

FIRST HIGH RESOLUTION IR SPECTRA OF 1- 13 C-PROPANE. THE ν_9 B-TYPE BAND NEAR 366.404 cm $^{-1}$ AND THE ν_{26} C-TYPE BAND NEAR 748.470 cm $^{-1}$. DETERMINATION OF GROUND AND UPPER STATE CONSTANTS.

S.J. DAUNT, ROBERT GRZYWACZ, Department of Physics & Astronomy, The University of Tennessee-Knoxville, Knoxville, TN, USA; WALTER LAFFERTY, Optical Technology Division, National Institute of Standards and Technology, Gaithersburg, MD, USA; JEAN-MARIE FLAUD, CNRS, Universités Paris Est Créteil et Paris Diderot, LISA, Créteil, France; BRANT E. BILLINGHURST, EFD, Canadian Light Source Inc., Saskatoon, Saskatchewan, Canada.

We report in this talk on the first high resolution IR spectra ($\Delta\nu=0.0009~{\rm cm}^{-1}$) of the 1- 13 C-Propane isotopologue. Spectra were taken on the Bruker FTS instrument on the Far-IR beamline at the Canadian National Synchrotron (CLS) located at the University of Saskatchewan. The ν_9 B-type band centered near 366.404 cm $^{-1}$ appears unperturbed and lines were assigned up to K = 17 and J = 50. Since the 1960 MW study of Lide^a only used 6 J lines of K = 0 we had to use GSCD analyses to determine a fuller set of molecular constants for this molecule. Since normal propane has been detected using the ν_{26} C-type band in Titan and other astrophysical objects our main focus was on the analagous bands for the both the 1- 13 C and 2- 13 C isotopologues. Assigned lines up to K = 17, J = 50 in ν_{26} were analyzed with GSCD to independently obtain ground state rotational constants. These were consistent with those obtained from the ν_9 analysis. Upper state constants were also determined that reproduce the vast majority of this band. As in the normal and 2- 13 C species a Coriolis resonance with the $2\nu_9$ state causes lines of most K levels above 15 to be shifted.^b We did not have enough sample available at the time of these experiments to be able to record the $2\nu_9$ - ν_9 hot band transitions in the low frequency study of ν_9 .

^aLide, J. Chem. Phys. **33**, p. 1514 ff. (1960)

^bFlaud, Kwabia Tchana, Lafferty & Nixon, Mol. Phys. **108**, p. 699 ff. (2010)