ANOMALOUS CENTRIFUGAL DISTORTION IN $\rm NH_2$

MARIE-ALINE MARTIN-DRUMEL, OLIVIER PIRALI, <u>L. H. COUDERT</u>, *Institut des Sciences Moléculaires d'Orsay, Université Paris-Sud, Orsay, France.*

The NH₂ radical spectrum, first observed by Herzberg and Ramsay,^{*a*} is dominated by a strong Renner-Teller effect^{*b*} giving rise to two electronic states: the bent $X {}^{2}B_{1}$ ground state and the quasi-linear $A {}^{2}A_{1}$ excited state. The NH₂ radical has been the subject of numerous high-resolution investigations and its electronic and ro-vibrational transitions^{*c*} have been measured. Using synchrotron radiation, new rotational transitions have been recently recorded and a value of the rotational quantum number N as large as 26 could be reached.^{*d*} In the $X {}^{2}B_{1}$ ground state, the NH₂ radical behaves like a triatomic molecule displaying spin-rotation splittings. Due to the lightness of the molecule, a strong coupling between the overall rotation and the bending mode arises whose effects increase with N and lead to the anomalous centrifugal distortion evidenced in the new measurements.^{*d*}

In this talk the Bending-Rotation approach^{*e*} developed to account for the anomalous centrifugal distortion of the water molecule is modified to include spin-rotation coupling and applied to the fitting of high-resolution data pertaining to the ground electronic state of NH₂. A preliminary line position analysis of the available data^{*c*,*d*} allowed us to account for 1681 transitions with a unitless standard deviation of 1.2. New transitions could also be assigned in the spectrum recorded by Martin-Drumel *et al.*^{*d*} In the talk, the results obtained with the new theoretical approach will be compared to those retrieved with a Watson-type Hamiltonian and the effects of the vibronic coupling between the ground X^2B_1 and the excited A^2A_1 electronic state will be discussed.

^aHerzberg and Ramsay, J. Chem. Phys. 20 (1952) 347

^bDressler and Ramsay, Phil. Trans. R. Soc. A 25 (1959) 553

^cHadj Bachir, Huet, Destombes, and Vervloet, J. Molec. Spectrosc. **193** (1999) 326; McKellar, Vervloet, Burkholder, and Howard, J. Molec. Spectrosc. **142** (1990) 319; Morino and Kawaguchi, J. Molec. Spectrosc. **182** (1997) 428

^dMartin-Drumel, Pirali, and Vervloet, J. Phys. Chem. A 118 (2014) 1331

^eCoudert, J. Molec. Spectrosc. 165 (1994) 406