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Abstract 

This thesis aims to assess the role of human behaviors in the management of extreme 

hydrological events. Using an agent-based modeling (ABM) approach, three specific issues 

associated with modeling human behaviors are addressed: (1) behavioral heterogeneity, (2) social 

interaction, and (3) the interplay of multiple behaviors. The modeling approach is applied to two 

types of extreme hydrological events: floods and droughts.  

In the case of flood events, an ABM is developed to simulate heterogeneous responses to 

flood warnings and evacuation decisions. The ABM is coupled with a traffic model to simulate 

evacuation processes on a transportation network in an impending flood event. Based on this 

coupled framework, the model further takes account of social interactions, in the form of 

communication through social media, and evaluates how social interactions affect flood risk 

awareness and evacuation processes.  

The case of drought events considers a hypothetical agricultural water market based on 

double auction. Farmers’ multiple behaviors (irrigation and bidding behaviors) are modeled in an 

ABM framework. The impacts of the interplay of these behaviors on water market performance 

are evaluated under various hydrological conditions.  

The results from the ABMs show that the three aforementioned aspects of human behaviors 

can significantly affect the effectiveness of the management policies in extreme hydrological 

events. The thesis highlights the importance of including human behaviors for policy design in 

flood and drought management. Further, the thesis emphasizes the efforts in collecting empirical 

data to better represent and simulate human behaviors in coupled human and hydrological systems.  
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Chapter I. Introduction  

1.1 Problem Overview  

Management and planning policies in water resource systems require a comprehensive 

understanding of both natural systems and human behaviors in response to the natural systems. In 

light of this, coupled human and natural systems (CHNS) have been recognized as an important 

modeling concept for simulating the interaction and coevolution between natural systems and 

humans [Liu et al., 2007a], and understanding human decision making is important for effective 

policy designs in water resource  planning and management [Liu et al., 2007b; O’Connell and 

O’Donnell, 2014].  

Although human behaviors play an important role in water resource systems, modeling 

human decisions is challenging, especially when data related to human cognitive processes that 

drive their decision-making are lacking. Two approaches for simulating human behaviors have 

been used: (1) optimization-based approaches and (2) rule-based approaches [Hu, 2015]. 

Optimization-based approaches simulate humans as utility optimizers, whose decisions are optimal 

ones based on the current available information for decision making [Yang et al., 2012; Hu et al., 

2015]. Given that the information available for decision making are often not sufficient, 

optimization-based approaches typically can only represent ideal decisions and might not 

completely capture the empirical decision making process. On the other hand, rule-based 

approaches assume human behaviors follow some intuitive if-then decision rules [An, 2012]. Rule-

based approaches are generally intuitive and easy to understand. However, derivation of such rules 

requires large amount of empirical data and comprehensive understanding of human cognitive 

processes, which are often not available to modelers [Elsawah et al., 2015].    
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To address the challenges associated with modeling human behaviors in water resource 

systems, agent-based modeling (ABM) has been widely applied in various disciplines [Heath et 

al., 2009; Villamor et al., 2012; Buchmann et al., 2016]. Unlike top-down approaches, such as 

optimization, which assume centralized control of decision-making processes, ABM takes a 

bottom-up approach in which each component in the system is simulated as an autonomous, 

interdependent, and adaptive agent with heterogeneous attributes and decision rules [Bonabeau, 

2002; Macy and Willer, 2002]. This feature makes ABMs suitable for simulating autonomous and 

adaptive decision-units in complex systems [Farmer and Foley, 2009]. However, simulating such 

complex systems can be quite computationally expensive, which has been a constraint to the 

application of ABM in complex systems during the past decade. Recently, with more advanced 

high-performance computing technologies (e.g., parallel and cloud computing), ABM has been 

more widely applied to simulating human behaviors in many research domains, including water 

resource systems. Studies include, but are not limited to, irrigation behaviors in agricultural 

systems [Ng et al., 2011; Miro, 2012; Hu et al., 2015], social response to flood warning and 

evacuation during flood events [Chen and Zhan, 2008; Dawson et al., 2011],  and economic 

behaviors in water resource markets [Zhang et al., 2010; Nguyen et al., 2013; Zhao et al., 2013]. 

These studies have demonstrated the usefulness of ABM in simulating human behaviors and have 

provided insights to guide planning and management policies in water resource systems.  

Despite the efforts to take account of the role of human behaviors in water resource 

systems, issues remain in simulating human behaviors. Among them, the following three issues 

have been recognized as important ones. First, given that agents’ decision rules might vary, it is 

important to represent heterogeneity in human behaviors, and evaluate whether and how 

behavioral heterogeneity affects modeling results in water resources systems [Pennings and 
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Leuthold, 2000; Huang et al., 2013]. Second, agents’ decisions in the face of uncertainty rely on 

available information. Since social communication can greatly affect information exchange and 

thus agents’ decision-makings, it is important to evaluate how social communication affects human 

behaviors [Baumann et al., 1997]. Third, for a complex system in which multiple factors affect 

system outcomes, simulating multiple behaviors is needed. Thus, it is important to investigate how 

the interplay of multiple behaviors affect the modeling results [An, 2012; Ye and Mansury, 2016].  

Driven by these research needs, this thesis specifically investigates the aforementioned 

three issues in modeling human behaviors: (1) behavioral heterogeneity, (2) social interaction, and 

(3) interplay of multiple behavioral parameters. We will demonstrate the importance of taking 

account of these issues during extreme hydrological events, namely flood and drought.   

1.2 Research Objectives and Thesis Outline 

The goal of this thesis is to evaluate how behavioral heterogeneity, social interaction, and 

the interplay of multiple behaviors affect modeling results in water resource systems. We use the 

flood warning-response system as a case study for simulating human behavioral heterogeneity and 

social interaction during flooding events. The agricultural water market, an example for drought 

events, is used for simulating the interplay of multiple behaviors. Specific objectives and outlines 

of the thesis are summarized as follows.   

(1) In Chapter II, an ABM framework is developed to simulate human behavioral 

heterogeneity in response to flood warnings. The framework is coupled with a traffic 

model to simulate agents’ evacuation processes within a road network under various 

flood-warning scenarios. The coupled model is used to evaluate the impacts of human 

behavioral heterogeneity on the benefits of flood warnings. 

(2) Based on the ABM framework developed in Chapter II, Chapter III evaluates how 
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social communication affects agents’ flood risk awareness and evacuation behaviors. 

In particular, social communication through social media and the influence of 

neighbor’s actions are evaluated in this section.  

(3) Chapter IV addresses the issues of simulating multiple behaviors, using drought as a 

case study. The ABM developed in this chapter explicitly incorporates farmers’ 

multiple behaviors, namely irrigation behavior (represented by farmers’ sensitivity to 

soil water deficit) and bidding behavior (represented by farmers’ rent seeking and 

learning rate), in a hypothetical water market based on a double auction. The joint 

impacts of the behavioral parameters on the water market are evaluated under different 

hydrological conditions.  

(4) Chapter V summarizes the major findings and insights from present work, discusses 

the limitations, and proposes some future work.  
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Chapter II. Impacts of Human Behavioral Heterogeneity on the Benefits of Flood Warnings  

This chapter proposes an ABM framework to evaluate the impacts of human behavioral 

heterogeneity on the benefits of flood warnings. Section 2.1 introduces the objective of this study 

and some background information, followed with a detailed literature review in Section 2.2. 

Section 2.3 provides a detailed description of the methodology of this study, including how the 

agent-based modeling framework is set up and how it is coupled with the traffic model. The 

coupled model is tested by a hypothetical case study in Section 2.3 and the preliminary results 

are presented in Section 2.4. Section 2.5 summarizes the main findings of this study and 

proposes some future work.  

2.1 Introduction 

 Flooding is a common weather disaster in the United States (U.S.) that has caused 

significant social and economic loss [Smith and Matthews, 2015].  Flood warnings have been 

shown to be effective in reducing flood-related deaths and economic loss from flood damages 

[Estrela et al., 2001]. Some studies suggest that as little as one hour of lead time can reduce flood 

damages by 10-20%, with potential savings of $1.62 billion annually in the U.S. [National 

Hydrologic Warning Council, 2002]. Additionally, many case studies around the world have 

reported the impact of early flood warning systems on saving human lives [Golnaraghi et al., 

2008]. 

 Flood warning systems, which have often been described as a combination of tools and 

processes embedded in different institutional, organizational, and infrastructure systems, are 

composed of (1) knowledge-based modeling and forecasting of flooding, (2) a monitoring and 

warning system, (3) an information dissemination system, and (4) public preparedness and 
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response. It is argued that the effectiveness of these systems is often rooted in the accuracy of the 

forecast, the lead time of the warning, and stakeholder’s understanding of how the risk is translated 

and interpreted by the public, which ultimately will translate into direct actions. Naturally, a 

considerable amount of research and development has focused on providing flood warnings that 

have both high prediction accuracy and sufficient warning lead time [Krzysztofowicz, 1996; 

Siccardi et al., 2005; Verkade and Werner, 2011]. Recent advances in predictions have allowed 

the public to obtain more reliable information in a timely manner, and longer time for planning 

and strategizing by emergency responders [Cloke and Pappenberger, 2009; Golding, 2009; 

Arheimer et al., 2011].  

Nevertheless, improvements in these areas do not reduce risk in disaster situations as 

reliable and timely warnings do little good if not followed by (early) actions. Research has 

demonstrated that people’s behavior during disaster events can have major impacts on the 

effectiveness of emergency response and evacuation plans [Starcke and Brand, 2012; Durage et 

al., 2014]. These studies have had limited consideration of how human’s heterogeneous response 

to flood warnings affect the evacuation processes (i.e., considering how people respond differently 

to flood warnings). There is a need for a more comprehensive understanding of how human 

evacuation processes are affected by interpretations of flood warning information and, ultimately, 

how these translate into actions [Dash and Gladwin, 2007]. 

 Evacuation decision-making processes are complex and uncertain. This is especially true 

when one tries to understand human cognition processes under disaster situations, which are 

affected by risk aversion, interpretation of warning systems, preparedness and education on 

evacuation procedures, etc. [Dash and Gladwin, 2007]. Moreover, to understand how human 

behavior systemically affects evacuation processes, one must consider the socio-economic aspects 
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of households (e.g., residential location, access to evacuation transportation, previous experiences 

with floods, etc.) that affect all stages of evacuation processes. Considering all of these human 

behavioral and social-economic factors and their heterogeneities has often been identified as one 

of the primary challenges for effective flood-warning systems [Pan et al., 2007; Dawson et al., 

2011].  

Considerations such as what level of warning and/or with how much lead time the warning 

should be issued are critical to the effectiveness of flood warning systems. Earlier lead times have 

not proven to necessarily reduce the level of flood damages or loss of life, as the uncertainty with 

the forecast at those times is often quite high [Schröter et al., 2008]. At the same time, people have 

different risk aversion aptitudes that create difficulty in understanding what level of warning 

should be issued. High-risk warnings with high uncertainty could result in loss of trust in the flood 

warning system, while a low risk warning can result in catastrophic consequences if people’s risk 

aversion levels are above it. Thus, there is a need for a framework that allows for a better 

understanding of how the heterogeneity of response to flood warnings influences the effectiveness 

of flood warning systems 

This study proposes an agent-based modeling framework to incorporate human behavioral 

heterogeneity in flood warning-response systems. The objective is to test the hypothesis that the 

benefits of flood warnings will vary depending on heterogeneous responses to flood warnings. 

Furthermore, this study also explores the relationships between the benefits of flood warnings and 

residential density of flood zones. This will improve the understanding of priorities in developing 

evacuation plans for a specific community, and provide insights that will allow for more effective 

flood warning systems. 
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2.2 Literature Review  

Previous studies that explored the effects of human behaviors on the benefits of flood 

warnings mainly focused on gathering empirical data, often through surveys [Zhang et al., 2007; 

Lazo et al., 2010; Starcke and Brand, 2012], or simulated the evacuation process using a complex 

mathematical model representing human rationale [Ferrell, 1983]. These studies have mostly 

concentrated on exploring the effectiveness of different evacuation plans under different flooding 

and traffic scenarios. These studies allow the inclusion of traffic dynamics on different road 

networks, and explicit modeling of rules that mimic human rationale and adaptability during 

emergencies, and they have enabled a better understanding of which factors influence the 

effectiveness of evacuation procedures. For example, Dawson et al. [2011] integrated a dynamic 

agent-based model with a hydrodynamic model and a traffic model, with the objective of 

understanding the probability of an individual being exposed to flood under different storm surge 

conditions and warning lead times. The results of the study demonstrated that the number of people 

exposed to dangerous water depths increases monotonically as the storm surge height increases 

and as the warning time becomes shorter. For a case study in the United Kingdom,  there was 

almost a fourfold reduction in the number of agents exposed to flood when an effective flood 

warning system is used that considers the dynamics of the decision-making processes and 

consequential behaviors within the transportation system. 

 Among the studies that have explored the value of the warning information as a function 

of its own attributes is the analysis presented by [Schröter et al., 2008]. This study analyzed the 

effectiveness and efficiency of an early warning system for flash floods. By using historical data 

in two river basins, the authors analyzed the relationship between the reliability of information and 

the potential damage reduction as a function of the warning lead time. Additionally, the authors 
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compared the benefits and costs associated with using an early warning system as a function of the 

warning lead time. The authors found that longer lead times did not necessarily result in larger 

benefits as the reliability of the information at these times was often low. Finally, the study 

concluded that among the main factor that affects the effectiveness of the warning systems was 

stakeholder awareness, and that perhaps this was as important as improvements in flood forecast 

accuracy. 

Similarly, Verkade and Werner [2011] assessed the cost-benefit ratio of providing flood 

warning information. Using a case study in White Cart Water in Glasgow, UK, the authors 

presented a framework to estimate the flood risk reduction when using flood forecasting, warning, 

and response systems. Using a hydro-economic model of expected annual damage due to flooding, 

combined with the concept of Relative Economic Value (REV), the method was able to estimate 

the benefits associated with reduction in flood losses while considering the cost of providing the 

warnings and the cost associated with forecast uncertainty. The study demonstrated that the use of 

a probabilistic forecast had the potential to gain higher benefits for any given lead time. It also 

demonstrated that the lead time of the warning information should be a function of the forecast 

uncertainty and the cost-loss ratio of the people receiving and responding to the warning, as longer 

lead times do not necessarily lead to a larger reduction in flood risk.  

 These previous studies have provided information on how the effectiveness of using flood 

warning information is affected by the accuracy of the prediction and the warning lead time, and/or 

have provided models of human decision-making processes and their effects on evacuation 

processes. Nevertheless, none of the previous studies has integrated the heterogeneity in people’s 

behaviors with the effectiveness of flood warning information. Moreover, these studies have relied 

mostly on historical data to draw conclusions about the cost-benefit of using flood-warning 
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systems. There is still a need for a framework that bridges the gap between these elements, where 

the empirical data gathered in previous studies would inform human decision-making rules and 

their interactions, while at the same time consider uncertainties in the flood warning information. 

The central premise of this study is to explore how interpretation and response to flood warnings 

affect the benefits of the information provided by the flood warning systems. In other words, the 

study aims to understand the marginal benefit of providing a more accurate forecast and/or longer 

lead times given the heterogeneity in risk aversion aptitudes and their socio-economic 

environments.  

2.3 Methodology 

Responses to flood warnings are very diverse as they are often influenced by many socio-

economic aspects (e.g., social class, age, gender, past experience with floods, flood insurance, 

etc.,) and by the values and beliefs of family and neighbors [Parker et al., 2009a]. The interactions 

among people with such diverse behaviors will eventually form a complex and dynamic system 

(human community) in which all its sub-system components (individuals) are interconnected with 

and affected by each other [Liu et al., 2007b; An, 2012]. This property of the complex system 

imposes challenges to the use of traditional, top-down, centralized simulation approaches (e.g., 

optimization). Agent-based modeling has often been suggested as an appropriate solution to this 

kind of problem for capturing the dynamic feedback of  sub-system components and their inherent 

complexities [Heath et al., 2009]. Unlike top-down approaches, which assume centralized control 

of decision-making processes, agent-based modeling takes a bottom-up approach in which each 

system component is simulated as an autonomous, interdependent, and adaptive agent with 

heterogeneous attributes and decision rules [Bonabeau, 2002; Macy and Willer, 2002].  
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However, simulating such complex systematic interactions can be quite computationally 

expensive, which has constrained the application of agent-based models in simulating complex 

systems. With more advanced high-performance computing technologies developed in recent 

years, agent-based modeling has been more widely applied to simulating human behaviors in many 

areas, such as river basin management [Cai et al., 2011a; Hu et al., 2015], land use and land cover 

change [Kelley and Evans, 2011; Ralha et al., 2013], agriculture and ecosystems [Ng et al., 2011], 

economic and financial markets [Raberto et al., 2001; Zhao et al., 2013], and  simulation of flood 

and other natural disaster events [Shi et al., 2009; Zhang et al., 2009; Aschwanden et al., 2012]. 

These studies have shown that an agent-based modeling approach can potentially better represent 

empirical systems and improve understanding of the relationships among different system 

components. Therefore, this study adopts an agent-based modeling approach to simulate flood 

warning-response systems. The model simulates (1) a geographical system that consists of a group 

of residents (defined as agents) and a transportation network, (2) probabilistic flood warnings that 

indicate the probability of flood within a specified lead time (e.g., 80% chance of having a flood 

within 5 hours), and (3) decision-making processes that describe how the agents make evacuation 

decisions after receiving the flood warnings and how they evacuate to the safe area through the 

transportation network following certain evacuation rules (Figure 2.1a). The architecture of the 

proposed agent-based model is shown in Figure 2.1b. The upper level of the model describes the 

geographical environment and flood warning information that all of the agents receive. The lower 

level of the model describes how an agent is defined by its attributes and behaviors.  
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Figure 2.1 Illustration of (a) the main components of the flood warning-response system and (b) 

the architecture of the agent-based model. The four figures in Figure 2.1a are: (1) flood warning 

managers issue a flood warning to residents, (2) residents receive the flood warning and make 

evacuation decisions (stay or evacuate), (3) residents evacuate through the transportation network, 

and (4) agents’ final evacuation status, respectively. Figure 2.1b illustrates the structure of the 

model. The upper level of the structure represents agents’ environment (i.e., geographical system 

and flood warning information). The lower level represents the attributes and behaviors that are 

used to define agents.  

Responses to flood warnings result from integration of a set of decision-making processes 

that includes reception of flood warning information, social psychological processes for 

understanding this information, and actions to reduce flood damage (e.g., moving valuables to 

flood-free places, evacuating to safe areas) [Mileti, 1995]. Transportation networks are important 

factors that affect both people’s evacuation strategies and the total time needed for evacuation 
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during emergencies [Chen and Zhan, 2008]. Thus, the proposed agent-based model takes both 

human components (people and their decision-making processes after receiving flood warnings) 

and evacuation transportation networks into consideration.  

2.3.1 Transportation Network and Traffic Rules 

 The transportation system plays a pivotal role in evacuation planning and management and 

is framed in the National Response Framework as a critical infrastructure during natural disasters 

and other emergencies [Department of Homaland Security, 2013; Murray-Tuite and Wolshon, 

2013]. The transportation system is an integrated system including transportation networks, 

vehicles in the networks, and traffic rules that regulate the movements and interactions of the 

vehicles. Thus, modeling a transportation system includes simulating two components: (1) the 

transportation network itself and (2) the traffic rules of the transportation network that all vehicles 

should follow. Regarding the first component, the complexities associated with transportation 

networks make it challenging to include all of their features in simulation model. In order to 

manage this complexity, many studies have suggested the use of simplified representations of 

transportation networks, such as a directed graph [Sheffi et al., 1982; Cova and Johnson, 2003], 

which contains a set of nodes, edges and weights associated with edges.  

Edges and nodes in a directed graph represent a transportation networks’ routes and route 

intersections. The weight of an edge represents the cost of using the route it represents (e.g., 

distance of the route, speed limit, route capacity, etc.). Mathematically, a graph can be represented 

as a matrix. For example, the row and column of a matrix element can represent the starting and 

ending nodes of an edge, respectively, while the value of the element represents the cost (i.e., 

length) of the edge. Edges associated with nodes that are not directly connected are assigned an 

infinite cost to represent that no direct evacuation route exists between them. Figure 2.2 is an 
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example representation of a transportation network as a graph. The transportation network in 

Figure 2.2a consists of 4 nodes (node 1, 2, 3 and 4); the directed edges among these nodes represent 

connections among them. The matrix in Figure 2.2b is the mathematical representation of the 

directed graph. Note that no direct edge connects node 3 to node 4; in the matrix, the length from 

3 to 4 is therefore set to be infinite. 

         Traffic rules, as mentioned above, are also important components in transportation system 

simulation. Traffic rules regulate the movements and interactions of each individual vehicle in the 

network. Among a variety of traffic simulation methods developed in recent decades, individual-

oriented methods have been suggested as powerful simulation tools for representing individual 

interactions and systematic traffic flow pattern in a transportation system [Chen and Zhan, 2008]. 

The Nagel-Schereckenberg model (N-S model), first proposed in 1992 by Nagel and 

Schreckenberg [1992], is a widely-used, individual-oriented method in both theoretical and 

empirical studies. The N-S model divides a road into cells and categorizes a vehicle’s actions on 

the road into four groups in a time unit: acceleration, deceleration, randomization, and movement.  

         Because the N-S model can capture empirical traffic phenomena and allow for parallel 

computing, it has been widely applied in many studies and has been developed as the 

Transportation Analysis and Simulation System (TRANSIMS) for regional transportation system 

analysis [Smith et al., 1995]. In our study, we use the N-S model to simulate evacuation processes 

on transportation networks, assuming that they will follow the rules defined in the N-S model. We 

assume that individuals follow the all-way stop rule when multiple vehicles arrive at a road 

intersection at the same time: a vehicle that arrives first has precedence over vehicles that arrive 

later. 
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Figure 2.2 Illustration of (a) a transportation network represented by a directed graph and (b) 

matrix representation of the network. In Figure 2.2(a), numbers inside nodes denote node numbers. 

Arrows of edges denote connections between nodes. Single arrow denotes one-way edge (e.g., 

agents can only move from node 4 to node 3, not in the other direction).  

2.3.2 Household Agents 

         In the face of flood risk, we assume that all family members in a household will affect each 

other in arriving at final evacuation decisions. Both empirical and theoretical flood warning studies 

are typically conducted at the household level . Household demographics (e.g., location, education, 

income, etc.) are therefore assumed to provide sufficient information regarding socio-economic 

aspects of each agent. Therefore, each household is simulated as an agent in this study. An agent 

is defined by the attributes and decision rules that relate it to flood warning responses and actions 

(Figure 2.1b). We assume that all agents share a transportation network for evacuation during 

emergencies and will receive a flood warning at the same time. The agents will need to make 

decisions regarding whether to evacuate to a flood-free area outside of the neighborhood. The 
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decision-making processes depend on each agent's attributes and decision rules. The following 

sections introduce how we define the agent's attributes and decision rules in this study. 

         Agent attributes are defined as a set of parameters that describe the characteristics of an 

agent. In this particular study, in which each household is defined as an agent, agent attributes refer 

to the characteristics of each household that relate to flood warning responses and evacuation 

processes. Previous studies have shown that flood warning responses and evacuation processes are 

affected by many physical, psychological and socioeconomic factors [Drabek, 1999; Gladwin et 

al., 2009]. However, representing all of these factors in a model is challenging when lacking 

empirical data. Therefore, in this study, we simplify the representation of these factors and classify 

an agent’s attributes as physical attributes that are related to its evacuation process, and 

psychological attributes that are related to its response to flood warnings (Table 2.1). 

Physical attributes describe an agent’s physical characteristics related to flood warning 

responses and evacuation actions (e.g., location of a house, house type, construction material of 

the house, etc.). To capture the attributes that are essential for simulating the agents’ evacuation 

processes and evaluating the benefits of flood warnings, three types of physical attributes are 

included: agent's geographical location (G), maximum evacuation speed (
maxV ) in the 

transportation network, and evacuation status (ES) at the end of the simulation period. An agent’s 

geographical location in the transportation network is represented by three variables (i.e, 

, ,s eN N d ) that indicate the agent’s movement from starting node (
sN ) to ending node (

eN ) and 

the distance between its current location and ( )sN d . For example, the geographical location of 

agent i in Figure 2.2a can be denoted by [1,3, ]id . An agent’s maximum evacuation speed defines 

its maximum moving speed on a route in a transportation network, which is assumed to be the 

maximum speed limit of the evacuation route in this study. Evacuation status (ES) represents an 
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agent's evacuation status at the end of the simulation period. ES is a categorical variable for which 

there are only three values: 1 (denotes that an agent stays at its initial location without considering 

evacuation), 2 (denotes that the agent is currently evacuating but has not arrived at the safe area, 

and 3 (denotes that the agent has arrived at the safe area).  

Table 2.1 List of agents’ attributes 

Factors Variables Description of the variable [unit] 

Physical 

i Agent’s unique identification number [-]1  

ES Agent's evacuation status at the end of simulation [-] 

G Agent’s geographical location in neighborhood [-] 

Vmax Maximum evacuation speed in transportation network [L/T] 

Psychological RT Risk threshold to flood risk [-] 

1 [-] denotes dimensionless parameter.  

 

Psychological attributes measure an agent's risk tolerance to flood risk in flood warning 

systems. Many studies have shown that responses to flood warnings are affected by socio-

psychological factors such as understanding of flood warnings, interpretation of risk, rationality in 

decision-making, past experiences with floods [Weinstein and Klein, 1995; Brewer et al., 2004]. 

When a flood warning is issued, an agent will consider all of these factors in making evacuation 

decisions. Lacking empirical data to represent the complex interconnected relationships among 

these factors, in this study we summarize all of these factors into a single parameter, risk tolerance 

threshold (RT), to measure an agent's maximum tolerance level for flood risk, where flood risk is 

represented by the probability of floods in the neighborhood. The agent will decide to evacuate to 

a safe area if the flood risk exceeds his or her tolerance threshold. We introduce quantification of 

RT in the case study section of this paper. 

Naturally, the agents will behave differently in addressing these flood risks. Risk-tolerant 

agents do not respond as actively as risk-averse agents do. Two common methods have been 
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proposed for representing the heterogeneity of an agent's decision. The first method is to classify 

agents into several categories (e.g., Li and Liu [2007] divided household agents in a city into six 

groups based on the agents’ income and household size; Ng et al. [2011] divided farmer agents 

into bold and cautious groups based on the agents’ adaptation of biofuel crops. The second method 

is to continuously vary agent’s behavioral parameters (e.g., Benenson [1999] continuously varied 

agents’ income to study residential distribution in a community; Huang et al. [2013] varied agent’s 

purchasing budgets and preference for location parameters to study the spatial patterns of urban 

land markets). This study applies the second method, continuously varying agents’ behavioral 

parameters, with the aim of evaluating how these decision parameters affect model output across 

a broad range of parameter settings. 

 Understanding flood warning information and making evacuation decisions are very 

complex processes [Mileti, 1995]. Simplified decision-making processes have been applied by 

many studies to simulate evacuation behaviors during natural disasters [Shi et al., 2009]. In our 

work, an agent’s response to flood warnings is simplified into three steps: (1) decide if evacuation 

action should be taken based on the flood risk, (2) choose an evacuation path if the agent decides 

to evacuate, and (3) evacuate through the selected path following traffic rules.  

Based on these three decision-making processes, three types of behaviors are simulated in 

this work: evacuation decision, evacuation path search, and real-time evacuation speed (Figure 

2.1). Evacuation decision describes the process of an agent receiving flood warnings and deciding 

if the agent wants to evacuate to a safe area or not. An agent's evacuation decision depends on the 

probability of flooding and the agent's risk tolerance threshold. An agent will decide to evacuate 

if the probability of flooding exceeds its risk tolerance threshold. Otherwise, agents will choose 

not to evacuate even if there is a flood warning. The second type of behavior describes how an 
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agent selects its evacuation path to the safe area. In this study, it is assumed that all of the agents 

have good knowledge about the transportation network and they will choose the shortest path from 

their current locations to the safe area as their evacuation path.  

Besides evacuation route selection, the third important behavior is deciding on the 

evacuation speed at each time step. As an agent evacuates on a route, its speed is contained by (1) 

its own maximum evacuation speed, (2) maximum speed limits on the route, and (3) the location 

and evacuation speed of other agents on the same route. In this study, the agents’ real-time 

evacuation speed is regulated by the N-S traffic model; for more details of how the moving speed 

of an agent is determined, see [Nagel and Schreckenberg, 1992].  

2.3.3 Model Implementation 

         We implement the agent-based model using an object-oriented programming language, 

Java. The model execution process can be summarized in three steps (Figure 2.3): (1) prepare input 

data to construct agents, (2) execute agent-based model, and (3) analyze and output model 

execution results. The following sections introduce more details on the implementation of each of 

these steps.  

             Step 1. Prepare Input Data to Construct Agents. 

Two types of input data are needed to initialize the model: input data for agents and input 

data for evacuation transportation network. Input data for agents define each individual agent's 

attributes and behavior parameters, which are listed in Table 2.1. One of this study’s main 

objectives is to understand how the agent's risk threshold will affect the benefits of flood warnings. 

Without empirical knowledge about the distribution of human behavior parameters, it is often 

assumed that people’s behavioral parameters (i.e., risk threshold in this study) follow probability 

distributions. Uniform and normal distribution are two commonly applied assumptions for 
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modeling agents' behavior through parameter distributions. Because the coefficient of variation is 

a standard measurement of the dispersion of a distribution, this study applies the normal 

distribution to generate agents’ risk threshold. The mean value of the normal distribution measures 

the agents’ overall risk threshold for floods (
RT ), while the coefficient of variation (

RTCV ) 

measures agents’ behavioral heterogeneity. Coefficient of variation is set to be zero to simulate 

agents with homogeneous risk threshold. 

Input data for the evacuation transportation network defines the number of nodes and how 

the nodes connect with one another in the network. One of these nodes is set as the evacuation 

destination to represent the safe area without flood risk. To improve computational speed, the 

shortest path from any given location to this evacuation destination is calculated before model 

execution and is stored in a Java hashtable with keys and values. The hashtable key is the location 

of an agent in the transportation network. The hashtable value is the shortest path from any given 

location to the evacuation destination. The hashfunction of the hashtable will return the shortest 

evacuation path from the agent's current location to the evacuation destination. 

             Step 2. Execute Model. 

         The model execution process starts with a probabilistic flood warning that indicates the 

probability of flooding within a specified lead time. All of the agents will receive this flood 

warning and make evacuation decisions based on the decision rules described in the previous 

sections. For the agents who decide to evacuate through the transportation network, their 

evacuation processes are simulated by the N-S traffic model at discrete time steps within the flood 

warning lead time. 

             Step 3. Analyze the Benefits of Flood Warnings. 
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         At the end of the model execution process, the model will return the evacuation status of 

each agent. The benefits of flood warnings can be measured by multiple criteria such as total flood 

damage reduction or saving of human life. In this study, we measure the benefits of flood warning 

by the percentage of agents that have evacuated to the safe area at the end of the model simulation.  

 

Figure 2.3 Flowchart of the agent-based model. The items along the left hand are the three model 

execution steps. In the final step, the benefits of flood warnings are measured by the percentage of 

agents that have evacuated to safe area.  

2.3.4 Model Validation  

 Model validation is an essential step in the model development process. The main objective 

of model validation is to demonstrate that the model simulation results can reasonably represent 

or approximate the behaviors observed in the real systems [Heath et al., 2009]. A variety of model 

validation methods and techniques have been proposed for agent-based models [Ngo and See, 

2011]. Among them, structure validation and output validation are two of the most important and 
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common methods. The objective of structural validation is to demonstrate that the agent-based 

models can correctly represent the behaviors and the operation rules of the real systems. Outcome 

validation compares the model output with observations from real systems when empirical data 

are available.  

 When empirical data are not available to show the interactions among the autonomous 

agents in the system, model validation becomes challenging. To address this challenge, many 

studies have used expert’s knowledge for a qualitative assessment of the model performance 

[Heath et al., 2009]. In this theoretical study, with no empirical data about the model outputs, the 

model validation is conducted from a qualitative perspective with empirical findings from previous 

studies [Mileti, 1995; Parker et al., 2007a; Paul, 2012]. The output validation was done by 

comparing the model output with the expert’s knowledge about flood warning-response systems. 

The next section gives more details about the model validation.  

2.4 Case Study  

2.4.1 Transportation Network  

         A hypothetical geographical system is designed as the case study. The geographical system 

consists of a transportation network and a number of household agents (Figure 2.4). To consider 

flood warning-response systems with different spatiotemporal scales, we use general units to 

measure length and time, following the approach adopted by Zhang et al. [2009]. The length and 

time units are represented by L and T, respectively. The evacuation transportation network has 16 

nodes, with one node selected as the evacuation destination, and 16 routes. Each evacuation route 

is assumed to be a two-way road with one lane for each traveling direction [Chen and Zhan, 2008]. 

The total length of the transportation network is 2210 L. We assume that all lanes in this network 

have the same speed limit (10 L/T in this study) and all route intersections have an all-way stop 
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sign to regulate traffic, which means that an agent arriving at the intersection first will take 

precedence over agents arriving later. More complex transportation networks could be used to 

generate more complex evacuation phenomena, which are discussed further in the conclusion 

section.  

 

Figure 2.4 The transportation network and household agents for the hypothetical case study area. 

(Numbers along routes denote the length of routes. The number of agents in the network ranges 

from 320 to 640. Agents are uniformly distributed along the routes.) 
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The household agents are uniformly distributed along the transportation routes. The 

residential density of the neighborhood (RD) is defined as the total number of agents in the 

transportation system divided by the number of nodes in the network. In this study, the total 

number of agents in the transportation network ranges from 320 to 640 (i.e., RD ranges from 20 

agents/node to 40 agents/node) to explore how residential density affect agents’ evacuation 

processes.  

2.4.2 Scenario Design 

        With the aforementioned transportation network as a case study area, this study aims to 

investigate how human’s heterogeneous behaviors (i.e., risk tolerance threshold) and residential 

density could affect the benefits of flood warnings. We design three scenarios. The first scenario 

is for model validation, which we conduct by comparing the results of a set of experiments with 

empirical knowledge about flood warning systems. The second scenario explores how agent’s 

heterogeneous behaviors affect the benefits of flood warnings. The third scenario investigates the 

potential interplay between residential density and flood forecast accuracy and its effect on the 

benefits of flood warnings. Table 2.2 shows the parameters of these three scenarios. 

This study focuses on simulating agents’ evacuation processes during flood events, without 

considerations of false alarms (i.e., the agents receive flood warnings, but eventually there is no 

flood). Therefore, we consider flood forecast accuracy only in terms of the predicted flood 

probability. For example, for a flood forecast indicating 85% probability of having a flood in 3 

hours, the associated forecast accuracy and lead time will be 0.85 and 3 hours, respectively. We 

also assume that the agents will receive a flood warning at the beginning of model execution, and 

will not receive any other flood warning information during the following simulation periods. In 
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other words, the agents only receive one piece of flood warning information during the entire 

simulation.  

Table 2.2 Parameters for the three simulated scenarios in the case study area 

Parameter [unit] Scenario 1 Scenario 2 Scenario 3 

Mean value of agents’ risk threshold [-]1 0.75 0.6:0.05:0.92 0.75 

Coefficient of variation of risk threshold [-] 0.1 0:0.05:0.3 0.1 

Predicted flood probability [-] 0.6:0.05:0.9 0.75 0.6:0.05:0.9 

Flood forecast lead time [T] 100:100:700 200:200:600 400 

Residential density [number of agents/node] 30 30 20:10:40 

1 [-] denotes dimensionless parameter. 

2 X:d:Y denotes a numeric vector from X to Y with increment of d. For example, vector [1, 

3, 5, 7] can be represented by 1:2:7. 

2.5 Results and Discussion  

2.5.1 Model Validation  

        In this section, we test whether our model can capture the following findings of previous 

empirical studies: (1) that the benefits of flood warnings have a positive relationship with flood 

forecast  accuracy and (2) that the benefits of flood warnings have a positive relationship with 

flood warning lead time [Estrela et al., 2001; National Hydrologic Warning Council, 2002; 

Golnaraghi et al., 2008]. The results of model validation are shown in Figures 2.5a-c.  

 Figure 2.5a shows that the benefits of flood warnings increase as flood warning lead time 

increases. Figure 2.5b shows that the benefits of flood warnings increase as predicted flood 

probability increases. Figure 2.5c further suggests that the benefits of flood warnings are 

constrained by both predicted flood probability and flood warning lead time. The benefits of flood 

warnings are always low if predicted flood probability or lead time reaches its lower limit (0.7 for 

predicted flood probability and 200 T for flood warning lead time). In addition to the lower limits 
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for flood warnings, upper limits also exist beyond which the benefits of flood warnings will not 

increase significantly (0.75 for predicted flood probability and 500 T for flood warning lead time 

in the case study).  The results from Figure 2.5a-c demonstrate that the model is able to capture 

the empirical findings from experts’ domain knowledge of flood warning information.  

 

Figure 2.5 (a) The relationship between the benefits of flood warnings and flood warning lead time 

when predicted flood probability is 80%; (b) The relationship between the benefits of flood 

warnings and predicted flood probability when flood warning lead time is 400 T; and (c) Contour 
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Figure 2.5 (cont.) plot of the benefits of flood warnings associated with predicted flood probability 

(Y-axis) and flood warning lead time (X-axis)  

2.5.2 Impacts of Behavioral Heterogeneity on Modeling Results 

         This scenario aims to explore the relationships between the benefits of flood warnings and 

agents’ flood warning response behaviors. To be specific, this scenario addresses two questions: 

(1) Will agents’ flood-warning response behaviors (i.e., agents’ risk-tolerance threshold) affect the 

benefits of flood warnings? (2) How will agents’ behavioral heterogeneity (i.e., variation of agents’ 

risk-tolerance threshold) affect the benefits of flood warnings? The first question aims to 

demonstrate that the benefits of flood warnings can be affected by agents’ behaviors; the second 

question is intended to evaluate the importance of considering the characteristic of behavioral 

heterogeneity in simulating agents’ behaviors. 

         Agents' behavioral heterogeneity implies that different agents will behave differently under 

identical environment conditions (i.e., flood warnings). In this study, we measure behavioral 

heterogeneity by the coefficient of variation of the agents' risk threshold. Four groups of agents 

are investigated: two groups of risk-tolerant agents with average risk threshold higher than 

predicted flood risk, and two groups of risk-averse agents with average risk threshold lower than 

the predicted flood risk. We set seven levels of behavioral heterogeneity, with coefficient of 

variation of risk threshold varying from 0 to 0.3. Agents are homogeneous when the coefficient of 

variation is 0.  

Figure 2.6 shows the simulation results for a scenario in which the predicted flood 

probability ( fp ) is 0.75 and flood warning lead time is 400 T. The results show that the benefits 

of flood warnings increase as agent heterogeneity increases for risk-tolerant agents ( RT fp  ). 

The opposite phenomena hold true for risk-averse agents ( RT fp  ). Given that the residents’ risk 
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tolerance (RT) follows normal distribution with mean value (
RT ) and coefficient of variation

RTCV , ( ~ ( , CV ) | RT [0,1])RT RT RTRT N    , the percentage of residents (
ep ) who decide to 

evacuate after receiving flood warning can be represented by:  

0
( )

fp f RT

e RT

RT RT

p
p p dRT

CV






  

 

where fp  is the predicted flood probability of  the issued flood warnings, 
RTp  is the probability 

distribution function of RT, and ( )   is the cumulative distribution function of a standard normal 

distribution. For risk-tolerant agents ( RT fp  ),
ep increases as 

RTCV increases, indicating that 

more agents decide to evacuate as behavioral heterogeneity indicator 
RTCV  increases. Therefore, 

the benefits of flood warnings increase as agent behavioral heterogeneity increases. The opposite 

holds true for risk-averse agents. This finding agrees with previous studies that the relationship 

between agent heterogeneity and model output is not uniformly monotonic [Huang et al., 2013]. 

This finding suggests that, when providing the public with flood warning information, flood-

warning managers should not expect that all of the public interpret and respond to the information 

in the same way. Instead, special information and consideration should be given for certain groups 

of people. For example, people who have no experience with floods are less likely to respond to 

flood warnings compared with people who have past experience. This experience includes not only 

experiences of evacuation during actual flood events with different flood warning systems, but 

also experiences in practicing evacuation as part of emergency preparedness. It has been shown 

that practicing evacuation drills is effective to enhance the awareness of flood risk and mitigate 

flood damages [Yamada et al., 2011]. Social class, gender, and level of education might also affect 

people's understanding of flood warnings and evacuation actions [Parker et al., 2007a]. These 

findings show that flood-warning managers should take the heterogeneity of human attributes into 
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consideration when issuing flood warnings. For example, the model results suggest that risk-

tolerant agents will not take actions to evacuate unless they are provided with warnings of high 

flood probability. Thus, it is important for flood warning managers to identify risk-tolerant agents 

in the community and provide additional information or resources to aid their decision-making. 

 

Figure 2.6 The relationship between the benefits of flood warnings and agent’s behavioral 

heterogeneity when predicted flood probability ( fp ) is 75% and flood warning lead time is 400 T. 

Results for risk-tolerant agents ( RT fp  ) are shown by dotted lines. Results for risk-averse agents 

( RT fp  ) are shown by solid lines. 

Besides risk threshold heterogeneity, agents’ average risk threshold is also an important 

factor affecting the benefits of flood warnings. To understand the relationship between flood 

warning benefits and agents' average risk threshold levels, we investigate three different flood 

warnings with the same predicted flood probability but different lead times (Figure 2.7). The 
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results provide at least two insights. First, as expected, modeled flood warnings with longer lead 

times outperform those with relatively shorter lead times, since longer lead times allow the agents 

more time to respond to flood warnings and evacuate to safe areas. However, the results also show 

that the marginal benefit from the improvement in lead time depends, to a great extent, on the 

agents' risk threshold. More benefits could be achieved by increasing warning lead times for risk-

averse agents than for risk-tolerant agents. However, even a longer warning lead time yields no 

additional benefits if the agents' risk threshold exceeds a limit (0.85 in this case). This suggests 

that risk-tolerant agents will not benefit from flood warnings with longer lead times if their risk 

thresholds do not change. This finding leads to the second insight of the results: in addition to 

providing the public with better flood warning information, informing them about how to respond 

to flood warnings could be an effective way to reduce flood-related damage. For example, the 

model results here show that there are almost no additional benefits if the flood warning lead time 

is increased from 200 T to 400 T when the agents' average risk threshold is 0.80. However, a 

benefit increase of 0.22 is achieved if the agents become more risk averse, with the risk threshold 

reduced from 0.8 to 0.75 (from A to B in Figure 2.7). Empirical studies have shown that people's 

understanding of flood risk is often not necessarily logical, leading to misjudgment of flood risk 

[Tversky and Kahneman, 1973; Weinstein and Klein, 1995]; educating them how to respond 

appropriately could be beneficial. Thus, combining appropriate flood warning response with 

reliable information can make flood warnings more valuable.   
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Figure 2.7 The relationship between the benefits of flood warnings and agents’ average risk 

threshold under three flood-warning scenarios in which predicted flood probability is 75% and 

lead times are 200 T, 400 T, and 600 T, respectively. 

2.5.3 Impacts of Residential Density on Modeling Results 

 This scenario aims to understand how the attributes of residential properties affect agent’s 

evacuation process and ultimately affect the benefits of flood warnings. The attributes of 

residential properties can be measured by multiple matrices, such as distribution, density, 

educational level and social class of residents, etc. In this particular study, we only focus on 

residential density (RD), which may significantly affect traffic load during an emergency 

evacuation process. 

Figure 2.8 explores the impacts of residential density on the benefits of flood warnings 

under different flood warning scenarios. In general, flood warnings with higher predicted flood 

probability are associated with greater benefits, especially in low-density residential areas. 

However, the benefits associated with more accurate flood warnings is constrained in high 
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residential areas because a large fraction of the agents that take evacuation actions may not 

successfully evacuate to a safe area as a result of traffic congestion caused by high traffic loads. In 

other words, the marginal benefit of providing higher predicted flood probability is higher in low 

residential areas than in high residential areas. Therefore, the model results show that it is more 

effective to increase predicted flood probability in low residential areas. In contrast, in high 

residential areas, increase in predicted flood probability does not yield a significant increase in the 

benefits of flood warnings. Instead of working on increasing predicted flood probability, 

increasing flood warning lead time or improving evacuation routes may be more beneficial.  

 

Figure 2.8 Contour plot of the benefits of flood warnings, residential density, and predicted flood 

probability when agents’ average risk threshold is 0.75 and coefficient of variation of risk threshold 

is 0.1 
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Figure 2.9 summarizes agents’ evacuation status and evacuation times under different 

residential densities. As residential density increases, the number of agents that decide to evacuate 

through the transportation network increases. This results in two phenomena as shown in Figure 

2.9. First, the percentage of agents that successfully evacuate to the safe area decreases as 

residential density increases. For example, 100% of the agents that decide to evacuate can 

successfully evacuate to the safe area when the residential density is 20 agents/node. However, 

this value decreases to 81% and 68% when the residential density is 30 agents/node and 40 

agents/node, respectively (Figure 2.9a). Second, the average evacuation time for all of the agents 

increases as residential density increases, which is 150.2 T, 162.3 T and 169.6 T when residential 

density is 20 agents/node, 30 agents/node, and 40 agents/node, respectively (Figure 2.9 b-d). The 

model results suggest that residential density is an important factor that affects the agents’ 

evacuation process in the transportation network. Flood warning managers need to pre-estimate 

the total time needed for the people to evacuate to the safe area when issuing flood warnings, 

especially in high residential areas where traffic load can be high when all people decide to 

evacuate.  
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Figure 2.9 Agents’ evacuation statistics when predicted flood probability is 80% with flood 

warning lead time of 400 T. (a) Summary of the agents’ evacuation status when residential density 

is 20 agents/node (scenario b), 30 agents/node (scenario c), and 40 agents/node (scenario d), 

respectively; (b-d) Distribution of agents’ evacuation time (i.e., the time that an agent takes to 

evacuate to safe area) for scenario b, c, and d. 

 To further investigate how residential density affects agents’ evacuation processes, we 

simulate the evacuation process when residential density is 20 agents/node, 30 agents/node, and 

40 agents/node, respectively. The simulation results are shown in Figure 2.10. The time needed 

for 50% (100%) of the agents to evacuate to the safe area is approximately 200 T (580 T) when 

residential density is 30 agents/node. This time is approximately 150 T (430 T) and 250 T  (785 

T) when the residential density is 20 agents/node and 40 agents/node, respectively. The results 

suggest that more evacuation time is needed to achieve high flood warning benefits when 
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residential density increases. For example, when residential density increases by 33% (from 30 

agents/node to 40 agents/node), the time needed for 50% of the agents to evacuate to the safe area 

increases by 25% (from 200 T to 250 T). However, the time for 100% of the agents to evacuate to 

the safe area increases by 35% (from 580 T to 785 T). Similar conclusion can be drawn when 

residential density increases from 20 agents/node to 30 agents/node. This implies that achieving 

high benefits from flood warnings is much more challenging in high residential areas than in low 

residential areas, because the increase in evacuation time is larger than the increase in agent 

population.  

 It is also noticed that, for all three cases of residential density, evacuation rates increase 

slower after a certain time when more agents are evacuating through the transportation network. 

This is caused by traffic jams when the number of agents that are evacuating through the 

transportation network exceeds transportation capacity. Furthermore, evacuation rates increase 

faster in cases with lower residential density than those with higher residential density. We expect 

that residential density will have less impact on evacuation rates if the transportation network’s 

capacity is higher (e.g., with multiple evacuation destinations instead of only one).  
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Figure 2.10 Simulation of agents’ evacuation processes when residential density is 20 agents/node 

(dashed line), 30 agents/node (solid line), and 40 agents/node (dotted line), respectively.  

2.6 Conclusions 

This study proposes an agent-based modeling framework for incorporating the quality of 

flood warnings (i.e., predicted flood probability and lead time), the heterogeneous nature of 

response to flood warnings (i.e., the mean and coefficient of variation of agents’ risk threshold), 

and residential density in flood warning-response systems. The framework is coupled with a traffic 

model to evaluate how these components interplay with each other to affect agents’ evacuation 

processes in the face of flood warnings. There are three important findings from this study: (1) the 

benefits of flood warnings are affected not only by the quality of flood warning information, but 

also by  responses to such information; (2) the marginal benefit associated with providing better 

flood warnings is significantly constrained if people behave in a more risk-tolerant manner; and 

(3) residential density plays an important role in evacuation effectiveness and ultimately the 
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benefits of flood warnings. This highlights the need for different flood warnings depending on the 

specific residential density of flood zones.  

 While tremendous efforts have focused on providing better flood warning information to 

the public, this study suggests that collecting and using information on human behaviors and 

residential characteristics of flood-threatened areas will make flood warnings more beneficial. 

Such information can help flood-warning managers increase warning efficiency by enabling them 

to determine when and how to release flood warnings to the public. With advanced information 

delivery technologies such as social media, it is not beyond the realm of reality that all of this 

information could be available and accessible in real-time. Twitter, Facebook, and cell phone 

location services could provide real-time information about flood situations and recommended 

actions in floods. Flood warning managers could also collect and use information from social 

media to update the current flood forecast with increased detail and accuracy.  Such information 

may also assist emergency managers to rescue people during floods. For example, in the 2011 Thai 

flood, Twitter was used by local citizens to collect and disseminate up-to-the-minute flood 

information and requests for assistance. It was quite beneficial for emergency managers to analyze 

and use this Twitter information to provide assistance in a timely manner according to specific 

needs [Kongthon et al., 2012].  

This study is a theoretical modeling framework to investigate the complexities of flood 

warning response and evacuation systems and inevitably has some limitations. First, we simulate 

a single flooding event without considering the public’s behavioral changes resulting from 

experiences of flood events. In reality, people might change their flood risk tolerance based on 

their experiences. For example, after experiencing several flooding events and high flood-related 

costs, risk-tolerant agents might become risk-averse agents. Future work can obtain residents’ 
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socioeconomic and demographic data and their responses to flood warnings to understand the 

decision-making processes during flood events. Second, in this paper, we assume that all of the 

agents remaining in the area at the end of model execution will be flooded, and the agents that 

have evacuated to the safe area before the end of model execution will not be flooded. Thus, we 

did not specify the direction, speed, or timing of the flood inundation processes. In future work, 

we will simulate the gradual inundation processes to better model flood behaviors in the real world. 

Third, some assumptions of the theoretical model may not apply to real-world situations. For 

example, we assume that all of the households are knowledgeable about evacuation paths and will 

choose the shortest one. However, in reality the agents might dynamically change evacuation paths 

based on real-time traffic conditions and warning information. Further exploration of the impact 

of individual’s route choice behaviors on transportation conditions during evacuations has been 

previously suggested [Pel et al., 2011] and our study concurs with this need. Finally, this study 

assumes that agents make independent evacuation decisions without communicating with each 

other. In the real world,  relatives, neighbors, and friends greatly affect evacuation decisions 

[Parker et al., 2009a, 2009b]. In general, interactions among agents affect not only individual 

behaviors but also the emergence of the overall system. Future work may explore how an agent’s 

decisions are related to the agent’s geographical location in the residential area (e.g., agents that 

are more close to safe areas may be more likely to behave in a risk-tolerant manner). Other 

socioeconomic household characteristics (e.g., size of household, economic value of the home, pet 

ownership) might also affect agents’ behaviors. This study can be expanded by incorporating 

additional socio-economic heterogeneities into the model. These improvements can better capture 

the complex behaviors of flood warning-response systems and help emergency managers with 

more informed decision-making during flood events.  
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Chapter III. Impacts of Social Interactions: Do Social Media Make Us More Resilient or 

Vulnerable to Flood Risk?  

Based on the modeling framework presented in Chapter II, this chapter focuses on 

evaluating how social interactions affect agents’ flood risk awareness and evacuation behaviors. 

Section 3.1 overviews previous studies on social interaction through social media and introduces 

the objective of this study. Section 3.2 presents the methodology, focusing on individuals’ opinion 

dynamics when exposed to multiple information sources and the traffic model that simulates 

individuals’ evacuation process in transportation network. Section 3.3 presents the case study and 

modeling results, followed by conclusions in section 3.4.  

3.1 Introduction  

With the rapid development of computer-mediated technologies and more universal 

internet accessibility, social media, such as Twitter, Facebook and other information sharing 

platforms, have become important tools for individuals to obtain and share information with each 

other [Asur and Huberman, 2010; Kwak et al., 2010; Gil de Zúñiga and Diehl, 2017]. Unlike 

conventional media such as radio and television that are typically developed for one-to-many 

information dissemination, social media allow both one-to-many and many-to-many information 

dissemination and message exchange [Bassett et al., 2012; Houston et al., 2015]. Individuals can 

easily share their daily activities, news, opinions, ideas, etc., with their neighbors, families and 

friends, interest groups, and the public through social networks that transcend territorial 

boundaries, which makes communication between individuals faster and more efficient [Zhu, 

2017]. Due to the many advantages in information dissemination and social networking, social 

media have been used in a variety of domains. These include political activities (e.g., presidential 
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elections [Gil de Zúñiga et al., 2012], protests such as Arab Spring [Hussain and Howard, 2013]), 

economic behaviors such as business and marketing [Asur and Huberman, 2010; Marshall et al., 

2012], and coordination and management during natural disasters [Palen et al., 2010; Kongthon et 

al., 2012; Alexander, 2014; Houston et al., 2015; Smith et al., 2015]. This study focuses on the 

role of social media in evacuation processes during flood events.  

Floods are common natural disasters in the U.S. and many other countries and have caused 

significant economic damage and loss of life [Heaney et al., 2000; Smith and Matthews, 2015]. 

Flood warning systems have been recognized as efficient tools for flood damage mitigation and 

crisis management [Cloke and Pappenberger, 2009; Parker et al., 2009a; Pappenberger et al., 

2015; Parker, 2017]. However, studies have shown that the benefits of flood warnings can be 

significantly affected by (1) the delivery of flood warnings that determines if communities in flood 

zones can receive accurate and timely flood warnings, and (2) some socioeconomic factors (e.g., 

education and income of the members in household, economic value of the home) that could affect 

households’ responses and reactions to flood warnings [Parker and Handmer, 1998; 

Kongsomsaksakul et al., 2005; Parker et al., 2007b, 2009a]. Therefore, it is important to evaluate 

the benefits of flood warnings in the context of a coupled social, economic and hydrologic 

framework [Sivapalan et al., 2012; Di Baldassarre et al., 2013, 2014; Girons Lopez et al., 2017], 

with consideration of the heterogeneity in households’ responses to flood warnings.  

In recent years, social media have been used to spread warnings of natural disasters, 

including floods, to increase awareness of the danger and to provide efficient communications 

between affected individuals, emergency managers, and first responders [Palen et al., 2010; 

Kongthon et al., 2012; Alexander, 2014; Houston et al., 2015]. For example, during the 2009 Red 

River flood, over four million Tweets were posted that are related to sandbagging, evacuation, 
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damage reports, and other flood-related subjects [Palen et al., 2010; Vieweg et al., 2010]. 

Similarly, significant numbers of Twitter messages were generated and shared by citizens in flood 

zones during the 2011 Thai flood. These messages provided up-to-the-minute information about 

location-based flood conditions, available resources, and needed rescues. Emergency responders 

can use the information to create instant flood situation maps and to better coordinate available 

resources for rescues and evacuations [Russell, 2011; Kongthon et al., 2012].   

Despite these advantages, social media could also pose potential threats to crisis 

management when outdated, false, or misleading information is spread through social media 

[Acemoglu et al., 2010; Nguyen et al., 2012; Alexander, 2014]. This concern is partially the result 

of individuals having limited time to verify the accuracy of information on social media during 

emergencies. For example, during Japan’s Fukushima nuclear crisis in 2011, rumors claiming that 

iodized salt can prevent radiation-related illness and that all importing of sea salt would be exposed 

to nuclear pollution after the nuclear meltdown were rapidly and widely spread on China’s social 

media. Many people rushed into supermarkets and grocery stores to buy and hoard salt, which 

resulted in market swarms and unprecedented salt shortage in many regions of China [Brenhouse, 

2011]. In the case of Hurricane Sandy in 2012, altered images and false news were spread and 

shared by many social media users, and were even picked up by mainstream media in New York 

City until they were corrected by field checking [Alexander, 2014]. The impact of such 

misinformation from social media in natural disaster management requires timely attention.  

Motivated by this need, this study examines how social media affects individuals’ flood 

risk awareness and consequent evacuation processes. We consider a residential area with an 

impending flood event, where emergency managers obtain and broadcast flood warnings to the 

residents. The residents receive the flood warnings from emergency managers and communicate 
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with each other through social media (e.g., Twitter or Facebook) to share their opinions about their 

perceived flood risk. A resident will choose to evacuate to a safe area if he thinks that the flood is 

sufficiently likely to occur. 

 Some studies have modeled individuals’ evacuation behaviors as responses to flood 

warnings [Chen and Zhan, 2008; Zhang et al., 2009; Dawson et al., 2011; Du et al., 2016]. For 

example, Dawson et al. [2011] integrated a hydrodynamic model and a traffic model to estimate 

the number of people exposed to floods under varying storm surge conditions. Furthermore, Du et 

al. [2016] investigated how individuals’ evacuation behaviors are affected by their heterogeneous 

responses to flood warnings, as well as flood prediction accuracy and lead time. The results show 

that residents’ evacuation behaviors can be significantly affected by various individuals’ flood 

risk-tolerance thresholds.  

Studies have also modeled how individuals form their opinions through social interactions. 

Among them, Hegselmann and Krause [2002] proposed various models for simulating 

individuals’ opinion formation within interacting groups. Watts [2002] developed a binary-

decision model in which individuals’ decisions are explicitly dependent on the actions of their 

neighbors. The model was shown to be capable of capturing some important features of global 

cascades in social and economic systems.  Bassett et al. [2012] developed an opinion dynamics 

model to simulate individual’s opinion formation when exposed to multiple information sources 

(e.g., communication on social media and observations of the neighbors’ actions) in natural 

disasters. Similarly, McCullen et al. [2013] developed an innovation diffusion model in which 

households form opinions through pairwise social interactions and choose to adopt innovations 

when their motivations exceed a certain threshold. Moreover, Yildiz et al. [2011] investigated the 
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role of stubborn individuals, who can influence others but do not change their own opinions, in a 

group’s opinion dynamics.  

Although existing studies have shown how individuals’ opinions can be shaped by social 

networking, few studies have taken into account information from multiple sources in a consistent 

framework to analyze the impact of social media on opinion dynamics. Real-world information 

sources includue global broadcast, social media, and observations of other individuals’ actions 

[Acemoglu and Ozdaglar, 2011; Crokidakis and Anteneodo, 2012; Ghaderi and Srikant, 2013; Jia 

et al., 2015], as illustrated in Figure 3.1. Global broadcast is information that emergency managers 

spread to all of the agents in the system [Bassett et al., 2012]. Examples of global broadcast include 

radio and television emergency alerts, as well as some other public notices. Social media (e.g., 

Twitter and Facebook) allow for pairwise information transmission between the agents in a group. 

When two agents interact on social media, they will exchange each other’s opinion on flood risk 

[Acemoglu and Ozdaglar, 2011]. Neighbor observation takes account of how an agent’s opinion 

is affected by the actions of other agents in a group [Watts, 2002]. In this study, we integrate social 

media with global broadcast and neighbor observations into a general quantitative framework with 

consideration of individual heterogeneity in beliefs about different sources of information and 

learning attitudes (i.e., the extent to which individuals adopt new information).  
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Figure 3.1 Illustration of three types of information sources related to flood warning dissemination: 

(a) global broadcast that spreads flood warnings from the global source to all of the individuals, 

(b) social media that allow pairwise information exchange (illustrated by blue dashed lines), and 

(c) neighbor observations that consider the influence of each individual’s neighbors (illustrated by 

the red circles).  

Moreover, according to our knowledge, there is still a need to bridge the gap between 

opinion dynamics and evacuation processes that are influenced by individuals’ opinions on flood 

risk, evacuation decisions, and transportation networks. Thus, we propose a modeling tool to 

couple the simulation of opinion dynamics and the evacuation processes. An agent-based model 

(ABM) is developed to simulate opinion dynamics. A traffic model is used to simulate the 

evacuation process. The coupled ABM and traffic model simulates how individuals update their 

awareness of flood risk and how individuals’ opinion dynamics affect their evacuation processes 

in the transportation network. Using the modeling tool, we address the following research 

questions: (1) Will social media increase the level of people’s flood risk awareness in an impending 



 

 

45 

 

flood event? (2) Do social media help increase the evacuation rate of a community? (3) How do 

stubborn individuals (i.e., those who do not change their opinions on flood risk) affect the opinion 

dynamics and evacuation processes of the community?  

The remainder of this paper is structured as follows. Section 3.2 introduces the 

methodology, focusing on modeling individuals’ opinion dynamics when exposed to multiple 

information sources and their evacuation processes in a transportation network. Section 3.3 

presents an example of a hypothetical residential area, the modeling results, and discussions. 

Finally, conclusions are presented in section 3.4.  

3.2 Methodology  

We consider a residential area consisting of households and a transportation network. 

Following the approach of our prior work [Du et al., 2016] (Chapter II of this document), the 

transportation network in this paper is represented by a directed graph consisting of a number of 

links (i.e., roads) and nodes (i.e., road intersections). Each household is represented by an agent 

with a set of attributes and rules that describe the agent’s geographical location, risk-tolerance 

threshold for flooding, priorities to the various information sources, and learning attitudes, etc.  

3.2.1 Modeling Opinion Dynamics 

In this study, an agent’s opinion (denoted by a continuous variable ,  [0,  1]S S ), refers to 

his perception of how likely there will be a flood in the residential area [Lorenz, 2005]. Each agent 

has a flood risk-tolerance threshold (denoted by a continuous variable  , [0,  1]  ) [Schelling, 

1973; Watts, 2002]. At each time step, the agent will make a binary decision (denoted by a binary 

variable ,  {0,  1}X X  ) to evacuate ( 1X  ) or not ( 0X  ) in the face of the flood risk. In this study, 
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we use a simple decision rule to describe agents’ evacuation decisions: at any time step t, an agent 

j will choose to evacuate if his opinion of flood risk exceeds his risk-tolerance threshold:  
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Opinion dynamics refers to the process in which agents form and update their opinions 

over time. Given that agents might not always collect information to update their opinions at each 

time step, we simulate agents’ opinion dynamics as a stochastic process: At each time step, an 

agent will either choose to collect new information and update his opinion or not. Let a binary 

variable ,j t  ( , {0,  1}j t  ) denote whether agent j updates his opinion at time t. When choosing 

not to update his opinion ( , 0j t  ), the agent will keep his opinion of time step t-1 (i.e., , , 1j t j tS S 

). Otherwise, the agent will use new information on flood risk to update his opinion.  

 For agent j at time step t, we use , , ,,  ,  and  G S N

j t j t j tI I I  to denote the information about flood 

risk obtained from global forecast, social media, and neighbor observations, respectively. Each of 

these information sources is described in turn below.  

Let 
tG denote the value of flood risk broadcast from a global source at time t (i.e., 

[0,  1]tG  , a higher value of 
tG indicates a higher flood risk). Since global broadcast is a one-to-

many information broadcast process, all of the agents will obtain the same global information at 

each time step (i.e., ,

G

j t tI G ).  

Following previous studies, an agent’s information obtained from social networking is 

modeled as a linear combination of the opinions of all of the agents that are connected to the agent 

[DeGroot, 1974; Hegselmann and Krause, 2002; Ghaderi and Srikant, 2014]. Denoting ,ij t  as 

the weighting factor that measures how much agent j weights agent i’s opinion at time t, agent j’s 
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information obtained from social networking ( ,

S

j tI ) can be modeled as a weighted average of 

information from all agents with whom agent j communicates, as shown in equation (2):  

 , , , 1

1

n
S

j t ij t i t

i

I S 



  (2) 

We model agents’ social networking as a binary stochastic process: at each time step t, 

agent j either exchanges information with agent i (i.e., agent j reads agent i’s post on social media 

at time t, denoted by , 1ij ta  ) or not (i.e., , 0ij ta  ). Taking account of all of the n agents that could 

be socially connected with agent j, weighting factor ,ij t can be represented by equation (3).  
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 (3) 

In a social network with n agents, agents with stronger social connections have larger 

probabilities to read each other’s posts. In this study, we assume that agents who are physically 

closer to each other have stronger social connections and thus have larger probabilities to share 

their opinions [Bassett et al., 2012]. Denoting the distance between agents i and j as ijd  and the 

maximum distance between any of the two agents in the system as maxd , we use a simple model to 

represent the relationship between the probability that they exchange information at time t and 

their distance: 
, max( 1) 1 / ( 1)ij t ijp a d d    .  

The assumption of agents’ social interaction (i.e., the likelihood of social interaction 

decreases with proximity) employed in this study is based on intuitive reasoning that individuals 

living closer to each other will have more chance to meet each other to exchange information on 

social media. However, we admit that this assumption does not necessarily hold true in some real-

world case studies, but the validation of the assumption goes beyond the scope of this work. Future 
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work can validate or refine this assumption by mapping individuals’ social connections using data 

mining tools when detailed social communication data become available [Sobkowicz et al., 2012; 

Gil de Zúñiga and Diehl, 2017; Zhu, 2017].  

Combining equations (2) and (3), agent j’s information obtained from social media can be 

represented by equation (4): 
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 (4) 

In contrast to sharing opinions over social media, neighbor observations are observed 

actions. Many studies have shown that an agent’s opinion is often affected by the actions of other 

agents in the group, due to the fact that individuals might not have sufficient information to make 

decisions, or their ability to process information is limited during emergency situations [Schelling, 

1973; Watts, 2002; Kearns et al., 2009; Centola, 2010]. We use the weighted average of the actions 

of an agent’s neighbors to represent the information obtained from neighbor observations. Agent 

j’s neighbors can be defined by a group of agents that are close to j in their residential area. In this 

study, we define agent j’s neighbors as the set of agents that live on the same road as j (e.g., the 

red circles in Figure 3.1c) based on the assumption that agents who live on the same street can 

directly observe the actions of each other. Let ijb  denote if agents i and j are neighbors ( 1ijb  ) or 

not ( 0ijb  ), agent j’s information obtained from neighbor observations can be represented by 

equation (5):  

 

,

, , 1

1
,

1

n
ij tN

j t i tn
i

ij t

i

b
I X

b









 (5) 



 

 

49 

 

So far, we have modeled how agents obtain information from multiple separate sources. 

When all of these information sources are available, agents might have different degrees of trust 

in, and are influenced differently by, these information sources, depending on a variety of factors. 

For example, if global broadcast information has proven to be unreliable in the past, people might 

rely less on global broadcast. Similarly, rumors and misleading information on social media might 

reduce the influence of social media on agents’ opinion formation. McCullen et al. [2013] 

proposed using a set of weighting factors to formulate agents’ opinion dynamics driven by multiple 

information sources. In this study, we follow this approach and introduce three information 

influence parameters, ,  ,  and j j j    to represent the influence of global broadcast, social media, 

and neighbor observation on agent j’s opinion adoption, respectively, and 1j j j     . Thus, 

the information obtained from multiple sources can be represented by equation (6).  

 , , , ,

G S N

j t j j t j j t j j tI I I I      (6) 

When new information on flood risk is obtained, the agent j will update his opinion on 

flood risk. We adopt the Widrow-Hoff learning rule to simulate the agent’s opinion dynamics 

[Sutton, 1988; Widrow and Hoff, 1988; Widrow and Lehr, 1993], as shown in equation (7).  

 , , 1 ,j t j t j j tS S I    (7) 

where ,j tI  is the difference between the flood risk obtained from multiple sources at time t and 

the agent’s original opinion on flood risk at time t-1 ( , , , 1j t j t j tI I S    ). j  is the agent’s learning 

rate, which is a behavioral parameter measuring how much the agent adheres to his past opinion 

when new information is available. This parameter considers that an agent might not completely 

abandon his past opinion to accept new information ( 1j  ), nor completely disregard new 
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information to keep his past opinion ( 0j  ) [Friedkin and Johnsen, 1999]. The concept of opinion 

adherences is based on observations that individuals’ beliefs typically display some amount of 

inertia [Watts, 2002; Dash and Gladwin, 2007]. Combining equations (6) and (7), agent j’s opinion 

dynamics can be represented by equation (8).  

 , , 1 , , ,(1 ) ( )G S N

j t j j t j j j t j j t j j tS S I I I          (8) 

The opinion dynamics model (i.e., Equation (8)) presented in this study is a more  general 

form compared with those used in previous models [e.g., Bassett et al., 2012; McCullen et al., 

2013]. For example, by setting ( ,  ,  ,  ) (1,  0,  0,  0.5)j j j j      (i.e., the agent only uses global 

information and  treats prior opinion and new information equally), Equation (8) becomes 

equivalent to the opinion dynamics model driven by global information proposed by Bassett et al. 

[2012]. Similarly, the model is made equivalent to that given by McCullen et al. [2013] by setting 

1j   (i.e., the agent only uses new information to update his opinion).  

In addition, Equation (8) considers differences in people’s behaviors through the agents’ 

behavioral parameters ,  ,  ,  and j j j j    . This takes advantage of the strength of agent-based 

models in representing the heterogeneity in agents’ behaviors [Huang et al., 2013], and relaxes the 

assumption that all agents in a community behave in the same manner (e.g., as handled in the 

opinion dynamics model by Bassett et al. [2012]).  In this hypothetical study without behavioral 

data, we use a coefficient of variation ( vC ) for each of the behavioral parameters ( ,  ,  ,  and    

) to measure the level of agents’ behavioral heterogeneity. Following previous studies [Marino et 

al., 2008; Bertella et al., 2014], we use a normal distribution to sample the behavioral parameters 

for each agent.  
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In an impending flood event, the predicted flood probability will increase over time before 

the flood. Furthermore, forecasting with better prediction capability will give a higher flood 

probability and/or a longer lead time. Considering these two factors, we use a simple model, for 

illustrative purpose, to represent the predicted flood risk as a function of time t during the flood 

forecast horizon (FH) ( 1, 2, ..., t FH ), shown in Equation (9):  

 
1

( ) ;  ( ) [0,  1]G t t G t
FH

    (9) 

where [ 1,  1]    is a parameter that measures the quality of flood warnings. A larger   is 

associated with flood warnings that can predict higher flood risk in flood events.  Predicted flood 

risk G(t) is closer to 1 (actual flood risk) when   is larger.   

3.2.2 Modeling the Evacuation Process  

Agents that decide to evacuate will move from their current location to the evacuation 

destination in the transportation network. We assume all agents have good knowledge of the 

transportation network and will choose the shortest route to evacuate. We use a categorical 

parameter jK  to represent agent j’s evacuation status. 0jK   denotes that agent j decides not to 

evacuate; jK =1 when agent j decides to evacuate but does not arrive at the destination; jK =2 when 

the agent arrives at the destination, which represents a successful evacuation case.   

In this study, as in the previous chapter, we adopt the Nagel-Schreckenberg traffic model 

(N-S model) to simulate agents’ evacuation behaviors via a transportation network [Nagel and 

Schreckenberg, 1992]. For details of the N-S model, see Chapter 2 and the Appendix of this thesis.  

3.2.3 Model Outputs at the System Level  

We use multiple indicators to measure behaviors at the system level (i.e., a community), 

which result from the evacuation of individual agents, including: (1) agents’ opinion trajectory S  
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( 1 2[ ,  ,  ...,  ]t t t TS S S S   , where t kS   is the average opinion over all agents at time step k), (2) 

agents’ decision trajectory X  ( 1 2[ ,  ,  ...,  ]t t t TX X X X   , where t kX   is the average decision over 

all agents at time step k), and (3) agents’ evacuation rate   (i.e., 1 2[ ,  ,  ...,  ]t t t T       , where 

t k  is the percentage of agents that successfully evacuate to the destination at time step k). 

Given the fact that not everyone opens social media channels at all times for social 

interaction, information transmission and social communication are assumed to occur in a 

stochastic manner. The Monte Carlo method (i.e., execution of the model multiple times with 

model inputs that are randomly and repeatedly sampled from the sampling space)  is applied in 

this study to address the stochastic characteristics of the study problem [Decker, 1991]. We 

executed the model 1000 times (the number of simulations that ensures output stabilization for this 

study) to obtain the ensemble opinion trajectory S  , ensemble decision trajectory X  , and 

ensemble evacuation rate  .  

3.3 A Demonstration Example 

 

We apply the model described above in a synthetic residential area, which consists of a 

transportation network and a group of agents (Figure 3.2). Following previous studies, we use L 

and T to represent the units of length and time, respectively [Zhang et al., 2009; Du et al., 2016]. 

In this transportation network, all of the roads are assumed to have length of 100 L, indicating that 

each road can be divided into 100 cells. Among the 16 nodes in the transportation network, the 

one on the bottom right is set as the evacuation destination.  

Agents are uniformly distributed along the roads in the transportation network. Residential 

density (denoted by d ) is represented by the number of agents on a road in the transportation 
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network, and is set as 10 in this study (i.e., corresponding to 240 agents in the transportation 

network). The sensitivity of residential density is examined in section 3.3.5.  

 

Figure 3.2 Illustration of the synthetic case study area that consists of a transportation network and 

a number of agents. The transportation network is a regular lattice network with 24 roads and 16 

nodes (the node on the bottom right is set as the designated evacuation destination for all of the 

agents). The agents are uniformly distributed along the roads.  

The following sections present the modeling results. Sections 3.3.1 and 3.3.2 present 

scenario-based analysis and sensitivity analysis, respectively. Next, sections 3.3.3 and 3.3.4 

evaluate the impacts of social media and stubborn agents on evacuation processes, respectively. 
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Finally, section 3.3.5 shows how evacuation rates are jointly affected by sources of information, 

transportation capacity, and flood warnings with various forecast capabilities.  

3.3.1. Scenario-Based Analysis  

To assess the impact of model parameters on the results, a scenario-based analysis is 

conducted. We design three scenarios, each of which represents a special combination of 

information sources. The first scenario considers the case in which only global broadcast 

information is available. The second case considers the case with only global broadcast and social 

media, without neighbor observations. The third case considers the scenario with only global 

broadcast and neighbor observations, without social media. Table 3.1 lists the values of the key 

parameters in the model.  

Table 3.1. The Values of Model Parameters  

Scenario j  
j  j  j  ,j tp a j    

Case 1 1(0) b 0 0 

0.5(0.1) 0.1(0.1) U(0.1, 0.9)c 1 Case 2 0.5(0.1) 0.5(0.1) 0 

Case 3 0.5(0.1) 0 0.5(0.1) 

a
,j tp  is the probability that agent j receives information from multiple sources to update his 

opinion at time step t.  

b
1 2( )x x  indicates the mean value of the variable is 1x , and the coefficient of variation VC  of 

the variable is 2x .  

c
1 2( ,  )U x x means the value of the parameter is sampled from a uniform distribution in which 

the lower and upper bound of sample space is set as 1x and 2x , respectively. 

 

Figure 3.3 provides an overview of a randomly selected agent’s opinion trajectory S  

under the three model parameter cases, as well as overall statistics on all agents. By comparing 

Cases 1 and 2, it can be noticed that, with the presence of social media, agents’ opinions update in 

a smoother manner as a function of time (comparing Figure 3.3a and Figure 3.3d). There is also 

less variance among agents’ opinions in Case 2, which results in a cascade-like pattern for opinion 

update (Figure 3.3e). However, the speed of agents’ opinion update is slower in Case 2 compared 
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with Case 1, implying that social media could slow down the speed of agents’ opinion update. This 

result is consistent with the findings by Bassett et al. [2012].  

In Case 3, when agents’ opinion exchange only occurs through neighbor observation, the 

individual agent’s opinion trajectory is smoother than that in Case 1. This indicates that 

information exchange, either by social media or by neighbor observation, can make agents’ 

opinion trajectory smoother and reduce the variance in agents’ opinions (red lines in Figures 3.3f 

and 3.3i). However, agents do not reach opinion consensus in Case 3. A few agents’ opinions are 

less than 1 at the end of the simulation (e.g., agent 145 in Figure 3.3g). As illustrated by the blue 

line in Figure 3.3i, agents’ average opinion is less than, although very close to, 1 in the end.  

 

Figure 3.3 (a) The opinion trajectory for a randomly selected agent in Case 1. (b) The opinion 

trajectory for all of the agents in Case 1. (c) The mean (blue line) and standard deviation (red line) 



 

 

56 

 

Figure 3.3 (cont.) of all the agents’ opinions in Case 1. Figures 3.3d-3.3f and 3.3g-3.3i present the 

corresponding results for Cases 2 and 3, respectively.   

 We further investigate how the agents’ opinion dynamics affect their evacuation processes 

under these three cases (Figure 3.4). Notice that the agents in Case 1 start to take evacuation actions 

earlier than Cases 2 or 3 (the green lines in Figures 3.4c, 3.4f and 3.4i). This is consistent with the 

results presented in Figure 3.3, which shows that information exchange through either social media 

or neighbor observations will slow down the speed of agents’ opinion update. However, there is 

no noticeable difference in the percentage of agents at status 2 over time (i.e., agents that 

successfully evacuate to the destination, corresponding to the red lines in Figures 3.4c, 3.4f and 

3.4i). We also notice that all the agents in Cases 1 and 2 eventually choose to evacuate. In 

comparison, some agents in Case 3 do not evacuate (e.g., Figures 3.4g-3.4h). This suggests that 

the decision-making rule based on neighbors’ actions sometimes will keep some agents from 

updating their opinions, especially when no one takes initial evacuation actions.  
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Figure 3.4 (a) The evacuation status of a randomly selected agent in Case 1. (b) All agents’ 

evacuation status in Case 1. (c) The percentage of each type of agents as a function of time in Case 

1. Figures d-f and g-i present the corresponding results for Cases 2 and 3, respectively.  

3.3.2. Sensitivity Analysis 

Next, a sensitivity analysis is conducted to understand the influence of agents’ opinion 

adherence parameter (  ) and weighting parameters ( , ,   ) on agents’ ensemble opinion 

trajectory S  , decision trajectory X  , and evacuation rate  .  

Figures 3.5a-3.5c show the impacts of opinion adherence parameter   on the model results. 

The figures indicate that a smaller   (i.e., agents adhere more to their past opinions) will slow 

down the speed of the agents’ opinion update S  , evacuation actions X   and evacuation 
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rates  . However, the influence of   on agents’ evacuation rate    is not as significant 

compared with opinion update S   and evacuation actions X  . This is due to the constraint 

of traffic capacity as implied by Figure 3.4. We expect that   will have a stronger impact on     

with less traffic bottlenecking. 

Figures 3.5d-3.5i show the influences of ,   and   on the modeling results. It is 

observed that, in both Cases 2 and 3, a decrease in   (i.e., the global broadcast has less impact 

on agents’ opinion update) will slow down the speed of agents’ opinion update S  , evacuation 

actions X   and evacuation rates  . There are no opinion updates and evacuation actions 

when   is small enough (e.g., 0.1   in Figures 3.5g-3.5i) in Case 3. Under these conditions, 

agents’ opinions remain unchanged because their opinions are mainly affected by their neighbors’ 

actions. For each member in the group, an agent will not update his opinion if his neighbors do not 

take evacuation actions. This in turn results in no opinion updates and no agent will evacuate in 

the end.  
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Figure 3.5 The impact of the opinion adherence parameter   on (a) agents’ opinion trajectory S 

, (b) decision trajectory X  , and (c) evacuation rate    for Case 1. The impact of   on 

agents’ (d) opinion trajectory S  , (e) decision trajectory X  , and (f) evacuation rate    

for Case 2. The corresponding results for Case 3 are presented in Figures g-i. Note that 0.5   for 

the analysis in Cases 2 and 3.   
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3.3.3 Impacts of Social Media on Agents’ Evacuation Processes  

The sensitivity analysis of the previous section considers at most two information sources 

simultaneously. In this section, we consider all three information sources (i.e., global broadcast, 

social media, and neighbor observation as illustrated in Figure 3.6a) and evaluate how they jointly 

affect agents’ opinion dynamics and evacuation processes. In particular, we analyze the impacts 

of social media on the modeling results.  

Figure 3.6b shows the agents’ evacuation rates under different settings of influence 

parameters ,  ,  and    . The modeling results provide several implications. First, we observe that 

the system can achieve a high evacuation rate when global broadcast has a large influence on 

agents’ opinion dynamics (i.e.,   is large, corresponding to zone B in Figure 3.6b). In contrast, 

agents’ evacuation rate is low when neighbor observation has large influence (i.e.,   is large, 

corresponding to zone A in Figure 3.6b). 

Second, increasing influence of social media will make the system more sensitive to the 

influence of other information sources (i.e., from zone C to D and E in Figure 3.6b). For example, 

a small change in  or   leads to a significant change in agents’ evacuation rates in zone E. 

Social media result in lower evacuation rates when the influence of global information decreases 

(indicated by the solid arrow in Figure 3.6b). On the other hand, social media will increase 

evacuation rates when the influence of global broadcast increases (indicated by the dashed arrow 

in Figure 3.6b). 

The results suggest that the influence of the global forecast  is crucially important to 

agents’ evacuation behaviors. No agents will evacuate if the influence of global information is 

very weak. This is similar to a real world case of a 2016 flash flood in Xingtai, a city in China. 
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The local government’s flood warning was not on time, many local residents did not take 

evacuation actions, and more than 150 people lost their lives in the flood [Makinen, 2016].  

 

Figure 3.6 (a) Illustration of the scenarios that consider influences of the three information sources. 

(b) Ternary plot of agents’ evacuation rates (t 1000)    under different settings of influence 

parameters ,  ,  and    .  

The results here also show that communication through social media decreases the 

variation among individuals’ opinions and causes them to take actions at a similar pace. This is in 

line with empirical observations of herd-like behaviors during emergency situations, in which 

some people simply follow others’ actions [Schelling, 1973; Haque, 1995; Watts, 2002]. Social 

media ease sharing of individual opinions and enhance influence on others’ decision making, and 

thus could cause unexpected collective behaviors or even chaos (e.g., the “salt-rush” in China after 

the 2011 Japan nuclear crisis [Brenhouse, 2011]).  

3.3.4 Impacts of Stubborn Agents Escalated by Social Media  

Many previous studies have indicated that some agents insist on their own opinions and 

ignore any new information [Galam and Jacobs, 2007; Yildiz et al., 2013]. These agents are 
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typically referred to as stubborn agents in the study of opinion dynamics [Ghaderi and Srikant, 

2014]. For example, in the case of the 2007 Cyclone Sidr in Bangladesh, thousands of individuals 

remained in their homes despite receiving early warnings and evacuation orders from emergency 

managers [Paul and Dutt, 2010]. This section investigates how the behaviors of stubborn agents 

affect the opinion dynamics and evacuation processes of the entire community.  

In this study, stubborn agents’ opinions are set as 0 over the entire simulation time. Figure 

3.7 presents the entire population’s average opinions and evacuation rates corresponding with 

various percentages of stubborn agents in the group. The results show that stubborn agents can 

prevent the entire group from updating their opinions to high levels and therefore reduce agents’ 

evacuation rates, especially when there are many stubborn agents or social media weighting is 

higher (   is larger). For example, the agents’ evacuation rates decrease from 80% to 58% when 

the percentage of stubborn agents increases from 10% to 20% (the red line in Figure 3.7b). With a 

fixed 5% of stubborn agents in the group, the agents’ evacuation rates are reduced to 94%, 91%, 

and 73% when   is 0.3, 0.5 and 0.7, respectively (Figure 3.7b). In particular, as can be seen, 

evacuation rates respond to the percentage of stubborn agents in a non-linear manner when social 

media become more influential. When the percentage of stubborn agents exceeds a threshold (e.g., 

5% in Figure 3.7b for the red line), the impact of stubborn agents on evacuation rates will be 

intensified by sources of information. Stronger social media can significantly reduce evacuation 

rates (e.g., in the case of 10% stubborn agents, evacuation rates decrease from 90% to 80% when 

  increases from 0.5 to 0.7).  
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Figure 3.7 The impacts of stubborn agents on agents’ (a) average opinion (t 1000)S   and (b) 

evacuation rates (t 1000)   .  

 Figure 3.8 illustrates how the impacts of stubborn agents on the evacuation rate are affected 

by the weights of multiple information sources. Figure 3.8a displays agents’ evacuation rates with 

5% stubborn agents in the group. It is noticed that the patterns of the agents’ evacuation rates are 

consistent with those shown in Figure 3.6b (e.g., zone A has a low evacuation rate due to limited 

influence of global flood warnings). However, the evacuation rate in Figure 3.8a changes in a 

smoother manner. Figure 3.8b compares the differences between the cases with (Figure 3.8a, 5% 

stubborn agents) and without stubborn agents (Figure 3.6b). It is noticed that the impact of 

stubborn agents increases from regions C to D and E. This implies that social media, as they 

become more influential, make the evacuation process more vulnerable to stubborn agents. This is 

shown in some real world incidences of inaccurate and misleading information from social media, 

e.g., altered images and false news about the flood conditions during the days of Hurricane Sandy 

in 2012 [Alexander, 2014]. Thus, it is important for emergency managers to identify stubborn 
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agents in the community and correct the misinformation that they broadcast through social media 

in a timely manner during a crisis.     

 

Figure 3.8 (a) Ternary plot of agents’ evacuation rates (t 1000)    with 5% of stubborn agents 

in the group, and (b) the differences in (t 1000)    between the scenario with 5% of stubborn 

agents (Figure 3.8a) and the scenario without stubborn agents (Figure 3.6b).   

3.3.5 Impacts of Flood Forecast Quality and Transportation Capacity   

Lastly, we investigate the impacts of two other key factors on agents’ opinion dynamics 

and evacuation processes: flood forecast quality and transportation capacity.  

Figures 3.9a-3.9c show that the quality of the flood forecast can significantly affect agents’ 

opinions on flood risk and evacuation rates. Poor quality of flood warnings (i.e., with smaller  ) 

results in slower update of flood risk awareness (Figure 3.9b) and fewer agents choosing to 

evacuate (Figure 3.9c). This concurs with the need for improving the reliability of flood warnings 

for crisis management, as evidenced by the case of 2016 Xingtai flood in China [Makinen, 2016].    
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Figure 3.9 (a) A simple model of flood forecast quality with smaller   for poorer forecast. (b) 

Agents’ opinion trajectories under scenarios of different flood risk forecast qualities when

( , , ) (0.3,0.4,0.3).     (c) The joint impacts of weighting parameters for information sources (

,  ,  and    ) and forecast quality ( ) on agents’ evacuation rate (when the residential density 

is set as 20d  ). (d) The joint impacts of weighting parameters and residential density on agents’ 

evacuation rate (when 0  ). 

 Furthermore, we assess the joint impacts of multiple modeling parameters, i.e., flood 

forecast uncertainty, residential density (a substitute for network capacity), and weights of 

information sources, on agents’ evacuation rates (Figures 3.9c-3.9d). In general, the figures show 

that evacuation rates are higher when global flood warnings are more influential (  is larger), 

flood forecast quality is higher (  is larger), and residential density is lower ( d  is smaller). 



 

 

66 

 

However, the impacts of each individual parameter on the modeling results also depend on other 

parameters. The complex interplay of these parameters is summarized as follows.  

First, under a poor flood forecast scenario (e.g., 0  ) , the quality of flood warnings 

becomes a dominant factor that affects the modeling results. When flood forecast improves (  

becomes larger), the weighting parameters for information sources ( ,  ,  and    ) become more 

important factors. It is also noticed that more influential social media can slow down the increase 

of agents’ evacuation rates with improved flood forecast (Figure 3.9c). Second, when the 

residential density is low (e.g., 10d  ), the weighting parameters for information sources are the 

dominant factors on agents’ evacuation rates. In contrast, when residential density is high (e.g., 

90d  ), the weighting parameters have little impact on the modeling results (Figure 3.9d). These 

findings suggest that the quality of flood warnings and residential density determine the range of 

agents’ evacuation rates. In comparison, the weighting parameters of the information sources 

determine the actual evacuation rates based on the influence of the various information sources. 

When flood warning and residential density are not hard constraints (e.g., 0; 30d    in Figures 

3.9c-3.9d), the weighting parameters of the information sources become the dominant factors that 

affect agents’ evacuation processes. This highlights that crisis management in flood events requires 

(1) satisfactory flood forecasts, (2) efficient flood warning dissemination systems, and (3) well-

planned evacuation procedures in a community with low residential density and high 

transportation capacity [Litman, 2006; Murray-Tuite and Wolshon, 2013].  

3.4 Conclusions  

In this study, we develop an agent-based modeling framework that couples a general 

opinion dynamics model and a traffic model to investigate the influence of opinion dynamics on 
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flood evacuation processes. The coupled model simulates agents’ opinion dynamics and 

evacuation processes under the influence of multiple information sources, flood forecast quality, 

and transportation systems. The results show that stronger social media can make evacuation 

processes more sensitive to the change of global flood warnings and/or neighbor observations, and 

thus, impose larger uncertainty on evacuation processes (i.e., a large range of evacuation rates 

corresponding to the change of global information and/or neighbor observation). We also find that 

evacuation rates respond to the percentage of stubborn agents in a non-linear manner. After the 

percentage of stubborn agents exceeds a threshold, the impact of stubborn agents on evacuation 

rates will be intensified by sources of information, and stronger social media can significantly 

reduce evacuation rates under this condition. Therefore, social media impose uncertainties to the 

flood evacuation processes and complicate evacuation planning and coordination during flood 

events.  

Our results highlight the importance of mapping inaccurate or misleading information in 

social media and identifying stubborn individuals to allow first responders and emergency 

managers to mitigate any undesirable influences. In addition, flood warnings with low quality and 

high residential density can result in low evacuation rates, which highlights the need for improving 

the quality flood warnings and transportation infrastructure during flooding events.   

Opinion formation, flood risk perception, and evacuation decision are complex processes 

that need both empirical and theoretical investigation from interdisciplinary fields [Haque, 1995; 

Parker et al., 2007b; Gladwin et al., 2009]. Social media not only provide efficient communication 

platforms for individuals to exchange information, but also create large amounts of data that 

describe people’s behaviors. These data can be collected and analyzed by advanced data query and 

machine learning technologies [Bellomo et al., 2016; Granell et al., 2016; Gil de Zúñiga and Diehl, 
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2017]. Synthetic models, such as the one presented in this study, can benefit from these data and 

technologies for model verification and calibration. Recommended future studies include the use 

of empirical data to measure the various behavioral parameters, validating or modifying 

assumptions in the opinion dynamics simulation, extending the model to more realistic and 

complex transportation networks, and incorporating uncertainties in spatial and temporal 

variability in flood warnings.   
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Chapter IV. Impacts of the Interplay of Farmers’ Behaviors on an Agricultural Water 

Market 

This chapter addresses the issue of simulating multiple behaviors, using drought as a case 

study. Farmers’ multiple behaviors, namely irrigation behavior and bidding behavior, are 

incorporated in a hypothetical water market based on a double auction. The joint impacts of the 

behavioral parameters on the water market are evaluated under different hydrological conditions.  

4.1 Introduction 

 Irrigation is the primary water consumer in many regions around the world [Donohew, 

2009; Wang, 2012]. Satisfying agricultural water demand has become more challenging due to 

population growth and competing water demands from municipal and industrial sectors, especially 

during drought events. Under conditions of water scarcity, water markets are considered efficient 

instruments to reallocate water and increase crop production because they can enable water to be 

transferred from  low-value uses to high-value uses [Hearne and Easter, 1997; Easter et al., 1999; 

Yoskowitz, 1999; Adler, 2009; Palazzo and Brozović, 2014].  

In the past decades, many regions have proposed and/or implemented a variety of water-

trading programs for both surface water and groundwater resources management [Saliba, 1987; 

Dragun and Gleeson, 1989; Hamilton et al., 1989; Chang and Griffin, 1992; Griffin and Boadu, 

1992; Murphy et al., 2000; Raffensperger and Milke, 2005; Brennan, 2006; Raffensperger et al., 

2009; Bauer, 2010; Grafton and Horne, 2014]. Some studies also propose to address 

environmental issues in the context of water markets [Iftekhar et al., 2013; Kuwayama and 

Brozović, 2013]. However, it is widely recognized that water markets do not function as well as 

expected in the real world [Easter et al., 1998; Hadjigeorgalis, 2008; Kaufman, 2012]. The 
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potential benefits of water markets are influenced by a variety of institutional, environmental and 

economic factors, including but not limited to (1) water rights legislation and institutional 

developments that clearly define water rights and facilitate water trading among water right holders 

[Griffin, 1998; Bjornlund, 2003; Howe and Goemans, 2003; Turral et al., 2005; Brozović and 

Young, 2014], (2) transaction costs (e.g., the cost of finding trading partners and trading water) and 

third-party effects (e.g., downstream stakeholders might be affected by water trading in upstream) 

[Colby, 1990; Pujol et al., 2006; Luo et al., 2007; Donohew, 2009; Wang, 2012; Erfani et al., 2014], 

(3) hydrological conditions [Pujol et al., 2006; Luo et al., 2007; Kuwayama and Brozović, 2013; 

Palazzo and Brozović, 2014], and (4) the behaviors of water users (i.e., water sellers and buyers in 

a water market) [Easter et al., 1998; Bjornlund, 2003; Nguyen et al., 2013]. In this paper, we will 

analyze the impacts of water users’ behaviors on the performance of agricultural water markets.   

In agricultural systems and water markets, farmers’ decision making for irrigation and 

water trading are complex and may vary from farmer to farmer, from region to region, and from 

year to year. Many studies simulate farmers’ water use behaviors and/or evaluating the potential 

benefits of water markets under a variety of hydrological and institutional conditions [Garrido, 

2000; Tisdell, 2001; Iftekhar et al., 2013; Foster et al., 2014; Zeng et al., 2015]. However, these 

studies in general have two limitations. First, farmers are typically simulated as homogeneous 

decision makers [Tisdell, 2001; van Heerden et al., 2008], but the heterogeneity in farmers’ 

individual irrigation decision-making (e.g., risk aversion to crop water deficit) is not explicitly 

captured in these models. However, studies have shown that farmers’ decision-making can be 

affected by their own perceptions, experiences and social networks [Mertz et al., 2009; Deressa et 

al., 2011; van Duinen et al., 2015].  
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Second, to simulate farmers’ trading decisions, previous studies typically use optimization 

methods to represent farmers’ water-trading behaviors in order to evaluate the performance of 

water markets [Characklis et al., 1999; Garrido, 2000; Pujol et al., 2006; Luo et al., 2007; Erfani 

et al., 2014; Zeng et al., 2015]. However, the assumptions behind the optimization methods (e.g., 

symmetric and sufficient information available for all farmers to find trading partners, efficient 

bargaining process for farmers to determine water price, etc.) can rarely be satisfied in the real 

world [Nguyen et al., 2013]. Studies have shown that the performance of markets can be greatly 

affected by market participants’ individual trading strategies, which are not necessarily fully 

rational and can prevent water markets from being perfectly competitive [David and Wen, 2000; 

Hao, 2000; Rodriguez and Anders, 2004; Vytelingum et al., 2008; Wang et al., 2011; Nguyen et al 

2013]. Thus, following the argument of Nguyen et al. [2013], it can be more practical to simulate 

water markets based on a set of trading rules and market structures.  

To represent and simulate individuals’ heterogeneous behaviors, agent-based modeling 

(ABM) has been used in many studies in a variety of domains, including decision making in social 

and economic sciences [Bonabeau, 2002; Farmer and Foley, 2009; Berglund, 2015; van Duinen 

et al., 2016]. Unlike the centralized top-down approach, ABM follows a bottom-up approach to 

simulate systems with a group of autonomous, interdependent, and adaptive decision makers 

(defined as agents) [Macy and Willer, 2002; Kirman and Tuinstra, 2005; An, 2012]. ABM can 

explicitly represent the heterogeneous attributes and behaviors of each agent at the bottom level, 

and then aggregates the behaviors of all individual agents to explore the complex emergent 

phenomena at the system level [Rand and Rust, 2011].  

In recent years, there have been several studies applying ABM to simulate farmers’ 

irrigation behaviors in agricultural systems [Ng et al., 2011; Miro, 2012; Noël and Cai, 2017]. 
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Miro [2012] incorporates a behavioral parameter in an ABM to represent farmers’ sensitivity to 

soil water deficit. Ng et al. [2011] develop an ABM to simulate farmers’ land use decisions in the 

context of biofuels development. They explicitly incorporate multiple behavioral parameters in the 

model to simulate farmers’ responses to the variability of weather and crop prices. Noël and Cai 

[2017] demonstrate that model outputs can be influenced by including individual heterogeneities. 

Other studies have focused on applying ABM to simulating markets for water resources and 

emission credits [Zhang et al., 2010; Yang et al., 2012; Iftekhar et al., 2013; Nguyen et al., 2013]. 

In particular, Zhang et al. [2010] and Nguyen et al. [2013] simulate auction markets for sulfur 

dioxide and wastewater pollution credits, respectively, in which agents’ trading behaviors are 

represented by a set of behavioral parameters that describe agents’ degree of rent seeking when 

making bids and learning rate for updating bidding strategies.  

According to our knowledge, this study is the first to combine farmers’ irrigation behaviors 

[Miro, 2012; Noël and Cai, 2017] and bidding behaviors [Zhang et al., 2010; Nguyen et al., 2013] 

in an ABM to simulate their joint impacts on an agricultural water market. The model allows us to 

explore the interplay of these factors and their joint impacts on water market performance under 

different hydrological conditions. This extends the models developed by Miro [2012], Zhang et al. 

[2010] or Nguyen et al. [2013] by evaluating how multiple behavioral parameters jointly affect the 

model outputs and how the impacts and interplay of the parameters vary under different 

hydrological conditions. In addition, unlike previous water market simulations that operate at 

annual or seasonal time scale [Yang et al., 2012; Iftekhar et al., 2013], we simulate a daily water 

market that allows exploration of the impacts of agents’ behavioral parameters on daily price 

dynamics [Bjornlund, 2003; National Water Commission, 2009; Broadbent et al., 2010].  
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The rest of this chapter is structured as follows. Section 4.2 and 4.3 introduce the 

methodology and case study, respectively. The modeling results are presented in Section 4.4, 

followed by discussions in Section 4.5 and conclusions in Section 4.6. 

4.2 Methodology 

This section introduces the mechanisms of the agricultural water market, the agent-based 

model used to simulate farmers’ behaviors, and model construction and execution process.  

4.2.1 Mechanisms of the Water Market 

Empirically, water rights are typically traded in two ways in water markets: permanent sale 

and short-term lease [Brennan, 2006; Hansen et al., 2015]. The former refers to trade of water 

entitlement while the latter refers to lease of water use rights without transfers of water right 

entitlement [Easter et al., 1999]. Short-term lease does not change water entitlements and provides 

flexibilities for water right holders to make decisions in the face of uncertainties about future water 

availability. Studies have shown that water right holders traded much more water through short-

term leasing than permanent sale [Turral et al., 2005; Donohew, 2009]. In this study, we simulate 

short-term leasing water markets. Farmers can buy water permits from, or sell them to, other 

farmers without changing the ownership of their water right entitlements. Furthermore, following 

Broadbent et al. [2010], which describes the institutional framework for the operation of real-time 

water markets, this study simulates a water market that operates at a daily time scale.  

This study adopts auction as a trading mechanism that has been promoted by experimental 

economists and applied to numerous market studies [Nicolaisen et al., 2001; Posada and Lóoez-

Paredes, 2008; Zhang et al., 2010; Bai, 2013; Nguyen et al., 2013]. An auction is a typical trading 

mechanism for people to trade goods. Among various types of auction mechanisms, the double 

auction is considered to have great potential to increase the efficiency of water markets and has 
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been implemented in the real world (e.g., Australia, U.S.) [Howe, 1997; Bjornlund, 2003; Brozović 

and Young, 2014] and many other studies [Nicolaisen et al., 2001; Posada and Lóoez-Paredes, 

2008; Bai, 2013; Nguyen et al., 2013]. The double auction can function as either uniform-price 

auction (i.e., all units in the market are traded at the same price) or discriminatory-price auction 

(i.e., units are traded at different prices) [Nicolaisen et al., 2001; Jackson and Kremer, 2006]. As 

shown by Jackson and Kremer [2006], if the supply is fixed, then either a uniform price auction 

or discriminatory price auction leads to efficient allocations. For the market designed for this study, 

the total amount of water permits to trade is fixed. Thus, either of two market mechanisms satisfies 

the efficient condition. We simulate the discriminatory-price double auction, in which each agent’s 

transaction price depends on his own bid price. This takes the advantage of an ABM that simulates 

the heterogeneous behaviors of bidding decisions.  

The procedures of the market operations are described as follows. At the beginning of each 

day, the water market opens to receive farmers’ bids. Each bid will specify the name of the bidder, 

the bid price, and the amount of permitted water allocations to trade (Note that the term “amount 

of permitted water allocations” is abbreviated to “water permits” in the following sections). Then 

the market will collect all of the bids and match them to result in transactions in the following way. 

Sellers’ (buyers’) bids are sorted in ascending (descending) order according to their bid prices. The 

buyer with the highest bid price will be matched with the seller with the lowest bid price. A 

transaction will occur if the bid price of the buyer is higher than the bid price of the seller. The 

transaction price is set as the average of the two bid prices and the transaction amount is set as the 

smaller of the two bid amounts. If the buyer’s and seller’s bid amounts are not equal, the bid with 

a remaining trade amount will be matched with the second best bid in the market. This process 
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continues until the highest bid price of buyers is lower than the lowest bid price of sellers. For 

detailed descriptions of the matching process, see Nguyen et al. [2013].  

After the matching process, the water market informs each market participant of the 

transaction results. The transaction results include the following information: (1) whether the 

previous bid has resulted in transactions, (2) the trade price, and (3) the trade amount. In the 

proposed sealed-bid auction market, agents present their own individual bids, but they do not 

necessarily share their bids to and/or deduce the bids of their transaction partners. Such complex 

processes are not simulated in our model. Instead, we assume that the market authority will release 

the average trade price of implemented transactions to the public [Bjornlund, 2003]. In this way, 

agents, including those who do not participate in the market and/or whose bids do not result in 

transactions, are able to obtain some information about the market prices, which supports the 

learning processes (as illustrated in Figure 4.1).  

 

Figure 4.1 Information flow in the agricultural water market based on double auction  
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4.2.2 Agents and Behaviors 

In this study, each farmer is simulated as a computer agent, which is described by a set of 

parameters representing the agent’s attributes and behavioral rules. We primarily focus on two 

types of behaviors in this work, namely irrigation behavior and bidding behavior.  

(1) Irrigation Behavior 

Farmers’ irrigation decisions (e.g., when and with how much water to irrigate crops) can 

depend on many factors, including their observations of soil dryness, plants’ response to water 

deficit, water availability, observation of other farmers’ actions especially those nearby, and 

suggestions from technicians such as crop advisors [Jones, 2004; USDA, 2008; Andales et al., 

2011; van Duinen et al., 2016]. In this study, we follow previous studies and assume that farmers’ 

irrigation decisions are driven by maintaining a certain level of soil moisture to reduce crop yield 

losses or increase profits [Jones, 2004; Foster et al., 2014]. Following this concept that has been 

adopted in previous studies on farmers’ decision making [Steduto et al., 2009; Andales et al., 

2011], we use the water balance approach to simulate farmers’ irrigation decisions. In this 

approach, farmers compare water deficit in soil ( cD ) and  management allowed water deficit (

MADd ) for the crop and apply irrigation practices when cD exceeds MADd  [Allen et al., 1998]. It is 

assumed that information about soil moisture, crop growth, and climate are available to all of the 

farmers through an information provider (Figure 4.1), thus farmers can follow this standard rule 

to guide their irrigation practices.  

As mentioned above, farmers’ irrigation decisions can be affected by many factors and 

their irrigation decisions may vary, leading to behavioral heterogeneity [Andriyas and McKee, 

2014; van Duinen et al., 2015]. To represent this heterogeneity, we include a behavioral parameter


 
in farmers’ irrigation decisions, following the approach of Miro [2012] and Noël and Cai, 
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[2017].   is a non-negative, dimensionless parameter that measures the degree of a farmer’s 

sensitivity to soil water deficit (i.e., a larger   represents a farmer that is less sensitive to water 

deficit). The irrigation decision of a farmer is represented by equation (1).  

 
,   if  

Irrigation
,   if  

MAD

MAD

No Dc d

Yes Dc d





 
 

 
 (1) 

(2) Bidding Behavior and Learning 

Bidding behavior describes how an agent makes strategic bidding decisions to trade water 

permits in the market and how the agent updates its bidding strategy by learning from its trade 

experiences. In this study, each agent has a water permit, which constrains the maximum amount 

of water the agent can withdraw from river. Agents can enter the market to make a bid to buy or 

sell their water permits. The bid consists of three variables: (1) the agent’s role in the market, 

denoted by a categorical variable r (-1 for selling a water permit, 1 for buying water permits, and 

0 for not participating in the market); (2) bid price ( p , $/acre-feet); and (3) bid amount ( q , acre-

feet). Agents who have used their entire water permits have to buy permits from other agents to 

satisfy their irrigation demands (r = 1). Agents who have leftover water permits can sell part of 

their permits to the agents who need them (r = -1). Agents that do not have leftover water permits 

will not participate in the water market (r = 0) if they do not need to irrigate crops.  

It is assumed that agents’ decision-making on bid price is affected by two factors: (1) 

reservation price ( ) that presents an upper bound (for water buyers) or lower bound (for water 

sellers) of the bid price, and (2) rent seeking (  ) that measures the degree of the agent’s 

greediness to pursue profit from trade [Cliff and Bruten, 1997]. By denoting agent i’s reservation 

price and rent seeking at time t as ,i t  and ,i t , respectively, the agent’s bid price ,i tp  can be 

represented by equation (2). 
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 (2) 

In this study, agents’ reservation prices depend on the marginal benefit of irrigation water 

use and transaction cost for water trade. The marginal benefit of irrigation depends on crop price, 

crop-growing stage, soil properties, irrigation cost, and other agronomic parameters; therefore, 

agents’ reservation prices will vary over time for an individual farmer and vary across farmers. 

We assume there is a transaction cost for each unit of traded water permit. Transaction cost can be 

set as a constant cost (e.g., registration cost for participating in the market) plus a trading cost for 

each transaction (e.g., tax for trading) [Luo et al., 2007; Zhang et al., 2010]. In this study, we 

assume there is no registration cost for market participation, and the transaction cost is dependent 

on the amount of transacted water use permits and trading price. Coefficient of transaction cost (

 ) is used to measure the ratio of trading cost relative to the trading price for water permit (e.g., 

for a transaction with trading price p and trade amount Q, transaction cost can be represented by 

pQ ). A larger   is associated with a higher transaction cost.   

As mentioned above, when making a bid in the market, a buyer (seller) will always bid a 

price lower (higher) than his reservation price in order to gain profit. The larger the value of rent 

seeking (  ) is, the more profit the agent aims to gain from trade ( [0,  1]  for buyers, and 1   

for sellers). In this context, whether the two bids from a buyer and a seller can result in a transaction 

depends on: (1) if the buyer’s reservation price is higher than the seller’s (i.e., a transaction can 

happen only when the buyer’s reservation price is higher than the seller’s), (2) agents’ degree of 

rent seeking, and (3) transaction cost for water trade. If buyers and sellers both have a high degree 

of rent seeking, or transaction cost for water trade is high, their bid prices will diverge more from 

their reservation prices and trade will be less likely to occur in the market.  
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After receiving the transaction results from the auction center, an agent will learn from the 

results and adapt its bid strategies for the next round. The adaptation process requires agents to 

have some level of intelligence. Some studies have explored the level of intelligence that could 

make agents achieve human-level performance in markets. Gode and Sunder [1993] proposed 

Zero-Intelligence (ZI) agents and found that the ZI agents could achieve market equilibrium as 

long as the bids do not result in loss-making transactions. Based upon this work, Cliff and Bruten 

[1997] proposed Zero-Intelligence-Plus (ZIP) agents that incorporate a machine-learning 

algorithm to update agents’ degree of rent seeking based on previous transaction results. They 

showed that the performance of ZIP agents is more robust than that of ZI agents. A series of 

laboratory experiments conducted by Das et al., [2001] further demonstrated that ZIP agents could 

obtain larger gains from trade than ZI agents in the auction experiments because of behavioral 

improvements via machine learning. A number of studies have adopted ZIP agents’ learning 

strategies in simulating different types of markets such as emission allowance markets [Zhang et 

al., 2010; Liu et al., 2012; Zhou et al., 2013], energy markets [Nicolaisen et al., 2001; 

Pourebrahimi et al., 2008; Fagiani and Hakvoort, 2014] and financial markets [Vytelingum et al., 

2008].  

In this study, we apply the learning strategies of the ZIP agent to simulate farmers’ learning 

process. ZIP agents’ learning process is represented by a behavioral parameter, learning rate ( 

), as shown in equation (3).  

 , 1 , , ,( ) /i t i t i t i t i tp         (3) 

where t  is the target price at t, which is set as the transaction price if agent i’s bid at time t results 

in transactions, or the average market price for water released by the market if the agent’s bid does 

not result in a transaction or if the agent does not participate in the market at time t.  i  is the 
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agent i ’s learning rate, which is a dimensionless number ( [0,  1]  ). An agent with a larger   

changes its degree of rent seeking by a greater value than those with a smaller   (the agent will 

not change its degree of rent seeking when 0  ). A momentum coefficient is typically introduced 

in ZIP bidding strategies to consider the randomness in agents’ degree of rent seeking. For a more 

detailed description of the ZIP agent, see Cliff and Bruten [1997].  

Quantification of agents’ behavioral parameters is challenging if empirical knowledge of 

the distribution of agents’ behaviors is lacking. Previous studies often address this challenge by 

assuming agents’ behavioral parameters follow certain distributions (e.g., uniform or normal 

distributions) [An, 2012; Bruch and Atwell, 2015]. The normal distribution has been widely used 

in previous studies to introduce heterogeneity in agents’ behaviors for sensitivity analysis [Marino 

et al., 2008; Huang et al., 2013; Bertella et al., 2014]. In this study, due to the lack of available 

data, we use normal distributions to sample the behavioral parameters (i.e., ,  ,  and    ) for 

sensitivity analysis for each scenario. Note that it is also feasible to use other distributions (e.g., 

uniform distribution). The next section provides details on how these behavioral parameters are 

assigned in each scenario.  

ABMs typically face difficulty in model validation when empirical data are not sufficient 

[Manson, 2003; Ngo and See, 2011; Huang et al., 2013]. To address this issue, Manson [2013] 

proposes two model validation methods for ABMs: (1) structure validation that measures how well 

the model represents theoretical mechanisms and expert opinions, and (2) outcome validation that 

measures how well the model outputs fit empirical data. This study mainly focuses on understand 

some theoretical questions regarding human behaviors in a hypothetical water market, rather than 

on comparing our model results with observed trading data. Therefore, in the current study we 

focus on “structural validation” – ensuring that the model follows some validated theories of 
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farmers’ irrigation decisions (e.g., [Steduto et al., 2009; Noël and Cai, 2017]) and agents’ 

behaviors in markets (e.g., [Smith, 1982; Cliff and Bruten, 1997; Nguyen et al., 2013]). In future 

if the water market is implemented in the real world, we can perform “outcome validation” when 

observed water trading data become available.  

4.2.3 Model Implementation  

We construct the agent-based model in the object-oriented programming language Java. 

Table  lists the key environmental, economic, institutional, and behavioral parameters for model 

input. Figure 4.2 depicts the flowchart of the model execution process. The model starts with the 

selection of a simulation year and agents’ behavioral parameters for model construction. Then the 

model will simulate each agent’s irrigation and bidding behaviors during the crop-growing season. 

At the end of each simulation year, the model will calculate crop production and evaluate the 

performance of the agricultural water market.  

Table 4.1 List of variables associated with agricultural system and agent’s behaviors 

Factors Variable Meaning[unit] 

Environmental and agronomic Loc Geographical location (i.e., latitude and longitude) [-] 

ET Crop evapotranspiration [inch/day] 

P Precipitation [inch/day] 

ST Soil type (e.g., clay, sand, loam) [-] 

CA Crop area [acre] 

CY Crop yield [bushel/acre] 

IC Irrigation cost [$/acre-feet] 

IE Irrigation efficiency [-] 

LF Leaching fraction for salinity control [-] 

Institutional WP Water permit [acre-feet] 

  Coefficient of transaction cost for water trading [-] 

Economic PC Price of crop [$/bushel] 

PW Price of water permit [$/acre-feet] 
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Table 4.1 (cont.) 
  

Behavioral 

 

  

 

Sensitivity to soil water deficit [-] 

  Rent seeking [-]  

  Learning rate [-]  

Note: [-] denotes dimensionless variable.  

 

In this study, the performance of the water market is mainly measured by a matrix with two 

indicators at the system (watershed) level: (1) increased crop production (ICP, bushel), which is 

the difference of the total crop production (TCP) between the scenario with and without the water 

market, and (2) total traded water permit (TTW, acre-feet) in the water market. We also evaluate 

the relative water market performance (RMP) that compares the ICP of the agent-based water 

market and the optimization-based water market (i.e., model B2 in Table 4.2). Note that there are 

other indicators to measure the performance of water markets (e.g., equity of water permit 

distribution through markets), which are beyond the scope of this study.  
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Figure 4.2 Flowchart of the agent-based model for agricultural water markets   
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4.3 Case Study and Experimental Design  

 To assess the effects of farmers’ behaviors using the model developed in section 4.2, we 

develop a hypothetical water market as a case study, based on a range of precipitation experienced 

recently in a Texas watershed, including the severe drought of 2011, the normal year of 2010, and 

wet year of 2007. Using this case study, experiments are designed to evaluate impacts of the 

behavioral parameters and hydrologic conditions on market performance. 

4.3.1 Overview of the Case Study Area 

We apply the water market model to the Guadalupe River Basin (GRB) in south Texas, a 

southwestern state within the United States. The GRB encompasses an area of 3,256 2km  

(~800,000 acres) (Figure 4.3a), with irrigation as one of the largest water consumers. The Texas 

Commission on Environmental Quality (TCEQ) regulates surface water resources.  The water right 

holders’ water permits, which we obtained from a TCEQ database, have been defined by the water 

law and their water uses are monitored by water masters employed by TCEQ [Garcia et al., 2009]. 

There are in total 334 irrigation water right holders (corresponding to 334 agents in the model) 

distributed in 11 counties in the GRB. Water permits are not equally allocated among farmers. 

Some farmers’ water permits allow much less water withdrawals than other farmers’ (Figure 4.3b), 

which provides potential for water permits to be traded during drought events.  

At the daily time scale, for rivers with a certain length (such as the study site, ~300 km), it 

is reasonable to assume that all farmers, upstream or downstream, can withdrawal some amount 

of water that satisfies their normal daily water demand. We assume the river is a common “lake” 

and upstream-downstream issues and streamflow hydrology do not affect the trade transaction. 

Since total water sought is equal to total water bought under the double auction, the daily 

streamflow at the outlet of the basin may remain the same as that without any trade. Streamflow 
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at different segments of the river may be more or less affected depending on the locations of water 

sellers and buyers.  

In order to simplify the agricultural system without addressing the complex decisions on 

crop choice, we assume the agents plant corn (i.e., the major crop planted in this area) on their 

croplands following the same crop planting and harvesting schedule. In this study, the agents are 

assumed to plant corn on March 16th and harvest on August 2nd (140 days in total), following the 

recommended date for corn’s growing season in central Texas (http://www.texascorn.org). In 

irrigation practices, irrigation efficiency, leaching fraction for soil salinity control, and irrigation 

cost in the study area are set as 90%, 0.15, and 2.47$/acre-inch, respectively [Letey et al., 2011; 

Wagner, 2012; Foster et al., 2014]. Coefficient of transaction cost for water trade is set as 10%. 

Other data used in the model include soil properties (obtained from USDA soil survey, 

http://websoilsurvey.sc.egov.usda.gov), meteorology data (obtained from Weather Underground, 

http://www.wunderground.com), crop yield and crop price (obtained from USDA statistics 

services, http://quickstats.nass.usda.gov), and water permits and land area for each water user 

(obtained from TCEQ database, http://www.tceq.texas.gov/agency/data).  

 

Figure 4.3 (a) The geographical location of the Guadalupe River Basin; (b) Water permits versus 

crop area for irrigation water right holders in the watershed  

http://www.tceq.texas.gov/agency/data
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In this study, we simulate a hypothetical water market that operates at the daily time scale, 

assuming that the infrastructure and institutional developments needed for the daily market is in 

place [National Water Commission, 2009; Broadbent et al., 2010, 2011]. As mentioned in the 

previous section, an agent’s water permit reflects the average weather condition and does not 

change with weather. Agents with limited water permits will face water shortages in dry years. We 

assume that agents will buy water permits only when the water remaining in their permits (i.e., 

total water permits minus total water withdrawals) cannot satisfy irrigation demand. This 

assumption is reasonable because speculative investments in water permits by those who are not 

in need of water to meet valid uses might impose threat to society [Kaufman, 2012]. Furthermore, 

we assume that agents do not have accurate weather forecast capabilities, and their irrigation 

decisions are only based on current irrigation demand. Previous work show that weather forecast 

has a limited role in farmers’ irrigation scheduling [Wang and Cai, 2009; Cai et al., 2011b; Hejazi 

et al., 2014; Shafiee-Jood et al., 2014]. However, to make the model more realistic, future work 

will be conducted to consider farmers’ different responses to forecasts and forecast uncertainties.   

4.3.2 Experimental Design  

In this study, two other  models are designed for comparison with the agent-based water 

market model, as shown in Table 4.2: (1) a baseline model that represents the scenario without 

water markets (model B1) and (2) a benchmark model that represents the market that would yield 

maximum crop production at the system level (model B2). Specifically, model B2 adopts an 

optimization approach that simulates a water market in which the cropland with highest crop 

productivity uses water first, followed by the lands with relatively lower productivity.  

It is expected that system-level total crop production and total traded water permits from 

model A will be higher than those from model B1 and lower than model B2. The performance of 
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model A water market will be highly dependent on agents’ behavioral parameters. Similar to the 

findings of previous studies (e.g., [Rosegrant et al., 2000; Luo et al., 2007]), we expect that the 

water market will yield more increase in crop production in dry years than wet years.  

Table 4.2 Baseline and benchmark models 

Model Model description Behavioral parameters Note 

A Agent-based water market model ,  ,  and      

B1 No water trading among agents   Baseline model 

B2  The water market that yields 

maximum crop production 
  Benchmark model 

 

Scenario-based analysis is applied to evaluate the impacts of farmers’ behaviors on the 

water market. Two experiments are designed as shown in Table 4.3. The first experiment aims at 

exploring the impacts of the agents’ two bidding parameters (i.e., rent seeking  and learning rate

 ) on the water market. The second experiment then introduces multiple scenarios for the 

irrigation parameter (i.e., sensitivity to soil water deficit ) in order to evaluate the joint impacts 

of the three behavioral parameters on the water market.  

Monte-Carlo simulation method is used to obtain the average modeling results for each 

scenario. The procedure consists of three steps. The first step is selecting a particular scenario with 

the mean and coefficient of variation of each set of behavioral parameters in Table 4.3. The second 

step is generating random samples using the behavioral parameters in step one. The number of 

samples is equal to the number of agents (i.e., 334 in this study). The third step is assigning the 

behavioral parameters generated in step two to all of the agents without replacement. The model 
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is executed 100 times to obtain the average modeling results for each scenario. Figure 4.4 gives an 

example of parameterizing agents’ behavioral parameters for one particular scenario.  

Table 4.3 Experiments to explore the impacts of agents’ behaviors on the water market 

Parameters 
Experiment 1 Experiment 2 

Mean CV Mean CV 

Sensitivity to soil water deficit   1 

0.2 

0.4~1.6 

0.2 Rent seeking   0~0.8 0~0.8 

Learning rate   0~0.4 0~0.4 

 

 

Figure 4.4 Illustration of the procedure for sampling the agents’ behavioral parameters for one run 

in the Monte-Carlo simulation (i.e., the mean value for ,  ,  and     is 1.2, 0.4, and 0.2, 

respectively; coefficient of variation is 0.2 for ,  ,  and    ).  

4.4 Results  

This section presents the model results and discussion. First, we execute experiment 1 to 

give an overview of the model results and evaluate the impacts of the bidding parameters on the 
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water market. Then, we execute experiment 2 to evaluate the impacts of the irrigation parameter 

and evaluate how the three parameters jointly affect the water market.  

4.4.1 Overview of Model Results for One Set of Parameters 

The model is executed from 2001 to 2013 to evaluate the performance of the water market 

under different hydrological conditions. Figure 4.5 shows the simulation results for a particular 

scenario. Figure 4.5a shows the water-trading results for all of the agents, which indicate a clear 

pattern in agents’ roles in the market. As expected, the agents with more water permits typically 

sell water to the ones with less water permits.  

Four agents (identified from Figure 4.5a) are selected to compare their profit with and 

without the water market (Figure 4.5b), showing different impacts of the water market for different 

agents. With a water market, the total profit increases for all of the agents, especially for those 

with fewer water permits (e.g., agent 162 has a greater increase in total profit than agent 329). 

Agents with more water permits (e.g., agent 300 and agent 216) have reduced crop production 

because they sell a portion of their water permits to other agents, leaving less water to satisfy their 

own irrigation demand. However, the total profit of these agents increases because of the increased 

income from selling water. In addition, buyers with few water permits become active in the market 

earlier and buy more permits through the market than those with more permits (e.g., compare agent 

162 and agent 329), which is in line with intuitive reasoning (i.e., during a drought event, agents 

with fewer water permits will experience water shortages earlier than those with more water 

permits).  
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Figure 4.5 Results of (a) total traded water permits for all of the agents (pink dots represent sellers, 

green dots represent buyers; the size of the dots represents the traded water amount divided by the 

agent’s land area); (b) profits of the four selected agents with and without water market; and (c) 

daily water trade of the four selected agents. Note: Simulation year is 2011; mean values for 

,  ,  and      are 1.0, 0.2, and 0.15, respectively.  

4.4.2 Impacts of Bidding Behaviors 

This section explores the impact of agents’ bidding behaviors on the performance of the 

water market. Figure 4.6 shows the summary of the system-level total crop production (TCP) from 

the three models (i.e., model A, B1, and B2, defined in Table 4.2) for all of the scenarios. 
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Figure 4.6 Summary of total crop production for all of the agents under model A (black square), 

model B1 (blue triangle), and model B2 (red circle). Note that the shaded grey area represents the 

range of model A’s possible simulation results.  

First, as expected, TCP with the water market (model A) is always higher than that without 

the water market (model B1), especially under normal (e.g., 2010) and dry conditions (e.g., 2011). 

TCP in wet years (e.g., 2007) is maintained at a relatively high level even without the water market, 

thus the benefit of the water market in wet years is not as significant as that in dry years. This result 

is consistent with Luo et al. [2007].  

Second, TCP of model A varies significantly between the results of model B1 and B2 for 

the drier simulation years. The performance of the water market (model A) highly depends on the 

setting of the agents’ bidding behaviors. The TCP of model A can be the same as model B1 under 
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some particular conditions (e.g., when 0.8   and  0  ), implying that the water market will 

yield no increase in crop production when the agents behave inefficiently in the market.  

On the other hand, model A does not yield the same results as model B2, which means that 

the maximum benefit of the market (i.e., reflected by the optimization model B2) cannot be reached 

in reality if we consider the factors that may constrain the agents’ decision-makings. For example, 

the optimization approach typically assumes that the agents have sufficient information for 

decision-making and are able to make optimal bidding decisions that could yield efficient water 

reallocations. However, this assumption may not be realistic when we consider that agents, in 

reality, typically have limited information from the market to make bidding decisions and the 

bargaining processes between agents are not always efficient, which constrains the performance 

of the market.  

Figure 4.7 specifically shows how the bidding parameters affect performance of the water 

market for three representative hydrological conditions: wet year (2007), normal year (2010) and 

severe dry year (2011). First, from a qualitative perspective, the relationships between agents’ 

bidding behaviors and the performance of the water market show similar patterns for all of the 

hydrological conditions. In general, TCP, RMP, and TTW increase when   decreases and/or 

when   increases. This implies that agents with smaller rent seeking and/or larger learning rates 

will make the agents bid prices that are closer to their reservation prices, and, as a result, cause the 

water market to yield more benefits overall (e.g., trade more water and increase more crop 

production). The results concur with the need to design effective auction mechanisms that could 

give market participants incentives to bid their true value [Vickrey, 1961; Hailu and Thoyer, 2006; 

Jackson and Kremer, 2006].  
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Second, from a quantitative perspective, changes in bidding behaviors (  and   ) will 

result in different rates of changes in the performance of the water market. When   is large and/or 

 is small, the modeling results are more sensitive to the changes in  . For example, the relative 

market performance is 20% when 0.1 and 0   . With a small increase in   from 0 to 0.05, 

the relative market performance can increase from 20% to 80%. In contrast, when 0.8  , the 

relative market performance will reach 80% when   exceeds 0.3. These results highlight that the 

market performance depends on hydrological conditions (i.e., dry and wet years), market 

institutions (i.e., model A and model B2), as well as human behaviors (i.e.,  and   ) in markets 

[Smith, 1982; Gode and Sunder, 1993].    

 

Figure 4.7 The impacts of learning rate on: total crop production in 2007 (a), 2010 (b), and 2011 

(c); relative market performance in 2007 (d), 2010 (e), and 2011 (f); and total traded water permit 

in the water market in 2007 (g), 2010 (h), and 2011(i).  
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In the proposed water market, agents are able to make bid decisions and update their bid 

strategies each day. This allows for simulating daily dynamics in the market and evaluating how 

the market dynamics are affected by agents’ behaviors. Figure 4.8 shows the impacts of agents’ 

learning rate on the dynamics of agents’ rent seeking, bidding price, and cumulative traded water 

in the market under different hydrological conditions. The results show that the agents’ daily rent 

seeking, bidding price, and traded water permit allocations are all affected by  . In general, the 

market dynamics are more noticeable when   increases, resulting in more rapid changes in 

agents’ rent seeking and bidding prices, as well as more traded water in the market. In addition, 

the impacts of   on the market dynamics become more significant in drier conditions (e.g., 2011), 

when more agents participate in the market to trade water permits.  
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Figure 4.8 The impacts of learning rate on: agents’ average rent seeking in 2007 (a), 2010 (b), and 

2011 (c); agents’ average bidding price in 2007 (d), 2010 (e), and 2011 (f); and cumulative total 

traded water in the market in 2007 (g), 2010 (h), and 2011 (i).  

Figures 8a-c show that the buyers’ and sellers’ degrees of rent seeking are constant in the 

early days of the simulation and then have a declining trend in later periods. The sellers’ rent 

seeking decreases faster than that of the buyers. This result can be explained by the following 

analysis.  
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On the first several days, no agents enter the market to buy water permits because all of 

them have sufficient water permits. Thus, the agents are not able to update their rent seeking 

without transaction information from the market. After a certain number of days (e.g., 10 days in 

Figure 4.8b), some agents with limited water permits will enter the market to buy water permits 

after they have used all of their permits, and the agents’ will update rent seeking as transactions 

occur. At the beginning, sellers outnumber buyers in the market. Under this relatively 

disadvantageous situation, the sellers will decrease rent seeking greatly in order to make their bids 

more competitive in the market. This is more noticeable in drier hydrological conditions (Figure 

4.8c). However, the sellers are in a more advantageous situation under drier hydrological 

conditions when more agents need to buy water permits. Therefore, the sellers’ rent seeking will 

be closer to that of the buyers.  

The daily dynamics of water price (Figures 8d-f) show that the agents’ bidding prices 

between 50 to 70 days (i.e., flowering stage for corn) are higher than on the rest of the days. This 

is consistent with the trend of yield response factor for corn. Corn’s yield response factor during 

the flowering stage is much higher than in other stages, implying that soil water deficit will cause 

larger yield loss during the flowering stage, thus making the marginal benefits of water higher. 

The agents will bid higher prices in response to the high marginal benefits of water at this stage. 

In addition, it is noticed that the agents with large   bid prices more conservatively (i.e., buyers 

bid higher prices and sellers bid lower prices) for all of the scenarios.  

4.4.3 Impacts of Irrigation Behavior 

This section evaluates the impact of the agents’ irrigation behavior, which is modeled using 

the parameter  (sensitivity to soil water deficit). Figure 4.9 summarizes all of the simulation 

scenarios in experiment 2 (shown in Table 4.3). For both model B1 (baseline) and B2 (benchmark), 



 

 

97 

 

TCP increases as  decreases. Agents with smaller   
are more sensitive to soil water deficit cD

and tend to irrigate crops even before cD  reaches its critical level. Therefore, agents with small

will take more risk-averse irrigation schedules that reduce the chance of crops experiencing water 

deficit, leading to higher crop production.  

Comparing model B1 (baseline) with model A (or model B2), it is noticed that the potential 

performance of the water market increases when   decreases and/or the weather is drier. For 

example, Figure 4.9 shows that in 2010 the water market has the potential to increase crop 

production by 0.1 million bushels (i.e., from 2.64 to 2.74 million bushels) when   is 0.6. 

However, the water market can only increase crop production by 0.05 million bushels (i.e., from 

2.45 to 2.50 million bushels) when  is 1.4. In 2011, the impacts of  on the potential 

performance of the water market become more significant (e.g., the water market has the potential 

to increase crop production by 0.15 and 0.09 million bushels when  is 1.4 and 0.6, respectively). 

In contrast, in wet years such as 2007, the potential benefit of the water market is quite limited 

because the crop production can be maintained at a relatively high level with sufficient 

precipitation.  

 

Figure 4.9 Total crop production of models A, B1, and B2 in 2007 (a), 2010 (b), and 2011 (c). 
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4.4.4 Interplay of Multiple Behavioral Parameters  

While agents’ bidding and irrigation behaviors are investigated separately in the previous 

sections, this section examines how the three behavioral parameters jointly affect the water market 

(Figure 4.10). The results show that the impact of one particular behavioral parameter on the water 

market highly depends on the settings of the other parameters, which can be categorized into three 

patterns.  

The first pattern is that changing the value of one parameter will alter the active parameter 

of the model, without changing the potential impacts of the parameters on the water market 

(Figures 10a-c). (Here we define a parameter as an active parameter if the model results change 

dramatically when the value of this parameter changes. In other words, model results are sensitive 

to this parameter.) This pattern applies for the relationship between   and the interplay of

 and   . When   is small, the ICP is sensitive to the change of   ; while the change of   does 

not have much impact. However, when  is large,   becomes an active parameter while   

becomes inactive.  

The second pattern is that changing the value of one parameter makes one of the other two 

parameters more active. The potential joint impacts of these two parameters does not change 

significantly (Figure 4.10g-i). This pattern applies for the relationship between   and the interplay 

of  and   . When   is small,   is an important model parameter that affects ICP; while   is not 

as important compared with  . However, when   is large,   also becomes an important 

parameter in affecting ICP.  

 The third pattern is that changing the value of one parameter does not qualitatively change 

the interplay of the other two parameters. Instead, the magnitude of the potential impacts of the 

two parameters changes (Figures 10d-f). This pattern applies for the relationship between   and 
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the interplay of   and  . The trend of the interplay between   and   is consistent for different 

values for , and only the magnitude of the interplay changes. When  is small (large), the potential 

joint impacts of   and   on ICP is large (small).  

 

Figure 4.10 The interplay of the three behavioral parameters in 2011  

Lastly, we evaluate how hydrological conditions affect the interplay of the behavioral 

parameters (Figure 4.11) and the impact of transaction cost on the modeling results (Figure 4.12). 

Compared with the results in Figure 4.10, notice that the three patterns discussed above are 

consistent under different hydrological conditions, implying that hydrological conditions do not 
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qualitatively change interactions among the behavioral parameters. However, the magnitude of the 

interplay among the parameters depends largely on hydrological conditions. Typically, the 

interplay of the behavioral parameters is more significant in dry conditions than that in wet 

conditions. The sensitivity analysis of the transaction cost shows that, as expected, total crop 

production is lower (i.e., fewer water permits are traded in the market) when transaction cost 

increases. In particular, high degree of rent seeking and high transaction cost cause the trade 

transactions to be low (Figure 4.12).  

 

Figure 4.11 The interplay of the behavioral parameters under different hydrological conditions. 

(Note:    is 0.1 for Figures a-c;    is 1.2 for Figures d-f;    is 0.4 for Figures g-i.)  
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Figure 4.12 Total crop production under different levels of transaction costs  

4.5 Discussion 

4.5.1 Policy Implications  

Some insights on implementing and improving the water market can be obtained from the 

results. The previous analysis shows that farmers’ irrigation and bidding behaviors can 

significantly affect the performance of the water market. Thus, it is important for policy makers to 

consider these factors when implementing water markets. Some studies have shown that farmers’ 

irrigation decisions are complex and can be affected by their perceptions, experiences, and social 

network [van Duinen et al., 2015]. Appropriate educational and information dissemination 

programs, as well as effective social networking, can support farmers in making better irrigation 

and water trading decisions. These programs could educate farmers to use timely information (e.g., 
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real-time soil moisture status) to guide their irrigation decisions before the water deficit reaches 

critical levels. The programs could also educate farmers to be more realistic (i.e., considering lower 

degree of rent seeking) and more adaptive in learning when making bids in the market. Rewards 

from transactions can also provide incentives to use moderate rent seeking when making bids.  

The results of this study may also provide insights for policy makers to identify appropriate 

education programs towards behavior changes. For example, the irrigation parameter    has 

greater impact on ICP than the learning rate coefficient  when  is small and  is large (e.g., 

0,  1.4    in Figure 4.10g). This implies that an education program for crop science and 

irrigation engineering might be more beneficial than a water-trading education program for 

farmers with low sensitivity to soil water deficits and low rent seeking. However, the opposite 

conclusion will hold true when  is large (e.g., 0.8,  =0.2   in Figure 4.10i). These behavior 

parameter thresholds are obtained from a hypothetical case study, and need to be tested with real 

world water markets. Moreover, the sensitivity analysis with different hydrological conditions 

suggests that timely education programs during dry years will be more beneficial given that 

farmers’ behaviors can have greater impacts on the water market in dry years than in normal or 

wet years.  

4.5.2 Limitations and Future Directions  

The ABM presented in this study is subject to many assumptions and simplifications due 

to data incompleteness and the scope of this work. This study is not intended to provide a tool 

ready for real-world use at this stage, but focuses on exploring the impacts of multiple behaviors 

on the performance of a particular form of water market based on double auction. Several future 

directions can lead to improvement of this work. First, due to the lack of empirical data on farmers’ 

behaviors, the agents’ behavioral parameters are assumed to be normally distributed, and are 
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independent from hydrological, institutional, and socioeconomic factors. This assumption might 

not hold true because farmers’ behaviors, in reality, might be affected by factors such as limits in 

water availability [Foster et al., 2014] and social interactions with other farmers[Ng et al., 2011; 

van Duinen et al., 2016]. Further studies are therefore needed to refine the distributions of 

behavioral parameters and to explore the relationships among farmers’ behavioral parameters and 

the associated hydrological, institutional, and socioeconomic conditions. This can be achieved by 

surveys, interviews, and expert knowledge [Smajgl et al., 2011].  

Second, the agricultural system in this study is a simplified system, in which we assume, 

for illustrative purposes, the most widely planted crop (i.e., corn) is planted in all of the agents’ 

croplands. In future work, a crop choice model could be used to simulate agricultural systems 

consisting of multiple crops and to simulate farmers’ crop choice decisions at the beginning of 

each crop-planting season. Third, in this study we only incorporate three behavioral parameters in 

farmers’ decision-making processes in the water market. Some other factors, such as weather 

forecast, crop price and externalities (e.g., water quality), can also affect farmers’ choice of crops 

and irrigation decisions. Incorporating these additional components into the model could better 

mimic the performance of agricultural water markets. However, it is not expected that these 

additional components would qualitatively alter the findings and implications of this study. 

Finally, this study only simulates agricultural water use in the river basin, without taking 

account of other water users (e.g., municipal and industrial water uses). Thus, we assume that 

farmers are allowed to use water as long as their water use is less than their water permits. 

However, during extreme drought conditions, some farmers might not be able to use water if they 

have lower water right priority compared with other water users such as municipal water users 

[Garcia et al., 2009]. In addition, because groundwater rights are not well defined and monitored 
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in the case study area, we only consider trade of surface water permits in the current study. Future 

work could couple the presented model with a hydrological river flow model to simulate the 

impacts of groundwater use and other types of water uses on the water market. This will allow for 

better understanding of the impacts of farmers’ behaviors on agricultural water markets. In 

addition, the current study only considers a specific type of water market (i.e., sealed-bid double 

auction). Under this market mechanism, agents’ bidding price and bidding strategies are 

confidential. In other words, agents do not share their bidding information with other agents. 

Future work can extend the scope of the current study and simulate other types of water markets 

(e.g., open-cry auction market) in which agents can observe others’ behaviors and interact with 

each other.  

4.6 Conclusions 

An agent-based model of farmers’ irrigation and bidding decisions under the influence of 

farmers’ behavioral factors is developed to simulate an agricultural water market based on double 

auction. The model is applied to a hypothetical water market designed for the agricultural system 

of the Guadalupe River Basin in Texas. The results demonstrate that farmers’ behaviors can 

significantly affect the performance of the water market, as summarized below:   

1. Among multiple behavioral parameters (i.e., sensitivity to soil water deficit  , rent 

seeking , and learning rate  ), the water market’s potential is only significantly affected by .  

2. The impact of  on the performance of the water market is significant under most cases. 

However, the impact of   or   depends on the other two parameters. When   is larger,   

has greater impacts on the performance of the water market; in contrast, when   is larger,   has 

lower impacts.  
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3. The water market could significantly increase crop production only when the following 

conditions are satisfied: (1)   is small, and (2)  is small and/or   is large. The first condition 

requires efficient irrigation scheduling. The second condition requires well-developed water 

market institutions that provide incentives to bid true valuations of water permits.  

Thus, farmers’ sensitivity to soil water deficit and hydrological conditions constrain the 

potential performance of the water market. Farmers who are more sensitive to soil dryness, 

especially under drier hydrological conditions, will enhance the market potential. However, 

farmers’ bidding behaviors will eventually determine how much of the market potential can be 

obtained. Water markets will perform better when farmers are willing to accept smaller rent 

seeking in making bids, and when they are able to learn and update their bidding strategies quickly. 

The latter highlights the importance of sharing market information with agents in timely manner, 

as well as designing effective auction mechanisms so that agents are more willing to bid their true 

valuations of water permits [Krishna, 2010]. Although these findings are derived from a 

hypothetical case study, they provide meaningful hypotheses for further research on the impacts 

of individual behaviors on water markets.  

It is important to note that, this study simulates a hypothetical water market. In order to 

implement water markets in the real world, there are many institutional, regulatory, and technical 

issues to concern. These include strong legal systems to define water rights and to address the 

conflicts in water trading, engineering infrastructure for water transfer and storage, stakeholders’ 

participation, and third-party effects. Incorporating these factors into the proposed model would 

make the model more realistic. We envision that the proposed water market framework can be 

useful for future development of water markets and for testing the findings when water market 

observations become available.  
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Chapter V. Conclusions and Future Work   

The previous three chapters address three issues associated with modeling human 

behaviors in the management of floods and droughts. This chapter summarizes the main findings 

obtained from the modeling results (Section 5.1) and discusses the limitations and future directions 

of the thesis (Section 5.2). 

5.1 Conclusions  

This thesis assesses the impacts of human behaviors on the performance of water resource 

systems during extreme hydrological events. Using an agent-based (ABM) modeling approach, 

three issues associated with modeling human behaviors are addressed: (1) agents’ behavioral 

heterogeneity, (2) social interaction, and (3) interplay of multiple behaviors. Two types of extreme 

hydrological events, drought and flooding, are used as case studies.  

In Chapter II, an ABM framework is developed to simulate human behavioral 

heterogeneity in response to flood warnings. The framework is coupled with a traffic model to 

simulate agents’ evacuation processes within a road network under various flood-warning 

scenarios. The results show that the marginal benefit associated with providing better flood 

warnings (i.e., flood warnings with high prediction accuracies and/or longer lead times) is 

significantly constrained if people behave in a more risk-tolerant manner, especially in high-

density residential areas. The results also show significant impacts of human behavioral 

heterogeneity on the benefits of flood warnings, and thus highlight the importance of considering 

human behavioral heterogeneity in simulating flood warning-response systems. The results reveal 

the importance of modeling human behavioral heterogeneity, as well as including more attributes 

of residential areas to estimate and improve the benefits of flood warnings.  
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Chapter III extends the framework developed in Chapter II, and evaluates how social 

communication affects agents’ flood risk awareness and evacuation behaviors. The results show 

that agents’ social communication can make the evacuation process more sensitive to the influence 

of global flood warnings and/or neighbor observations, and thus impose uncertainties in the benefit 

of flood warnings. In particular, when social media become more influential, and individuals have 

less trust in global flood warnings, the evacuation process can be more vulnerable (i.e., evacuation 

rate is lower). Stubborn individuals on social media are shown to significantly hinder the speed 

and level of opinion adoption of the entire group. These results highlight the role of social media 

in flood evacuation and the need to monitor social media so that misinformation can be corrected 

in a timely manner during a disaster evacuation process.  

Chapter IV addresses the issues of simulating multiple behaviors, using drought as a case 

study. The ABM explicitly incorporates farmers’ multiple behaviors, namely irrigation behavior 

(represented by farmers’ sensitivity to soil water deficit) and bidding behavior (represented by 

farmers’ rent seeking and learning rate), in a hypothetical water market based on a double auction. 

It is found that the joint impacts of the behavioral parameters on the water market are strong and 

complex. In particular, irrigation behavior affects the water market potential and its impacts on the 

performance of the water market are significant under most scenarios. The water market could 

significantly increase crop production only when the following conditions are satisfied: (1) farmers 

are sensitive to soil water deficit, and (2) rent seeking is small and/or learning rate is large. The 

first condition requires efficient irrigation scheduling, and the second requires well-developed 

water market institutions that provide incentives to bid true valuation of water permits.  

Overall, the results from the three case studies show that ABM is a useful modeling 

approach for simulating human behaviors in coupled human and natural systems. Applying ABM 
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in the management of floods and droughts, this thesis investigates some specific issues associated 

with modeling human behaviors. However, ABM typically faces difficulty in model validation 

due to lack of data, which imposes challenges in implementing ABM for planning and 

management of water resource systems. In the big data era, with advanced data collection 

technologies and data mining tools, more data on human behaviors in water resource systems can 

be collected and analyzed. These will provide great opportunities for implementing ABM in the 

management of real-world extreme hydrological events. The following section specifically 

introduces other limitations of this thesis and recommended future work.  

5.2 Limitations and Future Work  

 The major challenge for simulating human behaviors with an ABM is the lack of empirical 

data. Thus, more data are needed to verify the modeling results presented in the above three 

chapters. More specific limitations and future research related to this work are discussed as 

follows.  

 In the case of human behaviors in flood warning-evacuation systems (the ABM in Chapter 

II), relationships between agents’ risk tolerance thresholds and their socioeconomic and 

demographic conditions are not represented. In fact, agents’ response to flood warnings could be 

affected by these factors, such as the size of household, economic value of the home, pet 

ownership, etc. Future work should consider connections among these factors, and build models 

that could better simulate agents’ evacuation decisions. Second, in the present work, we assume 

that all of the agents remaining in the area at the end of model execution will be flooded, and the 

agents that have evacuated to the safe area before the end of model execution will not be flooded. 

Thus, we did not specify the direction, speed, or timing of the flood inundation processes. In future 

work, considering the impacts of more gradual inundation processes may be needed to better model 
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flood behaviors in the real world. In particular, we can consider the heterogeneity of flood damages 

at different locations within a residential area, and evaluate how the spatial distribution of flood 

inundation affects the modeling results. Finally, in the current study, the benefit of flood warnings 

is measured by the percentage of agents that successfully evacuate to safe area. Future work can 

introduce more criteria to measure the benefit of flood warnings, such as the economic value of 

flood-damage mitigation.  

 In Chapter III, due to lack of agents’ social interaction data, we assume agents who are 

closer to each other have stronger social connections and tend to have more communications. This 

might agree with intuitive reasoning that individuals living closer to each other will have more 

chance to meet each other and exchange information. However, this assumption does not 

necessarily hold true in some real-world case studies. Future work could refine this assumption by 

mapping individuals’ social connections using advanced data mining tools when social 

communication data become available. Second, this present work considers a special case of 

regular lattice transportation network with only one evacuation destination at a specific location 

(i.e., on the corner of the transportation network). Future work could consider other types of traffic 

network structures and more evacuation destinations in the transportation system. The problem of 

shelter allocation during natural disasters has been investigated in many previous studies. It would 

be interesting to investigate the role of social media in shelter-allocation optimization to extend 

the scope of this work.  Third, in the current work, we only simulate the process in which agents 

share their opinions on flood risk, without considering that agents could also share their risk-

tolerance thresholds. Future work can investigate how agents’ risk-tolerance thresholds are 

affected by social interactions.   
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 Both chapter II and chapter III use synthetic residential areas as case studies. Future work 

can extend the scope of the current study and use real-world residential areas as example [Dawson 

et al., 2011]. This requires a variety of field data, including (1) census data that provide information 

on the population in the community, their risk-tolerance thresholds to flood risk, responses to 

different types of information sources, access to transport during floods, etc., (2) transportation 

network that connects households to evacuation destinations in the residential area, and (3) 

information on flood warning systems during flood events. Implementing the current model in a 

real-world case study can provide more realistic simulation of households’ evacuation processes 

during floods.        

In the case of the agricultural water market (Chapter IV), the ABM is also subject to many 

assumptions and simplifications due to data incompleteness. First, due to the lack of empirical data 

on farmers’ behaviors, the agents’ behavioral parameters are assumed to be normally distributed, 

and are independent from hydrological, institutional, and socioeconomic factors. This assumption 

might not hold true because farmers’ behaviors, in reality, might be affected by factors such as 

limits in water availability and social interactions with other farmers. Further studies are therefore 

needed to refine the distributions of behavioral parameters and to explore the relationships among 

farmers’ behavioral parameters and the associated hydrological, institutional, and socioeconomic 

conditions. Second, the agricultural system in this study is a simplified system, in which we 

assume, for illustrative purposes, the most widely planted crop (i.e., corn) is planted in all of the 

agents’ croplands. In future work, a crop choice model could be used to simulate agricultural 

systems consisting of multiple crops and to simulate farmers’ crop choice decisions at the 

beginning of each crop-planting season. Third, the present work simulates a hypothetical water 

market, without considering many institutional, regulatory, and technical issues. These include 
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strong legal systems to define water rights and to address the conflicts in water trading, engineering 

infrastructure for water transfer and storage, stakeholders’ participation, and third-party effects. 

Incorporating these factors into the proposed model would make the model more realistic.  

Finally for either of the extreme hydrological events (i.e., droughts and floods), future work 

can couple a more realistic hydro-climatic model that provide forecast of an extreme event to an 

ABM. Furthermore, economic experiments and surveys can be conducted to obtain data on agents’ 

behaviors, and build more realistic models to simulate the role of human behaviors in the 

management of floods and droughts.   
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Appendix A 

This section introduces the N-S traffic model. In the N-S model, space and time are both 

discrete variables and each traffic road in the transportation network is divided into cells, each of 

which can be occupied by one vehicle. At each time step, the moving speed and the location of a 

vehicle is constrained by: (1) the moving speed of the vehicle, (2) the acceleration and deceleration 

rate, (3) the number of empty cells in front of the vehicle to avoid collusion, and (4) maximum 

moving speed allowed in the transportation network.  

For vehicle i and vehicle j (the vehicle that is ahead of vehicle i) with traveling speed 
iv and 

jv , respectively, the speed of vehicle i is determined by the following rules for each time step: 

o If the distance between vehicle i and vehicle j is greater than a safe distance, the vehicle 

will accelerate, increasing moving speed by a unit. Since there is a speed limit on each 

edge, the vehicle’s moving speed would not exceed the road's maximum limit speed. 

o If the distance between vehicle i and vehicle j is less than a safe distance, the vehicle will 

decrease its moving speed by a unit. 

o A vehicle will randomly change its speed by one unit with a certain probability. 

o At the end of each time step, a vehicle will move one time step and update its location on 

its current route. 

We apply the all-way stop rule in road intersections. Vehicles must stop when arriving at 

road intersections and proceed only when the way ahead is clear. When multiple vehicles approach 

at the same road intersection, vehicles’ right-of-way to proceed follows the order of their arriving 

times (Figure A1). For details of the N-S model and how it is implemented to simulate agents’ 

evacuation process, see  Nagel and Schreckenberg, [1992], Nagel and Rickert, [2001], and Du et 

al., [2016].  
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Figure A1 Illustration of traffic road in the N-S model. The road are divided into a number of cells. 

Each cell can be occupied by one agent at a time. Each agent has a designated cell to start 

evacuation (the closest one to the agent). An agent will start its evacuate process when (1) it decides 

to evacuate (illustrated by red color such as agent 1 and agent 3), and (2) its designated cell is 

currently not occupied by other agents (agent 1 will start evacuation immediately; while agent 3 

has to wait until agent 5 move out of its designated cell).  
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Appendix B 

This section briefly introduces the water balance approach and derivation of the marginal 

benefit for irrigation used in the agent-based model. Following previous studies, we use a simple, 

linear water-crop production function to calculate the reduction in crop yield when crop yield 

reduction is caused by water stress, as shown in equation B1[Allen et al., 1998; Steduto et al., 

2009; Wang and Cai, 2009; Andales et al., 2011]..  

 
,

1 (1 )
c adja
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m c

ETY
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Y ET
    (B1) 

where aY  and mY  are crop yield (bushel/acre) with and without water stress, respectively. yk is 

crop’s yield response factor, which is a dimensionless parameter that measures the effect of 

evapotranspiration reduction on crop yield loss.
cET  is evapotranspiration for the crop (i.e., corn in 

this study) under standard management conditions without water shortage (
0c cET ET k  ). 

0ET  is the 

reference evapotranspiration calculated by Hargreaves equation [Hargreaves and Samani, 1985].

adjET  
is adjusted evapotranspiration as a result of water stresses (

adj c sET ET k  ). ck
 
is crop 

coefficient factor and sk
 
is a dimensionless evapotranspiration reduction factor dependent on 

available soil water ( [0,1]sk  ).  sk
 
is calculated by equation B2 [Allen et al., 1998, 2005]: 
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 (B2) 

where AWC is the capacity of available water in crop root zone (inch of water/inch of soil), which 

is the difference between field capacity and wilting point. The value of AWC corresponding to 

different soil types can be obtained from Allen et al. [1998].  MAD is crop depletion factor, a 

dimensionless parameter measuring the faction of total available water that a crop can extract from 
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soil without suffering water stress. MAD is set as 0.6 for corn [Allen et al., 1998]. Drz is the depth 

of the root zone (inch). Dc is soil water deficit (inch) that needs to be satisfied from irrigation. We 

adopt the water balance approach to simulate the hydrological process in crop root zone  [Allen et 

al., 1998; Andales et al., 2011]. In the water balance approach, soil water deficit Dc can be 

estimated by equation B3:  

 ,c c p adj

I
D D ET P

CA
     (B3) 

where c, pD  is soil water deficit of the previous day (inch). P is precipitation amount (inch). I is 

farmers’ effective irrigation amount after taking account of water loss due to irrigation efficiency 

and leaching fraction for salinity control (acre-inch). CA is crop area (acre).  

We assume crop yield of the entire crop-growing season is a linear combination of the 

hypothetical crop yield on each individual day t [ , , ,( / )m t y t y t m

t

Y k k Y  ]. Denote irrigation cost 

($/acre-inch), crop planting cost ($/acre), and crop price as IC, C and PC, respectively. Crop profit 

( ) of the entire season is represented by equation B4:  

 aY CA PC IC I C CA         (B4) 

Combining equations B1-4, the marginal benefit (
tMB ) for irrigating crop on day t ($/acre-

inch) is calculated by equation B5: 
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, (1 )

m t y tt
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PC Y k
MB IC

I ET MAD AWC Drz

  
  
   

 (B5) 

In the auction market, we assume transaction between each individual pair of buyer and 

seller is associated with a transaction cost. In this study, we use coefficient of transaction cost (

) to measure the ratio of transaction cost per unit of water permit relative to the trading price (e.g., 



 

 

133 

 

for a transaction with trading price p and trade amount Q, transaction cost can be represented by 

p Q  ). A larger   is associated with a higher transaction cost ( (0,  1) ).  

With transaction cost, buyers (sellers) will need to decrease (increase) their reservation 

prices in order to avoid profit-losing transactions. The reservation price (
,i t ) for agent i on day t 

is then set as 
, / (1 )i tMB   for buying water permits or 

, / (1 )i tMB   for selling water permits, 

which could ensure the agent will not lose profit if its bid results in transactions. Note that high 

transaction cost will increase sellers’ reservation prices (decreases buyers’ reservation prices) and 

therefore reduce the number of transactions in the market.   

The development for corn consists of five stages, which are establishment, vegetative, 

flowering, yield formation, and ripening. Yield response factor yk for these stages are 0.2, 0.4, 

1.15, 0.5, and 0.2, respectively. The duration for these stages are 20, 30, 20, 40, and 23 days, 

respectively (133 days in total) [Doorenbos and Kassam, 1979; Wang and Cai, 2009]. In order to 

adjust it to 140 days (from March 16th to August 2nd) in this study, the numbers of days for the five 

development stages are proportionally increased to be 21, 32, 21, 42, and 24 days, respectively.  
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Figure B1 The total amount of precipitation from 2001 to 2013 in the Guadalupe river basin 

(GRB). Year 2007 is a wet year for GRB, with 3.7×104 acre-feet (20.4 inches) of rainfall during 

the crop-growing season for all of the agents. In comparison, year 2011 is a severe dry year and 

the total precipitation is only 4.8×103 acre-feet (2.64 inches). The total precipitation in year 2010 

falls in the middle of years 2007 and 2011. Therefore, these three years are selected as 

representative wet, severe dry and normal years in the case study.  

 


