined with 
CUS theories to make practical use of CUS sciences in planning practice. Bottom-up PSS 
models can forecast and fit into practical resolutions (such as 30 x 30 meters), while CUS 
sciences can be used to calibrate and validate PSS forecasts. As far as I know, this is the 
only practical use of CUS sciences. Future research should operationalize the findings 
and methods of CUS sciences. 

7.3 MY NEXT CHAPTER  

Acknowledging the limitations of PSS, CUS, as well as my own research, I will continue 
my researches down the following paths: 

1. I plan to develop spatio-temporal model methodology to operationalize 
CUS-based PSS models with fine spatial and temporal resolutions. I’ll explore the 
Shanghai railway and urban night light levels with monthly nightlight data for the 
Yangtze Delta River area (including Shanghai) from 2012-2014 on 500x500 
meter resolution and annual HSR passenger volume data for each station in the 
area. 

a) I will analyze and compare nightlight levels for counties with and without 
HSR, and for time periods pre- and post- HSR operation. 

b) I will perform traditional dif-n-dif model analysis on county level 
nightlight comparisons for counties with and without HSR and for time 
period pre- and post- HSR operation. 

c) I will use a Hadoop-based non-parametric spatio-temporal modeling 
approach to examine differences in HSR operation impact on different 
urban design and planning levels (500m, 1,000m, 5,000m, and county 
level).   

2. I plan to examine CUS human movement assumptions vs. urban landscape factors 
using Chicago migration data.   

a. I will access Chicago household address data for 5 years for over 3.4 
million households.  

b. I will explore unconditional sampled cumulative distribution of migration 
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radius, which is hypothesized to follow CUS theory of "Levi flight" 
pattern. 

c. I will investigate how physical and social boundaries (highway and main 
roads, water, and census tract) in Chicago change the unconditional 
distribution (using Bayesian inference); 

d. I will examine how housing affordability (census tract based data) changes 
the conditional distribution of household migration radius and direction in 
Chicago. 

3. I will examine how commuting time and quality-of-life amenities (such as Yelp 
review locations) intervene the conditional distribution of household migration 
radius and direction in Chicago.Some further extensions will also be explored on 
existing chapters, which include but are not limited to: 

1. combine PSS techniques with technological-aided design approach (such as 
“geodesign”) in future projects, and conduct exploratory research (extension to 
Chapter Two); 

2. develop a calibration and validation technique that uses CUS theories and 
methods to improve multidirectional scenario planning techniques (extension to 
Chapter Three); 

3. systemically investigate the knowledge flow from PSS technologies to planning 
users; theorize and abstract the findings from practices into communicative 
planning theories (extension to Chapter Four); 

4. operationalize a paralleled and coupled complex urban system models on HPC 
platform (at least involving LEAM and regional input-output model) (extension to 
Chapter Five); 

5. construct a spatial and market equilibrium urban structure model based on 
network city assumptions (extension to Chapter Six).     
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