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Abstract

In the foreseeable future, high-performance supercomputers will continue to evolve in the

direction of attempting to build distributed, immensely parallel and highly heterogeneous

machines. It is well known that in order to utilize these machines, good parallel programs are

essential. However, conventional parallel programming models were created when supercom-

puters were smaller and more homogeneous. It is not clear whether these models will enable

the same level of productivity for the next generation supercomputers. It is expected that

intermediate runtime systems between software applications and the underlying hardware

machine architecture will help abstract away the extreme complexity of future large-scale

machines. In the recent past, there have been growing interests in dataflow execution models

due to their flexibility in making dynamic decisions. Despite their advantages, the dataflow

runtime systems tend to have a low-level programming interface that is difficult to tame.

It requires the programmer to decompose the computation and write program to construct

dependence graph explicitly, resulting in programs that are difficult to build, debug and

maintain.

In this thesis, we repurpose the Hierarchically Tiled Array (HTA) programming model

for improving the programmability of the dataflow runtime systems. HTA facilitates parallel

programming by letting the programmer express algorithms as tiled array operations which

contains implicit parallelism. We propose a design to map an HTA program to a dataflow

task dependence graph dynamically, so that the programmer can write conventional HTA

programs while enjoying the benefits provided by the underlying dataflow runtime system.
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As a proof of concepts, we implemented our design for the shared memory environment and

implemented a variety of benchmarks for performance evaluation. We found that, for appli-

cations with high asynchrony and sparse data dependences, our implementation results in

simpler programs than those obtained by using the dataflow runtime programming interface

and delivers superior performance results than OpenMP using parallel for loops. We also

learned about the scalability issues in our current design and propose solutions as possible

future work.
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Chapter 1

Introduction

Over the last decade, the pursuit of computer system performance has moved from increas-

ing processor frequency to increasing the amount of processing cores in a system. While

the physical limitations of the semiconductor process make Moore’s Law ineffective for the

reduction of cycle time, it can still be used for scaling up the processor core count, and in this

way continue to deliver better performance in a cost-effective manner. Nowadays, parallel

processors are prevalent in all kinds of computing. On one hand, in personal computing,

processors in desktop computer, laptop computers and mobile devices commonly have 2 to

4 cores. On the other hand, in high-performance computing, large scale systems typically

contain up to 10 million cores [42]. With this massive parallelism, the computing power of

large-scale supercomputers has reached petaflops.

Nonetheless, just by having massive parallelism in the hardware architecture design is

not enough for applications to run fast. To utilize parallel machines well, programmers

usually need to scrutinize sequential program codes and manually convert them into parallel

codes with a suitable parallel programming model for their machines. For general purpose

processors, there are many options of parallel programming models to choose from. As much

as some computer scientists wish to find one parallel programming model to rule them all,
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there does not seem to be a supreme one that is the best choice in all cases.

In the past decade, two parallel programming models continue to stand out: OpenMP [8]

and MPI [22]. OpenMP is known for its simplicity. By annotating sequential programs with

compiler directives, programmers can adapt their existing code to get moderate speedup in

a short time. Yet, there are a few shortcomings making it not the ideal choice for developing

parallel applications. First, it is only supported in shared memory systems. Plus, OpenMP

programs often heavily rely on the use of global synchronization barriers. These problems

limit its performance scalability, since large-scale computing systems are often distributed

memory systems where the global synchronization overhead is high. In distributed memory

systems, MPI is the dominant parallel programming model due to its great performance

scalability. MPI programs run in SPMD fashion, and multiple processes synchronize with

each other when necessary. Compared with OpenMP, MPI is more difficult to learn and the

complexity of MPI programs is usually higher. But MPI offers more flexibility for designing

complex performance-optimal parallel algorithms. MPI also has great interoperability, and

it is often used in a hybrid way (MPI+X) with other parallel programming models, including

OpenMP. Both models are still evolving with new standard specifications coming out every

few years.

However, going into the next generation of exascale computing, it is not clear whether

these models will continue to perform well while keeping the complexity of programming at

a manageable level. Adapting existing proven models for future computing generations is a

popular topic, and there has been some studies on this topic [5, 21, 23]. As an alternative,

researchers are also exploring new designs for a software stack that are suitable for future

large-scale hardware architecture through a software-hardware co-design [38, 9]. A rising

consensus in the field is that having a runtime layer [15] between applications and the hard-

ware can reduce the complexity of application programs by presenting a simplified abstract

machine model so that the user programs do not deal with superfluous details. A sophis-
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ticated runtime system can also cope better with applications which need various dynamic

decisions, such as scheduling and data movements, to be made dynamically at runtime for

performance reasons.

Various runtime systems for parallel programs have been proposed in recent years. Among

them, the ones inspired by dataflow philosophies are promising [36, 6, 33, 30, 27, 10]. Once a

popular research area, the dataflow execution model has the potential to express the maximal

amount of parallelism in a program by allowing the tasks represented by nodes in a dataflow

graph to execute as soon as their input data dependences are satisfied. While earlier attempts

to make fine-grained dataflow machines were not successful due to the lack of locality and

the overhead of communication and synchronization, later research works [39, 44] suggest

using code segments as nodes in the dataflow graph instead of the single operations used in

the original dataflow systems. Coarsening the unit of execution amortizes the overhead in

creating and scheduling nodes in a dataflow graph, resulting in a more efficient execution.

Several terms have been used to describe similar ideas, such as the codelet program execution

model [44] and macro dataflow [39]. In this thesis, we use a system called Open Community

Runtime (OCR) [11, 32, 33]. Henceforth, the term dataflow runtime system will be used to

refer to the runtime systems that uses the dataflow execution model.

Although some implementations of dataflow runtime systems [36, 30, 32, 3] have shown

great potential for exploiting parallelism, many of them lack high-level programming ab-

stractions to entice application developers. To write programs directly with the low-level

programming interface provided by them is a daunting task, because the dataflow program-

ming style is unfamiliar to most programmers and the learning curve is steep. Even when

one learns to program in this way, the resulting code lacks a comprehensive structure, mak-

ing it difficult to debug and maintain. The success of any new programming model depends

largely on the acceptance of the software community. When there is no compelling reason, it

is difficult to convince users to learn a new programming model from scratch. In this thesis,

3



we propose using Hierarchically Tiled Arrays (HTA) as high-level abstractions to exploit

the benefits provided by dataflow runtime systems, while keeping the programming interface

familiar to users who are trained to write in conventional notations so that the productivity

can be ensured. An implementation of HTA is done to show that our design preserves the

benefits provided by the underlying dataflow runtime system. The major contributions of

our work includes:

1. A strategy to map imperative HTA programs onto dataflow execution.

2. A significant improvement of the productivity in software development on top of the

dataflow runtime programming interface.

3. An implementation as the proof of concepts and an evaluation of the implementation

with a variety of benchmarks. Performance analysis of the results is also conducted to

discover issues for future improvements.

4. A tracing library that captures application execution traces for performance debugging

and analysis.

The thesis is organized as follows. Chapter 2 gives an overview of the HTA program-

ming model. Its program structure, the operations, and the execution model are described.

Chapter 3 describes how HTA program can be executed on the dataflow runtime system,

specifically for OCR. An overview of OCR is given first and then our design is explained.

Chapter 4 provides the details of the HTA-OCR implementation and many of the important

mechanisms are discussed. Chapter 5 presents the results of our experiments with various

benchmark applications. In Chapter 6, we propose changes that could be applied for making

the existing design scale up to larger systems. In Chapter 7, the related work is described,

and the future extension to this work is described in Chapter 8. Finally, the conclusions are

drawn in Chapter 9.
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Chapter 2

Overview of Hierarchically Tiled

Arrays

Hierarchically Tiled Array (HTA) [7, 19, 18, 2] was proposed as a programming model

to simplify parallel programming. With HTA, programmers express parallel computations

in terms of tiled array operations. They are also encouraged to design algorithms with

data locality in mind, which is a very important principle while writing code for modern-

day machine architecture that has a low-latency limited-sized hardware cache and high-

latency memory accesses. The model has been implemented on top of MPI and it has

been demonstrated to work efficiently. In this chapter, we give an overview of the HTA

programming model. More details of our new implementation can be found in Chapter 4.

An HTA program can be seen as a sequential program containing operations on tiled

arrays. Tiled arrays are logical storage spaces for data used in parallel algorithms, and

operations on them can be parallelized in various ways. The optimal parallelization often

depends on the underlying machine architecture or the runtime layer implementation. By

expressing computations in terms of high-level tiled array operations, programmers can focus

on designing algorithms for maximal parallelism and better data locality and leave the low-
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level machine-dependent parallelization details, such as synchronization between processors,

to the HTA library implementation or the HTA compiler.

Programmers explicitly express parallelism by choosing the tiling of the array. Multilevel

tiling can be used, and each level can be tiled for different purposes. For example, there can

be a top-level tiling for coarse-grain parallelism, a second-level tiling for fine-grain parallelism,

and a third level for data locality in the hardware cache.

The synchronization between parallel processors or threads is implicit. While some tiled

array operations can be executed fully independently in parallel, the operations such as

reductions require synchronizations. An HTA library implementation or a compiler can

determine the need to synchronize among parallel processors or threads and hide it from the

programmer.

It has been shown that HTA programs are expressive, concise and comprehensive. It is

particularly convenient to parallelize an existing sequential program using HTA by replacing

parallelizable computations such as parallel for loops with one or more operations on tiled

arrays. Even without existing sequential code, using HTA can shorten the time to develop a

fully working parallel application. Application developers can really boost their productivity

when they develop parallel programs in HTA.

HTA programs are also more portable, since they are written in high-level abstractions

without machine dependent details. For example, a map operation, which applies a func-

tion to each tile of an array, can either be implemented using a parallel for loop or as an

SPMD computation. Users invoking a map operation in an HTA program can expect it

to be parallelized either by the compiler or the library properly on different classes of ma-

chines. Although for optimization reasons, it is best for programmers to know the machine

and parallelize programs accordingly using low-level parallelization mechanisms, with a so-

phisticated HTA implementation, it may still be desirable to trade off slightly sub-optimal

performance for the greatly increased productivity and the reduced hassle of tailoring codes
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for different machines.

2.1 Program Structure

In an HTA program, programmers use regular C primitive types, C structs, and HTAs as

variables to formulate their algorithms. The operations involving HTAs are parallelizable ar-

ray operations, and operations consisting only non-HTA variables are executed sequentially.

2.1.1 Data Types

Array is one of the most important data structure used in almost all non-trivial programs.

While regular arrays usually contain data elements in some contiguous memory storage space,

HTAs allow defining logical hierarchical tiling for multidimensional index space using tree

representations. At the leaf level, besides the raw data elements, the tile metadata contains

information for the dimension of the tile, the data type of the scalar elements, the pointer to

the raw data, ... etc. At higher levels, a tile can contain elements which are also HTA objects

so that a tree hierarchy can be formed. The tree hierarchy can be used to infer the data

locality in the program. For example, in a cluster, an HTA can have coarse-grain, topmost

tiles distributed to different NUMA nodes, and finer-grain tiles allocated in different NUMA

domains of a single node.

Figure 2.1: HTA data structure
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An example of the tree representation of an HTA is shown at Figure 2.1. The left-hand

side figure shows a regular two-dimensional array where the black dots are the scalar elements

in the array. The right-hand side figure shows a two-level HTA containing 4 tiles arranged

as a 2 × 2 mesh, and 4 × 4 scalar elements inside each tile. Both arrays in the figure have

the same number of raw data elements, but the HTA representation requires extra storage

space for metadata at different levels to provide descriptions of its tiling to facilitate tiled

array operations.

A few other data types are needed in HTA. Tuple is a sequence of integers which is used

in many different HTA operations. It can be used to specify the dimensions and the tiling

of an HTA. It can also be used to index an element in an HTA. Distribution contains the

information of how tiles are distributed in a system. Region specifies a subset of elements in

an HTA for applying operations to partial data. Partition is used to reshape an existing

HTA.

2.1.2 Array Operations

There are several categories of HTA operations including construction, destruction, accessor,

assignment, pointwise, and collective operations. Most of them have inherent parallelism of

various degrees. For example, consider assigning an HTA to another one of the same shape.

Here, all assignment of tiles can be performed simultaneously. Higher-order operations such

as reduction and prefix scan are also provided. These are implemented using well-known

efficient parallel algorithms.

When tiled array operations are performed by parallel tasks, the size of leaf tiles deter-

mines the task granularity. It is the responsibility of programmers to partition the index

space of an array into some suitable granularity to maximize parallelism and keep the paral-

lelization overhead low. In contrast, the parallelization of the tiled array operations for each

underlying parallel machine or abstract machine model presented by the runtime layer is
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implemented by the HTA library. With compiler support, static analysis can be performed

by the compiler to adjust task granularity by splitting or coarsening tasks.

Construction/Destruction

An HTA is constructed by calling HTA create() function specifying the dimensions, the

number of levels, the type of the scalar elements, the distribution of tiles, the layout, the

dimensions of the untiled array, and the tiling. The library routine allocates memory space

to store the raw data and extra space for metadata that describes the hierarchy.

1 Dist dist = Dist_create(BLOCK , mesh);
2 Tuple flat = Tuple_create (2, 8, 8);
3 Tuple t0 = Tuple_create (2, 2, 2); // 2x2
4 Tuple t1 = Tuple_create (2, 2, 1); // 2x1
5 HTA* A = HTA_create (2, 3, flat , ORDER_TILE , dist ,

HTA_SCALAR_TYPE_DOUBLE , 2, t0, t1);

Listing 2.1: HTA creation

Figure 2.2: HTA with 8× 8 scalar elements

In Listing 2.11, a 2-D three-level HTA is constructed. The Tuple flat specifies that the

untiled array is 2-D and has 8 × 8 scalar elements. The tiling is formed by two Tuples, t0

and t1. It specifies 2×2 tiles beneath the root level, and 2×1 tiles in the leaf level, resulting

in leaf tiles of 2×4. The layout ORDER TILE means that the scalar elements in a tile is stored

1The code here is C since the HTA-OCR implementation used in this thesis is a C library instead of
C++. The reason for using C is because at the beginning of the OCR project, there was no plan for it to
support C++. The HTA program would look less verbose if C++ was supported.
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in a contiguous memory space. The BLOCK distribution makes the HTA be distributed as

blocks of consecutive tiles onto a virtual processor mesh. Finally, HTA_SCALAR_TYPE_DOUBLE

indicates that the data type of the scalar elements is double-point floating number.

The destruction of an HTA is simply done by invoking HTA destroy(). Notice that

the HTA specification does not require the memory allocation and deallocation to happen

synchronously. Thus, in the case of HTA construction, it is possible for the library routine

to return as soon as the HTA metadata is created and the actual allocation of the memory

space for the raw data can be deferred to a later time, as late as the first attempt to use it.

The same idea applies to HTA destruction.

Accessor Operations

Accessor operations are used to access an element of an HTA. It could either be an access

to a tile or a scalar element, depending on the level being accessed. To use the accessor

operation, programmers need to create a Tuple to specify the indices of the desired element.

Chaining multiple Tuples allows accessing deeper into the HTA hierarchy. In the C++ HTA

implementation, the [] and () operators are overloaded for accessor operations. In the C

implementation, since operator overloading is not a language feature, accessor operations

are performed through functions such as HTA pick one tile() which retrieves a handle to

a lower-level tile specified by the tile indices (represented by a Tuple), HTA flat read()

which reads a scalar element at a location specified by the global element indices, and

HTA flat write() that writes an input value to a scalar element.

Pointwise Operations and Assignment Operations

Pointwise operations are applied scalar-by-scalar. They are fully independent and can be

easily parallelized. Primitive operations including addition, subtraction, multiplication, and

division are supported. Under this category, HTA also provides support for unary operation,
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binary operation and assignments. For binary operation and assignments, there can be cases

when the shape of the operand HTAs are different. In such cases, [7] specifies conformabiliity

rules for checking the validity of the operations.

Collective Operations and Higher-order Operations

In HTA, collective operations are used to refer to those which change the structure of HTAs

but not the individual scalar values. For example, a transposition changes the position of

array elements, and permutation and shifting reorder array elements. While restructuring

of HTAs has algorithmic purposes, it implies communication on distributed systems and

requires multiple nodes to collectively perform the operation.

There are three higher-order operations in HTA: map, reduce and scan. Programmers

can use custom operators in these operations and choose the tree level to apply them either

on tiles or on scalars. Map applies a function to all elements of an HTA at a given level

without any constraint on the order of individual operations performed on the elements. It is

equivalent to using a parallel for loop that iterates over tiles or scalars at the specified level.

Reduce and scan can also be applied to a specific level. The library implements efficient

parallelization strategies for them depending on the underlying machine environment.

2.2 Execution Model

Since the HTA API only specifies the data representation and the operations that can be

applied at a higher level, the actual program execution and how operations are parallelized

are implementation dependent. For example, in cases when an HTA program is executed on

a single core processor, it can be executed using a single thread with the operations on tiles

executed in some sequential order. On a multithreaded shared memory machine with low

overhead global synchronizations supported by the hardware, it can be executed in fork-join
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fashion, similar to OpenMP parallel for loops. On a distributed memory machine, it can

execute in SPMD fashion, where multiple processes execute the same HTA program. Upon

encountering HTA operations, they follow owner-compute rule to perform partial computa-

tions based on the tiles they own, and synchronize using point-to-point communications or

collective communications when necessary. Non-HTA data is replicated and operations in-

volving this type of data are executed by all processes redundantly. Earlier, we proposed [43]

a mapping of HTA program to the dataflow execution model using SPMD execution. In this

thesis, we investigate a new way of executing HTA programs on dataflow runtime systems.

In the following sections, we discuss the three possibilities.

2.2.1 Fork-join

It is possible for an HTA program to be parallelized in fork-join fashion if we build the HTA

library on top of parallel programming models such as OpenMP or Intel Thread Building

Blocks [37]. In such cases, a master thread executes an HTA program starting from the

program entry point. When a parallelizable tiled array operation is encountered, the library

routine performs the operation using parallel constructs provided by the underlying model.

An implicit barrier happens at the end of each array operation, hence it is called “fork-join”.

An issue with this approach is that for each array operation there is overhead in starting

the work of the parallel threads. The other issue is that application performance can suffer

from having frequent global barriers at the joining point. This causes overhead and possible

load balancing problems. Thus, if the tiling used in the array operations does not result in

balanced computation workload, computing resources could be wasted waiting for the thread

that takes the longest to complete its parallel subtask. The parallel efficiency can only be

good when the workloads for all of the array operations are balanced well. This is often

not a realistic assumption for practical applications. Even if the programmer balances the

workload for certain machines, the performance is not guaranteed to be good if the code is
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executed on other machines.

2.2.2 SPMD

The original HTA work implemented in MPI uses the SPMD execution model. In this

version, the sequential part of an HTA program is redundantly executed by a fixed, user-

specified number of processes. During array construction, each process locally builds the

whole hierarchical tree metadata structure of the HTA while owning only a subset of the

raw data tiles. The distribution of the data tiles to processes is specified by the user at

creation. Metadata records the ownership of all data tiles so that each process has a global

view of the tiled arrays since it has enough information to locate remote tiles.

The HTA operations are executed by processes following the owner-computes rule. When

a process executes an HTA operation, it knows the partial computation which it is respon-

sible for. It determines the data dependence of the operation and performs point-to-point

communications to either supply or acquire data tiles. It then performs the partial compu-

tation in parallel to other processes. In this mode, a parallel process is stalled only if the

data tiles it depend on are remote and have not all been received yet. If the workload is not

balanced, a process can still finish its own partial computation and move on before other

processes, similar to the semantic of OpenMP nowait clause.

However, in this model, there are a few problems that could limit application performance.

First, the choice of the number of processes P poses an upper bound to the exploitable

parallelism. Even if there is a large amount of parallelism and the user creates enough tiles

to expose the parallelism, some of the subtasks are serialized and only P-fold parallelism is

exploited.

Second, in order to acquire data from another process, the processes involved need to

perform two-way synchronization. For example, a process could be well ahead of others in

the program execution when it executes a parallelizable array operation. Suppose it must
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supply data to or receive data from a remote processes, it then needs to block and wait for the

other to reach the same operation and performs the corresponding two-way synchronization

before it can continue. The amount of asynchronous execution between processes is limited.

Finally, due to the previous issue, the workload for each tiled array operation needs to be

balanced by distributing tiles to processes carefully. But it is not always possible to balance

workload by regular data decomposition. For example, in tiled Cholesky factorization algo-

rithm, if we factor the lower left triangular matrix, the tiles to the lower right have much

larger workload than the tiles to the upper left.

2.2.3 Dataflow Tasks

In recent years, dataflow runtime systems have gained popularity due to their potential use-

fulness for large-scale high performance computers. In this thesis, we explore the possibility

to execute HTA programs by dynamically converting them into a dataflow task graph.

The unit of work in dataflow runtime systems are data dependent tasks. Programs are

typically dynamically-constructed task dependence graphs where the nodes are tasks and

the edges represent data dependences. The tasks are asynchronously created and their de-

pendences explicitly specified by the programmer at creation time. They stay in a pool after

creation, and the dataflow runtime system tracks whether their input data dependences are

satisfied. When the dependences are satisfied, the tasks become ready and the runtime sys-

tem schedules them for execution on available computing resources. The major advantages of

using dataflow runtime systems are its flexibility in making dynamic decisions and its ability

to maximize parallelism, since there is no strict execution order enforced by programmers

on the tasks.

In such model, we can use a single task (we refer to it as the master task hereafter) to

execute a HTA program from its entry point. To exploit parallelism in array operations, we

can let the master task spawn a set of new subtasks whenever it encounters an array oper-
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ation to perform it collaboratively. The master task needs to specify the data dependences

controlling the execution of the new subtasks at their creation time, so that the runtime

system can take over the responsibility of monitoring the data dependences and fire the sub-

tasks when the inputs are ready. Ideally, the master task spends minimal time in creating

subtasks asynchronously, without having to wait for the completions of them.

The runtime system maintains a pool of all tasks created, and schedule them for execu-

tion on available computing resources when their data dependences are satisfied. Since tasks

do not consume computing cycles when their inputs are not ready, the computing cycles

are spent mostly on meaningful computation instead of spin waiting. Naturally, this allows

higher parallel efficiency when there is enough parallelism exposed to the runtime system.

When the subtasks complete, they notify the runtime system that their outputs are gener-

ated, so the subtasks depending on their outputs can start. In Chapter 3, we go into more

details on mapping an HTA program execution to a dataflow task graph, specifically for the

OCR runtime system.
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Chapter 3

Design of HTA-OCR

This chapter describes how an HTA program can be mapped to a dataflow task graph for

executing on a dataflow runtime system. Specifically, we use Open Community Runtime

(OCR) in our work. In Section 3.1, an overview of OCR is given to help readers understand

the underlying runtime system. Section 3.2 explains how an HTA program is converted to

an OCR task graph so that it can be executed by the OCR runtime.

3.1 Overview of Open Community Runtime

Open Community Runtime [11, 33] is a product of the X-Stack Traleika Glacier project [17]

funded by Department of Energy. Its goal is to provide a task-based execution model for

future exascale machines through software and hardware co-design. The major contributors

of the OCR specification are the researchers at Intel and Rice University. The OCR reference

implementation was officially released in May, 2015 [32].

The philosophy of OCR is to form computations as directed acyclic graphs (DAGs) where

nodes are event driven tasks (EDTs, referred to as tasks hereafter) that operate on relocatable

data. The OCR API provides functions to create objects including tasks, events, and data

16



blocks. Tasks represent computation, data blocks represent data used or produced in the

computation, and events are used to describe either data or control dependences between

tasks. All OCR objects are associated with unique identifiers (GUIDs) at creation time and

they are globally addressable, which means that a GUID can be used to refer to an object

in any OCR function without distinguishing whether the object is local or remote.

Figure 3.1: Dependence graph formed by OCR objects

Figure 3.1 shows an OCR task graph. The blue circles represent tasks, the blue diamonds

are events, the squares are data blocks and the orange arrows represent dependences. In this

example, Task A has three input dependences from three different data blocks. Task B does

not have input dependences and it is ready for execution right after it is created. Task A

satisfies an output event, which is connected to Task C and D, and the links do not carry data

and thus they represent control dependences. In contrast, the indirect link that connects B

and D through an event carries the purple data block produced by Task B.

3.1.1 Dependences in OCR

The dependences in OCR are represented as links between objects. Links are directional and

they are defined when programmers explicitly set them to connect from a source end-point

to a destination end-point. In OCR, source end-points are called post-slots, and destination
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end-points are called pre-slots.

OCR objects usually have a single post-slot. For a task, the post-slot is satisfied when

the task completes execution. For a data block, it is immediately satisfied when the object

is created. For an event, its post-slot is satisfied when the event is triggered. Notice that it

is not required for a post-slot to be connected to a pre-slot of another object.

Tasks and events can have multiple pre-slots. The pre-slots are the input dependences

and need to be explicitly connected to with program code. A task can be scheduled for

execution only when all of its pre-slots are satisfied.

With links between pre-slots and post-slots, both data dependences and control depen-

dences can be expressed. When a link source end-point (post-slot) is satisfied with a data

block, the object at the destination end-point (pre-slot) can receive the data block. This

exemplifies a data dependence. If the program code satisfies a post-slot without a data block,

it represents a control dependence.

3.1.2 OCR Objects

Here we describe the three major objects: tasks, events, and data blocks. We do not cover

all the details and only present the concepts necessary for understanding the thesis. If the

reader wishes to know more, please consult the OCR documentation [32].

Event Driven Tasks

EDTs (tasks for short) are units of work in OCR applications. They can be scheduled

for execution by the OCR runtime system only after their input dependences are satisfied.

They are non-blocking, meaning that when they start executing, they proceed till the end

and cannot be blocked by the actions of other OCR objects.

To create a task using the OCR API, the programmer has to define an EDT function

which contains the work that needs to be done. The function pointer is fed to ocrEdtCreate()
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along with a list of 64-bit values, and a list of dependences (i.e. the pre-slots of the task).

The call to ocrEdtCreate() returns two GUIDs. One is the GUID of the task, and the

other signifies the post-slot which is satisfied when the task completes execution and can be

connected to other OCR objects.

It is possible to insert ocrEventSatisfy() or ocrAddDependence() inside of an EDT

function body. This can be seen as adding post-slots to the task object so that the links

from the task object do not all come from the same source and not carry the same data.

Events

OCR events are used for setting up links between OCR objects. An event has a single

post-slot, and depending on the type of it, there can be one or multiple pre-slots.

To connect an event post-slot to a task, the event GUID is supplied to the dependence

list of the call to ocrEdtCreate(). An event post-slot can be connected to more than one

pre-slots, and when the event is triggered, its post-slot is satisfied and the pre-slots connected

to it will be satisfied.

There are several types of OCR events. Three of them are used in the HTA-OCR imple-

mentation:

1. Once event: This type of event has a single pre-slot and is triggered after the pre-slot is

satisfied. The life time of a once event is the time between the call to ocrEventCreate()

and the time it is triggered. Afterwards, it is automatically destroyed by the runtime.

All subsequent attempts to satisfy it or to connect to it result in runtime errors.

2. Sticky event: A sticky event also has a single pre-slot and is triggered after its pre-slot

is satisfied. But it is not automatically destroyed after one satisfaction. Instead, an ex-

plicit call to ocrEventDestroy() is required. Since its lifetime is explicitly controlled,

it can be used whenever the objects that depend on the event do not exist when the
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event is triggered.

3. Latch event: It provides a counting mechanism by using two pre-slots. The event

triggers when the two pre-slots are satisfied for the same number of times. For example,

if a latch event is created to count the completion of three tasks, it has to be satisfied

three times at pre-slot 0 right after its creation, and then the other pre-slot will be

satisfied by the three tasks for it to trigger. It is destroyed automatically by the runtime

system after being triggered, same as a once event.

Data Blocks

Data blocks are where data should be stored if the data needs to have a longer lifetime and

be reused by tasks other than the current one. A task can call ocrDbCreate() to create a

data block and get back the GUID of the data block and a pointer to the starting address of

the newly allocated memory space. The task can then use the data block GUID to satisfy a

dependence.

When a task takes a data block in one of the pre-slots, the task can obtain the value of

the starting address of the data, provided by the runtime. Since data blocks are relocatable

objects, programmers should not store pointers to data blocks and pass them to other tasks

in the code. The pointer values could be invalid when the task terminates.

There are different access modes for data blocks. Access mode settings give the runtime

opportunities to optimize data management under the hood. For example, if a task requests

for read-only access to a data block, the runtime can make a copy of it for the task, and

other subsequent tasks that needs to write the same data block can start before the reader

task finishes. For more details, please refer to the OCR specification [32]. In the HTA-OCR

library implementation, we only use the Read-Write mode and the library makes sure that

data race does not happen by enforcing ordering of task execution based on data dependences

in the HTA program.
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3.1.3 OCR Execution Model

The execution of OCR tasks is dictated by events. Inspired by the dataflow execution model,

tasks are not scheduled for execution immediately after their creation. Instead, an OCR task

stays in a queue, and the runtime system keeps track of its input dependences. When all

the input dependences of an OCR task are satisfied, the task state becomes ready and the

runtime system can schedule it.

A scheduled task is non-blocking (i.e. it runs to completion without ever being blocked),

since it has all of the resources needed for the computation. As a result, forward progress

is ensured. However, this poses a restriction on how tasks get input data. The only way

to get input data is by, at the task creation time, specifying dependences on events which

will be satisfied later with data blocks containing input data. Since a task cannot block and

wait for new inputs, codes written for this execution model can have very different program

structure from the popular imperative programming style.

The execution of OCR tasks depends only on data blocks passed in through its pre-slots

but not on the data in the call stack or some global heap objects. This allows the runtime

system to freely move tasks around, as long as the data blocks needed are also prepared on

location ahead of execution. Since both tasks and data blocks are relocatable, the runtime

system can make dynamic scheduling decisions for workload distribution, energy saving, and

various other optimizations. This separation of concern saves application programmers from

having to optimize application code with machine specific details. Also, since the OCR tasks

are scheduled to run only when their preconditions are met, they never need to busy wait

and consume CPU cycles. This favors having lots of tasks (much more than the number of

available worker threads) in-flight so that the runtime system can keep the CPU utilization

high.

For the thesis, we implemented HTA as a library on top of the OCR reference imple-

mentation built for shared memory x86 machines. When an OCR application is launched, a
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configuration file is read by the runtime initialization routine and it creates a fixed number

of worker threads, which are used internally by the runtime.1 OCR worker threads use a

work stealing algorithm to balance the workload and minimize idling. The reference imple-

mentation faithfully adheres the dataflow philosophy and serves as an initial platform for

experimenting with so as to inspire future refinements of the OCR specification and exascale

hardware architecture design.

3.2 Mapping HTA Program to OCR Tasks

An HTA program is an imperative program consisting of HTA operations and regular non-

HTA operations. An implementation of the HTA programming model should execute the

non-HTA operations sequentially, and parallelize the tiled array operations for maximum

execution performance. In our HTA implementation on OCR (HTA-OCR), we use a single

OCR task, which we refer to as the master task, to execute an HTA program. The master

task executes the non-HTA operations sequentially till it encounters an HTA operation,

where it calls the corresponding HTA library routine to dynamically determine the number

of subtasks that should be created and the data dependences among the tasks. It then creates

the tasks and specifies their dependences before it moves to the next operation.

One important observation to make is that the data dependences among tasks do not

always involve the master task. In most common cases, the subtasks depend only on some

tiles that are outputs of other subtasks, and they do not have data dependences due to

HTA data tiles on the master task. The master task execution also does not always depend

on subtask results. This means that the master task may often asynchronously create the

subtasks and not wait for their completion. Based on this observation, we can imagine an

HTA program as a dynamically constructed OCR task graph. It starts with a single node

1Note that the OCR user code does not directly interact with the threads. Instead, it deals with OCR
event-driven tasks, events, and data blocks.
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representing the master task, which dynamically creates new nodes that are the subtasks

whenever it executes HTA operations. The subtasks can have edges pointing to each other

when there are data dependences among them. As shown in Figure 3.2, the master task is

represented as a thick arrow to show that its execution typically spans longer than other

subtasks2. The blue dotted arrows represent subtask creations when the master task en-

counters HTA operations, and the orange arrows represent the data dependences between

tasks. In this example, there are two HTA operations OP1 and OP2. Some of the subtasks in

OP2 depend on the results of the subtasks in OP1, and our library implementation can create

this task graph dynamically.

Figure 3.2: HTA-OCR program execution

Since the master task creates all other subtasks, the master task needs to figure out the

dependences among them. For this reason, we add extra fields in the HTA tile metadata

to record the dependence information. When the master task creates a subtask, it reads

the metadata and knows which OCR events the new subtask must connect to. It then

creates new OCR events to represent the completion of the new subtask, and stores their

GUIDs in the tile metadata. This way, when the master task creates a subsequent subtask

2For the clarity of the illustrations, in the rest of this thesis, we sometimes omit showing the master task
and the edges representing subtask creations in the graph.
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depending on some subset of the same tiles, it can specify the correct OCR events which

signify the completion of previous subtasks for the new subtask to connect to. In this way,

data dependences due to HTA tiles among subtasks can be dynamically constructed in the

task graph.

It is possible that the master task depends on subtask results. When it must wait for

the subtasks, a split-phase continuation is performed for the master task to clone itself and

setup the dependences for the clone to take subtask results. The original master task then

terminates itself, and the cloned task continues when the subtask results are ready. More

details about the split-phase continuation mechanism are described in Section 4.5.

Our mapping strategy converts an imperative HTA program into a dynamic task graph

where the edges between nodes are data dependences. The execution of such task graphs in

the OCR runtime allows the parallel subtasks to be scheduled in a more relaxed order relative

to using other execution models. The opportunity for parallel subtasks to overlap with each

other is automatically discovered and exploited by the runtime system, without efforts of

the application programmer or a compiler static analysis. The HTA-OCR implementation

details are described in Chapter 4.

The ideas presented here are simple, but the design could face some real challenges to

scale up for larger systems in the real world. In Chapter 6, we further investigate the

scalability issues and possible solutions for them.
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Chapter 4

Implementation of HTA-OCR

We have implemented HTA-OCR, which is a C1 library implementation of HTA program-

ming model using the OCR programming interface for parallelization on single-node shared

memory machines2. The OCR runtime system provides a different execution model and dif-

ferent mechanisms to synchronize parallel tasks than popular parallel programming models

such as OpenMP and MPI. Theoretically, the new execution model can result in higher uti-

lization of computing resources for applications with abundant asynchronous tasks [11]. Our

HTA-OCR implementation dynamically coverts imperative programs into OCR task graphs

in order to enjoy the benefits provided by the OCR runtime system.

4.1 Program Execution

An HTA-OCR application starts execution from mainEdt(), just as any other regular OCR

application. Our library provides a mainEdt() implementation, where it sets up the envi-

1The reason that C language is used instead of C++ for HTA-OCR implementation is because at the
beginning of the XStack Traleika Glacier project [9], in which the UIUC team worked on providing software
tools for the OCR runtime system on exascale machines, there was no plan for OCR to support C++.

2The OCR reference implementation also supports distributed machines. However, the continuation
mechanism we implement (Section 4.5) does not work in distributed environment, thus we conduct our
experiments on a single-node machine. If the OCR implementation provides built-in continuation mechanism
on distributed machines, our design should work properly.
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ronment for an HTA-OCR application to run. Subsequently, it spawns procEdt() which

calls hta main() provided by the user and starts executing the user code. The instance of

procEdt() is what we call the master task. It executes the HTA program sequentially till

it meets an HTA operation, where asynchronous subtasks are created for the computation.

The library routine analyzes the operands (i.e. the HTA data tiles) and determines the

data dependences of the subtasks. The analysis is done by reading the dependence infor-

mation, which are the OCR events stored in the HTA metadata. After the dependences

are determined, the master task creates asynchronous subtasks by calling ocrEdtCreate()

and supplying them with the OCR events for their dependence lists. The master task may

immediately execute the next operation without waiting for the subtasks to complete if it

does not depend on the results of the subtasks. In such case, the execution of the master task

automatically overlaps with the subtask executions. Figure 4.1 shows the contrast between

the library code and the user code. The calls to OCR library functions are hidden in the

HTA library code.

Figure 4.1: HTA-OCR library code in comparison with user program
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Listing 4.1 is an HTA-OCR mergesort implementation. The code first creates an HTA

A of height 2. Each intermediate level HTA node has two children. At Line 5, an HTA_

map() is called on all leaf tiles in A to perform quick sort individually. The map operation

takes an operator function pointer QSORT as the first argument, and a list of ARGS which

includes LHS and, optionally, RHS, and CAPTURE3. LHS contains the mapped level and a list

of HTAs that are on the left-hand side of the operation. For each tile at the mapped level

in the LHS, a task is spawned to execute QSORT on the tile sequentially. Next, in the while

loop (Line 8 - 11), the MERGE operation is mapped to the tiles at the intermediate levels

from one level above the leaf level to the root level. Figure 4.2 shows the execution of an

HTA bottom-up merge sort. The thick blue arrow represents the master task execution. It

spawns asynchronous subtasks, represented in blue circles. The dotted blue arrows marked

with line numbers indicate spawning of asynchronous tasks. The first four sorting tasks are

spawned with input data dependences that are immediately satisfied since the tiles have not

been used by other tasks yet. Next, two subtasks are spawned to merge two sorted tiles from

the previous sorting tasks. The orange arrows indicate data dependences, and the data tiles

flow from the sorting tasks to the merging tasks. The merging tasks start execution only

when the tasks they depend on complete and the data tiles are acquired.

1 int levels = 2;
2 HTA *A = /* Create HTA of tiling (2) at the root , and (2) at the next

level. Resulting in 4 leaf tiles */
3

4 /* Quick sort the leaves individually */
5 HTA_map(QSORT , ARGS(LHS(levels , A)));
6

7 /* Bottom up merge */
8 while(levels > 0) {
9 levels --;

10 HTA_map(MERGE , ARGS(LHS(levels , A)));
11 }

Listing 4.1: HTA-OCR mergesort

The OCR runtime system manages multiple worker threads for tasks to be scheduled

3We give a detailed explanation of the map operation in Section 4.4.
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Figure 4.2: HTA-OCR mergesort program execution

to. As soon as the input dependences of a subtask are satisfied, it is ready and can be

scheduled for execution. The OCR worker threads use a work-stealing scheduling algorithm

so that tasks can be stolen by other worker threads to dynamically balance the workload. To

best utilize computing resources, the master task should generate abundant tasks that have

sparse dependence edges among them, so that there is a higher probability of having lots of

ready tasks to be scheduled at any given time. When this happens, idling of worker threads

would only be a result of insufficient parallelism in the program. In other words, when a

program has enough parallelism exposed through using HTA operations, high utilization of

computing resources is expected.

4.2 Data Dependences

In the execution style described above, parallel tasks are dynamically generated by library

routines. The library also discovers the dependences among them dynamically. In general,

there are only two types of tasks we need to consider: the master task, and the subtasks

created for the HTA operations. Here we explain the rules of how the data dependences are
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determined.

Non-HTA variables of global scope are always evaluated in the master task. On the other

hand, HTAs are only accessed in the HTA operations which are executed using the subtasks

spawned by the master task. Considering these types of variables used in an HTA program,

data dependences exist in the following cases:

1. The computation on an HTA depends on some non-HTA variable computed previously

(in terms of program order).

2. The evaluation of some non-HTA variable depends on some non-HTA variable com-

puted previously.

3. The evaluation of some non-HTA variable depends on some HTA accessed in a previous

HTA operation.

4. The computation on an HTA depends on some HTA accessed in a previous HTA

operation.

In Case 1, the data dependence is resolved automatically, since the master task would

have evaluated the value of the non-HTA variable at the point of spawning a task to compute

the HTA. Thus, the value of the non-HTA variable can be passed by-value into the parallel

subtasks, and the master task does not have to wait for it and block. An example for this

would be passing a scalar coefficient value into an AXPY operation4 performed with HTAs.

Case 2 is similar in that the data dependence is guaranteed to be resolved, because non-HTA

variables are always evaluated by the master task sequentially in program order.

In Case 3, since subtasks are spawned asynchronously by default, the evaluation of the

non-HTA variable has data dependence on the completion of the asynchronous subtasks.

The HTA library can know this type of data dependence correctly since it is the semantics

4y = α× x+ y, where α is a scalar coefficient and both x and y are vectors.
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of the operation. For example, if the reduction result of an HTA is assigned to a non-

HTA variable, the assignment can only happen after the result is computed. Since this

assignment is performed by the the master task, it needs to block and wait. OCR does not

provide a built-in mechanism for a task to block and wait, so we implemented a continuation

mechanism (described in Section 4.5) for this case.

In Case 4, new subtasks must be spawned by the master task to perform the operation.

If the operand HTAs are not yet accessed by any previous subtasks after creation, the new

subtasks can fetch the tiles as soon as they are created. If there are previous user tasks that

access the tiles, they have to complete before the new tasks can start. Some mechanism

is required for the new tasks to be notified when the previous user tasks are done. For

this purpose we devised a tile-based dependence tracking mechanism to ensure that the

tasks using the same HTAs always access them in the correct order respecting the data

dependences. In short, the tile-based tracking lets the master task read the information

stored in the HTA tile metadata to find out whether there is any previous user task, and

the OCR event that represents the completion of previous user tasks. The master task also

updates the metadata to record the new use represented by a new OCR event. The details

are described in Section 4.3.

4.3 Tile-based Dependence Tracking

In the HTA-OCR execution model, all subtasks are asynchronously spawned. Subtasks may

need to synchronize with each other directly without joining to the master task. To make

this possible, the master task tracks the dependences of every task by using the dependence

information stored in the tile metadata.

For each leaf tile, its metadata contains three OCR event GUIDs: pre_completion_

event, completion_event and latch_event. pre_completion_event represents the com-
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pletion of the last user task(s) accessing the tile. completion_event represents the comple-

tion of the new user task(s) to be spawned. latch_event counts the user tasks that have

shared read-only access to the tile. The tile metadata also contains a state field. It records

the tile state after being requested by the latest user task(s). There are three different states:

MODIFIED, SHARED, and UNCLAIMED. Their meaning is described in Table 4.1.

Tile State Description
MODIFIED Exclusive read-write access.
SHARED Shared read accesses.
UNCLAIMED The tile is not claimed by any task. It could be in this state right after

it is created or after an explicit HTA unclaim() operation.

Table 4.1: HTA-OCR tile states.

The tile state is used by update completion event() which is a state machine. When

the master task needs to spawn a new task, it calls update completion event() with the

desired access mode of the task: read, read-write, and unclaim. Read and read-write are

self-explanatory. To “unclaim” means that the task starts only when the previous user tasks

are complete, but the requesting task does not need to read or write the tile. This is used to

make sure computations on a tile are completed and it is useful for measuring the execution

time. The update completion event() function reads the current tile state and performs

the actions defined by the state machine before the tile state transitions to the new state.

Figure 4.3 shows the state machine, and the actions performed before state transitions are

described using pseudo code in Table 4.2.

When the read access mode is needed, sharing of the tile should be allowed to provide

more parallelism. OCR latch events are used for this purpose. An OCR latch event has

two pre-slots and a single post-slot. The pre-slots can be satisfied multiple times and are

associated with counters initialized to zero at creation time. Each time when a pre-slot

is satisfied, the counter associated with it increments. The condition for the latch event

to be triggered is when the counters of both pre-slots have equal non-zero values. In our
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Figure 4.3: HTA-OCR tile state machine

Current State Access mode Next State Actions

Unclaimed
Unclaim Unclaimed No action

Read-write Modified completion event = new(event);

Read Shared

completion event = new(event);

latch event = new(latch event);

latch event.slot[0] += 1;

latch event → completion event; //Link between events

Modified
Unclaim Unclaimed

pre completion event = completion event;

completion event = NULL GUID;

Read-write Modified
pre completion event = completion event;

completion event = new(event);

Read Shared

pre completion event = completion event;

completion event = new(event);

latch event = new(latch event);

latch event.slot[0] += 1;

latch event → completion event; //Link between events

Shared
Unclaim Unclaimed

pre completion event = completion event;

completion event = NULL GUID;

Read-write Modified
pre completion event = completion event;

completion event = new(event);

Read Shared latch event.slot[0] += 1;

Table 4.2: HTA-OCR tile state transition table
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(a) Exclusive access

(b) Shared accesses among a group of sub-
tasks

Figure 4.4: Subgraphs generated for HTA-OCR parallel operations

implementation, when the master task discovers a first subtask requesting read access to

a tile, it creates a latch event, and sets pre-slot OCR EVENT LATCH INCR SLOT to 1. The

latch event’s post-slot is connected to the pre-slot of a new sticky completion event5. For

subsequent subtasks that also read the same tile, the master task increments the latch event’s

OCR EVENT LATCH INCR SLOT. The master task may eventually discover a subtask that needs

to write the tile, and it will create a new completion event to replace the original one. All

of the subtasks that have shared read accesses created in this period will increment the

latch event OCR EVENT LATCH DECR SLOT when they complete. When all of them are done,

both pre-slots have the same value, and the latch event is triggered. Figure 4.4 shows the

difference between the subgraphs generated by the library for a subtask requesting exclusive

access to a tile and for subtasks sharing read-only accesses to a tile. We represent the sticky

5A latch event is automatically destroyed after it is triggered. In our design, subsequently created subtasks
could have dependence on it. Thus, a sticky event is used to retain the completion and the data. The sticky
event will eventually be destroyed by the library when it determines that the completion is no longer needed
for any future subtasks.
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Figure 4.5: HTA-OCR task graph built with tile-based dependence tracking

events as blue diamonds and the latch event as a purple diamond.

Here, we show an example of a task graph constructed dynamically from a code segment

in Figure 4.5. The graph is divided into regions with dotted borders marked by numbers

representing the program statement that constructs the subgraph in the region. Three 1-D

single-level HTAs X, Y and Z are created beforehand. Let us assume that they have the same

shape and they are yet not used by any tasks after creation (i.e. they are UNCLAIMED). To

simplify, we consider only the subgraph constructed due to the dependences of tile X[0].

At Line 1, an assignment operation of constant value zero to X means that every scalar

element in X will be initialized to zero. The master task spawns a task for the initialization

of X[0]. Following the state transition table, since the access mode is read-write for the

assignment, the X[0] tile state transitions from UNCLAIMED to MODIFIED, and a completion
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event is created, as shown in the dotted region marked by the number 1.

Next, Line 2 is a pointwise copy operation that copies the values from X to Y. The

master task creates a task to perform the copy operation Y[0]=X[0]. X[0] is on the RHS,

and thus requested by the new task for read access mode. The data dependence due to X[0]

is represented by a link from the previous completion event to the new task. A new latch

event is created and its counter is set to 1. The state transitions from MODIFIED to SHARED.

At Line 3, another point-wise copy operation is performed and the new task Z[0]=X[0]

requests the tile X[0] for read access again. A link is built from the previous completion

event in the region 1 to the new task, and the latch event counter is incremented. No new

completion event is created, since the completion of this new task is also tracked by the latch

event previously created.

Finally, another operation that reads and writes to X[0] is executed at Line 4. A new

task is created and it depends on the previous completion event in the region 2. A new

completion event is created to for this new task X[0]+=1.

Notice that the OCR events and links that represent data dependences in this example

are created due to a single tile X[0] only. If we also consider tiles Y[0] and Z[0], there can

be more tasks and dependence edges. In other words, the example only shows a subset to

the whole task graph considering all tiles in all HTAs in the program.

4.4 Implementation of Core HTA Operations

In this section, the implementation of two core HTA operations are explained to help the

readers better understand how the library routines determine data dependences among tasks

and generate tasks. HTA map() demonstrates what happens when the master task does not

depend on the subtask results. In contrast, HTA full reduce() is a case when the master

task depends on the subtask results and needs to perform a split-phase continuation.
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4.4.1 HTA map

The function prototype of HTA map() is as the following:

typedef void (*HxMapOp) (HTA** lhs, HTA** rhs, uint64_t* capture);

void HTA_map(HxMapOp op, int num_args, ...);

In order to make HTA map() operation generic enough to deal with a various number

of operands, it is implemented as a C variadic function. Users need to provide a function

implementation of type HxMapOp and pass it into HTA map() as the first argument. The rest

of the arguments are not directly filled in by the programmer. Instead, the programmer

typically calls HTA map() using a combination of macros as the following:

HTA_map(CALC_VELOCITY_FOR_NODES, ARGS(LHS(1, xd, yd, zd),

RHS(1, xdd, ydd, zdd),

CAPTURE(VCAP(dt), VCAP(u_cut))));

This is an example from LULESH [24] HTA-OCR implementation. Here, HTA map() is

called with CALC VELOCITY FOR NODES() as the operator function. The macro ARGS contains

a list of HTAs on the LHS (left-hand side) of the operator (i.e. they will be read and written),

a list of HTAs on the RHS (i.e. they will only be read), and a list of dynamically copied 64-bit

scalar values6.

When the master task executes HTA map(), it counts the number of tiles at the mapped

level and checks the conformability of the operands. It determines the number of subtasks

to generate, and the tiles each subtask depends on. One subtask is spawned for each tile at

the mapped level of the HTA on the LHS. When there are multiple HTAs on the LHS, their

shapes must be the same at the mapped level, and the counts of the tiles at the mapped

6The VCAP macro is necessary for type casting to be correct in C, the reader can ignore it and just know
that the CAPTURE macro serves the purpose of copying dynamic scalar values and make them available for
the operator function.
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level for all of them is the same. In the LULESH example, if xd, yd, and zd are 1-D and has

eight tiles each, the map operation will spawn eight subtasks.

For each of the subtasks to spawn, the master task reads the metadata of the input and

the output tiles to get the GUIDs of the OCR events signifying the completion of previous

subtasks that use them, and update the metadata to store event GUIDs representing the

completion of the new subtask. Finally, the master task builds a dependence list and calls

ocrEdtCreate() to asynchronously spawn the new subtask. The captured scalar values are

passed by-value in the param list into ocrEdtCreate(). The master task then moves on to

the other subtasks till it spawns all of the subtasks needed to perform HTA map().

When an HTA is listed on the left-hand side, the master task makes sure that the access

to it in the newly generated subtask, say t, is exclusive. In other words, t can only start

when previously spawned user tasks (either readers or writers) are completed, and future

subtasks that access the same tile cannot start until t is done. On the other hand, if an

HTA is listed on the right-hand side, it is possible that the newly generated subtask runs

simultaneously with other subtasks that read the same tile. More on how tasks reading the

same tiles can overlap is discussed in Section 4.3.

4.4.2 HTA full reduce

The HTA full reduce() operation reduces an input HTA to a scalar value. The reduction

result is written back to a memory address specified by the programmer, usually it is an

address on the stack. The programmer can expect the result value to be available and valid

immediately after the function call. The function prototype is shown in the following:

typedef void (*ReduceOp)(HTA_SCALAR_TYPE stype, void* result, void* ptr);

void HTA_full_reduce(ReduceOp op, void* result, HTA *h);

The programmer can provide an implementation of an associative operation as the reduc-
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tion operator of type ReduceOp or use existing ones provided by the library implementation,

including REDUCE SUM, REDUCE MIN, REDUCE MAX, and REDUCE PRODUCT.

The library reads the metadata of the leaf tiles to get the OCR events the new subtasks

will depend on, updates the OCR events for subsequent user tasks, and spawns parallel

subtasks as many as the number of leaf tiles. Each of the subtasks performs reduction

on the leaf tile assigned. The library then performs a split-phase continuation to spawn a

continuation task and hook up the dependences from the parallel subtasks to it. Next, the

master task terminates. The continuation task starts when all of the reduction subtasks are

completed and performs sequential reduction on the received results. A reduction tree of

subtasks can be used if the number of leaf tiles is very large. Since the partial reduction

results are computed and received by the time the continuation task starts execution, the

validity of the final reduction result is guaranteed. An example of the operation usage and

more details on split-phase continuation are mentioned in Section 4.5

Since the reduction result is written to a scalar variable, the input HTA is read-only while

performing the reduction. Our implementation makes it possible that the execution of the

parallel reduction subtasks overlap with other tasks that read the same tiles.

4.5 Split-phase Continuation

As mentioned in Section 4.2, during program execution, it is possible that the master task

needs to block and wait for the results of the subtasks. Since the master task is also an

OCR task and OCR tasks are non-blocking, there is no built-in mechanism to block and

take new inputs in the middle of the execution. To overcome this problem, we implemented

a mechanism called split-phase continuation to allow a task to pause and resume. More

specifically, we need a way for the master task to pause its execution when it needs to wait

for some dynamically discovered input data dependences, and resume when the inputs are
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available. Since the duration of the wait is indefinite, it is important that, during the waiting

period, the master task does not occupy a worker thread (i.e. no busy waiting) so that the

thread is free to do other useful work.

We let the master task terminate itself when it discovers input dependences of itself on

subtasks. Before it terminates, it creates a new continuation task which is a clone of itself,

and passes the original program context on. The program context includes the program

stack, the register file, the program counter, and the OCR events signifying new inputs. The

continuation task is just like the original master task, but with new input data dependences.

Thus, the OCR runtime system will only schedule it when the input data dependences are

acquired. When it starts, it restores the program context and then continues the execution

with the newly received results from the subtasks. The original master task execution can

be seen as a phase and the continuation as a new phase. Hence, it is called split-phase

continuation, similar to the idea described in [44].

1 int hta_main(int argc , char** argv)
2 {
3 float result = 0.0;
4 float avg;
5 int n = /* Initialize to total number of elements */
6 HTA* h = HTA_create( ... );
7 ... /* Initialize scalars in h */
8

9 HTA_FULL_REDUCE(REDUCE_SUM , &result , h);
10 avg = result / n;
11

12 printf("Average of all elements = %f\n", avg);
13 return 0;
14 }

Listing 4.2: HTA-OCR program that requires split-phase continuation

An example of a split-phase continuation is shown in Listing 4.2. hta main() first

creates an HTA h at Line 6 and then initializes it. Then, at Line 9, the library routine

HTA FULL REDUCE() is called on h, with the reduce operator REDUCE SUM for summation, and

an address on the stack &result to hold the reduction result. Since the reduction operation

writes the output to a stack variable, this is an example of Case 3 described in Section 4.2
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when a split-phase continuation is required.

HTA FULL REDUCE() is a macro that contains a call to the library routine HTA full reduce()

and some extra code for processing the split-phase continuation. The split-phase continu-

ation happens at Line 9, and the original master task terminates. When the continuation

task receives the new reduction results from subtasks, the execution continues at Line 9.

Assuming there are few tiles, a sequential reduction of the partial results is performed before

moving on to Line 10, where a division is performed to get the average value. The execution

then proceeds to Line 12 to print out the average value.

The task graph formed by the program execution can be found in Figure 4.6. Suppose

there are three leaf tiles in h, the master task spawns three subtasks and each of them

sequentially performs reduction on its assigned leaf tile to get a scalar value. Since the

number of subtasks is small, the three scalar values are sent directly to the continuation

task to be reduced sequentially (shown as the small blue circle) to the final result. A tree

reduction can be used if the amount of leaf tiles are large, so more parallelism is exploited.

Figure 4.6: Split-phase continuation

Split-phase continuations can have negative impact on the performance. Other than the

overhead of cloning the program context and creating a new task, the major issue is that

the master task execution is paused. As mentioned previously, it is crucial for applications

running on top of the dataflow runtime system to generate lots of tasks so that the runtime
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system can keep worker threads busy. A split-phase continuation pauses the master task

who generates parallel subtasks. This could lead to temporary depletion of work and causes

idling. Programmers should be fully aware of the consequences of invoking the operations

that require continuations and only use them when it is absolutely necessary for the program

correctness.

A way to avoid having split-phase continuations is to remove the data dependence on

subtasks from the master task. For example, if the reduction result is not needed directly

by the master task, it is possible to implement a reduction operation that takes a single-

element HTA as the output storage. This operation can store the reduction result to the

single-element HTA in a subtask, without the involvement of the master task. And if there

are subsequent operations depending on the reduction result, they would request the single-

element HTA as their input data dependences. Even if the master has to get the reduction

result, the read-back from the single-element HTA can be postponed as late as possible to

allow more subtasks of other operations to be generated, so that the system is not depleted

of work.

4.6 Prioritized Tasks

At any given moment during the program execution, there can be more ready tasks than

available worker threads. The runtime system uses heuristics to schedule ready tasks. For

example, the default OCR scheduler use LIFO policy to schedule the newest local task in

the ready queue first, and FIFO policy while stealing tasks from remote. Simple heuristic

scheduling algorithms can often fail to produce optimal schedule and resulting in inefficiency,

since they do not consider the task granularity or the parallelism the can be enabled by

executing critical tasks.

On the other hand, the programmer might have a better knowledge to estimate the task
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Constant Name Value
HTAOCR EDT TOP PRIORITY ULONG MAX

HTAOCR EDT MEDIUM PRIORITY ULONG MAX >> 1

HTAOCR EDT DEFAULT PRIORITY HTAOCR EDT MEDIUM PRIORITY

HTAOCR EDT LOWEST PRIORITY 0

Table 4.3: HTA-OCR task priority preset values.

granularity and provide guidance for the scheduler. In OCR, other than the default scheduler,

a priority scheduler is provided. It takes the user assigned task priority into consideration

while making scheduling decisions. When tasks are created with priority hints, the priority

scheduler always schedules the ready tasks with the highest priority first. We create wrapper

functions in HTA to expose the priority assignment capability to users. In our experiments,

assigning priorities in the application level can improve performance over using heuristics.

The API for setting task priorities is HTAOCR SET PRIORITY(p). It sets the priority to an

unsigned integer value p for all tasks generated subsequently. The higher the value of p is,

the higher the priority. The library also provide pre-defined values for programmers when

they only need a few different priorities as shown in Table 4.3.

4.7 Tracing API

For debugging and performance analysis purposes, we include a set of functions that can

generate a trace for HTA-OCR program execution. To utilize them, the programmer has to

include headers HTA trace.h and HTA timer.h, put HTA trace init() in the setup code,

and put HTA trace finalize() at the point where the trace should be dumped, usually

before program terminates. To trace individual tasks, the programmer defines an integer

value as the type of the task, and inserts calls to HTA insert trace entry() at the point

where the task starts and right before it ends. See Listing 4.3 for an example. Line 3 and 14

are calls to insert entries for the start and the end of INIT STRESS TERMS. The overhead of
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the calls should be easily amortized by the actual work of the task, since the calls are quick

memory stores to the internal memory space managed by the tracing library.

The dumpped trace.log file contains the start time and end time of the tasks. We use

the trace viewer program from the SWARM project [30] to display it in a comprehensive

manner, as shown in Figure 4.7. Each colored bar represents the execution of a task, and

tasks of the same type are shown in the same color. Each row represents the trace of a

worker thread, and the white space in each row means either the tasks being executed in

that duration are not recorded, or the worker thread idles.

1 void INIT_STRESS_TERMS(HTA** lhs , HTA** rhs , uint64_t* capture)
2 {
3 HTA_insert_trace_entry(HTA_get_thread_num (), 1, INIT_STRESS_TASK ,

gettime_ns ());
4 Index_t numElem = lhs[0]-> flat_size.values [0];
5 Real_t *sigxx = HTA_get_ptr_raw_data(lhs [0]);
6 Real_t *sigyy = HTA_get_ptr_raw_data(lhs [1]);
7 Real_t *sigzz = HTA_get_ptr_raw_data(lhs [2]);
8 Real_t *p = HTA_get_ptr_raw_data(rhs [0]);
9 Real_t *q = HTA_get_ptr_raw_data(rhs [1]);

10

11 for (Index_t i = 0 ; i < numElem ; ++i){
12 sigxx[i] = sigyy[i] = sigzz[i] = - p[i] - q[i] ;
13 }
14 HTA_insert_trace_entry(HTA_get_thread_num (), 0, INIT_STRESS_TASK ,

gettime_ns ());
15 }

Listing 4.3: An operator function with tracing calls
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Figure 4.7: Program trace displayed by SWARM trace viewer application

44



Chapter 5

Performance Evaluation

In this chapter, we present the performance evaluation of the HTA C library implementa-

tion on top of OCR (HTA-OCR) using several benchmark programs, including hand-coded

parallel algorithms and some benchmarks from Coral [29], Rodinia [13] and NAS Parallel

Benchmarks [4]. We describe the problems that the benchmark programs solve and the par-

allel algorithms used. The performance results of the HTA-OCR versions are compared with

their OpenMP counterpart 1, because OpenMP is widely used for parallelizing applications

on shared memory machines and the benchmarks used all have OpenMP implementations.

The programmability of OpenMP is also similar to that of HTA. Based on the experimental

results, we analyze the reasons for the differences in their performances.

The experiments are conducted on a single node equipped with four Intel Xeon E7-4860

processors, each of which has ten cores. We tested the scalability of our implementation

using up to forty OCR worker threads in hope that each thread is assigned to a dedicated

core so that hyperthreading effects can be avoided. Our purpose is to compare the execution

models, so we timed the execution of the major computation in the benchmarks, excluding

initial setup such as initial array allocations and input data generation.

1For a few benchmarks, we also include comparisons with pure OCR implementations

45



5.1 2-D Convolution

Convolution is an important method for signal and image processing. 2-D convolution takes

an input matrix which may represent an image and the other matrix (often referred to as

filter) performs stencil computation and produces an output matrix. Each element in the

output matrix can be computed by performing stencil computation which reads all elements

in the filter and the same amount of elements in the input matrix. As shown in Figure 5.1,

when the filter is a 3× 3 matrix, the 9 points in the filter and 9 points in the input matrix

are used in the computation of one point in the output matrix. The stencil computation

of each point of the output matrix is entirely independent and thus the algorithm can be

parallelized easily by decomposing the output matrix.

Figure 5.1: Single output element computation of convolution 2D with filter size 3× 3

The HTA-OCR implementation of the major computation in 2-D convolution (List-

ing 5.1) is performed by call to HTA_map() and the operator function TILE_CONV2D takes a

tile from the input matrix A and the filter H which is one-level and single-tiled in the RHS,

and a tile from the output matrix C in the LHS. Executing the program, the map function

generates as many subtasks as the number of tiles in C and all of them can run in parallel.
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In contrast, in the OpenMP implementation, a two-level nested for loop is collapsed into a

single parallel for loop that iterates over all tiles in the output matrix. An output tile is

computed by one iteration of the parallel for loop.

1 void conv2d(HTA* A, /* Input matrix */
2 HTA* H, /* Filter */
3 HTA* C /* Output matrix */ ) {
4 HTA_map(TILE_CONV2D , ARGS(LHS(1, C), RHS(1, A), RHS(0, H)));
5 }

Listing 5.1: Convolution 2D in HTA-OCR

1 /* A: Input matrix , H: Filter , C: Output matrix */
2 /* Tile control loop collapsed * /
3 #pragma omp parallel for schedule(runtime)
4 for(int t = 0; t < num_tiles; t++) {
5 int ti = t / num_col_tiles;
6 int tj = t % num_col_tiles;
7

8 TILE_CONV2D(C, A, H, ti, tj);
9 }

Listing 5.2: Convolution 2D in OpenMP

The data layout of the input matrix is different in the two versions. In HTA-OCR, the

input matrix is tiled and each tile has extra padding to store elements that are needed for the

stencil computation to avoid memory accesses to neighboring tiles. In OpenMP, the input

matrix is seen as globally available and can be randomly accessed.

The two versions show comparable performances for different configurations as shown in

Figure 5.2. The input matrix is 2048×2048 partitioned into either 8×8 tiles or 16×16 tiles

to see whether the tiling affects the scalability. Two different filter sizes, 7× 7 and 11× 11,

are used with each tiling configuration, but the difference does not seem to have a significant

impact on the results. For 8× 8 tiles, a noticeable staircase pattern can be observed in the

speedup curves of both versions. It also shows when the tiling is 16× 16 but is less obvious.

This is because the tasks are not evenly divided among threads, even though the workload

of each task is the same. Suppose it takes time t for a task to complete, the total execution
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time is:

T = t× d Number of tasks
Number of threads

e

For a certain range of thread counts, the formula evaluates to the same value. Increasing

the number of tiles alleviates this problem, but we also have to be careful not to use too

many tiles for the reason that the overhead of task generation may be too high.
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(a) 8× 8 leaf tiles, 7× 7 filter
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(b) 16× 16 leaf tiles, 7× 7 filter
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(c) 8× 8 leaf tiles, 11× 11 filter
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(d) 16× 16 leaf tiles, 11× 11 filter

Figure 5.2: 2-D Convolution results, 2048× 2048 elements
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5.2 Tiled Matrix-Matrix Multiplication

Listing 5.3 is the HTA implementation of the tiled matrix-matrix multiplication algorithm

using a three-level nested loop. In each iteration of the innermost loop body, tuples are

created (Line 6-8) for selecting tiles in the tiled matrices. Each call to HTA map() (Line

9-12) creates a single asynchronous subtask which executes MATMUL, the kernel function that

performs sequential matrix-matrix multiplication on tiles. The library requests read-write

access for the operand C[i][j] listed in LHS and read accesses for A[i][k] and B[k][j]

listed in RHS.

1 /* A, B: Input tiled matrix , C: Output tiled matrix */
2 /* TILES: Number of tiles along a single dimension */
3 for(k = 0; k < TILES; k++) {
4 for(i = 0; i < TILES; i++) {
5 for(j = 0; j < TILES; j++) {
6 Tuple ij = Tuple_create (2, i, j);
7 Tuple ik = Tuple_create (2, i, k);
8 Tuple kj = Tuple_create (2, k, j);
9 HTA_map(MATMUL ,

10 ARGS(LHS(0, HTA_pick_one_tile(C, &ij)), /* C[i][j] */
11 RHS(0, HTA_pick_one_tile(A, &ik), /* A[i][k] */
12 HTA_pick_one_tile(B, &kj))); /* B[k][j] */
13 }
14 }
15 }

Listing 5.3: Tiled matrix-matrix multiplication in HTA-OCR

We assume the matrices A, B and C are square and tiled the same way. In each k loop

Figure 5.3: Task graph of tiled matrix-matrix multiplication of 3× 3 tiles
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iteration, the new multiplication result of A[i][k] and B[k][j] is accumulated to C[i][j].

All the tiles in A and B are read-only after initialization. Hence, all the parallel subtasks only

request read accesses and can access them simultaneously. In contrast, the tasks accessing

the same C tile form a dependence chain due to the flow and output dependences. See

Figure 5.3 for an example dataflow task graph when input matrices are 3× 3 tiles.

Listing 5.4 is the OpenMP implementation used in the experiments. A, B and C are

arrays of struct TILE, which contains a pointer to the raw data. This version has the same

nested loop structure as the HTA-OCR version, except that the innermost two loops are

collapsed into a single ii loop so that the parallelism is maximized. Notice that there is

an implicit barrier at the end of ii loop at Line 9. As a result, the program executes in a

bulk-synchronous fashion.

1 /* A, B: Array of input tiles , C: Array of output tiles */
2 /* TILES: Number of tiles along a single dimension */
3 for(int k = 0; k < TILES; k++) {
4 #pragma omp parallel for
5 for(int ii = 0; ii < TILES*TILES; ii++) {
6 int i = ii / TILES;
7 int j = ii % TILES;
8 MATMUL (&C[i*TILES+j], &A[i*TILES+k], &B[k*TILES+j]);
9 }

10 }

Listing 5.4: Tiled matrix-matrix multiplication in OpenMP

For this benchmark, we also compare to a hand-coded pure OCR implementation. The

complete pure OCR implementation is included in Appendix A due to its lengthiness. The

OCR version first sequentially builds the whole task graph as shown in Figure 5.3 and then

starts the first round of tasks by explicitly satisfying the input dependences of them. The

rest of the tasks start when their dependences are satisfied with the required tiles. Compared

with the HTA-OCR version, the pure OCR version has about 2.3× more lines.

The results of the three implementations using a naive hand-coded sequential matrix

multiplication kernel are shown in Figure 5.4. We use matrices of size 1600 × 1600 and
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3200 × 3200 with varying tile sizes 50 × 50, 100 × 100 and 200 × 200 to observe the effects

of different combinations of the problem size and the tiling. In 5.5a, the HTA-OCR version

stopped scaling when thread count is larger than 18. This is because the task spawning

overhead dominates the execution time, and adding more threads does not help. In contrast,

the pure OCR version shows inferior performance, because it spawns the tasks sequentially

to build the complete task graph before computation starts, while the HTA version can

overlap task spawning and computation.

In the experiment corresponding to Figure 5.5b, where we keep the problem size fixed

while reducing the number of tiles, both the pure OCR and the HTA-OCR results improve

because there are fewer tasks to generate and the larger task granularity amortizes the

overhead better. The OpenMP version performs slightly worse than the first configuration,

because the workload can not be perfectly balanced between the implicit barriers, resulting

in some idle time of the threads. In contrast, both the OCR and HTA-OCR versions can

schedule tasks dynamically and there are enough tasks to keep threads busy most of the

time. Also, if the task spawning time of the pure OCR version is excluded, it will have

comparable performance as the HTA version. In 5.5c and 5.5d, a larger problem size is used.

When tiles are 100×100, the pure OpenMP and the HTA-OCR versions have similar results,

while the pure OCR version still falls behind due to its sequential task spawning. When tiles

are 200 × 200, OpenMP speedup curve shows the same staircase pattern due to the task

distribution problem as described in Section 5.1, while the other two versions have smoother

speedup curves.

We also conduct the experiments using sequential MKL [25] dgemm kernel in place of the

naive kernel. Besides the three versions, we also measured the execution time of a version

computing the untiled matrix-matrix multiplication using multithreaded MKL dgemm kernel,

as shown in Figure 5.5. Since the sequential MKL dgemm kernel is faster than the naive

kernel, with the same tiling and problem size as the previous experiments, it can be seen
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as a reduction of task granularity. The speedup curves are plotted using the execution time

using single thread MKL dgemm execution time as base.

Comparing the pure OpenMP, the pure OCR and the HTA-OCR versions, they are

comparable only when the tile size is large (200 × 200). When the tile size is smaller, the

OpenMP version performs the best while the pure OCR and the HTA-OCR versions suffer

from task overhead. Pure MKL multithreaded results are plotted as a comparison. They

did not outperform the tiled versions and some more fine-tuning of MKL parameters might

be needed to get better results.
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(a) 32× 32 tiles, 50× 50 elements per tile
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(b) 16× 16 tiles, 100× 100 elements per tile
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(c) 32× 32 tiles, 100× 100 elements per tile
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(d) 16× 16 tiles, 200× 200 elements per tile

Figure 5.4: Tiled matrix multiplication results using naive kernel
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Figure 5.5: Tiled matrix multiplication results using MKL dgemm kernel
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5.3 Tiled Dense Cholesky Factorization

Cholesky factorization takes as input a Hermitian positive-definite matrix and decomposes

it into a lower triangular matrix and its conjugate transpose. It is frequently used in solving

numeric systems. Since the input matrix is symmetric, the computation can be applied to

one triangular matrix and transpose the result to get the other half.

1 /* hA, hB: Input tiled matrix , hC: Output tiled matrix */
2 /* nBlocks: Number of tiles along a single dimension */
3 for(int k = 0; k < nBlocks; k++) {
4 Tuple kk = Tuple_create (2, k, k);
5 HTA *hAkk = HTA_pick_one_tile(hA , &kk);
6 HTA_map(POTRF , ARGS(LHS(0, hAkk)));
7 for(int i = k+1; i < nBlocks; i++) {
8 Tuple ik = Tuple_create (2, i, k);
9 HTA *hAik = HTA_pick_one_tile(hA , &ik);

10 HTA_map(TRSM , ARGS(LHS(0, hAik), RHS(0,hAkk)));
11 }
12 for(int j = k+1; j < nBlocks; j++) {
13 Tuple jj = Tuple_create (2, j, j);
14 Tuple jk = Tuple_create (2, j, k);
15 HTA *hAjk = HTA_pick_one_tile(hA , &jk);
16 HTA *hAjj = HTA_pick_one_tile(hA , &jj);
17 HTA_map(SYRK , ARGS(LHS(0, hAjj), RHS(0, hAjk)));
18 for(int i = j+1; i < nBlocks; i++) {
19 Tuple ij = Tuple_create (2, i, j);
20 Tuple ik = Tuple_create (2, i, k);
21 HTA *hAij = HTA_pick_one_tile(hA , &ij);
22 HTA *hAik = HTA_pick_one_tile(hA , &ik);
23 HTA_map(GEMM , ARGS(LHS(0, hAij), RHS(0, hAik , hAjk)));
24 }
25 }
26 }

Listing 5.5: Tiled dense Cholesky factorization in HTA-OCR

Here we use the tiled version of the Cholesky fan-out algorithm with the MKL [25]

kernels shown in Listing 5.5. In each k loop iteration, the algorithm first performs Cholesky

factorization (calling POTRF) on the diagonal tile A[k][k] (line 4 - 6). Next, using A[k][k]

as its input, the first inner i loop applies TRSM to the kth column tiles below the diagonal

tile (line 7 - 11). Since TRSM tasks of the same k iteration request read access to A[k][k]

and write accesses to different tiles in the kth column, they can all execute in parallel to
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each other. The submatrix update is performed in the inner j loop by calling SYRK (line 13

- 17) or GEMM (line 18 - 23) depending on whether the output tile is on the diagonal. The

submatrix updates can all be done in parallel. The inner loop iteration count decreases when

k goes up. As a result, the parallelism is the largest at the beginning of the execution and

diminishes towards the end.

Figure 5.6: Task graph of tiled Cholesky factorization of 4× 4 tiles

The data dependences form a complex dataflow task graph, as shown in Figure 5.6. The

tasks are marked with the type of the operation and the indices of their output tile. The

parallelism grows rapidly initially and diminishes with the progress of the execution. The

task dependences become even more complex when the amount of tiles increases. When

data dependences are complicated, programmers typically formulate algorithms using bulk-

synchronous methods. However, using global barriers is often an overkill. Whether a task

can start should only depend on the readiness of the data tiles needed for its computation.

As pointed out in [12], dynamic scheduling based on task dependences can relax the order

of task executions and eliminate the idle time that happens in the bulk-synchronous execu-

tion of the Cholesky factorization algorithm. Our implementations in both pure OCR and
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HTA-OCR generate exactly the graph in Figure 5.6 by using OCR events to represent data

dependences among tasks with no global synchronization barriers required. Observing the

task dependences, we expect not only the tasks of the same iteration to overlap, but the

tasks across iterations should also overlap. Both the complete OCR implementation and the

HTA-OCR one can be found in Appendix B. Compared with the HTA-OCR version, the

pure OCR program has about 1.9× more lines.

1 /* A, B: Array of input tiles , C: Array of output tiles */
2 /* nBlocks: Number of tiles along a single dimension */
3 for(int k = 0; k < nBlocks; k++) {
4 int numGEMMS = (nBlocks -k)*(nBlocks -k-1)/2;
5 POTRF (&A[k*nBlocks+k]);
6 #pragma omp parallel for schedule(runtime)
7 for(int i = k+1; i < nBlocks; i++) {
8 TRSM(&A[i*nBlocks+k], &A[k*nBlocks+k]);
9 }

10 #pragma omp parallel for schedule(runtime)
11 for(int x = 0; x < numGEMMS; x++)
12 {
13 int i, j;
14 GET_I_J(x, k+1, nBlocks , &i, &j);
15 if(i == j)
16 SYRK(&A[j*nBlocks+j], &A[j*nBlocks+k]);
17 else
18 GEMM(&A[i*nBlocks+j], &A[i*nBlocks+k], &A[j*nBlocks+k]);
19 }
20 }

Listing 5.6: Tiled dense Cholesky factorization in OpenMP

As a comparison, the OpenMP implementation is shown in Listing 5.6. Essentially,

it has the same program structure as the HTA-OCR version, except for the differences

in the parallel constructs. Dynamic scheduling is used to alleviate load imbalance in the

experiments. Although the HTA-OCR version has more lines of code, conceptually it is not

more complicated than the OpenMP version. If the library is implemented in C++, with

C++ operator overloading, the HTA program can definitely be more concise.

Figure 5.7 contains experimental results of pure OCR, pure OpenMP and HTA-OCR

with four different configurations. In Figure 5.7a when there are many tiles and the tile size
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is small, pure OpenMP performs the best and pure OCR performs the worst. The HTA-OCR

implementation stops scaling when thread count is larger than 22. This is the same problem

due to task generation overhead mentioned in Section 5.2, and the pure OCR version is

worse than the HTA-OCR one also because of the sequential task graph generation. In

Figure 5.7b, the same problem size is used but the tiling is changed to have fewer tiles and

larger task granularity. HTA-OCR performs the best, closely followed by pure OCR, and

both are much better than OpenMP. Fewer tiles means lower parallelism, thus, the overall

scalability is worse than the previous case. A larger problem size is used in Figure 5.7c and

5.7d with different tiling, and similar results are observed, except that in both cases the task

granularity is large enough to amortize HTA-OCR’s task generation overhead.

The experiments show that, for this problem, the OCR’s task execution model indeed

exploits the chances to overlap tasks better than OpenMP does. In the case of pure OCR,

this involves programmer’s effort to explicitly write code to construct the dataflow task

dependence graph. But by using HTA-OCR, the programmer can write code with simplicity

similar to that of the OpenMP version while getting the benefits of using the OCR runtime

system.
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(a) 3200× 3200 elements, 32× 32 tiles, 100× 100 elements per tile
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(b) 3200× 3200 elements, 16× 16 tiles, 200× 200 elements per tile

0 5 10 15 20 25 30 35 40
Number of worker threads

0

2000

4000

6000

8000

10000

12000

T
o

ta
l 

e
x
e
cu

ti
o

n
 t

im
e
 (

m
s)

Pure OMP
HTA-OCR
Pure OCR

0 5 10 15 20 25 30 35 40
Number of worker threads

0

5

10

15

20

25

30

35

S
p

e
e
d

u
p

Pure OMP
HTA-OCR
Pure OCR

(c) 6400× 6400 elements, 32× 32 tiles, 200× 200 elements per tile
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Figure 5.7: Dense Cholesky factorization results
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5.4 Tiled Sparse LU Factorization

LU factorization converts an input matrix A into the product of a lower triangular matrix

L and an upper triangular matrix U. Compared with Cholesky factorization, this method is

not limited to Hermitian positive-definite matrices. Here, we consider a tiled version of the

algorithm.

Our HTA-OCR tiled sparse LU factorization implementation is adapted from the source

code used in the Teraflux project [14]. A code segment (Listing 5.7) generates the input

matrix before LU factorization starts. It iterates over the blocks of the matrix, and follows

pre-defined rules to decide whether a block is empty or not. If a block is non-empty, it

allocates memory space for it. The code segment generates input matrices of the same

sparsity pattern every time for the same tiling configuration.

1 /* NB: number of blocks along a dimension */
2 for (ii = 0; ii < NB; ii++)
3 for (jj = 0; jj < NB; jj++) {
4 null_entry = FALSE;
5 if ((ii < jj) && (ii % 3 != 0)) null_entry = TRUE;
6 if ((ii > jj) && (jj % 3 != 0)) null_entry = TRUE;
7 if (ii % 2 == 1) null_entry = TRUE;
8 if (jj % 2 == 1) null_entry = TRUE;
9 if (ii == jj) null_entry = FALSE;

10 if (null_entry == FALSE) {
11 A[ii][jj] = (ELEM *) malloc(BSIZE * BSIZE * sizeof(ELEM));
12 if (A[ii][jj] == NULL) {
13 printf("Out of memory\n");
14 exit (1);
15 }
16 } else
17 A[ii][jj] = NULL;
18 }

Listing 5.7: Code to generate parallel tiled sparse LU sparsity pattern

The HTA-OCR program code of the core of the computation is shown in Listing 5.8. An

outer kk loop contains four steps:

1. DIAG factors the diagonal tile (kk,kk) sequentially into the lower triangular part

(A[kk].lt) and the upper triangular part (A[kk].ut).
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1 /* hA: The tiled sparse matrix to factor
2 A: A helper 2D array for determining whether a block is empty
3 NB: The number of blocks in a single dimension */
4

5 for (kk=0; kk <NB; kk++) {
6 Tuple tkk = Tuple_create (2, kk, kk);
7 /* (1) Diagonal tile */
8 HTA_map(DIAG , ARGS(LHS(0, HTA_pick_one_tile(hA , &tkk))));
9 /* (2) Row kk tiles */

10 for (jj=kk+1; jj <NB; jj++) {
11 if (A[kk][jj] != NULL) {
12 Tuple tkj = Tuple_create (2, kk, jj);
13 HTA_map(ROW_UPDATE , ARGS(LHS(0, HTA_pick_one_tile(hA , &tkj)),
14 RHS(0, HTA_pick_one_tile(hA , &tkk))));
15 }
16 }
17 /* (3) Column kk tiles */
18 for (ii=kk+1; ii <NB; ii++) {
19 if (A[ii][kk] != NULL) {
20 Tuple tik = Tuple_create (2, ii, kk);
21 HTA_map(COL_UPDATE , ARGS(LHS(0, HTA_pick_one_tile(hA , &tik)),
22 RHS(0, HTA_pick_one_tile(hA , &tkk))));
23 }
24 }
25 /* (4) Submatrix updates */
26 for(ii=kk+1; ii <NB; ii++) {
27 if (A[ii][kk] != NULL) {
28 Tuple tik = Tuple_create (2, ii, kk);
29 for (jj=kk+1; jj <NB; jj++) {
30 if (A[kk][jj] != NULL) {
31 Tuple tkj = Tuple_create (2, kk, jj);
32 Tuple tij = Tuple_create (2, ii, jj);
33

34 /* A[ii][jj] will be generated by this operation */
35 if (A[ii][jj]== NULL)
36 A[ii][jj] = NON_NULL;
37

38 HTA_map(SUBMAT_UPDATE ,
39 ARGS(LHS(0, HTA_pick_one_tile(hA , &tij)),
40 RHS(0, HTA_pick_one_tile(hA , &tik),
41 HTA_pick_one_tile(hA, &tkj))));
42 }
43 }
44 }
45 }
46 }

Listing 5.8: Parallel tiled sparse LU factorization in HTA-OCR

2. ROW_UPDATE solves X for the equation A[kk][jj]=A[kk].lt*X for each of the row kk

tiles.

3. COL_UPDATE solves X for for the equation A[ii][kk]=X*A[kk].ut for each of the column
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kk tiles.

4. COL_UPDATE update each of the tiles in the submatrix

A[ii][jj]-=A[ii][kk]*A[kk][jj].

The operations on the tiles within a step are fully independent, but there are data depen-

dences between the steps. There are also dependences across iterations of the loop kk.

The data dependences form a complex task graph, as shown in Figure 5.8. The tasks

are marked with the type of the operation and the index of their output tile. Similar to the

Cholesky factorization in Section 5.3, the parallelism grows rapidly initially and diminishes

with the progress of the execution. Notice that the task graph is drawn assuming all tiles

are dense. When there are empty tiles, some of the nodes and dependence edges will be

removed, resulting in a subgraph of the task graph.

Figure 5.8: Sparse LU task graph with input HTA of 4× 4 tiles

The dataflow task graph is even more complicated than Cholesky factorization for the
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same tiling. Bulk synchronous execution is not desired, because it not only stops the compu-

tations of different steps but also the computations across the outer kk loop iterations from

overlapping. This parallelism is automatically exploited in HTA-OCR by the underlying

OCR runtime system because the parallel constructs do not enforce implicit barriers and

the runtime system can schedule tasks as soon as their input data dependences are satisfied.

Besides comparing to OpenMP using parallel for loops, we also compare to OpenMP Task-

ing, which incorporates ways to program data dependent tasks [8, 16]. Both the OpenMP

versions used in our experiments are also adapted from the OMPSS version from the Teraflux

project.

Figure 5.12 shows the performance results of the three versions. In 5.9a, an input matrix

of 1600 × 1600 is used and divided into 16 × 16 tiles. As can be seen from the results,

the HTA-OCR version performs comparably to the OpenMP Tasking version, and both can

achieve better speedup than using OpenMP parallel for loops. This confirms our assumption

that dataflow task execution model can deliver greater performance when the application

has lots of asynchronous tasks. When we increase the task granularity by using the same

tiling with larger tiles as shown in 5.9b, the maximum achievable speedup increases for all

three versions, but not by a lot, because the tiling 16×16 does not expose enough parallelism

in the computations. We use four times more tiles in 5.9c, and the results improve due to

increased parallelism.
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(a) 1600× 1600 elements, 16× 16 tiles, 100× 100 elements per tile

0 5 10 15 20 25 30 35 40
Number of worker threads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

T
o

ta
l 

e
x
e
cu

ti
o

n
 t

im
e
 (

m
s) OMP Parallel For

HTA-OCR
OMP Tasking

0 5 10 15 20 25 30 35 40
Number of worker threads

0

2

4

6

8

10

12

S
p

e
e
d

u
p

OMP Parallel For
HTA-OCR
OMP Tasking

(b) 3200× 3200 elements, 16× 16 tiles, 200× 200 elements per tile
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Figure 5.9: Sparse LU factorization results
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5.5 AMG Microkernel

AMG microkernel is one of the Coral benchmarks [29]. It has three kernels, and each of them

is executed 500 times. Matvec computes sparse matrix-dense vector multiplication. Relax

is algebraic multigrid mesh relaxation. Axpy computes αx + y where α is a scalar, x and y

are vectors. We only evaluate HTA-OCR for the first two kernels, because Axpy uses dense

vector and is embarrassingly parallel with workload easily balanced and it will show similar

characteristics to benchmark programs that we have already discussed.

In the experiments, we measured the total time spent in executing all 500 iterations. We

used a fixed problem size in the experiments: the sparse matrices are of dimension 106× 106

and the dense vectors each has 106 elements. Notice that for both Matvec and Relax kernels,

the input sparse matrix is generated once and used repeatedly in all 500 iterations. Thus,

the non-zero patterns in the generated matrices do not change.

5.5.1 Matvec Kernel

For the Matvec kernel, the OpenMP implementation from the Coral website parallelizes the

for loop that iterates over the rows of the sparse matrix using static scheduling. Hence,

all threads get nearly equal number of rows as input. But since the matrix is sparse, the

workload is most likely uneven, and the total execution time depends on the thread that

gets the most non-zero elements in its set of rows. Also, because of the implicit barriers in

OpenMP, when one matvec is not completely finished, the next one cannot start. In the

HTA-OCR version, we take the generated sparse matrix and convert it into a sparse HTA.

The rows are also split evenly among tiles. There are no barriers, but since the output vector

is reused, the subtasks across iterations form dependence chains.

In Figure 5.10, it can be seen that HTA-OCR has better results. From the execution

trace, we found that the average subtask execution time is way less in HTA-OCR than in
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Figure 5.10: Matvec kernel results

OpenMP. We also profiled the cache misses and saw that HTA-OCR had less cache miss

rate. The execution model difference does not seem to play a role here, because the tasks

form dependence chains and there is not much asynchrony. We believe the different memory

layouts in the sparse matrices of the two versions affect the average task execution time. In

the OpenMP version, the generated sparse matrix (Compressed Sparse Row (CSR) format)

is not tiled. But in HTA-OCR, the sparse matrix is converted into a sparse HTA by copying

the data from the CSR matrix into an array of CSR tiles. This difference contributes to the

much better performance of the HTA-OCR implementation.

5.5.2 Relax Kernel

The Relax kernel is an implementation of Successive Over Relaxation method. Its computa-

tion is shown in Algorithm 1. The parallelization is similar to that of Matvec and the rows

of the sparse matrix are split evenly. In OpenMP, #pragma omp for is added to both the

first copy loop (Line 1 - 3) and the second for loop (Line 4 - 10). For HTA-OCR, a map

operation performs the copying and a subsequent map operation generates the RELAX tasks

that have all-to-all dependences to the copy tasks.

We found that the HTA-OCR version does not perform well for this kernel as shown in
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Algorithm 1: Relax Kernel Computation

Data: A is a matrix of size n× n. f , u are both vectors of size n. tmp is also a vector
used to hold the original value of u.

1 for i = 0 to n− 1 do
2 tmpi = ui;
3 end
4 for i = 0 to n− 1 do
5 res = fi;
6 for j = i+ 1 to n− 1 do
7 res -= Aij × tmpj;
8 end
9 ui = res / Aii;

10 end

Figure 5.11. The execution trace shows that there is a barrier-like behavior due to all-to-all

dependences, and the RELAX subtasks in HTA-OCR take longer in average than OpenMP.

We suspect this is a data locality issue and we use Papi [31] library to insert codes to read

hardware cache miss event counters. We measured the cache misses rate of using 16 and 32

therads, as shown in Table 5.1. Surprisingly, not only the data cache miss rates are higher for

the HTA-OCR version, the L1 I-cache miss rate are significantly higher too. This might be

because when the OCR worker threads switch tasks, they run some OCR runtime routines

and replace content from the L1 I-cache. And the higher miss rate in the data cache could

be a result of bad runtime scheduling decisions causing the subtasks to be assigned to where

the required data does not already exist in the cache.

Thread
Count

Version
L1 I-Cache
Accesses

L1 I-Cache
Misses (Rate)

L2 Total Cache
Accesses

L2 Total Cache
Misses (Rate)

16
OpenMP 286,563,331 18,111 (0.006%) 33,542,300 4,680,982 (13.96%)

HTA-OCR 267,827,293 45,374 (0.017%) 32,765,762 6,101,246 (18.62%)

32
OpenMP 145,291,535 16,647 (0.011%) 17,076,590 2,220,049 (13.00%)

HTA-OCR 133,942,827 45,869 (0.034%) 16,887,818 2,749,603 (16.28%)

Table 5.1: PAPI hardware event counter report of AMG Microkernel Relax kernel execution
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Figure 5.11: Relax kernel results

5.6 Parallel Mergesort

Mergesort is one of the most influential sorting algorithm. It uses a divide-and-conquer strat-

egy. When the sub-problems have been sorted, merge steps are performed to get the solution

to the original problem. The algorithm can be implemented by using either a recursive top-

down approach or an iterative bottom-up approach. Intuitively, the parallelism comes from

solving sub-problems in parallel independently2. We implement parallel mergesort using the

bottom-up approach.

Listing 5.9 is the HTA-OCR mergesort. It is different from the one presented in Sec-

tion 4.1 because the number of chunks is dynamic. For simplicity, we assume the number of

chunks is a power of two. We use an HTA of multiple levels to store the data. The height

of the HTA is computed in Line 4 by taking LOG2 of the number of chunks. In Line 6 - 7,

a regular array is allocated and initialized with unsorted integers. Next, an array of Tuples

are filled with the desired tiling which has 2 tiles for each node in the HTA hierarchy except

for the leaves. In Line 16 - 19, an HTA hA is created by using HTA_create_impl(), which

allows creating a shell of HTA on the regular array A with the dynamically created tiling.

The major computation is between Line 22 - 27. First, an HTA_map() call applies QSORT

2A more sophisticated algorithm also parallelizes the merge step to get even more parallelism.
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1 int CHUNK_SIZE = /* Initialize for appropriate task granularity */
2 int num_elements = /* The size of the array */
3 int num_chunks = num_elements / CHUNK_SIZE; /* Assume power of 2 */
4 int height = LOG2(num_chunks);
5

6 double *A = malloc( ... );
7 /* ... Initialize array A ...*/
8

9 /* Create tiling dynamically */
10 Tuple tiling[height ];
11 for(int i = 0; i < height; i++) {
12 tiling[i] = Tuple_create (1, 2);
13 tiling[i]. height = height - i;
14 }
15 /* Create HTA hA using the content of array A */
16 Tuple flat_size = Tuple_create (1, num_elements);
17 /* ... Initialize dist ...*/
18 HTA *hA = HTA_create_impl(A, 1, height+1, &flat_size ,
19 ORDER_ROW , &dist , HTA_SCALAR_TYPE_DOUBLE ,
20 height , tiling);
21 /* Quick sort the leaves individually */
22 HTA_map(QSORT , ARGS(LHS(height , hA)));
23 /* Bottom up merge */
24 while(height > 0) {
25 height --;
26 HTA_map(MERGE , ARGS(LHS(height , hA)));
27 }

Listing 5.9: Parallel mergesort in HTA-OCR

to the leaf level tiles of hA. For each leaf tile, a parallel subtask is created to perform quick

sort on its data. Then, in each iteration of the while loop, HTA_map() is called to apply

MERGE to a single level, starting from one level above the leaf to the root level. Each MERGE

subtask gets either an intermediate node or the root node as its input. Either way, it merges

the data of its two children nodes. The task graph formed dynamically is similar to the one

shown in Figure 4.2. As a comparison, the OpenMP implementation is shown in Listing 5.10.

We conducted experiments to compare the strong scaling (fixed problem size) of the

HTA-OCR version with its OpenMP counterpart. In the first experiment, the input array,

which is not sorted, has 220 double precision floating numbers divided into 215 elements per

leaf tile and there are 25 leaf tiles in total. The execution time and speedup with respect to

the amount of OCR worker threads are shown in Figure 5.12a.
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1 int CHUNK_SIZE = /* Initialize for appropriate task granularity */
2 int num_elements = /* Initialize to size of the array */
3 int num_chunks = num_elements / CHUNK_SIZE; /* Assume power of 2 */
4

5 #pragma omp parallel for schedule(runtime)
6 for(long int i = 0; i < num_chunks; i++) {
7 QSORT (&A[i*CHUNK_SIZE], CHUNK_SIZE);
8 }
9

10 int level_chunk_size = CHUNK_SIZE;
11 int num_merges = num_chunks >> 1;
12

13 while(num_merges > 0) {
14 #pragma omp parallel for schedule(runtime)
15 for(int i = 0; i < num_merges; i++) {
16 MERGE(&A[2*i*level_chunk_size], &A[(2*i+1)*level_chunk_size],

level_chunk_size);
17 }
18 level_chunk_size <<= 1;
19 num_merges >>= 1;
20 }

Listing 5.10: Parallel mergesort in OpenMP

The strong scaling results are not very good for either implementation. This is because

the algorithm has the most parallelism in the beginning but the parallelism quickly decreases.

Increasing the number of worker threads adds overhead but does not help when there is not

enough parallelism.

When the number of threads used is small, the HTA-OCR version performs slightly worse

than the OpenMP counterpart. This is due to the higher overhead of the OCR tasks and the

added overhead of the HTA library layer. However, it catches up when the thread count is

above 6, and achieves the best speedup (2.55×) when thread count is 9. This is because the

OCR runtime has the advantage of dynamic scheduling while the OpenMP implementation

relies on barriers. The results when the array is 4 times larger with the same leaf tile size

and more leaf tiles are shown in Figure 5.12b. Both HTA-OCR and OpenMP have better

speedup results than in the previous experiment. The maximum speedup (3.48×) is again

achieved by the HTA-OCR version, and it is higher than the previous configuration because

of the increased parallelism.
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(a) 220 elements, 25 leaf tiles
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(b) 222 elements, 27 leaf tiles

Figure 5.12: Parallel mergesort results

5.7 K-means

K-means is a classic unsupervised machine learning algorithm. For a given set of data

samples, each has a set of numerical values as their features, the K-means algorithm finds

the centroids of data clusters. Suppose K centroids are desired as the result, the iterative

algorithm starts by guessing the K centroids, and then classifies the samples with these

guesses by choosing for each sample the closest centroid. Next, with all samples classified,

there are now K groups of samples. The centroids of groups are then updated by taking the

average of the samples in each of them. The newly computed centroids are used to classify

the data samples in the next iteration. A convergence check is performed in each iteration
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to see if the centroids stop changing values.

We acquired the baseline OpenMP code from the Rodinia benchmarks [13]. The imple-

mentation parallelizes the classification of the data samples using a parallel for loop. The

data samples are divided into even-sized chunks using static scheduling. For each thread, it

also uses extra storage to keep the sum of the samples while doing the classification, and to

track if the assigned group of any sample changes, as the convergence test. Once the parallel

for loop finishes, the partial sums from all threads are summed up and the average is taken

to get the new centroids in the sequential section. The outer iteration loop tests whether

the result converges or the maximum number of iterations is reached.

The HTA-OCR version also divides the data samples array into even-sized tiles. It

parallelizes the classification step using HTA_map(). The partial sums of the samples and

the local convergence of each chunk are also computed in the same map operation. Three

reductions are required here: one for the partial sums of the samples in each group, one for

the counts of the samples in each group, and one for merging the convergence test results.

Finally, another map operation is needed to update the centroids.

We used the dataset kdd_cup that comes with the Rodinia K-means benchmark, which

has 494020 samples. Initially, the OpenMP K-means program from Rodinia does not have

any speedup using multiple threads. After some investigation, we found there is a perfor-

mance bug due to the false sharing of the extra storage allocated for threads to count the

number of samples in each group in parallel. We added padding to the rows of the arrays

and it solved the performance bug. In the results shown in Figure 5.13, we see that the

OpenMP version performs much better than HTA-OCR. After studying the HTA-OCR exe-

cution trace, we determined that the inferior performance is because of the three reductions.

These reductions cause three split-phase continuations and create a large gap between the

classification tasks. In contrast, the OpenMP reductions are much faster and the OpenMP

version scales perfectly for K-means algorithm up till 37 threads.
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A way to improve the problem in HTA-OCR is to merge the three split-phase continua-

tions into a single one. In the K-means algorithm, there are no data dependences among the

three reductions. Hence, there is no need to split-phase continue until immediately before

the use of the reduction results. Although our current implementations for reductions are

synchronous, it is possible to implement asynchronous reductions, and an extra operation to

retrieve the results from different reductions at once, so that the split-phase continuations

can be delayed and the number of them can be curtailed.
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Figure 5.13: Kmeans results
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5.8 Parallel Breadth First Search

Breadth first search (BFS) in a graph starts from a single node, and then gradually expands

to the neighbors of the nodes that have been searched. The level-synchronous algorithm is

often used. It is called level-synchronous because the algorithm uses a worklist to store the

active nodes whose neighbors needs to be searched, and the active nodes in the worklist of

an iteration has the same minimal distance (i.e. at the same level) from the source node.

In this experiment, we use the reference OpenMP implementation from the Graph 500 [34]

challenge as the base to build an HTA-OCR version.

The OpenMP version in Graph 500 is a level-synchronous algorithm. It uses an array

vlist as the worklist of the active nodes. At the beginning, only the source vertex is in the

list, and the first iteration of the BFS loop pops the source vertex and searches its neighbors.

The neighbors that have a distance of 1 from the source vertex are added to the worklist. In

the next iteration, all vertices in the worklist are popped, and their neighbors are searched

in parallel. It is possible that more than one active nodes have the same neighbors. The

OpenMP implementation uses an atomic compare-and-swap operation to ensure that the

same neighbor is picked only once at each level.

In the HTA-OCR version, we also use the same algorithm but with some changes to

make it work with HTA-OCR. We keep the vlist array, and at each level, we use HTA_

create_shell() function to construct an HTA containing the active nodes of the level. We

tile the active node list using a user specified number NP. When the number of active nodes

is fewer than NP, we let each tile contain only one active node. A map operation applies

BFS on the tiles to perform the search of neighbors in parallel. It also builds a local new

active node list, and counts the number of newly added nodes. A prefix scan is performed

on the local counts, and then the results are used to merge the local active node lists into

one which is then appended to the vlist array. The results of the scan are also used to
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update the range of the active nodes in the vlist. While we try to keep the algorithm the

same as OpenMP, we have to use the atomic compare-and-swap operation in the subtasks.

This breaks the OCR model, since the subtasks synchronize with each other in the middle

of their executions and not through input dependence slots. But for a single node machine,

this algorithm works fine and is the closest to the OpenMP version.

The benchmark allows adjusting the problem size by specifying the SCALE and the edge

factor. SCALE is the logarithm base two of the number of total vertices in the graph, and

the edge factor is the ratio of the total number of edges to the number of vertices. In the

configurations of our experiments, we varied the SCALE but kept the edge factor the same.

The smallest size we used has 216 vertices and the largest one has 220 vertices. We kept the

other default configurations of the benchmark.

The performance results of parallel BFS are the worst for HTA-OCR of all the benchmarks

we evaluated in this chapter. For the default configuration in Figure 5.14a, the speedup

never reached 2×. When we increased the problem size in 5.14b and 5.14c, while the results

did improve, they are still disappointing. We examined the execution trace and found a

few problems. First, the HTA-OCR implementation needs to read back the prefix-scan

result from an HTA at each level, causing a split-phase continuation. This is much slower

compared to using global synchronization barriers and performing memory reads after the

barrier. Second, the workload at each level varies a lot, and it does not solely depend on the

number of active nodes. It is possible that there is a large number of active nodes but the

number of the neighbors to search is small. This makes the task granularity very fine, and

the task overhead in HTA-OCR prevents it from getting good performances.
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Figure 5.14: Parallel BFS results
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5.9 LULESH

Livermore Unstructured Lagrange Explicit Shock Hydrodynamics (LULESH) [24] is a proxy

app designed by Lawrence Livermore National Lab. It has been studied in many research

projects, and there have been attempts to port it to different programming models and

advanced machines. The current version is LULESH 2.0. For this experiment, due to the

lacking of a C implementation of LULESH 2.0 [28], we asked the author’s help and got a

sequential C implementation of LULESH 1.0, which we ported to OpenMP and HTA-OCR.

The LULESH algorithm uses a timestepping method to simulate 3-D shock hydrodynam-

ics. In each timestep, a first phase of calculating nodal forces, accelerations, velocities, and

positions is followed by a phase of calculating element quantities. Before starting the next

timestep, hydro and courant constraints are calculated, and the delta time depends on the

constraints. The source code of the OpenMP-C implementation of LULESH 1.0 is in a single

file of around 3000 lines. There are 45 loops parallelized using #pragma omp for and there

are two places where reductions are needed to compute the hydro and courant constraints.

Based on the OpenMP-C implementation, we ported it to HTA-OCR. Our strategy for

porting is to convert the arrays into HTAs. The user has to specify a fixed number NP, and

all the arrays are partitioned into NP tiles. The OpenMP parallel for loops are converted into

HTA_map() calls, and the original loop bodies are moved to form the operator functions. See

Listing 5.11 and 5.12 for an example of the contrast between the two. As for the reductions,

each is represented by a map operation to compute partial results in parallel followed by an

HTA reduction.
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1 static inline
2 void CalcAccelerationForNodes(Real_t *xdd , Real_t *ydd , Real_t *zdd ,
3 Real_t *fx , Real_t *fy , Real_t *fz ,
4 Real_t *nodalMass , Index_t numNode){
5 #pragma omp parallel for firstprivate(numNode)
6 for (Index_t i = 0; i < numNode; ++i) {
7 xdd[i] = fx[i] / nodalMass[i];
8 ydd[i] = fy[i] / nodalMass[i];
9 zdd[i] = fz[i] / nodalMass[i];

10 }
11 }

Listing 5.11: LULESH OpenMP code using parallel for loop

1 void
2 CALC_ACCELERATION_FOR_NODES(HTA** lhs , HTA** rhs , uint64_t* capture){
3 Index_t numNode = lhs[0]-> flat_size.values [0];
4 Real_t *xdd = HTA_get_ptr_raw_data(lhs [0]);
5 Real_t *ydd = HTA_get_ptr_raw_data(lhs [1]);
6 Real_t *zdd = HTA_get_ptr_raw_data(lhs [2]);
7 Real_t *fx = HTA_get_ptr_raw_data(rhs [0]);
8 Real_t *fy = HTA_get_ptr_raw_data(rhs [1]);
9 Real_t *fz = HTA_get_ptr_raw_data(rhs [2]);

10 Real_t *nodalMass = HTA_get_ptr_raw_data(rhs [3]);
11 for (Index_t i = 0; i < numNode; ++i) {
12 xdd[i] = fx[i] / nodalMass[i];
13 ydd[i] = fy[i] / nodalMass[i];
14 zdd[i] = fz[i] / nodalMass[i];
15 }
16 }
17 static inline
18 void CalcAccelerationForNodes(HTA *xdd , HTA *ydd , HTA *zdd ,
19 HTA *fx , HTA *fy , HTA *fz ,
20 HTA *nodalMass , Index_t numNode){
21 HTA_map(CALC_ACCELERATION_FOR_NODES ,
22 ARGS(LHS(1, xdd , ydd , zdd),
23 RHS(1, fx , fy , fz , nodalMass)));
24 }

Listing 5.12: LULESH HTA-OCR code using HTA map()

Problem Size Iteration Count
453 1495
703 1816
903 2026

Table 5.2: The configurations used in LULESH experiments
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We conducted the experiments using three different problem sizes as shown in Table 5.2.

When the problem size increases, not only the time spent for one iteration increases, it also

takes more iterations to converge. For the results of the smallest problem size shown in

Figure 5.16a, the OpenMP version scales fine but not great. The maximum speedup 7.62×

can be observed using 25 threads. In contrast, HTA-OCR can match OpenMP only up till

6 threads. It cannot compete with OpenMP for larger thread counts, and it even has slow

down when more than 38 worker threads are used. Obviously, for this problem size, the

task granularity is too small, and the overhead of using HTA and OCR library is prominent.

Following this thread of reasoning, we increase the problem size to see if it improves the

scalability. We can see that it indeed improves the scalability in Figure 5.16b. While the

scalability of both improves, HTA-OCR can match OpenMP performance up till 17 threads.

In the largest problem size we use in Figure 5.16c, the HTA-OCR version has even better

performance for a range of thread count. However, the results do not justify the use of HTA-

OCR in LULESH, because the programmability of the two models are similar and using

HTA-OCR does not bring significantly better performance results.

The first reason for HTA-OCR’s disadvantage in LULESH is because of the algorithm

used. Two things limit the subtask overlapping. First, the need of reductions for convergence

test in each iteration causes split-phase continuation in every iteration. As we mentioned

in Section 4.5, split-phase continuation stops subtasks from being generated, and can cause

temporary work depletion. Because of this, subtasks of different timesteps cannot overlap.

Second, in a few places there are all-to-all data dependences between consecutive map op-

erations, causing barrier-like behaviors. Compared with the optimized OpenMP barriers,

the overhead of dynamically creating the subgraph to represent all-to-all dependences and

executing it is much larger.

The other problem is the task granularity control. We straightforwardly split the arrays

into as many tiles as the amount of worker threads, and the tile count is equivalently the
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parallelism that can be utilized. However, for some simpler operations, even though they

do have this much parallelism, the tasks are too fine grained. We can see this phenomenon

from the execution trace in Figure 5.15. Some operations have coarse-grained tasks, but

many others are very fine-grained. If the programmer can predict the subtask workload of

an application, it could be better if hints are given to the library to adaptively adjust the

amount subtasks generated. The other possibility is to merge some map operations to both

coarsen subtasks and reduce the amount of subtasks generated. This can be done either by

the programmer explicitly, or by the compiler statically, although a sophisticated dependence

analysis is required.

Figure 5.15: LULESH execution trace of a single timestep using 32 worker threads and
edgeElem = 90
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Figure 5.16: LULESH results

82



5.10 NAS Parallel Benchmarks

NAS (Numerical Aerodynamic Simulation) Parallel Benchmarks [4] are a set of programs

created by NASA for evaluating the performance of parallel supercomputers. Although

not full applications, they capture the behaviors of practical computational fluid dynamics

applications. Thus, whether parallel programming systems and parallel machines can deliver

good performance for them is a good indication of how well they will perform with real large-

scale applications.

For our purpose of evaluating the HTA-OCR library, we implemented six of the bench-

marks in HTA-OCR and compared them with the OpenMP implementations on a single

node machine. We observe the strong scaling results of class C for every problem.

5.10.1 EP

EP stands for Embarrassingly Parallel. The program computes the Gaussian random de-

viates (Xk, Yk) followed by a tabulating step to sum up the counts of the pairs that lie in

specific square annulus. The sums
∑

kXk and
∑

k Yk are also computed.

Generally, the algorithm consists of three steps. First, it computes Guassian deviates

(Xk, Yk) fully independently. Second, there are the reductions to compute the counts of

the pairs to be stored in table Ql depending on the criteria given. Finally, there are the

reductions to compute
∑

kXk and
∑

k Yk. In OpenMP, the algorithm is implemented using

a single parallel for loop to parallelize the computations of Gaussian deviates with reduction

clause to sum up
∑

kXk and
∑

k Yk. The entries of table Ql are computed by using atomic

addition inside of the parallel section.

Porting it to HTA-OCR is straightforward. First, a map operation takes input arrays

and calculates Gaussian deviates, while also counting the pairs as partial Ql results. Next, a

reduction is performed to combine the partial Ql results. Finally, two reductions are needed
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to compute
∑

kXk and
∑

k Yk separately.
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Figure 5.17: EP benchmark result

The results of both implementations are very close as we expected. The workload of the

major computation of Gaussian deviates is perfectly balanced and is done fully indepen-

dently. For the reductions at the end, HTA-OCR has more overhead since it has to generate

separate tasks for them, but this part is not apparent because it is amortized by the major

computation.

5.10.2 IS

Integer Sort (IS) sorts an integer array in parallel. The benchmark specification does not

specify the algorithm to use, but only specifies the input and the desired outcome. It also

specifies that only the computation of the ranks of the keys needs to be timed, but not the

final rearrangement of the keys into the sorted array.

The OpenMP implementation uses a bucket sort algorithm for computing the ranks.

Here we give a sketch of the algorithm:

1. In a parallel section, each thread is assigned a chunk of the unsorted key array. The

threads then count the keys that fall in the buckets independently in a parallel for loop

and establish counter values locally.
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2. After the barrier of the previous step, each thread computes the range it has to fill in

the global array of buckets by reading the counter values in the previous step.

3. Each thread sorts local keys into global array of buckets in a parallel for loop. The

buckets are sorted after this step, but the keys within the buckets are unsorted.

4. In a dynamic schedule parallel for loop, each iteration the loop body determines the

ranking of the keys in one bucket. The timed section ends after this step.

For the HTA-OCR version, we also use the bucket sort algorithm but with some changes

for the reason that parallel tasks in HTA cannot randomly access the tiles they do not own.

For this reason, the memory storage required is more than the OpenMP version.

1. The unsorted array is converted into an HTA of P (given by the user) tiles. An HTA

of B × P buckets and an HTA of bucket size counters are also created.

2. HTA_map() operations are invoked to count the local bucket sizes and sort the keys into

local buckets. Notice that there are P sets of buckets when this step is completed.

3. Now, decomposing the array of rankings, P tasks each ranks a range of keys by reading

the results from the previous step.

4. Perform parallel scan to get the rankings of all keys.

The performance results of the two implementations are shown in Figure 5.18. Although

a different algorithm is used in the HTA-OCR implementation, the performance results are

close to OpenMP. In the 32-thread case, OpenMP achieved 26.63× speedup while HTA-OCR

got 24.85× speedup.

5.10.3 FT

FT benchmark uses the 3-D fast-Fourier transform (FFT) to solve a partial differential

equation. 3-D FFT is an important algorithm for many signal processing problems. The
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Figure 5.18: IS benchmark result

sketch of the program is shown below in Algorithm 2. The forward and inverse FFT are

both performed with three consecutive 1-D FFTs in each of the three dimensions, only with

different order.

Algorithm 2: FT algorithm

1 Initialization;
2 Forward FFT;
3 for i = 0 to N do
4 Evolve;
5 Inverse FFT;
6 Checksum;

7 end

The steps can all be parallelized using OpenMP parallel for loop. For each 3-D FFT,

changing the dimension of applying 1-D FFT is done by varying order of the nested loops

without having to actually transpose the 3-D array, and the implementation always paral-

lelizes the outermost loop. In contrast, while most of the other steps in OpenMP can be

converted to HTA map operations, 3-D FFT requires a transposition so that 1-D FFT can

be applied correctly to all three dimensions. Since we are comparing peformance results on a

single node, we take advantage of the shared memory space and create two-level HTAs that

are transposed aliases of each other so that we can avoid actually transposing the 3-D array.
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With this optimization, the HTA-OCR performance can be close to OpenMP, as shown in

Figure 5.19.
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Figure 5.19: FT benchmark result

5.10.4 MG

MG benchmark solves a discrete Poisson problem by performing four iterations of V-cycle

multigrid algorithm. In each V-cycle, there are two phases: the down-cycle and the up-

cycle. In the down-cycle, an input 3-D grid is restricted to the coarsest level grid in a series

of projection (rprj3) operations. Next, an approximate solution is calculated by applying

psinv on the coarsest-level grid. The up-cycle then starts in a loop of interpolation (interp),

residual computation (resid) and smoother application (psinv) iterations, till the resulting

grid reaches the finest level.

The OpenMP parallelization is straightforward. In each of the operations mentioned,

a #pragma omp parallel for is added to the outermost of the nested loops (i.e. 1-D

decomposition). In contrast, the HTA-OCR version uses 3-D decomposition to partition

the grid into tiles, we need to let the tiles contain ghost regions (i.e. copies of cells from

neighboring tiles), since psinv, rprj3 and resid are stencil computations. Only when tiles

contain ghost regions can these operations be performed with HTA_map(). The ghost regions
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also need to be updated when new output of these operations are computed. The data

dependences due to ghost region updates are all-to-all dependences, and thus the amount of

task overlapping is limited in the HTA-OCR version.

In HTA-OCR, the other change we have to make is for the computation on the coarser

grids. When the finest grid has a small size, it is possible that the coarser grids cannot

be tiled in the same way as the finest grid. In that case, the coarser grids are not tiled,

and the operations performed on them becomes sequential. It is reasonable because using

many parallel subtasks for a small grid and a small total workload results in the overhead

dominating the cost.
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Figure 5.20: MG benchmark result

In Figure 5.20, we see that the HTA-OCR results are not as good as OpenMP for higher

thread counts. Other than the all-to-all data dependences due to ghost region synchro-

nizations in the program, we observe from the execution trace (Figure 5.21) that the when

the program processes the coarser grids, the task granularity becomes very small and the

task overhead is too much. OpenMP does not have the same problem because its global

barrier synchronization is much faster. Since the problem is fix-sized and the algorithm

does not grant flexibility in task overlapping, high thread count and task count are very

disadvantageous for HTA-OCR.
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Figure 5.21: HTA-OCR MG V-cycle execution trace

5.10.5 CG

CG benchmark uses conjugate gradient method to solve an unstructured sparse linear system.

The major computation is performed in a loop of 25 conjugate gradient iterations containing a

sparse matrix-dense vector multiplication, vector inner product, and several axpy operations.

Both the OpenMP and HTA implementations parallelize the matrix-vector multiplication

using the same methods as mentioned in Section 5.5.1. For the axpy operations, adding

#pragma omp for in OpenMP is enough. In HTA-OCR, they are converted to HTA_map()

operations. Inner products are calculated in OpenMP by using reduction clause in addition

to #pragma omp for. As for HTA-OCR, a pair of HTA_map() and HTA_FULL_REDUCE() is

needed.

The experimental results (Figure 5.22) show that although close, HTA-OCR does not

perform as well as OpenMP. We think this is mainly because of the reductions causing
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split-phase continuations, and, in each phase, there are not abundant asynchronous parallel

subtasks for the worker threads to work on. The execution proceeds in a bulk synchronous

manner due to operations depending on reduction results. HTA-OCR’s overhead in task

management makes it difficult to compete with the more sophisticated OpenMP implemen-

tation when the execution is bulk-synchronous.
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Figure 5.22: CG benchmark result

5.10.6 LU

LU benchmark uses Symmetric Successive Over Relaxation (SSOR) method to solve an

equation. It is an iterative method that iterates a fixed number of times to approximate

the solution. A sketch of the SSOR algorithm is shown in Algorithm 3. First, the residual

is computed in COMPUTE_RHS. Next, the lower-triangular system and diagonal systems are

formed in JACLD and solved in BLTS. JACU and BUTS are for the upper-triangular system.

The solution is then updated in ADD before the next iteration starts.

The reference OpenMP implementation uses [26] a pipelining method to parallelize BLTS

and BUTS, since the evaluation of a point in the 3-D array depends on the neighboring points

and the direction in which the wavefront proceeds. The other operations are parallelized by

using parallel for loops straightforwardly. For HTA-OCR, because of the data dependences
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on neighboring points, tiles need ghost regions same as mentioned in Section 5.10.4 and

ghost region updates are needed when new results are computed. Most of the parallel for

loops are converted to HTA_map() operations. For BLTS and BUTS, loops that iterate over

HTAs in a wavefront fashion are used, and the tiles on the wavefront are selected to generate

subtasks for the computation. For the ghost region updates, each tile is matched with the

corresponding neighboring tiles and a subtask is generated with these tiles as input for the

updates.

Algorithm 3: SSOR algorithm used in LU benchmark

1 for i = 1 to ITMAX do
2 COMPUTE RHS;
3 JACLD;
4 BLTS;
5 JACU;
6 BUTS;
7 ADD;

8 end

Compared to OpenMP, the HTA-OCR version shows good results for lower thread counts,

but OpenMP beats it using 32 threads. We think that the better results for lower threads are

because of two things: the arrays are tiled in HTA-OCR and may have better performance

due to cache effects, and there are chances for the tasks to overlap between iterations,

although very limited. At a higher thread count, more tasks are generated while the total

work remains the same. The task overhead again becomes relatively more significant and

thus the scalability is negatively affected.
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Figure 5.23: LU benchmark result

5.11 Summary

In this chapter, we present various kinds of benchmark programs that we implemented using

the HTA-OCR library. For some of them, superior performance results are demonstrated in

HTA-OCR due to the benefits provided by the dataflow execution model. There are also some

benchmarks ported from OpenMP implementation where we get comparable performance

results. For the rest, our current library implementation does not scale well for the fixed

problem size. Here, we summarize the important observations from the experimental results.

HTA-OCR performs the best when there are abundant asynchronous subtasks and when

the data dependences among the subtasks are sparse. For example, in the tiled Cholesky

factorization and the tiled LU factorization benchmarks, we can see greater performance

results in HTA-OCR over OpenMP using parallel for loops. All-to-all dependences between

operations and dependences on global reduction results can cause the dataflow execution to

run in a bulk-synchronous fashion, which is the case in benchmarks such as LULESH and

AMGMK Relax. In such cases, the task overlapping in HTA-OCR is limited, and its large

overhead of using tasks becomes a disadvantage.

HTA-OCR is much more sensitive to issues related to the task granularity than OpenMP

is. To achieve good parallel efficiency, the task granularity has to be large enough to amortize
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the overhead, but the overhead is much higher in HTA-OCR. As a result, using the same

data decomposition for the same problem in HTA-OCR and in OpenMP can have completely

different performance results. For some problems, it is possible to adjust the tiling to reduce

the number of tasks and also increase task granularity. However, it is difficult in problems

such as LULESH and parallel breadth first search. For LULESH, the task granularity does

not only depend on the size of the input tiles but also the type of the operation being

performed. Programmers can manually fuse operations to adjust the task granularity, but it

is not an ideal solution regarding the programmability. For parallel BFS, decomposing the

input data domain does not guarantee balanced load or large enough granularity. A change

of the algorithm is needed so that more information can be computed to result in a better

dynamic tiling.

In all of our experiments we present the strong scaling results. In fixed-sized problems, the

task generation overhead tend to become a problem that limits the performance scalability.

When we increase the number of worker threads, we usually partition the HTA into more tiles

to expose more parallelism. The amount of overhead in the task generation increases fast

when more tiles are used. In the current implementation, the task generation is performed

only by the master task, and it easily becomes a bottleneck. In the next chapter, we discuss

the possibilities toward a more scalable design.
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Chapter 6

Towards A Scalable Design

In the previous chapters, we describe the design and implementation of HTA-OCR in the

shared memory environment. We have shown using examples that the programmability of

HTA-OCR is similar to that of OpenMP. From the experimental results of various bench-

marks, we learn that, for programs with high asynchrony and irregularity, HTA-OCR can

deliver greater performance. However, we also identified some issues that limit the scalability

of this design. In this chapter, we review the issues and propose possible solutions, either

by modifying the HTA-OCR library implementation or adding new features to the OCR

runtime. We also discuss potential optimizations before concluding the chapter.

6.1 Overhead Analysis

Before getting to the changes to be made for a more scalable design, we analyze the current

design to understand where the overhead comes from. Both the execution time overhead

and the storage space overhead are discussed.
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Figure 6.1: The effects of task generation overhead

Execution Time Overhead

In the mapping strategy described in Section 3.2, when an HTA program executes, it cre-

ates asynchronous subtasks. Hence, there is task generation overhead, which includes the

overhead of updating metadata and the overhead of spawning tasks. In the existing imple-

mentation, a single master task spawns all the subtasks and carries out all the metadata

changes. While it works fine when the thread count and the number of tiles are both low,

the task generation is sequential and can become a bottleneck when there is a large amount

of subtasks per operation. It can be a problem when the task granularity is either small or

large. In Figure 6.1, the top figure illustrates the case when the task granularity is relatively

large. We can see that the time spent in the task generation can delay the execution of

a group of balanced tasks. It causes an unexpected delay and affects the overall execution

time. On the other hand, in the bottom figure, the subtasks have relatively small granularity,

resulting in the task generation overhead dominating the total execution time. This limits

the strong scalability because when more processing elements are used, we would want to

use more tasks, result in increased task generation overhead and decreased task granularity.

We can also see why the sequential task generation is problematic for scalability using an
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analytic model to calculate the parallel efficiency. On a machine with P processing elements,

consider a simple pointwise addition C = A+B where each of the operand has P tiles (i.e.

P tasks are created to utilize P processing elements). Suppose the sequential execution time

is T1, the time it takes to spawn a single task is constant tg, the time to process the metadata

of the operands of a single task is constant tm, and, as a simplification, there is no other task

related overhead. The total execution time is thus:

Tp = P × (tg + tm) +
T1
P

And the parallel efficiency is:

E =
T1

P × Tp

=
T1

P 2 × (tg + tm) + T1

With the P 2 term in the denominator, the parallel efficiency decreases quickly when the

number of processing elements increases, which explains why it is not scalable. Since it is

not possible to completely eliminate the task generation overhead, the best that can be done

is to parallelize the task generation so that the quadratic term becomes linear.

One way to parallelize task generation is for OCR to provide a library function for creating

a batch of tasks in parallel at the OCR runtime level. This can be useful for data parallel

operations that are performed using HTA_map(). However, it only allows parallelizing the

task spawning but not the metadata processing. Also, in algorithms that use an outer for

loop and generate a single task per iteration, such as the Cholesky factorization, the HTA

library cannot generate subtasks in a batch. A change in the HTA design is necessary to

fully resolve this problem.
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Storage Overhead

The HTA programming model represents the tiled arrays as trees. A fixed-sized memory

space is allocated for the metadata describing each node in the tree. Given P processing

elements, we want to at least partition an array into P leaf tiles so that enough parallelism is

exposed. As a result, the storage space needed for metadata is Ω(P ). If the HTA is one-level,

the storage requirement is close to the lower bound, and when there are more levels, it can

be larger depending on the tiling.

The HTA-MPI implementation runs in SPMD. MPI processes execute the same code

and perform HTA operations collaboratively. For every HTA in the program, each process

allocates the full tree structure and partial raw data depending on the distribution of the

tiles. The raw data does not grow when more processes are used, but the metadata does

since it is duplicated everywhere. From the previous analysis, we know that the metadata

is Ω(P ) on a single node, and since every process allocates the full tree data structure, the

total storage overhead of all processes is Ω(P 2). This is not scalable if we consider extreme

scale machines.

6.2 A Scalable Design

From the overhead analysis, it is clear that the current HTA-OCR design has scalability

issue due to both the task generation overhead and the metadata storage overhead. In order

to have better scalability, we must parallelize the task generation and reduce the metadata

storage requirement.

SPMD + Dataflow Execution

To parallelize the task generation, we propose using SPMD + Dataflow execution, which is

similar to the proposal in our previous work [43] but with some modifications. We target a
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hypothetical extreme scale computing system which is distributed, hierarchical with powerful

computing nodes and each of them has thousands of processing elements that can have shared

memory address space within the node. Suppose there are P nodes, we can let P master tasks

run in parallel, each executes on one of the nodes and the same HTA program. A distribution

function is needed to map the disjoint subsets of the data tiles in an HTA to the master

tasks. While the distribution function of an HTA in the shared memory implementation has

no effect on the execution, in the distributed memory environment, the distribution function

and the tiling together express the data locality the programmer wants. When a set of tiles

are mapped to a master task, it can mean that the tasks operating on the set of tiles have

data locality and should stay close if possible. The HTA library implementation could supply

affinity hints to the OCR runtime while spawning the tasks to achieve locality optimization.

Figure 6.2 shows an example of SPMD+Dataflow execution when P = 3.

Figure 6.2: SPMD + Dataflow execution with multiple master tasks

The master tasks execute the HTA program sequentially until they encounter HTA op-

erations. Instead of generating subtasks for all tiles in the LHS as in the shared memory

design, they only spawn subtasks for the tiles they own (i.e. local tiles) on the LHS, fol-

lowing the owner computes rule1. The master tasks do not wait for the completion of the

local asynchronous subtasks unless one of their statements depends on the subtask results.

This way, the task generation is parallelized. The execution model is different from SPMD

1A tile is owned by a master task when it is mapped to the master task by the distribution function.
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since the asynchronous subtasks can synchronize with each other without joining back to

the master tasks.

Reducing Metadata Overhead

For the metadata storage overhead, a scalable design that runs in SPMD fashion should not

have to store a complete copy of the HTA metadata but only store the metadata of its local

tiles and ancestor nodes. If we limit HTA shapes to be regular, we do not have to store the

full HTA tree, because we can design a fast distribution function to locate the tiles quickly

without traversing the tree structure. Given the tile indices, a good distribution function

should be able to determine whether a tile is local or remote in O(1). Complex distribution

functions for HTAs of irregular shapes can still be supported, but the users should be warned

that the use of them could make the application less scalable.

Task Synchronization

In the existing implementation, there is only one master task, and it is the point of seri-

alization for all metadata changes of a tile. The requests (i.e. dependences) for a tile are

processed by the master task in program order, so the master task can ensure the subtasks

requesting the same tile executes in the order of the corresponding request occurrences. How-

ever, when there are multiple master tasks, no single point of serialization exists anymore.

A new strategy is needed to make sure that the master tasks can specify the correct events

to express the data dependences of the subtasks without frequently synchronizing with each

other. For this purpose, we can rely on a set of OCR API functions to create OCR events

with user specified GUIDs. Essentially, it allows us to create uniquely named events (each

event represents a dependence) in a distributed environment. With this mechanism, we can

have a protocol of naming the events representing for the tile data dependences in the HTA

program execution, so that by following the protocol, the master tasks can generate the
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names of events without synchronizing with each other.

As an example for such protocol, we can use a hash function HASH(operation_count,task_

ord,operand_pos) to generate a GUID that uniquely represents a data dependence edge in

the task graph, and rely on OCR’s global addressing ability to synchronize in a distributed

environment. operation_count is the number of HTA operations that have been executed.

task_ord is the ordinality of the task in the operation. operand_pos represents the type

and ordinality of the operand of the corresponding task. Unique names can be generated

from these values to identify data dependences of a task.

Argument Set of Values
operation_count {0, 1, 2, ...}

task_ord {0, 1, 2, ...}
operand_pos {INPUT0, INPUT1, ..., OUTPUT0, OUTPUT1, ...}

Table 6.1: The values of the arguments to the hash function to generate unique GUID

When a master task finds a new HTA operation, it determines whether the tiles accessed

by the operation are local or remote by evaluating the distribution function. If a local tile

is on the LHS, it creates an asynchronous subtask to perform the operation. If a local tile is

on the RHS, the master task may need to supply this tile to a remote task. Lets consider an

example shown in Figure 6.3. In Figure 6.3a, the example code is given, and the ideal task

graph that captures the data dependence in the program is also shown. P<number> represents

the nodes and also the master tasks that execute on them, and OP<number> represents the

subtasks that performs the operations.

Now, if we consider the implementation details, it gets trickier than the seemingly simple

ideal task graph. In practice, how does the task OP1 synchronizes with OP2 and OP3? When

the master task on P0 executes the program and sees the first operation, it creates OP1

asynchronously. But at the creation time of OP1, P0 is not aware of the future tasks that

depends on the result of OP1. As a result, OP1 cannot directly satisfy the dependence slots

of OP2 and OP3 when it completes. There are two possible solutions, depending on whether
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all the master tasks maintain metadata of all the tiles.

When the master tasks maintain the metadata of all the tiles, the solution is simpler.

When P0 creates OP1, it creates a named sticky event as the placeholder of the output from

OP1. Since other master tasks also maintain the metadata of A[0], when they execute the

first operation, they can use the hash function call HASH(1,0,OUTPUT0) to compute the

GUID of the output event and stores the GUID in the metadata. Later, when they need to

create a new task that depends on the latest A[0] content, they simply read the local A[0]

tile metadata and know which event represents for the desired data. Figure 6.3b illustrates

this scenario. However, as we have pointed out previously, only when the HTA metadata

is fully distributed can we minimize the storage overhead. Therefore, this solution is not

suitable for extreme scale systems.

If the metadata is fully distributed, the master tasks only possess the metadata of local

tiles. This means that P1 and P2 do not know the named event representing the completion

of the last user of A[0] which is the task OP1. They can only use the hash function to

compute unique names of the data dependences of their local tasks. For example, P1 calls

HASH(2,0,INPUT0) and P2 calls HASH(3,0,INPUT0). On the other hand, P0 notices that

it has to supply data when it executes the second and the third operation, and it calls

HASH(2,0,INPUT0) and HASH(3,0,INPUT0) correspondingly to get the same GUIDs P1 and

P2 generate without synchronizations. At the time these data dependences are discovered

by P0, the desired output may not be ready yet. P0 creates special proxy events, named

with the GUIDs generated by the hash function calls, as placeholders for the data produced

in OP1 and to pass the data along to the remote subtasks, as shown in Figure 6.3c. Notice

that the proxy events are owned by the supplier P0, because it is the owner of A[0] and

it knows how the to connect the proxy events to the output event of OP1 represented by

HASH(1,0,OUTPUT0), where the desired A[0] copy is held. In this way, we avoid having

every master task maintaining full HTA metadata.
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(a) Example code and the ideal task graph

(b) Task synchronization of the example code with OCR events when every master task maintains
full HTA metadata

(c) Task synchronization of the example code if master tasks only maintain local tile metadata

Figure 6.3: Illustrations of the task synchronization in SPMD+Dataflow for the given pro-
gram

102



6.3 Performance Optimizations

In the previous section, the fundamental mechanisms of building a scalable HTA-OCR im-

plementation have been described. Here, we further discuss the potential optimizations that

can be added to the implementation, either in the HTA library code or the OCR runtime.

We also discuss possible compiler optimizations.

6.3.1 Support for Parallel Reductions

Parallel reduction is a very common pattern that appears in parallel algorithms. Currently,

HTA provides two types of reductions, one to reduce a whole HTA into a scalar value, and

the other to reduce an HTA in a specific dimension. The HTA library creates OCR tasks to

perform reductions on partial data, and then, depending on the amount of tasks, a sequential

reduction or a tree reduction of the partial results is used.

Implementing the reduction operation at the HTA library level using general OCR tasks

does not grant optimal performance, because the amount of tasks and events that are needed

for very small amount of computation can be quite large. On the other hand, there are of-

ten machine-dependent ways to perform optimal parallel reduction on different classes of

machines. Some high-performance computing systems even come with specialized intercon-

nections [20] in the hardware just for reductions. It is better that OCR defines an API

function for reduction to a scalar and the HTA library builds upon that, so that the OCR

runtime implementations can provide optimized support for reductions.

Besides reducing to a single scalar, reduction of a fixed-sized array is also very common.

For example, in the tiled matrix-matrix multiplication algorithm, the tasks that writes to

the same tile forms a dependence chain. Here, the tasks in a chain accumulates to the same

tile and it is essentially a reduction of tiles. If OCR provides a built-in function to create

a subgraph of reduction tasks, the HTA library can exploit it. The same argument can be
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made for other collective operations, such as prefix scan, all-to-all exchange, . . . etc.

6.3.2 Curtailing Proxy Events

The task synchronization mechanism described in Section 6.2 introduces the proxy events,

which are necessary for the data dependences across master tasks if they only maintain local

tile metadata. The number of proxy events in an operation can be very large. But when

multiple subtasks of the same operation depend on the same tile, the number of proxy events

can be reduced. For example, lets consider an HTA A which is a single tile, and an HTA B

which has six tiles of the same size as A, and the tiles are mapped in block distribution on

to three nodes. An assignment operation B = A broadcasts the content of A to overwrite all

the tiles in B. As shown in Figure 6.4, if we use the basic design and create a proxy event

for each data dependence, four proxy events are needed to pass the data to remote tasks.

However, since the individual tile assignments are expressed in one assignment operation,

the library can dynamically detect, within the scope of a single HTA operation, that four

remote subtasks have the same input dependence and thus create only one proxy event in

P0 to pass the requested tile to them. This optimization can be implemented in the HTA

library.

If the assignment operation is manually unrolled, the library optimization will not work,

since the library processes a single HTA operation at a time, and it cannot see beyond the

scope of one operation. For instance, it is possible that the program performs assignments

of A to the odd tiles B[1] = A; B[3] = A; B[5] = A;. The library would still create two

proxy events for the remote tasks that assign B[3] and B[5]. In cases like this, a source-to-

source compiler may merge the individual tile assignments into a form that the library can

still optimize.
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(a) Task graph with basic design. Four proxy events are used.

(b) Task graph when a single event is used for the subtasks of the same operation depending on
the same tile.

Figure 6.4: Optimization to curtail the number of proxy events at the HTA library level

6.3.3 Graph Reduction

As we have demonstrated in the experiments, the task granularity can have an enormous im-

pact on the performance results. If the programmer attempts over-decomposition to expose

more parallelism in the program, the added overhead may negatively affect the performance.

For some algorithms, it might be easy to determine a good tiling and strike a balance be-

tween task granularity and parallelism, such as the numerical algorithms dealing with dense

data. But for others, this might be difficult due to the nature of data dependent workloads.
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It may take a lot of time to fine-tune an algorithm for specific machines or dataset. If an

HTA compiler exists, programmers may express the finest-grain parallelism using HTAs, and

let the HTA compiler analyze the dependence graph and optimize the graph by reducing the

graph composed of fine-grain tasks into optimal grain size for the underlying machines and

runtime system. This is an interesting and complicated problem which beyond the scope of

this work.
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Chapter 7

Related Work

In this chapter, we discuss the related work, including the runtime systems that are based

on dataflow-like principles for their execution models, and the programming models that are

built upon dataflow runtime systems.

7.1 SWARM

SWift Adaptive Runtime Machine (SWARM) [30] is a runtime system that uses the codelet

program execution model in its design. The project aims to design a highly sophisticated

runtime system that can intelligently make scheduling decisions for future exascale computing

systems with heterogeneous processors, so that programmers only have to focus on exposing

as much parallelism in the system as possible. A SWARM program is formed by using fine-

grained unit of work called codelets to construct a codelet dependence graph. The concepts

are very similar to those used in OCR design: codelets are analogous to OCR event-driven

tasks, and the codelet dependence graphs are analogous to the task graphs in OCR. The

programming interface of SWARM is quite different from that of OCR. Users can either

use the SWARM API, which is a low-level language that lets user explicitly define codelets
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including their computations and their interactions, or use a higher-level language extension

to C, the SWARM Codelet Association LanguagE (SCALE). In a software stack, SWARM

is at the same level as the OCR runtime system. SWARM’s distributed system support is

different from OCR since it does not have support for global addressable objects. Explicit

message passing is needed. We evaluated using SWARM as the HTA library backend but

ended up with OCR. We use the SWARM trace viewer to visualize the execution of our

HTA-OCR applications.

7.2 Charm++

Charm++ [27] is a parallel programming paradigm which deploys a message driven exe-

cution model. Chares are C++ objects that can contain methods and data, and the pro-

grammer builds an application by defining chares and explicitly program their interactions

using method invocations (i.e. messages). There can be multiple chare objects mapped to a

processor, and a Charm++ scheduler on the processor selects the method invocations to be

scheduled on the cores for execution. An adaptive runtime system is responsible for mapping

chare objects to processors, and it can perform various runtime optimizations such as object

migration for data locality and load balancing. Compared to OCR and SWARM, Charm++

has a higher-level programming interface that uses the object-oriented paradigm. The idea

of the message driven execution is very similar that of the dataflow execution model, except

that the method invocations can also represent for control dependences. Compared with

the HTA programming model, the chares allow more flexibility in expressing various kinds

of computations, not limited to array operations. However, since the method invocations

are explicitly programmed, the Charm++ language has a lower level programming interface

and the application code has the resemblance of a dependence graph instead of a structured

imperative program.
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7.3 Legion

Legion programming system [6] includes a runtime system and API. To write programs for

Legion, the programmer decomposes application data into logical regions and spawns asyn-

chronous tasks that operate on the regions. The regions can be partitioned and represented

in a hierarchical way as needed. The tasks are scheduled for execution when their data

dependences on logical regions are satisfied, so we also categorize the execution model as

dataflow. One important difference of Legion from the other runtime systems we mentioned

is that the dependences between tasks are not explicitly programmed. In OCR, explicit

dependence satisfactions are inserted by programmers. In Legion, the programmer spawns

tasks with input and output logical regions, and the Legion runtime has a software out-

of-order processor mechanism that dynamically determines the data dependences between

tasks due to their region usage and the order of the task executions. Legion is at a lower

level than HTA, since in HTA, parallel tasks are implicitly created when HTA operations

are performed. Regent [40] is a higher-level programming language built upon Legion.

7.4 OpenMP Tasking with Data Dependent Tasks

In the OpenMP 3.0 specification, OpenMP Tasking was introduced to provide ways to pro-

gram unstructured parallelism. It enabled task parallelism but was not flexible enough to

express maximal parallelism in the program because it still relied on barriers. Based on the

encouraging results of SPMSs [35], the extension of OpenMP Tasking to include support

for data dependent tasks is proposed in [16] by introducing new clauses for the #pragma

omp task construct, including using the clauses input, output and inout in combination

with data reference lists. With these hints, the dependence relationships between tasks

can be derived at runtime, and barriers are not always necessary. As a result, there are

more chances for task overlapping at runtime. This is exactly what the dataflow execution
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model does. The proposal was eventually accepted and incorporated with some modifica-

tions into the OpenMP 4.0 specification. Compared with HTA-OCR, the data dependent

tasks in OpenMP has a limited scope within a parallel section. Thus, it may not be suitable

for large applications but only for smaller code segments that needs to be accelerated. In

Section 5.4, we compared our HTA-OCR Sparse LU factorization implementation with an

OpenMP Tasking implementation and found the performance results comparable.

7.5 Tensorflow

Tensorflow [1] is a programming interface for machine learning algorithms. It uses an exten-

sion of the dataflow graph called stateful dataflow graph to express computations. In such

a graph, the nodes are connected by directed edges, and the values that flow through the

edges are tensors. It allows the existence of persistent mutable tensors in the system in some

special operations. And it also defines special edges that represents the control dependences

so that the programmer can enforce a happen-before relationship between nodes. It has im-

plementations for both single node and multiple node executions. Users can provide kernels,

which can be machine-dependent implementations of the same operation for heterogeneous

devices, so that users can adapt their programs for different systems with little modifica-

tions. Compared with the other runtime systems we have mentioned, Tensorflow does not

construct the dataflow graph with the progress of execution. Instead, it requires the graph

to be constructed before the computation starts. The benefit of this approach is that since

the graph is constructed before computation, the runtime system can optimize the graph

structure and has more information to make better arrangements on how the nodes should

be scheduled. But it will not work well for general purpose programming since the graph can

be indefinitely large. Tensorflow also requires explicit parallelization of computations. Al-

though the dataflow graph representation allows the runtime to make intelligent scheduling
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decisions of the nodes, to exploit the finer-grain parallelism in the program, the programmer

needs to explicitly decompose subgraph containing coarse-grain operations into subgraphs

containing finer-grain partial computations.

7.6 PaRSEC

Parallel Runtime Scheduling and Execution Controller (PaRSEC) [10] is a runtime system

that schedules computation tasks driven by data dependences. It is designed targeting

manycore, distributed and heterogeneous large-scale machines. The runtime system executes

a DAG represented as a low-level textual Job Data Flow (JDF) format. The user does not

have to explicitly program in JDF. Instead, they can write sequential program or using

higher-level code such as StarSS [36] and use a compiler to compile the code into JDF for

the PaRSEC runtime system to execute. In contrast to OCR which requires the user to

explicit insert function calls to create tasks, PaRSEC creates tasks automatically as dictated

by data dependences, resulting in lower memory overhead. It can be interesting to explore

the possibility of adapting HTA as a high-level abstraction of PaRSEC.
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Chapter 8

Future Work

There are many interesting possible extensions to the work presented in this thesis. Here,

we discuss a few possibilities.

Distributed Implementation

The most important future work for HTA-OCR is to extend the support to distributed

memory machines. If we want the HTA programming model to be practical, it has to support

large scale machines which are mostly distributed memory systems. While OCR does provide

support on distributed memory system, our current implementation only supports running

on single node shared memory machine because the split-phase continuation mechanism

implemented in the HTA-OCR library does not work in a distributed memory environment.

A native OCR runtime support for continuations on distributed systems is needed.

There can be many new issues rising from the attempt to move to a distributed memory

environment which need the library developers to work closely together with the runtime

system developers to solve. For example, in Chapter 6, we proposed a distributed design

that relies heavily on the OCR events being globally addressable. But at the runtime system

level, how are the globally addressable objects migrate from a node to another and how much
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overhead does it incur? How much overhead does a remote event satisfaction incur? When

is a data block propagated to a remote node? What happens when the tasks on the same

node request the same remote data block? There are lots of opportunities for optimizations

both at the library level and at the runtime level waiting to be explored.

Support for Other Dataflow Runtime Systems

Another interesting topic is whether our design is general enough for other dataflow-like

runtime systems. We mentioned many runtime systems that adopt the ideas of the dataflow

execution model, but they all have significant differences in their runtime programming

interface design. For example, Charm++ uses an object-oriented programming interface

and the dependences are represented as method invocations on chares. This is significantly

different from OCR. It is interesting to investigate whether we can generalize programming

interface of different runtime systems and present a middle layer for the HTA library to

build on top of them. The Parallel Intermediate Language (PIL) [41] attempts to present an

unified programming interface for not just the dataflow runtime systems but also for other

parallel programming models. HTA was implemented on PIL, but the implementation was

limited by the parallel program construct provided by PIL and does not express maximal

parallelism as HTA-OCR does.

HTA Compiler

As mentioned in 6.3, there are some optimizations which cannot be done at the library level.

An HTA compiler can analyze the access pattern on the HTA tiles and perform complex

optimizations. This can be done either with a source-to-source HTA compiler that takes

the user HTA program and generates an optimized HTA program, or a source-to-source

HTA compiler that takes the user HTA program and generates an OCR program. Various

kinds of optimizations can be useful. For example, code motion can rearrange the split-
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phase continuation so that more asynchronous tasks are generated before the split-phase

action. A compiler can also detect reduction pattern like the one in the tiled matrix-matrix

multiplication code in Section 5.2 and replace it with the library reduction routine.
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Chapter 9

Conclusions

The dissertation presents an adaptation of the HTA programming model upon the dataflow

execution model. Our work is among the first attempts to provide high-level programming

abstractions upon dataflow runtime systems. We propose a strategy to map HTA programs

onto dataflow task graphs, and we implemented the design as a fully functional HTA-OCR

library whose important mechanisms were also discussed in detail. For performance eval-

uation, a variety of benchmark programs were implemented using the HTA-OCR API and

the experiments were conducted. With the tracing API, program execution traces can be

generated without interfering with the timing of the actual task execution, so that the exe-

cution behavior can be observed easily. The results were analyzed and precious lessons were

learned about the types of the execution patterns that can benefit from dataflow executions

and the types that prevent us from gaining good performance results. We also discovered

some issues in our design that potentially limit the scalability, and proposed solutions for

them.

With the HTA-OCR API, programmers now have a higher-level way of building applica-

tions on top of OCR. The productivity can be significantly improved because programmers

no longer have to decompose computations into task dependence graphs and write their
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programs by explicitly constructing the graphs using the OCR API. Instead, they can create

HTAs and express their algorithms in the imperative programming style using the array

notations and rely on the HTA-OCR library to convert their HTA programs to OCR task

graphs dynamically. From the example programs in the appendix, we see that the lines of

code in the HTA-OCR version can be less than 50% of the OCR counterpart. This can be

further improved if C++ was used.

Our work provides insights into library development upon the dataflow execution model.

The insights are not only useful for the library developers but also for the runtime system

developers. For the library developers, the analysis of the overhead in our own design can be

something that they take into consideration before actually starting their implementations.

For the runtime system developers, they can learn what runtime API features can facilitate

the library or application development. Our discussions about the issues that hinder the

scalability can be generalized and considered for any software built upon dataflow runtime

systems.
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Appendix A

Tiled Matrix-matrix Multiplication

Full Programs

Listing A.1: Pure OCR tiled matrix-matrix multiplication implementation

1 #include <stdlib.h>
2 #include <stdio.h>
3 #include <math.h>
4 #include "ocr.h"
5

6 // pointer to data (NOTICE: this won’t work on distributed system)
7 ocrGuid_t ** A;
8 ocrGuid_t ** B;
9 ocrGuid_t ** C;

10 double* A_flat;
11 double* B_flat;
12 double* C_flat;
13 double *** A_tiles;
14 double *** B_tiles;
15 double *** C_tiles;
16

17 ocrGuid_t
18 localMMEdt(u32 paramc , u64* paramv , u32 depc , ocrEdtDep_t depv [])
19 {
20 double *a, *b, *c;
21 int n = paramv [0];
22 c = (double *)depv [0]. ptr;
23 a = (double *)depv [1]. ptr;
24 b = (double *)depv [2]. ptr;
25

26 for (int i = 0; i < n; i++) // sequential local matrix multiplication
27 for (int j = 0; j < n; j++)
28 for (int k = 0; k < n; k++)
29 c[i * n + j] += a[i * n + k] * b[k * n + j];
30 return NULL_GUID;
31 }
32

33 ocrGuid_t
34 mainLoopTask(u32 paramc , u64* paramv , u32 depc , ocrEdtDep_t depv [])
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35 {
36 int nBlocks = paramv [0];
37 int nEntries = paramv [1];
38 long int matrixWidth = nBlocks * nEntries;
39 for (int i = 0; i < nBlocks; i++) {
40 for (int j = 0; j < nBlocks; j++) {
41 double* ptr_tile = NULL;
42 ptr_tile = A_tiles[i][j];
43 for (int x = 0; x < nEntries; x++)
44 for (int y = 0; y < nEntries; y++)
45 ptr_tile[x * nEntries + y] =
46 A_flat [(i * nEntries + x) * matrixWidth + (j * nEntries + y)];
47 ptr_tile = B_tiles[i][j];
48 for (int x = 0; x < nEntries; x++)
49 for (int y = 0; y < nEntries; y++)
50 ptr_tile[x * nEntries + y] =
51 B_flat [(i * nEntries + x) * matrixWidth + (j * nEntries + y)];
52 ptr_tile = C_tiles[i][j];
53 for (int x = 0; x < nEntries; x++)
54 for (int y = 0; y < nEntries; y++)
55 ptr_tile[x * nEntries + y] =
56 C_flat [(i * nEntries + x) * matrixWidth + (j * nEntries + y)];
57 }
58 }
59 ocrGuid_t ** A = (ocrGuid_t **) paramv [2];
60 ocrGuid_t ** B = (ocrGuid_t **) paramv [3];
61 ocrGuid_t ** C = (ocrGuid_t **) paramv [4];
62

63 ocrGuid_t completion_events[nBlocks ][ nBlocks ][ nBlocks ];
64

65 ocrGuid_t templateLocalMM;
66 ocrGuid_t firstRoundSubTasks[nBlocks ][ nBlocks ];
67 ocrGuid_t subtaskguid;
68

69 ocrEdtTemplateCreate (& templateLocalMM , localMMEdt , 1, 4);
70 ocrHint_t priority_hint;
71 ocrHintInit (& priority_hint , OCR_HINT_EDT_T);
72

73 // Build DFG of Matrix multiplication
74 for (int k = 0; k < nBlocks; k++) {
75 for (int i = 0; i < nBlocks; i++) {
76 for (int j = 0; j < nBlocks; j++) {
77 int paramc = 1;
78 int depc = 4;
79 u64 paramv [1];
80 ocrGuid_t depv [4];

81 paramv [0] = nEntries; // block width
82 depv [0] = C[i][j];
83 depv [1] = A[i][k];
84 depv [2] = B[k][j];
85 depv [3] =
86 (k == 0)
87 ? UNINITIALIZED_GUID

88 : completion_events[i][j][k - 1]; // hold the firing of k==0 tasks
89 ocrSetHintValue (& priority_hint , OCR_HINT_EDT_PRIORITY , nBlocks - k);
90 ocrEdtCreate (& subtaskguid , templateLocalMM , EDT_PARAM_DEF , paramv ,
91 EDT_PARAM_DEF , depv , EDT_PROP_NONE , &priority_hint ,
92 &completion_events[i][j][k]);
93 if (k == 0)
94 firstRoundSubTasks[i][j] = subtaskguid;
95 }
96 }
97 }
98

99 // Fire the first round
100 for (int i = 0; i < nBlocks; i++) {
101 for (int j = 0; j < nBlocks; j++) {
102 ocrAddDependence(NULL_GUID , firstRoundSubTasks[i][j], 3, DB_MODE_RW);
103 }
104 }
105
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106 ocrEdtTemplateDestroy(templateLocalMM);
107 return NULL_GUID;
108 }
109

110 ocrGuid_t
111 wrapUpTask(u32 paramc , u64* paramv , u32 depc , ocrEdtDep_t depv [])
112 {
113 ocrShutdown ();
114 return NULL_GUID;
115 }
116

117 ocrGuid_t
118 mainEdt(u32 paramc , u64* paramv , u32 depc , ocrEdtDep_t depv [])
119 {
120 int argc = getArgc(depv [0]. ptr);
121 char** argv = (char **) malloc(argc * sizeof(char*));
122 for (int i = 0; i < argc; i++) {
123 char* arg = getArgv(depv [0].ptr , i);
124 argv[i] = arg;
125 }
126

127 int nBlocks = atoi(argv [1]);
128 int nEntries = atoi(argv [2]);
129 long int matrixWidth = nBlocks * nEntries;
130 long int matrixSize = matrixWidth * matrixWidth;
131

132 // Allocate un-tiled A, B and C matrices
133 A_flat = (double *) malloc(sizeof(double) * matrixSize);
134 B_flat = (double *) malloc(sizeof(double) * matrixSize);
135 C_flat = (double *) malloc(sizeof(double) * matrixSize);
136

137 srand(time(NULL));

138 // Initialize data
139 for (int i = 0; i < matrixWidth; i++) {
140 for (int j = 0; j < matrixWidth; j++) {
141 A_flat[i * matrixWidth + j] = (rand() % 100) / 100.0;
142 B_flat[i * matrixWidth + j] = (rand() % 10) / 10.0;
143 C_flat[i * matrixWidth + j] = 0.0;
144 }
145 }
146

147 // Allocate tiled matrices and initialize data
148 ocrGuid_t tmp_guid;
149 ocrDbCreate (&tmp_guid , (void **)&A, sizeof(ocrGuid_t *) * nBlocks , DB_PROP_NONE ,
150 NULL_HINT , NO_ALLOC);
151 ocrDbCreate (&tmp_guid , (void **)&B, sizeof(ocrGuid_t *) * nBlocks , DB_PROP_NONE ,
152 NULL_HINT , NO_ALLOC);
153 ocrDbCreate (&tmp_guid , (void **)&C, sizeof(ocrGuid_t *) * nBlocks , DB_PROP_NONE ,
154 NULL_HINT , NO_ALLOC);
155 A_tiles = (double ***) malloc(sizeof(double **) * nBlocks);
156 B_tiles = (double ***) malloc(sizeof(double **) * nBlocks);
157 C_tiles = (double ***) malloc(sizeof(double **) * nBlocks);
158 for (int i = 0; i < nBlocks; i++) {
159 ocrDbCreate (&tmp_guid , (void **)&A[i], sizeof(ocrGuid_t) * nBlocks ,
160 DB_PROP_NONE , NULL_HINT , NO_ALLOC);
161 ocrDbCreate (&tmp_guid , (void **)&B[i], sizeof(ocrGuid_t) * nBlocks ,
162 DB_PROP_NONE , NULL_HINT , NO_ALLOC);
163 ocrDbCreate (&tmp_guid , (void **)&C[i], sizeof(ocrGuid_t) * nBlocks ,
164 DB_PROP_NONE , NULL_HINT , NO_ALLOC);
165 A_tiles[i] = (double **) malloc(sizeof(double *) * nBlocks);
166 B_tiles[i] = (double **) malloc(sizeof(double *) * nBlocks);
167 C_tiles[i] = (double **) malloc(sizeof(double *) * nBlocks);
168 for (int j = 0; j < nBlocks; j++) {
169 double* ptr_tile = NULL;
170 ocrDbCreate (&A[i][j], (void **)&ptr_tile ,
171 sizeof(double) * nEntries * nEntries , DB_PROP_NONE , NULL_HINT ,
172 NO_ALLOC);
173 A_tiles[i][j] = ptr_tile;
174

175 ocrDbCreate (&B[i][j], (void **)&ptr_tile ,
176 sizeof(double) * nEntries * nEntries , DB_PROP_NONE , NULL_HINT ,
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177 NO_ALLOC);
178 B_tiles[i][j] = ptr_tile;
179

180 ocrDbCreate (&C[i][j], (void **)&ptr_tile ,
181 sizeof(double) * nEntries * nEntries , DB_PROP_NONE , NULL_HINT ,
182 NO_ALLOC);
183 C_tiles[i][j] = ptr_tile;
184 }
185 }

186 // Create a finish EDT to run the 3 level loop
187 ocrGuid_t templateMainLoop;
188 ocrGuid_t mainLoopTask_guid;
189 ocrGuid_t mainLoopFinish;
190 u32 new_paramc = 5;
191 u64 new_paramv[new_paramc ];
192 new_paramv [0] = nBlocks;
193 new_paramv [1] = nEntries;
194 new_paramv [2] = (u64)A;
195 new_paramv [3] = (u64)B;
196 new_paramv [4] = (u64)C;
197

198 u32 new_depc = 1;
199 ocrGuid_t new_depv[new_depc ];
200 new_depv [0] = UNINITIALIZED_GUID;
201

202 ocrEdtTemplateCreate (& templateMainLoop , mainLoopTask , new_paramc , new_depc);
203

204 ocrEdtCreate (& mainLoopTask_guid , templateMainLoop , EDT_PARAM_DEF , new_paramv ,
205 EDT_PARAM_DEF , new_depv , EDT_PROP_FINISH , NULL_HINT ,
206 &mainLoopFinish);
207

208 // Create a wrap up task that depends on mainLoopFinish event, which
209 // calls ocrShutdown
210 ocrGuid_t templateWrapUp;
211 ocrGuid_t wrapUp;
212 new_paramc = 2;
213 new_paramv [0] = nBlocks;
214 new_paramv [1] = nEntries;
215 new_depc = 1;
216 new_depv [0] = mainLoopFinish;
217

218 ocrEdtTemplateCreate (& templateWrapUp , wrapUpTask , new_paramc , new_depc);
219 ocrEdtCreate (&wrapUp , templateWrapUp , EDT_PARAM_DEF , new_paramv ,
220 EDT_PARAM_DEF , new_depv , EDT_PROP_NONE , NULL_HINT , NULL);
221

222 ocrAddDependence(NULL_GUID , mainLoopTask_guid , 0, DB_MODE_RW);
223

224 return NULL_GUID;
225 }

Listing A.2: HTA-OCR tiled matrix-matrix multiplication implementation

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <time.h>
4 #include <string.h>
5 #include <math.h>
6 #include "HTA.h"
7 #include "HTA_timer.h"
8 #include "HTA_operations.h"
9 #include "Tuple.h"

10 #include "Distribution.h"
11 #include "test.h"
12

13 void
14 MATMUL(HTA** lhs , HTA** rhs , uint64_t* capture)
15 {
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16 double* a = (double *) HTA_get_ptr_raw_data(rhs [0]);
17 double* b = (double *) HTA_get_ptr_raw_data(rhs [1]);
18 double* c = (double *) HTA_get_ptr_raw_data(lhs [0]);

19 int m = lhs[0]-> flat_size.values [0]; // assume square tile
20

21 for (int i = 0; i < m; i++)
22 for (int j = 0; j < m; j++)
23 for (int k = 0; k < m; k++)
24 c[i * m + j] += a[i * m + k] * b[k * m + j];
25 }
26 int
27 hta_main(int argc , char** argv)
28 {
29 int TILES = atoi(argv [1]);
30 int nEntries = atoi(argv [2]);
31 long int MATRIX_WIDTH = TILES * nEntries;
32 long int MATRIX_SIZE = MATRIX_WIDTH * MATRIX_WIDTH;
33 double* A = (double *) malloc(sizeof(double) * MATRIX_SIZE);
34 double* B = (double *) malloc(sizeof(double) * MATRIX_SIZE);
35 double* R1 = (double *) malloc(sizeof(double) * MATRIX_SIZE);
36 double* R2 = (double *) malloc(sizeof(double) * MATRIX_SIZE);
37 int i, j, k, err;
38

39 int pid = MYRANK;
40

41 Tuple mesh = HTA_get_vp_mesh (2);
42

43 Dist dist;
44 Dist_init (&dist , DIST_BLOCK , &mesh);
45 Tuple flat_size = Tuple_create (2, MATRIX_WIDTH , MATRIX_WIDTH);
46

47 // create an empty shell
48 HTA* h1 =
49 HTA_create_with_pid(pid , 2, 2, &flat_size , 0, &dist , HTA_SCALAR_TYPE_DOUBLE ,
50 1, Tuple_create (2, TILES , TILES));
51 HTA* h2 =
52 HTA_create_with_pid(pid , 2, 2, &flat_size , 0, &dist , HTA_SCALAR_TYPE_DOUBLE ,
53 1, Tuple_create (2, TILES , TILES));
54 HTA* result =
55 HTA_create_with_pid(pid , 2, 2, &flat_size , 0, &dist , HTA_SCALAR_TYPE_DOUBLE ,
56 1, Tuple_create (2, TILES , TILES));
57

58 srand(time(NULL));

59 // create a 2D matrix
60 for (i = 0; i < MATRIX_WIDTH; i++)
61 for (j = 0; j < MATRIX_WIDTH; j++) {

62 // A[i*MATRIX_WIDTH + j] = (j==i)? 1:0;
63 A[i * MATRIX_WIDTH + j] = (rand() % 100) / 100.0;
64 B[i * MATRIX_WIDTH + j] = (rand() % 10) / 10.0;
65 R1[i * MATRIX_WIDTH + j] = 0;
66 R2[i * MATRIX_WIDTH + j] = 0;
67 }
68

69 // initialize the HTA using 2D matrix
70 HTA_init_with_array(h1, A);
71 HTA_init_with_array(h2, B);
72 HTA_init_with_array(result , R1);
73

74 for (k = 0; k < TILES; k++) {
75 for (i = 0; i < TILES; i++) {
76 for (j = 0; j < TILES; j++) {
77 Tuple ij = Tuple_create (2, i, j);
78 Tuple ik = Tuple_create (2, i, k);
79 Tuple kj = Tuple_create (2, k, j);
80 HTAOCR_SET_PRIORITY(HTAOCR_EDT_DEFAULT_PRIORITY - k);
81 HTA_map(MATMUL , ARGS(LHS(0, HTA_pick_one_tile(result , &ij)),
82 RHS(0, HTA_pick_one_tile(h1 , &ik),
83 HTA_pick_one_tile(h2, &kj))));
84 }
85 }
86 }
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87

88 HTA_UNCLAIM_RET (1, result);
89 HTA_FLATTEN_RET(R1, NULL , NULL , result);
90

91 free(A);
92 free(B);
93 free(R1);
94 free(R2);
95 HTA_destroy(h1);
96 HTA_destroy(h2);
97 HTA_destroy(result);
98 return 0;
99 }

Listing A.3: Pure OpenMP tiled matrix-matrix multiplication implementation

1 #include <stdio.h>
2 #include <math.h>
3 #include <stdlib.h>
4 #include <omp.h>
5

6 typedef struct
7 {
8 double* ptr;
9 } TILE;

10

11 void
12 MATMUL(TILE* C, TILE* A, TILE* B, int m)
13 {
14 double* a = (double *)A->ptr;
15 double* b = (double *)B->ptr;
16 double* c = (double *)C->ptr;
17

18 for (int i = 0; i < m; i++)
19 for (int j = 0; j < m; j++)
20 for (int k = 0; k < m; k++)
21 c[i * m + j] += a[i * m + k] * b[k * m + j];
22 }
23

24 int
25 main(int argc , char** argv)
26 {
27 assert(argc == 3);
28

29 int TILES = atoi(argv [1]);
30 int nEntries = atoi(argv [2]);
31 long int MATRIX_WIDTH = TILES * nEntries;
32 long int MATRIX_SIZE = MATRIX_WIDTH * MATRIX_WIDTH;
33

34 double* A = (double *) malloc(sizeof(double) * MATRIX_SIZE);
35 double* B = (double *) malloc(sizeof(double) * MATRIX_SIZE);
36 double* R1 = (double *) malloc(sizeof(double) * MATRIX_SIZE);
37 double* R2 = (double *) malloc(sizeof(double) * MATRIX_SIZE);
38

39 #pragma omp parallel for
40 for (int i = 0; i < MATRIX_WIDTH; i++)
41 for (int j = 0; j < MATRIX_WIDTH; j++) {
42 A[i * MATRIX_WIDTH + j] = (rand() % 100) / 100.0;
43 B[i * MATRIX_WIDTH + j] = (rand() % 10) / 10.0;
44 R1[i * MATRIX_WIDTH + j] = 0;
45 R2[i * MATRIX_WIDTH + j] = 0;
46 }
47

48 // initialize tiled matrices
49 TILE* MA = (TILE*) malloc(sizeof(TILE) * TILES * TILES);
50 TILE* MB = (TILE*) malloc(sizeof(TILE) * TILES * TILES);
51 TILE* MC = (TILE*) malloc(sizeof(TILE) * TILES * TILES);
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52

53 #pragma omp parallel for
54 for (int i = 0; i < TILES; i++) {
55 for (int j = 0; j < TILES; j++) {
56 double* a_ptr = (double *) malloc(sizeof(double) * nEntries * nEntries);
57 double* b_ptr = (double *) malloc(sizeof(double) * nEntries * nEntries);
58 double* c_ptr = (double *) malloc(sizeof(double) * nEntries * nEntries);
59 for (int ii = 0; ii < nEntries; ii++)
60 for (int jj = 0; jj < nEntries; jj++) {
61 a_ptr[ii * nEntries + jj] =
62 A[(i * nEntries + ii) * MATRIX_WIDTH + (j * nEntries + jj)];
63 b_ptr[ii * nEntries + jj] =
64 B[(i * nEntries + ii) * MATRIX_WIDTH + (j * nEntries + jj)];
65 c_ptr[ii * nEntries + jj] = 0;
66 }
67 MA[i * TILES + j].ptr = a_ptr;
68 MB[i * TILES + j].ptr = b_ptr;
69 MC[i * TILES + j].ptr = c_ptr;
70 }
71 }
72

73 // matrix multiplication
74 timerstart (&startS , &startNS);
75

76 for (int k = 0; k < TILES; k++)
77 #pragma omp parallel for schedule(runtime)
78 for (int ii = 0; ii < TILES * TILES; ii++) {
79 int i = ii / TILES;
80 int j = ii % TILES;
81 MATMUL (&MC[i * TILES + j], &MA[i * TILES + k], &MB[k * TILES + j],
82 nEntries);
83 }
84 return 0;
85 }
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Appendix B

Tiled Cholesky Factorization Full

Programs

The OCR tiled Cholesky factorization program listed here is adapted from the an example

in the public repository of Traleika Glacier XStack Project [17].

Listing B.1: Pure OCR tiled Cholesky factorization implementation

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
4 #include <malloc.h>
5 #include <math.h>
6 #include <mkl.h>
7 #include <mkl_lapacke.h>
8

9 ocrGuid_t wrapUpTask(u32 paramc , u64* paramv , u32 depc , ocrEdtDep_t depv []);
10

11 char uplo = ’L’;
12 int nBlocks , nEntries;
13 int lnt , lmt;

14 char prcs; // precision
15 int mThreads;
16 int info;
17

18 double* AMatrix;
19 double* sAMatrix;
20 ocrGuid_t ** tiledMatrix = NULL;
21 double *** tiles;
22

23 static inline double
24 random_value_(double a, double b)
25 {
26 return (a > b) ? random_value_(b, a) : (a + ((b - a) * drand48 ()));
27 }
28
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29 void
30 dpotrf_task_prescriber(ocrGuid_t edtTemplate , u32 k, u32 tileSize ,
31 ocrGuid_t *** depArray , u64 priority)
32 {
33 ocrGuid_t task_guid;
34 u64 paramv [3];
35 paramv [0] = k;
36 paramv [1] = tileSize;
37 paramv [2] = (u64)depArray[k][k][k + 1]. guid;
38

39 ocrGuid_t depv [1];
40 depv [0] = depArray[k][k][k];
41

42 ocrHint_t priority_hint;
43 ocrHintInit (& priority_hint , OCR_HINT_EDT_T);
44 ocrSetHintValue (& priority_hint , OCR_HINT_EDT_PRIORITY , priority);
45 ocrEdtCreate (&task_guid , edtTemplate , 3, paramv , 1, depv , EVT_PROP_NONE ,
46 &priority_hint , NULL);
47 }
48

49 void
50 dtrsm_task_prescriber(ocrGuid_t edtTemplate , u32 k, u32 i, u32 tileSize ,
51 ocrGuid_t *** depArray , u64 priority)
52 {
53 ocrGuid_t task_guid;
54 u64 paramv [4];
55 paramv [0] = k;
56 paramv [1] = i;
57 paramv [2] = tileSize;
58 paramv [3] = (u64)depArray[i][k][k + 1]. guid;
59

60 ocrGuid_t depv [2];
61 depv [0] = depArray[k][k][k + 1];
62 depv [1] = depArray[i][k][k];
63

64 ocrHint_t priority_hint;
65 ocrHintInit (& priority_hint , OCR_HINT_EDT_T);
66 ocrSetHintValue (& priority_hint , OCR_HINT_EDT_PRIORITY , priority);
67 ocrEdtCreate (&task_guid , edtTemplate , 4, paramv , 2, depv , EVT_PROP_NONE ,
68 &priority_hint , NULL);
69 }
70

71 void
72 dsyrk_task_prescriber(ocrGuid_t edtTemplate , u32 k, u32 i, u32 tileSize ,
73 ocrGuid_t *** depArray , u64 priority)
74 {
75 ocrGuid_t task_guid;
76 u64 paramv [4];
77 paramv [0] = k;
78 paramv [1] = i;
79 paramv [2] = tileSize;
80 paramv [3] = (u64)depArray[i][i][k + 1]. guid;
81

82 ocrGuid_t depv [2];
83 depv [0] = depArray[i][i][k];
84 depv [1] = depArray[i][k][k + 1];
85

86 ocrHint_t priority_hint;
87 ocrHintInit (& priority_hint , OCR_HINT_EDT_T);
88 ocrSetHintValue (& priority_hint , OCR_HINT_EDT_PRIORITY , priority);
89 ocrEdtCreate (&task_guid , edtTemplate , 4, paramv , 2, depv , EVT_PROP_NONE ,
90 &priority_hint , NULL);
91 }
92

93 void
94 dgemm_task_prescriber(ocrGuid_t edtTemplate , u32 k, u32 i, u32 j, u32 tileSize ,
95 ocrGuid_t *** depArray , u64 priority)
96 {
97 ocrGuid_t task_guid;
98 u64 paramv [5];
99 paramv [0] = k;
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100 paramv [1] = i;
101 paramv [2] = j;
102 paramv [3] = tileSize;
103 paramv [4] = (u64)depArray[i][j][k + 1]. guid;
104

105 ocrGuid_t depv [3];
106 depv [0] = depArray[i][j][k];
107 depv [1] = depArray[i][k][k + 1];
108 depv [2] = depArray[j][k][k + 1];
109

110 ocrHint_t priority_hint;
111 ocrHintInit (& priority_hint , OCR_HINT_EDT_T);
112 ocrSetHintValue (& priority_hint , OCR_HINT_EDT_PRIORITY , priority);
113 ocrEdtCreate (&task_guid , edtTemplate , 5, paramv , 3, depv , EVT_PROP_NONE ,
114 &priority_hint , NULL);
115 }
116

117 ocrGuid_t
118 dpotrfTask(u32 paramc , u64* paramv , u32 depc , ocrEdtDep_t depv [])
119 {
120 int k = paramv [0];
121 int mRowInTile = (int)paramv [1];
122 ocrGuid_t output;
123 output.guid = paramv [2];
124 double* adata = (double *)depv [0]. ptr;
125 LAPACKE_dpotrf(LAPACK_ROW_MAJOR , uplo , mRowInTile , adata , mRowInTile);
126

127 ocrEventSatisfy(output , depv [0]. guid);
128 return NULL_GUID;
129 }
130

131 ocrGuid_t
132 dtrsmTask(u32 paramc , u64* paramv , u32 depc , ocrEdtDep_t depv [])
133 {
134 int k = paramv [0];
135 int i = paramv [1];
136 int mRowInTile = (int)paramv [2];
137 ocrGuid_t output;
138 output.guid = paramv [3];
139 double* adata = (double *)depv [0]. ptr;
140 double* bbdata = (double *)depv [1]. ptr;
141 cblas_dtrsm(CblasRowMajor , CblasRight , CblasLower , CblasTrans , CblasNonUnit ,
142 mRowInTile , mRowInTile , 1.0, adata , mRowInTile , bbdata ,
143 mRowInTile);
144 ocrEventSatisfy(output , depv [1]. guid);
145 return NULL_GUID;
146 }
147

148 ocrGuid_t
149 dsyrkTask(u32 paramc , u64* paramv , u32 depc , ocrEdtDep_t depv [])
150 {
151 int k = paramv [0];
152 int i = paramv [1];
153 int mRowInTile = (int)paramv [2];
154 ocrGuid_t output;
155 output.guid = paramv [3];
156 double* aadata = (double *)depv [0]. ptr;
157 double* bbdata = (double *)depv [1]. ptr;
158 cblas_dsyrk(CblasRowMajor , CblasLower , CblasNoTrans , mRowInTile , mRowInTile ,
159 -1.0, bbdata , mRowInTile , 1.0, aadata , mRowInTile);
160 ocrEventSatisfy(output , depv [0]. guid);
161 return NULL_GUID;
162 }
163 ocrGuid_t
164 dgemmTask(u32 paramc , u64* paramv , u32 depc , ocrEdtDep_t depv [])
165 {
166 int k = paramv [0];
167 int i = paramv [1];
168 int j = paramv [2];
169 int mRowInTile = (int)paramv [3];
170 ocrGuid_t output;

126



171 output.guid = paramv [4];
172 double* cdata = (double *)depv [0]. ptr;
173 double* bcdata = (double *)depv [1]. ptr;
174 double* acdata = (double *)depv [2]. ptr;
175 cblas_dgemm(CblasRowMajor , CblasNoTrans , CblasTrans , mRowInTile , mRowInTile ,
176 mRowInTile , -1.0, bcdata , mRowInTile , acdata , mRowInTile , 1.0,
177 cdata , mRowInTile);
178 ocrEventSatisfy(output , depv [0]. guid);
179 return NULL_GUID;
180 }
181

182 ocrGuid_t
183 mainLoopTask(u32 paramc , u64* paramv , u32 depc , ocrEdtDep_t depv [])
184 {
185 int nBlocks = paramv [0];
186 int nEntries = paramv [1];
187

188 ocrGuid_t *** dependenceArray;
189 ocrGuid_t tmp_guid;
190

191 ocrDbCreate (&tmp_guid , (void **)&dependenceArray ,
192 sizeof(ocrGuid_t **) * nBlocks , DB_PROP_NONE , NULL_HINT , NO_ALLOC);
193 for (int i = 0; i < nBlocks; i++) {
194 ocrDbCreate (&tmp_guid , (void **)&dependenceArray[i],
195 sizeof(ocrGuid_t *) * (nBlocks), DB_PROP_NONE , NULL_HINT ,
196 NO_ALLOC);
197 for (int j = 0; j <= i; j++) {
198 ocrDbCreate (&tmp_guid , (void **)&dependenceArray[i][j],
199 sizeof(ocrGuid_t) * (nBlocks + 1), DB_PROP_NONE , NULL_HINT ,
200 NO_ALLOC);
201 for (int k = 0; k <= nBlocks; k++) {
202 ocrEventCreate (& dependenceArray[i][j][k], OCR_EVENT_STICKY_T ,
203 EVT_PROP_NONE);
204 }
205 }
206 }
207

208 // Create task templates
209 ocrGuid_t templateDpotrf , templateDtrsm , templateDsyrk , templateDgemm;
210 ocrEdtTemplateCreate (& templateDpotrf , dpotrfTask , 3, 1);
211 ocrEdtTemplateCreate (& templateDtrsm , dtrsmTask , 4, 2);
212 ocrEdtTemplateCreate (& templateDsyrk , dsyrkTask , 4, 2);
213 ocrEdtTemplateCreate (& templateDgemm , dgemmTask , 5, 3);
214

215 // 3 level loop to create tasks
216 // priority: column index, iteration count, row index
217 u64 max_priority = nBlocks * nBlocks * nBlocks;
218 for (int k = 0; k < nBlocks; k++) {
219 dpotrf_task_prescriber(templateDpotrf , k, nEntries , dependenceArray ,
220 max_priority -
221 (k * nBlocks * nBlocks + k * nBlocks + k));
222 for (int i = k + 1; i < nBlocks; i++) {
223 dtrsm_task_prescriber(templateDtrsm , k, i, nEntries , dependenceArray ,
224 max_priority -
225 (k * nBlocks * nBlocks + k * nBlocks + i));
226 }
227 for (int j = k + 1; j < nBlocks; j++) {
228 dsyrk_task_prescriber(templateDsyrk , k, j, nEntries , dependenceArray ,
229 max_priority -
230 (j * nBlocks * nBlocks + k * nBlocks + j));
231 for (int i = j + 1; i < nBlocks; i++) {
232 dgemm_task_prescriber(templateDgemm , k, i, j, nEntries , dependenceArray ,
233 max_priority -
234 (j * nBlocks * nBlocks + k * nBlocks + i));
235 }
236 }
237 }
238

239 for (int i = nBlocks - 1; i >= 0; i--)
240 for (int j = 0; j <= i; j++)
241 ocrEventSatisfy(dependenceArray[i][j][0], tiledMatrix[i][j]);
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242 return NULL_GUID;
243 }
244

245 ocrGuid_t
246 wrapUpTask(u32 paramc , u64* paramv , u32 depc , ocrEdtDep_t depv [])
247 {
248 ocrShutdown ();
249 return NULL_GUID;
250 }
251

252 ocrGuid_t
253 mainEdt(u32 paramc , u64* paramv , u32 depc , ocrEdtDep_t depv [])
254 {
255 int argc = getArgc(depv [0]. ptr);
256 char** argv = (char **) malloc(argc * sizeof(char*));
257 for (int i = 0; i < argc; i++) {
258 char* arg = getArgv(depv [0].ptr , i);
259 argv[i] = arg;
260 }

261 /* We will use the same number of entries for each block */
262 if (argc < 4) {
263 fprintf(stderr , "Format: %s S|D #blocks #elements #numThreads\n", *argv);
264 exit(EXIT_FAILURE);
265 }
266

267 /* Read params */
268 prcs = *(argv [1]);
269 nBlocks = strtoul(argv[2], NULL , 10);
270 nEntries = strtoul(argv[3], NULL , 10);
271 mThreads = strtoul(argv[4], NULL , 10);
272

273 mkl_set_num_threads (1);
274

275 // Initialize the matrix
276 lmt = nBlocks * nEntries;
277 lnt = lmt;
278 sAMatrix = memalign (32, lmt * lnt * sizeof(double));
279 double* tptr = sAMatrix;
280 for (int i = 0; i < lmt; ++i) {
281 for (int j = 0; j < i; ++j) {
282 double x = random_value_ (-1.0, 1.0);
283 tptr[j + i * lmt] = tptr[i + j * lmt] = x;
284 }
285 tptr[i + i * lmt] = lmt + 1;
286 }
287 AMatrix = memalign (32, lmt * lnt * sizeof(double));
288 memcpy(AMatrix , sAMatrix , lmt * lnt * sizeof(double));
289

290 // Initialize Tiles sequentially
291 ocrGuid_t tmp_guid;
292 ocrDbCreate (&tmp_guid , (void **)&tiledMatrix , sizeof(ocrGuid_t *) * nBlocks ,
293 DB_PROP_NONE , NULL_HINT , NO_ALLOC);
294 tiles = (double ***) malloc(sizeof(double **) * nBlocks);
295 for (int i = 0; i < nBlocks; i++) {
296 ocrDbCreate (&tmp_guid , (void **)&tiledMatrix[i],
297 sizeof(ocrGuid_t) * (nBlocks), DB_PROP_NONE , NULL_HINT ,
298 NO_ALLOC);
299 tiles[i] = (double **) malloc(sizeof(double *) * (nBlocks));
300 for (int j = 0; j <= i; j++) {
301 ocrDbCreate (& tiledMatrix[i][j], (void **)&tiles[i][j],
302 sizeof(double) * nEntries * nEntries , DB_PROP_NONE , NULL_HINT ,
303 NO_ALLOC);
304 for (int x = 0; x < nEntries; x++)
305 for (int y = 0; y < nEntries; y++) {
306 tiles[i][j][x * nEntries + y] =
307 sAMatrix [(i * nEntries + x) * (lmt) + (j * nEntries + y)];
308 }
309 }
310 }
311

312 // Create a finish EDT that spawns tasks to perform cholesky factorization
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313 ocrGuid_t templateMainLoop;
314 ocrGuid_t mainLoopTask_guid;
315 ocrGuid_t mainLoopFinish;
316 u32 new_paramc = 3;
317 u64 new_paramv[new_paramc ];
318 new_paramv [0] = nBlocks;
319 new_paramv [1] = nEntries;
320 new_paramv [2] = (u64)tiledMatrix;
321

322 u32 new_depc = 1;
323 ocrGuid_t new_depv[new_depc ];
324 new_depv [0] = UNINITIALIZED_GUID;
325

326 ocrEdtTemplateCreate (& templateMainLoop , mainLoopTask , new_paramc , new_depc);
327

328 ocrEdtCreate (& mainLoopTask_guid , templateMainLoop , EDT_PARAM_DEF , new_paramv ,
329 EDT_PARAM_DEF , new_depv , EDT_PROP_FINISH , NULL_HINT ,
330 &mainLoopFinish);
331

332 ocrGuid_t templateWrapUp;
333 ocrGuid_t wrapUp;
334

335 new_paramc = 0;
336 new_depc = 1;
337 new_depv [0] = mainLoopFinish;
338 ocrEdtTemplateCreate (& templateWrapUp , wrapUpTask , new_paramc , new_depc);
339 ocrEdtCreate (&wrapUp , templateWrapUp , EDT_PARAM_DEF , NULL , EDT_PARAM_DEF ,
340 new_depv , EDT_PROP_NONE , NULL_HINT , NULL);
341

342 ocrAddDependence(NULL_GUID , mainLoopTask_guid , 0, DB_MODE_RW);
343 return NULL_GUID;
344 }

Listing B.2: HTA-OCR tiled Cholesky factorization implementation

1 #include <time.h>
2 #include <stdio.h>
3 #include <stdlib.h>
4 #include <string.h>
5 #include <malloc.h>
6 #include <math.h>
7 #include <unistd.h>
8 #include <mkl.h>
9 #include <mkl_lapacke.h>

10

11 #include "HTA.h"
12 #include "HTA_operations.h"
13 #include "Tuple.h"
14

15 char uplo = ’L’;
16 MKL_INT nBlocks , nEntries;
17 int lnt , lmt;

18 char prcs; // precision
19 int mThreads;
20 MKL_INT info;
21 DIST_TYPE dist_type = DIST_ROW_CYCLIC;
22

23 double* sAMatrix;
24

25 static inline double
26 random_value_(double a, double b)
27 {
28 return (a > b) ? random_value_(b, a) : (a + ((b - a) * drand48 ()));
29 }
30

31 void
32 TRSM(HTA** lhs , HTA** rhs , uint64_t* capture)
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33 {
34 HTA *hAik = lhs[0], hAkk = rhs [0];
35 double* adata = HTA_get_ptr_raw_data(hAkk);
36 double* bbdata = HTA_get_ptr_raw_data(hAik);
37 int mRowInTile = hAkk ->flat_size.values [1];
38 cblas_dtrsm(CblasRowMajor , CblasRight , CblasLower , CblasTrans , CblasNonUnit ,
39 mRowInTile , mRowInTile , 1.0, adata , mRowInTile , bbdata ,
40 mRowInTile);
41 }
42

43 void
44 SYRK(HTA** lhs , HTA** rhs , uint64_t* capture)
45 {
46 HTA *hAij = lhs[0], hAik = rhs [0];
47 int i = hAij ->nd_rank.values [1];
48 int mRowInTile = hAij ->flat_size.values [1];
49 double* aadata = HTA_get_ptr_raw_data(hAij);
50 double* bbdata = HTA_get_ptr_raw_data(hAik);
51 cblas_dsyrk(CblasRowMajor , CblasLower , CblasNoTrans , mRowInTile , mRowInTile ,
52 -1.0, bbdata , mRowInTile , 1.0, aadata , mRowInTile);
53 }
54

55 void
56 GEMM(HTA** lhs , HTA** rhs , uint64_t* capture)
57 {
58 HTA *hAij = lhs[0], hAik = rhs[0], hAjk = rhs [1];
59 int i = hAij ->nd_rank.values [1];
60 int j = hAij ->nd_rank.values [0];
61 int mRowInTile = hAij ->flat_size.values [1];
62 double* cdata = HTA_get_ptr_raw_data(hAij);
63 double* acdata = HTA_get_ptr_raw_data(hAjk);
64 double* bcdata = HTA_get_ptr_raw_data(hAik);
65 cblas_dgemm(CblasRowMajor , CblasNoTrans , CblasTrans , mRowInTile , mRowInTile ,
66 mRowInTile , -1.0, bcdata , mRowInTile , acdata , mRowInTile , 1.0,
67 cdata , mRowInTile);
68 }
69

70 void
71 POTRF(HTA** lhs , HTA** rhs , uint64_t* capture)
72 {
73 HTA* hAkk = lhs [0];
74 double* adata = HTA_get_ptr_raw_data(hAkk);
75 int mRowInTile = hAkk ->flat_size.values [1];
76 LAPACKE_dpotrf(LAPACK_ROW_MAJOR , uplo , mRowInTile , HTA_get_ptr_raw_data(hAkk),
77 mRowInTile);
78 }
79

80 int
81 hta_main(int argc , char** argv)
82 {
83 int pid = MYRANK;
84

85 /* We will use the same number of entries for each block */
86 if (argc < 5) {
87 fprintf(stderr , "Format: %s S|D #blocks #elements #numThreads #dist\n",
88 *argv);
89 exit(EXIT_FAILURE);
90 }
91

92 /* Read params */
93 prcs = *(argv [1]);
94 nBlocks = strtoul(argv[2], NULL , 10);
95 nEntries = strtoul(argv[3], NULL , 10);
96 mThreads = strtoul(argv[4], NULL , 10);
97 if (argc > 5) {
98 dist_type = strtoul(argv[5], NULL , 10);
99 assert(dist_type >= 0 && dist_type < DIST_TYPE_MAX);

100 }
101 printf("precision: %c, nBlocks = %d, nEntries = %d, mThreads = %d, dist_type "
102 "= %d\n",
103 prcs , nBlocks , nEntries , mThreads , dist_type);
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104

105 mkl_set_num_threads (1);
106

107 // Initialize the matrix
108 lmt = nBlocks * nEntries;
109 lnt = lmt;
110 printf("Allocating flat matrix of size %dx%d\n", lmt , lnt);
111 sAMatrix = memalign (32, lmt * lnt * sizeof(double));
112 double* tptr = sAMatrix;
113 for (int i = 0; i < lmt; ++i) {
114 for (int j = 0; j < i; ++j) {
115 double x = random_value_ (-1.0, 1.0);
116 tptr[j + i * lmt] = tptr[i + j * lmt] = x;
117 }
118 tptr[i + i * lmt] = lmt + 1;
119 }
120 double* AMatrix = memalign (32, lmt * lnt * sizeof(double));
121

122 HTA_SCALAR_TYPE stype = ((prcs == ’s’) || (prcs == ’S’))
123 ? HTA_SCALAR_TYPE_FLOAT
124 : HTA_SCALAR_TYPE_DOUBLE;
125 Tuple t0 = Tuple_create (2, nBlocks , nBlocks);
126 Tuple flat_size = Tuple_create (2, nBlocks * nEntries , nBlocks * nEntries);
127 Tuple mesh = HTA_get_vp_mesh (2);
128 Dist dist;
129 Dist_init (&dist , dist_type , &mesh);
130 HTA* hA =
131 HTA_create_impl(pid , NULL , 2, 2, &flat_size , 0, &dist , stype , 1, &t0);
132

133 // Priority space dimension: (nBlocks * nBlocks * 4)
134 // Priority : -(column index, iteration count, row index)
135 for (int k = 0; k < nBlocks; k++) {
136 Tuple kk = Tuple_create (2, k, k);
137 HTA* hAkk = HTA_pick_one_tile(hA, &kk);
138 HTAOCR_SET_PRIORITY(HTAOCR_EDT_DEFAULT_PRIORITY -
139 (k * nBlocks * 4 + k * 4 + k));
140 HTA_map(POTRF , ARGS(LHS(0, hAkk)));
141 for (int i = k + 1; i < nBlocks; i++) {
142 Tuple ik = Tuple_create (2, i, k);
143 HTA* hAik = HTA_pick_one_tile(hA, &ik);
144 HTAOCR_SET_PRIORITY(HTAOCR_EDT_DEFAULT_PRIORITY -
145 (k * nBlocks * 4 + k * 4 + i));
146 HTA_map(TRSM , ARGS(LHS(0, hAik), RHS(0, hAkk)));
147 }
148

149 double iter_count = k;
150 for (int j = k + 1; j < nBlocks; j++) {
151 Tuple jj = Tuple_create (2, j, j);
152 Tuple jk = Tuple_create (2, j, k);
153 HTA* hAjk = HTA_pick_one_tile(hA, &jk);
154 HTA* hAjj = HTA_pick_one_tile(hA, &jj);
155 HTAOCR_SET_PRIORITY(HTAOCR_EDT_DEFAULT_PRIORITY -
156 (j * nBlocks * 4 + k * 4 + j));
157 HTA_map(SYRK , ARGS(LHS(0, hAjj), RHS(0, hAjk)));
158 for (int i = j + 1; i < nBlocks; i++) {
159 Tuple ij = Tuple_create (2, i, j);
160 Tuple ik = Tuple_create (2, i, k);
161 HTA* hAij = HTA_pick_one_tile(hA, &ij);
162 HTA* hAik = HTA_pick_one_tile(hA, &ik);
163 HTAOCR_SET_PRIORITY(HTAOCR_EDT_DEFAULT_PRIORITY -
164 (j * nBlocks * 4 + k * 4 + i));
165 HTA_map(GEMM , ARGS(LHS(0, hAij), RHS(0, hAik , hAjk));
166 }
167 }
168 }
169

170 Tuple last = Tuple_create (2, nBlocks - 1, nBlocks - 1);
171 HTA* hAkk = HTA_pick_one_tile(hA, &last);
172 HTA_UNCLAIM_RET (1, hAkk);
173

174 return 0;
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175 }

Listing B.3: Pure OpenMP tiled Cholesky factorization implementation

1 #include <stdio.h>
2 #include <math.h>
3 #include <stdlib.h>
4 #include <string.h>
5 #include <malloc.h>
6 #include <omp.h>
7 #include <mkl.h>
8 #include <mkl_lapacke.h>
9

10 char uplo = ’L’;
11 int lnt , lmt;
12 MKL_INT nBlocks , nEntries;

13 char prcs; // precision
14 int mThreads;
15 double* sAMatrix;
16

17 typedef struct
18 {
19 int n;
20 double* val;
21 } TILE;
22

23 static inline double
24 random_value_(double a, double b)
25 {
26 return (a > b) ? random_value_(b, a) : (a + ((b - a) * drand48 ()));
27 }
28

29 void
30 GET_I_J(int x, int start , int end , int* ret_i , int* ret_j)
31 {
32 int i = start;
33 while (i < end) {
34 if (x < end - i)
35 break;
36 x -= end - i;
37 i++;
38 }
39 *ret_i = x + i;
40 *ret_j = i;
41 }
42

43 TILE*
44 allocate_tiled_matrix(int nBlocks , int nEntries)
45 {
46 TILE* A = (TILE*) malloc(sizeof(TILE) * nBlocks * nBlocks);
47 for (int i = 0; i < nBlocks * nBlocks; i++) {
48 A[i].n = nEntries;
49 A[i].val = (double *) malloc(sizeof(double) * nEntries * nEntries);
50 }
51 return A;
52 }
53

54 void
55 initialize_tiled_matrix(TILE* A, double* AMatrix , int nBlocks , int nEntries)
56 {
57 #pragma omp parallel
58 {
59 #pragma omp for
60 for (int i = 0; i < nBlocks; i++)
61 for (int j = 0; j < nBlocks; j++) {
62 TILE* t = &A[i * nBlocks + j];
63 for (int ii = 0; ii < nEntries; ii++)
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64 for (int jj = 0; jj < nEntries; jj++) {
65 t->val[ii * nEntries + jj] =
66 AMatrix [(i * nEntries + ii) * nBlocks * nEntries +
67 (j * nEntries + jj)];
68 }
69 }
70 }
71 }
72

73 void
74 POTRF(TILE* t)
75 {
76 double* adata = t->val;
77 int mRowInTile = t->n;
78 LAPACKE_dpotrf(LAPACK_ROW_MAJOR , uplo , mRowInTile , adata , mRowInTile);
79 }
80

81 void
82 TRSM(TILE* Aik , TILE* Akk)
83 {
84 double* adata = Akk ->val;
85 double* bbdata = Aik ->val;
86 int mRowInTile = Akk ->n;
87 cblas_dtrsm(CblasRowMajor , CblasRight , CblasLower , CblasTrans , CblasNonUnit ,
88 mRowInTile , mRowInTile , 1.0, adata , mRowInTile , bbdata ,
89 mRowInTile);
90 }
91

92 void
93 SYRK(TILE* Aij , TILE* Aik)
94 {
95 int mRowInTile = Aij ->n;
96 double* aadata = Aij ->val;
97 double* bbdata = Aik ->val;
98 cblas_dsyrk(CblasRowMajor , CblasLower , CblasNoTrans , mRowInTile , mRowInTile ,
99 -1.0, bbdata , mRowInTile , 1.0, aadata , mRowInTile);

100 }
101

102 void
103 GEMM(TILE* Aij , TILE* Aik , TILE* Ajk)
104 {
105 int mRowInTile = Aij ->n;
106 double* cdata = Aij ->val;
107 double* acdata = Ajk ->val;
108 double* bcdata = Aik ->val;
109 cblas_dgemm(CblasRowMajor , CblasNoTrans , CblasTrans , mRowInTile , mRowInTile ,
110 mRowInTile , -1.0, bcdata , mRowInTile , acdata , mRowInTile , 1.0,
111 cdata , mRowInTile);
112 }
113

114 int
115 main(int argc , char** argv)
116 {
117 mkl_set_num_threads (1);
118

119 if (argc < 4) {
120 fprintf(stderr , "Format: %s S|D #blocks #elements\n", *argv);
121 exit(EXIT_FAILURE);
122 }
123

124 fprintf(stderr , "Initializing ...");
125 fflush(stderr);
126

127 /* Read params */
128 prcs = *(argv [1]);
129 nBlocks = strtoul(argv[2], NULL , 10);
130 nEntries = strtoul(argv[3], NULL , 10);
131 #pragma omp parallel
132 mThreads = omp_get_num_threads ();
133

134 // Initialize the matrix
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135 lmt = nBlocks * nEntries;
136 lnt = lmt;
137 printf("Allocating flat matrix of size %dx%d\n", lmt , lnt);
138 sAMatrix = memalign (32, lmt * lnt * sizeof(double));
139 double* tptr = sAMatrix;
140 for (int i = 0; i < lmt; ++i) {
141 for (int j = 0; j < i; ++j) {
142 double x = random_value_ (-1.0, 1.0);
143 tptr[j + i * lmt] = tptr[i + j * lmt] = x;
144 }
145 tptr[i + i * lmt] = lmt + 1;
146 }
147 double* AMatrix = memalign (32, lmt * lnt * sizeof(double));
148

149 // allocate tiled matrix
150 TILE* A = allocate_tiled_matrix(nBlocks , nEntries);
151

152 // Copy initialized data (parallel)
153 initialize_tiled_matrix(A, sAMatrix , nBlocks , nEntries);
154

155 // cholesky computation
156 for (int k = 0; k < nBlocks; k++) {
157

158 int numDGEMMS = (nBlocks - k) * (nBlocks - k - 1) / 2;
159

160 POTRF(&A[k * nBlocks + k]);
161

162 #pragma omp parallel for schedule(runtime)
163 for (int i = k + 1; i < nBlocks; i++) {
164 TRSM(&A[i * nBlocks + k], &A[k * nBlocks + k]);
165 }
166

167 #pragma omp parallel for schedule(runtime)
168 for (int x = 0; x < numDGEMMS; x++) {
169 int i, j;
170 GET_I_J(x, k + 1, nBlocks , &i, &j);
171 if (i == j)
172 SYRK(&A[j * nBlocks + j], &A[j * nBlocks + k]);
173 else
174 GEMM(&A[i * nBlocks + j], &A[i * nBlocks + k], &A[j * nBlocks + k]);
175 }
176 }
177

178 return 0;
179 }
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