The key role of nuclear-spin astrochemistry in the ISM

Romane Le Gal

- Research Associate (UVa)
- in Eric Herbst's group

Collaborators: Changjian Xie, Hua Guo (UNM), Dahbia Talbi (LUPM), Carina Persson and Sebastien Muller (Chalmers, Sweden)

Romane Le Gal – ISMS – 21 June 2017

Outline

Interest and observations

- ortho-to-para ratios (OPRs) in the interstellar medium (ISM)
- The NH₂ and H₂Cl⁺ cases
- Astrochemical modeling
 - Building chemical network
 - Results: comparison with observations

- Multi-hydrogenated species can present different spin configurations
 - => distinguishable forms: e.g. para and ortho for di- and tri-hydrogenated species (depending on their total nuclear spin I)

- Multi-hydrogenated species can present different spin configurations
 => distinguishable forms: e.g. para and ortho for di- and tri-hydrogenated species (depending on their total nuclear spin I)
- Molecular hydrogen (H₂) ubiquitous in ISM => most important such species
 => a large number of chemical reactions are sensitive to the difference in energy between the ortho and para nuclear-spin ground states of H₂ (≈ 170.5 K).

- Multi-hydrogenated species can present different spin configurations
 => distinguishable forms: e.g. para and ortho for di- and tri-hydrogenated species (depending on their total nuclear spin I)
- Molecular hydrogen (H₂) ubiquitous in ISM => most important such species
 => a large number of chemical reactions are sensitive to the difference in energy between the ortho and para nuclear-spin ground states of H₂ (≈ 170.5 K).
- H₂ is hardly detectable in cold environments (no electric dipole moment)

- Multi-hydrogenated species can present different spin configurations
 => distinguishable forms: e.g. para and ortho for di- and tri-hydrogenated species (depending on their total nuclear spin I)
- Molecular hydrogen (H₂) ubiquitous in ISM => most important such species
 => a large number of chemical reactions are sensitive to the difference in energy between the ortho and para nuclear-spin ground states of H₂ (≈ 170.5 K).
- H₂ is hardly detectable in cold environments (no electric dipole moment)
- Multi-hydrogenated spin-state distributions mainly inherited via chemical reactions
 => interesting probes of their H₂ ancestry.

- Multi-hydrogenated species can present different spin configurations
 => distinguishable forms: e.g. para and ortho for di- and tri-hydrogenated species (depending on their total nuclear spin I)
- Molecular hydrogen (H₂) ubiquitous in ISM => most important such species
 => a large number of chemical reactions are sensitive to the difference in energy between the ortho and para nuclear-spin ground states of H₂ (≈ 170.5 K).
- H₂ is hardly detectable in cold environments (no electric dipole moment)
- Multi-hydrogenated spin-state distributions mainly inherited via chemical reactions
 => interesting probes of their H₂ ancestry.

Multi-hydrogenated species OPRs: potential probes of the H₂ chemistry, starting point of all chemistry in molecular clouds

- <u>70's</u>: OPR of H₂ in diffuse gas (Spitzer+1973)
- <u>80's:</u> H₂CO in dense molecular clouds (Kahane+1984), H₂CS (Gardner+1985)
- <u>21st century</u>: C₃H₂ (Takakuwa+2001), CH₂ (Polehampton+2005), H₃⁺ (Crabtree+2011), H₂O (Lis+2013, Flagey+2013), NH₃ (Persson+2012), NH₂ (Persson+2016), H₂S (Crokett+2014), H₂O⁺ (Schilke+2010), H₂Cl⁺ (Lis+2010), CH₂CN (Vastel+2015)

- <u>70's</u>: OPR of H₂ in diffuse gas (Spitzer+1973)
- <u>80's:</u> H₂CO in dense molecular clouds (Kahane+1984), H₂CS (Gardner+1985)
- <u>21st century</u>: C₃H₂ (Takakuwa+2001), CH₂ (Polehampton+2005), H₃⁺ (Crabtree+2011), H₂O (Lis+2013, Flagey+2013), NH₃ (Persson+2012), NH₂ (Persson+2016), H₂S (Crokett+2014), H₂O⁺ (Schilke+2010), H₂Cl⁺ (Lis+2010), CH₂CN (Vastel+2015)

- <u>70's</u>: OPR of H₂ in diffuse gas (Spitzer+1973)
- <u>80's:</u> H₂CO in dense molecular clouds (Kahane+1984), H₂CS (Gardner+1985)
- <u>21st century</u>: C₃H₂ (Takakuwa+2001), CH₂ (Polehampton+2005), H₃⁺ (Crabtree+2011), H₂O (Lis+2013, Flagey+2013), NH₃ (Persson+2012), NH₂ (Persson+2016), H₂S (Crokett+2014), H₂O⁺ (Schilke+2010), H₂Cl⁺ (Lis+2010), CH₂CN (Vastel+2015)
- In thermal equilibrium: OPR(**T**)
- Spontaneous radiative o-p interconversions are extremely slow, e.g. $\approx 10^{13}$ yr for H₂ >> to the age of the Universe!
- ⇒ OPRs were commonly believed to reflect a "formation temperature" (Mumma+1987, Hama+2016)

- <u>70's</u>: OPR of H₂ in diffuse gas (Spitzer+1973)
- <u>80's:</u> H₂CO in dense molecular clouds (Kahane+1984), H₂CS (Gardner+1985)
- <u>21st century</u>: C₃H₂ (Takakuwa+2001), CH₂ (Polehampton+2005), H₃⁺ (Crabtree+2011), H₂O (Lis+2013, Flagey+2013), NH₃ (Persson+2012), NH₂ (Persson+2016), H₂S (Crokett+2014), H₂O⁺ (Schilke+2010), H₂Cl⁺ (Lis+2010), CH₂CN (Vastel+2015)
- In thermal equilibrium: OPR(**T**)
- Spontaneous radiative o-p interconversions are extremely slow, e.g. $\approx 10^{13}$ yr for H₂ >> to the age of the Universe!
- ⇒ OPRs were commonly believed to reflect a "formation temperature" (Mumma+1987, Hama+2016)

Further theoretical studies needed to explain the OPR discrepancies from their thermal equilibrium

Interstellar NH₂ OPR toward star-forming regions

V31C

Orion Spur

5

Vorma

PRISMAS key program data (PI: M. Gerin) & additional observations: OT1 program dedicated to N-chem (PI: C. Persson)

15 000

rius Arm

W51 G34.3

Seus

W49N

NH₂ OPR toward W31C & W49N

Persson, Olofsson, Le Gal et al., A&A. (2016)

Romane Le Gal – ISMS – 21 June 2017

NH₂ OPR toward W51 & G34.3

Persson, Olofsson, Le Gal et al., A&A. (2016)

Interstellar H₂Cl⁺ OPR toward galactic sources

- <u>Lis et al. 2010</u>: ortho-H₂Cl⁺ (1₁₀- 1₀₁) and para-H₂Cl⁺ (1₁₁- 0₀₀) with Herschel/ HIFI in absorption toward NGC 6334I => **OPR≈3**
- <u>Neufeld et al. 2012</u>: para-H₂Cl⁺ (1₁₁- 0₀₀) with Herschel/HIFI: in absorption toward Sgr A, W31C, Orion MC, AFGL 2591 in emission in OMC 1 (Orion Bar and Orion South)
 Gerin et al. 2013: ortho-H Cl⁺ (1 - 1 -) with 30 meter and CSO
- <u>Gerin et al. 2013</u>: ortho-H₂Cl⁺ (1₁₀- 1₀₁) with 30 meter and CSO toward W31C and W49N
- <u>Neufeld et al. 2015</u>: ortho-H₂Cl⁺ (2₁₂- 1₀₁) in foreground of diffuse gas toward G29.96-0.02, W51, W3(OH) and W49N, with additional para-H₂Cl⁺ (1₁₁- 0₀₀) => 2.5 ≤ OPR ≤ 3

H_2Cl^+ OPR at z=0.89 toward PKS-1830-211

Interpretation of the observations

Interpretation of the observations

How these OPRs are formed

Study the processes and rates governing:(i) the formation of ortho and para forms(ii) their ortho-to-para conversion

Interpretation of the observations

How these OPRs are formed

Study the processes and rates governing:(i) the formation of ortho and para forms(ii) their ortho to para conversion

(ii) their ortho-to-para conversion

Strategy

Identifying the species and pivotal processes at stake

modeling the interstellar chemistry

Astrochemical modeling

- Context: observations and interests
 - ortho-to-para ratio (OPR) in the interstellar medium (ISM)
 - The NH₂ and H₂Cl⁺ cases

Astrochemical modeling

- Building chemical network
- Results: comparison with observations

Romane Le Gal – ISMS – 21 June 2017

Building chemical network

- Aims:
 - Distinguish ≠ spin configurations of
 H₂ and multi-hydrogenated species
 - ⇒ Update & upgrade of Flower et al.
 2006 with rigorous nuclear-spin selection rules (Oka 2004)
 - Based on recent experimental and theoretical work
 - ⇒ Rist et al., JPCA 2013, Faure et al., ApJ
 2013 & Le Gal et al., A&A 2014

Building chemical network

- Aims:
 - Distinguish ≠ spin configurations of
 H₂ and multi-hydrogenated species
 - ⇒ Update & upgrade of Flower et al.
 2006 with rigorous nuclear-spin selection rules (Oka 2004)
 - Based on recent experimental and theoretical work
 - ⇒ Rist et al., JPCA 2013, Faure et al., ApJ
 2013 & Le Gal et al., A&A 2014

Romane Le Gal – ISMS – 21 June 2017

Persson, Olofsson, Le Gal et al., A&A. (2016) 14

Romane Le Gal – ISMS – 21 June 2017

NH2 OPR

Persson, Olofsson, Le Gal et al., A&A. (2016) 14

Romane Le Gal – ISMS – 21 June 2017

NH2 OPR

Persson, Olofsson, Le Gal et al., A&A. (2016) 14

Romane Le Gal – ISMS – 21 June 2017

OPR

 $\rm NH_2$

Persson, Olofsson, Le Gal et al., A&A. (2016) 14

Two main H₂Cl⁺ formation pathways:

(1) $H_2 + HCI^+ -> H_2CI^+ + H$

(2) $H_3^+ + HCI \rightarrow H_2CI^+ + H_2$

Neufeld & Wolfire, ApJ (2009)

Romane Le Gal – ISMS – 21 June 2017

Two main H₂Cl⁺ formation pathways:

(1) $H_2 + HCI^+ -> H_2CI^+ + H$

(2) $H_3^+ + HCI \rightarrow H_2CI^+ + H_2$

H₂Cl⁺ OPR formation? Full scrambling? Hopping?

Neufeld & Wolfire, ApJ (2009)

Romane Le Gal – ISMS – 21 June 2017

H₂Cl⁺OPR: full scrambling vs hopping (I)

H₂Cl⁺OPR: full scrambling vs hopping (I)

Quasi-classical trajectory calculations

 $H_2 + HCI^+ \rightarrow H_2CI^+ + H$

Energy profil with energies in kcal/mol relative to the global minimum M3

Contour plot for the H atom hopping reaction process

H₂Cl⁺ OPR thermalization reaction?

 $o-H_2Cl^+ + H <-> p-H_2Cl^+ + H ?$

H₂Cl⁺ OPR thermalization reaction?

Conclusions & future works

Conclusions:

- Gas-phase spin chemistry reproduce:
 - interstellar NH₂ OPR in cold gas: full scrambling selection rules for OPR < 3 & H-exchange reaction for OPR > 3
 - Interstellar H₂Cl⁺ OPR in cold gas: full scrambling selection rules for OPR < 3 only hopping mechanism for OPR = 3
- Models predictions with full scrambling selection rules:
 - \rightarrow NH₂ and H₂Cl⁺ OPRs depend on temperatures

Future works:

- Gas-grain processes impact (adsorption, desorption, surface reactions)
- Upgrade the chemical network for more diffuse conditions

Conclusions & future works

Sun

30,000 ly

Conclusions:

- Gas-phase spin chemistry reproduce:
 - interstellar NH₂ OPR in cold gas: full scrambling selection rules for OPR < 3 & H-exchange reaction for OPR > 3
 - Interstellar H₂Cl⁺ OPR in cold gas: full scrambling selection rules for OPR < 3 only hopping mechanism for OPR = 3
- Models predictions with full scrambling selection rules:
 - ♦ NH₂ and H₂Cl⁺ OPRs depend on temperatures

Future works:

- Gas-grain processes impact (adsorption, desorption, surface reactions)
- Upgrade the chemical network for more diffuse conditions

Thanks for your attention!

Influence of the rate coefficient

Romane Le Gal – ISMS – 21 June 2017

Le Gal et al., A&A. (2016)

Results: H + NH₂ H-exchange barrierless

H + NH₂ H-exchange rate coefficient of $\approx 10^{-10}$ cm³ s⁻¹ is consistent with the theoretical computations

Le Gal et al., A&A. (2016)

Romane Le Gal – ISMS – 21 June 2017

Impact of NH₂ chemistry updates

Chemical reactions ^(a)						α	β	γ	References
						$({\rm cm}^3{\rm s}^{-1})$			
NH ₂	Ν	\rightarrow	N ₂	Н	Н	1.2(-10)	0.00	0.00	$KIDA^{(b)}$
NH_2	0	\rightarrow	NĤ	OH		7.0(-12)	-0.1	0.00	$KIDA^{(c)}$
2						3.5(-12)	0.5	0.00	Le Gal et al. $(2014a)^{(d)}$
NH_2	Ο	\rightarrow	HNO	Η		6.3(-11)	-0.1	0.00	$KIDA^{(c)}$

Romane Le Gal – ISMS – 21 June 2017

Le Gal et al., A&A. (2016)

Further modeling study

Models	1	2	3		5
Modifications			5		
$H + NH_2$ H-exchange addition (reactions 5 and 6)	X	X	X	X	X
NH_2 destruction updates (see Table 2)		X	X	X	X
$[H_{tot}]_{ini} = 2 \times [H_2]$	X	X			X
$[H_{tot}]_{ini} = [H]$			X		
$[H_{tot}]_{ini} = \frac{1}{2} \times [H] + [H_2]$				X	
$\zeta = 1.3 \times 10^{-17} \mathrm{s}^{-1}$	X	X	X	X	
$\zeta = 3 \times 10^{-17} \mathrm{s}^{-1}$					X
$\zeta = 2 \times 10^{-16} \mathrm{s}^{-1}$					
$n_{\rm H} = 2 \times 10^4 {\rm cm}^{-3}$	X	X	X	X	X

Impact of the initial form of hydrogen

Le Gal et al., A&A. (2016)

Impact of the ionization rate

Romane Le Gal – ISMS – 21 June 2017

Le Gal et al., A&A. (2016)

Energy level diagram of NH₂

Romane Le Gal – ISMS – 21 June 2017

⁽Persson, Olofsson, Le Gal et al., A&A. 2016)

H₂Cl⁺OPR: full scrambling vs LTE

Neufeld et al. ApJ (2015)

H₂Cl⁺OPR: full scrambling vs hopping (II)

Romane Le Gal – ISMS – 21 June 2017

Le Gal et al., in prep.

H₂Cl⁺OPR: full scrambling vs hopping (II)

Romane Le Gal – ISMS – 21 June 2017

Le Gal et al., in prep.

Cl abundance = 1.8e-7 / Max. reaction rate = 8.5e-14 cm⁻³s⁻¹

Neufeld & Wolfire, ApJ (2009)

Romane Le Gal – ISMS – 21 June 2017

0

log(reaction rate/max. rate) or log(abundance/CI abundance)

Neufeld & Wolfire, ApJ (2009)

Romane Le Gal – ISMS – 21 June 2017

^{-6 -4 -2} log(reaction rate/max. rate) or log(abundance/Cl abundance)

-8

Neufeld & Wolfire, ApJ (2009)

o Romane Le Gal – ISMS – 21 June 2017

CI abundance = 1.8e-7 / Max. reaction rate = 5.8e-16 cm⁻³s⁻¹

Neufeld & Wolfire, ApJ (2009)

Romane Le Gal – ISMS – 21 June 2017

0