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Summary. “Vortex-induced vibration” (VIV) of a sprung cylinder is a familiar fluid-structure interaction phenomenon occurring over
a wide range of flow Reynolds number (Re). From a dynamical systems perspective, at critical Reynolds number (Rec), the fixed point
of the wake oscillator loses its stability resulting in limit-cycle oscillation, which is a well known supercritical Hopf bifurcation. In this
paper, we discuss the relation between the critical Reynolds number (Rec) for the Hopf bifurcation and the stiffness of the cylinder
for a sprung rigid circular cylinder. In addition, we introduce a rotational “nonlinear energy sink” (NES) into the system and study its
effect on Rec in subcritical flow regime.

Formulation of coupled system with rotational NES

The essentially nonlinear device, termed the rotational NES, as discussed in [2], consists of a small mass and a viscous
damper. The NES mass is constrained to rotate at a fixed radius about the oscillating center of the cylinder, with the
cylinder motion constrained to be perpendicular to the mean flow. A schematic of the rotating NES attached to the
cylinder is shown in Fig. 1. The damping of the NES necessary for dissipation is assumed to be a linear viscous damper.

Figure 1: Schematic of a cylinder in
flow with a rotational NES.

The equations of motion for the coupled system shown in Fig. 1 are written as
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where M̂cyl and K̂cyl are the mass and the stiffness per unit length of cylinder,
respectively. The NES mass and damping per unit length of the cylinder are
denoted by M̂rnes and Ĉnes, respectively. Nondimensionalizing the time and the
length by scaling with U0/D and D, respectively, dimensionless variables are
introduced as Y1 = y1/D, r̄0 = r0/D, and τ = tU0/D. The term involving
the lift force FL is nondimensionalized using the dimensionless density m∗ =
ρb/ρf and dimensionless lift coefficient CL = 2FL/ρfU
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where we use the notation ˙( ) = d( )/dτ and (̈ ) = d2( )/dτ2. The dimensionless natural frequency of the cylinder sup-
ported on the linear spring is ω∗

r =
(
D2/U2

0

) (
K̂cyl/

(
M̂cyl + M̂rnes

))
. The dimensionless parameters characterizing

the NES are the mass ratio ϵr = M̂rnes/(M̂cyl+M̂rnes), radius ratio r̄0, and damping ratio λr = DĈrnes/(M̂rnesr
2
0U0).

In deriving the equations of motion, θ is taken to be positive counterclockwise, and θ = 0 and θ = π correspond to fixed
points of the system. In all the simulation results discussed in this paper, the initial conditions for the θ DOF are taken as
θ(0) = π/2 and θ̇(0) = 0. The lift coefficient CL that drives the coupled system (2) is computed by solving the viscous in-
compressible Navier-Stokes equations via a multiscale/stabilized residue based finite-element approach developed in [3],
the detailed description of computational model and validation results are discussed in [4] and references cited therein.
The structural dynamical equations and the Navier-Stokes equations are solved in a staggered fashion as described by [4]
to obtain the fully couple solution at each time-step. The flow Reynolds number is defined based on the cylinder diameter
(D), the uniform upstream velocity (U0), and kinematic viscosity ν as Re = U0D/ν.

Critical Re for the motionless cylinder

We first confirm that for a motionless cylinder, the Hopf bifurcation occurs at Rec ≈ 47 in our computational model.
Any small disturbance in the flow past a cylinder with Re > Rec will grow in time, leading to temporal instability of
the steady symmetric flow resulting in a limit-cycle oscillation of the lift force on the cylinder. As the flow Reynolds
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number approaches Rec, the temporal growth rate becomes extremely small and requires a very long-time integration
if we rely solely on the numerical round-off error as the source of asymmetry to trigger the instability. In order to
expedite the process, we introduce a small temporal disturbance in the upstream inlet boundary condition to perturb the
steady-symmetric solution. Based on this approach, we determine the narrow range of Rec for the motionless cylinder as
46.7 ≤ Rec ≤ 46.8, which agrees with the results available in the literature [1].

VIV of sprung cylinder at subcritical Re

In this section, we discuss the subcritical Re VIV of a elastically supported cylinder with mass ratio m∗ = ρb/ρf = 10

and dimensionless frequency F ∗
n =

(
2πν/D2

)√(
K̂cyl/M̂cyl

)
. By perturbing the inlet velocity boundary condition,

we identify a narrow range of Re that bounds Rec. We perform this computational study for two different values of
stiffness of the cylinder support, and show that the range of Re for synchronized (State of the coupled system in which
the frequency of the lift force deviates from its natural shedding frequency and coincides with the natural frequency
of the cylinder, resulting in large amplitude vibration.) VIV depends on the stiffness of the support. We illustrate this
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Figure 2: Time series with decaying and growing so-
lutions at the beginning of the synchronization Rec for
1/F ∗

n = 0.35 of the cylinder without NES.
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Figure 3: Time series with growing and decaying solu-
tions at the end of the synchronization Rec for 1/F ∗

n =
0.35 of the cylinder without NES.

synchronization for a particular stiffness value inferred by 1/F ∗
n = 0.35. On the lower end, synchronization begins in the

narrow range of 21 ≤ Re ≤ 22; the corresponding time series are shown in Fig. 2. For the same natural frequency of the
cylinder, we observe that the upper end of synchronization is located in the narrow range 29 ≤ Re ≤ 30 as shown in Fig.
3. Thus, the synchronization regime for this stiffness spans the range 22 ≤ Re ≤ 29. A similar analysis performed for
1/F ∗

n = 0.3, we find the range of synchronization to be 24 ≤ Re ≤ 34. Thus, we see that the range of Re over which
synchronization is possible depends on the natural frequency of the cylinder.

Effect of a rotational NES on Rec of sprung cylinder

In this section, we discuss the effect of introducing an essentially nonlinear rotating NES into the cylinder on the critical
Re of the sprung cylinder. The NES parameters are fixed at r̄0 = 0.3, ϵr = 0.3, and 2.7739 ≤ λr ≤ 3.7726. These
NES parameter are not optimized for any specific objective; our intention is to study the general effect that targeted
energy transfer due to NES on the synchronization regime at a particular stiffness. For a cylinder stiffness inferred by
1/F ∗

n = 0.35, we identify a narrow range of Re that defines onset and end of synchronization. On the lower end, the
synchronization begins in the narrow range of 25 ≤ Re ≤ 26, and we observe that the upper end of synchronization
is located in the narrow range 33 ≤ Re ≤ 34. Thus, the synchronization regime for this stiffness spans the range
26 ≤ Re ≤ 33. Hence, the presence of rotational NES delays the instability and shifts the synchronization regime to
higher Re range compared to the system without the NES at the same stiffness.

Conclusions

For a sprung cylinder, VIV is possible below the Hopf bifurcation Rec of the stationary cylinder. The critical Re above
which VIV is possible depends on the natural frequency of the cylinder. In the subcritical Re (below the Hopf bifurcation
Rec) flow, synchronization occurs over a range of Re, with the synchronization range dependent on the natural frequency
of the cylinder. The effect of the rotational NES on the bifurcation Re is to delay the onset of synchronization.
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