The Molecular Structure of Monofluorobenzaldehydes

Issiah Byen Lozada, <u>Wenhao Sun</u>, Jennifer van Wijngaarden

Department of Chemistry, University of Manitoba Winnipeg, MB, Canada

TC04 ISMS 72st Meeting June 20, 2017

Previous Studies

J. Chem. Soc., Faraday Trans. 2, 1989, 85(2), 137-149

Rotational Isomerism in Monofluorobenzaldehydes

José L. Alonso* and Rosa M. Villamañán

Departamento de Química-Física, Facultad de Ciencias, Universidad de Valladolid, Valladolid 47005, Spain

Microwave spectra of 2- and 3-fluorobenzaldehydes have been investigated in the frequency region 26.5-40.0 GHz. Only the *O-trans* form of 2fluorobenzaldehyde was detected in the gas phase. Analysis of 3-fluorobenzaldehyde confirmed the existence of two rotational isomers: *O-cis* and *O-trans*. From relative intensity measurements the *O-cis* form was shown to be more stable than the *O-trans* form by 300 ± 200 cal mol⁻¹. The inertia defect values and the variation of the rotational constants with the torsional quantum number demonstrate that the equilibrium geometry is planar for all rotamers. Molecular structures which are in very good agreement with experimental rotational constants have also been derived.

Potential Energy Curve

cp FTMW Spectrometer

L. Evangelisti, G. Sedo, J. van Wijngaarden, J. Phys. Chem. A, 2011, 115, 685-690

Experimental Conditions

O-trans 2FBA: 414 - 313

3FBA: O-cis & O-trans

Balle Flygare FTMW Spectrometer

G. Sedo, J. van Wijngaarden, J. Chem. Phys. 2009, 131, 044303.

Line collection: 4-26 GHz

¹³C-6

¹³C-12

	Dipole/D	#line
a-type	2.18	39
b-type	0.08	10

Isotope	#line
¹³ C-1	6
¹³ C-2	9
¹³ C-3	8
¹³ C-4	9
¹³ C-5	8
¹³ C-6	10
¹³ C-12	9

* All dipole moments are calculated at MP2/ aug-cc-pVTZ

17

18

SPFIT: Watson - A reduction

		2FBA	O-trans		
			This work	Previous work*	
		A/MHz	2567.599481(46)	2567.609(3)	
		B/MHz	1560.865217(16)	1560.8694(9)	
		C/MHz	970.950256(10)	970.954(1)	
		$\Delta_{ m J}/ m kHz$	0.059225(94)	0.072(2)	
		Δ_{JK}/kHz	0.13286(34)	0.128(4)	
		Δ_{K}/kHz	0.1297(16)	0.19(2)	
		δյ/kHz	0.021890(48)	0.0221(5)	
		δ _κ /kHz	0.15851(33)	0.151(4)	
		RMS/kHz	0.484	46	
3FTBA		O-cis		O-tra	ans
	TI	his work	Previous work*	This work	Previous work*
A/MHz	2919.	.250865(64)	2919.255(2)	3657.20290(52)	3657.169(5)
B/MHz	1269.	.700848(41)	1269.697(2)	1114.785459(66)	1114.781(2)
C/MHz	884.	961618(28)	884.964(2)	854.522877(50)	854.530(2)
$\Delta_{ m J}/ m kHz$	0.06489(31)		0.062(4)	0.02374(33)	0.024(4)
$\Delta_{\sf JK}/{\sf kHz}$	-0.	.1789(15)	-0.17(2)	0.1237(17)	0.13(1)
Δ_{K}/kHz	0.6396(37)		0.67(5)	0.75(51)	/
δ _J /kHz	0.0	02357(15)	0.018(2)	0.00601(21)	/
δ _κ /kHz	0.1043(17)		0.08(2)	0.115(18)	/
RMS/kHz		0.806	47	0.491	66

J. L. Alonso, R.M. Villamañán, J. Chem. Soc., Faraday Trans., 1989, 85(2), 137-149

Effective Structure - r₀

	2FBA O- <i>trans</i>		3FBA			
			O-cis		O-trans	
	r _e	r _o	r _e	r _o	r _e	r _o
R(C1-C2)	1.393	1.385(11)	1.398	1.407(9)	1.397	1.379(9)
R(C3-C2)	1.385	1.388(3)	1.382	1.375(11)	1.385	1.396(6)
R(C4-C3)	1.392	1.396(4)	1.391	1.392(4)	1.387	1.388(3)
R(C5-C4)	1.397	1.399(6)	1.393	1.395(4)	1.396	1.396(5)
R(C6-C5)	1.388	1.402(10)	1.393	1.405(10)	1.390	1.398(6)
R(C1-C6)	1.400	1.402(13)	1.396	1.385(7)	1.397	1.410(12)
R(C7-C1)	1.480	1.491(6)	1.479	1.491(5)	1.479	1.488(6)
R(013-C7)	1.220	1.218(10)				
∠(C3-C2-C1)	122.5	122.8(5)	117.9	117.3(5)	118.3	118.0(5)
∠(C4-C3-C2)	118.5	118.1(3)	122.5	123.2(3)	122.2	122.5(2)
∠(C5-C4-C3)	120.5	120.6(1)	118.8	118.5(2)	118.7	118.5(2)
∠(C6-C5-C4)	120.0	120.0(2)	120.1	120.0(2)	120.5	120.5(2)
∠(C2-C1-C6)	120.6	119.8(5)	119.8	119.5(5)	119.5	119.0(3)
∠(C1-C6-C5)	118.1	118.7(6)	120.8	121.5(6)	120.7	121.3(5)
∠(C7-C1-C2)	121.5	121.5(10)	119.9	119.4(6)	118.6	119.1(9)
∠(O13-C7-C1)	123.0	122.5(11)				

Z. Kisiel, *PROSPE-Programs for Rotational Spectroscopy*, http://info.ifpan.edu.pl/~kisiel.htm.

Structural Analysis: 2FBA

Equilibrium structures are calculated at MP2/ aug-cc-pVTZ, and atomic charges shown are Mulliken charges.

Structural Analysis: O-*cis* **3FBA**

Equilibrium structures are calculated at MP2/ aug-cc-pVTZ.

Structural Analysis: O-*cis* **3FBA**

Equilibrium structures are calculated at MP2/ aug-cc-pVTZ.

Structural Analysis: O-trans 3FBA

Equilibrium structure is calculated at MP2/ aug-cc-pVTZ.

Acknowledgements

University of Manitoba