
FINITE ELEMENT METHODS: 1970’s AND BEYOND
L.P. Franca (Ed.)

c© CIMNE, Barcelona, Spain 2003

STABILIZED FINITE ELEMENT METHODS

L. P. Franca G. Hauke A. Masud

Department of Mathematics
University of Colorado at
Denver
P.O. Box 173364, Campus
Box 170
Denver, CO 80217-3364, USA

Departamento de Mecanica
de Fluidos
Centro Politecnico Superior
C/Maria de Luna 3
50018 Zaragoza, Spain

Department of Civil Engi-
neering
University of Illinois
Chicago, IL 60607, USA

Abstract. We give a brief overview of stabilized finite element methods and illus-
trate the developments applied to the advection-diffusion equation.

Key words: Stabilized methods

1 INTRODUCTION

On the introduction and generalization of stabilized finite elements lays one of
the major contributions of Tom Hughes.

Stabilized finite element methods are formed by adding to the standard Galerkin
method terms that are mesh-dependent, consistent and numerically stabilizing.
Starting with the Streamline Upwind Petrov-Galerkin method (SUPG - see [10, 37]),
a generalization was proposed for the Stokes problem (see [40]) that circumvents the
need to satisfy the Babuška-Brezzi condition [1, 6], which showed the potential of ex-
tending the idea to various applications. Designing the perturbation term as in the
least-squares formulation, the Galerkin/least-squares method was applied to various
structural and fluid problems (see [18, 38, 39, 41] and references therein).

Related to this effort and at the same time, a number of other developments were
taking place. Under the leadership of Claes Johnson a series of articles presented
analysis of the scalar advective diffusive equation [46], the incompressible Navier-
Stokes [47] and a generalization of the discontinuity capturing term [48] introduced
earlier in [45].

In the 80’s at Stanford newer developments were being made and Tom led an
extraordinary effort that opened new doors in many areas. Many are described
in more detail elsewhere in this book. Let us for example mention acoustics [26,
27], where stabilized methods added at almost no cost a term that improved the
accuracy of the Galerkin method. This was an area where finite elements had been
dismissed as expensive, and all of a sudden, with a more accurate method, it became
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competitive.
The 80’s were inspiring and led to many other developments in the 90’s and today.

Let us mention some of the contributions by application (a complete list is not
feasible for this article - other references can be found in this book). For advection-
diffusion, reaction-diffusion and advection-diffusion-reaction scalar equations see [11,
12, 14, 17, 15, 23, 24, 28, 32, 30, 61]. For Stokes and incompressible Navier-Stokes
equations see [3, 8, 13, 16, 19, 22, 25, 49, 58, 33, 34]. For compressible Navier-Stokes
see [33, 34, 42, 43, 44]. For moving boundaries and interfaces see [53, 59, 60]. For
shallow water flows see [5, 29, 31]. Analysis and more references can be found in
the book [55].

In this note we revisit stabilized finite element methods for the advective-diffusive
equation. The SUPG, the Galerkin/least-squares and the Unusual stabilized meth-
ods are displayed and their analysis, recalled.

2 THE ADVECTIVE-DIFFUSIVE MODEL

The advective-diffusive model consists of finding the scalar-valued function u(x)
such that

−κ∆u + a · ∇u = f , (1)

where κ is the positive constant viscosity coefficient (or diffusivity), a is the velocity
field and f is a source function. To simplify notation, in what follows we assume a

to be constant, although the subsequent analysis and considerations equally apply
to velocities which are piecewise constant in the partition of Ω. Ω is the domain
assumed to be smooth. In addition, for simplicity, consider a homogeneous Dirichlet
boundary condition:

u = 0 onΓ = ∂Ω . (2)

The variational formulation corresponding to (1)-(2) is: find u ∈ H1
0(Ω) such that

κ(∇u,∇v) + (a · ∇u, v) = (f, v) ∀v ∈ H1
0(Ω), (3)

where ( · , · ) indicates integration over Ω and H1
0(Ω) is the Sobolev space with square

integrable value and derivative, and zero value on the boundary. We denote by || · ||1
the norm associated with this space and by || · || the L2(Ω) norm.

If we set v = u in (3), use Poincaré-Friedrichs to bound from below the left-hand-
side and Cauchy-Schwarz to bound from above the right-hand-side, we have:

κC||u||21 ≤ κ||∇u||2 = (f, u) ≤ ||f ||||u|| ≤ ||f ||||u||1

Dividing the left and right terms by κC||u||1 we get:

||u||1 ≤
1

κC
||f || (4)

Remark 1 This estimate indicates the intrinsic problem underlying this model equa-
tion. Namely, for small values of κ, small variations on the data f can lead to large
variations on the solution u.
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3 STABILIZED FINITE ELEMENT METHODS

The standard Galerkin method is constructed based on the variational formula-
tion (3) by taking a subspace of H1

0(Ω) spanned by continuous piecewise polynomials.
In two dimensions the support of these functions is a mesh partition of Ω into tri-
angles and/or quadrilaterals that do not overlap. We denote by Vh such space of
functions and write the Galerkin method as: find uh ∈ Vh such that

κ(∇uh,∇v) + (a · ∇uh, v) = (f, v) ∀v ∈ Vh . (5)

This method inherits the stability of the continuous problem (4) and it yields to
spurious oscillations when the convective coefficient is larger than the diffusive co-
efficient (more precisely, in terms of the mesh Peclet number: when |a|h/κ >> 1).
The stabilized finite element methods for this model can be written as: find uh ∈ Vh

such that
B(uh, v) = F (v) ∀v ∈ Vh (6)

where

B(u, v) = κ(∇u,∇v) + (a · ∇u, v) + S(u, v) (7)

F (v) = (f, v). (8)

S(u, v) indicates the additional terms added to the standard variational formula-
tion. These are added such that consistency is preserved and numerical stability,
enhanced. There are three different terms that are usually considered for this model,
namely:

S1(u, v) =
∑

K

τK(−κ∆u + a · ∇u − f,a · ∇v)K (9)

S2(u, v) =
∑

K

τK(−κ∆u + a · ∇u − f,a · ∇v − κ∆v)K (10)

S3(u, v) =
∑

K

τK(−κ∆u + a · ∇u − f,a · ∇v + κ∆v)K (11)

where K denotes an arbitrary element of our partition, τK is a stability coefficient
to be described below and ( · , · )K denotes integration over K.

Remark 2 The first stabilization S1 corresponds to the additional term in the SUPG
formulation [10].

Remark 3 The second stabilization S2 is a least-squares type modification [41]. The
method in this case is denoted by Galerkin/least-squares (or GLS for short).

Remark 4 The third stabilization S3 gives rise to an unusual stabilized finite ele-
ment method (USFEM) and it was first proposed in [17]. The method is also sug-
gested by static condensation of bubbles added to the finite element space Vh (see
[2, 7, 15]).

Remark 5 In [36] it was shown that stabilized methods and the USFEM method
stem from incorporating analytically the unresolved scales (subgrid scales) into the
finite element solution (resolved scales).
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The original stability parameters suggested in [10] were derived by comparing
to finite difference stencils and were limited to linear interpolations. The stability
parameter τK we will be using accommodates usage of higher order interpolations
and it can be understood a posteriori based on a priori error analysis. The formulae
are as follows (see [17]):

τK =
hK

2|a|p
ξ(PeK) (12)

PeK =
mk|a|phK

2κ
(13)

ξ(PeK) =

{

PeK 0 ≤ PeK < 1
1 PeK ≥ 1

(14)

|a|p =

(

N
∑

i=1

|ai|
p

)1/p

1 ≤ p < ∞ (15)

mk = min
{

1

3
, 2Ck

}

(16)

Ck

∑

K

h2
K ||∆v||20,K ≤ ||∇v||20 v ∈ Vh (17)

Remark 6 An alternative definition of τ obviates the definition of the mesh param-
eter hK and the inverse estimate constant Ck [20].

4 HIGHLIGHTS OF AN ERROR ANALYSIS

In this section we sketch an error analysis for the unusual stabilized method, as
introduced in [17] - see S3 above. We also refer to this work for a complete analysis.

First, it follows from definition:

mk ≤ 2Ck, (18)

ξ(PeK) ≤ PeK . (19)

Then stability can be established as follows:

(a · ∇v, v) = 0 ∀v ∈ Vh (20)

and
B(v, v) = 0 + κ‖∇v‖2 + ‖τ 1/2

a · ∇v‖2 −
∑

K

‖τ 1/2κ∆v‖2
K (21)

On the other hand,

τK =
hK

2|a|p
ξ(PeK) (22)

=
mkh

2
K

4κ

ξ(PeK)

PeK
(23)

≤
mkh

2
K

4κ
(24)
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Therefore,

∑

K

‖τ 1/2κ∆v‖2
K ≤

mkκ

4

∑

K

h2
K‖∆v‖2

K (25)

≤
mk

4Ck
κ‖∇v‖2 (26)

≤
κ

2
‖∇v‖2 (27)

Thus, the stability estimate follows:

B(v, v) ≥
1

2

(

κ‖∇v‖2 + ‖τ 1/2
a · ∇v‖2

)

(28)

Since the method is consistent, i.e., for the solution of the differential equation u

B(u, v) = L(v) ∀v ∈ Vh (29)

we have that stability and consistency yield convergence:

Theorem 1 The solution of the stabilized method uh converges to the exact solution
of the advective-difusive model u as follows:

κ‖∇(uh − u)‖2 + ‖τ 1/2
a · ∇(uh − u)‖2 ≤ (30)

C
∑

K

h2k|u|2k+1,K (H(PeK − 1)h|a|p + H(1 − PeK)κ) (31)

with H(·) the Heaviside function given by:

H(x − y) =

{

0, x < y
1, x > y

(32)

For a proof we refer to [17].

Remark 7 This convergence result accommodates zones of advection dominated
regimes (PeK > 1) and zones of diffusion dominated regimes (PeK < 1), as typ-
ically found in practice.

5 NUMERICAL EXAMPLES

In this section the performance of the SUPG method will be illustrated with two
one-dimensional numerical examples.

5.1 Boundary layer

The first example consists of an unresolved boundary layer in Ω = (0, 1), a = 1,
κ = 0.005, f(x) = 0, with boundary conditions u(0) = 0 and u(1) = 1. The element
Peclet number is 10, which renders the Galerkin method unstable.

Figure 1 shows the exact solution along the Galerkin and SUPG solutions. The
Galerkin solution has poor stability, whereas the SUPG solution is stable and highly
nodal-wise accurate.
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Figure 1: Boundary layer problem. Exact and numerical solutions.

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14

f(
x)

x

Figure 2: Convection with source term problem. Source term.

5.2 Convection with source term

Contrary to classical upwind methods, stabilized methods are consistent. The
advantage of this key feature is shown in this example, where convection is combined
with the independent source term f(x) given by the Figure 2 [50].

The problem to be solved in Ω = (0, 15) has parameters a = 1, κ = 0, and
boundary condition u(0) = 0. Figure 3 shows the Galerkin and SUPG solutions
against the exact solution. Note that both are very good. However, plain upwind
methods and inconsistent methods can yield to very inaccurate solutions.

6 QUO VADIS?

Trying to anticipate future developments due to the introduction of stabilized
methods is an exercise that is certainly doomed to fail. The interest on stabilized
methods continues to grow, judging by the number of papers citing these works.
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Figure 3: Convection with source term problem. Exact and numerical solutions.

To mention some of the advances published in the past two years alone, we find
applications in: viscoelastic flows [4], human lung respiratory system [57], magne-
tohydrodynamics [56], flow in porous media [54], viscoplastic flows [52, 51], crystal
growth [62], stochastic models for flows with chemical reactions [35]. Stabilized
methods offer a framework that is appealing for generalizations and extensions to
other applications.

In the following sections in this book we will see that the methodology can be also
understood from constructing richer subspaces (other than the usual ones spanned by
polynomials) in the Galerkin method. The appearance of the relationship between
these methods [7, 2] evolved to the introduction of residual-free bubbles [9, 21] and
multiscale formulations [36].
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