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Abstract

Structured prediction tasks involve an inference step which allows for producing coherent label assignments

to the output structure. This can be achieved by constraining the output using prior knowledge about the

domain. This paradigm is called Constrained Conditional Models; and it involves augmenting the learning

of conditional models with declarative constraints. The MAP inference problem in CCM framework can be

solved by formulating an Integer Linear Programming problem. This ILP formulation is generally relaxed

to an Linear Programming problem by dropping the integrality constraints and making it tractable. In this

work, we evaluate other approximate inference algorithms for the MAP estimate for structured prediction

task in the CCM framework. We model the constrained structured prediction problem as a factor graph and

use different graphical models based algorithms. We evaluate these methods for the quality of their solution

and the computation time over some NLP tasks with varying complexity. For large-scale problems, the

tradeoff between inference time and the approximateness of the solution is a crucial aspect. Furthermore,

these inference solvers are provided as black-box implementations in Saul, which is a declarative programming

language for structured prediction tasks.
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Chapter 1

Introduction

Structured prediction is a machine learning framework that deals with structured output spaces. Structures

in the output space capture dependencies between objects that would otherwise be ignored by local dis-

criminative models. Most of the discriminative tasks in Natural Language Processing and linguistics have

some output structure that needs to be reasoned about. These could be linear chains, trees, or other forms.

Saul [Kordjamshidi et al., 2016, Kordjamshidi et al., 2015] is a declarative programming language that was

designed with an aim to make it easier to represent structured prediction problem using a domain-specific

language build over Scala. A major aspect of Saul is to let the user reason about the structured output spaces

easily.

Constrained Conditional Model (CCM) [Chang et al., 2008] is a paradigm that discusses the formalism

to add global constraints (from domain knowledge) to ensure a coherent prediction for the output-structure.

Saul makes it easier for the user to represent constraints on the output space using the expressive power

of first order logic. Typically, constraints are realized using an ILP formulation, which is solved by most

solvers using an LP-relaxation and a branch-and-bound strategy. Since, these constraints are essentially

restrictions on discrete output space configurations, we can model them using graphical models. Graphical

models let you decompose the optimization objective over smaller structures and patterns in the output.

If you consider the joint distribution of the structured output spaces, constraints can be seen as a way to

restrict some configurations (or assignments) in the output space. Following this analogy, we model the

problem as a graphical model with factors to model the output-space configurations. Thus, we can achieve

the same effect as using a ILP by restricting local assignments at the factors in the factor graph.

In this work, we experiment with approximate inference algorithms based on graphical models as alter-

natives to the ILP approach. We evaluate the performance and quality of results on a few NLP tasks of

different complexity. Additionally, these inference algorithms are provided in the Saul toolkit as black-box

algorithms. In Saul, the users can write constraints in a first order logic syntax and get the flexibility of

choosing between different solvers.
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Chapter 2

MAP Inference in Structured
Prediction

2.1 Structured Prediction

Structured prediction is a class of classification problems where the output labels are a very large set with

some sort of structure. The size of the output classes is large enough for enumeration-based methods to be

intractable or inefficient. Thus, incorporating the structure in the solution process is paramount. The output

is generally not a single discrete value but a set of values, y = (y1, y2, . . . yL) for a sequence of L variables.

Thus, the entire output space can be represented as Y ⊂ Y1 × Y2 × . . . × YL. In structured prediction, all

the output labels Y are predicted jointly, capturing any correlations between them.

Consider the natural language processing task of inducing a syntactic parse tree from an input sentence.

The input to the problem is a list of words in a sentence, while the output is a tree representing the

constituent parsing information. In this problem, the output is a structured space of all possible parse trees

that can be derived from that sentence. An example parse tree for the sentence: ‘John hit the ball.’ is

shown in Figure 2.1.

Figure 2.1: Parse tree example
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2.2 MAP Inference

MAP inference in structured prediction tasks aims to find the most probable assignments to the structure

according to a probabilistic model. Consider the scenario where the input x has output y ∈ Y , where Y

represents the set of all possible outputs. The MAP assignment for the problem would be the assignment

that maximizes the model’s score. If we use φ(x) to represent the feature vector for the input and w to

represent the weights of the classifier, then we can represent the MAP assignment as:

ŷ = arg max
y∈Y

F (x, y) = arg max
y∈Y

w · φ(x) (2.1)

In the case of structured prediction, the score F (x, y) can be decomposed over the structure in the output.

Suppose that the output y can be decomposed into smaller sub-structures yδ ∈ Φ(y), then we can write the

objective as:

ŷ = arg max
y∈Y

∑
δ∈Φ(y)

F (x, yδ) = arg max
y∈Y

∑
δ∈Φ(y)

wδ · φ(x, yδ) (2.2)

For structured prediction problems, where the output space is exponential in the size of the input, MAP

inference is NP-hard [Shimony, 1994]. This makes it attractive to use approximate inference models which

have a faster runtime at the expense of getting a sub-optimal solution.

2.3 Constrained Conditional Model

Constrained Conditional Model [Chang et al., 2008] is a training paradigm that augments the learning ob-

jective to also include global constraints that are induced from prior knowledge or domain expertise. The

objective function that is optimized in CCM is shown below:

arg max
y

λ · F (x, y)−
K∑
i=1

ρid(y, 1Ci(x)) (2.3)

F (x, y) denotes the score of the assignment y for the input instance x. The term Ci(x) denotes a single

global constraint in the problem (out of the K constraints). For each constraint, d(y, 1Ci(x)) captures the

measure of constraint violation. The overall goal is to maximize the weighted sum of assignment score which

is penalized by constraint violation. λ and ρ are hyper-parameters that need to be adjusted according to

the training scenario.
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This objective function can be expressed using an ILP objective by introducing binary indicator variables

for each (classifier, label) pair [Roth and Yih, 2007]. The ILP objective for the assignment cost when each

output variable has |Y | labels and the problem has L output variables, can be written as:

maximize

L∑
i=1

∑
l∈|Y |

yi,l · F (x, yi,l)

subject to yi,l ∈ {0, 1} ∀i ∈ {1, 2, . . . , L}

and
∑
l∈|Y |

yi,l = 1 ∀i ∈ {1, 2, . . . , L}

Constraints can be incorporated into this objective by introducing additional variables that represent

the penalty for not satisfying constraints. This is represented by the d(y, 1Ci(x)) term. For incorporating

hard-constraints that should never be violated, ρ can be assigned a very high value (say ∞), so that the

penalty of violating the constraint is high and a violating assignment is never preferred. In the chapter 3,

we discuss the methods to optimize the same objective using factor graphs.

The ability to incorporate constraints into the MAP objective leads to some interesting training paradigms.

In this work, we look at one particular paradigm called L+I, which stands for Learning + Inference. The

L+I paradigm involves first training local (independent) classifiers for each part of the structure. These local

classifiers can be training using any discriminative classification approach. These local assignments are then

augmented with constraints in the Inference step so that the final MAP assignments are more coherent for

the problem.

2.4 Algorithms Studied

In Saul, the inference algorithms are abstracted away from the end-user and can be used as pluggable black-

box components of the system. This gives the user flexibility to choose the appropriate algorithm for their

inference task. In this section we discuss the some exact and approximate inference algorithms briefly.

2.4.1 Integer Linear Programming (ILP)

Formulating the constrained inference problem as an ILP over local classifier scores is well studied in

[Roth and Yih, 2004], [Chang et al., 2008] and [Rizzolo, 2011]. ILP-based inference has always been avail-

able in Saul and the results of ILP on a few NLP tasks was presented in [Kordjamshidi et al., 2016]. If the

ILP has the form max cTx such that Ax = b, where A, b and c have all integer entries and A is totally
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unimodular, then every feasible solution is guaranteed to be integral. [Rizzolo, 2011] discusses approaches to

ensure that the ILP formulation for constraints has a unimodular matrix A. We follow the ILP formulation

from [Rizzolo, 2011] and use Gurobi [Gurobi Optimization, 2016] and ojAlgo1 software packages to solve the

ILP problem formulation.

Exact MAP-inference in an ILP is a NP-hard problem, but most solvers relax the integrality condition

and solve the tractable LP problem. Approximate integral solutions can be obtained using different strategies

like rounding the solutions or using a branch-and-bound routine to search of better solutions. This approach

is called the LP-MAP inference. Solving as linear programs makes the problem tractable but the solution

may not be integral or meaningful. We do not provide experimental results for LP-MAP in this work.

2.4.2 (Loopy) Belief Propagation

Graphical models are probabilistic models which expresses a complete distribution over a multi-dimensional

space using a graph-based representation, which is a compact or factorized representation of a set of inde-

pendences that hold in the specific distribution.

We use the factor graph representation [Kschischang et al., 2001] for graphical models, which subsumes

undirected Markov networks and directed Bayesian networks. A factor graph is an undirected bipartite

graph between nodes representing variables (drawn as a circle) and nodes representing functions (or factors)

between variables (drawn as a square). Example of a factor-graph used for error-correcting codes is shown

in figure 2.2.

Belief Propagation is an efficient algorithm to solve inference problems in graphical models based on

passing local messages. It was first introduced for “Bayesian Networks” by Judea Pearl in [Pearl, 1986]

and in the book [Pearl, 1988]. Belief Propagation has been studied extensively in literature, especially for

problems in statistical physics and computer vision.

We will discuss the factor graph representation and the Max-Product algorithm for MAP inference in

factor graphs. A factor graph model G = (V, F,E), where V is the set of variables, F is the set of factors

and E is the edges in the graph. The graph G represents the joint probability distribution of all variables x.

The set of factors and edges control how the probability distribution decomposes over the set of variables.

µ(x) =
1

Z

∏
a∈F

ψa(x∂a)
∏
i∈V

ψi(xi)

Consider the factor graph for the parity check code in figure 2.2. This graph represents a real-world

scenario where the factor graph can be used for correcting single bit error over an unreliable transmission

1http://www.ojalgo.org/
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Figure 2.2: Factor graph for N = 6, k = 3 parity check code

network. The graph contains six binary variable nodes: (x1, x2, . . . , x6). Each of these nodes are connected

to a unary factor: (ψ1, ψ2, . . . , ψ6). Each of these unary factors represents the probability of each bit flipping

over a network. The ternary factors: (ψa, ψb, ψc) are used to enforce the parity over the variables connected

to each factor. A valid transmission always satisfies the parity constraint. When we receive a codeword over

the unreliable network, we can do a MAP inference on the factor graph with the code word as initialization

and get the original message.

Max-BP is an iterative algorithm which involves sending messages from ‘variable nodes’ to ‘factor nodes’

and vice-versa. Each message is an approximation of the marginal probability of the variable node. These

belief messages are exchanges till they converge or keep cycling.

Message from variables to factors

ν
(t+1)
i→a (xi) =

∏
b∈∂i\{a}

ν̃
(t)
b→i(xi)

Message from factors to variables

ν̃
(t+1)
a→i (xi) = max

x∂a\{i}

∏
j∈∂a\{i}

ν
(t)
j→a(xj)ψa(x∂a)

To obtain the global MAP assignment configuration, we just need to store the argmax for each message
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sent from a factor to variable for back-tracking.

δa→i(xi) = arg max
x∂a\{i}

∏
j∈∂a\{i}

νj→a(xj)ψa(x∂a)

On a tree-shaped graphical model, BP algorithms is guaranteed to converge to the correct marginal

posterior probabilities and MAP assignment. For graphical models with loops, an approximate algorithm

called the loopy BP runs belief propagation algorithm assuming the graph does not have cycles. This

algorithm is not guaranteed to converge to the optimal solution. [Weiss and Freeman, 2001] evaluate the

max-product algorithm on some arbitrary factor graphs and have observed good emperical performance on

graphs with loops. Their analysis also show some specific graph structures where BP does not converge and

keeps cycling between a few states. Thus, the MAP results on loopy graphs are approximate and BP is not

guaranteed to converge.

We use the Factorie [McCallum et al., 2009] toolkit2 for the factor graph representation and the Loopy

Belief Propagation algorithm.

2.4.3 Sequential Reweighted Message Passing (SRMP)

Tree Reweighted Message passing (TRW) is an algorithm introduced in [Wainwright et al., 2005a] and

[Wainwright et al., 2005b] as an alternative to the max-product algorithm tailored to hyper-trees and general

graphical models. Since MAP inference on trees using message passing is exact and tractable, TRW proposes

a lower-bound on the MAP objective for graphs with loops as a convex combination of the problem on the

set of spanning trees of the graph. Thus, instead of maximizing the MAP objective for a loopy-graph, the

algorithm uses message passing updates to maximize the MAP problem on each of the spanning trees.

[Kolmogorov, 2006] proposes an improvement to the TRW algorithm called the Tree Reweighted Message

passing - Sequential (TRW-S). TRW-S imposes a sequence on the nodes in the spanning trees and performs

sequential message passing updates. [Kolmogorov, 2015] introduced Sequential Reweighted Message Passing

(SRMP) as a generalization of TRW-S from pairwise to higher-order graphical models. SRMP is a family

of message passing algorithms which includes Convex Max-Product and TRW-S

In this work we use SRMP as an advanced message-passing belief propagation algorithm for MAP

inference. SRMP had C++ implementation3 provided by the author. We implemented JNI-wrappers over

the native implementation and provide an inference solver implementation in Saul.

2http://factorie.cs.umass.edu/
3https://github.com/opengm/SRMP
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2.4.4 Alternating Directions Dual Decomposition (AD3)

AD3 [Martins et al., 2011] is an algorithm for approximate MAP inference on factor graphs which is based on

the alternating directions method of multipliers (ADMM). The algorithm divides the maximization problem

into local sub-problems which are solved independently. In a factor graph, each factor is treated as a local

sub-problem. Thus, the MAP problem at each problem is solved independently. The solutions of the local

sub-problems are then gathered to compute a global parameter update. The key characteristic of this

algorithm is that each local sub-problem has a quadratic regularizer which leads to faster convergence than

other dual decomposition algorithms. The algorithm details are explained in detail in [Martins et al., 2015].

AD3 had C++ implementation4 provided by the author. The implementation also provides closed-

form solutions for some hard-constraint factors so that the local MAP/QP subproblem can be evaluated

efficiently. AD3 has shown good performance on complex tasks like protein design, dependency parsing

[Martins and Almeida, 2014] etc.

We implemented a JNI-wrapper over the native implementation and provide an inference solver imple-

mentation in Saul.

2.4.5 Probabilistic Soft Logic (PSL)

Probabilistic Soft Logic [Bach et al., 2013] is a framework for developing probabilistic models for reasoning

about relational and structural data. PSL provides a Groovy-based syntax for declarative representation of

the relational models. Relation models can be defined in terms of predicates, which can be thought of as

tuples in a database. PSL lets you define rules over predicates using a subset of first order logic expressions.

There rules along with some weights facilitate constrained learning and inference. The optimization problem

is case as a hinge-loss based markov random field and solved using an appropriate solver like ADMM,

BooleanSAT, etc. In the end of chapter 3, we compare PSL with other approaches.

Note: We do not provide experimental results for PSL in this thesis.

4https://www.cs.cmu.edu/~ark/AD3/
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Chapter 3

Constrained Inference Formulation

In Saul [Kordjamshidi et al., 2015], constraints over the structured output-space are represented in First

order logic. The following FOL constructs are allowed1 in Saul for representing constraints: Conjunction

(AND), Disjunction (OR), Implication (IMPLY), Double Implication (EQUAL), Negation (NOT). We also

have the following quantification constructs: Atleast, Atmost, and Exactly.

Using first order logic constructs in Saul gives the user more flexibility and expressivity in declaring

constraints. Variables in first order logic are induced from a local classifiers’ scores on an instance. These

variables are then combined into rules using the operations mentioned above. Complex constraints can be

further constructed by using the operations on the variables recursively.

The code snippet below represents a constraint for the Entity-Relation example. The constraint is defined

on three classifiers’ application on three instances. The following base variables are created:

1. LivesInClassifier applied to instance x for the Lives-In relation.

2. PersonClassifier applied to instance x.e1, the first entity of the relation.

3. LocationClassifier applied to instance x.e2, the second entity of the relation.

Listing 3.1: Example constraint in Saul.

// i f x i s l i v e s−in r e l a t i o n , then i t s f i r s t argument shou ld be person ,

// and second argument shou ld be l o c a t i o n .

def l i v e s I n C o n s t r a i n t ( x : Con l lRe la t ion ) = {

( L i v e s I n C l a s s i f i e r on x isTrue ) ==>

( ( P e r s o n C l a s s i f i e r on x . e1 i sTrue ) and ( L o c a t i o n C l a s s i f i e r on x . e2 i sTrue ) )

}

Note: Detailed description of the different formulations for the Entity-Relation example is discussed in

the appendix A.

1Latest Saul documentation is at https://github.com/CogComp/saul/blob/master/saul-core/doc/SAULLANGUAGE.md
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Transformation to ILP formulation was well studied previously in [Roth and Yih, 2004, Chang et al., 2008,

Rizzolo, 2011]. As part of this work, we look at transforming the MAP objective and constraints to a fac-

tor graph so that we can use techniques for inference in graphical models. For most structured prediction

tasks, the factor graph would contain loops and thus, the inference performed would be approximate. In the

following sections, we look at the different implementation and some analysis of the different approaches.

3.1 Transformation to Factor Graph

In this section, we describe the process of transforming the MAP objective (Equation 2.3) with local classifiers

and the FOL constraints into a factor-graph representation that can be used for Max-Belief Propagation

and SRMP algorithms. We use a method similar to the one used in AD3 [Martins et al., 2015] for their local

sub-problems.

3.1.1 Incorporating the MAP objective

From the objective in the equation 2.3, we see that the local classifier scores are considered in the first part

of the objective. This is similar to the assignment cost in [Roth and Yih, 2007]; though we aim to maximize

the negative of the cost (the score) in constrast to minimizing the cost. In our factor graph, we introduce

a variable node for each binary classifier’s application on a each instance participating in the constrained

problem. These variable nodes capture all the initial variables in the first order logic representation. To

incorporate the local classifier scores into the factor graph, we introduce unary factors to each of these nodes

with their log-potential initialized to the classifier score.

x x

Figure 3.1: Unary factor for a variable node

x Factor Potentials

true log(P (x = true))

false log(1− P (x = true))

Table 3.1: Unary factor potentials
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Thus, if we just have binary variable nodes with unary factors, we get the following joint-distribution for

the BP factor graph:

µ(x1, x2, . . . , xV ) =
1

Z

V∏
i=1

ψi(xi = vi) (3.1)

∝ log(
1

Z

V∏
i=1

P (xi = vi))

∝
∑
i∈V

log(P (xi = vi))− log(Z)

∝
∑
i∈V

log(P (xi = vi))

This is similar to the first part of the MAP objective in equation 2.3, hence the assignment in this case

is same as the local classifier predictions. In the following sections, we look at incorporating constraints into

this graphical model joint-distribution factorization.

For multi-class classifiers, we introduce binary variables nodes for each of the individual labels. We then

introduce an XOR-constraint on these binary variables for a single consistent assignment.

3.1.2 Factors representation for incorporating constraints

In this section, we will discuss the conversion for different first-order-logic constructs to corresponding factor

graph components. We consider the simplest case where there are only two variables involved - x and y.

Some of the constraints also deal with an output variable z. Output variables are intermediate variables

used for connecting different constraints together.

Exclusive-OR: XOR

Table 3.2 shows the factor potentials that enforces mutual exclusivity for assignment to the variables. We

use negative infinity log-potential value to indicate a hard-constraint that must not be violated by a MAP

assignment. Since an assignment with −∞ potential forces low objective value, such assignments are avoided

during message passing updates.
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x y Factor Potentials

0 0 -∞

0 1 1

1 0 1

1 1 -∞

Table 3.2: Factor potentials for XOR Factor

Factor XOR is mostly used for exclusivity of assignments. For example: making the assignment of the

binary nodes of a multi-label classifier to take consistent values. For multi-class classifier, we can extend the

XOR factor by representing them as a disjunction of O(n) conjunctive clauses. Each of the base conjunctions

only allows one variable to take the label 1.

Conjunction: AND

Table 3.3 shows the factor potentials that enforces the conjunction constraint between two variables. This

is a hard-constraint that forces both assignments to 1. Soft version of the AND constraint can be enforced

using the AND-OUT factor that follows.

x y Factor Potentials

0 0 -∞

0 1 -∞

1 0 -∞

1 1 1

Table 3.3: Factor potentials for AND Factor

Conjunction with Output: AND-OUT

AND-OUT extends the AND factor with an output variable. The output variable z represents the result of

the x ∩ y. Table 3.4 shows the factor-potential for this factor.
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z x y Factor Potentials for z = x ∩ y

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 -∞

1 0 0 -∞

1 0 1 -∞

1 1 0 -∞

1 1 1 1

Table 3.4: Factor potentials for AND-OUT Factor

Further, the variable z can be constrained by adding it to other factors or attaching unary factors to it.

Disjunction: OR

OR-factor enforces the disjunction constraint on two variables. Table 3.5 shows the factor potentials for the

OR-factor.

x y Factor Potentials

0 0 -∞

0 1 1

1 0 1

1 1 1

Table 3.5: Factor potentials for OR Factor

Disjunction with Output: OR-OUT

Similar to AND-OUT, this factor extends OR with an output variable. This leads to a soft-constraint that

can be constrained by the rest of the factor graph.
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z x y Factor Potentials

0 0 0 1

0 0 1 -∞

0 1 0 -∞

0 1 1 -∞

1 0 0 -∞

1 0 1 1

1 1 0 1

1 1 1 1

Table 3.6: Factor potentials for OR-OUT Factor

AtLeast and AtLeast with Output

Implementing the AtLeast-based quantifiers is not efficient in factor graphs. We can implement these quan-

tifiers in terms of a disjunction of an exponential
(
n
k

)
conjunction clauses. This make factor-graph based

approaches un-effective.

Note: Empirical observation that most NLP tasks only have AtLeast(1) or AtMost(1), which can be

cast into simpler and efficient DNF forms.

Generalization

Though we only discuss factors with two input variable, this approach can be extended to arbitrary length

constraints by introducing intermediate variables that can be forced to a hard true. Let x, y, z be three

binary variable nodes. To represent x ∩ y ∩ z, we can use the following factors:

• AND-OUT(t1 = x ∩ y)

• AND(t1 ∩ z)

This composability makes it easy to programmatically transform constraints with arbitrary complexity.

Note: For numerical computation consistency, instead of using negative infinity, we use −100 for the

in-compatible assignment potential at each factor. This has a similar effect but leads to well-behaved

computations.
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3.1.3 Transforming General Constraints

In the previous sections, we look translating single constraints and handling complex single constraints.

Now, we will briefly look at handling multiple independent constraints.

If we have multiple constraints that need to hold simultaneously, we can express them as conjunctions of

first order expressions. We call the expressions in this conjunction a top-level conjunction, as each of these

expressions must hold independently.

i. Simplify first order constraints and group them as a top-level conjunction of expressions ;

ii. Identify all (classifier, instance) pairs in the problem ;

for each classifier in the problem do

iii. Create a binary variable node for each (classifier, instance, label) tuple and attach a

unary factor with log-potential scores from local classifiers ;

iv. If the classifier is a multi-class classifier, add a XOR factor for variables from step iii.

end

for each top-level constraint do

v. Recursively convert lower-level expressions to factor graphs while creating

intermediate variables as required. ;

Lower-level expressions typically use the -OUT output factors for creating intermediate

variables ;

vi. Add the top-level constraints using variable nodes from step v. ;

end

Algorithm 3.1: Pseudo-code for transforming inference problem to a factor graph

3.1.4 Model Equivalence

In section 3.1.1, we saw how the factor graph approach and the ILP approach have similar MAP objectives

(without constraints); and hence, have the same MAP solution. In this section, we will look at the factor

graph objectives when constraints are involved.

Consider the factor graph objective where V represents the set of variable nodes and F represents the

factor nodes. We can separate the set of variables into two classes: classifier variables and intermediate

variable. Classifier variables are created from a classifier’s scores on an instance, whereas intermediate

variables are used for chaining constraints. We can separate the two sets of variables in to sets: C and I

respectively.
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µ(x) =
1

Z

∏
i∈V

ψi(xi)
∏
a∈F

ψa(x∂a)

=
1

Z

(∏
c∈C

ψc(xc)

)(∏
i∈I

ψi(xi)

) ∏
a∈F

ψa(x∂a)

∝ log(
1

Z

(∏
c∈C

ψc(xc)

)(∏
i∈I

ψi(xi)

) ∏
a∈F

ψa(x∂a))

∝
∑
c∈C

log(P (xc)) +
∑
i∈I

log(P (xi)) +
∑
a∈F

log(P (x∂a))− log(Z)

∝
∑
c∈C

log(P (xc)) +
∑
i∈I

log(P (xi)) +
∑
a∈F

log(P (x∂a))

∝
∑
c∈C

log(P (xc))︸ ︷︷ ︸
assignment score

+
∑
i∈I

log(P (xi)) +
∑
a∈F

log(P (x∂a))︸ ︷︷ ︸
constraint-satisfaction score

Thus, when the constrained are satisfied, the constraint score should be bounded to a constant and we

can find the MAP assignment to variables in C under those conditions.

3.1.5 Handling Soft Constraints

For handling soft top-level constraints, instead of a negative infinity, we can use a higher value so that all

assignments are feasible with different penalties for assignments. By tweaking this hyper-parameter for each

constraint, the extent of satisfaction for each constraint can be enforced.

3.2 Transformation to AD3

Transforming the objective and constraints to AD3 is similar to the method used for factor graphs. AD3

works with a factor graph representation as its input. Also, in AD3, each factor is solved as a separate

local sub-problem, whose results are then gathered for global parameter updates and to ensure consistency

in overlapping variables. AD3 implementation provides closed-form solutions for the local sub-problems

(factor types) that we discussed in section 3.1. Thus, the ATLEAST factor is realized efficiently in AD3

because the local sub-problem is solved in the closed-form using a budget assignment approach.
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3.3 Analysis

Table 3.7 (below) summarizes the differences between various inference solvers.

Algorithm AND/OR XOR ATLEAST Exactness Remarks

ILP Yes Yes Yes Yes NP-hard. Solvers use iterative approach like

branch-and-bound to improve solutions.

LP-MAP Yes No Yes Approx. LP is tractable and efficient. Rounding solu-

tions may cause constraint violation.

Max-BP Yes No No Approx. May not converge to the optimal. Objective

might lower during iterations (or cycle be-

tween some fixed values).

SRMP Yes No No Approx. May not converge to the optimal. Bound on

objective does not decrease with iterations.

AD3 Yes Yes Yes Approx. Iterative algorithm, which can converge to

the optimal.

PSL Yes Yes* No Approx. XOR is available as a rule on predicates. Can

only be used for (classifier, instance) predi-

cates.

Table 3.7: Factor potentials for OR-OUT Factor

ILP and AD3 (dual-decomposition) are the most flexible and efficient algorithms.

Note: MaxBP, SRMP and PSL does not support AtLeast/AtMost and Existential quantifier rules in their

implementation. AtLeast/AtMost quantifiers can be implemented by adding an exponential
(
n
k

)
number of

rules in the DNF form.
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Chapter 4

Experiments

To evaluate the different inference techniques, we use the following NLP tasks. For each task, we implement

the L+I paradigm [Roth and Yih, 2004], where individual (local) classifiers are trained using the training

data; and then constraints are imposed during the inference process. Thus, constraints helps in making sure

that assignments to individual instances are consistent according to the structure of the output space and

additional domain-knowledge about the task.

Using three NLP tasks, we study the performance and efficiency of the different inference algorithms.

We also evaluate a simple Beam Search based solver that tried to incorporate the constraints as per of the

structures kept in the beam. We discuss the amount of constraint violation in the approximate algorithms,

and effectively, demonstrate how the choice of the algorithm affect of quality of the results and inference

time.

4.1 Entity Relations: UIUC ER Dataset

We look at the task of Entity and Relation identification. The data for our experiments was derived from

[Roth and Yih, 2004], which is an annotation of a set of sentences from TREC documents. The dataset is

available publicly1. In the dataset, there are 1,987 sentences which contain 4,645 entities, and 6,909 intra-

sentence pairs of entities. The entity labels include 1,648 person entities, 1,872 location entities, and 858

organization entities. The relation labels include 420 located in, 394 work for, 451 org based in, 529 live in,

and 270 kill. We train independent binary classifiers for each entity and relation type independently. The

performance of the local binary classifiers is shown in the first row in the results. For the L + I approach,

we use the following constraints and perform inference as a post-processing step using scores from local

classifiers:

1. Works-For Relation Consistency: This constraint enforces that a Works-For relation can only

exists between a Person entity and a Organization entity.

1https://cogcomp.cs.illinois.edu/page/resource_view/43
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2. Lives-In Relation Consistency: This constraint enforces that a Lives-In relation can only exists

between a Person entity and a Location entity.

3. Works-For::Lives-In Relation Exclusivity: This constraint implies that a relation cannot be both

Works-For and Lives-In simultaneously.

Table 4.1 shows the results of 5-fold cross-validation for the constrained entity classifiers; and table 4.2

shows the results of the constrained relation classifiers on the same folds.

Person (PER) Location (LOC) Organization (ORG)

Experiment P R F1 P R F1 P R F1 Time (secs)

Local Classifiers 92.99 83.91 88.22 90.36 78.56 84.04 91.22 64.43 75.52 0.866

L + Beam (Size 5) 92.67 85.93 89.17 89.55 79.67 84.32 89.95 69.11 78.16 2.619

L + Beam (Size 10) 92.67 85.98 89.20 89.55 79.67 84.32 89.95 69.11 78.16 2.589

L + ILP-oJAlgo 92.67 85.98 89.20 89.55 79.67 84.32 89.95 69.11 78.16 4.851

L + ILP-Gurobi 92.67 85.98 89.20 89.55 79.67 84.32 89.95 69.11 78.16 4.004

L + MaxBP 92.73 85.98 89.23 89.60 79.67 84.35 90.07 69.11 78.21 3.671

L + AD3 92.67 85.98 89.20 88.55 79.67 84.32 89.93 69.00 78.09 2.915

L + SRMP 92.67 85.98 89.20 89.55 79.67 84.32 89.93 69.00 78.09 2.701

Table 4.1: ER-UIUC: 5-fold CV evaluation results: Entity Classifiers

Lives In Relation Works For Relation

Experiment Precision Recall F1 score Precision Recall F1 score Time (secs)

Local Classifiers 74.43 63.15 68.33 76.15 66.08 70.76 0.290

L + Beam Search (Size 5) 90.49 60.27 72.35 90.69 55.86 69.14 2.142

L + Beam Search (Size 10) 90.46 60.08 72.20 90.36 56.11 69.23 2.269

L + ILP-oJAlgo 90.46 60.08 72.20 90.36 56.11 69.23 4.503

L + ILP-Gurobi 90.46 60.08 72.20 90.36 56.11 69.23 3.978

L + MaxBP 89.97 60.27 72.18 89.33 56.36 69.11 3.541

L + AD3 90.46 60.08 72.20 90.32 55.86 69.03 2.474

L + SRMP 90.46 60.08 72.20 90.32 55.86 69.03 2.437

Table 4.2: ER-UIUC: 5-fold CV evaluation results: Relation Classifiers
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4.2 Entity Relations: ACE Dataset

In this section, we look at the task of Entity and Relation type identification for the ACE 2005 dataset

[Walker et al., 2006]. ACE dataset contains 7 coarse entities types and 6 coarse relation types. We only

consider the broadcast news and newswire sections of the English corpus. We train independency local

classifiers for entities and relations and enforce constraints during inference to refine the label assignments.

For constrained prediction, we enforce constraints on the permissible range of entities that are associated

with each relation type. This requires using domain-knowledge about the relations. One example of such

constraint would be restricting the Family relation to only exist between two Person entities. Such a

restriction can be expressed using first order logic constructs and enforced during inference time.

Tables 4.1 and 4.2 show the results of adding constraints to joint-inference of entities and relations using

different inference solvers. We evaluate the solvers for performance on the task and inference time.

Experiment Precision Recall F1 score Time (secs)

Local Classifiers 80.94 80.94 80.94 8.33

L + ILP - Beam Search (100) 80.94 80.94 80.94 40.36

L + ILP - Gurobi 81.63 81.63 81.63 103.66

L + AD3 81.42 81.42 81.42 48.97

L + MaxBP* 73.26 73.26 73.26 1320.73

L + SRMP* 77.10 77.10 77.10 1270.20

Table 4.3: ER-ACE - 2005: 5-fold CV evaluation - Entity Classifier

Experiment Precision Recall F1 score Time (secs)

Local Classifiers 64.21 50.68 56.65 73.50

L + ILP - Beam Search (100) 64.21 50.68 56.65 163.55

L + ILP - Gurobi 65.14 44.99 53.22 490.20

L + AD3 64.79 43.12 51.78 209.87

L + MaxBP* 47.23 40.62 43.68 1265.20

L + SRMP* 54.67 43.22 48.28 1140.42

Table 4.4: ER-ACE - 2005: 5-fold CV evaluation - Relation Classifier

Note: MaxBP and SRMP solvers fall back to the local classifier prediction if they all factors are not

satisfied or if they timeout.
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Table 4.5 shows the most frequent constraint violations for different algorithms. The number of constraint

violation is measure using a similar 5-fold CV approach on the total of about 5000 relations. You can note

that ILP and AD3 solutions violate the minumum number of constraints. Note: that even Gold annotation

does not satisfy all constraints. There are few failure cases where the constraints are not satisfied.

Constraint Gold Annotation Local Classifier ILP - Gurobi AD3

‘Employment’ relation legal arguments 4 267 29 29

‘Geographical’ relation legal arguments 0 232 59 59

‘Located’ relation legal arguments 10 193 36 36

Others 12 437 86 86

Table 4.5: ER-ACE: Most frequently violated constraints.

4.3 Semantic Role Labeling

Semantic Role Labeling [Palmer et al., 2010] is the task of assigning semantic roles to constituents or phrases

in a sentence. For this experiment, we study the task of constrained Verb Semantic Role Labeling. We

use the features from [Punyakanok et al., 2008] (semantic parse features); and follow the methodology of

generating argument candidates using heuristics from [Xue and Palmer, 2004] and filter candidates using a

binary candidate identification classifier. Then, we train argument type classifiers that assign scores to all

filtered arguments. The evaluation is performed on the section 23 of the WSJ treebank dataset.

We use the following constraints during the inference step for consistency of the semantic role assignment

to each argument:

1. No-Overlap Constraint: Semantic arguments are labeled on non-embedding constituents in the

syntactic parse tree; and hence, should be non-overlapping.

2. Legal Arguments Constraint: For each known predicate, we constraint the argument of that

predicate to take values from the legal argument classes from PropBank Frames.

3. No-Duplicate Core Arguments Constraint: No duplicate argument classes for core semantic

roles: A0-A5, AA.

4. Referential Arguments Constraint: If there is an R-arg labeled argument, there should also some

other argument which is labeled arg in the same sentence.
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5. Continuation Arguments Constraint: If there is an C-arg labeled argument, there should also

some other argument which is labeled arg in the same sentence.

While evaluating the Max-BP and SRMP algorithms on the SRL problem, we found that a lot of the

factors were not satisfied. This is because the factor graph for SRL problems are large (partially due to large

label set and complex constraints), which leads to poor convergence for the message passing algorithms. In

such scenarios, when we do not get a valid assignment, we use the local scores of the classifiers directly for

MaxBP and SRMP.

Tables 4.6 and 4.7 show the results of evaluation of the different inference solvers on the test section of the

WSJ PennTreebank dataset. Results presented in table 4.6 use the Charniak syntactic parse for extracting

features while table 4.7 use the Stanford parse for extracting features.

Experiment Precision Recall F1 score Time (in seconds)

Local Classifiers (Greedy No-Overlap) 74.04 68.71 71.27 111

L + ILP - Beam Search (size 10) 73.40 66.90 70.00 302

L + ILP - Beam Search (size 100) 73.98 67.37 70.52 316

L + ILP - ojAlgo 76.48 69.53 72.84 514

L + ILP - Gurobi 76.48 69.53 72.84 406

L + AD3 75.88 69.19 72.38 300

L + MaxBP* 56.26 43.71 49.20 4700

L + SRMP* 57.90 48.20 52.61 7200

Table 4.6: SRL: PennTreebank/WSJ test set (23) - Argument Type - PARSE CHARNIAK

Experiment Precision Recall F1 score Time (in seconds)

Local Classifiers (Greedy No-Overlap) 73.61 58.85 65.41 76

L + ILP - Beam Search (size 10) 71.93 56.60 63.35 285

L + ILP - Beam Search (size 100) 72.01 56.68 63.43 279

L + ILP - ojAlgo 75.88 59.35 66.60 473

L + ILP - Gurobi 75.88 59.35 66.60 370

L + AD3 75.86 59.35 66.60 294

L + MaxBP* 52.10 41.37 46.12 4700

L + SRMP* 54.04 45.29 49.23 7200

Table 4.7: SRL: PennTreebank/WSJ test set (23) - Argument Type - PARSE STANFORD
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To further evaluate the quality of results and the amount of approximation in constraint satisfaction, we

look at the number of constraints violated by each algorithm. Results are presented in tables 4.8 and 4.9 for

the models trained on Charniak parse and Stanford parse respectively.

Constraint Greedy ILP - Gurobi AD3 Beam(5) Beam(100) MaxBP* SRMP*

No-Overlap 0 0 0 2 0 0 0

Legal Arguments 193 0 0 2 0 340 253

No-Duplicate Core Args 308 0 0 2 1 523 638

Referential Args 546 0 0 11 0 1046 840

Continuation Args 94 0 0 2 0 227 342

Table 4.8: SRL: Number of constraint violated by algorithm - PARSE CHARNIAK

Constraint Greedy ILP - Gurobi AD3 Beam(5) Beam(100) MaxBP* SRMP*

No-Overlap 0 0 0 0 0 0 0

Legal Arguments 820 0 0 6 2 843 750

No-Duplicate Core Args 170 0 0 11 2 240 214

Referential Args 416 0 0 5 1 572 471

Continuation Args 33 0 0 0 0 121 97

Table 4.9: SRL: Number of constraint violated by algorithm - PARSE STANFORD

From evaluating the set of constraints violated, we see that the solutions from Gurobi and AD3 do

not violate any of the constraints. Whereas the other algorithms satisfy constraints with varying amounts

of approximation. Modeling the constraints into the Beam Search leads to better constraint-satisfaction

than the greedy no-overlap approach but the overall performance is worse than the greedy baseline. Belief

Propagation based solvers perform poorly as they do not scale with the size of the factor graph. We use a

10-second timeout for each problem and then assign the base classifier’s prediction for variables which are

not properly satisfied by the BP solution.

ILP approach and AD3 both have about 1 − 1.5 percentage point improvement in F-1 score from the

baseline after adding constraints. This shows the general efficacy of the CCM approach. AD3 approach is

consistently faster than the industrial ILP solver, proving to be a viable alternative for large scale structured

problems.
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Chapter 5

Discussion and Future Work

After evaluating the different approaches to Structured Inference with constraints, we see that using ILP and

dual-decomposition (AD3) are the most versatile and have good performance across the NLP tasks. Belief

Propagation and SRMP suffer with the problem that they do not scale to large factor graphs with cycles.

AD3 has comparable performance to ILP in most cases and handles constraints correctly. But the results

of ILP and AD3 differ on some instances. This happens because the AD3 algorithms is restricted to terminate

in 10 seconds per problem. For some cases where the number of SRL argument candidates are higher, the

algorithm returns a sub-optimal solution which satisfies all constraints. As part of future work, we should

evaluate the difference between the algorithms against the size of the problem carefully.

Max-BP and SRMP perform poorly when the constraint contains the AtLeast/Atmost/Exactly quan-

tifiers. In such scenarios, the factor graphs can grow exponential in size and hence, inference becomes

inefficient. Especially, they performed much worse on the SRL task where the number of variables in the

factor graph consisted of about 5, 000− 10, 000 nodes and factors.

These algorithms need further analysis on more complex tasks. Tasks like Dependency Parsing can be a

suitable candidate to evaluate the efficacy of the methods.

Further, the factor graph algorithms can be improved using specialized message updates for some factors.

For example: [Smith and Eisner, 2008] discusses an approach to perform efficient message passing updates

for XOR and AtMost One factors.

All the experiments in this work perform inference as a post-processing approach after training indepen-

dent classifiers. We can use the inference techniques during training in a structured SVM training approach

[Chang et al., 2015]. Since structured prediction and constrained inference are powerful frameworks to cap-

ture global dependencies on structured output spaces, this area is important and requires more rigorous

experimentation.
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Appendix A: In-depth UIUC ER
Example

In this section, we look at the ILP and Factor Graph realizations of the UIUC-ER example. For the

constraints mentioned in Section 4.1, we consider the following example:

Dole is a resident of N.C.

where Dole and N.C. are two entities represented by E1 and E2 respectively. Let R12 represent the

relation of E1 with E2.

variable PER LOC ORG

E1 0.45 0.5 0.2

E2 0.3 0.7 0.6

variable Lives-In Works-For

R12 0.7 0.4

Table A.1: Binary Classifier Scores

In the following sections, we look at the ILP formulation and the factor graph approach to solve the struc-

tured MAP inference for this Entity-Relation example. We consider the simpler case where the constraints

are interpreted as hard-restrictions on possible assignments.

Local classifiers

For this sample sentence, we show the scores provided by local classifiers in table A.1. If you only consider

the local classifiers, the MAP assignment is:

• E1 = Location

• E2 = Location

• R12 = Lives− In
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ILP formulation

• MAP objective: We have two entities, E1 and E2 and three binary entity classifiers. Hence, we

introduce 6 binary variables for each entity. Also for the relation R12, we will have 4 binary variables.

Each of these variables take values ∈ {0, 1}.

e1,PER=true , e1,PER=false , e1,LOC=true , e1,LOC=false , e1,ORG=true , e1,ORG=false,

e2,PER=true , e2,PER=false , e2,LOC=true , e2,LOC=false , e2,ORG=true , e2,ORG=false

r12,LivesIn=true , r12,LivesIn=false , r12,WorksFor=true , r12,WorksFor=false

So, the ILP Objective is:

0.45 · e1,PER=true + 0.55 · e1,PER=false +

0.5 · e1,LOC=true + 0.5 · e1,LOC=false +

0.2 · e1,ORG=true + 0.8 · e1,ORG=false +

0.3 · e2,PER=true + 0.3 · e2,PER=false +

0.7 · e2,LOC=true + 0.3 · e2,LOC=false +

0.6 · e2,ORG=true + 0.4 · e2,ORG=false +

0.7 · r12,LivesIn=true + 0.3 · r12,LivesIn=false +

0.4 · r12,WorksFor=true + 0.6 · r12,WorksFor=false

subject to

e1,PER=true + e1,PER=false = 1

e1,LOC=true + e1,LOC=false = 1

e1,ORG=true + e1,ORG=false = 1

e2,PER=true + e2,PER=false = 1

e2,LOC=true + e2,LOC=false = 1

e2,ORG=true + e2,ORG=false = 1

r12,LivesIn=true + r12,LivesIn=false = 1

r12,WorksFor=true + r12,WorksFor=false = 1
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Next, we add the constraints to the ILP.

• Works-For relation consistency constraint: This constraint enforces that a Works-For relation

can only exists between a Person entity and a Organization entity. This can be represented by the

following inequality.

e1,PER=true + e2,ORG=true > 2 · r12,WorksFor=true

If the assignment on the right evaluate to 1, then it forces both the variables on the left to be 1. Note

that the other direction is not imposed by this inequality.

• Lives-In relation consistency constraint: This constraint enforces that a Lives-In relation can

only exists between a Person entity and a Location entity. Similar to the above constraint, this can be

represented by:

e1,PER=true + e2,LOC=true > 2 · r12,LivesIn=true

• Works-For::Lives-In relation exclusivity: This constraint implies that a relation cannot be both

Works-For and Lives-In simultaneously.

r12,LivesIn=true + r12,WorksFor=true ≤ 1

This equation only allows atmost one of these two variable to take the true label.

Solving the ILP problem with these inequalities leads to a solution that is more coherent than the

prediction made by the local classifiers. The solution leads to the following assignment:

– E1 = Person

– E2 = Location

– R12 = Lives− In

Factor Graph formulation

We construct the factor graph for the problem following the algorithm 3.1. This factor graph depicts how

the joint probability distribution (of two entities and one relation) is factorized into smaller parts defined by

the constraints. Circular nodes represent binary variables. Shaded variable nodes represent binary variable
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nodes for each base classifier; whereas unshaded nodes represent intermediate variables created to support

logic-factors. Unary factors encode local classifier scores whereas squares with rounded corners represent

logic-factors for this formulation.

R_12_Works_For

R_12_Lives_In

E1_Organization

E1_Person

E1_Location

E2_Organization

E2_Person

E2_Location

AND-OUT

OR

AND-OUT

OR

OR-OUT

OR-OUT

AND

ѰE1O

ѰE1P

ѰE1L

Ѱ12W

ѰE2O

ѰE2P

ѰE2L

Ѱ12L

Figure A.1: Factor graph for an ER:UIUC problem instance

Some of the variable nodes combine to form additional variables and factor nodes. We create 4 interme-

diate variable nodes and 7 logic-factor nodes. This factor graph representation can be solved using any of

the graphical models inference methods.
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